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In this dissertation we develop a class of pseudochaotic direct-sequence code

division multiple access (DS/CDMA) systems that can provide private and reliable

communication over wireless channels. These systems exploit the sensitive depen-

dence of chaotic sequences on initial conditions together with the presence of channel

noise to provide a substantial gap between the bit error probabilities achievable by

intended and unintended receivers. We illustrate how a desired level of private com-

munication can be achieved with a systematic selection of the system parameters.

This type of privacy can be readily combined with traditional encryption methods to

further ensure the protection of information against eavesdroppers.

The systems we propose employ linear modulation of each user’s symbol stream

on a spreading sequence generated by iterating a distinct initial condition through

a pseudochaotic map. We evaluate and compare the uncoded probability of error

(Pr(ε)) achievable by intended receivers that know the initial condition used to gen-

erate the spreading sequence to the associated Pr(ε) of unintended receivers that

know the modulation scheme but not the initial condition. We identify the map



attributes that affect privacy, and construct algorithmic design methods for gener-

ating pseudochaotic spreading sequences that successively and substantially degrade

the unintended user performance, while yielding intended user performance similar to

that of conventional DS/CDMA systems. We develop efficient metrics for quantifying

the unintended receiver Pr(ε) and prove that it decays at a constant rate of 1/
√

SNR

in AWGN and fading channels. In addition, we show that this decaying rate is inde-

pendent of the available degrees of diversity in fading channels, showing in the process

that only intended receivers can harvest the available diversity benefits. Moreover, we

illustrate that the pseudochaotic DS/CDMA systems can provide reliable multiuser

communication that is inherently resilient to eavesdropping, even in the worst-case

scenarios where all receivers in a network except the intended one collude to better

eavesdrop on the targeted transmission. We also develop optimized digital imple-

mentation methods for generating practical pseudochaotic spreading sequences that

preserve the privacy characteristics associated with the underlying chaotic spreading

sequences.
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Chapter 1

Introduction

In this dissertation we examine the physical-layer privacy potential of a class of pseu-

dochaotic direct sequence code division multiple access (DS/CDMA) systems for wire-

less communications. In particular, we consider linear modulation schemes based on

spreading sequences generated from a class of one-dimensional (1D) piecewise-linear

chaotic maps, and investigate the relative probability of error (Pr(ε)) performance

advantages these systems provide to intended receivers over unintended ones. In the

process we identify chaotic map properties that affect the Pr(ε) gap between intended

and unintended receivers and construct methods for designing maps that maximize

these Pr(ε) performance gaps. For DS/CDMA based on these maps, we develop met-

rics that quantify the unintended receiver Pr(ε). For the chaotic spreading sequences

of interest, we also develop optimized digital implementation methods, and analyze

the associated unintended receiver performance characteristics.

Communication privacy, or keeping the informational content of transmitted

messages private from unwanted entities, can be provided at different stages, or layers,

of a communication system, as schematically illustrated in Fig. 1.1. Communication

privacy can be provided via encoding messages with certain side information that

is made available only to intended receivers to create asymmetry in the ability to

1
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Figure 1.1: Layers of communication privacy.

receive and decode the message between intended and unintended receivers. The

mainstream approach to communication privacy has been cryptographic methods.

In cryptographic methods, the message is encrypted with some cipher such that de-

cryption is computationally prohibitive for unintended receivers that do not know an

input parameter, known as the key, to the encryption process. This type of privacy

can be complemented by concealment systems, whereby the signal containing the

message is hidden such that the probability of interception, or detection of the pres-

ence of the signal, by eavesdroppers is low. Concealment is especially viable in the

context of communication over noisy channels, as in transmissions using electromag-

netic waveform carriers, where listeners without appropriate modulation parameters

have difficulty detecting the presence of low-power, wideband transmissions masked
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by channel noise. In addition, employing a modulator also as an encoder can pro-

vide additional privacy at the physical-layer, by means of degrading the bit error

probability performance of unintended receivers without certain side information.

Spread spectrum (SS) systems, with their inherent low probability-of-intercept

(LPI) capability, are good multiuser platforms for concealment of signal transmission,

and have been employed in military communications with this purpose in mind [1].

In direct sequence spread spectrum (DS/SS) systems, the information-bearing signal

is modulated onto a pseudorandom (PN) sequence at a rate much higher than the

information rate. This spreads the signal power over a larger bandwidth, making it

difficult for an unintended receiver to detect the signal in the presence of background

noise. The large bandwidth also reduces the detrimental effects of narrowband inter-

ference and jamming. Furthermore, these schemes scale naturally to CDMA systems

for multiuser environment by assigning different PN spreading sequences to different

users. Since PN sequences can be chosen from sets of sequences with good auto- and

cross-correlation properties, CDMA systems are robust against multiuser interfer-

ence as well as self-interference due to multipath propagation. Moreover, withholding

knowledge of a PN sequence (or the seed used to generate it) from unintended re-

ceivers results in a layer of communication privacy, where identifying the presence

of the target signal in noisy observation does not guarantee sufficient demodulation

performance for reconstructing the message without the knowledge of the PN se-

quence [1].

Sequences arising from suitably chosen chaotic maps can be employed in place

of conventional binary PN spreading sequences generated from linear shift registers

to provide an array of advantages. Indeed, the defining characteristics of trajectories

from chaotic dynamics – deterministic, aperiodic, and exhibiting sensitive depen-

3



dence on initial conditions [2]– have appealing implications in the context of single-

and multiuser communications, and have naturally been proposed for communication

in various forms in the last decade. The first communication system employing chaos

was reported by Cuomo et al. [3] and pertains to a chaotic signal masking technique

that employs chaotic systems decomposable into drive and response subsystems and

exploits synchronization of the two (transmitter/receiver) subsystems to a common

coupled signal [2, 4, 5]. Since chaotic sequences have broadband spectra and excel-

lent auto- and cross-correlation properties, they are also well suited as spreading

sequences in direct sequence spread spectrum (DS/SS) and multiuser communication

applications. Chaotic DS/SS systems were originally suggested by Heidari-Bateni and

McGillem [6]. Since then, two main classes of methods for incorporating chaotic dy-

namics into DS/SS systems have emerged. The first class includes methods whereby

a continuous-time chaotic waveform is used as both modulating carrier and spreading

signal [7], and where synchronization of two chaotic circuitries is exploited to reliably

demodulate the information-bearing signal. The latter class employs spreading se-

quences based on trajectories from 1D chaotic maps. Such spreading sequences can be

multilevel sequences generated by quantizing the original chaotic sequences [6,8–13],

unstable periodic orbits [14], or binary sequences suitably obtained from underly-

ing chaotic sequences, e.g., by exploiting the base-2 representation of numbers in

the unit interval [15]. The performance of legitimate communicating pairs in a mul-

tiuser environment has been a key emphasis in the above and related literature. The

statistics of chaotic sequences have been analyzed, and the correlation properties of

certain such sequences were found to outperform those of binary-valued pseudonoise

(PN) sequences [8, 10, 13]. In particular, it was shown that CDMA systems em-

ploying time-varying pseudochaotic spreading sequences can provide improvements

4



in (intended) user Pr(ε) with respect to their conventional CDMA counterparts (em-

ploying binary-valued PN spreading sequences). Indeed, for many of these systems

the cochannel interference characteristics and the associated bit error probabilities

of intended receivers have been evaluated and found to compare favorably to those

of existing CDMA systems [8, 11, 12]. One such attractive example involves CDMA

systems where all users employ spreading sequences generated by the same map but

from distinct initial conditions.

In this dissertation we focus on DS/SS and CDMA systems employing pseu-

dochaotic spreading sequences. We study the Pr(ε) benefits these systems can provide

to intended receivers over their unintended counterparts that do not know the seed

used to generate the chaotic spreading sequence. We develop computationally effi-

cient approximations and associated bounds for the Pr(ε) of intended and unintended

receivers over additive white Gaussian noise (AWGN) and fading channels, and de-

termine the dependence of the receiver performance on system parameters. Such

relationships are then exploited to design systems that optimize the relative Pr(ε)

advantages provided to intended users. For these systems, we develop efficient met-

rics that quantify the unintended receiver Pr(ε) in various single-user and multiuser

communication settings. As we show, these systems can be designed to provide sub-

stantially higher Pr(ε) performance to unintended receivers. In particular, for suitably

designed systems, the unintended receiver Pr(ε) decays at a significantly slower rate as

a function of signal-to-noise ratio (SNR) than the intended receiver Pr(ε) does. This

is in contrast to conventional DS/CDMA (assuming the seed used to generate the

binary-valued PN spreading sequence is not made available to unintended receivers),

where the unintended receiver Pr(ε) decays at the same rate as that of the intended

receiver.
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Figure 1.2: Block diagram of a chaotic DS/SS modulator.

The discrete-time baseband model of the chaotic DS/SS transmitters of inter-

est is shown in Fig. 1.2, and involves a symbol stream b[n] that is modulated on a

sequence c[n], generated by iterating an initial condition c[0] through an 1D chaotic

map. The inherent privacy potential of these systems is due to the combined effect of

channel distortion and the sensitive dependence on initial conditions of chaotic trajec-

tories. Due to the deterministic nature of chaotic dynamics, knowledge of the initial

condition allows reconstruction of the spreading sequence, rendering the initial condi-

tion an ideal candidate for the key made available to intended users. The key allows

the intended receiver to reconstruct the spreading sequence and form a (time-varying)

matched-filter detector, in the same manner that intended receivers in conventional

DS/SS systems use the initial seed to reconstruct via a linear feedback shift-register

(LFSR) the spreading PN sequence that is used in forming a matched-filter detector.

Although for properly designed chaotic DS/SS systems with moderate/large

spreading gains the intended receiver Pr(ε) performance is effectively the same as

that of their conventional DS/SS counterparts, as we show, chaotic DS/SS can result

in substantially higher Pr(ε) for unintended receivers that do not know the initial

condition. Specifically, unintended receivers without the key face a composite detec-

tion problem, whereby, under each hypothesis, the unknown spreading sequence lies

within an enormous set of valid chaotic trajectories. For the class of chaotic spreading

sequences we consider, due to their sensitive dependence on initial conditions, con-
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sistent estimates of the initial conditions used to generate the spreading sequences

cannot be formed from their noisy observations. Furthermore, not only these esti-

mates are not efficient, but the ratio of the estimate error variance over the associated

Cramér-Rao Lower Bound grows exponentially fast with the length of the observed

sequence, for chip energy-to-noise ratios (Ec/No) below a certain high threshold [16].

These properties are consistent with the fact that the number of local maxima of

the likelihood function increases exponentially with the length of the sequence. In

contrast, the seed of conventional binary-valued PN spreading sequences from known

LFSRs can be consistently estimated based on noisy observations; indeed simple sub-

optimal estimators of the initial state of the LFSR can correctly identify the seed

with very high probability based on just a fraction of the sequence period, even at

very low Ec/No [17, 18].

Quantized chaotic system implementations are required to ensure that the

number of bits needed to describe the key c[0] is finite. Although such digital imple-

mentations inherently yield periodic pseudochaotic sequences, if properly designed,

they can retain, in some sense, the sensitivity to initial conditions of the original

systems, while generating trajectories with enormous periods that, for all practical

purposes, can be viewed as aperiodic. In particular, for the chaotic maps of interest

in this dissertation, given a B-bit description for c[0], we develop digitized implemen-

tations that generate spreading sequences with periods of order 2B−1– 2B.

1.1 Outline of the Thesis

In this dissertation we develop and analyze a class of pseudochaotic DS/CDMA sys-

tems that allow reliable and private communication over AWGN and fading channels.

In Chapter 2, we describe the pseudochaotic DS/CDMA systems and the gen-
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eral channel model that captures all channels of interest, and introduce the class

of chaotic maps employed to generate the spreading sequences in this work. In the

process, we investigate the properties of the associated chaotic sequences that affect

the Pr(ε) performance of intended and unintended receivers. In addition, for certain

subclasses of chaotic systems of practical interest, we develop attractive and efficient

digital realization techniques and discuss their ramifications on communication pri-

vacy.

In Chapter 3, we study the communication privacy potential of single-user

chaotic DS/SS systems in AWGN. We develop computationally efficient metrics for

the Pr(ε) of intended and unintended receivers, and obtain relationships between

various system parameters and receiver performance. Based on these relationships,

we develop iterative algorithms that yield sequences of chaotic DS/SS systems that

monotonically improve the privacy benefits provided to intended receivers. For a

certain class of system parameters with attractive associated receiver performance,

we deduce the decaying rate of unintended receiver Pr(ε) in high signal-to-noise ratio.

This decaying rate is then exploited to establish efficient predictors of the unintended

receiver Pr(ε) for a subclass of these systems. We also investigate the effects of

digital implementation of spreading sequences of interest on the unintended receiver

performance, and deduce the range of system parameters over which the privacy

trends for pseudochaotic DS/SS can approximate the privacy provided with true

chaotic spreading.

In Chapter 4, we focus our investigation on the performance of chaotic DS/SS

over fading channels. In particular, we examine the privacy potential of chaotic DS/SS

given imperfect channel estimates at the receiver, for various diversity settings. We

first validate the design methods of chaotic DS/SS in Chapter 3 in the context of
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fading channels. For an attractive class of systems developed in Chapter 3, we obtain

computationally viable metrics for the Pr(ε) of intended and unintended receivers

in fading, and derive the decaying rate of unintended receiver Pr(ε) in high signal-

to-noise ratio. Finally, we study the dependence of communication privacy on the

quality of channel estimates available at the receiver, along with its dependence on

the available degrees of diversity. In the process, we demonstrate that a suitably

designed chaotic DS/SS can indeed meet the required level of communication privacy

over wireless channels.

In Chapter 5, we consider synchronous multiuser CDMA extensions of the

class of chaotic DS/SS systems in Chapter 3. We characterize the spectral properties

of the sequences of interest in an effort to verify their suitability as spreading codes

in DS/CDMA systems. We then develop a multiuser detector framework that can

capture various intended and unintended receiver scenarios with proper choice of the

priors on the initial conditions. Utilizing this framework, we illustrate the privacy

potential of chaotic DS/CDMA systems via some special cases.

Finally, a summary of the main contributions of this dissertation is given in

Chapter 6, along with a representative collection of potentially interesting directions

for future research that are suggested by this work.
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Chapter 2

A Class of Pseudochaotic DS/CDMA

Systems

In this dissertation, we consider a class of DS/SS-based CDMA systems for communi-

cation over noisy channels, where the spreading sequences for all users are generated

by iterating distinct initial conditions through the same chaotic map. This chapter

describes the main components of these systems that contribute to the communi-

cation reliablity and privacy – the DS/SS transmitter, its pseudochaotic spreading

sequences, and the noisy channel model.

The outline of this chapter is as follows. In Section 2.1, we first introduce the

model of the pseudochaotic DS/CDMA transmitter and the channel model that are

the focus of this dissertation. In Section 2.2, we present the class of chaotic sequences

utilized in obtaining the spreading sequences of interest and study their properties

that affect communication privacy. In Section 2.3, we develop digital realization

methods of spreading sequences from a class of chaotic maps that, for all practical

purposes, allow the resulting pseudochaotic DS/SS systems to be evaluated via the

analytical framework that we develop for their chaotic counterparts.
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Figure 2.1: Block diagram of a chaotic DS/CDMA transmitter.

2.1 System Model

In this section we present the class of pseudochaotic DS/CDMA systems and channel

models that are of interest in this dissertation.

A system model for the m-th pseudochaotic transmitter is shown in Fig. 2.1,

where m = 1, . . . , M with M representing the number of active transmitters in the

system. The message stream bm[n] ∈ {
+
√Eb,−

√Eb

}
is a sequence of statistically

independent and identically distributed (IID) binary-valued symbols with equally

likely symbol values, and cm[n] is the spreading sequence obtained by iterating an

initial condition cm[0] through an 1D pseudochaotic map. The message stream bm[n]

is upsampled by an integer factor of L, such that the output bm,u[n] of the upsampler

is given by

bm,u[n] =





bm

[
n
L

]
, n = . . . ,−L, 0, L, 2L, . . .

0, otherwise
.

This output bm,u[n] is processed by a linear time-invariant (LTI) pulse-shaping filter
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Figure 2.2: A discrete-time baseband model for a time-selective fading channel

h[n], whose output is

bm,h[n] =
A√
L

bm

[⌊n

L

⌋]
, (2.1)

where A
4
= 1/

√
E [c2

m[n]] guarantees that Eb equals the transmitted energy per bit

and the floor function bxc denotes the greatest integer less than or equal to x. The

transmitted signal of m-th user is thus given by

xm[n] = cm[n]
∑

j

bm[k] h[n− kL] . (2.2)

Besides replacing binary-valued LFSR spreading sequences with chaotic sequences,

the system in Fig. 2.1 is effectively identical to a conventional DS/CDMA system

with spreading gain L.

The channels of interest in this dissertation are modeled via a cascade of a bank

of multiplicative components and an additive component, as shown in Fig. 2.2. Each

multiplicative coefficient αm[n] captures the effect of fading for each user. The additive

component w[n] represents the combined effect of a large number of independent noise

sources at the receiver. Thus we assume that, via the central limit theorem, w[n]

follows Gaussian distribution and possess flat spectra. The intended and unintended
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users’ received signal at time n is of the form

y[n] =
M∑

m=1

αm[n]xm[n] + w[n] , (2.3)

where the fading coefficients αm[n] are statistically independent in m and w[n] is

an IID, zero-mean, complex-valued, circularly-symmetric stationary white Gaussian

noise sequence with power No/2 per dimension.

The model (2.3) can represent many channels of interest with proper choice

of the characterization of αm[n]. With αm[n] an IID process, it naturally captures

time-selective flat (frequency-nonselective) fading channels (with n denoting the time

index). Slow (time-nonselective) flat fading and AWGN channels are captured with

αm[n] = αm, ∀n. While this channel model does not directly reflect frequency-

selective fading scenarios, we remark that it can also capture these scenarios with

an orthogonal frequency division multiplexing (OFDM) front-end at the transmit-

ter. In this case, xm[n] may be viewed as the output of the n-th subcarrier in the

OFDM system, whereby a frequency-selective channel is effectively transformed into

a number of frequency-nonselective channels. We assume that, apart from cm′ [0], the

unintended receiver for m′-th transmitter has the same information as the intended

receiver, including the knowledge of αm′ [n].

2.2 Sequences Generated from a Class of Piecewise-

Linear Chaotic Maps

In this section we define the chaotic maps and sequences of interest, and present some

of their attributes that affect the receiver performance and privacy behaviors. We then

develop useful representations for these chaotic maps and sequences in Section 2.2.1,
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and examine the associated sequence power characteristics that are integral in the

intended receiver Pr(ε) analysis in Section 2.2.2. Methods for digital implementation

of these chaotic sequences, and their ramifications are discussed in Section 2.3.

The chaotic spreading sequences we exploit in this work are generated via the

recursion

c[n] = F (c[n− 1]) , (2.4)

initialized with some initial condition c[0] ∈ I
4
= [−1, 1]. We assume that the map F

belongs to the class of piecewise-linear P ×Q equipartition maps defined as follows:

Definition 1. The map F : I → I is a piecewise-linear P × Q equipartition map if

it satisfies the following conditions:

(i) There exist partitions −1=a0 <a1 < · · ·<aP =1 and−1=b0 <b1 < · · ·<bQ =1

of I, where P and Q are positive integers with P > Q, such that, for each i ∈
{1, . . . , P}, the restriction of F to Ii = IP

i

4
= [ai−1, ai), F |Ii, is onto [bj−1, bj),

for some j ∈ {1, . . . , Q}.

(ii) F (·) is surjective, i.e., for any j ∈ {1, . . . , Q}, there exists an i ∈ {1, . . . , P}
for which F |Ii is onto [bj−1, bj).

(iii) F (·) is piecewise linear, i.e., F |Ii is affine for all i.

(iv) F (·) is equipartitioned, i.e., the sets of numbers {a0, . . . , aP} and {b0, . . . , bQ}
are both uniformly spaced on I.

For convenience, we refer to the class of maps of Defn. 1 with fixed P and

Q as P × Q partition maps, and the subclass of Defn. 1 corresponding to Q = 1 as

P -partition maps. Fig. 2.3 shows representative examples of P × Q partition maps

and P -partition maps.
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(b) a P -partition map with P = 4

Figure 2.3: Example P ×Q partition map and P -partition map.

The class of P -partition maps and the sequences they generate have a number

of important properties. First, these maps have uniform invariant densities and are

fully stretching, i.e., F |Ii is onto for all i. Moreover, they are exact and ergodic trans-

formations that possess the Markov property [19, 20] in the sense of the definitions

in App. A.1.1 Exactness ensures complete loss of memory of initial conditions with

repeated iterations of the map, and is directly related to the growth rate of sequence

prediction error and the sensitive dependence on initial conditions. This sensitivity is

captured by the Lyapunov exponent of the map, λ = log(P ) > 0, and thus depends

only on the numbers of partitions P . Remarkably, however, as we show in Section 3.2,

distinct maps with the same P , possessing the same sensitivity to initial conditions,

can provide vastly different uncoded Pr(ε) advantages to intended receivers. As P -

partition maps are especially amenable to analysis, we employ them to illustrate

1The Markov property is particularly attractive in the context of multiuser CDMA systems,
as there are readily available methods for analyzing the correlation and spectral characteristics of
Markov sequences [19].
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some of the key relationships between maps and the degree of privacy of the asso-

ciated chaotic spread spectrum systems. These relationships are then exploited to

select maps from the richer class of maps of Defn. 1 so as to achieve a required level

of uncoded Pr(ε) advantage offered to intended users. The subset of P ×Q partition

maps selected in the process also corresponds to exact Markov (and hence ergodic)

maps, with uniform invariant densities and Lyapunov exponents λ=log(P/Q)>0.

2.2.1 Representations of Chaotic Sequences

We next develop certain important representations for L-point sequences

cL 4
=

[
c[0] c[1] · · · c[L− 1]

]T

(2.5)

generated by a given P ×Q partition map. First, we note that cL is fully determined

by the initial condition c[0], or, alternatively, by c[L − 1] and the set of partition

indexes within which the iterates {c[n]; 0 ≤ n < L} fall; given this information one

can reconstruct cL. Furthermore, we note that given any c ∈ [−1, 1], we have c ∈ Ii

for a unique i ∈ {1, 2, · · · , P} and F (c) ∈ [bj−1, bj) for a unique j ∈ {1, . . . , Q}. For

convenience, we define

s = s(c)
4
= 2i− P − 1 (2.6a)

and

qs = qs(s(c))
4
= 2j −Q− 1 . (2.6b)

The identifier functions in (2.6) are odd-symmetric, e.g.,

s(−c) = −s(c), c ∈ I. (2.7)
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Using (2.6), the mapping F (·) can be described as follows

y = Fs(x) =
ζs

Q
(P · x + ζs · qs − s) , (2.8)

where ζs denotes the sign of the slope of the piecewise-linear map on its restriction to

the partition associated with the index s = s(x). Similarly, the inverse map is given

by

x = F−1
s (y) = ζs

(
Q · y − qs + ζs · s

P

)
. (2.9)

Letting s[n] = s(c[n]), we have

c[n + 1] = F (c[n]) = Fs[n](c[n]) ⇔ c[n] = F−1
s[n](c[n + 1]) , (2.10)

and, hence, the following equivalent representations for cL

cL ⇔ c[0] ⇔ {sL−1, c[L− 1]} , (2.11)

where sn 4
=

[
s[0] s[1] · · · s[n− 1]

]T

is often referred to as the n-point itinerary of

c[0].

The pair of vectors

ζ = ζP 4
=

[
ζ−P+1 ζ−P+3 · · · ζP−1

]T

, (2.12)

comprising the ordered signs of the slopes of F (·) over the P partitions, and

q = qP 4
=

[
q−P+1 q−P+3 · · · qP−1

]T

, (2.13)

comprising the ordered range intervals associated with the P partitions, completely
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characterize a P × Q partition map. For instance, the case (P = 2, Q = 1) with

ζ =

[
1 −1

]T

and q =

[
0 0

]T

corresponds to the tent map

FT(c) = 1− 2|c| , (2.14)

while the case {ζs = 1, ∀s}, {qs = 0, ∀s} results in the class of r-adic maps, with

(P = 2, Q = 1) corresponding to the dyadic map

FD(c) = 2(c + 1) mod 2− 1 . (2.15)

We remark that this characterization is not unique; any P0 × Q0 partition map can

be also viewed as a (M · P0)× (M ·Q0) partition map for any positive integer M , by

appropriately expanding the pair
(
ζP0 ,qP0

)
to

(
ζM ·P0 ,qM ·P0

)
. For example, the tent

map (2.14) can be also viewed as a 4 × 2 partition map with ζ =

[
1 1 −1 −1

]T

and q =

[
−1 1 1 −1

]T

.

Any P -partition map F (·) and its inverse have the following concise descrip-

tions:

y = Fs(x) = ζs(P · x− s) , (2.16a)

and

x = F−1
s (y) =

ζs · y + s

P
. (2.16b)

As (2.16) reveals, any map within this class is fully characterized by the vector (2.12).

2.2.2 Sequence Power Characteristics

We next focus on the probability density function (PDF) of the power of length-L

sequences, and, in particular, its relation to features of the chaotic map. These PDFs
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Figure 2.4: Dyadic map and its sequence power characteristics for L = 4.

play a key role in the probability of error performance of intended receivers.

Due to (2.11), the power of a length-L chaotic vector cL can be viewed as a

function of the vector cL, the initial condition c[0], or, alternatively, {sL−1, c[L− 1]}.
Hence, with a slight abuse of notation, we have

E (
cL

)
= E (c[0]) = E (

sL−1, c[L− 1]
)
=

1

L

L−1∑
n=0

c2[n] . (2.17)

Fig. 2.4 shows the dyadic map, its (L−1)-fold composition, FL−1(c), and the power

of cL, first vs. c[0] in Fig. 2.4 (b), and then vs. c[L − 1] for all possible sL−1 in
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Fig. 2.4 (c). Each quadratic segment of E (c[0]) and E (
sL−1, c[L− 1]

)
corresponds

to a unique itinerary vector sL−1. We remark that the curvatures of the E (c[0])

curves grow exponentially with L, while those of E (
sL−1, c[L− 1]

)
remain bounded

as L →∞.

All P -partition maps with the same number of partitions P have the same

power PDF. For any pair of distinct P -partition maps F (·) and G(·) with the same

P , using (2.16a) we can readily verify that2

Fs(c)(c) = ±Gs(c)(c) .

Moreover, using (2.7) we can readily show that

Fs(−c)(−c) = ±Fs(c)(c).

Consequently, for any pair of sequences generated by propagating the same initial

condition through two distinct P -partition maps F (·) and G(·) with the same P , we

have

[
c F (c) F 2(c) · · · FL−1(c)

]T

=

[
c ±G(c) ±G2(c) · · · ±GL−1(c)

]T

,

(2.18)

showing, indeed, that the PDF of E (
cL

)
depends only on the number of partitions,

P , and not on the sign vector ζ associated with the particular map. In addition, all

P -partition maps have the same average sequence power; E
[E (

cL
)]

= 1/3, where

E [·] denotes expectation. Thus, for the sequences from these maps, A =
√

3 in (2.1).

Finally, the minimum sequence power, mincL E (
cL

)
, is also of interest as it

2We employ the notation y = ±x to denote y = +x or −x.
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Figure 2.5: Sequences with minimum sequence power for dyadic map and L = 2. ⊕
marks correspond to the sequences with minimum

∥∥cL
∥∥.

greatly affects the intended receiver Pr(ε). Since E (
cL

)
=

∥∥cL
∥∥2

/L =
∥∥cL − 0

∥∥2
/L,

where ‖·‖ denotes L2-norm, mincL E (
cL

)
is attained by the sequences with min

∥∥cL
∥∥,

i.e., those that are closest to the L-dimensional origin. This is graphically illustrated

in Fig. 2.5 for the dyadic map. Since P -partition maps with odd P pass through

the origin, mincL E (
cL

)
= 0 for these maps. P -partition maps with even P do not

pass through the origin and, hence, exhibit a nonzero mincL E (
cL

)
. As L → ∞,

these min
∥∥cL

∥∥ sequences rapidly approach fixed or period-2 trajectories with sample

values from
{
+ 1

P+1
,− 1

P+1

}
. Consequently,

lim
L→∞

min
cL
E (

cL
)

=

(
1

P + 1

)2

, P even . (2.19)

As a result, over all P -partition maps, min E (
cL

)
is maximum for P = 2, correspond-

ing to the tent map and the dyadic map.
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2.3 Digital Realization of Sequences from P × Q

Partition Maps

In this section, we examine some of the issues that arise in digital realizations of

sequences from P × Q partition maps, and develop implementation methods for a

class of these maps that address these issues. Digital realization of chaotic systems is

necessary to ensure that the number of bits representing c[0] is finite, allowing efficient

digital transmission of the key. Quantization of a real-valued initial condition for ana-

log circuit implementations does not ensure reliable communication, since the chaotic

sequence generated by the receiver with quantized initial condition exponentially di-

verges from the actual spreading sequence used in modulation. Digital realization

also avoids a potential problem in analog implementation, where even infinitisimal

inconsistency in the physical emulations of a given map for a pair of transmitter and

receiver results in different spreading sequences for the pair with the same c[0]. These

digital implementations are dynamical systems over finite-cardinality domains, and

can thus be viewed as finite state machine realizations of P ×Q partition maps. As

each digitized sequence from such a dynamical system is equivalent to a series of out-

put states from a finite state machine, it is inherently periodic (thereby not chaotic),

and hence, it cannot, in a strict sense, exhibit sensitive dependence on initial condi-

tions in the long term [21]. If properly designed, however, digitized sequences with

enormous periods can be generated that retain, in some sense, many of the impor-

tant properties of the chaotic trajectories of interest. We demonstrate such design

methods, first for the class of r-adic maps, then for a class of odd P × Q partition

maps.

Brute-force digital realizations of piecewise-linear chaotic maps can yield sys-
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tems with undesirable dynamics. This can be illustrated by considering digital real-

izations of r-adic maps

F̃ (x) = r x mod 1 , x ∈ [0, 1] ,

where x mod a denotes the nonnegative remainder of x/a. Given a numerical preci-

sion depth of B bits, a straightforward realization method exploiting the maximum

number of quantization levels can be effectively viewed as a mapping of the form

G(x)
4
= r x mod 2B , (2.20)

where x ∈ {
0, 1, 2, . . . , 2B − 1

}
. Propagating any initial condition x through (2.20)

yields a fixed point of the map after a finite number of iterations. For instance, in the

case r = 2, the maximum possible number of iterations before reaching a fixed point

is B + 1. Evidently, this type of brute-force realization in general does not preserve

the invariant density, exactness, broadband characteristics, and sensitivity to initial

conditions of the original map.

Certain key properties of chaotic sequences can, in some sense, be preserved

via properly constructed digitized realizations. In particular, consider r-adic map

implementations of the form

G(x) = r x mod q , (2.21)

where x ∈ SQ
4
= {0, 1, · · · , q− 1} and q is a suitably chosen prime such that q < 2B.

An attractive attribute of implementations of the type (2.21) is that, under modulo q

addition and multiplication, the integer set {0, 1, · · · , q − 1} forms a Galois Field of
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B dyadic map 3-adic map 2B

8 227 233 256
12 4093 4073 4096
16 65371 65419 65536
24 16776989 16777183 16777216
32 4294967291 4294967188 4294967296
48 281474976710597 281474976710597 281474976710656
64 18446744073709551557 18446744073709551557 18446744073709551616

Table 2.1: The largest prime q, q < 2B, such that nonzero sequences from (2.21) have
period q − 1, for r = 2 (dyadic map) and r = 3 (3-adic map).

order q, GF(q). As a result, if the prime q is chosen such that r is a primitive element

in GF(q), then (2.21) yields q−1 maximal-length sequences G(n)(x) with period q−1,

for all initial conditions except for x = 0 [22].

Implementations of the form (2.21) with r a primitive element of GF(q) have

several attractive properties. First, the sequences arising from nonzero initial condi-

tions are exact and ergodic, and possess uniform invariant probability mass functions

(PMFs) on their restriction on SQ′
4
= {1, 2, · · · , q− 1}. Furthermore, from the unin-

tended receiver’s point of view, these sequences can retain the sensitive dependence

on initial conditions of the original chaotic map, in the sense that the combined ef-

fect of sufficient quantization depth and channel noise can render the space spanned

by these digitized sequences effectively indistinguishable from the space spanned by

the real-valued chaotic trajectories. Consequently, the performance of intended and

unintended receivers in the context of DS/SS systems exploiting such pseudochaotic

sequences can be evaluated via analysis techniques that are developed for their chaotic

counterparts. Thus, in the following chapters of this dissertation, we investigate the

receiver Pr(ε) performance characteristics in the context of original chaotic DS/SS

systems.
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Table 2.1 shows the largest prime q such that r is a primitive element of GF(q),

as a function of the precision depth B for r-adic maps with r = 2, 3. As the table

reveals, q is very close to 2B for all B values in the figure, demonstrating that indeed

this type of implementation can provide digitized sequences with enormous periods

for sufficiently large B. We note that, while empirical methods for finding a suitable

q may be sufficient, as one such q may suffice in designing a chaotic DS/SS system,

algorithms for systematically generating such q’s as a function of the precision depth

and r are important in their own right and warrant further investigation.

An important class of odd-symmetric P × Q partition map-based digital se-

quences can be generated from systematic modifications of their r-adic counterparts

described above. In particular, we consider odd P × Q partition maps H that arise

as a composition of a masking map M and an r-adic map G in the form of (2.21)

with a suitably chosen prime q, i.e., H
4
= M ◦ G. For a class of masking maps in

the following theorem, this composition generates maximal-length sequences H(n)(x)

with least period q − 1 for all nonzero initial conditions x ∈ SQ′ :

Theorem 1. Let the following conditions hold for G : SQ → SQ and M : SQ → SQ,

where SQ = {0, 1, · · · , q − 1}.

(i) G(·) is maximal length for all nonzero initial conditions, i.e., given the quan-

tization depth q, q − 1 is the smallest n for which G(n)(x) = x, x ∈ SQ′, where

SQ′ = {1, 2, · · · , q − 1}.

(ii) G(·) is odd, i.e., G(x) = q −G(q − x) for all x ∈ SQ′.

(iii) M(·) is odd, i.e., M(x) = q −M(q − x) for all x ∈ SQ′.

(iv) For each x ∈ SQ′, either M(x) = x or M(x) = q − x.

(v) the number of elements in SQ′ for which M(x) = q − x is a multiple of 4.
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Figure 2.6: Finite states representation of (M ◦ G)(n)(x). Solid arrows correspond
to M(x) = x (2.23a) and dashed arrows correspond to M(x) = q − x (2.23b), for
x ∈ SQ′ .

Then, H(x) = (M ◦G)(x) is odd and maximal length for all x ∈ SQ′.

Proof. First, H(·) is odd since it is the composition of two odd maps. Next we prove

that H(·) is maximal length. From condition (ii), we have

G(n)(q − x) = q −G(n)(x) . (2.22)

From conditions (iii) and (iv) and (2.22) we have, for all x ∈ SQ′ and integer n ≥ 0,

M(G(n)(x)) = G(n)(x) if and only if M(q −G(n)(x)) = q −G(n)(x) , (2.23a)

and

M(G(n)(x)) = q −G(n)(x) if and only if M(q −G(n)(x)) = G(n)(x) . (2.23b)

The maximal-length condition (i) and (2.23) imply that G( q−1
2

)(x) = q − x, and in

general, G( q−1
2

+n)(x) = q − G(n)(x). The effect of the masking operation M on the

finite state machine realization of G is illustrated in Fig. 2.6. In this figure, each

arrow represents an application of the mapping (M ◦G)(·). Specifically, solid arrows

correspond to the case M(G(n)(x)) = G(n)(x), and dashed arrows correspond to the

case M(G(n)(x)) = q − G(n)(x), for x ∈ SQ′ . As can be deduced from the figure, for
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Figure 2.7: An example masking operation on an r-adic map. G(x) is the dyadic map,
M(x) is a masking map satisfying the conditions in Theorem 1, and H(x) = M ◦G(x)
is the output map of masking.

H(n)(x) = (M ◦G)(n)(x) to be maximal length, the number of n ∈ {1, 2, · · · , q−1
2
} for

which M(G(n)(x)) = q−G(n)(x) (dashed arrows) need be an even number. Due to the

relationships in (2.23a) and (2.23b), the same holds for n ∈ { q−1
2

+1, q−1
2

+2, · · · , q−
1}, thus this sufficient condition is equivalent to the condition (v). Therefore H(x) is

maximal length for all x ∈ SQ′ .

The class of maps H(·) = (M ◦G)(·) in Theorem 1, where G(·) is an r-adic map

of the form (2.21) that generates maximal-length sequences, retains many important

attributes of the digitized r-adic maps G(·), in addition to the least period q− 1 and

odd symmetry. In particular, the sequences H(n)(x), x ∈ SQ′ are exact and ergodic,

and possess uniform invariant densities. As Fig. 2.7 suggests, the composition of a

suitably designed masking map with an r-adic map can be used to construct a wide

range of potentially useful odd P ×Q partition maps.
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Chapter 3

Analysis and Design of Pseudochaotic

DS/SS Systems: AWGN Channels

In this chapter, we focus on developing algorithmic design methods for pseudochaotic

DS/SS systems with the desired level of communication privacy in the case of single-

user communications over AWGN channels. This instructive special case captures

many of the key performance and design issues that arise in the context of private

and reliable multiuser communication over fading channels. The block diagram of

the single-user chaotic DS/SS transmitter, a specialization from the general model in

Fig. 2.1 and shown previously in Fig. 1.2, is repeated in Fig. 3.1 for convenience, with

the redundant subscripts suppressed. In this case, the transmitted signal at time n

in (2.2) simplifies to

x[n] = x
[
n; c, b

[⌊n

L

⌋]]
=

A√
L

F n(c) b
[⌊n

L

⌋]
, (3.1)
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chaotic
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message
 source

Figure 3.1: Block diagram of a chaotic DS/SS modulator.

and the intended and unintended users’ received signal (2.3) reduces to

y[n] = x[n] + w[n]

=
A√
L

F n(c) b
[⌊n

L

⌋]
+ w[n] . (3.2)

In this chapter, we initially focus on the class of chaotic DS/SS systems based on

P -partition maps in Chapter 2, and characterize the single-user communication pri-

vacy for the signal (3.2). We deduce the relationships between the level of privacy

and various system parameters. These relationships are then exploited to establish

systematic methods for designing DS/SS systems based on P ×Q partition maps that

meet a required privacy strength.

We first investigate the Pr(ε) performance for the intended receiver in Sec-

tion 3.1. Specifically, we develop Pr(ε) expressions and bounds, and infer connections

between Pr(ε) performance and various system parameters. As we show, the intended

receiver of the pseudochaotic DS/SS transmission with suitably chosen chaotic maps

has effectively identical Pr(ε) performance as that of conventional DS/SS systems for

spreading gains of practical interest.

In designing chaotic DS/SS with attractive privacy benefits, it is important

to understand how the behavior of a primary privacy metric, i.e., the unintended

receiver Pr(ε), depends on the controllables, i.e., system parameters. In Section 3.2

29



we develop bounds and approximations to the unintended receiver Pr(ε), and identify

the features of chaotic maps that affect the associated receiver Pr(ε). As we show,

such relationships between unintended receiver performance and chaotic map features

naturally suggest a subclass of P -partition maps with attractive privacy benefits. For

this class of maps, we demonstrate that, at high signal-to-noise ratio (SNR), the

unintended receiver Pr(ε) curves decay at a rate of 1/
√

SNR, in sharp contrast to the

exponential decay rate exhibited by the intended receiver Pr(ε).

To be able to establish private communication over a wide array of scenarios

with different privacy requirements, it is desirable to have systematic system design

methods, the associated privacy of which can be efficiently quantified based on a set

of system parameters. Toward this goal, in Section 3.3 we build on our investigation

in Section 3.2 to develop iterative design methods of DS/SS systems based on P ×
Q partition maps that systematically degrade the unintended receiver Pr(ε) while

maintaining intended user performance. For a subset of these systems, we obtain

expressions for predicting the relations between the unintended receiver Pr(ε) and

system parameters.

An important factor that must be considered in constructing operational pseu-

dochaotic DS/SS systems on digital platforms is the impact such numerical implemen-

tations of chaotic spreading sequences have on communication privacy. In Section 3.4,

we deduce the range of digital implementation parameters for which the unintended

receiver performance for suitably constructed pseudochaotic DS/SS accurately ap-

proximates that for the underlying chaotic DS/SS systems. In the process we show

that the class of pseudochaotic DS/SS we develop can provide attractive privacy

benefits to intended receivers under a wide range of system parameters of practical

interest.
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3.1 Intended Receiver Performance

In the following we develop numerically efficient methods for evaluating the Pr(ε)

performance of intended receivers for DS/SS communication with P -partition maps

in AWGN, and determine the relationship between system and map parameters and

the Pr(ε) of these receivers.

From the viewpoint of an intended receiver that knows the initial condition,

chaotic spreading is equivalent to linearly modulating the message bit stream on a

known time-varying shaping waveform. Consequently, the minimum Pr(ε) receiver is

a symbol-by-symbol detector consisting of a time-varying matched filter followed by

sampling and a threshold detector. The (instantaneous) received bit SNR associated

with a specific spreading vector cL is given by

γb = A2 Eb

No

E (
cL

)
=

A2

L
· Eb

No

L−1∑
n=0

c2[n] , (3.3)

where we set A =
√

3 for all P -partition maps. As c[n] is an ergodic sequence for

almost all initial conditions [20],

Pr(ε) = E
[
Q

(√
2γb

)]
=

∫
Q




√
6 Eb E (c)

No


 pc[0](c) dc , (3.4)

where Q (ν) = 1− F(ν), where F(·) denotes the cumulative distribution function of

the standard Gaussian PDF, i.e.,

Q (ν) =
1√
2π

∫ ∞

ν

e−
t2

2 dt , (3.5)

and where pc[0](·) denotes the invariant density, which, for any P -partition map, is
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uniform in [−1, 1]. We remark that the integral (3.4) has no closed form solution.

Furthermore, the number of intervals required for numerical integration grows expo-

nentially with L, as Fig. 2.4 (b) suggests. These integrals are characterized by expo-

nentially decreasing widths and integrands with curvatures exponentially increasing

in L, leading to numerically sensitive computation algorithms of (3.4).

An alternative expression to (3.4) can be obtained by replacing E (c[0]) with

E (
sL−1, c[L− 1]

)
and using the fact that c[L− 1] is uniformly distributed on I,

Pr(ε) = E


E


Q




√
6 Eb E (sL−1, c[L− 1])

No




∣∣∣∣∣∣
sL−1







=
1

2PL−1

P L−1∑
i=1

∫ +1

−1

Q



√
6 Eb E (si, c)

No


 dc . (3.6)

Although (3.6) requires computation of a number of integrals that grows exponentially

with L, unlike (3.4), it suggests well-behaved algorithms for numerical computation of

the intended receiver Pr(ε), as each E (
sL−1 = si, c[L− 1]

)
curve in (3.6) has bounded

curvature for all L. Furthermore, (3.6) suggests computationally efficient approxima-

tions based on equivalence classes of itineraries with similar E (
sL−1, c[L− 1]

)
’s. In

particular, we can define equivalence classes, according to which, any two itineraries

s1 and s2, whose ordered elements are permutations of each other, are viewed as mem-

bers of the same class. We select a random set of class representatives by choosing

exactly one random sample itinerary se from each equivalence class. The contribution

of a class representative on Pr(ε) is then scaled by the number of distinct itineraries

in the associated equivalence class. It can be shown that, for the case P = 2, each set

of E (
sL−1, c[L− 1]

)
’s conditioned on itineraries of an equivalence class forms a dense

subset of the sequence power PDF with little overlap with other sets, and, hence,
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Figure 3.2: Accuracy of itinerary distribution approximation of intended receiver
Pr(ε) for P = 2. Solid curves represent analytically computed Pr(ε) expression (3.6),
and dashed curves with circles represent analytically computed Pr(ε) approximation
(3.7).

members of an equivalence class yield similar conditional Pr(ε) characteristics. As

demonstrated in Fig. 3.2, for P = 2, this approximation yields an accurate estimate

of Pr(ε), which is given by

Pr(ε) ≈ 1

2L

L−1∑
e=0

(
L− 1

e

) ∫ +1

−1

Q



√
2Eb E (se, c)

No


 dc , (3.7)

where e corresponds to the number of −1’s (or +1’s) in an itinerary sL−1. While ex-

tensions of this approximation to higher P as well as other types of equivalence classes

certainly merit further investigation, they are outside the scope of this dissertation.

Upper and lower bounds that are independent of L can serve as figures of merit

for assessing the asymptotic Pr(ε) characteristics of intended receivers. Specifically,
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we have

Q
(√

2γb

)
≤ Pr(ε) ≤ Q




√
6 Eb mincLE (cL)

No


 , (3.8)

where γb = E [γb] = Eb/No is the average bit SNR. The lower bound in (3.8) is ob-

tained using Jensen’s inequality [23] and the fact that Q (·) is convex, and corresponds

to the optimum Pr(ε) for antipodal signaling using binary-valued PN spreading se-

quences in AWGN, while the upper bound is due to mincL E (
cL

) ≤ E (
cL

)
. For DS/SS

systems using P -partition maps with odd P , the upper bound in (3.8) reduces to 1/2,

since mincL E (
cL

)
= 0. For DS/SS systems using maps with even P , mincL E (

cL
)

rapidly converges to its limiting value (2.19) as L increases. Consequently, over a

wide range of spreading gains, the upper bound in (3.8) is well approximated by its

limiting value

lim
L→∞

Pr(ε) ≤ Q
(√

6 γb

P + 1

)
, P even . (3.9)

The spreading gain, L, the number of map partitions, P , and γb are the only

parameters affecting the intended receiver Pr(ε), as, due to (2.18), the codeword power

PDF is independent of the sign vector ζ. Figs. 3.3 and 3.4 show typical Pr(ε) curves

vs. SNR as functions of L and P . As Fig. 3.3 reveals, the Pr(ε) is a decreasing function

of L, converging to the lower bound in (3.8) as L → ∞. The curves on Fig. 3.4 are

consistent with the upper bound in (3.8). Specifically, the Pr(ε) for any odd-P map

does not decay exponentially with SNR, as min E (
cL

)
= 0.1 This is reminiscent

of Pr(ε) performance over fading channels. Indeed, chaotic spreading can in some

sense be viewed as inducing a known (strongly dependent) fading process on a bit

stream modulated on a rectangular spreading code. In contrast to the odd P cases,

1Using an argument similar to the one used in Section 3.2.3, we can show that the intended
receiver Pr(ε) for any DS/SS with spreading sequences from P -partition maps with odd P , decays
at best as 1/

√
γb.
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Figure 3.3: Intended receiver Pr(ε) performance vs. SNR for various spreading gain
L. Solid curves indicate analytically computed Pr(ε)’s and dashed curves indicate the
lower and upper bounds for a given number of partitions.

the intended receiver Pr(ε) for any even-P map decays exponentially with SNR, as

min E (
cL

)
> 0. Furthermore, the tent and dyadic map-based systems (P = 2) have

the best Pr(ε) performance, consistent with the fact that they provide the spreading

sequences with the largest min E (
cL

)
. However, this property does not necessarily

render these maps the most attractive for achieving privacy, as it does not take into

account the Pr(ε) trends of unintended receivers.

3.2 Unintended Receiver Performance

In this section we characterize the unintended receiver Pr(ε) for DS/SS signaling with

a class of P ×Q partition maps and determine the system attributes that affect the

unintended receiver Pr(ε). In particular, we develop computationally viable methods
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Figure 3.4: Intended receiver Pr(ε) performance vs. SNR for various number of par-
titions P .

for evaluating the unintended receiver Pr(ε) associated with P -partition map-based

chaotic spreading, and identify the major factors that dictate the Pr(ε) performance.

In the process, we formulate a class of maps that provide the strongest privacy benefits

among all P -partition maps. For this class of maps, we establish a lower bound on the

asymptotic decaying rate of unintended receiver Pr(ε) vs. SNR. Finally, we exploit

the factors affecting the unintended receiver Pr(ε) to develop computationally efficient

simulation-based approximations to the Pr(ε) for a class of P × Q partition maps.

We assume that the unintended receiver has complete knowledge of the modulation

scheme including the chaotic map, but does not know the initial condition c[0].
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3.2.1 Performance Evaluation for P -partition Maps

In the following we develop numerically efficient lower and upper bounds on the Pr(ε)

performance of the optimum maximum-likelihood (ML) sequence detector given the

noisy observation (3.2) but not c[0].

As the unintended receiver does not know the key, c[0], it faces a composite

hypothesis testing problem; under each (message sequence) hypothesis the observed

sequence is a signal term in AWGN, whereby the signal term is a random vector with

statistical characterization determined by the message hypothesis and the set of valid

chaotic spreading sequences. In particular, we assume that

y = yNL =

[
y[0] y[1] · · · y[NL− 1]

]T

(3.10)

is observed, corresponding to a sequence of N transmitted bits in (3.2), represented

as

b
4
=

[
b[0] b[1] · · · b[N − 1]

]T

. (3.11)

Then the maximum likelihood detector is given by

b̂ML(y) = arg max
b

∫
py|b,c(y|b, c)pc[0](c) dc

= arg max
b

∫
exp

{
1

No

NL−1∑
n=0

(
2

√
3

L
y[n]F n(c) b

[⌊n

L

⌋]

−3 Eb

L
(F n(c))2

)}
pc[0](c) dc. (3.12)

One can readily verify that, if F is an odd map, y from (3.10) has the same

statistical characterization under hypotheses b = bo and b = −bo, and, hence,

py|b(y|bo) = py|b(y| − bo). As a result, even as γb → ∞, the optimal detector is
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Figure 3.5: Upper and lower bounds for the unintended receiver performance.

unable to distinguish between the correct hypothesis and its antipodal. We therefore

assume that there are only N − 1 information bits to be distinguished, i.e., each

pair ±bo are merged into a single hypothesis, resulting in 2N−1 possible hypotheses,

carrying N − 1 information bits. For consistency, we apply this approach to intended

and unintended receivers and all chaotic DS/SS systems, regardless of the chaotic

map symmetry.

Direct implementation of (3.12) is impractical except for small values of N ,

P and L, as each of the 2N−1 likelihoods requires PNL integral computations. As

an alternative to exact Pr(ε) evaluation, we develop lower and upper bounds that

reflect the Pr(ε) trends as a function of SNR and spreading gain. First, a numerically

computable lower bound is obtained by simulating the optimum receiver in the case

that, in addition to y, the receiver has side information available in the form of the

set {+c[NL− 1],−c[NL− 1]}. Associated with each member of this set is a finite set

of possible initial conditions {cm[0],m = 1, 2, . . . , PNL−1}, effectively transforming

the uniform PDF of c[0] to a posterior probability mass function (PMF) of 2PNL−1
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impulses. The associated ML detector is given by

b̂LB(y) = arg max
b

2P NL−1∑
m=1

exp

{
1

No

NL−1∑
n=0

(
2

√
3

L
y[n]F n(c(m)[0])b

[⌊n

L

⌋]

− 3 Eb

L

(
F n(c(m)[0])

)2
)}

. (3.13)

A useful upper bound on the unintended receiver Pr(ε) can be obtained by considering

the performance of the following suboptimal generalized likelihood ratio test (GLRT)

detector:

b̂GLRT(y) = arg max
b

max
c[0]|b

py|b,c[0](y|b, c)

= arg min
b

NL−1∑
n=0

(
y[n]−

√
3

L
b
[⌊n

L

⌋]
ĉ [n|NL− 1,b ]

)2

, (3.14)

where ĉ[n|k,bo] denotes the ML estimate of c[n] based on y[0], y[1], · · · , y[k], given

b = bo. Accurate approximations of these estimates can be computed via extensions

of the linear-complexity algorithm in [24], as elaborated in App. B.1. As Fig. 3.5

demonstrates for a typical P -partition map, the gap between the Pr(ε) bounds based

on (3.13) and (3.14) remains small over a wide range of SNR levels, revealing that

these bounds can predict the Pr(ε) trends of unintended receivers in practical settings.

3.2.2 Performance Dependence on System Parameters

In this section we utilize the Pr(ε) metrics developed in Section 3.2.1 to deduce the

dependence of the unintended receiver Pr(ε) on system parameters.

Unlike the intended receiver case, in addition to the spreading gain and the

number of map partitions, the unintended receiver Pr(ε) is greatly affected by the
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Figure 3.6: Pairwise signal trajectories for tent and dyadic map-based SS systems, in
the cases b[1] = b[0] =

√Eb (solid) and b[1] = −b[0] = −√Eb (dashed).

map slope signs ζ in (2.12). This can be illustrated by considering a vector b with

N = 2, where it is known that b[0] =
√Eb. For convenience, we denote by x[n] the

signal-component samples, obtained by letting w[n] = 0 in (3.2), and consider the

pairwise relation between successive signal samples for tent and dyadic map-based SS

systems. Fig. 3.6 shows the associated signal pair trajectories when b[1] =
√Eb (solid)

and b[1] = −√Eb (dashed). As the figure reveals, unlike the tent map case where the

two hypotheses are distinguishable throughout transmission of b[1], in the dyadic map

case, only the boundary pair {x[L− 1], x[L]} provides information for distinguishing

between the two hypotheses. This effect is readily seen to be true for any odd map

regardless of the number of partitions. A major consequence of this effect, combined

with the sensitive dependence on initial conditions of chaotic trajectories, is that

only a small number of symbols x[n] around the codeword boundaries dominate the

unintended receiver Pr(ε), and this number does not grow with spreading gain. Thus,

in general, odd maps are more attractive in terms of privacy potential than maps of

even or no symmetry.

The optimal unintended receiver Pr(ε) can vary among distinct odd P -partition

maps. Since the optimal decision rules for systems utilizing odd maps are dominated

by the pairs of observations at the bit transitions, insight can be gained by study-
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Figure 3.7: Upper graphs: valid signal trajectories (x[L − 1], x[L]) for two odd 4-
partition maps, under hypotheses b[0]=b[1] (solid), and b[0] = −b[1] (dashed). Lower
graphs: associated decision regions based on (y[L− 1], y[L]).

ing the decision regions of simplified rules that are solely based on such observation

pairs. Such decision regions for two 4-partition odd maps are shown in Fig. 3.7. As

the figure reveals, the r-adic map leads to a finer partition of strips of alternating

decision regions and, thus, lower noise immunity, suggesting a higher unintended re-

ceiver Pr(ε) than the other odd map in the figure. It is straightforward to verify

that, among all odd P -partition maps, the r-adic map yields the finest partitioning of

decision regions. Furthermore, between any two r-adic maps, the one with larger P

results in a larger number of thinner strips of alternating decision regions, and hence,

higher unintended receiver Pr(ε).

Fig. 3.8 depicts the unintended receiver Pr(ε) as a function of the spreading

gain, L, for several 4-partition maps. As the figure reveals, for all maps, Pr(ε) is
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Figure 3.8: Numerically computed upper bounds on the unintended receiver Pr(ε)
vs. spreading gain for several SS systems employing 4-partition maps.

an eventually increasing function of L, with limL→∞ Pr(ε) = 0.5. For the odd maps

in the figure, the unintended receiver Pr(ε) is a strictly increasing function of the

spreading gain; this is expected, as, for these maps, discrimination is effectively based

on boundary signal pairs, and the energy per signal pair decreases with increasing

L. On the other hand, for the asymmetric and the even map in the figure there

is an L–range over which the Pr(ε) performance improves with L. This is due to

the fact that for these maps discrimination is based on all signal pairs throughout

the interval (see Fig. 3.6), and is thus affected by both the chip and the codeword

energy. In particular, as L increases, the variance in E (
cL

)
becomes smaller and

thus the probability of transmitting a low-power codeword, which dictates the Pr(ε),

decreases.2 As, however, higher spreading gains also imply lower energy per chip, the

2Each sequence c[n] generated from any P -partition map has identically distributed PDFs with
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unintended receiver performance eventually degrades with increasing L. The figure

also shows that odd maps outperform even and non-symmetric maps in terms of Pr(ε).

Among all P -partition odd maps, r-adic maps are the most attractive as they result

in the worst-case Pr(ε) performance for unintended receivers. These observations are

consistent with our preceding analysis revealing that odd maps lead, in general, to

higher unintended receiver Pr(ε), and that among odd maps with the same number of

partitions, r-adic maps yield the least favorable decision regions. Thus, among all P -

partition maps, r-adic maps provide the highest Pr(ε) advantages to intended users.

Digitized maximal-length sequences from r-adic maps that retain key properties of the

underlying true chaotic trajectories can be readily generated via the design methods

developed in Section 2.3. Interestingly, r-adic maps have been extensively studied

in the context of intended receiver performance in multiuser DS/CDMA systems,

and have been shown to possess attractive auto- and cross-correlation properties and

broadband spectra [8–10].

Fig. 3.9 depicts the Pr(ε) of intended and unintended receivers vs. SNR for

various r-adic maps. Also shown in the figure is the lower bound on Pr(ε) from (3.8).

As the number of partitions P (= r) is increased, the Pr(ε) attainable by intended

receivers increases with respect to the lower bound from (3.8), as discussed in Sec. 3.1.

This degradation is offset, however, by a more significant increase in the unintended

receiver Pr(ε), as higher r implies higher sensitivity to initial conditions and lower

quality chaotic sequence estimates. At higher spreading gains, the Pr(ε) gap becomes

even larger as the intended receiver Pr(ε) converges to the lower bound in (3.8) while

the unintended receiver Pr(ε) degrades with L. Thus varying the slope r among r-adic

maps provides a method for trading intended receiver Pr(ε) performance for greater

respect to n and, hence, the law of large numbers applies to E (
cL

)
.
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privacy benefits.

An important characteristic of unintended receiver Pr(ε) inferable from Fig. 3.9

is that, at high γb, the unintended receiver Pr(ε) curves for r-adic map-based DS/SS

systems decay at a constant rate. Specifically, the figure suggests that the decaying

rate is 1/
√

γb (the same as the slope of dash-dot line). In the next section we verify

this decaying rate for the class of odd P -partition maps that includes all r-adic maps.

3.2.3 Asymptotic Decaying Rate of Pr(ε) for Odd P -partition

Maps

In this section we utilize the results developed in App. B.2 to show that the unintended

receiver Pr(ε) for DS/SS with spreading sequences generated by odd P -partition maps
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can be bounded from below by a function that decays at a rate of 1/
√

γb at high γb.

We develop a lower bound on the Pr(ε) of detecting a fixed but arbitrary

differentially encoded symbol given observation of y[n] in (3.2). In particular, we

assume that an IID sequence i[n] = ±1 is differentially encoded into the sequence

b[n] = i[n] b[n−1] used in (3.2). We focus on detection of i[D], for some 1 ≤ D ≤ N−1,

based on observation of y in (3.10). We denote via x(c,b) the NL-dimensional signal

vector that is transmitted, given an initial condition c and a vector b in (3.11); viz.,

x = xNL = x(c,b)
4
=

[
x[0] x[1] · · · x[NL− 1]

]T

, (3.15)

where x[n] is as in (3.1) and b and b[n] are related via (3.11). Letting S(D)
ı =

{b; b[D]b[D− 1]/Eb = ı}, for ı = ±1, the optimal detector for the Dth symbol sets is

î[D] = arg max
ı∈{−1, 1}

Pr
(
b ∈ S(D)

ı |y)
.

To obtain a lower bound on the Pr(ε), we consider a detector that is provided

with the remaining N − 2 information symbols {i[n]; 1 ≤ n ≤ N − 1, i 6= D} as well

as some additional side information that depends on whether or not c[0] belongs in

the set Io
4
=

⋃
c∈C(D) I(c), where I(c)

4
= (c, c + ∆), ∆

4
= 2 P−(NL−1), and C(D) is

the preimage of {0} under FDL−1. Specifically, when c[0] /∈ Io, the value of i[D]

is declared to the receiver; when c[0] ∈ Io, the receiver is only told that the initial

condition is from the set {±c[0]+δ}, where c[0] denotes the unique c ∈ C(D) for which

c[0] ∈ (c, c + ∆), and δ
4
= δ(c[0]) = c[0]−c[0]. As App. B.2 shows, the optimal receiver

given this side information is inferior to the optimal detector in the context of binary

signaling in AWGN with codewords xi[D] and x−i[D], where xi[D] is the transmitted

vector in (3.15), and where x−i[D] is the vector closest in Euclidean distance to xi[D]
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among those associated with the antipodal hypothesis, and corresponds to using the

spreading sequence generated from the initial condition −c[0] + δ. Consequently,

Pr(ε|c[0] ∈ Io) ≥ Q
(√

γ̃(δ)
)

(3.16)

where

γ̃(δ) =
‖x1 − x−1‖2

2No

=
2 ‖r‖2

No

= δ2 6 Eb(P
2DL − 1)

L(P 2 − 1) No

= Cγbδ
2 , (3.17)

with C = 6(P 2DL−1)
(P 2−1)

. Conditioned on c[0] ∈ I(c[0]) (and thus on c[0] ∈ Io), δ is

uniformly distributed in (0, ∆), which, using (3.17), also implies that 0 < γ̃(δ) <

γmax = C∆2γb. To show that Pr(ε) cannot decay faster than 1/
√

γb, we pick an

arbitrary γo ∈ (0, C ∆2 γb); we remark that γo can remain fixed as γb increases.

Hence, using (3.16), we have

Pr(ε) ≥ Pr(c[0] ∈ Io) Pr(ε|c[0] ∈ Io)

≥ Pr (c[0] ∈ Io)

∫ ∞

0

Q (
√

γ) pγ̃ (γ) dγ

≥ P (D−N)LQ (
√

γo)

∫ γo

0

pγ̃ (γ) dγ (3.18a)

= P (D−N)LQ (
√

γo) Pr

(
δ <

√
γ0

γb C

∣∣∣∣ c[0] ∈ Io

)

= P (D−N)LQ (
√

γo)
PNL−1

2

√
γoL(P 2 − 1)

6(P 2DL − 1)

1√
γb

, (3.18b)

where (3.18a) is due to the fact the Q (√
γ
)

is a nonnegative decreasing function of

γ, and where (3.18b) is the desired bound.
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3.2.4 Performance Evaluation for Odd P ×Q Partition Maps

The major factors that affect the unintended receiver performance, as observed in Sec-

tion 3.2.2, can be exploited to develop a set of efficient Pr(ε) metrics for a class of P×Q

partition maps with attractive privacy characteristics. In particular, the dominance

of the pairs of observations at codeword transitions {y[DL− 1], y[DL]}, D = 1, 2, · · ·
on the unintended receiver Pr(ε) for odd-symmetric maps allows the development of

unintended receiver Pr(ε) predictors for odd P × Q partition maps. These metrics

are computationally more efficient than their counterparts in Section 3.2.1, which do

not have straightforward extensions for the P ×Q partition maps with Q ≥ 2.

We develop efficient simulation based methods that predict the Pr(ε) trends

as functions of SNR, spreading gain L, and the P ×Q partition map descriptors ζ in

(2.12) and q in (2.13). These metrics are more accurate than the upper bounds in Sec-

tion 3.2.1. First, a lower bound on Pr(ε) is obtained by assuming that the unintended

receiver knows that the initial condition is from the set {c[m]; m = 0, 1, . . . , Mo − 1}
for some Mo significantly larger than the observation interval NL. In particular,

the unintended receiver Pr(ε) is bounded by that of the optimum receiver in the

case that, in addition to the observation y in (3.10), the receiver is given b[0] and

{i[n]; 1 ≤ n ≤ N − 1, n 6= D} as well as c[0] ∈ {c[m]; m = 0, 1, . . . , Mo − 1}. This

effectively transforms the uniform PDF of c[0] to a posterior PMF of Mo impulses.

The associated ML detector is given by

îLB(y) = arg max
i∈±1

Mo−1∑
m=0

exp

{
1

No

NL−1∑
n=0

(
2A√

L
y[n]F n(c[m]) b

[⌊n

L

⌋]

−A2Eb

L
(F n(c[m]))2

)}
, (3.19)

where i = b[D − 1]b[D]. The computational complexity of (3.19), while lower than
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that of the lower bound (3.13) in Section 3.2.1 for suitably chosen Mo, still grows

exponentially with observation length NL. Computationally viable approximations

to (3.19) can be obtained by replacing y with a windowed observation around the

codeword boundary

yw
4
=

[
y[DL− w] y[DL− w + 1] · · · y[DL + w − 1]

]T

, 1 ≤ w ≤ (N − 1)L .

These approximations can prove accurate even when w = 1, due to the dominance

of the pairs of observations at the bit transitions on the Pr(ε), and the sensitive de-

pendence of the chaotic map on initial conditions. Efficient upper bounds on the

unintended receiver Pr(ε) for odd P ×Q partition maps can be similarly obtained by

considering the optimum detector of i[D] given the windowed observation y1 (tran-

sition from b[D − 1] to b[D]). For a class of odd P × Q partition maps whose map

segments lie only on those of an r-adic map {c, F (c)} or its antipodal {c,−F (c)},
this detector is also the minimum distance detector for the simpler binary-signaling-

in-AWGN problem, with sets of constellation points

ĉi,j
4
=

[
2(j−1)−(P−1)

P
i(−1)j(Q−2j+1)

Q

]T

, i ∈ ±1, k = 1, 2, . . . , P .

Consequently, this detector takes the following form.

îUB(y) = arg min
i

min
j

∥∥∥∥∥y1 −
√

A2 Eb

L
ĉi,j

∥∥∥∥∥

2

. (3.20)

As Fig. 3.10 reveals, the approximation to (3.19) with w = 1 nearly coincides with

the upper bound (3.20) and rapidly converges as w increases, suggesting that these

approximations in conjunction with the upper bound (3.20) predict the Pr(ε) trends of
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Figure 3.10: Simulated upper bound and approximation to lower bound on the unin-
tended receiver Pr(ε) via (3.19) for dyadic map and various values of w (Mo = 4092).

unintended receivers. We remark that the constellation set for (3.20) can be modified

to accommodate richer classes of odd P ×Q partition maps.

Fig. 3.10, in addition to Fig. 3.9, empirically substantiates our finding in Sec-

tion 3.2.3 that the unintended receiver Pr(ε) for DS/SS with odd P -partition maps

cannot not decay faster than 1/
√

γb at high γb. In contrast, the intended receiver Pr(ε)

for these systems (with P even) decays exponentially with γb. Thus the knowledge of

the initial seed in the chaotic DS/SS systems we consider yields significant uncoded

Pr(ε) advantages to intended users. This is in contrast to conventional DS/SS em-

ploying binary-valued spreading sequences generated via LFSRs, where an unintended

receiver without knowledge of the initial seed can obtain a consistent estimate even

at very low γb, provided a long enough segment of the sequence is observed [17,18].
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Figure 3.11: Upper graphs: signal trajectories for nested maps based on dyadic map,
under hypotheses b[0] = b[1] (solid), and b[0] = −b[1] (dashed). Lower graphs: asso-
ciated decision regions.

3.3 Iterative Constructions of P×Q Partition Map-

based DS/SS

Based on the analysis in Sec. 3.2, suggesting that odd symmetry and fine decision-

region partitioning are attractive attributes, we can construct recursive algorithms

for generating sequences of maps from the richer class of P × Q partition maps

with monotonically increasing unintended receiver Pr(ε), while keeping the intended

receiver Pr(ε) unaffected. Such an algorithm that preserves the ratio P/Q and, hence,

the Lyapunov exponent, is illustrated in Fig. 3.11. The algorithm is initialized with an

r-adic map, e.g., the dyadic map. At each recursion step, a new P×Q partition map is

constructed via modifications of the map constructed in the preceding recursion step.

In particular, certain piecewise linear segments are swapped with their antipodal
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versions, to create a map of twice as large P and Q, whereby odd symmetry is

preserved and the partitioning of the unintended-receiver decision regions is made

finer. Specifically, the algorithm results in a sequence of P`×Q` partition maps F`(·)
by means of the following steps:

(1) Initialization (` = 0): F0(·) is an r-adic map for some r (P0 = 2r , Q0 = 2).

(2) Recursion (step `): construct a P` × Q` partition map F`(·) from P`−1 × Q`−1

partition map F`−1(·), as follows:

(2a) set P` = 2 · P`−1 and Q` = 2 ·Q`−1;

(2b) view F`−1(·) as a P` ×Q` partition map with (equi-spaced in I) partitions

points {a(`)
1 , a

(`)
2 , · · · , a

(`)
P`
} and {b(`)

1 , b
(`)
2 , · · · , b

(`)
Q`
};

(2c) letting m
(`)
i denote the mid-point of I

(`)
i =

[
a

(`)
i−1, a

(`)
i

)
, i.e., m

(`)
i

4
=

a
(`)
i−1+a

(`)
i

2
,

i ∈ {1, . . . , P`}, sequentially define F`(·) on I = ∪1≤i≤P`
I

(`)
i as follows:

(2c-i) Initialization: F`|I(`)
1

4
= F`−1|I(`)

1 ; set i = 2;

(2c-ii) i-th Interval: for all c ∈ I
(`)
i ,

if
∣∣∣F`(m

(`)
i−1) + F`−1(m

(`)
i )

∣∣∣ >
∣∣∣F`(m

(`)
i−1)− F`−1(m

(`)
i )

∣∣∣ ,

then F`
4
= −F`−1 , else F`

4
= F`−1;

(2c-iii) if i ≤ P`, increment i by 1 and go to step (2c-ii); else, go to step (3);

(3) increment ` by 1 and go to step (2).

Throughout, we use Fr,`(·) to denote the map constructed by applying ` steps of the

above “nested” recursion on a particular r-adic map. We remark that this algorithm

can be extended to initializations with any P -partition map. However, for a fixed

P0, the choice of the initializing P -partition map does not affect the intended and

unintended receiver Pr(ε) for the subsequently generated nested maps of ` ≥ 1. This
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Figure 3.12: Intended receiver Pr(ε) vs. simulation-based upper bounds (3.20) on
unintended receiver Pr(ε), for nested maps based on dyadic map.

is because the recursions initialized with any P -partition map with P = r generate

±Fr,`(·) for ` ≥ 2. Since, among all possible initializing P -partition maps with P = r,

the r-adic map offers the strongest privacy, in this dissertation we focus on the nested

recursions initialized with an r-adic map.

The nested maps Fr,`(·) designed by this algorithm have several important

properties. First, they are odd P ×Q partition mappings, and, hence, the unintended

receiver Pr(ε) can be readily evaluated via the methods in Section 3.2.4. More-

over, E
[E (

cL
)]

= 1/3 for all nested maps, thus A =
√

3 in (3.2). In fact, since

|F k
r,`(c[0])| = |F k

r,`′(c[0])| for all r, `, `′, k and c[0], the recursion preserves the PDF

of spreading codeword power and, hence, the intended receiver Pr(ε). Also, all con-

structed maps have (unique) uniform invariant densities, exhibit the same sensitive

dependence on initial conditions as the initializing r-adic map, Fr,0(·), and can be
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made exact with suitable realizations. Furthermore, since for any nested map there

exists a corresponding initializing r-adic map with lower unintended receiver Pr(ε),

the 1/
√

γb lower bound on the asymptotic decaying rate of Pr(ε), developed in Sec-

tion 3.2.3 for r-adic maps, holds for all nested maps. Finally, digitized maximal-length

sequences from any nested map that retain key properties of the underlying chaotic

trajectories can be efficiently generated by exploiting Theorem 1 in Section 2.3.3

In general, the associated unintended receiver Pr(ε) depends on the received

SNR, the map parameters r and `, and the spreading gain L. These trends are

reflected in Fig. 3.12, showing that the unintended receiver Pr(ε) degrades mono-

tonically with the number of recursion steps, while the intended receiver Pr(ε) is

unaffected. The figure also verifies that the unintended receiver Pr(ε) curves for

nested maps at high γb indeed decay at the rate of 1/
√

γb. Thus each of these curves

at sufficiently high γb can be modeled as 1/
√
K(L, r, `)γb, where K is some constant

that depends only on {L, r, `}. The physical-layer privacy potential of these chaotic

DS/SS systems is readily apparent from the figure, in terms of the Pr(ε) gap between

intended and unintended receivers.

3.3.1 Closed-Form Pr(ε) Prediction for a Class of Nested Maps

In this section, we investigate the dependence of the unintended receiver Pr(ε) perfor-

mance on the system parameters for the nested maps, and quantify the dependence in

closed form for a class of nested maps. Specifically, we consider the 1/
√
K(L, r, `)γb

model of unintended receiver Pr(ε), and determine the relationship between K and

the system parameters {L, r, `} for a subclass of nested maps.

The dependence of K on L can be readily deduced for moderate and large

3We note that H(x) in Fig. 2.7 is the nested map F2,1(·)
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Figure 3.13: Simulation-based upper bounds on the unintended receiver Pr(ε) vs.
SNR for nested map-based DS/SS with various spreading gains.

L values. As Fig. 3.13 shows for nested maps, doubling L increases the γb required

for a target Pr(ε) by 3 dB; this is expected, since the average chip energy Ec
4
=

(Eb/L)E [c2[n]] is reduced by a factor of two and the unintended receiver Pr(ε) for

these maps is effectively dictated by a small number of chip observations (around bit

transitions) that does not grow with L.

The dependence of the unintended receiver Pr(ε) on the parameters {r, `} can

be accurately predicted for certain subsequences of nested maps. A sequence of such

maps G`(·) is shown in Fig. 3.14. These maps can be generated by first generating

sequences of nested maps Fr,`(·), each initialized with different r-adic map, then

selecting one map from each sequence of nested maps that satisfy the constraint

r = 2`, i.e.,

G`(·) 4
= F2`,`(·) . (3.21)
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Figure 3.14: Upper graphs: signal trajectories for sequence of nested maps with r = 2`

under hypotheses i[1] = +1. Lower graphs: associated decision regions.

As shown in Fig. 3.14, for these maps the decision regions for pairs of observations

at bit transitions can be modeled as diamond-shaped regions of the same size. From

the figure, the gap between the γb required by G`(·) and G`+1(·) for a target Pr(ε)

at a given L can be predicted to be 6 dB, since the side lengths of each decision

region for G`+1(·) is half of those for G`(·). Fig. 3.15 verifies these assertions for the

maps of (3.21). Indeed, increasing ` by one increases the γb required for a target

Pr(ε) by approximately 6 dB. The estimate of 6 dB shift, while pessimistic for ` = 1,

becomes increasingly accurate for higher `, as the modeling of decision regions as

diamonds becomes more accurate. Finally, by exploiting the empirical observation

that K(16, 2, 1) ≈ 1/16, we may obtain an expression approximately predicting the
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unintended receiver Pr(ε) for the subclass of maps in (3.21) at high γb:

Pr(ε) ≈ 2`−1

√
L

γb

. (3.22)

This predictor, while less accurate than the Pr(ε) analysis based on Monte-Carlo sim-

ulations of (3.14), can furnish rule-of-thumb curves for system design purposes. As

shown in Figs. 3.13 and 3.15, this class of nested map-based DS/SS systems allows sys-

tematic selection of the system parameters {L, r, `} such that the unintended receiver

Pr(ε) is lower bounded by the target Pr(ε) subject to a maximum SNR constraint. We

note that, although Figs. 3.13 and 3.15 suggest that arbitrary improvement in secrecy

is possible by indefinitely increasing {r, `}, as we show in the following section, the

finite precision depth of practical systems limits the extent of these improvements.
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Figure 3.16: Left-hand side: Signal trajectories {x[L − 1], x[L]} for the B-bit im-
plementation of the nested maps F2,1, under hypotheses b[0] = b[1] (solid), and
b[0] = −b[1] (dotted). Right-hand side: Close-up view of a part of the mapping, show-
ing several circles representing the constellation points, under hypotheses b[0] = b[1]
(dark) and b[0] = −b[1] (light).

3.4 Privacy via Pseudochaotic DS/SS

In the following we explore some of the implementation-induced limitations on the

privacy benefits provided with chaotic DS/CDMA systems. In particular, we com-

pare the unintended receiver performance trends corresponding to the sequences from

nested maps, generated via the algorithms in Section 2.3, to those corresponding to

the associated true chaotic spreading sequences. In the process, we determine the

ranges of SNR and nested recursion depths, for which the privacy benefits of the

pseudochaotic DS/SS closely approximate those of the associated true chaotic DS/SS.

Conditioned on a finite precision depth, there is a bit SNR range (γmin, γmax),

over which the Pr(ε) of the unintended receiver for the pseudochaotic DS/SS closely

approximates that for the underlying true chaotic DS/SS. In particular, the unin-

tended receiver Pr(ε) in this SNR range decays as 1/
√

SNR. For SNR higher than

γmax, however, the decaying rate of the unintended receiver Pr(ε) for pseudochaotic

DS/SS does not decay at the rate of 1/
√

SNR associated with true chaotic DS/SS.
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Instead, the unintended receiver Pr(ε) decays at an exponential rate. This is because

a pseudochaotic map, implemented as a finite state machine using B-bit state de-

scription, can be described by the graph that consists of a finite number of points

that approximate the continuous affine segments of the associated true chaotic map.

For odd-symmetric maps, the projection of the set of modulated pseudochaotic tra-

jectories on the two-dimensional space formed by the pairs of symbols at codeword

boundaries dominates the unintended receiver Pr(ε). Thus, the 2×1 vectors that com-

pose the graphs of the projected pseudochaotic mapping at codeword boundaries can

be effectively employed as the set of vectors for decision rules based on the windowed

observation y1, as in Section 3.2.4. For convenience, we refer to these 2×1 vectors as

constellation points. The precision depth B affects γmax via the minimum distance

between two neighboring constellation points associated with antipodal hypotheses,

since this distance begins to dominate the receiver performance as the average noise

power level becomes sufficiently small, i.e., γb reaches γmax. Fig. 3.16 shows the map-

ping {x[L− 1], x[L]} and a close-up view of some constellation points that compose

the mapping, where the signal

x[n] =

√
3

L
c[n]b

[⌊n

L

⌋]

is from (3.1), with c[n] generated from the B-bit implementation of the nested map

F2,1 via the methods in Section 2.3. As the figure illustrates, for the nested map-

based DS/SS implemented on a B-bit precision platform with spreading gain L, the

distance between two neighboring constellation points is determined by B and L

and is approximately
√Eb/2

B−1
√

L (the number of amplitude levels is close to 2B).

In addition, the nested map parameters r and ` determine the layout of the decision

regions and, hence, the number of constellation points near decision region boundaries.
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Figure 3.17: Unintended receiver Pr(ε) via (3.19) for the nested map F2,1 as a function
of γb for various values of bit precision depth B.

Thus γmax can be modeled as some function of r and ` times the average SNR in

certain proportion to the distance between neighboring constellation points. From

these observations, we can find the relationship between the bit precision depth B

and γmax by considering the effect of B on the γb = Eb/No such that the standard

deviation of the noise term,
√

No/2, is approximately half of the distance between

two neighboring constellation points. The γb satisfying
√

No/2 ≈
√Eb/2

B
√

L is given

by

γb ≈ L 2 2B−1 . (3.23)

This relationship (3.23) indicates that increasing B by one increases γmax by approx-

imately 6 dB. This is empirically verified for the class of nested maps and illustrated

in Fig. 3.17, which shows the unintended receiver Pr(ε) performance for a nested map

implemented with several values of B. Fig. 3.17 also suggests that the DS/SS based
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on a suitably designed pseudochaotic nested map can effectively provide the same

privacy benefits as the chaotic DS/SS over virtually all SNR levels of practical inter-

est. Indeed, exploiting the observation from Fig. 3.17 that γmax ≈ 62 dB for 10-bit

realization of the DS/SS with F2,1 and L = 16, and that γmax increases approximately

by 6 dB with each increment of B by one, we can predict that, for the nested map

F2,1 realized with 64-bit precision and the spreading gain L = 16, γmax ≈ 386 dB.

The finite precision also affects the extent to which we can increase the nested

recursion parameters r or ` for degrading the unintended receiver performance. Since

a nested map Fr,` has r 2 `+1 affine segments, it can be represented by a B-bit digital

implementation of a nested map composed of approximately 2B constellation points,

where B satisfies

B ≥ log 2 r + ` + 1 . (3.24)

Equality in (3.24) holds for the case of a single constellation point representing each

affine segment of the map, and indicates the limit on the number of nested recursion

steps that can be taken for privacy enhancement. For the subsequence of nested

maps G`(·) = F2`,`(·) of (3.21) in Section 3.3.1, (3.24) implies that each step of the

subsequence increases the minimum B needed for describing the new map by two, i.e.,

B ≥ 2 ` + 1. This is consistent with the change in the associated decision regions as

shown in Fig. 3.14, where every step of the recursion yields a map with four times as

many decision regions than the old map. Thus the minimum number of constellation

points for describing the map increases by four, and the minimum B increases by

two.

Based on (3.24), we can also determine the maximum recursion step ` of the

nested maps Fr,` conditioned on r and B. Fig. 3.18 depicts the unintended receiver

Pr(ε) vs. SNR for the nested maps F2,` realized with 8-bit precision. The figure shows
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Figure 3.18: Unintended receiver Pr(ε) via (3.19) as a function of γb for various nested
maps with r = 2 and B = 8.

that increasing the nested recursion step ` beyond B − log 2 r − 1 = B − 2 does not

provide monotonic degradation of the unintended receiver performance, confirming

that (3.24) specifies the maximum range of ` for degrading the unintended receiver

Pr(ε) for SNR smaller than γmax. Thus, with sufficient bit precision depth, the class

of pseudochaotic DS/SS with nested maps can meet a required level of privacy for

an enormous range of SNR; for instance, on a 64-bit platform with L = 16, F2,62 can

be implemented such that the unintended receiver Pr(ε) ≈ 1/2 for a maximum γb of

approximately 370 dB.
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Chapter 4

Analysis and Design of Pseudochaotic

DS/SS Systems: Fading Channels

In this chapter, we characterize the privacy provided by the class of pseudochaotic

DS/SS systems of Chapter 3 in the setting of single-user communication over fading

channels. Signal fading due to the Doppler effect and multipath propagation result in

time-varying signal distortions, which affect receiver design and system performance.

As typical wireless channels are easily accessible, communication over such channels is

especially vulnerable to interception and unintended demodulation of signals. Thus

it is of utmost practical interest to design chaotic DS/SS systems and assess their

potential in providing private and reliable communication over fading channels.

The random variations of the channel gain in a fading channel have rami-

fications on receiver performance that may differentiate the privacy characteristics

in fading from those in AWGN. In particular, the intended receiver Pr(ε) exhibits

a slower decaying rate in a wide array of fading channels than in AWGN channels.

Hence it is important in designing pseudochaotic DS/SS systems to ensure that the

Pr(ε) decaying rate of the intended receiver is significantly faster than that of the

unintended receiver. In addition, in some types of fading channels, the presence of
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imperfect channel estimates at the receiver can lead to nonzero Pr(ε) even in noiseless

channels, i.e., error floors. Therefore it is of great interest to make certain that, for

such channels, the error floor of unintended receivers is much higher than that of the

intended users for the same level of channel estimates quality. Moreover, receivers

can employ diversity techniques, whereby multiple independently fading copies of the

signal are combined to combat the effects of fading and, hence, improve the Pr(ε)

performance. The most commonly exploited types of independently fading signals

arise from temporal, spectral, or spatial variations in fading, and result in temporal,

spectral, or spatial diversity, respectively. The number of such independently fading

copies, or the degree of diversity, that a receiver can exploit is typically limited by

associated hardware cost and system constraints, e.g., acceptible processing delays,

bandwidth, and physical size [25]. The degrees of receiver antenna diversity that

can be exploited, in particular, is limited only by the practical constraints on the

receiver and not by the communication system. This is in contrast to many other

types of diversity including temporal, spectral, and transmitter antenna diversity,

where the degrees of diversity available to the receiver is limited by the constraints

on the transmitter and channel and not by those on the receivers. Thus it is possible

in certain scenarios that unintended receivers have an advantage in available material

resources and can exploit a larger number of receiver antenna elements than intended

ones. It is therefore important to design private communication systems such that an

unintended receiver can reap only marginal benefits with receiver antenna diversity

techniques.

In this chapter we extend and validate our analysis and design of the pseudo-

chaotic DS/SS systems in Chapter 3 for private and reliable communication over

fading channels. In particular, we consider the impact of channel estimation error
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and diversity reception on the receiver Pr(ε) performance. In Section 4.1, we describe

a system model for the fading channels of interest. For the channels considered, in

Section 4.2 we examine the applicability of the chaotic map design methods developed

in Chapter 3. We develop computationally efficient metrics for the intended receiver

Pr(ε) in Section 4.3, and for the unintended receiver Pr(ε) in Section 4.4. We show

that, for the case of slow flat fading, the Pr(ε) of the optimal unintended receiver

with K degrees of spatial diversity decays as 1/
√

SNR at high SNR, in contrast to

the 1/(SNR)K decay rate exhibited by the intended receiver Pr(ε). Based on the

analysis in Section 4.3 and Section 4.4, in Section 4.5 we investigate the impact of

diversity gains and imperfect channel estimation on privacy.

4.1 System Model

In this section we describe the class of single-user pseudochaotic DS/SS systems that

are of interest in this chapter. We assume that the pseudochaotic DS/SS transmitter

remains the same as in Chapter 3, i.e., the transmitted signal x[n] is as in (3.1).

We consider the fading channel model in Section 2.1 modified for single-user

communication with diversity reception, where the intended and unintended users’

received signal is

yk[n] = αk[n]x[n] + wk[n]

=
A√
L

αk[n]c[n]b
[⌊n

L

⌋]
+ wk[n] , 1 ≤ k ≤ K , (4.1)

where the wk[n]’s are IID in k and n, zero-mean, complex-valued, circularly-symmetric

stationary white Gaussian sequences with power No/2 per dimension. We consider

Rayleigh fading that models the signal propagation with a large number of inde-
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pendent scatterers and no dominant direct line-of-sight component [26]. Specifi-

cally, we assume that the fading coefficients αk[n]’s are independent of wk[n]’s and

are independent in k, zero-mean, complex-valued, circularly-symmetric stationary

Gaussian sequence with variance 1/2 for real and imaginary parts, corresponding to

E
[|αk[n]|2] = 1 for all n and k. Then the fading envelope

ak[n]
4
= |αk[n]| =

√
(Re{αk[n]})2 + (Im{αk[n]})2 ,

where Re{z} and Im{z} denote the real and imaginary parts of a complex number z,

follows the Rayleigh PDF with E [a2
k[n]] = 1;

pak[n](a) = 2 a e−a2

, a ≥ 0 .

With proper choice of K and the statistical characterization of αk[n] with

respect to n, the model in (4.1) captures several fading channel models of interest:

(1) Slow flat fading: Set αk[n] = αk for all n.

(2) Fast flat fading: Set αk[n] IID in n. Spread spectrum receivers naturally ex-

ploit the available degrees of temporal diversity in time-selective (fast) fading

channels.

(3) Frequency-selective fading with OFDM front end: Set αk[n] as the output of the

OFDM system associated with the n-th subcarrier band. OFDM front end can

effectively transform a frequency-selective channel with some degrees of spectral

diversity into a number of frequency-nonselective channels, where αk[n] is IID

in n.

For all the cases listed above, setting K = 1 corresponds to the single receiver antenna
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scenario, and αk[n] with K > 1 captures the availability of multiple degree of receiver

antenna diversity. For this case, we assume that there is a sufficient spatial separation

between any pair of antenna elements such that αk[n]’s are independent in k.

We assume that the receiver is given the estimates, α̂k[n], of the fading co-

efficients αk[n]. The channel estimates α̂k[n] are assumed to be obtained from the

transmission of pilot signals. Specifically, the received pilot signal is of the form

yp,k[n] =
√
Ep αk[n] + vk[n] , (4.2)

where Ep denotes the pilot signal power and vk[n]’s are independent in k, zero-

mean, complex-valued, circularly-symmetric stationary Gaussian random variables

with variance σ2
v/2 per dimension and independent of αj[n]’s for all 1 ≤ j ≤ K. For

the case of slow flat fading channels, αk[n] = αk and vk[n] = vk for all n, while for the

fast fading channels, αk[n] and vk[n] are IID with respect to n. The linear minimum

mean-square error (MMSE) estimate α̂k[n] of αk[n] based on the measurement (4.2)

satisfies

α̂k[n] = αk[n]− εk[n] (4.3a)

=
γp

γp + 1
αk[n] +

γp√Ep

(
γp + 1

)vk[n] , (4.3b)

where the estimation error εk[n] is uncorrelated with α̂k[n] and

γp

4
=

Ep

σ2
v

(4.4)
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represents the quality of the pilot channel. Utilizing (4.3a), (4.1) can be expressed as

yk[n] =
A√
L

α̂k[n]c[n]b
[⌊n

L

⌋]
+

A√
L

εk[n]c[n]b
[⌊n

L

⌋]
+ wk[n] , (4.5)

where εk[n] in the second term on the right-hand side of (4.5) is a zero-mean Gaussian

random variable that is IID with respect to k (and n for fast fading channels).

The receiver antenna diversity setting is of particular interest in the context

of privacy, since an asymmetry in the number of antenna elements used by intended

and unintended receivers can easily exist. In particular, an unintended receiver may

be capable of exploiting larger number of antenna elements, in an effort to detect the

information-bearing sequence. This is possible because the degrees of receiver antenna

diversity available is limited only by material resource constraints on the receiver

and not by the system specifications. Also, receiver antenna diversity settings are

often exploited in the fading channels that preclude usage of other forms of diversity.

Furthermore, the associated average SNR improvement at the output of receiver

antenna diversity combiner is much larger than that associated with temporal or

spectral diversity. Thus examination of the receiver antenna diversity helps furnish

the extent, in the context of the chaotic DS/SS signaling in this dissertation, of the

receiver Pr(ε) enhancement due to exploiting multiple uncorrelated observations of

the same signal. In addition, our findings for slow flat fading channels, coupled with

those for AWGN channels in Chapter 3, can provide upper and lower bounds on the

unintended receiver performance in other types of fading channels with various types

of diversity, and can provide insights regarding the privacy characteristics of chaotic

DS/SS over these channels.
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4.2 Design of Chaotic DS/SS for Fading Channels

In the following we show that the methods for constructing chaotic DS/SS systems

that provide privacy over AWGN channels in Chapter 3 remain attractive for provid-

ing private communication over the fading channels of interest.

For the class of chaotic DS/SS systems based on P -partition maps and on

the P ×Q partition maps constructed via the nested recursions in Section 3.3, many

of the important relationships between the receiver Pr(ε) performance and the map

parameters hold over both AWGN and fading channels. In particular, the ordering

of maps in terms of the associated intended receiver Pr(ε) is the same for all the

channels we consider. This is due to dependence of the intended receiver Pr(ε) on

codeword power PDF.

In fact, for the class of P × Q partition maps (and hence P -partition maps),

the ordering of maps in terms of the associated privacy benefits they provide is the

same for both AWGN and fading channels. In both types of channels, among all

P -partition maps, r-adic maps result in the worst unintended receiver Pr(ε), and

applying the nested recursion algorithms of Section 3.3 monotonically degrades the

unintended receiver Pr(ε) while preserving the intended receiver Pr(ε). This is because

the channel gain αk[n] in (4.1), while changing the actual privacy characteristics, does

not affect the ordering of maps in terms of the associated unintended receiver Pr(ε).

Specifically, for odd map-based DS/SS, the observation pairs {yk[DL − 1], yk[DL]},
D = 1, 2, · · · dominate the optimal decision rules for unintended receivers, for all

channels of interest. In particular, only a small number of observations at the bound-

ary between two modulated codewords affect the unintended receiver Pr(ε). The

number of observations sufficient for accurate characterization of the unintended re-

ceiver performance depends only on the Lyapunov exponent, and does not grow with
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Figure 4.1: The effect of fading on the decision region partitioning of the nested maps
F2,0(·) and F2,1(·).

the spreading gain. Most importantly, fading does not affect the ordering of maps in

terms of the fineness of decision region partitioning, as illustrated in Fig. 4.1. As the

figure shows, fading of the form αk[n] amounts to scaling the axes of the mapping

of the received signal components with channel gain but without additive noise, i.e.,

{αk[n − 1]x[n − 1], αk[n]x[n]} and, hence, those of the associated decision regions.

Thus, regardless of the channel, r-adic maps yield the least favorable decision regions

among all P -partition maps with the same number of partitions, and increasing the

step ` of the nested recursion implies finer partitioning of decision regions regardless

of the channel.
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4.3 Intended Receiver Performance

In this section we develop methods for evaluating the Pr(ε) performance of intended

receivers for DS/SS communication with nested maps Fr,`(·) in flat Rayleigh fading.

We assume that the intended receivers employ a K-element antenna array and possess

estimates of the fading coefficients. We first consider slow flat fading channels in

Section 4.3.1, then consider fast flat fading channels in Section 4.3.2.

4.3.1 Slow Flat Fading

In the following we focus on the evaluation of intended receiver Pr(ε) in slow flat

Rayleigh fading channels, and examine the impact of the availability of multiple

independently fading observations of the signal and the quality of channel fading

coefficients estimates on the receiver performance.

The optimal (minimum Pr(ε)) detector of the transmitted bit sequence b in

(3.11) for slow fading channels, given the knowledge of c[0] and estimates of αk,

utilizes the entire observation set, unlike in Chapter 3. Specifically, assuming that

xNL of the form (3.15) is transmitted and the channel estimates α̂k, 1 ≤ k ≤ K, are

derived via (4.3) from pilots with quality γp in (4.4) at the receiver, the maximum

likelihood (ML) detector of b based on observations

Y = YK,NL 4
= {yk[n]; k = 1, 2, · · · , K and n = 0, 1, · · · , NL− 1} (4.6)
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is, as shown in App. C.2, given by

b̂ML(Y , c[0]) = arg max
b

{
3 γb

L
(
γp + 1

)

·
NL−2∑
n=0

NL−1∑

l=n+1

F n(c)F l(c) sgn

(
b
[⌊n

L

⌋]
b

[⌊
l

L

⌋]) K∑

k=1

Re{y∗k[n]yk[l]}

+

√
3

L

NL−1∑
n=0

F n(c) b
[⌊n

L

⌋] K∑

k=1

Re {α̂∗kyk[n]}
}

, (4.7)

where the signum function sgn(·) is defined as

sgn(x)
4
=




−1 , x < 0

1 , x > 0
, (4.8)

and α∗ denotes the complex conjugate of α. For the special case of perfect channel

estimates (γp →∞), (4.7) reduces to a simple extension of its counterpart in Chap-

ter 3, i.e., a symbol-by-symbol detector consisting of a time-varying matched filter

followed by sampling and a threshold detector. Specifically, the ML detector of the

transmitted bit b[0] based on Y is given by

b̂ML(Y , c[0]) = sgn

(
L−1∑
n=0

c[n] Re {y[n]}
)

, (4.9)

where

y[n] =
K∑

k=1

α∗k yk[n] (4.10)

is the signal at the output of the maximal-ratio combiner (MRC) [1, 25, 26] for a

K-element receiver antenna array with channel gains αk.

The performance characteristics of the optimal intended receiver in slow flat

fading, while dependent on the fading of signal amplitudes, are not fundamentally
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altered by noisy channel estimates. Specifically, the Pr(ε) of the intended receiver

with imperfect channel estimates exhibits trends similar to those in the perfect chan-

nel estimation case over the entire range of channel estimation quality values γp. In

fact, as γb →∞, the Pr(ε) curves of the intended receiver in (4.7) with noisy channel

estimates converge to the curve that is a 3dB shifted (in SNR) version of the Pr(ε)

associated with perfect channel estimates. This is because, as γb increases, the first

term in (4.7), which is independent of α̂k, eventually dominates the decision statistics

for all finite γp. The 3dB shift arises since the first term in (4.7) is a correlation detec-

tor of all the differentials among b
[⌊

n
L

⌋]
’s based on the observations yk[n]yk[l], n 6= l

with approximately twice the noise variance of the observation yk[n] for perfect chan-

nel estimation case. This is reminiscent of the difference in the performance behavior

of differential phase shift keying (DPSK) from its ordinary phase shift keying (PSK)

counterpart. Thus, the Pr(ε) of the detector in (4.7) does not exhibit an error floor,

i.e., limγb→∞ Pr(ε) = 0.

The Pr(ε) trends of the intended receiver, with any level of channel estimate

quality γp, is fundamentally affected by diversity combining. In particular, in the

context of perfect channel estimates and K-element receiver antenna diversity, the

average SNR per bit at the output of the ML detector (4.9) is a factor of K greater

than the average bit SNR per channel (antenna element) [25]. The (instantaneous)

SNR per bit at the output of (4.9) associated with a specific spreading vector cL is

given by

γO = γO

(
µ, cL

)
= 3 µ γb E

(
cL

)
, (4.11)

where

µ
4
=

K∑

k=1

|αk|2 . (4.12)
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Thus the average output SNR is

γO

4
= E [γO] = K γb . (4.13)

The Pr(ε) evaluation metrics for intended receivers with perfect channel esti-

mates in slow flat fading can be established by straightforward extensions of those for

AWGN channels in Chapter 3. These metrics can be useful in illustrating the Pr(ε)

behavior for all γp, especially in the high SNR range, due to the dominance of the

first term in (4.7). Concise forms of these metrics can be obtained by utilizing the bit

error probability conditioned on cL, derived in App. C.3. As shown in the appendix,

γO in (4.11) is a chi-square-distributed random variable with 2K degrees of freedom.

Consequently, the Pr(ε) expression (3.6) extends to the following form

Pr(ε) = E
[
E

[
E

[
Q

(√
2γO (µ, {sL−1, c[L− 1]})

)∣∣∣ sL−1
]∣∣∣ c[L− 1]

]]

=
1

2 rL−1

rL−1∑
i=1

∫ +1

−1

Pc
(
K, γb|cL ({si, c})

)
dc , (4.14)

where

Pc
(
K, γb|cL ({si, c})

) 4
= Pr(ε|cL)

=

[
1

2

(
1−

√
γb|cL ({si, c})

1 + γb|cL ({si, c})

)]K

·
K−1∑

k=0

(
K−1+k

k

)[
1

2

(
1+

√
γb|cL ({si, c})

1+γb|cL ({si, c},)

)]k

, (4.15)

and γb|cL ({si, c}) is the average bit SNR per channel conditioned on cL, i.e.,

γb|cL ({si, c}) = γb|cL

(
cL

)
= 3 γbE (si, c) .

73



Similarly, the approximation (3.7) for r = 2 extends to

Pr(ε) ≈ 1

2L

L−1∑
e=0

(
L− 1

e

) ∫ +1

−1

Pc
(
K, γb|cL ({se, c})

)
dc . (4.16)

Upper and lower bounds on Pr(ε) can be obtained via the same techniques employed

in Sec. 3.1. Specifically, the lower bound is given by

Pr(ε) ≥ Pc
(
K, E

[
γb|cL

(
cL

)])
= Pc(K, γb) , (4.17)

while the upper bound is given by

Pr(ε) ≤ Pc

(
K, 3 γb min

cL
E (

cL
))

, (4.18a)

and is well approximated by

lim
L→∞

Pr(ε) ≤ Pc

(
K,

3 γb

(P + 1)2

)
. (4.18b)

For slow flat fading channels, another computationally efficient metric of in-

tended receiver Pr(ε) can be obtained by applying the Gaussian approximation on

γb|cL ;

3
Eb

No

E (
cL

) L→∞−→ N (m,σ2) , (4.19)

where N (m,σ2) denotes, with some abuse of notation, a real-valued Gaussian random

variable with mean m and variance σ2, and where the convergence is in the cumulative

sense. For nested maps Fr,`(·) with even r, mincL E (
cL

)
is nonzero as shown in

Section 2.2.2. Furthermore, for sufficiently large L, the sequence power E (
cL

)
can be
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modeled as a Gaussian random variable that does not take values below some finite

mincL E (
cL

)
, i.e., pE(cL)(e) = 0 for e ≤ mincL E (

cL
)
. This Gaussian approximation

arises from the application of the Lindeberg-Feller central limit theorem [27,28]; given

s2
n =

∑L−1
n=0 var(c2[n]) (where var(ν) denotes the variance of ν), γb|cL satisfies the

Lindeberg condition;

lim
L→∞

1

L

L−1∑
n=0

E

[
(c2[n]− E [c2[n]])

2

s2
n

∣∣∣∣∣
∣∣c2[n]− E

[
c2[n]

]∣∣ > εsn

]
= 0

for all ε > 0. The Gaussian approximation leads to the following approximation of

the Pr(ε):

Pr(ε) = E
[
E

[Q (
√

γO) |γb|cL

]]

≈
∫ ∞

0

1√
2πσ

exp

{
−(γ −m)2

2σ2

}
Pc(K, γ) dγ , (4.20)

where m = Eb/No and

σ2 = 9

( Eb

No

)2
[

1

L
E

[
c4[n]

]
+

2

L2

L−1∑

l=1

(L− l) E
[
c2[n]c2[n + l]

]
]
−m2 .

The correlation metrics E [c2[n]c2[n + l]] can be computed through efficient methods

provided in [19]. Fig. 4.2 compares the intended receiver Pr(ε) approximated via

(4.20) with the analytic solutions via (4.14) and (4.16). As the figure shows, numerical

integration of (4.20) results in an accurate approximation of the intended receiver

performance. This is because the effect of the missing tail of the clipped Gaussian

distribution on Pr(ε) is largely suppressed in the fading channels of interest. This is a

direct consequence of the distribution of µ in (4.12), which determines the statistical

characteristics of γO in (4.11). Specifically, as shown in App. C.3, µ is a chi-square-
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Figure 4.2: Accuracy of Gaussian approximation of intended receiver Pr(ε) for dyadic
map, K = 1, and γp →∞. Solid curves indicate analytically computed Pr(ε) ((4.14)
for L = 8 and 16, (4.16) for L = 32 and 64), and dash-dot curves with circles represent
analytically computed Pr(ε) approximation (4.20).

distributed random variable with 2K degrees of freedom. Hence µ has a sizable

portion of its PDF in the closed interval [0, µ′] for any µ′ > 0, and dominates the

intended receiver Pr(ε) performance over cL.

Fig. 4.3 shows the intended receiver Pr(ε) performance as a function of SNR for

various levels of channel estimate quality γp. The figure suggests that the Pr(ε) in the

case of perfect channel estimates at the receiver (γp → ∞) can serve as a metric for

determining the high SNR performance characteristics in the presence of noisy channel

estimates at the receiver. Indeed, Fig. 4.3 verifies our preceding analysis that the

Pr(ε) curves of the intended receiver with imperfect channel estimates asymptotically

converge, as γb increases, to the curve that is 3 dB shifted in SNR from the Pr(ε)

associated with perfect channel estimates. This shifted curve, as the figure shows,
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Figure 4.3: Intended receiver Pr(ε) performance vs. γb for various level of pilot quality
γp. Dashed curves with markers represent simulated Pr(ε) associated with imperfect
channel estimation (4.7). Lower solid curve represents analytically computed Pr(ε)
(4.14) for perfect channel estimation and upper solid curve represents 3 dB shifted
copy of the lower curve.

provides an upper bound to the Pr(ε) curves for all γp ≥ 0 dB, and an accurate

approximation for a wide range of γb and γp.

Fig. 4.4 shows the intended receiver Pr(ε) curves vs. SNR as functions of the

number of receiver antenna elements K in the case that perfect channel estimates are

available at the receiver. As the figure reveals, for DS/SS based on nested maps Fr,`(·),
with r an even number, the intended receiver can achieve full diversity. Specifically,

the Pr(ε) of an intended receiver exploiting K independently fading observations of

the same signal decays as 1/γK
b for high γb. This is because mincL E (

cL
)

is bounded

away from zero for the spreading sequences from nested maps. In general, intended

receivers can achieve full diversity irrespective of the channel estimation quality, since
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Figure 4.4: Analytically computed intended receiver Pr(ε) (4.14) vs. γb for various
number of receiver antenna elements K and perfect channel estimation.

the asymptotic behavior of Pr(ε) at high SNR is the same for all γp. We remark

that, with suitable extensions of the Pr(ε) evaluation techniques developed in this

section, we can show that the intended receivers can achieve full diversity benefits

over channels with other commonly used forms of diversity.

4.3.2 Fast Flat Fading

In this section we focus on the evaluation of the intended receiver Pr(ε) in fast flat

Rayleigh fading channels, and examine the impact of diversity combining and fading

channel estimate quality on the receiver performance.

The time selectivity of fading coefficients has pronounced effects on the in-

tended receiver structure and its performance in the context of partial channel state

information at the receiver. Specifically, in contrast to the slow fading case consid-
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ered in Section 4.3.1, the optimal intended receiver in fast flat fading with channel

estimates α̂k is a symbol-by-symbol detector for any channel estimate quality γp. As-

suming that xNL of the form (3.15) is transmitted and the channel estimates α̂k[n],

1 ≤ k ≤ K and 0 ≤ n ≤ NL − 1, are derived via (4.3), the maximum likelihood

detector of the transmitted bit b[0] based on observations Y in (4.6) is, as shown in

App. C.4, given by

b̂ML(Y , c[0]) = sgn




L−1∑
n=0

c[n] Re {y[n]}
3 γb

L(γp+1)
c2[n] + 1


 , (4.21)

where

y[n] =
K∑

k=1

α̂∗k[n] yk[n] (4.22)

is the output of the MRC. The (instantaneous) SNR, γO, at the output of the detector

(4.21) in this case can be obtained by using (4.22) and (4.5) to expand the decision

statistic

U
4
=

L−1∑
n=0

c[n] Re {y[n]}
3 γb

L(γp+1)
c2[n] + 1

and taking the ratio of E [U ]2 and the variance of U . Thus we have

γO =

(
∑L−1

n=0
c2[n]µ[n]

3 γb
L(γp+1)

c2[n]+1

)2

1
γp+1

∑L−1
n=0

c4[n]µ[n](
3 γb

L(γp+1)
c2[n]+1

)2 + L
3γb

∑L−1
n=0

c2[n]µ[n](
3 γb

L(γp+1)
c2[n]+1

)2

, (4.23)

where

µ[n]
4
=

K∑

k=1

|α̂k[n]|2 . (4.24)

The asymptotic behavior of γO as γb →∞ suggests that the intended receiver Pr(ε)
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in fast fading exhibits an error floor for finite γp. In particular,

lim
γb→∞

γO =
(
γp + 1

) L−1∑
n=0

µ[n] . (4.25a)

We can take expectation of (4.25a) and interchange the expectation and the limit

using the Lebesque dominated convergence theorem [23], obtaining

lim
γb→∞

γO = K L γp . (4.25b)

As a result, in contrast to the slow fading case, the Pr(ε) performance of the intended

receiver in fast fading with noisy channel estimates cannot be adequately character-

ized by its counterpart with perfect channel estimates. The asymptotic behavior of

γO, however, also suggests that the level of the error floor decreases as the number

of antenna array elements and the spreading gain increase. The form of (4.25) also

implies that diversity combining remains an attractive avenue for improving the Pr(ε)

performance over fast fading channels. This observation is further reinforced by the

behavior of γO in the limiting case of γp →∞;

lim
γp→∞

γO = K γb ,

which, in conjunction to (4.25), suggests that the independence of channel gain with

respect to receiver antenna elements leads to a K-fold increase in SNR for the general

scenario of imperfect channel estimates at the receiver, as in Section 4.3.1.

While difficult in general, analytical evaluation of the intended receiver Pr(ε)

is feasible in the limiting case γb → ∞ with finite γp. Since limγb→∞ γO in (4.25a)

is a chi-square-distributed random variable with 2KL degrees of freedom, the error
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γp (dB) K · L = 4 K · L = 16 K · L = 64

0 1.1102e-02 1.4689e-06 2.6778e-021
10 9.6983e-06 1.5925e-18 8.2735e-069
20 1.3191e-09 5.9956e-34 1.8708e-130
30 1.3623e-13 6.8897e-50 3.3029e-194
40 1.3667e-17 6.9866e-66 3.4970e-258

Table 4.1: Analytically computed error floor (4.26) of the intended receiver with
K-element receiver antenna array for spreading gain L in fast flat fading.

floor associated with a given γp level can be readily obtained via a method similar

to the one in App. C.3. Specifically, the Pr(ε) of the intended receiver employing a

K-element receiver antenna array for chaotic DS/SS with spreading gain L asymp-

totically approaches, as γb increases,

lim
γb→∞

Pr(ε) =

[
1

2

(
1−

√
γp

1+γp

)]KL KL−1∑

k=0

(
KL−1+k

k

)[
1

2

(
1+

√
γp

1+γp

)]k

. (4.26)

This error floor helps characterize the performance trends at high SNR, and is tab-

ulated in Table 4.1. The table shows that the error floor is very low for a wide range

of K and L values, and rapidly becomes insignificant with increasing spreading gains

or numbers of antenna array elements.

Fig. 4.5 depicts the intended receiver Pr(ε) trends vs. SNR for various channel

estimate quality levels. As the figure suggests, the slope of the curves associated with

finite γp does indeed taper off to an asymptotic plateau as γb increases, consistent

with the preceding analysis that Pr(ε) exhibits the error flooring effect. However, the

adverse effects of noisy channel estimation on the Pr(ε) does not become apparent

for a very wide range of spreading gains and receiver antenna array sizes. This is

a consequence of the steep reduction of the error floor as γp, L, and K increase, as
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Figure 4.5: Simulated intended receiver Pr(ε) (4.21) vs. γb for various level of pilot
quality γp. The dashed curve indicate the Pr(ε) curve for perfect channel estimation,
and the solid curves with markers indicate the Pr(ε) curves for imperfect channel
estimation.

shown in Table 4.1.

Figs. 4.6 and 4.7 illustrate the impact of diversity combining on the intended

receiver performance in fast flat fading. For the case of perfect channel estimates

at the receiver, the Pr(ε) of the intended receiver exploiting the independence of

αk[n] with respect to k and n decays as 1/γKL
b at high γb. The figures also confirm

our analysis that the performance improvement due to diversity combining reception

largely mitigates the effects of imperfect channel estimation on the Pr(ε) for a wide

range of values of γp, L, and K that are of practical interest. The error floor, suggested

for the very small spreading gain of 4 in Fig. 4.6, is consistent with the analytic

prediction listed in Table 4.1.
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Figure 4.6: Simulated intended receiver Pr(ε) vs. γb for various spreading gain L.

4.4 Unintended Receiver Performance

In this section we characterize the unintended receiver Pr(ε) performance with a

K-element receiver antenna array and channel estimates at the receiver for DS/SS

communication with nested maps Fr,`(·) in Rayleigh fading. As in Section 3.2, we as-

sume that the unintended receiver has complete knowledge of the modulation scheme

including the chaotic map, but does not know the initial condition c[0]. In Sec-

tion 4.4.1, we develop computationally viable metrics for evaluating the unintended

receiver Pr(ε) in slow flat fading, while in Section 4.4.2 we consider the fast flat fading

case, using extension of the methods developed in Section 3.2.4. In Section 4.4.3, we

derive the asymptotic decaying rate of the unintended receiver Pr(ε) for the systems

of interest over slow flat fading channels. We show that this decaying rate, coupled

with its counterpart for AWGN channels in Section 3.2.3, can be used to help deduce
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Figure 4.7: Simulated intended receiver Pr(ε) vs. γb for various number of receiver
antenna elements K.

the dependence of the unintended receiver performance on SNR.

4.4.1 Slow Flat Fading

In the following we develop computationally viable methods for evaluating the unin-

tended receiver Pr(ε) in slow flat Rayleigh fading for DS/SS signaling with the class

of nested maps Fr,`(·) in Section 3.3. The methods herein can be readily extended to

the class of odd P ×Q partition maps and all the fading channel models captured by

(4.1).

Using the results in App. C.4, the maximum-likelihood unintended detector,

given the observation YK,NL in (4.6), corresponding to b in (3.11) and channel esti-

mates

â
4
=

[
α̂1 α̂2 · · · α̂K

]T

(4.27)
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derived from the pilot signal of quality γp in (4.4) at the receiver, is given by

b̂ML(Y) = arg max
b

∫
pY|b,c,â(Y|b, c, â) pc[0](c) dc

= arg max
b

∫
exp




− Re{Ψ(Y|b, c, â)}

No

(
3 γb

L(γp+1)

∑NL−1
n=0 (F n(c))2+1

)





pc[0](c) dc , (4.28)

where the statistic Ψ (Y|b, c, â) for c[0] = c is given by

Ψ(Y|b, c, â)
4
=

K∑

k=0

{
NL−1∑
n=0

|yk[n]|2+ 3 γb

L
(
γp + 1

)
(

NL−1∑
n=0

NL−1∑

l 6=n

(
F l(c)

)2|yk[n]|2

− 2
NL−2∑
n=0

NL−1∑

l=n+1

F n(c)F l(c) sgn

(
b
[⌊n

L

⌋]
b

[⌊
l

L

⌋])
y∗k[n]yk[l]

)

− 2 α̂∗k

√
3

L

NL−1∑
n=0

F n(c) b
[⌊n

L

⌋]
yk[n]+|α̂k|2 3 Eb

L

NL−1∑
n=0

(F n(c))2

}
. (4.29)

For the special case of perfect channel estimation (γp →∞), (4.28) reduces to

b̂ML(Y) = arg max
b

∫
exp

{
1

No

NL−1∑
n=0

(
2

√
3

L
F n(c)b

[⌊n

L

⌋]
Re{y[n]}

− µ
3 Eb

L
(F n(c))2

)}
pc[0](c) dc , (4.30)

where y[n] is the signal at the output of MRC (4.10) and µ is as in (4.12). Thus the

sequence of y[n],

y = yNL =

[
y[0] y[1] · · · y[NL− 1]

]T

, (4.31)

as a function of YK,NL is a sufficient statistic for b in the context of unintended

detection given perfect channel estimates. As is the case for its counterpart in AWGN
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(3.12) in Section 3.2.1, direct implementations of (4.28) and (4.30) are impractical

except for very small values of N , L, and r, since each of the 2N−1 likelihoods requires

computation of rNL integrals.

Computationally viable Pr(ε) metrics for the class of nested map-based DS/SS

can be readily constructed via extensions of the performance evaluation methods

in Section 3.2.4. Specifically, with the assumption that the unintended receiver is

provided with b[0], {i[n]; 1 ≤ n ≤ N − 1, n 6= D} where b[n] = i[n] b[n − 1], and

knowledge of c[0] ∈ {c[m]; m = 0, 1, . . . ,Mo − 1} for some Mo significantly larger

than the observation interval NL, the ML detector of i[D] in (3.19) extends to

îLB(Y) = arg max
i∈±1

Mo−1∑
m=0

exp




− Re{Ψ (Y|b, c[m], â)}

No

(
3 γb

L(γp+1)

∑NL−1
n=0 (F n(c[m]))2 + 1

)





. (4.32)

In the case of perfect channel estimates, (4.32) specializes to

îLB(y) = arg max
b

Mo−1∑
m=0

exp

{
1

No

NL−1∑
n=0

(
2

√
3

L
F n(c[m])b

[⌊n

L

⌋]
Re{y[n]}

− µ
3 Eb

L
(F n(c[m]))2

)}
. (4.33)

As in Section 3.2.4, exploiting the dominance of a small set of observations around

the codeword boundaries on the Pr(ε) due to the sensitive dependence of spread-

ing sequences on initial conditions, computationally efficient approximations to the

Pr(ε) can be obtained by simulating (4.32) or (4.33) with Y replaced by a windowed

observation vector

Yw
4
= {yk[n]; k = 1, 2, · · · , K and n = DL−w, DL−w+1, · · · , DL+w−1} , (4.34)
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for 1 ≤ w ≤ (N − 1)L and 1 ≤ D ≤ N − 1. Upper bounds on the unintended receiver

Pr(ε) can be similarly obtained by considering the optimum detector of i[D] given the

windowed observation Y1. This detector is also the optimum detector for the simpler

binary-signaling-in-slow-fading problem, with sets of constellation points

ĉi,j =

[
ĉi,j[0] ĉi,j[1]

]T
4
=

[
2(j−1)−(P−1)

P
i(−1)j(Q−2j+1)

Q

]T

, i ∈±1, j = 1, 2, . . . , P ,

(4.35)

where Q = 2`+1 and P = rQ for nested maps. Via extensions of the method in

App. C.2, this detector can be shown to be

îUB(Y1) = arg min
i

min
j

1
3 γb

L(γp+1)

(
ĉ2
i,j[0]+ĉ2

i,j[1]
)
+1

Re

{
K∑

k=1

(|yk[DL− 1]|2+|yk[DL]|2

+
3 γb

L
(
γp + 1

) |ĉi,j[1]yk[DL− 1]− ĉi,j[0]yk[DL]|2

− 2 α̂∗k

√
3 Eb

L
(ĉi,j[0]yk[DL− 1] + ĉi,j[1]yk[DL])

+ |α̂k|2 3 Eb

L

(
ĉ2
i,j[0] + ĉ2

i,j[1]
))}

. (4.36)

In the perfect channel estimates case, (4.36) simplifies to the following minimum

distance detector:

îUB(y1) = arg min
i

min
j

∥∥∥∥∥Re {y1} − µ

√
3 Eb

L
ĉi,j

∥∥∥∥∥

2

, (4.37)

where the vector of the MRC outputs

yw
4
=

[
y[DL−w] y[DL−w+1] · · · y[DL+w−1]

]T

, 1 ≤ w ≤ (N−1)L (4.38)

is a windowed version of (4.31).
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Figure 4.8: Simulated upper bound (4.37) and approximations to lower bound (4.33)
on the unintended receiver Pr(ε) for various values of w.

Fig. 4.8 shows the simulated upper bound (4.37) and approximations to the

lower bound (4.33) on the Pr(ε) of the unintended receiver for dyadic map-based

DS/SS in slow flat fading as functions of γb for various values of the window size

indicator w. The figure reveals that, for the dyadic map (r = 2, ` = 0), the approx-

imation with w = 1 nearly coincides with the upper bound and rapidly converges

as w increases, revealing that the approximations to (4.33) and the upper bound

based on (4.37) predict the Pr(ε) trends of unintended receivers with perfect channel

estimates. The same trends are empirically observed with nested map DS/SS and

imperfect channel estimates.

Fig. 4.9 depicts the unintended receiver Pr(ε) performance in slow fading as a

function of SNR for various levels of channel estimate quality γp. The figure suggests

that the unintended receiver Pr(ε) in the case of perfect channel estimates at the
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Figure 4.9: Simulated approximations to lower bounds (4.32) and (4.33) on the unin-
tended receiver Pr(ε) for various level of channel estimation quality γp. The thicker
dashed curve corresponds to the case of perfect channel estimation, and the solid
curves with markers correspond to the case of imperfect channel estimation.

receiver, as its intended receiver counterpart in Section 4.3.1, can serve as a metric

for determining the high SNR performance characteristics in the case of imperfect

channel estimates. The figure shows that, as γb increases, the Pr(ε) associated with

finite γp exhibits the same decaying slope as the curve associated with perfect channel

estimates, forming a parallel curve that is within a few dB of the latter. Thus the

Pr(ε) metrics in the perfect channel estimates case are suggestive of the performance

characteristics when noisy channel estimates are available at the receiver. This is

because the second term of Ψ in (4.29) is independent of α̂k and eventually dominates

the decision as γb increases, similar to the intended receiver case.

Figs. 4.8 and 4.9 also suggest that, at high γb, the Pr(ε) curves of unintended

receivers with perfect channel estimates for nested map-based DS/SS systems decay
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at a constant rate. The figures reveal that this decaying rate is the same as its

counterpart for AWGN channels, at 1/
√

γb (the same as the slope of the dashed line).

In general, this rate represents a lower bound on the Pr(ε) curve decaying rate of the

unintended receiver with channel estimates of arbitrary quality.

4.4.2 Fast Flat Fading

In this section we develop numerically efficient predictors of the unintended receiver

Pr(ε) in fast flat Rayleigh fading for the class of nested maps-based DS/SS. The

developments herein follow closely those for slow flat fading in Section 4.4.1.

The maximum-likelihood unintended detector of b, given the observation YK,NL

in (4.6) and channel estimates

Â 4
= {α̂k[n]; k = 1, 2, · · · , K and n = 0, 1, · · · , NL− 1} , (4.39)

is, via the results in App. C.4, given by

b̂ML(Y) = arg max
b

∫
pY|b,cNL,Â(Y|b, cNL, Â)pc[0](c) dc

= arg max
b

∫
exp



−

1

No

K∑

k=1

NL−1∑
n=0


|yk[n]|2−2

√
3
L

Re {α̂∗k[n]yk[n]}F n(c)b
[⌊

n
L

⌋]

3 γb

L(γp+1)
(F n(c))2 + 1

+
3 Eb

L
|α̂k[n]|2 (F n(c))2

3 γb

L(γp+1)
(F n(c))2 + 1






 pc[0](c) dc . (4.40)
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In the special case of perfect channel estimates, (4.40) reduces to

b̂ML(Y) = arg max
b

∫
exp

{
1

No

NL−1∑
n=0

(
2

√
3

L
F n(c)b

[⌊n

L

⌋]
Re{y[n]}

− µ[n]
3 Eb

L
(F n(c))2

)}
pc[0](c) dc , (4.41)

where y[n] is the signal at the output of MRC in (4.22) and µ[n] is given by (4.24).

Thus, as in Section 4.4.1, the sequence of y[n] in the form of (4.31) is a sufficient

statistic for b in the context of unintended detection given perfect channel estimates.

Computationally efficient Pr(ε) metrics for the class of nested map-based

DS/SS can be obtained via straightforward extensions of the corresponding metrics

for slow fading case in Section 4.4.1. Assuming that the unintended receiver is given

b[0], {i[n]; 1 ≤ n ≤ N−1, n 6=D} where b[n] = i[n] b[n− 1], and the side information

that c[0] ∈ {c[m]; m = 0, 1, . . . , Mo−1} for sufficiently large Mo, the lower bound

(4.32) extends to

îLB(Y) = arg max
i∈±1

Mo−1∑
m=0

exp




− 1

No

K∑

k=1

NL−1∑
n=0

∣∣∣yk[n]−
√

3
L
α̂k[n]F n(c[m])b

[⌊
n
L

⌋]∣∣∣
2

3 γb

L(γp+1)
(F n(c[m]))2 + 1





,(4.42)

which, in the case of perfect channel estimates, reduces to

îLB(y) = arg max
b

Mo−1∑
m=0

exp

{
1

No

NL−1∑
n=0

(
2

√
3

L
F n(c)b

[⌊n

L

⌋]
Re{y[n]}

− µ[n]
3 Eb

L
(F n(c))2

)}
. (4.43)

As in Sections 3.2.4 and 4.4.1, computationally efficient approximations to Pr(ε) can

be obtained via (4.42) or (4.43) by employing a windowed observation Yw from (4.34).
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The upper bounds (4.36) and (4.37) extend to

îUB(Y1) = arg min
i

min
j

K∑

k=1


 |yk[DL−1]|2

3 γb

L(γp+1)
ĉ2
i,j[0]+1

+
|yk[DL]|2

3 γb

L(γp+1)
ĉ2
i,j[1]+ 1

− 2

√
3

L


 ĉi,j[0] Re {yk[DL−1]α̂∗k[DL−1]}

3 γb

L(γp+1)
ĉ2
i,j[0]+1

+
ĉi,j[1] Re {yk[DL]α̂∗k[DL]}

3 γb

L(γp+1)
ĉ2
i,j[1]+1




+
3 Eb

L


|α̂k[DL−1]|2 ĉ2

i,j[0]
3 γb

L(γp+1)
ĉ2
i,j[0]+1

+
|α̂k[DL]|2 ĉ2

i,j[1]
3 γb

L(γp+1)
ĉ2
i,j[1]+1





(4.44)

and

îUB(y1) = arg min
i

min
j

(
3 Eb

L

(
µ[DL− 1]ĉ2

i,j[0] + µ[DL]ĉ2
i,j[1]

)

−2

√
3

L
(ĉi,j[0]y[DL− 1] + ĉi,j[1]y[DL])

)
, (4.45)

respectively, where the windowed vector of MRC outputs yw, 1 ≤ w ≤ (N − 1)L is

in the form of (4.38) with y[n] in (4.22), and ĉi,j[n], n = 0, 1 from (4.35) form the set

of constellation points for the binary-signaling-in-fast-fading problem.

Fig. 4.10 shows the unintended receiver Pr(ε) curves vs. SNR for various levels

of γp. As the figure illustrates, the unintended receiver performance in fast flat fading

suffers significantly from the presence of imperfect channel estimates at the receiver.

In general, a 100-fold increase in the target level of γp is required to reduce ten-fold

the associated error floor. This is in sharp contrast to the case of intended receiver,

where a ten-fold increase in the target γp generally reduces the associated error floor

by a factor of 10KL. This susceptibility of unintended receiver to the quality of noisy
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Figure 4.10: Simulated approximations to lower bounds (4.42) and (4.43) on the
unintended receiver Pr(ε) for various levels of channel estimation quality γp. The
dashed curve corresponds to the case of perfect channel estimation, and the solid
curves with markers correspond to the case of imperfect channel estimation.

channel estimates at the receiver is a direct consequence of the Pr(ε) decaying rates

in the perfect channel estimates case; as Figs. 4.8, 4.9, and 4.10 show, the unintended

receiver Pr(ε) in fading asymptotically decays at the rate of 1/
√

γb, while the intended

receiver Pr(ε) in fast fading decays as 1/γKL
b . In the following section we verify that

indeed the decaying rate is lower bounded by 1/
√

γb for the class of nested maps.

4.4.3 Asymptotic Decaying Rate of Pr(ε)

In this section we modify the development in Section 3.2.3 and utilize the results

developed in App. B.2 to prove that the unintended receiver Pr(ε) for r-adic map

based DS/SS in slow flat Rayleigh fading channels, with a K-element receiver antenna

diversity and perfect channel estimates, is lower bounded by a function that decays as
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1/
√

γb at high γb.
1 Since for any nested map there exists a corresponding initializing

r-adic map with lower unintended receiver Pr(ε), the 1/
√

γb bound also holds for all

nested maps generated via the algorithms developed in Section 3.3, initialized with an

r-adic map. In addition, this rate bounds the unintended receiver Pr(ε) over Rayleigh

fading channels, irrespective of the time selectivity of the channel, since 1/
√

γb bounds

the asymptotic Pr(ε) slope of both the slow (time-nonselective) fading and AWGN

channels.

We develop a lower bound on the Pr(ε) of detecting an arbitrary, but fixed,

differentially encoded symbol given observation of y[n] in (4.10). In particular, we

assume that an IID sequence i[n] = ±1 is differentially encoded into the sequence

b[n] = i[n] b[n − 1] used in (4.1), and focus on detection of i[D], for some 1 ≤ D ≤
N − 1, based on the sufficient statistic y in (4.31).

To obtain a lower bound on the Pr(ε), we consider a detector that is provided

with the remaining information symbols {i[n]; 1 ≤ n ≤ N − 1, i 6= D} as well as some

additional side information that depends on whether or not c[0] belongs in the set

Io
4
=

⋃
c∈C(D) I(c), where I(c)

4
= (c, c+∆), ∆

4
= 2 r−(NL−1), and C(D) is the preimage of

{0} under FDL−1. Specifically, when c[0] /∈ Io, i[D] is declared to the receiver; when

c[0] ∈ Io, the receiver is only told that c[0] is from the set {±c[0] + δ}, where c[0]

denotes the unique c ∈ C(D) for which c[0] ∈ (c, c + ∆), and δ
4
= δ(c[0]) = c[0]− c[0].

As App. B.2 shows, the optimal receiver with this side information and knowledge of

channel gains

a
4
=

[
α1 α2 · · · αK

]T

is inferior to the optimal detector in the context of binary signaling with codewords

1As a direct consequence, the rate of 1/
√

γb lower bounds the asymptotic Pr(ε) decaying rate of
the unintended receiver with imperfect channel estimation.
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xi[D] and x−i[D], where xi[D] is the transmitted vector, defined as in (3.15) with x[n] =

A√
L
µc[n] b[bn/Lc] and µ as in (4.12) with α̂k = αk, and where x−i[D] is the vector closest

in Euclidean distance to xi[D] among those associated with the antipodal hypothesis,

and corresponds to using c[n] generated from c[0] = −c[0] + δ. Thus,

Pr(ε|c = c[0] + δ, a) ≥ Q
(√

γ̃(δ, a)
)

(4.46)

where

γ̃(δ, a) =
‖x1 − x−1‖2

2No

= δ2 6 µ Eb(r
2DL − 1)

(r2 − 1) No

= C γbδ
2 , (4.47)

with C = 6 µ (r2DL−1)
r2−1

. Conditioned on µ and c[0] ∈ I(c[0]), δ is uniformly distributed

in (0, ∆) and, hence, the PDF of γ̃ in (4.47) is

pγ̃(γ) =
1

∆

√
π

γ C γb

Q
(√

2γ

∆2Cγb

)
.

We next pick an arbitrary but fixed γo (independent of γb). Using (4.46), we have

Pr(ε) ≥ Pr (c[0] ∈ Io)

∫ ∞

0

Q (
√

γ) pγ̃ (γ) dγ

≥ r(D−N)LQ (
√

γo)

∫ γo

0

pγ̃ (γ) dγ

= r(D−N)LQ (
√

γo)

{
2

√
πγo

∆2Cγb

Q
(√

2 γo

∆2Cγb

)

+1− exp

{
− γo

∆2γbC

}}
. (4.48)

As γb increases, (4.48) converges to the following desired bound:

Pr(ε) ≥ Q (
√

γo)
1√
γb

rNL−1

2

√
πγo(r2 − 1)

6 µ (r2DL − 1)
. (4.49)
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4.5 Implications of Fading on Privacy

In this section we show that the communication privacy provided by the class of

chaotic DS/SS systems based on a nested map, first demonstrated for the case of

AWGN channels in Chapter 3, is not compromised by the presence of channel gain

in fading channels. In particular, for the systems of interest, and provided perfect

channel estimates are available, unintended receivers cannot achieve full diversity

benefits, in contrast to intended receivers. As shown in the Sections 4.3 and 4.4,

the presence of noisy channel estimates does not help unintended receivers, since its

impact on privacy is insignificant in slow fading and largely mitigated for a wide range

of system parameters in fast fading. In particular, in fast flat fading, the error floor

on the Pr(ε) of unintended receiver with noisy channel estimates is consistently and

substantially higher than the associated error floor on the Pr(ε) of intended receiver.

We first focus on the case of perfect channel estimation to illustrate some of the

important privacy characteristics in fading. We then demonstrate that the presence

of imperfect channel estimates at the receiver does not degrade the available privacy

benefits.

For the nested maps, the time- and frequency-selectivity of channel and the

available degree of diversity do not affect the asymptotic decaying rate of the un-

intended receiver Pr(ε), i.e., irrespective of the type of fading, unintended receivers

cannot achieve full diversity. Specifically, the Pr(ε) decaying rate of the unintended re-

ceiver with an arbitrary number of independently faded observations in a general time-

and frequency-selective channel is 1/
√

γb. This is because, regardless of the available

degrees of diversity, the decaying rate is upper and lower bounded by 1/
√

γb, i.e., by

the Pr(ε) decaying rates over the worst case channel of slow flat fading and the best

case channel of AWGN. This is illustrated via simulations for the dyadic map-based
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Figure 4.11: Approximate lower bounds on the unintended receiver Pr(ε) in Rayleigh
fading and AWGN.

DS/SS in Fig. 4.11. This lack of dependence of the decaying rate on the degrees of

diversity in the channel is due to chaotic spreading. Indeed, from the perspective of

unintended users, chaotic spreading can be viewed as an additional fading process

with uniform PDF, dominating the channel fading process and, hence, the decaying

rate.

Little benefit in the unintended receiver Pr(ε) can be attained with temporal

or spectral diversity, since not only the associated decaying rate of the Pr(ε) does

not change but also the highest achievable SNR gain via these diversity techniques

given a target Pr(ε) is minuscule. This is again illustrated in Fig. 4.11, where the gap

between the Pr(ε) in slow flat fading and the Pr(ε) in AWGN is less than 4 dB. As a

result, in the presence of K degrees of spectral or temporal diversity, the unintended

receiver Pr(ε) gap in γb between K = 1 and K = ∞ is at most 4 dB. Such a small
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Figure 4.12: Intended receiver Pr(ε) (dashed) and approximate lower bounds on the
unintended receiver Pr(ε) (solid) for K degrees of spatial diversity in slow flat Rayleigh
fading.

gap, empirically verified for the class of nested maps, is due to the dominant effect of

the induced fading process c[n] on the Pr(ε).

Spatial diversity via K-element receiver antenna arrays, yielding K-fold aver-

age output SNR gains, also bestows only marginal benefits on the associated unin-

tended receiver Pr(ε). In fact, as Figs. 4.12 and 4.13 demonstrate, the Pr(ε) perfor-

mance improvements due to increasing the number of antenna elements are far more

substantial for intended users. This is a direct consequence of the difference between

the asymptotic decaying rates of the intended and unintended receiver Pr(ε). Even

for scenarios where the unintended receiver can exploit a larger number of antennas,

the additional number of antennas required for the unintended receiver to outperform

intended receivers at a target Pr(ε) is impractical. For instance, in slow flat fading,

K ≈ 256 antennas are needed by the unintended user to outperform a single-antenna
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intended receiver at a target Pr(ε) of 0.1 for a dyadic map DS/SS with L = 16. Fur-

thermore, the number of antennas K grow exponentially fast with lower target Pr(ε)

or higher r, `, and L.

Imperfect channel estimation does not compromise the communication privacy

provided by chaotic DS/SS, as Fig. 4.13 reveals. The figure shows that the error floor

effect on the unintended receiver Pr(ε) is much more pronounced than the effect on the

intended receiver Pr(ε). Indeed, for a given γp and L, increasing K by Ko reduces the

error floor of unintended receiver Pr(ε) by
√

Ko in general, while for intended receiver

it reduces the error floor by γKo
p . This is again due to the difference in asymptotic

decaying rates between the intended and unintended receivers.
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Chapter 5

Analysis and Design of Pseudochaotic

DS/CDMA Systems: Multiuser Case

In this chapter, we investigate the potential of a class of pseudochaotic DS/CDMA

systems for providing private and reliable multiuser communications. In a wide array

of communication scenarios where multiple transmitters share a common channel,

there is a dual requirement on the modulation process for discouraging unintended

reception as well as achieving desired intended reception performance in the presence

of signals from other transmitters. CDMA extensions of the class of pseudochaotic

DS/SS systems studied in the previous chapters, whereby the spreading sequence for

each user is generated via the same chaotic map but initialized with distinct initial

condition, have the potential of satisfying these requirements. As we have shown in

Chapters 3 and 4, the class of nested map-based DS/SS systems can furnish attractive

privacy benefits to intended receivers in a broad range of channel types. In addition,

chaotic sequences produced with the same map but distinct initial conditions, in

general, have wideband spectra and cross-spectra. Furthermore, chaotic sequences

can be designed to exhibit desired spectral properties [29].

To demonstrate the privacy potential of chaotic DS/CDMA systems, we focus
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on synchronous multiuser transmission of DS/CDMA signals based on nested maps

in Section 3.3 over AWGN channels. This scenario is captured by the system model

in Section 2.1. The intended and unintended users’ received signal is of the form

y[n] =
A√
L

M∑
m=1

cm[n]bm

[⌊n

L

⌋]
+ w[n] , (5.1)

where M is the number of active transmitters and cm[n] is generated by iterating the

initial condition cm[0] through a nested map. We assume that the same nested map

is used for all transmitters but the initial conditions used to generate the individual

sequences are distinct, i.e., ci[0] 6= cj[0] , i 6= j. We also assume that only the intended

receivers for m-th sequence are provided with the key cm[0]. Hence, a legitimate user

within the network knows the initial conditions of only the transmissions intended

for the user. This constraint is a necessity in many applications, where, for instance,

a subscriber to a particular channel may opt to listen to unsubscribed channels,

or a network node may be compromised by a hostile entity with the intention to

eavesdrop on other transactions in the network. In this context, we develop and

evaluate the optimal intended and unintended multiuser receivers. While our scope of

synchronous transmission is somewhat narrow, this special case is suggestive of some

of the privacy characteristics these chaotic DS/CDMA systems provide in general

asynchronous multiuser transmission scenarios. In addition, our findings for AWGN

case can serve as a basis for designing chaotic DS/CDMA with attractive privacy

benefits in fading channels, as we have shown in Chapter 4.

Correlation and power spectral properties of spreading sequences are impor-

tant in CDMA systems, where the level of multiuser interference (MUI) have a direct

impact on system capacity. Low auto- and cross-correlation of spreading sequences

and, hence, flat and wideband spectra and cross-spectra are desirable characteristics
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in DS/CDMA since such sequences reduce the MUI and lessens the probability of

signal interception by unintended receivers. In this chapter we study the correlation

and spectral properties of sequences from the nested maps as well as their digital

implementations, to ascertain the suitability of these sequences as multiuser CDMA

spreading codes.

In Section 5.1 we examine the correlation and power spectra of the pseu-

dochaotic sequences from the nested maps developed in Section 2.3 and the under-

lying true chaotic trajectories the digital sequences are based on. In Section 5.2 we

develop a general multiuser detector structure and associated Pr(ε) metric that cap-

ture the intended and unintended receiver with knowledge on the initial conditions of

various combinations of transmitters in the multiuser network. Finally, in Section 5.3

we explore the privacy characteristics of chaotic DS/CDMA system with an example

case of two-user synchronous system in AWGN.

5.1 Correlation and Spectral Characteristics

In this section we study second-order correlation statistics and power spectra of the

chaotic sequences from nested maps and the digitized pseudochaotic implementation

of these sequences. We focus on the autocorrelation, since this suffices in deduc-

ing MUI characteristics in the context of synchronous transmission with each user’s

spreading sequence obtained from different shifts of a single sequence.

The statistics of the pseudochaotic sequences implemented through the meth-

ods in Section 2.3 with sufficiently large bit precision depth can, for all practical

purposes, accurately approximate those of the underlying chaotic sequences. Specifi-

102



cally, for the class of nested map-based sequences, the autocorrelation

Rc[k] = E [c[n]c[n + k]] (5.2)

of the pseudochaotic sequences generated as in Section 2.3 with sufficiently large bit

precision depth closely approximates that of the underlying true chaotic sequences.

The autocorrelation of chaotic sequences from nested maps can be determined in

closed form via the methods in [19]. In turn, for the pseudochaotic sequences with

very large periods, the estimate of the autocorrelation in the form

R̂c[k] =
1

Lo

Lo−1∑
n=0

c[n]c[n + k] , k < Lo , (5.3)

where the observation length Lo is less than or equal to the sequence period, can serve

as an accurate substitute for (5.2) (R̂c[k] = Rc[k] if Lo is the sequence period). Fig. 5.1

shows, for some nested maps Fr,`, the closed form solution of (5.2) for true chaotic

sequences and empirically obtained (5.3) of their numerical realizations. As the figure

suggests, the autocorrelation of the numerically generated pseudochaotic sequences

indeed accurately approximates the underlying nested map-based chaotic trajectories.

This is because, for the maps of interest in this dissertation, the shadowing property

holds, i.e., although a numerical trajectory diverges from the true trajectory with the

same initial condition, there exists a true trajectory with a slightly different initial

condition that stays near (shadows) the numerical trajectory [2,30]. Thus, within the

period, the maximal-length pseudochaotic sequences based on the nested maps form

a subset of the set of true trajectories and exhibit the same statistical characteristics.

Fig. 5.2 shows the analytically obtained autocorrelations of sequences from the

nested maps along with the autocorrelation of the sequences from the tent map in
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Figure 5.1: Comparison of analytically computed autocorrelation of sequences from
nested maps and empirical autocorrelation estimates of their pseudochaotic imple-
mentation. The lines represent analytically obtained autocorrelations of true chaotic
trajectories, and the circles represent empirical estimates of numerical trajectories.
Empirical estimates are obtained via (5.3) with Lo = 100000 on 48-bit precision
realization.

(2.14), represented by the diamonds in Fig. 5.2(a). The figure illustrates that, as r or

` increases, the autocorrelation Rc,{r,`}[k] of the sequences from the nested maps Fr,`

converges to that of the Tent map, Rc,T[k] = 1
3
δ[k], in the mean square sense, i.e.,

lim
`→∞

∥∥∥∥Rc,{r,`}[k]− 1

3
δ[k]

∥∥∥∥ = 0 and lim
r→∞

∥∥∥∥Rc,{r,`}[k]− 1

3
δ[k]

∥∥∥∥ = 0 , (5.4)

where ‖·‖ denotes L2-norm and

δ[k] =





1, k = 0

0, |k| ≥ 1
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Figure 5.2: Analytically computed autocorrelation of the sequences from nested maps
and the tent map.
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is the unit impulse. Since such convergence to an impulsive autocorrelation implies

reduction of MUI in synchronous channels, (5.4) suggests that increasing r or ` has

a two-fold effect: first, it reduces MUI and, hence, improves the intended receiver

performance in multiuser settings. Second, it degrades the unintended receiver per-

formance, as we have shown in the previous chapters. Such enhancement of Rc[k] is

due to the reduction in the expected duration of a trajectory following a linear seg-

ment of the map that comes from increasing r or `. We note that the sequences from

any even-symmetric P -partition maps, including the tent map, possess flat spectra

and, hence, Rc[k] = 1
3
δ[k]. Since a white spreading sequence, with flat spectra, does

not induce MUI in synchronous channels, synchronous DS/CDMA systems based on

even-symmetric P -partition maps, unlike their nested map counterparts, do not suffer

from MUI and, hence, result in the optimal intended receiver performance. However,

as shown in Section 3.2.2, they are unattractive candidates for providing privacy in

multiuser networks, since the associated unintended receiver Pr(ε) is far inferior to

that associated with odd symmetric maps, as discussed in Section 3.2.2. In general,

employing the odd-symmetric nested maps of Section 3.3 instead of even-symmetric

P -partition maps in synchronous multiuser networks leads to a moderate increase in

the intended receiver Pr(ε) while providing substantial gains in privacy. Furthermore,

increasing the nested map parameters r or ` results in smaller degradation of the in-

tended receiver Pr(ε) and larger gains in privacy, as higher r and ` reduce the MUI

while increasing the unintended receiver Pr(ε).

The power spectral densities of sequences generated by the nested maps of

Section 3.3, while not flat, have significant components over the entire spectrum and

converge in the mean square sense to a flat spectrum as r or ` increases. This is

consistent with our preceding observation that the autocorrelation of these nested
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map-based sequences approaches 1
3
δ[k]. This is illustrated in Fig. 5.3, which shows

the empirical power spectra for the nested maps and the tent map, obtained via

periodogram averaging on sample pseudochaotic sequence realizations. Although se-

quences from the even-symmetric P -partition maps possess flat spectra that are best

suited for achieving the highest DS/CDMA system capacity and provide the optimum

low probability-of-intercept (LPI) capability in the context of synchronous systems,

the nested map-based sequences have broadband spectra that rapidly converge to a

flat spectrum as r or ` increases.

5.2 ML Reception of Chaotic DS/CDMA Signals

In the following we develop metrics for evaluating the Pr(ε) performance of intended

and unintended receivers for nested map-based synchronous DS/CDMA communi-

cation over AWGN channels. In particular, in the context of M active transmitters

employing the same map but distinct initial conditions, we construct a general ML

multiuser detector structure that captures various intended and unintended receiver

settings. Consistent with the single user setting, we assume that the unintended re-

ceiver knows the modulation scheme including the chaotic map but does not know

the initial condition of the targeted transmitter.

The ML multiuser detector with the knowledge of the number of active trans-

mitters in the network and the distribution (or candidate sets) of their initial con-

ditions, reflecting available side information on them, is a generalization of the con-

ventional multiuser detector for synchronous channels in [1, 31, 32]. We assume that

sequences of bits b1,b2, . . . ,bM are transmitted, where

bm
4
=

[
bm[0] bm[1] · · · bm[N − 1]

]T

, (5.5)
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Figure 5.3: Empirical power spectra of sequences from the nested maps and the tent
map. The spectra are obtained by applying periodogram averaging with a window
length of 1024 to a numerical trajectory of length 1024000.
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and y in the form of (3.10) with y[n] as in (5.1) is observed. Then the maximum

likelihood detector of the bit sequence of the i-th transmitter is given by

b̂i,ML(y) = arg max
bi

∫ ∫
· · ·

∫ ∑

b∈B(bi)

py|b,C(y|b, C)pc1[0](c1)pc2[0]|c1[0](c2|c1)

· · · pcM [0]|cM−1[0],...,c1[0](cM |cM−1,. . .,c1) dc1dc2 · · · dcM

= arg max
bi

∫ ∫
· · ·

∫ ∑

b∈B(bi)

exp



−

1

No

NL−1∑
n=0

(
y[n]−

√
3

L

M∑
m=1

F n(cm)bm

[⌊n

L

⌋])2




· pc1[0](c1)pc2[0]|c1[0](c2|c1)

· · · pcM [0]|cM−1[0],...,c1[0](cM |cM−1,. . .,c1) dc1dc2 · · · dcM , (5.6)

where

b
4
=

[
bT

1 bT
2 · · · bT

M

]T

,

B(bi)
4
=

{
b =

[
θT
1 θT

2 · · · θT
M

]T

; θi = bi

}
,

and

C 4
= {cm[0]; m = 1, 2, . . . , M} .

The sum over b ∈ B(bi) in (5.6) represents the expectation of the likelihood function

taken over the 2N(M−1) possible combinations of b given bi.

For proper choice of pcj [0](cj), 1 ≤ j ≤ M , the detector (5.6) captures various

intended and unintended receiver scenarios. In particular, the intended receiver that

knows the initial conditions of all the active transmitters is captured by setting

pcj [0](c) = δ(c− cj[0]) , ∀j ,

where δ(c) is the Dirac delta function. The intended receiver for the i-th transmitter
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sequence only is captured with pci[0](c) = δ(c − ci[0]) and pcj [0](cj) = 1/2, j 6= i.

Various unintended receivers that may arise can also be captured with (5.6) by suit-

ably setting pcj [0](c) for all j. For instance, the collusion scenarios, where multiple

receivers in a network share their knowledge of initial conditions to better demod-

ulate an unintended transmission with unknown initial condition, are supported by

setting pcj [0](c) = δ(c − cj[0]) if the initial condition for j-th transmitter is known

and pcj [0](cj) = 1/2 if it is unknown. Furthermore, (5.6) can be readily extended to

accommodate multiple targeted transmitters.

The Pr(ε) performance trends of (5.6) can be characterized with numerically

computable generalizations of the bounds developed in Section 3.2.4. In partic-

ular, assuming that the initial condition of the m-th transmitter is from the set

{cm[hm]; hm = 0, 1, . . . , Hm − 1}, the ML detector of bi, given the side information

cm[0] ∈ {cm[hm]; hm = 0, 1, . . . , Hm − 1}, is an extension of the lower bound (3.19)

given by

b̂i,LB(y) = arg max
bi

H1−1∑

h1=0

· · ·
HM−1∑

hM=0

∑

b∈B(bi)

exp

{
− 1

No

NL−1∑
n=0

(
y[n]

−
√

3

L

M∑
m=1

F n(cm[hm])bm

[⌊n

L

⌋])2


 , (5.7)

where Hj = 1 if cj[0] is known to the receiver. Our analysis in the previous chapters

suggests that this metric, with sufficiently large Hm for m 6= j where cj[0] is known,

can provide accurate approximations to the intended and unintended receiver Pr(ε)

and its trends.
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5.3 Privacy Characteristics of Multiuser Systems

In the following we consider a couple of simple representative examples that can

serve as brief illustrations of the privacy characteristics of DS/CDMA systems based

on the nested maps and, in particular, their trends with respect to the nested map

parameters. First, we consider a two-transmitter system, where the signal from the

1st transmitter is for demodulation by both the intended and unintended receivers.

We assume that the intended receiver knows c1[0] but does not know c2[0], while the

unintended receiver is a legitimate receiver for the 2nd transmitter and, hence, knows

c2[0] but not c1[0]. We remark that the performance of this unintended receiver within

the network furnishes a lower bound on that of the unintended receiver without the

knowledge of initial conditions of any of the transmitters in the targeted network.

Next, we consider a characterization of privacy in general M ≥ 2 systems by devel-

oping suboptimal intended receivers in the M -user system of interest and comparing

them with the optimal unintended receiver in single-user system. We show that,

while conservative, such characterization can still illustrate the privacy potential of

the pseudochaotic DS/CDMA for multiuser communications.

Fig. 5.4 depicts the intended receiver Pr(ε) as a function of SNR for various

nested maps in the two-transmitter system. As the figure suggests, the Pr(ε) in a

two-transmitter network is worse than the Pr(ε) in a single-user system. This is

consistent with the preceding analysis in Section 5.1 that the sequences from nested

maps do not have flat spectra and, hence, result in a non-zero level of MUI. The

figure, however, also reveals that, for M = 2, increasing the nested map parameters

r or ` improves the intended receiver performance. This again is as expected from

our findings in Section 5.1 that increasing r or ` of the nested maps improves the

autocorrelation and, hence, reduces the MUI of the sequences. Such enhancement of
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Figure 5.4: Simulated lower bound on the Pr(ε) of the intended receiver for the 1st
transmitter via (5.7) vs. SNR for various nested maps in a two-transmitter system
(H2 = 2028). Solid curves with markers correspond to M = 2, and solid curve without
markers corresponds to analytically computed Pr(ε) for single-user case (M = 1).
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intended receiver Pr(ε) is in contrast to the single-user case in Chapter 3, where the

intended receiver Pr(ε) is independent of ` and degrades with increasing r, although

this degradation is largely mitigated with higher spreading gain. Since this Pr(ε)

degradation with higher r is due to a reduction in minimum power of the spreading

codeword as discussed in Sections 2.2.2 and 3.1, the Pr(ε) trends with respect to the

parameter r in M = 2 system suggest that the MUI dominates over the minimum

sequence power characteristics in determining the Pr(ε) performance in multiuser

systems.

Fig. 5.5 provides a comparison of the intended and unintended receiver Pr(ε)

performance as a function of SNR for several nested maps in the M = 2 system.

The figure illustrates that the addition of another transmitter does not fundamen-

tally alter the privacy characteristics of the single-user system explored in Chapter 3.

Specifically, the decaying rate of the optimal unintended receiver Pr(ε) for the M = 2

system is lower bounded by that of the single-user system and, hence, by 1/
√

SNR.

The intended receiver Pr(ε), in contrast, decays at an exponential rate as a function

of γb. Moreover, for fixed M , the unintended receiver performance monotonically

degrades as the nested recursion parameters r and ` increase, while the intended

receiver performance improves as observed above.

The privacy provided via the multiuser DS/CDMA systems based on nested

maps can be efficiently, albeit conservatively, characterized by the Pr(ε) of unintended

receiver in the single-user system and the suboptimal intended receivers in the mul-

tiuser system of interest. In particular, the Pr(ε) of the conventional single-user

detector for the i-th transmitter, given by

b̂(y, ci[0]) = sgn

(
L−1∑
n=0

F n (ci[0]) y[n]

)
, (5.8)
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transmitter system. Dashed curves correspond to the intended receiver (H2 = 2028)
and solid curves correspond to the unintended receiver (H1 = 2028).

114



where y[n] is as in (5.1), can furnish a loose upper bound on the Pr(ε) of the op-

timal intended receiver that is captured by the ML multiuser detector in (5.6). In

addition, the unintended receiver performance in the single-user system, explored in

Section 3.2, lower bounds its counterpart in multiuser systems. The privacy charac-

terized with these bounds is pessimistic; the Pr(ε) of (5.8) is substantially inferior to

that of the optimal intended receiver, since this single-user detector in effect treats

the MUI as additive Gaussian noise and its performance is interference limited. More-

over, the unintended receiver performance in the single-user system lower bounds the

unintended receiver Pr(ε) in the collusion scenarios where all receivers except the

intended one in a network share their initial conditions to better demodulate a par-

ticular transmission. Thus such single-user system performance does not reflect not

only the presence of MUI but also the possible (and likely) lack of knowledge of mul-

tiple initial conditions. Nevertheless, for systems with moderate-to-high spreading

gain that is significantly higher than the number of users, this pessimistic setting can

still illustrate the strength of privacy provided with the pseudochaotic DS/CDMA

systems for a wide range of system parameters.

Fig. 5.6 shows the Pr(ε) performance of the conventional single-user intended

receiver in a four-transmitter network and that of the unintended receiver in the

single-user system in Section 3.2 for the nested map F16,4 and the spreading gain

L = 64. This figure illustrates a conservative estimate of the privacy achievable in

any M = 4 scenarios, given r, `, and L. In particular, the Pr(ε) of unintended receiver

in the single-user setting lower bounds that of the colluding unintended receivers that

do not know the initial condition of the intended transmitter but do know those

of the remaining three transmitters. As is apparent from the figure, the class of

DS/CDMA systems based on nested maps can provide private and reliable multiuser
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Figure 5.6: Simulated Pr(ε) of single-user intended receiver (5.8) in M = 4 system
(dashed curve) and simulated unintended receiver Pr(ε) in M = 1 system via (3.19)
(solid curve), for the nested map F16,4 and L = 64.

communication that is not compromised by the presence of interference from other

transmitters as well as potential collusion among multiple unintended receivers within

the network.
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Chapter 6

Contributions and Future Directions

This final chapter summarizes the contributions of this dissertation and highlights

some of the areas that merit further research.

6.1 Contributions

In this dissertation we have focused on design and analysis of a class of pseudochaotic

DS/CDMA systems for providing a desired level of privacy benefits to authorized

users. In the context of linear modulation with spreading sequences arising from a

class of one-dimensional piecewise-linear chaotic maps, we have explored the bit error

probability performance advantages that these modulation techniques can provide to

intended receivers that know the initial condition over unintended receivers that do

not know the initial condition of targeted transmitter. Specifically, we have developed

systematic design methods for generating pseudochaotic spreading sequences with

successively worse unintended receiver performance. These sequences yield intended

user performance similar to that of conventional DS/CDMA systems, in addition to

quantifiable unintended user performance that is provably and substantially worse

than the intended ones.
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We have found that the class referred to as piecewise-linear P × Q partition

maps contains rich subclass of maps that are amenable to efficient evaluation of the

associated receiver performance. These maps exhibit a wide range of performance

behaviors, which can be customized with variation of map parameters. We have in-

troduced useful representations for these maps and described the associated sequence

power characteristics. This characterization allowed the construction of computation-

ally efficient evaluation metrics of the bit error probability performance.

As a main contribution of this dissertation, we have identified key relationships

between features of P ×Q partition maps and the intended and unintended receiver

performance, and exploited such relationships to construct recursive algorithms for

constructing nested sequences of maps that improve the privacy benefits at each step

of the recursion, without affecting the intended receiver performance. The motivation

behind these algorithms came from our revelation that the map symmetry and the

partitioning of decision regions for signal detection are of prime importance in pro-

viding attractive privacy. First, we have found that maps with the same sensitivity to

initial conditions and the same intended receiver performance can provide remarkably

different privacy trends. In particular, DS/CDMA systems based on odd symmet-

ric maps provide superior privacy over those with even or asymmetric maps, as in

the former systems information bits are effectively distinguishable only at codeword

boundaries. Among the subclass of fully-stretching P × Q partition maps with the

same level of sensitivity to initial conditions, the r-adic maps are optimal since this

class of odd maps has the finest partitioning of decision regions at codeword bound-

aries. These findings led to the nesting algorithms for producing spreading sequences

that can meet a required level of intended receiver performance while satisfying a

constraint on the unintended receiver performance.
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As the next key contribution, we have developed efficient metrics for quantify-

ing the unintended receiver performance in the context of the nested maps from the

above recursive algorithms, and found that the class of DS/CDMA systems employ-

ing these maps can provide substantial privacy benefits while proving resilient against

channel effects and multiuser interference. To obtain such performance metrics, we

have derived and utilized the asymptotic decaying rate of the unintended receiver er-

ror probability as well as the dependence of Pr(ε) on the nesting algorithm step and

the spreading gain. In the process, we have shown that the unintended receiver Pr(ε)

follows a decaying rate of 1/
√

SNR that is independent of the type of channel as well

as the type and degree of diversity available. Because of this remarkable characteris-

tic, the unintended receiver performance in time-varying channels is crippled in the

presence of channel estimation errors, while the associated degradation of intended

receiver Pr(ε) is minimal for system parameters of practical interest. Moreover, as

we have illustrated, multiuser interference does not compromise the privacy trends

of nested map-based synchronous DS/CDMA, since the spreading sequences possess

attractive correlation and broadband spectra that improve with the nested recursion

step.

Finally, we have developed optimal digital implementation methods for gen-

erating pseudochaotic spreading sequences based on finite precision digital imple-

mentations. These methods produce maximal-length sequences, the set of which, for

channels of practical interest and sufficient precision depth, closely approximates that

of chaotic trajectories from nested maps and preserves the important properties of

the underlying trajectories for attaining private and reliable communications.
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6.2 Future Directions

There are a number of interesting and fruitful directions for further research that arise

as extensions of this dissertation. In the following we summarize a representative

collection of the important directions for future work, including some of the issues

that have been identified in the earlier chapters.

While our investigation of the pseudochaotic DS/CDMA systems over synchro-

nous channels illustrates many of the key privacy characteristics in multiuser net-

works, important extensions can be pursued in an effort towards efficient evaluation

of a wide range of multiuser communication scenarios. For instance, our analysis can

be extended to the case of asynchronous channels that arise in many applications.

Such extensions entail examining the partial correlation properties of pseudochaotic

sequences considered. Moreover, more accurate and efficient lower and upper bounds

on the optimal and suboptimal detector performance can be developed to facilitate

performance characterization in scenarios with a large number of transmitters. In par-

ticular, the Pr(ε) characteristics of suboptimal detectors with attractive performance-

complexity trade-offs, in conjunction to the maximum-likelihood multiuser detectors

developed in this dissertation, may provide efficient characterization of privacy trends.

In addition, these suboptimal detectors can be the most attractive practical option

for both intended and unintended receivers, because the prohibitive computational

complexity of optimal detectors severely limit their usefulness in networks with even

moderate number of users.

Another interesting future direction lies in filtering of spreading sequences for

different trade-off characteristics between modulator complexity and privacy benefits

from those associated with spreading sequences considered in this work. Suitable

quantization of the pseudochaotic sequences based on nested maps, for instance, can
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yield modulation outputs with good peak-to-average power ratio and less stringent

requirements on amplifier linearity, at the cost in privacy.

A natural, if daunting, extension of our work is to increase the degrees of

freedom in choosing what constitutes the side information (the key) for intended

receivers and in selecting the chaotic dynamics for spreading sequence generation. A

parameterized description of the chaotic map, for example, can be part of the side

information along with the initial condition, for DS/CDMA systems that can employ

a range of chaotic maps. Increasing the degree of uncertainty for unintended receivers

comes at the price of smaller number of bits (precision depth) for describing the initial

condition or larger key size and, hence, reduced bandwidth efficiency. Also, there may

be an additional hardware cost that arises from enabling changes of the chaotic map.

Such extensions create several interesting trade-offs among allocation of the amount of

side information between the initial condition and the choice of map, the associated

privacy, and the bandwidth efficiency. Another possible extension is to optimize

the privacy benefits over a richer class of chaotic maps, including multidimensional

dynamics. The challenge in these extensions is to ensure that such class provides a

framework wherein systematic selections of pseudochaotic sequences with broadband

spectra and cross-spectra can be made for attractive implementation and privacy

benefits that can be efficiently quantified.

The offshoot from this work that can be perhaps the most consequential in

a broad range of disciplines in science and engineering is the generalization of the

optimal digital implementation methods developed herein to broader families of pseu-

dochaotic sequences. Methods for generating pseudochaotic sequences that preserve

important properties of the underlying trajectories from a chaotic map of interest can

be useful in many applications exploiting chaotic trajectories as well as in numeri-
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cal study of chaotic dynamics. Examples of such applications range from sigma-delta

modulator designs for analog-to-digital conversion [33] and error correcting coding [34]

to random number generation [15,35] and weather forecasting [36].
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Appendix A

A.1 Definitions for Chaotic Map Characteristics

In this appendix we present the definitions of important properties that the chaotic

maps of interest and the associated sequences have, i.e., exactness, ergodicity, and

Markovity, in the context of this dissertation. Specifically, all P -partition maps are

Markov, exact, and (hence) ergodic maps, and all nested maps in Section 3.3 are

Markov and can be made to be exact and ergodic:

Definition 2. [19, 20] A piecewise linear map F (·) is Markov, if F (·) maps the set

of partition points P = {a0, a1, . . . , aP} into P. If F (·) is discontinuous at ai ∈ I,

both F (a−i ) and F (a+
i ) need be in P, where F (a−i ) and F (a+

i ) are the right and left

limits of F at ai, respectively.

Definition 3. [20] Let l(J) denote the length of an interval J on the set of real

values R. A map F : I → I is called exact if for any interval J ⊂ I with l(J) > 0,

lim
n→∞

l (F n(J)) = l(I), (A.1)

where F n(·) denotes the n-fold composition of F (·).

Definition 4. [20] A nonsingular map F : I → I is called ergodic if every set J ∈ I,
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for which F−1(J) = J , is such that either l(J) = 0 or l(I ∩ J c) = 0.
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Appendix B

B.1 Approximate Maximum Likelihood Sequence

Estimation for Nested Maps

In this appendix we present extensions of ML estimation algorithms in [24] for the

class of nested maps in Sec. 3.3 that includes the class of P -partition maps. These ex-

tensions are exploited in the construction of the GLRT detector presented in Sec. 3.2.

We denote by ĉML[n|k,bo] the ML estimate of c[n] given y[m] for m ≤ k, and

assuming

b = bo
4
=

[
bo[0] bo[1] · · · bo[N − 1]

]T

is transmitted. The filtered ML estimates ĉML[n|n,bo], for n = 0, 1, . . . , NL − 1,

can be readily obtained via a straightforward extension of the algorithm in [24], by

exploiting the identity
∣∣a− F−1

s (b)
∣∣ = |Fs(a)− b| /β ,

where β = |P/Q|, and which holds for any a, b ∈ I and any admissible s in a nested

map F (·). Given ỹ[n] = y[n]/A, the recursion for the intermediate sequence of esti-
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mates ĉ[n|n,bo] is given by

ĉ[n|n,bo] =
(β2 − 1) β2nỹ[n]bo [bn/Lc] + (β2n − 1) ĉ[n|n− 1,bo]

β2(n+1) − 1
, (B.1)

where

ĉ[n|n− 1,bo] = F (ĉ[n− 1|n− 1,bo]) ,

and where the recursion is initialized via ĉ[0|0,bo] = ỹ[0]bo[0] . The ML estimate is

then obtained by amplitude-limiting this intermediate estimate according to

ĉML[n|n,bo] = I (ĉ[n|n,bo])

where

I(x) =





x, |x| ≤ 1

sgn(x), |x| ≥ 1
,

and where sgn(x) in (4.8) denotes the sign of x. The smoothed ML estimates

ĉML[n|NL−1,bo], in contrast, cannot be readily obtained for nested maps, because the

ML estimate of an itinerary point ŝ[n|N ], in general, cannot be expressed in terms

of ĉML[n|n,bo]. However, computationally efficient algorithmic extensions yielding

smoothed estimates can be used to approximate the performance characteristics of

the smoothed ML estimates. Specifically, we consider the estimates formed via

ĉ [n|NL− 1,bo] = F−1
s̃[n] (ĉ [n + 1|NL− 1,bo]) , (B.2)

initialized with ĉ[NL− 1|NL− 1,bo] = ĉML[NL− 1|NL− 1,bo], where

s̃[n] = arg min
s[n]∈Sn

{
ỹ[n] bo

[⌊n

L

⌋]
− F−1

s[n] (ĉ [n + 1|NL− 1,bo])
}2

, (B.3)

126



and where Sn denotes the set of admissible s[n] for the given map. As illustrated in

Sec. 3.2, (B.3) results in estimates ĉ [n|NL− 1,bo], which, when used in the context

of the GLRT-type detector (3.14), yield Pr(ε) performance close to that predicted by

the lower bound provided by the detector defined in (3.13).

B.2 A Detection Scenario for Lower Bounding the

Unintended Receiver Pr(ε)

In this appendix we develop a communication scenario, the optimal receiver Pr(ε) for

which can be used to lower bound the Pr(ε) of unintended receiver for DS/SS based

on r-adic maps. This scenario is exploited in deriving the asymptotic decaying rate

of the unintended receiver Pr(ε) in Section 3.2.3 and Section 4.4.3.

We consider the unintended detection of a differentially encoded symbol based

on observation

y[n] = x[n] + w[n]

=
A√
L

αF n(c) b
[⌊n

L

⌋]
+ w[n] , (B.4)

a single-user model simplified from (2.3) for general slow fading channels. As in

Section 3.2.3 and Section 4.4.3, we assume that an IID sequence i[n] = ±1 is differ-

entially encoded into the sequence b[n] = i[n] b[n − 1], and focus on the detection of

i[D], 1 ≤ D ≤ N −1, given the observation y in the form of (3.10) with y[n] in (B.4).

We first consider a detector that is provided with the remaining N − 2 infor-
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mation symbols

ĩ
4
=

[
i[1] · · · i[D − 1] i[D + 1] · · · i[N − 1]

]T

, (B.5)

as well as some additional side information that depends on whether or not c[0]

belongs in the set

Io
4
=

⋃

c∈C(D)

I(c) ,

where I(c)
4
= (c, c + ∆), ∆

4
= 2 P−(NL−1), and C(D) is the preimage of {0} under

FDL−1, i.e.,

C(D) 4= F−(DL−1) (0) =
{
c ∈ I; FDL−1(c) = 0

}
. (B.6)

Specifically, if c[0] /∈ Io, the receiver is provided with the value of i[D]. If c[0] ∈ Io,

the receiver is only told that the initial condition is from the set {±c[0] + δ}, where

c[0] denotes the unique c ∈ C(D) for which c[0] ∈ I(c), and δ
4
= δ(c[0]) = c[0] − c[0].

Note, that since F is odd, c[0] ∈ C(D), implies that −c[0] ∈ C(D). Also,1 since

|C(D)| = PDL−1, Pr(c[0] ∈ Io) = P (D−N)L.

The availability of (B.5) limits the possible b candidates under hypothesis

i[D] = ı at the receiver to S̃(D)
ı = {b̄ı, −b̄ı}, where

b̄ı
4
=

[
b̄[0] b̄[1] · · · b̄[D] ı b̄[D + 1] · · · ı b̄[N − 1]

]T

,

and where the nth entry of b̄ı denotes the nth differentially encoded symbol, in the

case that i[D] = ı, ĩ is as in (B.5), and given b̄[0] =
√Eb. Hence, when c[0] ∈ Io, the

1The set Io could be made larger, e.g., by also including all sets of the form (c − ∆, c) with
c ∈ C(D). Although this would yield a somewhat tighter lower bound, its rate of decay cannot be
made lower than 1/

√
γb.
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optimal detector is given by î1[D] = arg maxı∈±1 Pr
(
x ∈ X (D)

ı |y
)
, where the signal

set under hypothesis i[D] = ı is given by

X (D)
ı =

{
x(c,b); c ∈ {±c[0] + δ},b = S̃(D)

ı

}
. (B.7)

Letting ε1 denote the error event of this receiver we have

Pr(ε) ≥ Pr(c[0] ∈ Io) Pr(ε1|c[0] ∈ Io) . (B.8)

We next lower bound Pr(ε1|c[0] ∈ Io). First, when c[0] ∈ Io and b = b̄1 the signal

term is given by

x[n; c[0], b̄1] = x[n] + r[n] (B.9a)

for all 0 ≤ n ≤ NL− 1, where

x[n] = lim
u→0+

x[n; c[0] + u, b̄1] , (B.9b)

r[n] =
A√
L

αs[n] b̄
[⌊n

L

⌋]
P nδ , (B.9c)

and where s[n] is defined via the recursion

s[n] = s[n− 1] sgn (c[n])

with c[n]
4
= limu→0+ F n(c[0] + u), and initialized with s[0] = 1. Consequently,

x[n; c[0], b̄1] varies linearly with c[0] (or, rather δ = c[0] − c[0]). The significance

of (B.9) is that, as the reader can readily verify, the sets X (D)
ı from (B.7) can be
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expressed in the following convenient form:

X (D)
ı =





x; x = `



p + m ı r

mu


 , `, m ∈ {−1, 1}





(B.10)

where p =

[
x[0] x[1] x[2] · · · x[DL− 1]

]T

, r =

[
r[0] r[1] · · · r[DL− 1]

]T

,

and

u =

[
x[DL; c[0], b̄1] x[DL + 1; c[0], b̄1] · · · x[NL− 1; c[0], b̄1]

]T

,

and where x[n], x[n; c[0], b̄1], and r[n] are given by (B.9). Finally, given a fixed c[0] ∈
Io, Pr(ε1|c[0]) is lower bounded by the probability of error of a detector that must

decide between x̃ = x1 and x̃ = x−1, based on ỹ = x̃+w, where xı = [pT+ırT uT ]T ,

and w is defined as y in (3.10) with y[n] replaced by w[n]. Indeed, x from (B.10) can

be viewed as the output of a channel with input x̃: given x̃ = [pT +ırT uT ]T , the

channel outputs x = `[pT+ımrT muT ]T , where m, ` = ±1 are random variables with

equally likely values and statistically independent of one another and x̃. Hence, due

to the data processing inequality [37], the optimal receiver based on (B.10) cannot

outperform the one that detects x̃ based on ỹ, i.e.,

Pr(ε1|c = c[0] + δ, α) ≥ Q
(√

γ̃(δ, α)
)

(B.11)

where

γ̃(δ, α) =
‖x1 − x−1‖2

2No

=
2 ‖r‖2

No

= δ2 6 α2Eb(P
2DL − 1)

L(P 2 − 1) No

= Cγbα
2δ2 ,

with C = 6(P 2DL−1)
L(P 2−1)

. The above results can be readily modified for AWGN channels
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in Chapter 3 and slow flat fading channels in Chapter 4 by setting α = 1 and α = µ

in (4.12), respectively.
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Appendix C

C.1 Probability Density Function of Observables

in Slow Flat Fading

In this appendix we characterize the joint conditional PDF of observables in slow

flat fading that is useful in constructing Pr(ε) performance metrics for intended and

unintended receivers in Chapter 4 via the developments in App. C.2.

Given

â
4
=

[
α̂1 α̂2 · · · α̂K

]T

and

yk = yL
k

4
=

[
yk[0] yk[1] · · · yk[L− 1]

]T

(C.1)

with yk[n] as in (4.5), the joint PDF of

Y 4
= {yk[n]; k = 1, 2, · · · , K and n = 0, 1, · · · , NL− 1}

conditioned on b in (3.11), cNL, and â is given by

pY|b,cL,â(Y|b, cL, â) =
1

(2π)
NLK

2
∣∣No

2
Ξ
∣∣K

2

exp

{
− 1

No

K∑

k=1

(yk−mk)
HΞ−1(yk−mk)

}
,
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where xH denotes the conjugate transpose of x,

mk = mNL
k

4
= E

[
yk|b, cNL, α̂k

]

=

[
α̂k

A√
L
c[0]b[0] α̂k

A√
L
c[1]b

[⌊
1
L

⌋] · · · α̂k
A√
L
c[NL− 1]b[N − 1]

]T

, (C.2)

and the scaled covariance matrix Ξ
4
= 1

No
E

[
(yk−mk) (yk−mk)

H
]

is a symmetric

matrix with its element at i-th row, j-th column given by

Ξi,j =





A2γb

L(γp+1)
c2[i] + 1 i = j

A2γb

L(γp+1)
c[i]c[j] sgn

(
b
[⌊

i
L

⌋]
b
[⌊

j
L

⌋])
i 6= j

(C.3)

for 1 ≤ i ≤ NL, 1 ≤ j ≤ NL. The inverse of Ξ can be readily shown to be a

symmetric matrix, whose element at i-th row, j-th column is given by

Ξ−1
i,j =





1
|Ξ|

(
A2γb

L(γp+1)

∑
n 6=i c

2[n] + 1

)
i = j

1
|Ξ| · A2γb

L(γp+1)
c[i]c[j] sgn

(
b
[⌊

i
L

⌋]
b
[⌊

j
L

⌋])
i 6= j

(C.4)

for 1 ≤ i ≤ NL, 1 ≤ j ≤ NL, where the determinant of Ξ is

|Ξ| =
A2γb

L
(
γp + 1

)
NL−1∑
n=0

c2[n] + 1 . (C.5)

Using (C.2) and (C.4), we have

yH
k Ξ−1yk =

1

|Ξ|

{
NL−1∑
n=0

|yk[n]|2 +
A2γb

L
(
γp + 1

)
(

NL−1∑
n=0

(
NL−1∑

l=0

c2[l]− c2[n]

)
|yk[n]|2

− 2
NL−2∑
n=0

NL−1∑

l=n+1

c[n]c[l] sgn

(
b
[⌊n

L

⌋]
b

[⌊
l

L

⌋])
y∗k[n]yk[l]

)}
, (C.6)

133



mH
k Ξ−1yk = α̂∗k

A√
L |Ξ|

NL−1∑
n=0

c[n]b
[⌊n

L

⌋]
yk[n] , (C.7)

and

mH
k Ξ−1mk = |α̂k|2 A2Eb

L |Ξ|
NL−1∑
n=0

c2[n] . (C.8)

The above equations (C.6), (C.7), and (C.8) are utilized in deriving the intended and

unintended receiver structures in the following App. C.2 and the Pr(ε) performance

metrics in Section 4.3.1 and Section 4.4.1.

C.2 Maximum Likelihood Reception in Slow Flat

Fading

In this appendix we exploit the findings in App. C.1 to develop the optimum intended

and unintended receiver in slow flat Rayleigh fading with the knowledge of channel

estimates α̂k.

The maximum likelihood intended receiver of the transmitted bit sequence b

based on observations YK,NL in (4.6), c[0], and â in (4.27) is

b̂ML(Y , c[0]) = arg max
b

pY|b,cNL,â(Y|b, cNL, â)

= arg min
b

Re

{
K∑

k=1

(
yH

k Ξ−1yk−2mH
k Ξ−1yk+mH

k Ξ−1mk

)
}

, (C.9a)

where yk = yNL
k in (C.1) is the observed sequence at the k-th receiver antenna

element, mk is as in (C.2), and Ξ−1 defined in (C.4) is the inverse of Ξ, the covariance

matrix of yk scaled by 1/No. Using (C.6), (C.7), and (C.8) in App. C.1, (C.9a) can
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be expressed as

b̂ML(Y , c[0]) = arg max
b

{
A2γb

L
(
γp + 1

)

·
NL−2∑
n=0

NL−1∑

l=n+1

F n(c)F l(c) sgn

(
b
[⌊n

L

⌋]
b

[⌊
l

L

⌋]) K∑

k=1

Re{y∗k[n]yk[l]}

+
A√
L

NL−1∑
n=0

F n(c)b
[⌊n

L

⌋] K∑

k=1

Re {α̂∗kyk[n]}
}

. (C.9b)

The maximum likelihood unintended receiver of the transmitted bit sequence

b based on observation YK,NL with the knowledge of the channel estimates â but

without the knowledge of the initial condition c[0] is given by

b̂ML(y) = arg max
b

∫
pY|b,c,â(Y|b, c, â)pc[0](c) dc

= arg max
b

∫
exp

{
− 1

No

Re

{
K∑

k=1

(
yH

k Ξ−1yk − 2mH
k Ξ−1yk

+mH
k Ξ−1mk

)}}
pc[0](c) dc . (C.10a)

Taking the same step as in the above intended receiver case, using (C.6), (C.7), and
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(C.8), (C.10a) can be expressed as

b̂ML(y) = arg max
b

∫
exp

{
− 1

No|Ξ| Re

{
K∑

k=0

{
NL−1∑
n=0

|yk[n]|2

+
A2γb

L
(
γp + 1

)
(

NL−1∑
n=0

|yk[n]|2
(

NL−1∑

l=0

(
F l(c)

)2−(F n(c))2

)

− 2
NL−2∑
n=0

NL−1∑

l=n+1

F n(c)F l(c) sgn

(
b
[⌊n

L

⌋]
b

[⌊
l

L

⌋])
y∗k[n]yk[l]

)

− 2 α̂∗k
A√
L

NL−1∑
n=0

F n(c)b
[⌊n

L

⌋]
yk[n]

+ |α̂k|2 A2Eb

L

NL−1∑
n=0

(F n(c))2

}}}
pc[0](c) dc , (C.10b)

where |Ξ| in (C.5) is the determinant of Ξ.

C.3 Intended Receiver Pr(ε|cL) in Slow Flat Rayleigh

Fading

In the following we focus on the case of perfect channel estimation and derive the

intended receiver Pr(ε) conditioned on cL that is useful in obtaining the Pr(ε) per-

formance metrics in Section 4.3.1.

We first show that the output bit SNR γO

(
µ, cL

)
in (4.11) associated with a

specific cL is a chi-square-distributed random variable with 2K degrees of freedom.

Since Re{αk} and Im{αk} are both IID, zero-mean, real-valued Gaussian random

variables with variance 1/2, µ =
∑K

k=1 |αk|2 follows chi-square distribution with 2K

degrees of freedom;

pµ(µ) =
1

(K − 1)!
µK−1 exp {−µ} ,
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and, hence, the PDF of γO conditioned on cL is given by

pγ
O|cL

(γ) =
1

(K−1)!
(
γb|cL (cL)

)K
γK−1 exp

{
− γ

γb|cL (cL)

}
, (C.11)

where

γb|cL

(
cL

) 4
= E

[
γb|cL

]
= A2 γb E

(
cL

)
. (C.12)

The bit error probability conditioned on cL can be obtained via methods in

[38], using the following alternative definition of Q (ν) in (3.5):

Q (ν) =

∫ π/2

0

exp
{
− ν

sin2 θ

}
dθ . (C.13)

Exploiting (C.13), we have

Pr(ε|cL) =

∫ ∞

0

Q (
√

γ) pγ
O|cL

(γ) dγ

=
1

π

∫ π/2

0

∫ ∞

0

exp
{
− γ

sin2 θ

}
pγ

O|cL
(γ) dγdθ (C.14a)

=
1

π

∫ π/2

0

(
1− γb|cL

(
cL

)

γb|cL (cL) + sin2 θ

)K

dθ (C.14b)

where (C.14a) is due to (C.13) and the fact that the integrand is Lebesgue inte-

grable, and (C.14b) is obtained by noting that the inner integral in (C.14a) is the

Laplace transform of pγ
O|cL

(γ). Expanding and integrating (C.14b) gives the desired

expression

Pr(ε|cL) =

[
1

2

(
1−

√
γb|cL (cL)

1 + γb|cL (cL)

)]K

·
K−1∑

k=0

(
K−1+k

k

)[
1

2

(
1+

√
γb|cL (cL)

1 + γb|cL (cL)

)]k

(C.14c)
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that is utilized in obtaining (4.14), (4.16), (4.17), (4.18), and (4.20).

C.4 Maximum Likelihood Reception in Fast Flat

Fading

In this appendix we develop the optimum intended and unintended receiver in slow

flat Rayleigh fading with the knowledge of channel estimates α̂k.

We first characterize the joint conditional PDF of observables in fast flat fad-

ing. Given

Â 4
= {α̂k[n]; k = 1, 2, · · · , K and n = 0, 1, · · · , NL− 1}

and YK,NL in (4.6), the joint PDF of Y conditioned on b in (3.11), cNL, and Â is

given by

pY|b,cNL,Â(Y|b, cNL, Â) =
1

(2π)
NLK

2

∣∣No

2
Ξ
∣∣K

2

exp




−

K∑

k=1

NL−1∑
n=0

∣∣∣yk[n]− A√
L
α̂k[n]c[n]b

[⌊
n
L

⌋]∣∣∣
2

No

(
A2γb

L(γp+1)
c2[n] + 1

)





,

where the scaled covariance matrix Ξ is, in contrast to its counterpart (C.3) in slow

fading, a diagonal matrix.

The maximum likelihood intended and unintended receivers are readily derived

from the conditional PDF of Y above. First, the ML detector of the transmitted bit
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b[0] given Y , c[0], and Â is

b̂ML(Y , c[0]) = arg max
b

pY|b,cL,Â(Y|b, cL, Â)

= arg min
b

K∑

k=1

L−1∑
n=0

|yk[n]|2−2 A√
L

Re{α̂∗k[n]yk[n]}c[n]b+ A2Eb

L
|α̂k[n]|2 c2[n]

A2γb

L(γp+1)
c2[n] + 1

= arg max
b

L−1∑
n=0

c[n]
∑K

k=1 Re {α̂∗k[n]y[n]}
A2γb

L(γp+1)
c2[n] + 1

b

= sgn




L−1∑
n=0

c[n] Re {y[n]}
A2γb

L(γp+1)
c2[n] + 1


 , (C.15)

where

y[n] =
K∑

k=1

α̂∗k[n] yk[n]

is the output of the MRC. Next, the ML detector of the transmitted bit sequence b

based on observation Y with the knowledge of the channel estimates Â but without

the knowledge of the initial condition c[0] is given by

b̂ML(Y) = arg max
b

∫
pY|b,cNL,Â(Y|b, cNL, Â)pc[0](c) dc

= arg max
b

∫
exp



−

1

No

K∑

k=1

NL−1∑
n=0


|yk[n]|2−2 A√

L
Re {α̂∗k[n]yk[n]}F n(c)b

[⌊
n
L

⌋]
A2γb

L(γp+1)
(F n(c))2 + 1

+
A2Eb

L
|α̂k[n]|2 (F n(c))2

A2γb

L(γp+1)
(F n(c))2 + 1






 pc[0](c) dc . (C.16)
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