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Campylobacter jejuni, a major enteric pathogen and a natural resident in the poultry 

gut, causes gastrointestinal illness followed by severe post-infection complications, 

including Guillain-Barré syndrome, reactive arthritis, myocarditis, and ulcerative 

colitis in humans. Risk assessment studies have projected a 30-fold reduction in human 

campylobacteriosis cases with only a 100-fold reduction in the number of C. jejuni 

colonizing the poultry gut. Current commercial poultry production practices involve 

use of antibiotic growth promoters (AGP); modulation of gut microbiota with AGPs 

for food safety and enhanced performance in poultry can be justified until acquisition 

of antibiotic resistance in zoonoses through inter-bacterial transfer of antibiotic 

resistance genes (ARGs) in a complex microbial community is considered. As an 



  

alternative, natural phenolics extracted from by-products of berry juice industry, with 

antimicrobial, anti-inflammatory, anticarcinogenic, antioxidant and vasodilatory 

activities, demonstrate promising prospects. In this study, we adopted mass-

spectrometry, microbiological, phylogenetic, and metagenomic approaches to evaluate 

bioactive phenolic extracts (BPE) from blueberry (Vaccinium corymbosum) and 

blackberry (Rubus fruticosus) pomaces as AGP alternative. We detected that major 

phenolics in BPE included, but were not limited to, apigenin, catechol, chlorogenic 

acid, cinnamic acid, coumarin, ellagic acid, eugenols, flavan, gallic acid, gingerol, 

glucosides, glucuronides, myricetin, phenols, quercetin, quinones, rhamnosides, 

stilbenol, tannins, triamcinolone, and xanthine. BPE reduced C. jejuni growth and 

motility in vitro, resulting in lower adherence and invasiveness to chicken fibroblast 

cells. Anti-inflammatory effects of BPE significantly reduced the expression of pro-

inflammatory cytokine genes in chick macrophage cell line ex vivo. Furthermore, BPE 

reduced the colonization of C. jejuni in broiler cecum by 1 to 5 logs while increasing 

broiler weight by 6% compared to 9.5% with commercial AGPs. Metagenomic analysis 

of broiler gut indicated that BPE caused an AGP-like pattern in bacterial communities 

with a comparative increase of Firmicutes and a concomitant reduction of Bacteroidetes 

in broiler ceca. AGP supplementation clearly caused phage induction and a richer 

resistome profile in the cecal microbiome compared to BPE. Functional 

characterization of cecal microbiomes revealed a significant variation in the abundance 

of genes involved in energy and carbohydrate metabolism. Our findings established a 

baseline upon which mechanisms of plant based antimicrobial performance-enhancers 

in regulation of animal growth can be investigated. 
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Chapter 1: Literature Review 

Campylobacteriosis. Campylobacter is one of the major enteric pathogens and is the causative 

agent of major foodborne bacterial illnesses in the US. Campylobacteriosis, an infectious disease 

of the gastrointestinal tract, is caused by this pathogen. Diarrhea with presence of mucus and blood 

in stool, abdominal cramp, fever, nausea, vomiting and loss of appetite are the major identifying 

symptoms of the infection with Campylobacter. Campylobacter is responsible for 845,025 

infections, 8,463 hospitalizations and 76 deaths in the US annually (Scharff, 2012). According to 

the World Health Organization, approximately 5%-14% of all diarrhoea worldwide is thought to 

be caused by Campylobacter. In 2012, Foodborne Diseases Active Surveillance Network 

(FoodNet) identified 14.3 Campylobacteriosis cases for every 100,000 inhabitants of the twelve 

states of the US and this rate was 14% higher than the rates found in 2006-2008. This is regarded 

as the highest rate of Campylobacter infections in the century. More importantly, according to the 

Center for Disease Control and Prevention (CDC), for every laboratory confirmed 

Campylobacteriosis case, 30 more cases go unrecorded and/or unreported in the US. On an 

average, each laboratory confirmed Campylobacteriosis case result in an expanse of 1,846 US 

Dollars, which make up a total of more than 1.5 billion US Dollars average annual cost in the US 

(Scharff, 2012). As a result, Campylobacter is considered a serious threat to public health as well 

as national and global economy. 

 

Classification and ecology of Campylobacter. Campylobacter, a microaerophilic, spiral-shaped, 

Gram-negative bacterium, is a major cause of bacterial 

gastroenteritis worldwide. Campylobacter genus includes 

17 species and C. jejuni and C. coli are the most common 

isolates and involved in human gastrointestinal infection. 

Campylobacter generally reside in the intestinal mucosa of 

worm blooded animals. Once they are spilled or excreted 

from the gut of the host, Campylobacter encounter various 

hostile environmental factors, such as abnormalities in 

osmolarity, high concentration of atmospheric oxygen, high/low temperature, and insufficient 

nutrition in the environment. Survival in such hostile situation necessitates infection into another 

Kingdom: Bacteria 

Phylum: Proteobacteria 

Class: Epsilonproteobacteria 

Order: Campylobacterales 

Family: Campylobacteraceae 

Genus: Campylobacter 
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host or adoption of stress-response mechanisms. One of the stress response in Campylobacter is 

conversion into Viable but Non-Culturable (VBNC) state where bacterial cells become coccoid 

instead of spiral shaped. Campylobacter can also develop mechanisms for survival in unfavorable 

environment by expressing SoxRS and OxyR proteins against oxidative stress, BetAB, GbsAB, 

OtsAB and ProP proteins as osmoprotectants or cold shock protein CspA (Murphy et al. 2006). 

Optimum growth temperature for Campylobacter is around 42ºC, as a result poultry can 

serve as a major host of this pathogen due to its relevant body temperature. Elevated temperature 

help Campylobacter for proper gene expression, regulation of energy/nutrient metabolism and 

further proliferation. As a result, transmission from Campylobacter colonized chicks to humans is 

an important possible risk factor and possibility of which often increases as the number of 

interaction between them increases. Broiler flocks can be colonized by Campylobacter which 

depends on the age of the birds. The shedding of this pathogen starts about 2-3 weeks after hatch 

and over time virtually all the birds become contaminated. It has been found that the spread of the 

infection from a single bird to a flock size of 30,000 birds can happen within 3 days. Once 

colonized, bacterial load can reach upto 107 CFU per g of cecum content (Stern et al., 1995). 

Campylobacter can colonize the whole gut but the colonization of this bacteria is mostly favorable 

in cecum and colon of poultry though they are also found in the crop and the lower intestine. 

Intermittent colonization of duodenum, jejunum, ileum, spleen and liver has also been reported.  

Genotypic similarity has been found among Campylobacter isolates from human and 

poultry where majority of the birds were found to be colonized with Campylobacter (Nadeau et 

al., 2002). Others report that the colonization of Campylobacter is host-specific which limit the 

occurrence of common serotype among humans, poultry or other animals. There are several factors 

that are important in transmission of Campylobacter from bird to bird, the most important may be 

physical proximity. However, in some cases, flocks residing at close proximity was also found free 

from Campylobacter contamination which indicated the involvement of factors other than physical 

proximity in the transmission of Campylobacter from bird to bird. Berndtson et al., (1996) reported 

that Campylobacter was not able to transmit from one pen to another if the pens were divided with 

a physical barrier, which raise the question on the possibility of Campylobacter transmission 

through air. The capability of Campylobacter to enter the eggshell under certain conditions has 

been reported which support the vertical transmission of this pathogen, but there are still valid 

debates on the vertical transmission. Pests, wild birds and animals are often contributed as 
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reservoir or vector for Campylobacter transmission to Campylobacter-free flocks. After 

establishment of initial colonization, even with a small number of viable or VBNC Campylobacter 

cells in an individual bird, horizontal transmission causes the entire flock to be infected with this 

pathogen at a very short period of time. Initial colonization of specific subtype of Campylobacter 

differ from the predominant subtypes prevalent at the time of slaughter which indicates further 

transmission of new subtypes from the environment on the later stage of poultry lifecycle (Bull et 

al., 2006). The reason behind the migration from one dominant subtype or species to another is 

still unknown, but may result from seasonal variations, environmental alterations or later subtype 

being genetically more favorable to replace the older subtype. 

Campylobacter can also reside in the intestinal tract of production animals, like cattle, pig, 

sheep and goats. Like poultry, C. jejuni is the major species recovered in the cattle (Bae et al., 

2005; Harvey et al., 2005; Inglis et al., 2004) although it has been reported that the prevalence of 

C. coli was nearly as high as C. jejuni (20% C. coli, 23.8% C. jejuni) in operations that rear calves 

(Bae et al., 2005). The presence of Campylobacter in cattle rumen is not supported by many 

investigators, who suggest their presence is more likely due to recent ingestion rather that active 

infection with the bacteria. Other organs of the cattle, such as, gallbladder, bile and mucosal tissue 

have been reported to harbor Campylobacter. Unlike poultry, C. coli is more prevalent in swine 

and in some studies, C. coli was isolated in 99% cases. Jensen et al., (2013) found severe 

fluctuations in the number of C. jejuni or C. coli colonized in the intestine of swine though C. coli 

was always more prevalent than C. jejuni. Infection of various hosts with various species implies 

the requirement for certain condition for the survivability of specific species of Campylobacter. 

The use of synthetic antibiotics also alter the composition of Campylobacter species. Swine grown 

without antibiotic was shown to contain 50% more C. coli compared to the farms where antibiotic 

were not used. C. jejuni was found to be more resistant to environmental stresses such as 

chlorinated water treatment or chilling. Thereby these inhibiting stresses might reduce the level of 

C. coli than C. jejuni. 

Wild birds and animals can also be colonized with Campylobacter at a catastrophic level. 

Campylobacter serotypes from the wildlife have been shown to be similar to the human clinical 

isolates. As a consequence, wild birds, pests, flies, and other small wildlife animals have been 

considered as possible vectors for Campylobacter transmission to farm animals (Hald et al., 2004; 

Meerburg et al., 2006). Although the survivability of Campylobacter on fresh produce is not well 
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documented, several outbreaks of Campylobacteriosis associated with raw vegetables indicate the 

survival ability and transmission of Campylobacter through produce (Harris et al. 2003; Jacobs-

Rietsma 2000; Mandrell and Brandl 2004). However, the pathogen showed susceptibility to air-

drying on abiotic surfaces (Kusumaningrum et al., 2003), UVB exposure (Obiri-Danso et al., 

2001), hydrostatic pressure (Solomon and Hoover, 2004), and acidic pH (Waterman and Small 

1998). It was found that Campylobacter could not survive or converted to VBNC state in absence 

of sufficient water activity on produce, hence contamination of produces with animal feces might 

be the reason of Campylobacter on produce surface. Campylobacter was also isolated from both 

free flowing environmental streams as well as stagnant water (Hörman et al., 2004), so water may 

also be linked to the transmission of Campylobacter in wild and domesticated animals.  

 

Campylobacter in food and environment. Products including raw and undercooked poultry meat, 

unpasteurized milk and some other food products were found to harbor Campylobacter. Due to 

cross contamination during evisceration process, Campylobacter primarily transmits to the skin of 

infected birds from contaminated equipment, gut and cecum content at the poultry processing 

plants (Berrang et al., 2001). Campylobacter spp. occupies a liquid film on the carcass and are 

entrapped in the channels and crevices of skin (Chantarapanont et al., 2003) which provides a 

favorable microenvironment for survival and growth. This suitable microenvironment foster the 

growth and survival of Campylobacter (Chantarapanont et al., 2003) and Campylobacter spp. are 

capable to persist in the carcass even under freezing temperature or refrigerated storage condition. 

Contamination in muscle tissue has also been reported during storage in retail shops. It was found 

that almost half of all packaged chicken legs were contaminated on the skin alone, less than 1% of 

samples were positive within the muscle alone in retailers (Scherer et al., 2006). The prevalence 

of Campylobacter in meat samples were 87.5%, 71.43% and 33.33% in farmers markets, organic 

and retail supermarkets in Maryland and the DC metropolitan area, respectively (Salaheen et al., 

unpublished data). Scheinberg et al. (2013) reported that 90%, 28% and 52% of chicken meat 

samples collected from farmers market, organic and non-organic sources, respectively, were 

positive for Campylobacter in Pennsylvania. The prevalence of Campylobacter in the poultry 

meats from organic and conventional retail supermarkets ranges from 43% to 89% in the US 

(Smith et al. 1999; Zhao et al. 2001; Cui et al. 2005; Price et al. 2005; Luangtongkum et al. 2006; 

Price et al. 2007; Han et al. 2009). Cui et al. (2005) reported 76% and 74% contamination rate in 
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organic and conventional retail meats, respectively in Maryland. At similar period, Price et al. 

(2007) reported 67 to 97% contamination rate in Maryland. So, it is evident that post-harvest 

poultry products are highly contaminated with Campylobacter. 

 

Infection, complications and post infection sequelae. The infection and virulence strategies 

exploited by Campylobacter is still far from being elucidated. Genomics, proteomics, and 

metabolomics tactics show high inter- and intra-strain variation in Campylobacter. This diverse 

nature facilitates adaptive mechanism by which Campylobacter survive in various environmental 

conditions and interacts with the mucus layer of the gut. Studies suggest that Campylobacter starts 

the infection by actively penetrating the intestinal mucosa layer followed by discharging toxin 

(cytolethal distending toxin, cdt A, B and C) or proteins (Campylobacter invasion antihgen, cia) 

via flagellar apparatus which serve as Type III secretion system in this bacteria. Being modulated 

by the proteins, epithelial cells engulf Campylobacter which disrupts the integrity of the epithelial 

lining. Pro-inflammatory cytokines, chemokines and effector molecules of the innate immunity 

are highly induced when Campylobacter antigens are presented by the antigen presenting cells. 

Complications related to Campylobacter infections arise at this stage which include pancreatitis, 

cholecystitis, peritonitis, and substantial gastrointestinal hemorrhage. Transient bacteremia arises 

occasionally in immunocompetent patients. Though, serious systemic illness caused by 

Campylobacter can lead to sepsis and death, which is rarely reported. Rather than food poisoning 

and local Campylobacter enteritis, post infection sequelae of Campylobacteriosis, such as 

Guillain-Barre´ syndrome, rewactive arthritis, cardiac problem, and uncreative colitis are more 

important in terms of health hazard and economic burden. 

The most important post-Campylobacteriosis complication is the Guillain-Barre´ 

syndrome (GBS). GBS is considered as an acute demyelinating disease of the peripheral nervous 

system that result in < 1 patient per 1000 cases affecting 1-2 persons per 100,000 people annually 

in the US. It has been speculated that the risk of developing GBS is amplified after infection with 

certain Campylobacter serotypes, for example, in the US, Penner type O:19 is commonly linked 

to GBS development. 

Reactive arthritis associated with Campylobacter infection and prevalence varies 

extensively due to lack of diagnostic criteria, case ascertainment differences, exposure differences, 
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and genetics and ages of exposed patients (Pope et al., 2007). Five percent of Campylobacter-

associated reactive arthritis were found to be chronic or revert with musculoskeletal symptoms. 

Incidences of C. jejuni-associated myocarditis and myopericarditis have been reported, all 

of which involved immunocompetent hosts (Uzoigwe, 2005). Typical clinical symptoms involved 

transitory acute pain in chest, with concomitant electrocardiogram variations and increased 

secretion of cardiac enzymes, in association with antecedent or coincident enteritis.  

Ulcerative colitis (UC) is a chronic inflammatory condition of the large intestine of human 

beings. It is characterized by the presence of bloody diarrhea and severe abdominal cramp and 

abnormal immune functions, defect in intestinal epithelial cell barrier function, and gut microbiota 

(Campieri and Gionchetti 2001, Sasaki et al 2012). UC is also considered to be a pre-condition in 

colorectal cancer (CC) (Rhodes and Campbell 2002). Campylobacter spp., and Entero 

Haemorrhagic E. coli (EHEC) were predominant in tissue sample collected from patients with UC, 

but not in tissues from healthy individuals (Gradel et al 2009; Ternhag et al 2008).   

 

Sub-therapeutic use of antibiotics in farm animal production and its consequences. Though 

antibiotics have served significantly to make foods safer, they present certain limitations which 

have led many people to rethink on their application in animal feed. There are many direct negative 

impacts as well as indirect effects of these antimicrobials towards life in general. Since the mid-

20th century, when the application of antibiotics against bacterial and fungal diseases was first 

introduced, it has been considered as the single most important medical event in human history. It 

has reduced morbidity and mortality in human and animal to a dramatic level. Since then, the use 

of antibiotics accounts for several million tons worldwide both for medication and in farm animal 

production (Andersson and Hughes, 2010). The intensive use of antibiotics caused a huge 

influence in the frequency of resistance among bacterial pathogens including Campylobacter. 

Enhanced rate of microbial resistance could be reduced or minimized if we could use the 

antibiotics effectively and properly in treatment of human diseases and farm animals. As the 

antibiotic resistant microorganisms are more virulent and aggressive in respect to disease 

occurrence, this may increase the risk of complicated situations and fatality, escalate the economic 

burden on public health and may eventually introduce a dreadful post-antibiotic era.  

Since the 1950s, large amounts of antibiotics have been used in agricultural animal 

production in the US as growth promoters because of their effect on animal growth acceleration 
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and ability to enhance feed conversion efficiency. Flavophospholipol and virginiamycin are 

generally used in the US for poultry production (Peter and John, 2004). Β-lactam antibiotics (e.g., 

penicillin, lincosamide), macrolids (e.g., erythromycin, tetracycline) are used mainly in pigs (Peter 

H. and John H., 2004). Some other antimicrobials, such as arsenical compounds, bacitracin, 

flavophospholipol, pleuromutilins, quinoxalines and virginiamycin, are also used in pig 

production. In the cattle industry flavophospholipol, monensin, and virginiamycin are generally 

used as growth promoter because these compounds play important roles in muscle formation and 

increase milk productivity (Peter H. and John H., 2004). Some antibiotic candidates approved by 

FDA for pre-harvest use in cattle, swine and poultry are listed in Table 1.1. 

Pre-harvest use of antibiotic is common in farm animal production but instead of specific 

targeted pathogens, antibiotics are used for diverse groups of pathogens. As a result, broad-

spectrum antibiotics are used in pre-harvest level. Recent studies suggest that some antibiotic 

treatment can disrupt the dynamics of gut flora and therefore impair animal health and 

productivity, and even food safety (Crosswell et al., 2009). Aarestrup et al., (1998) carried out an 

intensive research on the manifestation of acquired resistance to antimicrobials which were used 

for animal growth promotion among bacteria that are generally isolated from poultry, cattle and 

swine in Denmark. They used three groups of bacteria, such as, indicator bacteria (E. coli, 

Enterococcus faecalis, Enterococcus faecium), 2) zoonotic bacteria (Campylobacter, Salmonella, 

Yersinia enterocolitica), and 3) animal pathogens (E. coli, Staphylococcus aureus, coagulase-

negative staphylococci (CNS), Staphylococcus hyicus, Actinobacillus pleuropneumoniae). 

Antimicrobials that were generally used as growth promoters in Denmark and some structurally 

related therapeutic agents were included in the study. Those included: avilamycin, avoparcin 

(vancomycin), bacitracin, carbadox, flavomycin, monensin, olaquindox, salinomycin, spiramycin 

(erythromycin, lincomycin), tylosin, and virginiamycin (pristinamycin). The research group 

reported acquired resistance to all of the tested antibiotics. A more frequent incidence of resistance 

were found against avilamycin, avoparcin, bacitracin, flavomycin, spiramycin, tylosin and 

virginiamycin, whereas resistance to carbadox, monensin, olaquindox and salinomycin was less 

frequent. For these consequences, the European Union banned the use of antibiotics for farm 

animal production as growth promoters (avoparcin in 1997 and bacitracin, spiramycin, tylosin and 

virginiamycin in 1999). In the US, certain use of cephalosporin in production animals were 

restricted by the U.S. Food and Drug Administration (FDA). FDA is considering to follow the 
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footstep of the EU to ban non-therapeutic use of antibiotics in food animal production. As a result, 

alternative growth promoters and antimicrobial agents are required more than ever. 

 

Alternative approaches for prophylaxis and animal growth promotion. To combat the current 

situation regarding bacterial contamination, antibiotic resistance and animal growth promotion, 

natural phenolic compounds can play important roles to reduce pre-harvest colonization of 

zoonotic bacterial pathogen, specifically Campylobacter from animal (poultry) gut. Polyphenols, 

a widely available groups of compounds naturally occurring in plants, are an integral part of the 

human and animal diet. Chemically, polyphenols are characterized by hydroxylated phenyl 

moieties. In fruits and vegetables, they are typically occurred in their glycosylated forms, though 

alterations such as polymerization or methylation are frequently observed. Polyphenols have 

gained interest in the last decades for having possible health-promoting effects such as 

antimicrobial,  anti-inflammatory, anti-estrogenic, cardio-protective, chemo-protective and neuro-

protective properties (Steinberg et al., 2003; Selma et al., 2009) as well as antioxidant and pro-

oxidant activities both in vitro and in animal models (Halliwell et al., 2007).  

Polyphenols are prevalent in many fruits and vegetables. For example, they are the main 

components of pomegranate. Clinical research reported that it takes up to 56 hours for the 

phenolics, mostly punicalagins, to leave the colon, because they are absorbed very slow and not 

completely (Seeram et al., 2006). During this time, it is proved that pomegranate tannins inhibit a 

large number of pathogens in that section of the gut without affecting most beneficial bacteria 

(Bialonska et al., 2009). Pomegranate constituents seem to disturb both Gram-positive and Gram-

negative intestinal pathogenic bacteria. According to previously published reports (Bialonska et 

al., 2009), ellagic acid inhibited the growth Clostridium clostridioforme, C. perfringens, and C. 

ramosum. Ellagic acid together with punicalagins was effective against the growth of Bacteroids 

fragilis and S. aureus. The effect of pomegranate polyphenols on bifidobacteria was species-

specific. The number of Bifidobacterium. breve and B. infantis increases in the presence of the 

pomegranate ellagitannins which indicated that pomegranate products may help regulate 

pathogens without adverse effects on beneficial bacteria (Howell et al., 2013).  

In red raspberries the main phenolic compounds are ellagitannins, followed by flavonoid 

and anthocyanins. Antimicrobial activity of tannins against microorganisms is well documented. 

Phenolic compounds, including ellagitannins, anthocyanin, and flavonols (Nohynek et al., 2006) 
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showed similar selective bactericidal effects on both Gram-positive and Gram-negative bacteria. 

Raspberries are effective inhibitors of Staphylococcus and Salmonella Typhimurium (Puupponen-

Pimia et al., 2005). Other types of bacteria being affected by the phenolic compounds in raspberries 

include E. coli (Nohynek et al., 2006) and Salmonella enterica (Puupponen-Pimia et al. 2001). The 

growth of Lactobacillus was not inhibited by any of the raspberry extracts at low concentrations. 

However, in high concentrations, the growth of the probiotic was clearly disrupted (Puupponen-

Pimia et al. 2005). 

The composition of the cranberry polyphenols has been widely documented as a 

combination of flavonoids and phenolic acids like catechin, myricetin, and benzoic acid, the latter 

of which is the most prominent one in a freshly squeezed sample of juice (Chen et al., 2001). 

Cranberries are also rich in a phenolic compound called proanthocyanidins. Proanthocyanidins 

have been cataloged as the ones responsible for the cranberry’s great ability to disrupt bacterial 

adherence to cultured human cells (O’May and Tufenkji, 2011).  Howell et al., (2005), concluded 

that the proanthocyanidins in cranberry juice can prevent the adhesion of E. coli to the urinary tract 

thus preventing urinary tract infections. Furthermore, biofilm formation in uroepithelial cells can 

also be reduced by ingesting cranberry juice (Reid et al., 2001). The antimicrobial effects of 

cranberry juice have been recorded several times. Historically, women have been told to drink the 

juice in order to prevent and even cure urinary tract infections. In the early 1990s, researchers 

found that the monosaccharide fructose present in cranberry and blueberry juices competitively 

inhibited the adsorption of pathogenic E. coli to urinary tract epithelial cells, acting as an analogue 

for mannose (Zafriri et al, 1989). Different research studies have proven the antimicrobial 

properties of cranberries against both Gram-positive and Gram-negative bacteria. Cranberry 

extract has been demonstrated being effective towards Bacillus cereus, Clostridium perfringens, 

and Staphylococcus epidermis; lyophilized cranberry had a bacterocidic impact on Salmonella 

Typhymurium, Staphylococcus aureus and Listeria monocytogenes (Puupponen-Pimia et al. 

2005). Also, coumaric acid, another phenolic acid present in cranberry juice, has confirmed 

efficacy on Lactobacillus plantarum (Nualkaekul and Charalampopoulos, 2011). In a separate 

study, proanthocyanidins were proved to be effective in blocking part of the motile system of 

Pseudomonas aeruginosa (O’May and Tufenkji, 2011). This study showed that the growth of P. 

aeruginosa was not inhibited, however, the characteristic migrating branching pattern of the 
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bacteria was disrupted, which indicated a disruption in swarming motility in the presence of 

cranberry phenolics. 

Phytochemical additives from plant sources are potent dietary supplement for animals 

including poultry. Some of these compounds stimulate appetite (e.g. menthol), provide antioxidant 

protection (e.g. anthocyanin, cinnamaldehyde) or reduce harmful microbial growth. Plant essential 

oils induce endogenous digestive enzymes in the intestinal tract. Oregano essential oils were 

shown to act as growth promoter in poultry though the exact mechanism could not be explained. 

However, carvacrol from oregano extract shows antimicrobial effect, its essential oils can 

modulate the gut microflora and reduce bacterial load by suppressing the proliferation of bacteria. 

Phenolic extracts from plant origin stimulate gastric juice secretion which improves digestive 

power in animals. Some polyphenols are also purported to function by raising blood circulation 

rate, which leads to faster detoxification in animal body that were generated from metabolic 

pathways. Flavonoids are important plant polyphenols which maintain the shape of small blood 

vessels and connective tissue. 

 

Natural bioactive extracts from berry pomace. Bioactive phytochemicals from berries, especially 

blackberry (Rubus fruticosus) and blueberry (Vaccinium corymbosum) pomace as feed or water 

supplement to reduce pre-harvest level of Campylobacter colonization in poultry, might be a 

feasible alternative because extraction of bioactive phytochemicals from fruit juice is too 

expensive for large scale application in the production animals specifically poultry. Pomaces, the 

by-products of fruit juice industry, are the solid or semisolid remains of fruits after separating out 

the juice or oily portion. It consists of skins, stem, seeds and small amount of pulp of the fruit. 

Berry juice and fruit processing industries produce a significant amount of pomaces. Pomace 

generally accounts for as much as 20-30% of the weight of the whole fruit. According to National 

Agricultural Statistics Service (2009), a significant amount of pomaces are produced in the US 

annually which result in disposal problem as they cannot be used as animal feed for having low 

protein content and acidic pH. As a result, an alternate use of these byproducts will be highly 

appreciated. Cultivation of berries is season dependent but they are stored by the juice factories to 

have a year round supply of fruits confirming a year round supply of pomaces. So these byproducts 

can be used to extract polyphenolic compounds, which have been demonstrated to have numerous 

health benefits including anti-carcinogenic, anti-atherosclerotic, anti-adhesive, anti-inflammatory, 
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anti-allergic, anti-hypertensive, anti-arthritic and anti-microbial properties (Boivin et al., 2007).  

They also inhibit lipid peroxidation, act as free radical scavengers and metal ion chelators. 

Moreover, these phenolics are concentrated in the outer layers of fruit (e.g. skin) as their 

biosynthesis is dependent on UV-light (sunlight). So, cheap extraction of the phenolics from berry 

pomace would provide a solution to both the fruit industry and the poultry industry.  

 

Composition of berry pomace. The major bioactive components present in pomaces (a list of 

phytochemicals present in pomaces and essential oils are summarized in Table 1.2) are 

polyphenols, phytosterols, tocopherols (mostly as α- tocopherol), fibre, protein and biotic 

(Puupponen- Pimiä et al., 2001; Puupponen- Pimiä et al., 2005; Puupponen- Pimiä et al., 2008). 

There are different classes of polyphenols and each class has unique characteristics which separate 

one from other. Phenolic compounds are one of the most diverse secondary metabolites found 

berry pomace. Major components of the polyphenols are anthocyanins (cyanidine-3-galactoside 

and cyanidine-3-glucoside), procyanidins and hydroxycinnamic (α-Cyano-4-hydroxycinnamic 

acid). Procyanidins, present in the pomace, is a class of polymeric polyphenolics and it contains 

catechin or epicatechin at polymerized form (Djilas et al., 2009). Cyanidin-3-glucoside and 

cyanidin-3-galactoside are particular types of anthocyanin pigments found in many berries 

including blackberry and blueberry (Sasaki et al., 2007). The highest concentrations of cyanidin 

are found in the skin and seed of these fruits because their biosynthesis are stimulated by sunlight 

(ultraviolet light), so higher concentrations are found in the most outer layer (skin) of the fruit. 

Different linkages between catechin and epicatechin units are found in procyanidins, the most 

common being β-type linkages. Oligomeric procyanidins demonstrated greater antimicrobial 

activity even at lower concentrations than catechin and epicatechin though the degree of 

polymerization on antimicrobial activity still remains unclear. 

 

Antibacterial properties of berry phenolics. Bioactive compounds extracted from pomaces 

(especially berry fruits) have been shown to inhibit different foodborne pathogens as well as food-

spoiling microorganisms. According to Puupponen-Pimiä et al. (2001), berry extracts inhibited the 

growth of Salmonella, Escherichia, Staphylococcus but not Lactobacillus and Listeria species. 

Cavanagh et al. (2003) showed inhibitory effect of several berry extracts on the growth of wide 

range of Gram-positive and Gram-negative human pathogenic bacteria. Biswas et al. (2012) found 
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blueberry extract has negative impact on the growth of Salmonella, Escherichia, Campylobacter 

and Listeria whereas stimulates the growth of probiotic Lactobacillus. In other study, human 

intestinal bacteria such as Bacteroids fragilis, Clostridium perfringens, E. coli and Salmonella 

Typhimurium were found to be inhibited by tannins while Bifidobacterium infantis and 

Lactobacillus acidophilus were unaffected by this group of phenolics (Chung et al., 1998). 

Inhibitory effect of phenolic compounds such as flavonoids, against Multi-Drug Resistant (MDR) 

bacteria and methicillin-resistant Staphylococcus aureus has been documented (Belofsky et al., 

2004). Roccaro et al., (2004) found that catechin can increase tetracyclin activity against 

tetracyclin-resistant staphylococcal isolates. Pomace essential oils also have been documented to 

have effect against various microorganisms. Muthiyan et al. (2012) found bioactive essential oils 

can be used as anti-Staphylococcal agent. Essential oils and terpineol were also found to extend 

the shelf life of milk to more than 56 days when stored at 4˚C. According to Kim et al. (1995), 

carvacrol, citral and geraniol had strong activity against Salmonella Typhimurim and its rifampicin 

resistant mutant in vitro but nerolidol, limonene or β-ionone had no effect on similar kind of 

bacteria suggesting different compounds have different target microorganism as well as different 

mechanism of action. 

Several mechanism of action of berry pomace extracts have been proposed which include 

cytoplasmic membrane destabilization, permeabilisation of plasma membrane, extracellular 

microbial enzyme inactivation, direct effect on microbial metabolism, deprivation of substrates 

mandatory for microbial growth (Puupponen- Pimiä et al., 2004). These extracts may also play 

role in alteration of host epithelial cell-pathogenic bacteria interactions which is a prerequisite for 

colonization and infection of many pathogenic bacteria. Clifford et al. (2004) documented that 

dietary phenolics are poorly absorbed in the small intestine and 90-95% accumulate in colon which 

possess the capability to alter host cell-bacterial interactions. Cytoplasmic membrane, a 

semipermeable membrane in microbes is a phospholipid bilayer which contain embedded proteins 

(Millard, 2002) that regulate the movement of solutes and different metabolites in and out of the 

cell. Phenolics penetrate cytoplasmic membrane and interact with cellular proteins. Concentration 

dependent mechanism is also proposed from several researches. Cellular enzyme activity is 

affected at lower concentration of phenolics whereas higher concentration may cause protein 

denaturation. Walsh et al. (2003) reported membrane damage as a mode of action of phenolic 

essential oil components. They may interfere with electron transport, nutrient uptake, and nucleic 
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acid synthesis. Carvacrol acts on cytoplasmic membrane, acts as a proton exchanger and hampers 

the pH gradient across the cytoplasmic membrane, disrupt proton motive force and deplete 

intracellular ATP resulting in cellular death (Ultee et al., 2002). Hydroxycinnamic acids, due to 

having less polar side chain, can penetrate inside the cell very easily (Campos et al., 2003). Tannins 

inhibit oxidative phosphorylation by disrupting extracellular microbial enzymes or eliminating 

substrates for enzymatic reaction which affect microbial metabolism (Scalbert 1991). Tannins can 

also cause complexation of metal ions required for bacterial growth. The effect of phenolics on 

MDR bacteria is due to its ability to impair efflux pumps, which bacteria use to get rid of antibiotics 

and that cause an increase in the drug retention time inside bacterial cells. Yoda et al. (2004) 

concluded that green tea polyphenol, EGCG directly bind to cell wall components and causes 

inhibition whereas Zhao et al. (2001) showed EGCG and β-lactams attach to the same site which 

is peptidoglycan of bacterial cell wall and confer synergistic relationship to β-lactams. EGCG have 

also been shown to interfere with the transfer of conjugative R plasmid in E. coli which is 

responsible for the conjugative plasmid mediated antibiotic resistance in bacteria. Most of the 

acidic components of pomace extracts show similar mode of action, the pKa of most phenolic 

acids ranges between pH 3 and pH 5, due to the higher pH of cytoplasmic membrane compared to 

surrounding medium, these compounds dissociates and release proton which acidifies cytoplasm 

(Cotter and Hill 2003). Anionic portion of these acidic compounds which cannot escape 

accumulate within bacterial cell and impair metabolic function such as increase osmotic pressure 

which causes incompatibility to bacterial cell. There are other hypothesized modes of actions 

which need to be evaluated. 

 

Anti-inflammatory properties of berry phenolics on host and potential as alternative growth 

promoter in production animals. In vitro and in vivo studies in animal model have found 

polyphenolic compounds to alter the animal immunity and mainly serve by exerting anti-

inflammatory effect. Polyphenols can modify and/or alter various biochemical pathways related 

to signal transduction in eukaryotic cells which elicit their beneficial properties. These alterations 

include, modulation of pro-inflammatory cytokine gene expression such as interleukin-6, 

interleukin-8, cyclooxygenase, nitric oxide synthases, lipoxygenase, and several non-specific 

cytokines. These modulations are generally carried out by several alterations in mitogen-activated 

protein kinase signaling and nuclear factor-kappa B (Santangelo et al., 2007). Crouvezier et al. 
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(2001) reported that polyphenols, such as epicatechin gallate, epigallocatechin and 

epigallocatechin gallate decreased the production of pro-inflammatory cytokine interleukin-1β and 

enhanced the production of anti-inflammatory cytokine interleukin-10, but had no effect on the 

production of interleukin-6 or tumor necrosis factor. Deng et al., (2010) carried out a study on the 

immunomodulatory potential of polyphenolics in piglet model. Their study concluded that 

polyphenols stimulated the activation and proliferation of T lymphocytes. The ratio of 

CD4+/CD8+ cells was also raised, which indicated a recovering mechanism against oxidative 

stress mediated immune damages. The attenuation of pro-inflammatory cytokine interleukin-1 

caused by oxidative stress was observed, and the amount of serum interferon-γ was depleted by 

polyphenolic supplemented feed. However, the serum concentrations of interleukin-4, a prominent 

anti-inflammatory cytokine, were significantly enhanced suggesting an immune shift from Th1 to 

Th2. A more recent study showed that phenolic extracts reduced the morbidity and inflammation 

induced by Avian Pathogenic E. coli (APEC) (Zhong et al., 2014). APEC causes colibacillosis 

which results in inflammation in multiple organs of chickens, and results in serious economic loss 

to the poultry industry. Quantitative real-time polymerase chain reaction (qPCR) and enzyme-

linked immunosorbent assay (ELISA) results showed that the phenolic extracts reversed the 

induction of the Toll-like receptor (TLR) 2, 4, and 5, genes and down-regulated nuclear factor-

kappa B signal transduction pathway activation, and inhibited the production of proinflammatory 

cytokines.  

Anti-inflammatory properties can be attributed with growth promotion in animals, 

especially in poultry. From the last five decades, sub-therapeutic concentrations of antibiotics have 

been used to grow production animals for growth promotion. Several mechanisms have been 

proposed, none of which is beyond controversy. In earlier hypotheses, the growth promoting 

effects of antibiotic growth promoters (AGP) were linked with only their antimicrobial properties 

which seems unlikely because sub therapeutic concentrations of AGPs possess limited growth 

inhibitive effect on microbes, and AGPs are still in effect despite the wide-spread development of 

resistance among pathogens (Cox and Popken, 2010). Furthermore, down regulation of intestinal 

mucosal immune responses was observed in a rodent model after sub-therapeutic use of 

tetracycline (Costa et al., 2011). As a result, anti-inflammatory properties of AGPs are more linked 

to animal growth promotion. Production animals can grow to their complete hereditary potential 

in the absence of immunological challenges. Inflammation is associated with lower appetite, and 
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muscle catabolism and as a result Metabolic Inflammation (MI), i.e., local intestinal inflammation, 

is more important for production animals. Non-symptomatic infections and MI in production 

animals can be drastic which lead to reduced weight gain. Supplementation of anti-inflammatory 

compounds in feed may act as a remedy in such a situation and logically, polyphenol rich berry 

pomace extracts possess high potential to be an alternative to AGPs. 

 

Bioavailability of berry phenolics in host gut through gut microbial metabolism. The animal colon 

and gut serves as reservoir for an extremely compound microbial ecosystem, at concentrations of 

>103 microbes per gram of gut content, while the microbiome surpasses the human genome by 

100-fold, in terms of genetic diversity (Donohoe et al., 2011). The composition and diversity of 

gut microbiota diverges greatly from species to species, and even within species; so the 

composition of gut microflora is unique to an individual host and generally modulated by farming 

practices, diet, environmental conditions, healthy or diseased status, genotype, and so on 

(Turnbaugh  et al., 2008; Zoetendal et al., 2006).  

Depending on the degree of polymerization and the glycosylation pattern, a significant 

portion of dietary polyphenols can remain in the colon. These polyphenols are exposed to the 

colonic microbial community where microbial co-metabolism of polyphenols are carried out with 

a common pattern in which the tremendously varied collection of natural polyphenols are funneled 

to a relatively smaller group of metabolites. The microbial community of the gut possess various 

mechanisms to carry out O- and C-deglycosilation, amide and ester hydrolysis, and 

deglucuronidation of large flavonoids and also fermentation of the flavonoid structure. There are 

ample examples for the bioconversion of active nutritional composites into metabolites of higher 

bioavailability. For example, isoflavones from soy or hop prenyl-flavonoids are modulated by 

colonic microbial population for the pseudoestrogenic activity (Possemiers et al., 2006; Rowland 

et al, 1999). In vivo study on rat model with red wine powder detected microbial metabolites 

excretion through urine. The bioactive metabolites included hydroxybenzoic, hippuric, vanillic, 

phenylacetic, p-coumaric, phenylpropionic, caffeic, ferulic acids and catechins, though a majority 

of the above metabolites were absent in the wine powder that was used for feed supplementation 

in rats (Gonthier et al., 2003). Aura et al., (2005) showed that deglycosylation and breakdown of 

the anthocyanidin (a major plant phenolic) heterocycle were the major part of microbial 

degradation. They found that most of the anthocyanins were degraded just after 1 h of treatment 
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with 5% fecal inoculum. Later studies found that inoculums from human and animals 

deglycosylated and hydrolyzed anthocyanins into a wide array of metabolites including 4-

hydroxybenzoic acid, syringic acid, vanillic acid, protocatechuic acid, and phloroglucinol 

aldehyde, where initial anthocyanins were completely disappeared from the in vitro system 

(Keppler et al., 2005; Fleschhut et al., 2006). These phenolic acids were derived from the β ring 

of the respective anthocyanidins, while α rings were broken down to aldehyde derivatives (Morand 

et al., 2004). In addition to the deglycosylation by microbial enzymes, the microflora are capable 

of mild transformation such as dihydroxylation, demethylation, and catabolism of polyphenols into 

simpler derivatives (Cermak et al., 2006). Specialists suggest that these derivatives, rather than 

their original precursors, may be responsible for the beneficial effects of polyphenols, since these 

derivatives are more easily absorbed and resilient to additional metabolism. 

So far, a very limited number of bacterial species have been identified in the laboratory to 

be capable of metabolizing polyphenols. The majority of the bacteria belong to the Clostridia 

group, lactic acid bacteria especially Lactobacillus, Bifidobacterium and Enterococcus spp. The 

enzymes of Lactobacillus plantarum involved in polyphenol metabolism include benzyl alcohol 

dehydrogenase, reductase, decarboxylase, tanase, β-glucosidase, phenolic acid decarboxylase and 

esterase (Rodríguez et al. 2009). Probiotic fermentation of phenolic extracts with Lactobacillus 

helveticus was used to mobilize phenolics and improve biological functionality by maintaining a 

constant phytochemical profile and as a result α-glucosidase inhibitory activity and Helicobacter 

pylori inhibitory potentials were increased (Ankolekar, 2013). Glycosylated flavanone, hesperidin 

derived from microbial metabolism of polyohenols showed antibacterial activity against 

Aeromonas hydrophila; a study on murin model revealed that hesperidin inhibited bacterial 

colonization and significantly increased anti-LPS IgM levels and reduced anti-LPS and anti-ECP 

IgA levels (Abuelsaad et al., 2013). Hidalgo et al., (2012) reported growth stimulation in 

Bifidobacterium, Lactobacillus and Enterococcus spp in presence of anthocyanin while forming 

gallic, syringic and p-coumaric acids. These findings indicate that polyphenols and their bioactive 

metabolites exert a positive modulation of the colonic microbial population.  

 

Synergistic relationship between traditional antibiotics to natural phenolics and possibility of 

resistance development in Campylobacter against phenolic extracts. In vitro synergistic 

interaction of crude phenolic extracts from Acorus calamus (rhizome) Hemidesmus indicus, 
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Holarrhena antidysenterica, Plumbago zeylanica, Camellia sinensis, Lawsonia inermis, Punica 

granatum, Terminalia chebula and Terminalia belerica were detected with tetracycline, 

chloramphenicol, ciprofloxacin, cefuroxime and ceftidizime (Aqil et al., 2005; Aqil et al., 2006). 

Antibiotic-phenolics combination studies have demonstrated synergistic relationship between 

streptomycin and phenolics including ferulic acid, gallic acid, allylisothiocyanate chlorogenic 

acid, and 2-phenylethylisothiocyanate against the Gram-negative bacteria (Saavedra et al., 2010). 

Bakar et al., (2012) reported synergistic relationship between flavanone hesperidin aglycon 

extracted from citrus fruits with vancomycin and oxacillin to inhibit vancomycin-intermediate 

Staphylococcus aureus (VISA) and Helicobacter pylori. Liu et al., (2009) found that kaempferol 

glycosides isolated from Laurus nobilis, kaempferol-3-O-alpha-L-(2'',4''-di-E-p-coumaroyl)-

rhamnoside and kaempferol-3-O-alpha-L-(2''-E-p-coumaroyl-4''-Z-p-coumaroyl)-rhamnoside, 

greatly potentiated anti-Methicillin Resistant Staphylococcus aureus (MRSA) activity of 

fluoroquinolones. They also found that the synergism was more prominent with hydrophilic 

fluoroquinolones, for example, norfloxacin and ciprofloxacin, but not with hydrophobic 

quinolones. These findings suggest potential role of polyphenols in rescuing traditional antibiotics 

against which bacterial resistance already have been developed. 

However, here comes the burning question, “what if bacteria becomes resistant to natural 

phenolics.”  There are no reports, so far, on the resistance of bacterial pathogens including 

Campylobacter against natural phenolics. Crude or purified plant phenolic extracts and their 

microbial metabolites make up an enormous array of diversified bioactive compounds, which 

come in contact with bacterial pathogens. These compounds attack the pathogens with varied 

mechanistic approach from different directions. Moreover, plant polyphenols have been a part of 

human and animal diet from pre-historic era and so, pathogenic bacterial resistance would have 

been reported earlier if the phenomenon was supported by the Mother Nature. Yet, experiments 

need to be carried out to investigate the hypothesis.   
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Overall Hypothesis and Specific Aims 

Natural bioactive components extracted from blackberry and blueberry pomaces can 

persistently reduce the colonization of Campylobacter in poultry gut while promoting gut health 

and poultry productivity. 

To investigate the hypothesis, the following aims need to be fulfilled, 

Aim 1: Extraction, composite analysis, and roles of berry pomace extracts on the growth and 

pathogenicity of Campylobacter jejuni. 

Aim 2: Determine the effects of berry pomace extracts on poultry pathogens of commercial 

importance and probiotics in vitro and cultured host cells ex vivo. 

Aim 3: Role of berry pomace extracts on Campylobacter jejuni colonization in poultry gut using 

day-old chick model. 

Aim 4: Berry pomace extracts on poultry growth promotion through modulation of gut 

microbiome and long term consequences. 
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List of Figures and Tables 

Table 1.1. FDA-approved antibiotics for pre-harvest subtherapeutic use in cattle, swine and 

poultry. 

Antibiotics Cattle Swine Poultry 

Apramycin  +  

Arsanilic acid  + + 

Avilamycin   + 

Avoparcin   + 

Bacitracin zinc + + + 

Bambermycins + + + 

Carbadox  +  

Chlortetracycline + + + 

Laidlomycin +   

Lasalocid +   

Lincomycin  + + 

Monensin + +  

Oxytetracycline + + + 

Penicillin  + + 

Roxarsone  + + 

Spiramycin   + 

Tilmicosin  +  

Tylosin + + + 

Virginiamycin + + + 
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Table 1.2: Bioactive phytochemicals present in pomaces and their biological roles 

Compound Generalized chemical 

Structure 

 Targeted microorganism and 

mechanism of action 

Ref. 

Procyanidin 

 

Gram-positive and Gram-

negative bacteria 

Mayer 

et al., 

2008 

Anthocyanin 

 

Gram-positive bacteria and 

few Gram-negative bacteria 

Membrane damage and 

interaction with intracellular 

materials 

Cisows

ka et al., 

2011 

Α-Tocopherol 

 

Antioxidant, anti-

inflammatory 

Singh et 

al., 2004 

Phytosterol 

 

Staphylococcus, 

Streptococcus, E. coli, 

Pseudomonas, Klebsiella 

Sharma 

1992 

Cholinergenic 

acid 

 

Staphylococcus, 

Streptococcus, Bacillus, E. 

coli, Shigella, Salmonella 

Alteration of Plasma 

membrane permeability 

Lou et 

al., 2011 

Terpens 

(monoterpenes) 

 

Gram-positive and Gram-

negative bacteria 

Biomembrane damage 

Trombe

tta et al., 

2005 
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Chapter 2: Extraction, composite analysis, and roles of berry pomace 

extracts on the growth and pathogenicity of Campylobacter jejuni 

 

Introduction 

Campylobacter jejuni is one of the major enteric pathogens and is the source of much of the 

foodborne bacterial illnesses in the US. In 2012, Foodborne Diseases Active Surveillance Network 

(FoodNet) identified 14.3 Campylobacteriosis cases for every 100,000 inhabitants of the twelve 

states of USA and this rate was 14% higher than the rates found in 2006-2008. This high prevalence 

rate may be attributed to the increased consumption of white meat specifically chicken and turkey. 

In recent years, poultry has been recognized to be the major source of Campylobacteriosis in 

humans (Lin, 2009). Campylobacter colonizes the poultry gut as part of the normal flora. So far, 

the most widely used control measure against the colonization of Campylobacter in poultry gut is 

the use of antibiotics in feed and water, but resistant strains of C. jejuni to several antibiotics, 

including ciprofloxacin, nalidixic acid, erythromycin, tetracycline, and streptomycin, have been 

reported (Wieczorek, Szewczyk, and Osek, 2012). Consequently, the search for alternative natural 

and organic antimicrobials is now more essential than ever. Bioactive phytochemicals from 

berries, especially blackberry (Rubus fruticosus) and blueberry (Vaccinium corymbosum) pomace 

as feed or water supplement to reduce pre-harvest level of C. jejuni contamination in poultry, might 

be a feasible alternative.  

Recently, the antimicrobial activity of phenolic compounds present in berry fruits and their 

pomaces against Campylobacter species and other intestinal pathogens was demonstrated (Biswas 

et al., 2012; Puupponen-Pimiä, Nohynek, Alakomi, and Oksman-Caldentey, 2005). Extraction of 

bioactive phytochemicals from fruit juice is too expensive for large scale application in the poultry 

industry. However, fruit pomace, the (semi) solid remains of crushed fruit after juice extraction, 

may provide a cheaper alternative. Fruit pomaces may make up as much of 30% of the original 

fruit weight and are produced in significant amounts in the US, where they are considered a waste 

product. Pomaces cannot be fed to animals directly since they are low in protein content and too 

acidic. Cheap extraction of the phenolics that are mainly responsible for the antibacterial action 

would provide a solution to both the fruit industry and the poultry industry. These phenolics are 
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concentrated in the outer layers of fruit (e.g. skin) as their biosynthesis is dependent on UV-light 

(sunlight).  

Several modes of actions of berry phenolics have been suggested for pathogen inhibition. 

These mechanisms include damaging the bacterial cell membrane (Lacombe, Tadepalli, Hwang, 

and Wu, 2013), inhibition of extracellular microbial enzymes (Scalbert, 1991), direct effect on 

microbial metabolism, and deprivation of substrates mandatory for microbial growth (Puupponen- 

Pimiä et al., 2004). These mechanisms would act indiscriminately against benign and pathogenic 

bacteria. Nevertheless, we have provided evidence that berry juice inhibited pathogenic bacteria 

while stimulating the growth of probiotics (Yang, Hewes, Salaheen, Federman, and Biswas, 2014). 

The aim of this work was two-fold: (1) Development of a cheap extraction method to concentrate 

the antibacterial ingredients of berry pomace; and (2) Investigation of the effects of these active 

ingredients on the expression of virulence genes of C. jejuni, in order to explain the noted 

sensitivity of this pathogen for the antibacterial activity of berry pomace. The findings from this 

research will provide significant insight into the effects of blackberry and blueberry pomace 

extracts on C. jejuni growth, alteration of physicochemical properties, virulence gene expression 

and its interactions with host cells. 

 

Material and Methods 

Bacterial strain and growth condition. C. jejuni RM1221 (ATCC BAA-1062TM) was used in the 

current study. The bacterium was grown in Blood agar (Himedia, India) with 5% defibrinated 

sheep blood (Ward’s Science) at 37˚C under microaerophilic (10% CO2, 5% O2, and 85% N2) 

condition. 

 

Preparation of pomace extracts. Blackberry and blueberry whole fruits were purchased from a 

local market (College park, MD) and brought into the lab. A kilogram of blackberry or blueberry 

was treated with 1 liter boiling water for 3 minutes and the water was discarded. After cooling, a 

mixture of 400 mL sterile water and 82 µL (a rate of 0.0827 mL/kg of berry) pectinase enzyme 

(Novozyme Corp., Bagsvaerd, Denmark) was added to the treated berry and incubated at room 

temperature for 1 hour followed by vigorous blending. The pomace was concentrated by filtration 

to remove juice (which was stored at 4˚C for further use), dried at 40˚C in an oven and stored in 
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the dark at 4˚C. For further analysis of pomaces that are produced commercially as by-products 

from the berry juice industry, we obtained blackberry and blueberry pomaces from Milne Fruit 

IncTM. 

Extraction was tested with the following solvents: water, 10% v/v ethanol and 10% v/v 

methanol. 2.5 g pomace was suspended in 50 mL extraction solution and incubated for 24 hours 

at 37 and 60˚C. After 24 hours, the solid portion was separated using centrifugation (3000 x g for 

20 min) and the supernatant was sterilized with 0.45 µm filter (AcroVac Filter Unit, Pall Life 

Sciences, NY). The solvent was evaporated by vacuum freeze drying and resuspended in deionized 

water. 

 

Determination of total phenolic contents in pomace extracts. Total phenolic content in each extract 

was determined using the spectrophotometric method described previously (Singleton, Orthofer, 

and Lamuela-Raventos, 1999). Briefly, 20 µL extract was dissolved to 1.58 mL water and 100 µL 

Folin-Ciocalteu reagents (MP; CAT NO.195186) was added. 300 µL 7.5 % Na¬2CO3 was added 

to the mixture and allowed to leave for another 2 hours at room temperature. The absorbance was 

determined with spectrophotometer (PerkinElmar, Lambda Bio) at λmax = 765 nm. The similar 

procedure was applied using standard solutions of Gallic acid and the standard calibration curve 

was constructed. To construct the calibration curve, 50 mL 10 mg/mL Gallic acid stock solution 

was prepared and 0, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 mg/mL Gallic acid solutions were formulated 

from the stock solution for individual points in the curve. The total phenolic content was expressed 

as Gallic Acid Equivalent (GAE). 

Determination of minimum inhibitory concentration of pomace extracts against C. jejuni. 

Minimum Inhibitory Concentration (MIC) was determined using broth micro-dilution method 

described previously (Nkanwen, Gatsing, Ngamga, Fodouop, and Tane, 2009). The concentration 

ranging from 0.0 mg/mL to 1.0 mg/mL GAE for both blackberry and blueberry pomace extracts 

were added to Bolton broth with 10% defibrinated blood to a final volume of 990 µL. 10 µL 

bacterial suspensions containing approximately 5×105 CFU/mL was added to each of the well of 

24-wells plates. Plates were incubated for 24 and 48 hours at 37˚C under microaerophilic 

condition. MIC was recorded as the lowest concentration of blackberry and blueberry pomace 

extracts that prevented visible growth of C. jejuni compared to the control. 
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Minimum Bactericidal Concentration (MBC) was determined by culturing the last well 

showing visible growth and the wells with no visible growth on a Karmali Campylobacter Agar 

(HIMEDIA). The lowest concentration that caused a significant reduction compared to the control 

(>3-logs, 99.9%) was considered as MBC. MBC:MIC ratio was also determined which illustrates 

a relationship between in vitro minimum bactericidal concentration and MIC of any drug against 

specific pathogen. If the value is less than 2, the drug is considered to be bactericidal against that 

pathogen; if this ratio exceeds 16 the drug is considered bacteriostatic and the ratio is more than 

32, the pathogen is regarded to be tolerant to that drug (May, Shannon, King, and French, 1998; 

Konaté et al., 2013). 

Time dependent growth patterns of C. jejuni in the presence of various concentrations of 

blackberry or blueberry pomace extracts were also determined. Bacterial inoculum was prepared 

as described above and inoculated into broth containing various concentrations blackberry or 

blueberry pomace extracts. Deionized water was used in the control instead of berry pomace 

extracts. Bacterial solutions were diluted in PBS, plated on Karmali Agar plates and CFU was 

counted at various time points upto 72 hours. 

 

HPLC-tandem mass spectrometry (LC-MS/MS) analysis. Extracts were was prepared from the 

dried phenolic powder in 10% v/v ethanol and the total phenolic contents were measured. The 

concentrations of the stock solutions were adjusted to 6-8 g GAE/L. Berry pomace extract (BPE) 

was comprised of blackberry and blueberry pomace extracts at 1:1 v/v ratio. Total phenolic content 

in each extract was determined using spectrophotometric method (Singleton et al., 1999) and 

expressed as Gallic Acid Equivalent (GAE). The pH of the crude extracts were 4.5-5 and pH varied 

depending on the treatment concentration. A phenolic screen was accomplished using HPLC-MS 

(Peng et al., 2014).  Sample injections were 5 µL and separations were performed on an Agilent 

1100 system, coupled to an Agilent MSD-TOF (time-of-flight) mass spectrometer.   Reversed-

phase liquid chromatography was used to separate the samples.  A Waters Atlantis T3 column (3 

µm, 150 x 2.1 mm i.d.) was used.  A binary mobile phase consisting of solvent systems A and B 

was used in gradient elution where A was 0.1% formic acid (v/v) in ddH2O and B was 0.1% formic 

acid (v/v) in acetonitrile.  Mobile phase flow rate was 0.3 mL/min.  The linear gradient was as 

follows:  time 0 – 1 minute, 0% B; time 40 minutes, 90% B; time 41 minutes, 90% B; time 42 

minutes, 0% B; time 52 minutes, 0% B.  Following the separation, the column effluent was 
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introduced by electrospray ionization (ESI) into the MSD-TOF.  Samples were assayed, using both 

negative and positive mode ESI.  Source parameters were:  gas temperature 350˚C, gas flow 9 

L/min, nebulizer 35 psi, fragmentor 125 V, capillary voltage 3500 V.  Data were acquired with a 

mass range of 75 - 1000 m/z.  Accurate mass accuracy was guaranteed by the continuous infusion 

of Agilent Reference Mass Solution (G1969-85001). Individual chromatographic peaks were 

identified using Agilent’s Mass Hunter Qualitative Analysis software (v. B.06).  Compounds were 

identified using Agilent’s Mass Profiler Professional software (v. 13.1).  Peaks in duplicate 

injections were aligned to account for instrumental drifts in retention time and mass.  Compounds 

were retained only if they appeared in both duplicate samples.  Compounds were annotated by 

querying Agilent’s METLIN human metabolite database, with a mass error criteria of < 5 ppm. 

 

Evaluation of physicochemical properties C. jejuni treated with pomace extracts  

Hydrophobicity: The bacterial cells were grown in the absence (no treatment) and 

predetermined sublethal (concentration at which reduced but not complete growth inhibition is 

observed) concentrations of blackberry/blueberry pomace extracts at 37˚C for 18 h. Cells were 

suspended in 2 mL of phosphate buffer saline (PBS, pH 7.2) and optical density (OD) was adjusted 

(OD570) to 0.5 (Ht0). The solution was mixed with 1 mL of n-hexadecane and incubated for 5 

min at room temperature. The aqueous phase was measured at 570 nm (Ht5) using microplate 

reader (Multiskan FC, Thermo Scientific, MA). The hydrophobicity was calculated using the 

equation:  Hydrophobicity (%) = (1 – Ht5/Ht0) × 100. 

Auto-aggregation: The bacterial cells were incubated at 37˚C for 24h either in only broth 

(control) or broth supplemented with blackberry or blueberry pomace extracts. The cells were 

centrifuged at 3,000 × g for 20 minutes, the supernatant was decanted, and the cells were 

resuspended in 3 mL of PBS (pH 7.2) and adjusted the OD  (OD570)  to 0.5 (At0). The cell 

suspensions were incubated at 37 ˚C for 2h. The supernatants were separated and absorbencies 

were measured using a Multiskan microplate reader at 570 nm (At2). Aggregation was expressed 

as Auto-aggregation (%) = (1 – At2/At0) × 100. 

Swimming and swarming motility: Motility assay was performed on semi-solid medium 

as described previously (Golden, 2002). In brief, OD600 of C. jejuni suspension was adjusted to 

0.10. Two µL of the bacterial suspension was stabbed onto 0.45% (swarming motility) or 0.25% 

(swimming motility) Muller Hinton (MH) agar containing 0.3 mg/mL GAE of berry pomace 
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extracts. For negative control, equal amount of water was added to the wells. The plates were 

incubated at 37˚C for 48 hours under microaerophilic condition and diameter of zone for control 

(ZDC) and treatments (ZDT) were measured and calculated following the equation: 

Motility rate (%) = ZDT/ ZDC × 100. 

 

Adhesion and invasiveness assay. Adherence and invasiveness assays were performed according 

to the method described previously (Biswas et al., 2000). Briefly, 100 µL bacterial suspension, 

containing CFU approximately 100 times higher than host (INT-407 or DF-1) cell number, was 

inoculated into triplicate wells of a 24-well tissue culture plate. Each well contained semi-

confluent monolayers of INT- 407 or DF1 cells covered with DMEM with 10% Fetal Bovine 

Serum (FBS) and 0.10 mg/mL and 0.08 mg/mL GAE of blackberry and blueberry pomace extracts 

respectively to a final volume of 900 µL. Infected monolayers were incubated for 3 h at 37˚C under 

a 5% CO2 humidified atmosphere. The infected monolayers were washed five times with DMEM 

containing 1% FBS and then re-incubated for another 1 h in fresh DMEM containing 10% FBS 

and 250 µg/mL of gentamicin. The monolayers were washed three times with DMEM containing 

1% FBS and lysed with 0.1% Triton X-100 for 15 min. The suspensions were diluted and the 

numbers of viable bacterial cells were determined on Karmali agar plates.  

 

RNA extraction and cDNA synthesis. The cells were grown in the absence or presence of sub-lethal 

concentrations of blackberry and blueberry pomace extracts and the extraction of RNA was carried 

out according to the protocol of ZR Bacterial RNA MiniPrep kit (Zymo Research Corp., Irvine, 

CA). RNA quantification was carried out using a NanoDrop spectrophotometer (Thermo Scientific 

Inc., West Palm Beach, FL). The cDNA synthesis was performed according to the protocol of 

qScript cDNA SuperMix (Quanta Biosciences, Gaithersburg, MD). The eluted RNA (1 µg) was 

mixed with 4 µL of 5X qScript cDNA SuperMix containing optimized concentration of MgCl2, 

dNTPs, RNase inhibitor protein, qScript reverse transcriptase, random primers, oligo(dT) primer, 

and stabilizers and then incubated at 25˚C for 5 min, 42˚C for 30 min, and 85oC for 5 min.  

 

Quantitative RT-PCR assay. The mixture containing 10 µL of PerfeCTa SYBR Green FastMix, 2 

µL of each primer (100 nM), 2 µL of cDNA (10 ng), and 4 µL of RNase-free water was amplified 

using an Eco RT PCR system (Illumine, San Diego, CA), which was denatured at 95°C for 30 sec, 
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followed by 40 cycles of 95°C for 5 sec, 55°C for 15 sec, and 72°C for 10 sec. The custom-

synthesized oligonucleotides (Erofins MWG Operon; Huntsville, AL) used as primers to target 

conserved regions of C. jejuni are listed in Table 2.2. The relative expression levels of genes were 

calculated by the comparative method (Livak, and Schmittgen, 2001). The CT values of target 

genes in treated C. jejuni cells were compared to the CT values obtained from the control. The 

housekeeping gene, 16S ribosomal RNA, was used as the reference gene for normalization of 

target gene expression. 

 

Statistical Analysis. All data were analyzed using the Statistical Analysis System software (SAS, 

Institute Inc., Cary, NC, USA). One-way analysis of variance (ANOVA) was used, followed by 

Tukey's test to determine significant differences among treatments at P < 0.05. 
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Results 

Role of solvents on phenolic content extraction from pomaces. We have extracted the pomace 

phenolics using three different solvents (10% ethanol, 10% methanol in water, and water alone) 

and incubated at two different temperatures, 37˚C or 60˚C, (Table 2.3). We found that as a solvent, 

10% ethanol in water was the most effective in extracting phenolic compounds from both 

blackberry (1.66 mg/mL GAE) and blueberry (1.43 mg/mL GAE) pomaces compared to other two 

solvents though the difference between ethanol and methanol in terms of extracting phenolic 

compounds was not significant. Due to toxicity issue, we further used ethanol as solvent. We also 

observed that 95% ethanol in water failed to extract the phenolic compounds in pomaces. In the 

presence of 95% ethanol in water, the mixture became too hazy (data not shown). Water alone was 

found to be the least effective in extracting the phenolic contents of pomaces. We observed that 

10% methanol in water could extract the phenolic compounds in pomaces (1.55 mg/mL and 1.35 

mg/mL GAE from blackberry and blueberry pomaces respectively) better than water alone (0.75 

mg/mL and 0.51 mg/mL GAE from blackberry and blueberry pomaces respectively) but lower 

than 10% ethanol in water extraction (1.66 mg/mL and 1.43 mg/mL GAE from blackberry and 

blueberry pomaces respectively). We also found that temperature had a significant impact on total 

phenolic content. A higher temperature (60˚C) had significant impact in extracting phenolic 

compounds from both blueberry and blackberry pomaces compared to a lower temperature (37˚C). 

Among all the solvents and temperatures, we found that 10% ethanol in water extracted the highest 

amount of phenolic compounds in berry pomaces at 60˚C. 

 

Composition of BPE. BPE solution remained stable (no significant change in total phenolic 

content) at room temperature upto 1 month in room temperature and 6 months under refrigerated 

condition. HPLC-MS analysis of these crude extracts with negative and positive ionization mode 

showed the presence of a wide array of components (Supplementary file 1). In the negative 

ionization mode, 5108 (2320 unique) and 4445 (2221 unique) compounds were detected in 

blackberry and blueberry pomace extracts, respectively (Table 2.1). Major compounds in these 

extracts included, but not limited to, apigenin, acetoxyeugenol, chlorogenic acid, cinnamic acid, 

coumarin, ellagic acid, flavan, flavanone, gallic acid, gingerol, glucuronides, hibiscetin, 
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hydroxydaidzein, myricetin, phenols, quercetin, quinones, rhamnosides, stilbenol, triamcinolone, 

and xanthine. Wide structural variability in the phenolic derivatives were observed. 

 

Inhibition of C. jejuni growth with pomace extracts. The effect of blackberry and blueberry pomace 

extracts on C. jejuni growth is shown in Table 2.4. We found that MIC and MBC of blackberry 

pomace extract were 0.6 mg/mL and 0.8 mg/mL GAE respectively, whereas MIC and MBC of 

blueberry pomace extract were 0.4 mg/mL and 0.5 mg/mL GAE. MBC:MIC ratio shows values < 

2 for both of the extracts which indicates both of them are bactericidal (Table 2.4) but the 

bactericidal activity of blueberry pomace extract was stronger than that of blackberry pomace 

extract. 

 

Time required for inhibition of growth of C. jejuni with pomace phenolic extracts. Based on the 

previous results showing growth inhibition and bactericidal effect of blueberry and blackberry 

pomace extracts on C. jejuni growth, we monitored the growth inhibition at various time points. 

The CFU/mL of the C. jejuni strain incubated in different concentration of blackberry and 

blueberry pomace extracts were reduced in a time-dependent manner. In Fig. 2.1, we showed the 

time dependent inhibition of C. jejuni in the presence of various concentrations of berry pomace 

extracts. We observed that the same concentration (0.6 mg/mL GAE) of blackberry and blueberry 

pomace extract showed difference in growth inhibition. 0.6 mg/mL GAE of blackberry pomace 

extract reduced the CFU/mL of C. jejuni approximately 2 logs compared to the control at 24 h 

time point. In the same experiment, 0.6 mg/mL GAE of blueberry pomace extract reduced the 

CFU/mL of C. jejuni approximately 6.5 logs after 24 hours of incubation compared to the control. 

Though inhibition of C. jejuni growth with 0.8 mg/mL GAE blackberry pomace extract was > 4 

logs after 24 hours compared to the control (recorded as MBC), but growth inhibition was not 

observed during the first six hours at the ranges of concentrations from 0.6 to 0.7 mg/mL GAE. 

On the other hand, higher concentrations of blueberry pomace extract (0.5 mg/mL GAE) showed 

antimicrobial effect right from the beginning of the growth cycle of C. jejuni (Fig. 2.1).  

This fact was further supported when inhibition of growth pattern of C. jejuni was observed for 

longer periods of time in the presence of sub-lethal concentrations (0.3 mg/mL GAE) of both of 

the blackberry and blueberry pomace extracts. Blackberry pomace extract showed mild inhibitory 

effect compared to its blueberry counterpart over a shorter time period (Fig. 2.1c) but blueberry 
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started to lose effectiveness after 24 hours while blackberry retained effective even after 72 hours 

providing > 2 log reduction compared to the control. 

 

Alteration of virulence properties of C. jejuni in the presence of pomace extracts. In this study, in 

the presence of blueberry or blackberry pomace extracts, autoaggregation capability of C. jejuni 

strain decreased significantly (Table 2.5). Untreated bacterial cells showed higher autoaggregation, 

nearly 66% whereas in presence of blackberry and blueberry pomace extracts the values were 

reduced to 62% and 42%, respectively. But cell surface hydrophobicity of C. jejuni was increased 

by treating with both berry pomace extracts. The motility phenotypes of C. jejuni treated with 

berry pomace extracts were examined through solid-based movement (swarming motility) and 

liquid-based movement (swimming motility) on semi-solid agar plates containing berry pomace 

extracts (Table 2.5). Both blackberry and blueberry pomace extracts reduced bacterial migration, 

while strong migration was observed in the absence of pomace extracts (Fig. 2.2). We found that 

blackberry pomaces extract reduced the motility of C. jejuni more effectively (>85%) than 

blueberry pomace extract (<40%). 

 

Role of berry pomace extracts on host cell-C. jejuni interactions. Invasion of C. jejuni into INT407 

cells and DF1 cell was reduced significantly (Fig. 2.3) in the presence of low concentrations of 

berry pomace extracts (0.10 mg/mL and 0.08 mg/mL GAE of blackberry and blueberry pomace 

extract respectively). The concentrations of pomace extracts were selected depending on their 

cytotoxic effect on cultured (INT-407 and DF1) cells (data not shown). In the presence of 

blackberry and blueberry pomace extracts, reduction of invasion abilities of C. jejuni into DF1 

cells were >75% and >30%, respectively. In INT407 cells, invasion abilities of C. jejuni were also 

reduced similarly, approximately 79% in the presence of blackberry and approximately 52% in the 

presence of blueberry pomace extracts, respectively. We also observed that both blueberry and 

blackberry pomace extracts also reduced the adhesion abilities of C. jejuni to DF1 cells 

significantly, but not to INT407 cells. Adhesion abilities of C. jejuni to DF1 were reduced by 42% 

and 29% in the presence of blackberry and blueberry pomace extract, respectively whereas 

adhesion abilities of C. jejuni to INT407 cells were reduced by 19% and 27% in the presence of 

blackberry and blueberry pomace extracts, respectively. 
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We also carried out an experiment where bacterial cells were pretreated with pomace 

extracts before infection phase. We needed to collect the cells with centrifugation for infecting 

host cell. We found that centrifugation at 3000×g for 20 min reduced the adhesion or invasiveness 

of C. jejuni RM1221 (data not shown). 

 

Role on virulence gene expression. The common and known genes responsible for C. jejuni 

adherence and invasion ability and bacterial cell motility were examined for their expression in 

the absence or presence of two different concentrations (0.6 and 0.4 mg/mL GAE blackberry and 

0.4 and 0.2 mg/mL GAE blueberry) of blackberry and blueberry pomace extracts (Fig. 2.4). In 

both concentrations, blackberry pomace extract increased the expression of flaA by 3 to 5 fold. 

Expression level of the other genes, including flaB, cadF, ciaB and cdtB, did not alter significantly. 

But we observed the numerical decrease in cadF in the presence of blueberry pomace extracts at 

both concentration levels (0.4 mg/mL GAE or 0.2 mg/mL GAE). 
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Discussion 

There are many natural components that are able to limit and inhibit the spread and virulence of 

foodborne bacterial pathogens. In our previous study, we found that both blueberry (Biswas et al., 

2012) and blackberry (Yang, Hewes, Salaheen, Federman, and Biswas, 2014) juice inhibited the 

growth of various foodborne bacterial pathogens including C. jejuni. Several literatures also 

indicated that phenolic components of berry and berry products have antioxidant and offer many 

other health benefits (Biswas et al., 2012; Puupponen-Pimiä, Nohynek, Alakomi, and Oksman-

Caldentey, 2005). Considering the economical and practical approach of using bioactive 

components of berries in agricultural animal production, in this study we initiated an innovative 

method to extract the bioactive components from the byproduct of the blueberry and blackberry 

juice industry. We also tested the role of these bioactive extracts of berry pomaces in the cellular 

and molecular properties and dynamics of interaction with host cells of C. jejuni. Our results 

suggested that berry pomace extracts used as feed additives or water supplements may reduce the 

colonization level of C. jejuni in poultry. Though the nontoxic concentration of phenolic extracts 

of berry pomace could not stop complete growth of C. jejuni, it reduced the growth significantly. 

A risk assessment study found that C. jejuni infection in humans could be reduced by 30-fold if 

the number of this pathogens in poultry was reduced by 2 logs (Rosenquist, Nielsen, Sommer, 

Nørrung, and Christensen, 2003). 

Berry pomaces are rich in phenolic compounds making them a plausible source for 

extraction. Proper application of these cheap and vastly abundant byproducts could help reduce 

the waste management problems in the juice industries and increase their profits. In this study, we 

focused on the extraction of bioactive components from the pomace of locally grown blueberry 

and blackberry and investigated the role of these the bioactive extracts against the most common 

foodborne pathogenic enteric bacteria, C. jejuni.  

We extracted the pomace phenolics using different concentrations of three solvents and 

two incubation temperatures. We found that as a solvent, 10% ethanol in water and 60˚C 

incubation temperature was the most effective in extracting phenolic compounds from both 

blackberry and blueberry pomaces. In our study, 10% ethanol solution served more efficiently in 

extracting phenolics from berry pomaces compared to 10% methanol in water or water alone. This 

finding is in agreement with previous studies (Franco et al., 2008) who reported ethanol to be more 
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efficient than methanol in extracting polyphenols. Moreover, the toxicity issue favors ethanol over 

methanol as solvent. Temperature is another important variable that affects polyphenol extraction 

and higher extraction temperature (60˚C) was found to increase the amount of total phenolics 

regardless the types of solvent (Pinelo, Rubilar, Jerez, Sineiro, and Núnez, 2005; Spigno and De 

Faveri, 2007). We also found extraction temperature of 60˚C was more efficient compared to 37˚C, 

which is in complete agreement with previous findings.  

Previous studies focused on the ability of berry phenolics to inhibit pathogens (Nohynek 

et al., 2006) or the MIC of different phenolics against C. jejuni (Klancˇnik, Mozˇina, and Zhang, 

2012). In addition to that, we focused on the growth pattern of C. jejuni in the presence of sub-

lethal concentrations of blackberry and blueberry pomace phenolics. Both blackberry and 

blueberry pomace extracts were proved to be bactericidal considering the MBC:MIC ratio. Higher 

concentration of blackberry pomace extract was required to get similar bactericidal effect to its 

blueberry counterpart. But a sub-lethal concentration of blackberry pomace extract exerted long 

term bactericidal effect, even after 72 hours of bacterial growth, whereas a sub-lethal concentration 

of blueberry pomace extract started to lose effect after 24 hours. There might be difference in 

polyphenol composition between these two pomaces extracts. Berries contain four major classes 

of phenolic compounds: flavonoids, phenolic acids, lignans, and polymeric tannins (Puupponen-

Pimiä, Nohynek, Alakomi, and Oksman-Caldentey, 2005) and we hypothesize compositional 

differences might be the reason for the different effects of blackberry and blueberry pomace 

extracts on C. jejuni. 

This study also found that blackberry and blueberry pomace extracts altered several 

virulence properties of C. jejuni. Two important physicochemical surface properties of pathogenic 

bacteria are autoaggregation and hydrophobicity. Autoaggregation is considered to be a marker of 

virulence in several Gram-negative bacteria (Chiang, Taylor, Koomey, and Mekalanos, 1995; 

Menozzi, Boucher, Riveau, Gantiez, and Locht, 1994). Though role of autoaggregation in C. jejuni 

pathogenesis is not well documented, it has been suggested that autoaggregation might play role 

in C. jejuni invasiveness into intestinal epithelial cells (Golden, 2002). We found that due to 

treatment with sublethal concentration of blueberry pomace extracts, C. jejuni autoaggregation 

decreased significantly whereas blackberry pomace extract caused numerical decrease (but not 

significant) in autoaggregation. Hydrophobicity is another important surface physicochemical 

property. Cell surface hydrophobicity and autoaggregation were found to be positively correlated 
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to bacterial adhesion (Saran, Bisht, and Singh, 2012). Some studies have suggested that there is no 

correlation between hydrophobicity and autoaggregation or bacterial attachment (Vinderola, 

Medici, and Perdigón, 2004). We observed that treatment with berry pomace extracts caused an 

increase in C. jejuni surface hydrophobicity unlike autoaggregation, which decreased significantly. 

Both in vitro and in vivo study indicated that motility also plays a critical role in 

pathogenicity of C. jejuni (Yao et al., 1994). In this study, we investigated the motility phenotypes 

of C. jejuni in presence of sublethal concentration of blackberry and blueberry pomce extracts in 

liquid-based movement (swimming motility) and solid-based movement (swarming motility) on 

semi-solid agar plates. Both kinds of motility decreased significantly in the presence of both 

pomace extracts, though C. jejuni seemed less motile in the presence of blackberry rather than 

blueberry pomace extract. It has also been found that natural carvacrol reduced C. jejuni motility 

by disrupting the function of flagella (Van Alphen, Burt, Veenendaal, Bleumink-Pluym, and van 

Putten, 2012), but this treatment did not alter flagellar biosynthesis, which is in complete 

agreement with our findings. The flagella-mediated swimming motility is mainly responsible for 

bacterial translocation to evade the host immune system (Chow, Gu, Jiang, and Nassour, 2011). 

The surface-associated swarming motility plays critical role in bacterial colonization (O'May and 

Tufenkji, 2011). The decrease in swimming and swarming motility indicates that blackberry and 

blueberry pomace extracts can effectively control bacterial interactions with host cells. 

Attachment is the major prerequisite for colonizing C. jejuni on intestinal epithelial cells 

and invasiveness is considered to be an important virulence property. Adhesion and invasion 

abilities of C. jejuni to the cultured human intestinal epithelial (INT407) cells and chicken 

fibroblast (DF1) cells were compared in the presence and absence of blueberry and blackberry 

pomace extracts. Significant decrease in invasiveness into both cell lines were observed and 

numerical decrease in adhesion were found. The above mentioned paralyzed physicochemical 

properties (decreased autoaggregation and mitility) might have impact on the reduction of 

adherence and invasion abilities of C. jejuni. The findings agrees with the previous report (Golden, 

2002) which also showed that decreased motility caused reduction in invasiveness in C. jejuni.  

We assessed the expression level of several virulence genes of C. jejuni. The genes include 

flaA (Flagellin A subunit synthesis), flaB (Flagellin B subunit synthesis), cadF (Campylobacter 

adhesion fibronectin-binding protein), cdtB (Cytolethal distending toxin) and ciaB 

(Campylobacter invasion antigen). A significant increase in relative expression of flaA was 
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observed, but the expression of other genes under study remained unaltered. The mechanism 

behind the increase in flaA expression is still unknown, but it plays an important role in 

pathogenesis, specifically the motility and colonization of C. jejuni. We hypothesize, disruption of 

flagellar integrity due to BPE treatment may be compensated with induction of flaA. To our 

knowledge, this study is the first report exploring the expression level of virulence genes of 

Campylobacter in presence of natural and organic berry phenolics. 
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Conclusions 

1. Major compounds in BPE included, but not limited to, apigenin, catechol, chlorogenic acid, 

cinnamic acid, coumarin, ellagic acid, eugenols, flavan, gallic acid, gingerol, glucosides, 

glucuronides, myricetin, phenols, quercetin, quinones, rhamnosides, stilbenol, tannins, 

triamcinolone, and xanthine. 

2. BPE inhibited the growth of C. jejuni in vitro and altered physicochemical properties of 

bacterial cell membrane. 

3. BPE reduced C. jejuni growth and motility, in vitro, resulting in lower adherence and 

invasiveness to chicken fibroblast cells. 
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List of Figures and Tables 

Table 2.1. Composition of berry pomace extracts 

Source 
Ionization 

mode 

No. of 

compounds* 

No. of unique 

compounds 

Blueberry Pomace Extract (+) ve 1103 605 

Blueberry Pomace Extract (-) ve 4445 2221 

Blackberry Pomace Extract (+) ve 1638 985 

Blackberry Pomace Extract (-) ve 5108 2320 

*Complete list of compounds are included in Supplementary file 1. 
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Table 2.2. Molecular functions and primer sequences of target genes used in qRT-PCR analysis 

for C. jejuni 

Function/prot

ein 

Gene Primer Sequences (5’-3’) References 

Flagellin A flaA Forward GCAGCAGATGATGCTTCAGGGAT Klančnik et al., 

2006 Reverse GCTTGAAGCATGGTTCTTGT 

Flagellin B flaB Forward CCGTTTCCATCACCATCTTC Tu et al.,2008 

Reverse ACACGCTTTGAAACAGGAGG 

Fibronectin 

binding 

protein, 

Cadherin 

cadF Forward TATGGTGTAGAAAAAAGTCGCATC

A 

Fouts et al., 2005 

Reverse ATCCGCTCTACCTTCTTTAGTGTCA 

Cytolethal 

Distending 

toxin 

cdtB Forward AATGCAAGCTGAAGAAGTGATTGT Lara-Tejero, and 

Galan, 2001 Reverse AGCATCATTTCCATTGCGAAT 

Campylobact

er invasion 

antigen 

ciaB Forward CAACTTTATATTTGCACTCCGATG Poly, and Guerry, 

2008 Reverse GGAACGACTTGAGCTGAGAATAAA

C 

 16S 

rRNA 

Forward AGAGTTTGATCCTGGCTCAG Klančnik et al., 

2006 Reverse TGTCTCAGTTCCAGTGTGACT 
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Table 2.3. Total phenolic content in blackberry and blueberry pomace extracts in presence of 

different solvents 

Source Extraction Solvent Extraction Temperature 

(˚C) 

Total Phenolic Content 

(mg/mL GAE) 

Blackberry 10% Ethanol 60 1.66 ± 0.30 

37 0.75 ± 0.25 

10% Methanol 60 1.55 ±0.42 

37 0.79 ± 0.19 

Water 60 0.75 ± 0.23 

 

Blueberry 10% Ethanol 60 1.43 ± 0.18 

37 1.09 ± 0.21 

10% Methanol 60 1.35 ± 0.31 

37 0.98 ± 0.19 

Water 60 0.51 ± 0.24 
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Table 2.4. Antibacterial effect of blackberry and blueberry pomace extracts on C. jejuni 

Treatment MIC  

(mg/mL GAE) 

MBC 

(mg/mL GAE) 

MBC/MIC Bactericidal/Ba

cteriostatic 

Blackberry pomace 

extract 

0.6 0.8 1.33 Bactericidal 

Bluebery pomace extract 0.4 0.5 1.25 Bactericidal 

Abbreviations: MIC, Minimum Inhibitory Concentration; MBC, Minimum Bactericidal 

Concentration; GAE, Gallic Acid Equivalent. 
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Table 2.5. Physicochemical properties and mechanical behaviours of C. jejuni treated with 

blackberry and blueberry pomace extracts.  

Treatments Auto-aggregation 

(%) 

Hydrophobicity (%) Swimming 

motility (%) 

Swarming 

motility (%) 

     

Control 66.45±3.08 ǂ, a 1.27±0.74 a 100₳, a 100 a 

Blackberry pomace 

extract 

62.36±0.37 a 4.16±2.81 a 10.02±0.50 b 14.04±1.46 b 

Blueberry pomace 

extract 

42.64±5.42 b 7.17±1.40 b 71.45±7.21 c 60.51±9.53 c 

ǂ Means with different letters within an individual column (a-c) are significantly different at P < 

0.05. 

₳ Motility values are normalized to untreated control (100%). 
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Fig. 2.1. Time dependent growth inhibition pattern of C. jejuni in presence of various 

concentrations (in mg/mL GAE units) of blackberry (A) or blueberry (B) pomace extracts. 

Comparative growth inhibition of blackberry and blueberry pomace extracts at particular 

concentration (0.3 mg/mL GAE) is also shown (C). Each data point represents mean of three 

different experiments. 
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Fig. 2.2. Swimming and swarming motility of C. jejuni in presence of pomace extracts. 

Photographs were taken using Canon digital camera from the same distance for each well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

45 

 

Fig. 2.3. Adhesion (A and C) and invasiveness (B and D) of C. jejuni to INT407 cells and DF1 

respectively in presence of blackberry and blueberry pomace extracts. Means with different letters 

(a-c) are significantly different (P<0.05) 
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Fig. 2.4. Relative expression of virulence genes of C. jejuni treated with (A) 0.4 mg/mL GAE 

blackberry, (B) 0.2 mg/mL GAE blueberry, (C) 0.6 mg/mL GAE blackberry, and (D) 0.4 mg/mL 

GAE blueberry pomace extracts. * indicates significantly increased or decreased relative 

expression of genes at P < 0.05. 
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Chapter 3: The effects of berry pomace extracts on poultry pathogens of 

commercial importance and probiotics in vitro and cultured host cells ex 

vivo. 

Introduction 

Maintaining the health of food-animals health is important from an animal welfare, animal 

production and public health standpoint. The health status of the poultry is always critical to the 

producer whether he maintains a backyard or commercial poultry flock. Identification of the cause 

of disease and appropriate treatment or adequate feeding can prevent a condition from becoming 

an unprofitable enterprise due to poor production and quality of the birds. Several bacterial 

pathogens are involved in poultry diseases and economic losses caused by them are currently 10 

to 20 percent of the gross value of production in developed poultry industries and are likely to be 

higher in organic/pasture farming (Fanatico 2008; Hanning et al 2010). Major bacterial diseases 

such as fowl typhoid, caused by Salmonella enterica serovars Gallinarum and Pullorum, and fowl 

cholera, caused by Pasteurella multocida remain a large threat to the poultry industry specifically 

pastures poultry (Porter 1998; Christensen and Bisgaard 2000; Herath et al 2010). Recently, it has 

been found that most of the gastrointestinal diseases and animal health are strongly influenced by 

gut flora and gut floral composition can be modulated with feeds (Backhed et al 2012). 

Pasteurella multocida is one of the most common poultry pathogen which causes highly 

fatal disease known as fowl cholera (Herath et al 2010). Fowl cholera has a great economic impact 

in large and small scale poultry productions including both organic and conventional back-yard 

poultry production. The disease has global occurrence and is capable of infecting all avian species 

(Christensen et al 2000, Herath et al 2010). In addition with fowl cholera, P. multocida also cause 

lameness and neurological disorder in poultry and several other diseases in cattle (bovine mastitis) 

and pig (diarrhea) (Wilkie et al., 2012). In early age mortality of poultry is one of the biggest 

hurdles of poultry industries and this pathogen play a key role. 

Currently, free-range and pasture-flock poultry is a sustainable agricultural production 

system and up on the rise on the top of the organic food lists (Adl et al., 2011). It is becoming more 

popular due in part to a negative perception of conventionally raised chicken. Free-range and 

pasture-flock poultry spend more than half of their life in outdoor open areas and come in contact 

with birds, rodents, pest and other animals (Hanning et al 2011). Therefore, biosecurity and higher 
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risk of various infectious diseases are major concerns for free-range and pasture-flock poultry. 

According to national organic regulations, organic livestock farming is not allowed to use 

antibiotics and other synthetic chemicals. Instead of routinely giving antibiotics to their animals, 

organic farmers try to keep animals healthy through proper nutrition and sanitation, by reducing 

animal stress and with preventative and holistic animal health practices. But without chemical and 

antibiotics, organic farm animals specifically poultry tend to become more susceptible to various 

bacterial infectious diseases. Fowl cholera is recognized as a big player in pasture and free-range 

poultry and the disease pose a serious threat to gastrointestinal health and overall flock livability 

and mortality (Porter 1998). 

A Danish survey of large organic layer flocks reported high mortality rates (15-20%) of 

two to three times higher than layers in conventional battery cages (Kritensen 2012). In a 

manuscript entitled “Causes of mortality in commercial organic layers in Denmark” Stckholm et 

al (2010) reported that the mean of flock mortality for organic layers was 20.8% compared with 

7% for confined flocks on deep litter (Hanning et al 2011).  In the US, broiler mortality rates vary 

from 5 to 10 percent in organic production and this numbers for organic layer flocks are from 3 to 

5 percent (Fanatico 2008). That indicates that due to higher mortality, organic farmers lose millions 

of dollars every year in the US. 

The most common and available current option for controlling poultry diseases in poultry 

flocks is the addition of synthetic antimicrobials to poultry feeds and water and/or vaccination. 

Due to poor efficacy and inconvenience in use in poultry flocks, most of the farmers prefer to use 

antibiotics for disease control as well as growth promotion. But, according to the USDA 

recommended substances removal from the NOP’s National List, organic poultry farmers are not 

allowed to use those antimicrobial chemicals for their flocks for either disease control or growth 

promotion. Moreover, pasture flocks and free-range chickens are raised with access to the outdoors 

for at least one-third of their entire life cycle (Hanning et al 2010). The lack of proper biosecurity 

measures potentially increases the possibility of their coming into close contact with sources of 

foodborne pathogens including birds, pests and other wild animals (Hanning et al 2010). Organic 

farmers are in need of natural antimicrobial products to employ in disease control and to improve 

the gut flora of the birds in order to maintaining the flocks’ good health and sustain their business 

long term.   
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Berries, native North American fruits and their byproducts (pomaces) are of interest to 

researchers because of their potential market value and contribution to human health as well as 

their strong antimicrobial effect. Berries are rich in several phytochemicals such as phenolic acids, 

proanthocyanidins, anthocyanins and other flavonoids (Bomser et al 1996; Mantley and Buslig 

1998). Many of these compounds exhibit a wide range of biological effects including antioxidant, 

antimicrobial, anti-inflammatory and vasodilators (Mantley and Bushlig 1998). The antimicrobial 

activity of these compounds has been intensively studied as a means to control invasion by and 

growth of plant pathogens (Boivin et al 2007; Jepson and Craig 2007).  There has been growing 

interest in a variety of potential chemo preventive activities of edible berries, specifically 

blueberry, blackberry and cranberry. Pomace (byproducts) consists primarily of seeds and skins of 

fruits used for juice and wine production and shows antimicrobial activity against various bacterial 

pathogens. There is evidence that flavanols that reach the large intestine may provide prebiotic-

like benefits by promoting the growth of beneficial bacteria while inhibiting the growth of harmful 

bacteria (Tzounis et al 2011; Salaheen et al 2014). Since uses of fruit pomaces are limited, fruit 

processing industries are becoming increasingly interested in exploring alternate and potentially 

economically advantageous ways to utilize their waste materials. Given the emphasis on the 

potential application of the bioactive extracts of the blueberry and blackberry pomaces in poultry 

disease control and on improved gut flora, it is critical to provide in depth research-based 

information that will aid in a demonstrating clear evidence of the functional roles of these extracts 

as allowable alternatives to substances recommended for removal from the NOP’s National List 

of Prohibited Substances specifically antibiotics. The aim of this study is to develop an alternative 

bioactive intervention strategy for common poultry diseases and improve the gut flora using 

functional extracts of berry pomace (byproducts). We hypothesize that bioactive components from 

the byproducts of blueberry and blackberry will be an alternative functional agent for gut flora 

modulation and control of bacterial poultry diseases such as fowl cholera and fowl typhoid. In 

addition, we will determine if the use of this bioactive component through the feed can alter viral 

colonization. 
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Material and Methods 

Bacterial strains and growth conditions. Pasteurella multocida (ATCC 15742) was used in this 

study. Prior to each experiment, bacterial strain was cultured on blood agar plates containing 5% 

sheep blood (SBA) at 37°C for 18 h. As liquid medium, tryptone soy broth (Oxoid) and for 

counting Luria Bertani (HIMEDIA) were used for experimental purpose. Salmonella enterica 

serovars Gallinarum (CAT375, Presque Isle Cultures, Erie, PA) and Pullorum (CAT3751, Presque 

Isle Cultures, Erie, PA) were used as poultry bacterial pathogens and Lactobacillus plantarum 

(ATCC 8014TM) was used as a probiotic. Prior to each experiment, S. Gallinarum and S. Pullorum 

were grown on Luria Bertani (LB) (Himedia, India) agar plate and L. plantarum was grown on 

deMan, Rogosa, and Sharpe (MRS) agar (EMD, MA) plates at 37°C for 18-24 h from -80°C 

glycerol stock. Afterwards, for growth inhibition assay and colony counting LB or MRS agar were 

used. 

 

Preparation of pomace extracts. Blackberry and Blueberry whole fruit were bought from local 

market and brought in lab. One liter water was heated up to 95˚C. A kilogram of blackberry or 

blueberry was treated with this water for 3 min and water was discarded. Mixture of 400 ml sterile 

water and 82 µl (a rate of 0.0827 ml/kg of berry) pectinase enzyme (Novozyme Corp., Bagsvaerd, 

Denmark) was added to treated berry and incubated at room temperature for 1 hour followed by 

vigorous blending. Juice portion was filtered out, stored at 4˚C and pomace was separated, dried 

at 40˚C in a HERATherm oven (Thermo Scientific) and stored in dark container at 4˚C.  

Ethanol (10%) in water was used as solvent for extraction. 2.5 g pomace was suspended in 

50 ml extraction solution and incubated overnight at 60˚C. After 24 hours, solid portion was 

separated using centrifugation and the supernatant was sterilized with 0.45 µm filter (AcroVac 

Filter Unit, Pall Life Sciences). The solvent was evaporated by vacuum freeze drying and it was 

resuspended in demonized water and adjusted the concentration. Total phenolic content was 

calculated as milligrams of gallic acid equivalent per milliliter of solution. 

 

Determination of total phenolic contents in pomace extracts. Total phenolic content in each extract 

was determined using the spectrophotometric method described by Singleton et al., 1999. Briefly, 

the reaction mixture was prepared by mixing 20 µL extract to 1.58 ml water and 100 µL Folin-
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Ciocalteu reagents (MP; Cat #195186). After 5 min incubation, 300 µL 7.5 % Na¬2CO3 was added 

to the mixture and allowed to leave for another 2 hours at room temperature. The absorbance was 

determined with spectrophotometer (PerkinElmar, Lambda Bio) at λmax = 765 nm. All the 

samples were prepared in triplicate for each analysis and the mean value of absorbance was 

determined using calculation method. The similar procedure was applied using standard solutions 

of gallic acid and the standard calibration curve was constructed. To construct the calibration 

curve, 50 ml 10 mg/ml gallic acid stock solution was prepared and 0, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 

3.0 mg/ml gallic acid solutions were formulated from the stock solution for individual points in 

the curve. The total phenolic content was expressed as gallic acid equivalent (GAE). 

 

Determination of minimum bactericidal concentration of pomace extracts against P. multocida. 

Minimum Inhibitory Concentration (MIC) was determined using broth micro-dilution method 

previously described by Nkanwen et al., (2009). The concentrations ranging from 0.0 mg/ml to 1.0 

mg/ml berry pomace extracts or 0% to 1% citrus oil in TSB were used. 10 µL bacterial suspensions 

containing approximately 5×105 cfu/ml was added to each of the well of 24-wells plate. Plates 

were incubated for 24 hours at 37˚C with or without shaking. MIC was recorded as the lowest 

concentration of blackberry and blueberry pomace extracts or citrus oil that prevented visible 

growth of P. multocida. Minimum Bactericidal Concentration (MBC) was determined by culturing 

the last well showing visible growth and the wells with no visible growth on a blood agar plate. 

The lowest concentration that showing a significant reduction (>3 logs, 99.9%) was considered as 

MBC.  

 

Determination of cell surface Hydrophobicity. The bacterial cells were grown in the absence (no 

treatment) and predetermined elevated concentrations (concentration which did not show growth 

inhibition in 1 hour) of blackberry/blueberry pomace extracts and citrus oil at 37˚C for 1 h. The 

cells were then centrifuged at 3,000 × g for 20 min. The supernatants were poured out and the cells 

were resuspended in 2 ml of phosphate buffer saline (PBS, pH 7.2) and optical density (OD) was 

adjusted (OD570) to 0.5 (Ht0). The bacterial suspensions were mixed with 1 ml of n-hexadecane 

and incubated for 5 min at room temperature. The aqueous phase was measured at 570 nm (Ht5) 

using a Multiskan microplate reader (Multiskan FC, Thermo Scientific). The hydrophobicity was 

calculate using the equation:  Hydrophobicity (%) = (1 – Ht5/Ht0) × 100. 
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Adhesion and invasiveness assay. Adherence and invasiveness assays were performed according 

to the method described previously (Biswas et al. 2000). Chicken fibroblast cell (DF1) and bovine 

mammary gland cell line (MacT) were used. Briefly, 100 µl bacterial suspension, containing CFU 

approximately 100 times higher than host (MacT or DF-1) cell number, was inoculated into 

triplicate wells of a 24-well tissue culture plate containing semi-confluent monolayers of MacT or 

DF1 cells. Infected monolayers were incubated for 1 h at 37³C under a 5% CO2 humidified 

atmosphere. The infected monolayers were washed five times with DMEM containing 1% Fetal 

Bovine Serum (FBS) and then reincubated for another 1 h in fresh DMEM containing 10% FBS 

and 250 µg/ml of gentamicin. The monolayers were washed three times with DMEM containing 

1% FBS and lysed with 0.1% Triton X-100 for 15 min. The suspensions were diluted and the 

numbers of viable bacterial cells were determined on LB agar plates. 

 

Growth Performance of S. Gallinarum, S. Pullorum and L. plantarum in the Presence of Pomace 

Extracts in Broth, Fecal Medium or Water. For growth inhibition assay in broth, S. Gallinarum 

and S. Pullorum were grown in LB broth and L. plantarum was grown in MRS broth, respectively, 

at 37 °C for 18 h. Then the cells were pelleted by centrifugation at 4000×g for 5 min and 

resuspended in phosphate buffered saline (PBS, pH 7.4). The optical density of the bacterial cell 

suspensions were adjusted to 0.1 at OD600 using spectrophotometer (PerkinElmer, MA). In the 

wells of 24-well culture plate, LB or MRS broth with 1.0-2.0 mg AGE/L blackberry or blueberry 

pomace extracts were prepared by adding required volume of extracts from the stock solutions. 

Autoclaved deionized water was added instead of the extracts in the control wells. Ten microliter 

bacterial suspension containing approximately 2×106 cfu was added to each of the well of 24-wells 

plates. Plates were incubated for various time points (24, 48 and 72 h) at 37˚C with shaking at 120 

rpm. After incubation, bacterial suspensions were made serial dilution in PBS and plated on LB 

agar for S. Gallinarum and S. Pullorum or MRS agar for L. plantarum to determine the colony 

forming units (cfu). 

For growth inhibition assay in fecal medium, chick feces was collected from poultry 

facility at the University of Maryland, College Park on campus farm. One gm feces was mixed 

with 5 mL deionized water to make a semisolid medium and sterilized by autoclaving. Various 

concentrations of blackberry or blueberry pomace extracts were added to semisolid fecal medium 
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in 24-well culture plate. S. Gallinarum, S. Pullorum and L. plantarum inoculums were prepared as 

described above and inoculated into the fecal medium. Plates were incubated for 24, 48, and 72 h 

at 37˚C with shaking at 120 rpm followed by dilution in PBS and plating on agar medium for 

bacterial counts. 

For growth inhibition assay in water, similar protocol was applied. Various concentrations 

of blackberry or blueberry pomace extracts were added to autoclaved tap water and bacterial 

suspensions were added to each well. Plates were incubated for 15, 30, 45 and 60 min at 37˚C with 

shaking at 120 rpm followed by dilution in PBS and plating on agar medium for bacterial counts. 

 

Co-culture of pathogen and probiotic in fecal medium. Co-culture of S. Gallinarum and L. 

plantarum or S. Pullorum and L. plantarum was carried out in semisolid fecal medium in the 

presence or absence of blackberry or blueberry pomace extracts and compared to the growth of 

pathogens alone in the same medium. Pathogen and probiotic were attempted to mix equal volume 

of bacterial suspension (1:1) containing approximately 106 cfu/mL. Inocula were prepared in PBS 

as described above. Culture tube containing 980 μL semisolid fecal medium with various 

concentrations of blackberry or blueberry pomace extracts and 10 μL of each bacterial suspension 

was incubated for various time points (0, 24, 48, and 72 h) at 37 °C with shaking at 120 rpm. 

Viable cell counts were determined by the serial-dilution method using LB agar for S. Gallinarum 

and S. Pullorum, and MRS agar for L. plantarum, respectively. 

 

Determination of the effects of BPE on cultured host cells. Viability of cultured INT407, DF1, and 

HEK001 cells in the presence of various concentration of BPE was measured following the method 

described previously (Strober, 2001) with some modifications. In brief, 2×105 cells were 

inoculated into triplicate wells of a 24-well tissue culture plate containing serum-free 

Keratinocyte-SFM medium containing 5 ng/mL EGF (DMEM with 10% FBS for INT407 and 

DF1) incubated for 24 hr at 37˚C under 5% CO2. After incubation, cell monolayers were washed 

with Keratinocyte-SFM medium for three times and 1 mL of fresh Keratinocyte-SFM medium 

containing 5 ng/mL EGF and various concentrations of BPE (0, 50, 100, 200, 400, and 800 µg 

GAE/mL) were placed in triplicate wells. The plate was incubated for 2 hr at 37˚C under 5% CO2, 

the medium was decanted and viability assay was carried out with 0.4% Trypan Blue solution 

(Sigma, MO). Treated HEK001 cell monolayers were also imaged with Nexus 6 (Google Play 
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Store) and the images were processed in Microsoft Office Picture Manager (Version 2010). 

Treated HEK001 cell monolayers were also used to extract RNA with Quick-RNA MiniPrep Kit 

(Zymo Research) for quantitative RT-PCR assay. 

 

Statistical Analysis. All data were analyzed using the Statistical Analysis System software (SAS, 

Institute Inc., Cary, NC, USA). One-way analysis of variance (ANOVA) was used, followed by 

Tukey's test to determine significant differences among treatments at P < 0.05. 
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Results 

Inhibition of P. multocida growth with berry pomace extracts. We found that pomace extracts from 

both blackberry and blueberry and citrus oil inhibited growth of P. multocida (Fig. 3.1). Paper 

disks containing 30 µg blackberry pomace phenolics and 22.5 µg blueberry pomace phenolics 

created clear zone of diameter 11 mm and 9.5 mm respectively (Fig. 3.1). These clear zones visibly 

indicated the growth inhibitory effect of blackberry and blueberry pomace extracts on P. 

multocida. In the same study, we also found that citrus essential oil showed inhibitory effect. 

 

Time dependent inhibitory effect of pomace extracts on P. multocida growth.  The Minimum 

Bactericidal Concentration (MBC) of blackberry pomace extract was 0.3 mg/ml; that was slightly 

lower than blueberry pomace extract. MBC for blueberry pomace extract was 0.4 mg/ml (Table 

3.1). In the same study, we observed that 0.05% of citrus oil inhibited the growth of P. multocida. 

We also found that both blueberry and blackberry pomace extracts, and citrus oil showed higher 

antimicrobial activity during incubation with continuous agitating condition. At that condition, 

MBC values for blackberry and blueberry pomace extracts, and citrus oil decreased to 0.05 mg/ml, 

0.25 mg/ml and 0.025% respectively. Based on these results, we decided the concentration for 

both pomace extracts for P. multocida growth inhibition and bactericidal effect assays at various 

time points. It was found that growth of P. multocida was inhibited with various concentrations of 

blackberry and blueberry pomace extracts in a time dependent manner. All three concentrations 

(0.3, 0.2 and 0.1 mg/ml for blackberry and 0.4, 0.3 and 0.2 mg/ml for blueberry) for both blueberry 

and blackberry pomace extracts showed inhibitory effect on P. multocida. We observed that all 

three concentrations (0.3, 0.2, 0.1 mg/ml) of blackberry pomace extract inhibited the growth of P. 

multocida completely after 24 hour time period whereas two higher concentrations of blueberry 

pomace extract (0.4 and 0.3 mg/ml) caused complete inhibition of P. multocida growth. The lowest 

concentration (0.2 mg/ml) of blueberry pomace extract used in this study inhibited the growth 

partially. This growth inhibition pattern suggested that an equilibrium condition where the rate of 

bacterial death and proliferation were almost equal (Fig. 3.2 B). We found that blackberry pomace 

extract showed delayed inhibitory effect on growth of P. multocida that became effective after 12 

h of incubation whereas blueberry pomace extract showed its inhibitory effect within few hours of 

incubations. Compared to blackberry or blueberry pomace extracts, citrus oil showed more rapid 
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growth inhibition. Higher concentrations (0.05 and 0.025%) reduced CFU/ml of P. multocida more 

than 7 logs in 24 hours (Fig. 3.2 C). Whereas, 0.0125% citrus oil showed inhibitory effect upto 4 

hours but did not affect P. multocida growth after 4 hours. 

 

Effect of berry pomace extracts on cell surface hydrophobicity of P. multocida. Cell surface 

hydrophobicity of P. multocida treated with berry pomace extracts and citrus oil were monitored. 

Bacterial cells were treated with 0.6 mg/ml blackberry and blueberry pomace extracts or 0.05% 

citrus oil for 1 hour. For control, deionized water was used instead of extracts. Treatments with 

both blackberry and blueberry pomace extracts caused significant increase in cell surface 

hydrophobicity but citrus oil did not show any effect. The control groups had a hydrophobicity 

value of around 7% and group treated with citrus oil had similar hydrophobicity that of control 

group. But blackberry treated group had 13% and blueberry treated group had approximately 21%. 

So, it is evident that, both of the treatments caused two to three folds increasing in cell surface 

hydrophobicity (Fig 3.3).  

 

Role of berry pomace extracts in Adhesion to and invasion into host cells by P. multocida. Both 

blueberry and blackberry pomace extracts reduced adhesion ability of P. multocida to both chicken 

fibroblast (DF1) and bovine mammary gland (MacT) cells. In DF1 cells, number of adhered 

bacteria decreased more than 50% in the presence of both blackberry and blueberry pomace 

extracts (Fig 3.4). Similarly, the reduction of adherence ability of P. multocida to MacT cells was 

observed. We found that both pomace extracts reduced the adherence ability of P. multocida to 

MacT cells more than 80% (Fig 3.4). Invasiveness of P. multocida in the presence of both 

blackberry and blueberry pomace extracts were also monitored. We found that both blackberry 

and blueberry berry pomace extracts reduced invasion ability of P. multocida into MacT cells by 

approximately 80%. In the same study, blueberry pomace extract reduced P. multocida invasion 

into DF1 cells by more than 30% whereas phenolics extract from blackberry pomace extract 

significantly increased (approximately 70%) the rate of  invasion of DF1 cells by P. multocida. 

For adherence and invasion assay, the role of citrus oil on P multocida was not carried out due to 

high lytic ability of the citrus oil. P. multocida cells treated with citrus oil were lysed with very 

trace amount of oil within few minutes of incubation. 
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Growth performance of probiotic and pathogens in broth. We found that bioactive extracts from 

both blackberry and blueberry pomace inhibited the growth of S. Gallinarum and S. Pullorum in 

LB broth significantly (Fig 3.5). Blackberry pomace extract, at a concentration of 2.0 mg AGE/L, 

reduced the growth of S. Gallinarum by approximately 5, 6 and 8 logs at 24, 48 and 72 h, 

respectively. The same concentration of blackberry pomace extract reduced the growth of S. 

Pullorum by 5 logs at 24 h and eliminated completely by 48 h of incubation. Blueberry pomace 

extract showed similar growth inhibition pattern. We observed that 2.0 mg AGE/L of blueberry 

pomace extract reduced the growth of both S. Gallinarum and S. Pullorum by more than 5 logs at 

24 h and completely eliminated by 48 h (Fig 3.5). However, 1.0 mg AGE/L of blackberry or 

blueberry pomace extract did not show any inhibitory effect on the growth of any of these 

pathogens in this study. On the other hand, 1.0 or 2.0 mg AGE/L blackberry or blueberry pomace 

extracts did not affect the growth of probiotic L. plantarum at 24, 48 and 72 h time points in broth 

(Fig 3.5).  We also observed that up to 4.0 mg AGE/L of blackberry or blueberry pomace bioactive 

extracts did not show any significant effect on the growth of L. plantarum in broth (data not 

shown).  

 

Growth performance of probiotic and pathogens in fecal medium in the presence of BPE. In Fig 

3.6, we showed the effect of blackberry or blueberry pomace bioactive extract on the growth of 

avian pathogenic Salmonella or probiotic L. plantarum in a simulated gut environmental 

conditional medium where poultry feces served as nutrient source. In this simulated gut conditional 

medium, blackberry pomace extract at a concentration of 2.0 mg AGE/L reduced the growth of S. 

Gallinarum and S. Pullorum by more than 4, 5 and 5 logs at 24, 48 and 72 h time points, 

respectively. We also found that the lower concentration of blackberry pomace extract (1 mg 

AGE/L) showed the inhibitory effect against these pathogens significantly. One mg AGE/L of 

blackberry pomace extract caused growth inhibition by more than 2 logs at each time points (24, 

48 and 72 h) for both S. Gallinarum and S. Pullorum. Blueberry pomace bioactive extract showed 

slightly different growth inhibition pattern compared to blackberry pomace extract in fecal 

medium. Two mg AGE/L blueberry pomace extract completely inhibited S. Pullorum within 24 h 

but 1 mg AGE/L concentration caused complete inhibition of this pathogen at 72 h (Fig 3.6 B). 

The growth of S. Gallinarum was reduced significantly by both 1.0 and 2.0 mg AGE/L blueberry 

pomace extract (Fig 3.6 A). One mg AGE/L reduced S. Gallinarum growth by 3-5 logs at each 
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time points tested whereas S. Gallinarum growth went to undetectable level in the presence of 2 

mg AGE/L of blueberry pomace extract at 24 h. However, S. Gallinarum cells revived at 48 and 

72 h in the presence of 2 mg AGE/L blueberry pomace extract. On the other hand, the growth of 

probiotic L. plantarum did not differ significantly from the control in the presence of various 

concentration of blackberry or blueberry pomace extracts at different time points (Fig 3.6 C). Yet, 

numerical but not significant growth stimulation of L. plantarum was observed at 72 h in the 

presence of both blackberry or blueberry pomace extracts, where 2.0 mg AGE/L showed slightly 

higher growth stimulation compared to 1.0 mg AGE/L for both extracts (Fig 3.6 C). 

 

Growth inhibition of S. Gallinarum and S. Pullorum in water. We observed that blackberry or 

blueberry pomace extract were able to completely inhibit avian pathogenic Salmonella within 1 h 

in autoclaved tap water (Fig 3.7). The log cfu of both S. Gallinarum and S. Pullorum remained 

stable in tap water over the period of 60 min in absence of berry pomace extracts. Blackberry and 

blueberry pomace extracts showed different effects in terms of amount of time required to inhibit 

the pathogens. S. Gallinarum was completely inhibited by 1.0 mg AGE/L of blueberry and 

blackberry pomace extracts at 45 and 60 min respectively in tap water. Both bioactive extracts of 

berry pomaces inhibited these poultry pathogens at a concentration of 2 mg AGE/L by 30 min 

completely, but blueberry pomace extract showed quick activity compared to blackberry pomace 

extracts. Blueberry pomace extract inhibited the growth of S. Gallinarum by more than 4 logs 

within 15 min, whereas blackberry pomace extract caused a reduction of just 0.5 logs at that time 

period (Fig 3.7 A). Growth of S. Pullorum was inhibited completely by 2.0 mg AGE/L blueberry 

and blackberry pomace extracts at 30 and 45 min, respectively. At the lower concentration (1 mg 

AGE/L), both extracts required 60 min to inhibit completely but inhibition pattern suggested that 

blueberry pomace extract inhibited S. Pullorum at a faster rate compared to blackberry pomace 

extract over the period of 60 min (Fig 3.7 B).  

 

Co-culture of L. plantarum and S. Gallinarum in the Presence of Berry Pomace Extracts. In Fig 

3.8, we showed the growth performance of S. Gallinarum and L. plantarum when co-cultured in 

semisolid fecal medium. L. plantarum reduced the growth of S. Gallinarum by approximately 1, 2 

and 2 logs at 24, 48 and 72 h, respectively in co-culture condition compared to S. Gallinarum 

grown alone in fecal medium. But in the presence of 1 mg AGE/L blackberry or blueberry pomace 
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extracts in co-culture, no detectible growth of S. Gallinarum was observed after 24 h (Fig 3.8 A). 

On the other hand, growth and survivability of L. plantarum remained unchanged regardless the 

growth condition, grown alone or co-cultured with S. Gallinarum in fecal medium. We observed 

that in the presence of 1 mg AGE/L blackberry pomace extract, the growth of L. plantarum in co-

culture with S. Gallinarurm increased significantly by ~0.5 log at 48 h. Both blackberry and 

blueberry pomace extracts numerically stimulated L. plantarum growth at 72 h compared to the 

control at the same time point (Fig 3.8 B). 

 

Co-culture of L. plantarum and S. Pullorum in the Presence of Berry Pomace Extracts. Growth 

performance of S. Pullorum in co-cultured with L. plantarum in fecal medium is shown in Fig 3.9. 

When co-cultured with L. plantarum in fecal medium, the growth of S. Pullorum was reduced by 

1, 2 and 3 logs at 24, 48 and 72 h, respectively compared to control at these time points. However, 

in the presence of 1 mg AGE/L blackberry or blueberry pomace extracts in co-culture of L. 

plantarum with S. Pullorum reduced to non-detectable level of S. Pullorum after 24 h (Fig 3.9 A). 

Growth pattern of L. plantarum was unaltered whether grown alone or in co-culture with S. 

Pullorum. But when 1 mg AGE/L blackberry or blueberry pomace extracts were present in the co-

culture medium, L. plantarum was stimulated significantly by 0.5-1.5 logs at 48 and 72 h compared 

to the control (Fig 3.9 B). 

 

Effect of BPE on host cell viability. Trypan blue exclusion assay indicated a dose dependent 

reduction in the viability of adherent host cells to the plastic surfaces (Fig 3.10).  The percentages 

of 96.06, 92.72, 92.42, 91.51, 90.61, and 87.88 of adherent HEK001 cells to the plastic surfaces 

were remained viable after 2 hr treatment with 0, 50, 100, 200, 400, and 800 µg GAE/mL of BPE, 

respectively (Fig. 3.10). Usually, HEK001 human cultured keratinocytes are large, epithelial, 

round, adherent cells growing as a confluent monolayer and after 2 hr exposure to the tested 

concentrations of BPE, neither substantial changes in cell morphology, nor any detachment from 

the surface were noticed microscopically. However, a slight dehydration was observed with the 

increasing concentrations of BPE. Investigation into the expression of HEK001 genes playing 

important roles in necrosis, apoptosis, and autophagy pathways indicated that treatment with BPE 

induced the expression of Bcl-2 (inhibitor to apoptosis and autophagy pathways) by ~ 2 while 

down-regulating TRADD and Bax genes (inducers of apoptosis pathway) by 2-3 folds (Fig. 3.10). 
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No significantly differential expression of host (HEK001) cells was observed in the other tested 

genes (TRAF2, Ripk1, Map1Lc3, Casp3, APAF1, BECN1, MLKL, Atg12, Cacp8, and Ripk3) 

tested. 

 

Anti-inflammatory effect of BPE on chicken macrophage cells (HD11). Infection of HD11 cell 

with C. jejuni did not cause any detectable alteration in the expression of inflammatory genes. We 

also infection the HD11 cell with Avian Pathogenic E. coli (APEC) which resulted in higher level 

of expression of inflammatory genes. However, in the presence of BPE, the expression of pro-

inflammatory cytokine genes, e.g., IL-1B, IL-6, and NOS were significantly downregulated (Fig. 

3.11). 
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Discussion 

Uses of antimicrobial compounds as feed supplement and/or veterinary drugs in animal infectious 

diseases treatment are important for safer and economical production of farm animals. Growing 

antimicrobial bacterial resistance pattern is also an emerging issue and there is an unsolved debate 

about the role of antimicrobial use in farm animal production. Currently, organic products are 

getting popularity and growing faster than ever but microbial safety of the products and production 

lost due to various animal diseases in the absence of antimicrobial are making them fragile. 

Considering these emerging issues, we aimed to find an alternative and natural organic 

antimicrobial compounds for production of both conventional and organic farm animals. 

For alternative antimicrobials from natural sources for organic animal production and 

replacing synthetic antimicrobial for conventional farming, in this study we extracted the bioactive 

compounds from the byproducts of berries using ethanol-water and tested its inhibitory effect on 

the common poultry and cattle pathogen, P. multocida. We also tested the citrus oil, a byproduct 

of orange juice company, in inhibition of P. multocida growth. All the antimicrobials used in this 

study, blackberry and blueberry pomaces extracts and citrus oil, inhibited the growth of P. 

multocida effectively. In previous studies, we found that blueberry and blackberry juice inhibited 

the growth of human enteric bacterial pathogens including Campylobacter jejuni, Salmonella 

enterica serovar Typhimurium, enterohemorrhagic E. coli and Listeria monocytogenes (Biswas et 

al 2012, Yung et al 2013). In this study, we showed that extracts from the byproducts of both 

blueberry and blackberry inhibited the poultry pathogen. Therefore, berry juices or its extracts 

could be potential antimicrobial for human food preservation or supplement whereas the cheap 

organic and consumer friendly byproducts of berries could be an alternative feed supplement for 

farm animal specifically poultry. We also observed that susceptibility to these bioactive 

compounds increased due to agitation, which indicates increased contact between phytochemicals 

and bacterial cell is important for inhibition. Lacombe et al., (2013) found that blueberry 

phytochemicals inhibit bacteria by disrupting bacterial cell wall. We hypothesize, citrus oil and 

berry pomace phytochemicals have affinity towards outer membrane component of P. multocida, 

hence agitation caused increased interaction of these phytochemicals to outer membrane 

components and ultimately increased inhibition was found. Further experiments are underway to 

justify this hypotheses. 
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In respect of required time for effectiveness, blueberry pomace extract inhibited P. 

multocida growth faster compared to blackberry. Though, a higher concentration of blueberry 

pomace extract was needed to inhibit similar degree of P. multocida growth compared to 

blackberry pomace extract. Compositional differences in bioactive phytochemicals present in these 

two extracts might be the main reason of different rate of P. multocida growth inhibition. 

Compared to both blackberry and blueberry pomace extracts, citrus oil showed faster growth 

inhibition, even 0.0125% reduced P. multocida growth upto 4 hours but growth inhibition waned 

after that time period, which indicates exhaustion of responsible bioactive compounds in citrus oil. 

Limonene, a volatile monoterpene, is the major component of citrus essential oil and shows 

bactericidal effect against pathogenic bacteria (Fisher et al., 2008; Espina et al., 2013). So our 

results indicated that evaporation of limonene caused reduced inhibitory effect over longer period 

time. 

We also checked physicochemical property of P. multocida after treatment with natural 

bioactive extracts. When the bacterial cells were treated with blackberry and blueberry pomace 

extracts, the physicochemical properties of P. multocida specifically cell surface hydrophobicity 

was increased significantly. Previously Arif et al., (1998) showed that inability to synthesize 

capsular material by P. multocida enhanced cell surface hydrophobicity which indicated a direct 

correlation between presence of capsule and cell surface hydrophobicity. As capsule is an 

important virulence factor of P. multocida (Harper et al., 2006) and play an important role in 

bacterial adherence to host cells (Al-haj et al., 2004). Increased hydrophobicity in the presence of 

berry pomace extracts indicated the capsule disruption. On the other hand, treatment with citrus 

oil did not alter cell surface hydrophobicity of P. multocida. 

In addition, we also observed that berry pomace extracts altered host cell-P. multocida 

interactions. Adherence to DF1 and MacT cells decreased significantly due to the pre-treatment of 

bacterial cells with pomace extracts. This decreased adherence provided further support in capsular 

disruption in the presence of pomace extracts.  In another study, Esslinger et al., (1994) have found 

decreased adhesion of P. multocida serotype A to HeLa cells due to treatment with hyaluronidase 

which acted against hyaluronic acid in capsule. Borrathybay et al., (2003) found the opposite, an 

increased adherence to chicken embryo fibroblast (CEF) due to treatment with hyaluronidase but 

decreased adherence after treatment with trypsin and hyaluronidase combined, indicating the 

importance of surface protein on P. multocida adherence. Dubreuil et al., (1992) suggested capsule 
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as well as outer membrane proteins are important for P. multocida virulence. Decreased adherence 

in our study suggests, berry pomace extracts not only disrupts bacterial capsule but affects surface 

proteins also. P. multocida invasion into MacT cells also decreased due to treatment with berry 

pomace extract phenolics. Similar decrease in invasion was found in DF1 cells when treated with 

blueberry pomace extract but interestingly an increased invasion occurred due to treatment with 

blackberry pomace extract. Further study is necessary to explain this phenomenon. 

Maintaining the well-being of poultry health is always crucial to the producers in terms of 

productivity and product safety, irrespective of the rearing system adopted: MCLF or backyard, 

free-range pasture organic or conventional poultry farming. In addition, prognosis of disease and 

implementation of appropriate treatment strategies are important to ensure safer and cost effective 

production of poultry. Further, increased antimicrobial resistance among zoonotic pathogens have 

raised a multifaceted debate on whether nontherapeutic use of antibiotics in farm animal/livestock 

production should be endured any longer. Due to vast popularity of organic products among 

consumers, sustainable organic agricultural systems are now gaining increased attention among 

farmers. However, microbiological safety of organic products and production loss followed by 

economic instability due to various animal diseases in the absence of antibiotics are making 

organic farming practice an unprofitable enterprise. Considering these emerging issues, we 

focused on finding alternative and natural bioactive compounds to apply in both conventional and 

organic farming systems that will potentially replace antibiotics and chemical antimicrobials. 

 In this study, we used bioactive antimicrobial components extracted from byproducts of 

blackberry or blueberry called pomace and tested their inhibitory effect on avian pathogenic 

Salmonella strains such as S. Gallinarum and S. Pullorum. We also evaluated the efficacy of these 

pomace extracts to alter the growth dynamics of probiotic or modulate the growth of these poultry 

pathogens. We found that blackberry and blueberry pomace extracts inhibited the growth of S. 

Gallinarum and S. Pullorum in broth. In our previous studies, we also found that these extracts 

inhibited the growth of human enteric bacterial pathogens including Campylobacter jejuni, 

Salmonella enterica serovar Typhimurium, enterohemorrhagic E. coli and Listeria monocytogenes 

and poultry pathogen Pasteurella multocida (Biswas et al., 2012; Yang et al., 2014; Salaheen et 

al., 2014a; Salaheen et al., 2014b). Therefore, these bioactive compounds extracted from cheap, 

organic and consumer friendly byproducts of berry juice industry could act as natural feed 

additives for livestock production, especially for poultry. 
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Fecal materials make up a major portion of cecum content in poultry and most of the gut 

bacteria come in close contact to feces during their life cycle. As a result, fecal medium can be 

considered as a simulated poultry gut composite and bacterial behavior in fecal medium should 

partly correlate with in vivo situation. So we were interested to investigate the effects of bioactive 

components extracted from blackberry and blueberry pomace extracts on the growth of avian 

pathogenic Salmonella and probiotic L. plantarum in fecal medium. However, the quality and 

composition of fecal medium varies depending on the poultry diet, hence it might provide variable 

results. In this experiment, we found that fecal medium served as a good source of nutrient for the 

growth of both the pathogens and probiotic. In the presence of 1.0 mg AGE/L blackberry or 

blueberry pomace extracts, the growth of S. Gallinarum or S. Pullorum was reduced significantly 

in fecal medium whereas no such reduction was found in broth which suggested that these 

pathogens were more vulnerable in the semisolid fecal medium compared to broth. On the other 

hand, numerical increase on the growth of L. plantarum at 72 h time point was observed in the 

presence of blackberry or blueberry pomace extract in fecal medium but not in broth. This result 

suggested that, L. plantarum was able to switch its preference for source of nutrient and utilized 

some portions of the berry extract as nutrient in fecal medium but due to high nutritious condition 

in broth, this phenomenon was not observed while grown in broth. 

S. Gallinarum and S. Pullorum are able to transmit and colonize in poultry gut via both 

vertical and horizontal route (Berchieri et al., 2011; Olasupo et al., 2003; Prakash, 2006). Fecal-

oral route plays important role in horizontal transfer because pathogens remain viable in feces and 

water for many days. We found that, in the presence of blackberry or blueberry pomace extracts 

in water both S. Gallinarum and S. Pullorum were completely inhibited within 1 h. This supports 

the hypothesis that bioactive berry extracts will be able to reduce horizontal transfer of these 

pathogens when used as water supplement. Blueberry pomace extract inhibited S. Gallinarum and 

S. Pullorum growth quicker compared to blackberry in water. Difference in bioactive 

phytochemical profile of these two extracts might be the main reason of dissimilar rates of growth 

inhibition.  

Previous studies have reported that Lactobacillus can inhibit the growth of pathogens in 

co-culture condition (Williams, 1981; Soria et al., 2013; Servin, 2004). We also found that L. 

plantarum reduced the growth of S. Gallinarum and S. Pullorum when co-cultured in fecal 

medium. In the presence of even 1.0 mg AGE/L blackberry or blueberry pomace extracts, 
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inhibition of pathogens was more drastic when co-cultured with L. plantarum which suggested a 

synergistic relationship between the probiotic and berry extract. Berry extracts are good source of 

anthocyanin, hydroxycinnamic acid, hydroxybenzoic acid, polymeric tannins and other 

polyphenols (Puupponen-Pimiä et al., 2005; Hütt et al., 2006). Bioconversion of phenolic acids 

and anthocyanin by Lactobacillus have been reported (Salaheen et al., 2014c; Herrmann 1989). 

Though, metabolic pathways of Lactobacillus to utilize phenolic compounds have not been 

unearthed yet, it has been shown that bioconversion of phenolic compounds of some food caused 

an increase in their antioxidant activity (Rodríguez et al., 2008). We hypothesize that, partial 

degradation of berry pomace phenolics by L. plantarum increased bioavailability and antimicrobial 

properties of these derivatives, hence reduced avian pathogenic Salmonella while in co-culture. 

 

 

 

Conclusions 

1. BPE inhibited the growth of P. multocida, S. Gallinarum, and S. Pullorum in vitro.  

2. BPE stimulated the growth of probiotic Lactobacillus in fecal medium and provided 

selective bias towards probiotics when co-cultured with pathogenic Salmonella. 

3. Anti-inflammatory property of BPE reduced the expression of pro-inflammatory cytokines 

in chicken macrophage HD11 after infection with Avian Pathogenic E. coli.  

4. BPE showed no visible cytotoxicity or morphological alterations on cultured host cells. 
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List of Figures and Tables 

Table 3.1. Antibacterial effect of berry pomace extracts on P. multocida.  

Treatments MBC 

(without agitation) 

MBC 

(with agitation) 

Blackberry 0.3 mg/ml 0.05 mg/ml 

Blueberry 0.4 mg/ml 0.25 mg/ml 

Abbreviation: Minimum Bactericidal concentration, MBC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

69 

 

Fig. 3.1. Growth inhibition of P. multocida with blackberry (B) and blueberry (C) pomace extracts, 

compared to PBS (A) using disk diffusion method. 
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Fig. 3.2. Time dependent growth pattern of P. multocida in presence of various concentrations of 

blackberry (A) and blueberry (B) pomace extracts. Means of three different experiments were 

used. 
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Fig. 3.3. Cell surface hydrophobicity of P. multocida treated with blackberry or blueberry pomace 

extracts. Bars containing * are significantly different from the control (P<0.05). 
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Fig. 3.4. Adhesion (A and C) and invasiveness (B and D) of P. multocida to DF1 and MacT cells 

respectively in presence of blackberry and blueberry pomace extracts. Bars containing * are 

significantly different from the control (P<0.05). 
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Fig 3.5. Growth performance of S. Gallinarum (A), S. Pullorum (B) and L. plantarum (C) in 

broth supplemented with 1.0 or 2.0 mg AGE/L of blackberry (Blk) and blueberry (Blb) pomace 

extracts. Bars containing * are significantly different from the control (P < 0.05). 
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Fig 3.6 Growth performance of S. Gallinarum (A), S. Pullorum (B) and L. plantarum (C) in fecal 

medium supplemented with 1.0 or 2.0 mg AGE/L of blackberry (Blk) and blueberry (Blb) 

pomace extracts. Bars containing * are significantly different from the control (P < 0.05). 
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Fig 3.7. Inhibition of S. Gallinarum (A) and S. Pullorum (B) in deionized water supplemented 

with 1.0 or 2.0 mg AGE/L of blackberry (Blk) and blueberry (Blb) pomace extracts. Means from 

three independent experiments were used for each data point. 
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Fig 3.8. Growth performance of S. Gallinarum (A), and L. plantarum (B), when co-cultured in 

fecal medium supplemented with 1.0 mg AGE/L of blackberry (Blk) or blueberry (Blb) pomace 

extracts. Bars containing * are significantly different from the control (P < 0.05). 
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Fig 3.9. Growth performance of S. Pullorum (A), and L. plantarum (B), when co-cultured in 

fecal medium supplemented with 1.0 mg AGE/L of blackberry (Blk) or blueberry (Blb) pomace 

extracts. Bars containing * are significantly different from the control (P < 0.05). 
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Fig 3.10. Cytotoxicity of BPE on host cell-lines: INT407, DF1, and HEK001using microscopic 

and Trypan Blue methods. A, survival rate of INT407 and DF1 cells; B, HEK001 cell survival 

rate at various concentrations of BPE; C, visualization of cell morphology in the presence of 

BPE; D, expression of the genes related to cell growth and apoptosis after treatment with BPE. 
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Fig 3.11. Anti-inflammatory effect of BPE on chicken macrophage cells (HD11) using qRT-

PCR. A, infection with C. jejuni in presence or absence of BPE; B, infection with Avian 

Pathogenic E. coli in presence or absence of BPE. 
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Chapter 4: Role of berry pomace extracts on Campylobacter jejuni 

colonization in poultry gut. 

Introduction 

Campylobacter jejuni, a major foodborne enteric pathogen, is among the leading causative agents 

of acute gastroenteritis in the world. According to the Centers for Disease Control and Prevention 

(CDC), C. jejuni causes one million illnesses, 19,000 hospitalizations and 76 deaths per annum in 

the US (Scallan et al., 2011). Raw and undercooked poultry and poultry products are considered 

one of the major sources of campylobacteriosis (Mughini-Gras and van Pelt, 2014). C. jejuni along 

with other species of Campylobacter colonize in the poultry gut as normal flora. The ability of C. 

jejuni to adhere to host intestinal epithelial cells plays a primary role in the enteropathogenesis, 

multiplication and colonization. Therefore, the adherence phase can be considered as a critical 

control point in early intervention strategies to prevent the colonization of C. jejuni in host gut. 

Important physicochemical and mechanical properties, i.e., auto-aggregation, hydrophobicity, 

cellular motility are associated with the adhesion ability of bacterial pathogens to the host epithelial 

cells (Parker et al., 2001; Saran et al., 2012), and these properties eventually lead to bacterial 

colonization followed by invasion. These phases of activities should be considered in the quest of 

intervention strategies to reduce the colonization of C. jejuni in poultry gut with the ultimate goal 

to prevent C. jejuni cross-contamination in poultry products and reduce the C. jejuni associated 

foodborne infections in humans.  

 Commonly used control measures against the colonization of C. jejuni in poultry gut 

include the use of antibiotics, synbiotics, and bacteriophages in feed and water. However, 

development of antibiotic resistance, low efficacy of synbiotics, and high strain specificity of 

bacteriophages render these control measures tricky. In response to increased public health concern 

on antibiotic resistance, the U.S. Food and Drug Administration has announced to gradually 

withdraw non-therapeutic use of antibiotics from farm animal production (Kuehn, 2014). 

Consequently, the search for alternative natural and green antimicrobials is now more essential 

than ever. Bioactive phenolics from berries, especially blackberry (Rubus fruticosus) and blueberry 

(Vaccinium Corymbosum) pomace as feed or water supplement to reduce pre-harvest level of C. 

jejuni contamination in farm animals, specifically poultry, might be a feasible alternative. 

Antimicrobial effects of phenolics present in berry fruits and their pomaces against enteric 
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bacterial pathogens have been extensively studied (Biswas et al., 2012; Puupponen-Pimiä et al., 

2005; Salaheen et al., 2014a; Yang et al., 2014). In our previous studies, we showed the bactericidal 

effect of phenolic extracts from berry fruits on Campylobacter jejuni, Salmonella Gallinarum, 

Salmonella Pullorum, and Pasteurella multocida (Salaheen et al., 2014a, 2014b; Salaheen et al., 

2015). Proposed mechanism of pathogen inhibition of these phenolics include damage of bacterial 

cell membrane (Lacombe et al., 2013), inhibition of extracellular microbial enzymes (Scalbert, 

1991), distortion of microbial metabolism, and deprivation of substrates mandatory for microbial 

cell proliferation and pathogenicity (Puupponen-Pimiä et al., 2004). Importantly, synergisms 

among various phenolic derivatives act indiscriminately against benign and pathogenic bacteria.  

Therefore, in this study we aimed to evaluate the effect of these extracts on the colonization 

of C. jejuni in chick cecum. Findings from this study will provide significant insight into the 

alternative preventive and therapeutic antimicrobial regime to reduce C. jejuni infection by 

developing a new, effective, and green antimicrobial against bacterial infections.  

Material and Methods 

Preparation of pomace extracts and HPLC-tandem mass spectrometry (LC-MS/MS) analysis. 

Extracts were prepared according to the protocol previously described (Salaheen et al., 2014a). 

Total phenolic content in each extract was determined using spectrophotometric method (Singleton 

et al., 1999). Total phenolic content was expressed as Gallic Acid Equivalent (GAE). The pH of 

the crude extracts were 4.5-5 and pH varied depending on the treatment concentration. A phenolic 

screen was accomplished using HPLC-MS (Peng et al., 2014).  Sample injections were 5 µL and 

separations were performed on an Agilent 1100 system, coupled to an Agilent MSD-TOF (time-

of-flight) mass spectrometer.   Reversed-phase liquid chromatography was used to separate the 

samples.  A Waters Atlantis T3 column (3 µm, 150 x 2.1 mm i.d.) was used.  A binary mobile 

phase consisting of solvent systems A and B was used in gradient elution where A was 0.1% formic 

acid (v/v) in ddH2O and B was 0.1% formic acid (v/v) in acetonitrile.  Mobile phase flow rate was 

0.3 mL/min.  The linear gradient was as follows:  time 0 – 1 minute, 0% B; time 40 minutes, 90% 

B; time 41 minutes, 90% B; time 42 minutes, 0% B; time 52 minutes, 0% B.  Following the 

separation, the column effluent was introduced by electrospray ionization (ESI) into the MSD-

TOF.  Samples were assayed, using positive mode ESI.  Source parameters were:  gas temperature 

350˚C, gas flow 9 L/min, nebulizer 35 psi, fragmentor 125 V, capillary voltage 3500 V.  Data were 
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acquired with a mass range of 75 - 1000 m/z.  Accurate mass accuracy was guaranteed by the 

continuous infusion of Agilent Reference Mass Solution (G1969-85001). Individual 

chromatographic peaks were identified using Agilent’s Mass Hunter Qualitative Analysis software 

(v. B.06).  Compounds were identified using Agilent’s Mass Profiler Professional software (v. 

13.1).  Peaks in duplicate injections were aligned to account for instrumental drifts in retention 

time and mass.  Compounds were retained only if they appeared in both duplicate samples.  

Compounds were annotated by querying Agilent’s METLIN human metabolite database, with a 

mass error criteria of < 5 ppm.  

 

Insertion of genetic marker Kanamycin (Km) gene in C. jejuni RM1221. Kanamycin resistance 

cassette was infused to C. jejuni RM 1221 genome to be used as marked strain according to the 

protocol depicted in the figure. In 

brief, the AB and CD PCR 

products were fused together to 

generate AD product deleting the 

internal segment (dotted line) by 

a third PCR using A and D 

primers. By sequential cloning 

steps, Km gene was inserted in 

the middle of AD followed by 

final cloning into a suicide vector 

pDS132 and the resulting 

recombinant suicide plasmid was 

introduced into the wild-type C. 

jejuni RM1221 strain. After 

homologous recombination, 

desired mutant having Km 

insertion in place of cdtABC 

gene, was screened. Here, E-K-B 

represents EcoRI-KpnI-BamHI 
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recognition sequences. The new strain was named as C. jejuni RM-Km. 

  

Natural colonization of chicks with Campylobacter. Natural colonization of Campylobacter in 

chick model provided with various concentrations of BPE was determined in triplicate trials. In 

each trial, 100 1-day-old Cobb-500 broiler chicks were obtained from Longenecker’s Hatchery 

Inc, PA. Guidelines recommended in the Institutional Animal Care and Use Committee (IACUC, 

protocol number R-16-33) were followed for chick husbandry and were provided with 

commercially available crumbles (Purina Animal Nutrition, MO) with no antibiotic 

supplementation. In trial 1, chicks were assigned to 4 groups provided with only tap water or tap 

water with 0.1, 0.5, and 1.0 g AGE/L of BPE. In the following 2 trials, chicks were assigned into 

4 groups of 25 chicks each in floor pans using a Completely Randomized Design consisting a 

negative control, a positive control, and two treatment groups. Negative control group A was 

provided with only tap water, positive control group B: tap water with AGP (a combination of 

Oxytetracycline 1 µg/mL, Erythromycin 2 µg/mL, Tylosin 2 µg/mL, Bacitracin 4 µg/mL and 

Neomycin sulfate 32 µg/mL), treatment group C: tap water with 0.1 g GAE/L of BPE. Treatment 

group D was provided with tap water with 0.1 g GAE/L of BPE and the treatment concentration 

was increased to 1 g GAE/L during last 72 h before euthanasia. This way the chicks were reared 

for 6 weeks. After three weeks, five chicks from each group were euthanized to check the natural 

colonization level of Campylobacter in chick cecum. After six weeks, all the birds were euthanized 

and ceca were separated. To check the Campylobacter colonization, approximately 200 g of cecum 

content was homogenized in one mL PBS, serially diluted and plated on Karmali Campylobacter 

agar for enumeration. Three representative presumptive isolates from each group were tested with 

Campylobacter specific PCR according to the protocol described by Salaheen et al., (2016). 

Cecum from each bird was considered an experimental unit for statistical analysis. The number of 

birds colonized by Campylobacter was compared using Fisher’s exact test. Differences in the level 

of colonization (CFUs/g cecum content) were compared by first ranking the data and performing 

one-way analysis of variance (ANOVA) on the ranked data. Comparison of mean ranks was 

performed using Tukey’s test. 

 

Infection of chicks with C. jejuni RM-KM. A total of 120 chicks were used for 2 trials. Chicks were 

reared in Avian 12-Cage Isolator Unit. At first, total 60 chicks were used for the initial trial with 



 

 

86 

 

berry pomace extracts. The chicks were randomly assigned to control and test groups (20 chicks 

per group). Four cages of the unit were assigned to each group, so a total of 5 chicks per cage. 

Stocking density has been calculated and conforms the IACUC guideline. A Completely 

Randomized Design (CRD) were employed for this purpose. The reason behind using similar 

number of chicks in the control group was that, in this experiment the control itself (regular water) 

served as a treatment. 

C. jejuni RM-Km was cultured on Blood Agar plates for 24 h under microaerophilic 

condition and transferred to saline to a concentration of 109 cfu/mL.100 uL of this suspension was 

fed to day-old chicks with oral gavage. For this purpose, chicks were held gently (one at a time). 

Animal feeding needle attached to plastic syringe was used. 100 uL C. jejuni RM-KM suspension 

was taken into the syringes, and this suspension was fed to one chick using the feeding needle. 

Chicks were checked for any injury related to the gavage procedure and transferred back to their 

respective cages. Chicks were kept in close inspection for atleast two days for any abnormalities 

in their eating or drinking behaviors. The chicks were provided tap water to group A, 1.0 mg 

AGE/L BPE in tap water to group B. For group C, chicks were provided with 0.1 mg AGE/L BPE 

throughout, except last 72 h before euthanization, the treatment concentration were increased to 

1.0 mg AGE/L BPE in tap water. This way the chicks were reared for 3 weeks, fed with chicken 

starter diet (mesh) without growth promoters or synthetic chemicals. Water were provided in 

gravity feed water containers. After week 1, 8 chicks from each group were euthanized. After week 

2, 8 chicks from each group were euthanized, and similarly, after week 3, rest of the chicks were 

euthanized. 

 

Statistical Analysis. Quantitative RT-PCR data will be analyzed using the Statistical Analysis 

System software (SAS, Institute Inc., Cary, NC, USA). One-way analysis of variance (ANOVA) 

were used, followed by Tukey's test to determine significant differences among treatments at p < 

0.05. 
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Results 

Development of kanamycin cassette marked C. jejuni. We developmed a C. jejuni mutant 

possessing kanamycin resistance cassette incorporated in the genome for easy detection of the 

marked C. jejuni strain in chicken ceca. From the PCR band sizes indicated in Fig 4.1, it was clear 

that the clone contained right size of band representing kanamycin resistance cassette. We found 

three clones and used one for the further studies. The product size of the sequence of interest in 

wild type C. jejuni RM1221 was 3204 base paires, whereas the mutants should have been 2649 

base paires and this phenomenon is evident in Fig. 1.  

Phenotypic characteristics of the newly developed mutant indicated a similar growth 

pattern of the mutant compared to the wild type C. jejuni strain. We prepared the glycerol stocks 

of the mutants and stored at -80˚C. The efficacy of the mutants was tested by multiple subculturing 

in kanamycin free medium to check whether the mutants are loosing the kanamycin resistance 

cassette in the absence of selective pressure of certain concentrations of kanamycin. We observed 

that the mutants showed resistance to 100 µL/mL of kanamycin in broth even after 14 subcures in 

kanamycin-free broth medium. 

 

Natural colonization of chicks with Campylobacter. We tested the natural colonization of chicks 

with Campylobacter when provided with 0-1.0 g GAE/L of BPE as water supplement. We checked 

the natural colonization level by euthanizing five chicks from each of the four groups after three 

weeks. 100% of the euthanized chicks were naturally colonized with Campylobacter after three 

weeks in groups A, B, and C but 20% chicks in group D, given 0-1.0 g GAE/L of BPE as water 

supplement (Fig. 4.2). After six weeks, all the chicks were euthanized. The observed median level 

of colonization of the cecum contents by Campylobacter was five logs lower (p < 0.001) in 

presence of 1.0 g AGE/L of BPE compared to the chicks provided with only tap water. However, 

this high concentration caused an approximately 4% reduction in the chicken weight, though this 

value was not statistically significant. 

Due to this issue, we redesigned our experiment in the second and third trials. Instead of 

using 1 g GAE/L of BPE for whole 6 weeks period, we suppmenented the water with 0.1 g AGE/L 

of BPE for 39 days and for the last 3 days before euthanasia, we increased the treatment 

concentration to 1.0 g GAE/L of BPE for reduction of Campylobacter colonization in chicken 
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ceca. We observed, addition of 1 g GAE/L of BPE in water resulted a reduction of 2 logs in the 

number of Campylobacter colonized in the ceca. But no difference was observed when chickens 

were provided with 0.1 g GAE/L of BPE in the context of Campylobacter colonization in chicken 

ceca (Fig 4.3). 

 

Colonization of chicks with C. jejuni RM-KM. We infected day-old chicks with C. jejuni RM-Km 

and tested the colonization of chicks with mutant when provided with 0-1.0 g GAE/L of BPE as 

water supplement. Important to note that, in the experiment, chicks were reared in ventilated cages 

and gorwed upto 3 weeks. 100% of the euthanized chicks were naturally colonized with 

Campylobacter after one, two and three weeks in groups all the chicks (Fig. 4.4). After one week, 

8 chicks per group, after two weeks, 8 chicks per group, and after three weeks, 4 chicks per group 

were euthanized by cervical dislocation followed by decapitation. The observed median level of 

colonization of the cecum contents by Campylobacter was one log lower (p < 0.001) in presence 

of 1.0 g GAE/ L of BPE compared to the chicks provided with only tap water. Whereas, 

supplementation of 1.0 g GAE/L of BPE during the last 3 days before euthanasia resulted in 0.5 

log reduction in the colonization of marked C. jejuni RM-Km in chick gut compared to only tap 

water.  
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Discussion 

As berries specifically blackberry and blueberry as well as their pomaces are rich sources of 

phenolic compounds (Nohynek et al., 2006; Puupponen-Pimiä et al., 2004), and berry pomaces are 

abundant from the fruit juice industry in the US, the berry pomaces are a plausible and economic 

raw material for extraction of phenolic extracts and can be used in biomedical sector as well as 

farm animal production. HPLC/high mass accuracy TOF mass spectrometry analysis indicated that 

major phenolic compounds in both Blk and Blb pomaces included, flavan, flavanone, flavones, 

glucuronides, glucosides, quinolones, catechol, coumarin, phenols, luteolines, tannins, quercetin, 

chlorogenic acid, ellagic acid, gallic acid, and xanthoxic acid. This finding remain constant with 

previous literatures which also reported the presence of these compounds in berries (Mertz et al., 

2007; Nohynek et al., 2006; Puupponen-Pimiä et al., 2004) though structural and categorical 

diversity can be noticed among the phenolic compounds. Factors influencing this diversity include, 

but are not limited to, species and genetic makeup of berries, agricultural practices, season of 

harvest, irrigation, soil constituent, types of fertilizers used, processing during juice extraction, and 

storage of the pomaces. Literature survey demonstrates that crude extracts show better 

antimicrobial efficacy compared to individual compounds (Bajpai et al., 2012) and we also found 

that combined mixture of commercially available quercetin, gallic acid, teichoic acid, catechol, 

and coumaric acid had lower MIC value on Salmonella and Campylobacter compared to each of 

the individual compounds (data not shown). Due to the reported synergism among various types 

of phenolic compounds, the use of crude extract instead of purified compounds is justifiable.  

After a series of studies on the effect of phenolic extracts from berry pomaces on 

pathogenic bacteria and probiotics (Salaheen et al., 2014a; Salaheen et al., 2014b; Yang et al., 

2014; Salaheen et al., 2015), in this study, we present the bactericidal effect of these extracts 

against pathogenesis and colonization of Campylobacter in chicken gut. However, this does do not 

deny the bacteriostatic nature that was noticed from the use of sublethal concentrations of these 

phenolic extracts that showed growth inhibition after 24 h but revealed reduced or no effect after 

longer period of exposure. This finding agrees with Puupponen-Pimiä et al., (2004) who also 

reported that raspberry and cloudberry phenolic extracts inhibited bacterial growth at the beginning 

of the incubation but regrowth occurred after prolonged incubation. The mechanism behind the 
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inhibition of Campylobacter did not solely depend on pH. Depending on the concentration of berry 

pomace extracts, pH of the solution ranged from 4.5 to 6.5.  

Attachment is the prerequisite for Campylobacter colonization on intestinal epithelial cells 

followed by invasiveness, which are considered to be important virulence properties. Association 

of Campylobacter to cultured host cells, e.g., intestinal epithelial INT407, chick macrophage 

HD11, and chick fibroblast DF1 were altered; decreased association to INT407, increased 

association to HD11, and association remained unchanged in DF1 cells, after treatment with 

sublethal concentration of berry pomace extracts. Altered OM protein profile in Campylobacter 

can be a probable cause of increased associated bacterial number to HD11 cells. Hydrophobicity 

and surface charge of bacterial cells play an important role in the adhesion process as demonstrated 

previously (Oliveira et al., 2007). In the present case, the extent of adhesion seems to be directly 

related with cell surface hydrophobicity of Campylobacter. Unlike association, treatment with 

sublethal concentration of berry pomace extract significantly reduced Campylobacter invasion into 

all the host cell types. Alteration of mechanical and physicochemical properties (decreased auto-

aggregation and motility) may have impact on the reduction of invasiveness in Campylobacter 

which is supported by previous studies who showed positive correlation between bacterial motility 

and invasiveness into host cells (Golden, 2002; Salaheen et al., 2014a).  

In this study, we found that 0.5-1.0 g GAE/L of berry pomace extract significantly reduced 

the natural colonization of Campylobacter in chick cecum. This phenomenon can be explained by 

previous report from Clifford (2004), who documented that dietary phenolics are poorly absorbed 

in the small intestine and 90-95% accumulated in colon resulting high abundance of bioactive 

phenolic compounds to be interacted with resident bacteria. However, the inhibition of 

Campylobacter colonization depended largly upon how the chicks were grown. 
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Conclusions 

1. 1.0 g GAE/L of BPE reduced natural colonization of Campylobacter in chicken ceca by 5 

logs at 6 weeks of age in floor pans. 

2. 1.0 g GAE/L of BPE reduced Campylobacter colonization by 1 log upto 3 weeks of age 

while grown in isolated cageing system. 

3. Treatment with 1.0 g GAE/L of BPE for only 72 h before euthanasia resulted in 2 logs 

reduction in Campylobacter natural colonization in chickens grown in floor pens at 6 weeks 

of age. 
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Fig. 4.1. Development of C. jejuni strain marked with kanamycin resistance cassette. 
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Fig. 4.2. Effect of various concentrations of berry pomace extracts on Campylobacter 

colonization in poultry ceca at 6 weeks of age. 
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Fig. 4.3. Effect of berry pomace extracts compared to AGPs on the colonization of C. jejuni in 

broiler gut. Groups were assigned in the following manner; broilers from group A (negative 

control): only tap water, group B (positive control): tap water with AGP, group C: tap water with 

0.1 g GAE/L of BPE, and group D: tap water with 0.1 g GAE/L of BPE for 39 days and 1.0 g 

GAE/L of BPE for last 3 days before euthanasia. 
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Fig. 4.4. Effect of BPE on the colonization of C. jejuni RM-KM in chicken ceca. Panels A and B 

stand for trials 1 and 2, respectively. 
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Chapter 5: Berry pomace extracts on poultry growth promotion through 

modulation of gut microbiome and long term consequences. 

Introduction 

The discovery of antibiotics in the early 20th century followed by their economization due to large 

scale production during World War II for controlling human infections, have revolutionized 

agricultural animal, specifically poultry production in the post war era. Animal agricultural use 

accounts for more than half of the antibiotics produced in the United States (Lipsitch et al., 2002). 

However, environmental and public health risks associated with the emergence of antibiotic 

resistance in zoonotic bacterial pathogens through natural selection, due to therapeutic and/or non-

therapeutic use of antibiotics i.e., Antibiotic Growth Promoters (AGPs) for farm animal 

production, have led the policymakers from worldwide to adopt stringent precautionary 

measurements. This included the ban of AGP in Sweden starting 1986 followed by a series of 

events to an EU-wide ban in effect on January 1, 2006 (http://europa.eu/rapid/press-release_IP-

05-1687_en.htm). Recently, the US FDA Center for Veterinary Medicine recommended for 

judicious use of medically important antibiotics in feed based on key reports and scientific 

literature describing the impacts of AGP on development and transfer of antibiotic resistance traits 

among intestinal microbiota to the environment and humans through cross-contamination (FDA, 

2012, Kleun, 2014). In addition, USDA established the National Organic Program which include 

organic poultry production that focuses on poultry health, good environmental practices, and 

production quality without the use of antibiotics as mandated by the USDA. All these precautions 

as well as organic poultry production system, might help to mitigate the emergence of antibiotic 

resistance in pathogens in the long run but reduced growth rate in poultry will definitely jeopardize 

food security. These emerging issues to both conventional and organic poultry industries warrant 

the need for alternative approaches to render the consequences following AGP removal from feed. 

By-products (pomaces) from berry fruits including blueberry (Vaccinium corymbosum) 

and blackberry (Rubus fruticosus), are major sources of phenolics and have roles in host health 

improvement through anti-inflammatory, antimicrobial, anti-carcinogenic, anti-oxidant, 

vasodilatory and other beneficial effects (Boivin et al., 2007; Jepson and Craig, 2007; Tzounis et 
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al., 2011; Salaheen et al., 2014; Joseph et al., 2014). Dietary supplementation of plant phenolic 

extracts have been demonstrated to enhance growth performance in broilers but their mechanism 

of action is far from being elucidated (Herna´ndez et al., 2004). Recent observational and 

epidemiological studies indicated differential microbial diversity in conventional broilers to their 

organic counterparts (Torok et al., 2011; Singh et al., 2013; Mancabelli et al., 2016). Neutral effect 

of AGP on germ free animals indicated the importance of AGP-dependent gut microbiota 

modulation on growth promotion in animals (Coates et al., 1963). Turnbaugh et al., (2006) 

revealed the association of two dominant bacterial divisions, the Bacteroidetes and the Firmicutes 

to weight gain which was supported by other research groups (Gong et al., 2008; Singh et al., 2013; 

Mancabelli et al., 2016). Gong et al., (2008) reported an increased abundance of Lactobacillus 

spp., Clostridiales and Enterobacteriaceae and later, correlation among Firmicutes to Bacteroidetes 

(F/B) ratio with increased weight gain and antibiotic treatment was reported (Singh et al., 2013). 

These findings inspired a comparative view on the effect of AGP versus phenolics on the 

modulation of broiler gut microbiota, resistome profile, functional enzymes involved in digestion, 

phage induction and overall potential mechanism behind the improved growth performance.  

In this study, we determined the composition of phenolic extracts from blueberry and 

blackberry and evaluated their roles as an alternative intervention to promote the growth of poultry 

by modulating gut microbiota. We also aimed to study the resistome profile in poultry ceca which 

will provide important insights into the applicability of these extracts to replace AGP. 

Material and Methods 

Preparation of pomace extracts and HPLC-tandem mass spectrometry (LC-MS/MS) analysis. 

Blueberry and blackberry pomace extracts were prepared according to the protocol previously 

described using commercial pomaces (powder form) that were kindly donated by Milne Fruit 

Products Inc., WA and stored at 4°C (Salaheen et al., 2014; Salaheen et al., 2016). Berry pomace 

extract (BPE) was comprised of blackberry and blueberry pomace extracts at 1:1 v/v ratio. Total 

phenolic content in each extract was determined spectrophotometricly (Singleton et al., 1999) and 

expressed as Gallic Acid Equivalent (GAE). The pH of the crude extracts varied from 3.5 to 4.5. 

Screening of phenolic compounds was performed using the HPLC-MS method described 

previously by Peng et al. (2015).  Briefly, sample injections were 5 µL and separations were 

performed on an Agilent 1100 system (Agilent Technologies, CA) coupled to an Agilent MSD-
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TOF (time-of-flight) mass spectrometer.   Reversed-phase liquid chromatography was used to 

separate the samples with a Waters Atlantis T3 column (3 µm, 150 x 2.1 mm i.d.) (Waters, MA). 

A binary mobile phase consisting of solvent systems A and B was used in gradient elution where 

A was 0.1% formic acid (v/v) in ddH2O and B was 0.1% formic acid (v/v) in acetonitrile.  The 

mobile phase flow rate was 0.3 mL/min.  The linear gradient was as follows:  time 0 – 1 minute, 

0% B; time 40 minutes, 90% B; time 41 minutes, 90% B; time 42 minutes, 0% B; time 52 minutes, 

0% B.  Following the separation, the column effluent was introduced by electrospray ionization 

(ESI) into the MSD-TOF.  In this study, samples were assayed using negative mode ESI.  Source 

parameters were: gas temperature = 350˚C, gas flow = 9 L/min, nebulizer = 35 psi, fragmentor = 

125 V, and capillary voltage = 3500 V.  Data were acquired with a mass range of 75 - 1000 m/z.  

Mass accuracy was guaranteed by the continuous infusion of Agilent Reference Mass Solution 

(G1969-85001). Individual chromatographic peaks were identified using Agilent’s Mass Hunter 

Qualitative Analysis software (v. B.06).  Compounds were identified using Agilent’s Mass Profiler 

Professional software (v. 13.1).  Peaks in duplicate injections were aligned to account for 

instrumental drifts in retention time and mass.  Compounds were retained only if they appeared in 

both duplicate samples.  Compounds were annotated by querying Agilent’s METLIN human 

metabolite database, with a mass error criteria of < 5 ppm

 

Diet regimens and weight gain in chickens. Diet supplement experiments in chickens were carried 

out in duplicate trials. In each trial, 100 one-day-old Cobb-500 broiler chicks were obtained from 

Longenecker’s Hatchery Inc. (Elizabethtown, PA). Chick husbandry guidelines recommended by 

the Institutional Animal Care and Use Committee (IACUC, protocol number R-16-33) were 

followed. The chicks were provided with commercially available crumbles (Purina Animal 

Nutrition, MO) with no antibiotic supplementation. The chicks were assigned into 4 groups of 25 

chicks each in floor pens using a Completely Randomized Design consisting of a negative control, 

a positive control, and two treatment groups. The negative control group A was provided non-

supplemented tap water; the positive control group B was provided tap water supplemented with 

AGP (a combination of Oxytetracycline 1 µg/mL, Erythromycin 2 µg/mL, Tylosin 2 µg/mL, 

Bacitracin 4 µg/mL and Neomycin sulfate 32 µg/mL); the treatment group C was provided tap 

water supplemented with 0.1 g GAE/L of BPE; and treatment group D was provided tap water 

supplemented with 0.1 g GAE/L of BPE and the treatment concentration was increased to 1 g 
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GAE/L during the last 72 h before euthanasia. The chicks were reared for 6 weeks and individual 

weights was recorded weekly. The data were analyzed with the Statistical Analysis System 

software (SAS, Institute Inc., Cary, NC, USA) using mixed effect Analysis of Variance (ANOVA) 

and Tukey’s modification for multiple mean comparisons.  

 

Sample collection and processing. After six weeks, all of the birds were euthanized with cervical 

dislocation followed by decapitation. Blood samples were collected in VACUETTE® Heparin 

Tubes (Greiner Bio-One, NC) and were analyzed with a ProCyte Dx® Hematology Analyzer 

(IDEXX, ME) according to the manufacturer’s instructions. Chicken organs, e.g., spleen, liver, 

heart, and pancreas, were collected and weighed immediately. Ceca lengths were measured and 

contents from both ceca were thoroughly mixed followed by storage at -80˚C until DNA extraction 

for metagenomic analysis. Contents from 5 ceca from each group to a total of 20 ceca were 

randomly selected for metagenomic analysis. DNA extraction was carried out with QIAamp Fast 

DNA Stool Mini Kit (QIAGEN, CA) according to the manufacturer’s instructions. Nextera DNA 

libraries were made for each of the 20 samples separately using Nextera DNA Library Preparation 

Kit and Nextera Index Kit (Illumina, San Diego, CA) followed by pooling into equimolar 

concentrations according to the manufacturer’s instructions. Paired-end sequencing (2 X 151 bp) 

was conducted on an Illumina NextSeq 500 sequencing platform with a NextSeq 500/550 v2 High 

Output flow cell.  

 

Analysis of metagenomics datasets. Data were demultiplexed using the BCL2FastQ program and 

PhiX reads were removed using DeconSeq (Schmieder and Edwards, 2011). Reads were further 

cleaned using Trimmomatic V 0.36 (leading 20, trailing 20, sliding 4:20, min len 36) (Bolger et 

al., 2014). Only paired data were further analyzed. After cleaning and curating the data the total 

reads in each sample ranged from 4.3×107 to 8.7×107 reads. Taxonomic labels were assigned to 

reads with taxonomic sequence classifier, Kraken, using Kraken-translate and --mpa format which 

reported levels of the taxonomy with standard rank assignments (Wood and Salzberg, 2014). The 

Kraken database was prepared using NCBI taxonomic information as well as the complete 

genomes in RefSeq for the bacterial, archaeal, and viral domains 

(https://www.ncbi.nlm.nih.gov/refseq/). Output files from Kraken were formatted with custom 

scripts to generate files containing taxonomic information and abundances at tab delimited csv 
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format which were ultimately fed into MEGAN (version 5.11.3, Huson et al., 2007) to generate 

matrices for sample comparisons. We determined relative abundances of microbial taxa in a cecum 

sample by dividing the number of reads of a specific taxon by the total number of reads in that 

sample. Initially the Bray-Curtis distance matrix and the Firmicutes/Bacteroidetes (F/B) ratio were 

determined for each sample in each treatment group (groups A, B, C, and D). Samples from a 

specific group that clustered together, contained cecal microbial profiles closest to the average of 

their respective groups, and possessed an F/B value ranging from 0.10 to 10.0 were considered to 

be the core microbiome representing that group and were used for further analysis (and we were 

left with a total of 12 samples, 3 from each group) (Mancabelli et al., 2016). Relative abundances 

from MEGAN-generated abundance matrices were used for statistical analysis, calculation of beta-

diversity, and alpha-diversity with genus richness, Shannon, and Fisher’s indexes. Rarefaction 

curves with genus richness, Shannon, and Fisher’s indexes were calculated using package vegan 

in R (version 3.3.1).  

For functional analysis, paired sequences were analyzed with metAMOS pipeline 

(Treangen et al., 2013). Output files from functional annotation section in metAMOS, which 

consisted UniProt ID of predicted proteins, were formatted with a custom scripts to generate 

assigned UniProt ID and abundances at tab delimited format. Retrieved UniProt entries were 

converted to the corresponding KEGG Orthology (KO) entries using Retrieve/ID mapping at 

http://www.uniprot.org/uploadlists/. A comparison matrix was prepared with Microsoft Query in 

Excel (version 2013) and fed to GraphPad Prism software (version 7) for statistical analysis. 

Interrogation of sequence reads for identity to known antibiotic resistance genes (ARGs) was 

performed using DIAMOND (Buchfink et al., 2015) (sequence identity > 90%, matched amino 

acid sequence length > 25, e-value < 10-5) and the database CARD (McArthur et al., 2013), which 

encompasses amino acid sequences of ARGs. 

 

Artificial development of resistance in C. jejuni against BPE. In this experiment, artificial 

development of resistance against BPE were monitored. Campylobacter jejuni RM1221 (ATCC 

BAA-1062TM) were used in the current study. The bacterium were grown in Blood agar (Himedia, 

India) with 5% defibrinated sheep blood (Ward’s Science) at 37˚C under microaerophilic (10% 

CO2, 5% O2, and 85% N2) condition. Bolton broth with 10% defibrinated blood to a final volume 

of 990 µL were prepared with varying concentrations of BPE or antibiotics. 10 µL bacterial 
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suspensions containing approximately 5×105 cfu/mL were added to each of the well of 24-wells 

plates. Plates were incubated for 48 hours at 37˚C under microaerophilic condition. Antibiotics 

commonly used for poultry growth promotion and therapeutics were used. 

 

 

 

Role of BPE on the expression of stress response genes of C. jejuni. 

A. RNA extraction and cDNA synthesis. The extraction of RNA were carried out according to the 

protocol of ZR Bacterial RNA MiniPrep kit (Zymo Research Corp., Irvine, CA). RNA 

quantification were carried out using a NanoDrop spectrophotometer (Thermo Scientific Inc., 

West Palm Beach, FL). The cDNA synthesis were performed according to the protocol of qScript 

cDNA SuperMix (Quanta Biosciences, Gaithersburg, MD). The eluted RNA (1 µg) were mixed 

with 4 µL of 5X qScript cDNA SuperMix containing optimized concentration of MgCl2, dNTPs, 

RNase inhibitor protein, qScript reverse transcriptase, random primers, oligo(dT) primer, and 

stabilizers and then incubated at 25˚C for 5 min, 42˚C for 30 min, and 85˚C for 5 min. 



 

 

102 

 

 

B. Quantitative RT-PCR assay. The mixture containing 10 µL of PerfeCTa SYBR Green FastMix, 

2 µL of each primer (100 nM), 2 µL of cDNA (10 ng), and 4 µL of RNase-free water were 

amplified using an Eco RT PCR system (Illumine, San Diego, CA), which were denatured at 95°C 

for 30 sec, followed by 40 cycles of 95°C for 5 sec, 55°C for 15 sec, and 72°C for 10 sec. The 

custom-synthesized oligonucleotides (Erofins MWG Operon; Huntsville, AL) were used as 

primers to target conserved regions of C. jejuni are listed in Table 5.1. The relative expression 

levels of genes were calculated by the comparative method (Livak, and Schmittgen, 2001). The 

CT values of target genes in treated C. jejuni cells were compared to the CT values obtained from 

the control. The housekeeping gene, 16S ribosomal RNA, were used as the reference gene for 

normalization of target gene expression. 
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Results 

Effect on chicken growth performance. Effect of supplemented diet on chicken growth promotion 

was measured at their 6 weeks of age (Fig. 5.1). Significant growth promotion (9.5% increase in 

mean body weight) was observed in chickens from group B who were provided with AGP  as 

water supplement compared to the group A  that were provided with only tap water (P = 0.001). 

Chickens from group C (provided with 0.1 g GAE/L of BPE) gained higher mean body weight by 

approximately 6% compared to group A (P = 0.029). No significant difference in weight gain was 

observed between group B and C (P = 0.242). Chickens from group D, where BPE concentration 

was increased to 1.0 g GAE/L during last 72 h before euthanasia, showed a mean body weight gain 

by more than 1% compared to group A (P = 0.488). However, when chickens were provided with 

1.0 g AGE/L BPE for consecutive 6 weeks, mean body weight was decreased by 4% compared to 

group A (data not shown) which suggested a concentration dependent mechanism of BPE on 

chicken growth performance. Organ weight to whole body weight ratio remained unaltered for 

spleen (P = 0.844), liver (P = 0.548), heart (P=0.560), and pancreas (0.599) among chickens from 

all 4 groups (Table 5.2). However, a concentration dependent increase in mean cecum length (by 

more than 12%) in chickens was observed when provided with BPE (P = 0.037). 

Hematologic analysis of five randomly selected chickens from each group showed no 

significant difference in tested parameters at alpha value of 0.05 (Table 5.3). Interesting to notice, 

mean RBC number of 2.8 million/µL in groups B and C compared to 2.5 million/µL in group A 

(P = 0.07). Similarly, 8.8 and 9.1 g/dL hemoglobin in groups B and C, respectively, compared to 

8.2 g/dL in group A (P = 0.07). Any behavioral alteration or differences in eating habits were not 

noticed among chickens from any group.    

 

Differential composition of gut microbiota. In order to assess the composition of gut microbiota in 

the 4 treatment groups, we analyzed cecal samples from 12 chickens (3 chickens from each group) 

with next-generation shotgun sequencing. The total number of reads in the cleaned and curated 

datasets from each sample ranged from 4.3×107 to 8.7×107.   

Evaluation of rarefaction curves based on microbial genus richness on sample datasets 

indicated that all 12 curves tend to form a plateau which bear evidence of adequate sequence 

coverage for the vast majority of biodiversity contained within the samples (Fig. 5.2). Rarefaction 
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curves did not reveal a noticeable difference among genus composition in the cecal contents from 

12 chickens. Shannon and Fisher’s diversity indexes calculated at the highest rarefaction depth 

covered in all the samples indicated no significant difference in diversity among the 4 groups at 

genus level. A Neighbor-Joining tree generated using the Bray-Curtis distance matrix indicated 

that there were similar microbial communities in groups B and C, whereas group D mainly 

clustered with group A, though statistical significance was not detected among these relationships 

(Fig. 5.2). One-way ANOVA on relative abundances of microbial domains revealed that group B 

possessed significantly higher number of DNA viruses compared to the other groups (P = 0.031) 

whereas no significant difference in the number of bacteria was observed among all the groups 

(Fig. 5.2). A numeric reduction in the mean relative abundance of bacteria was noticed in group B 

compared to the other groups (P = 0.661). Unpaired t-test analysis on relative abundance of archaea 

demonstrated significantly higher numbers in groups B and C compared to group A (P = 0.049 and 

0.031). Influence of archaeal communities in poultry gut is still an understudied area. Conversion 

of organic compounds to simple volatile fatty acids by fermentative bacteria leads to H2 

accumulation in the gut that inhibits the growth in animals. Methanogenic archaea in GI tract 

consume H2 and help to lower H2 partial pressure in gut (Saengkerdsub and Ricke, 2013).   

Assigned taxonomic profiles at the bacterial phylum level for pooled cecal samples 

revealed that Bacteroidetes was the dominant phylum (56.8%) in group A followed by Firmicutes 

(15%) and Proteobacteria (5%) (Fig. 3A). Relative abundances of bacterial phyla in individual 

samples are presented in supplementary file 3. In group A, relative abundances of Bacteroidetes, 

Firmicutes, and Proteobacteria ranged between 44.6 to 64.3%, 10.3 to 21.5%, and 5.0 to 9.1%, 

respectively (Supplementary file 3). In groups B and C, bacterial phyla distribution was dominated 

by Firmicutes (29.45 and 36.46%) followed by Bacteroidetes (23.62 and 31.11%) and 

Proteobacteria (21.29 and 7.55%). Differences in the community composition were observed 

among the different treatment groups. A higher relative abundance of Bacteroidetes in group A (P 

= 0.023) was detected, whereas a higher abundance of Firmicutes in groups B and C was observed 

compared to the other groups (P = 0.043). Group B possessed highest relative abundance of 

Proteobacteria, which was statistically significant at the alpha = 0.10 level. This finding was 

supported by Looft et al. (2012) who also reported that non-therapeutic concentration of 

chlortetracycline, sulfamethazine, and penicillin administered to piglets increased the prevalence 

of Proteobacteria. Important to note that Proteobacteria include a wide variety of pathogens, such 
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as Escherichia, Campylobacter, Salmonella, Helicobacter, Pseudomonas, and many other notable 

pathogenic genera.  

Significant variation in the mean Firmicutes to Bacteroidetes (F/B) ratio (0.32, 1.32, 1.09, 

and 0.46 in groups A, B, C, and D, respectively) was noticed (P = 0.013). Pearson correlation 

coefficient indicated a moderately positive correlation between F/B ratio to chicken body weight 

(R2 = 0.483) (Fig. 5.3). This finding is supported by previous studies that showed increased F/B 

ratios were associated with AGP supplementation in feed and growth promotion in broilers (Singh 

et al., 2013; Mancabelli et al., 2016). In previous in vitro studies, we observed growth stimulation 

in Firmicutes, specifically probiotic Lactobacillus strains in the presence of berry extracts in broth, 

or chicken fecal medium that presented selective bias towards probiotic population when co-

cultured with pathogens (Yang et al., 2014; Salaheen et al., 2015). These findings indicate 

increased Firmicutes level in chicken ceca might be one of the many factors responsible for growth 

promotion in chickens with BPE supplementation.  

At the genus level a total of 670, 678, 691, and 683 bacterial taxa were identified in groups 

A, B, C, and D, respectively. As the reads were mapped to the lowest common ancestor (LCA) in 

this study, the identified number of genera in broiler cecum may not be comprehensive. Mancabelli 

et al., (2016) identified 252 taxa at genus level in broilers with 16s rRNA profiling. Sequencing 

methods, source of samples, and diet regimens may be responsible for variability in the number of 

bacterial genera in broilers. Significant differences at alpha value of 0.10 in the relative abundances 

of Bacteroides, Lactobacillus, Enterococcus, Escherichia, and Eubacterium genera were identified 

among treatment groups where relative abundance of Bacteroides was the highest in group A; 

Enterococcus and Escherichia in group B; and Lactobacillus and Eubacterium in group C (Fig. 

5.3). Oakley and Kogut (2016) also reported significantly higher abundance of Bacteroides in ceca 

of broilers grown without AGP. Whereas, Viveros et al., (2011) reported higher abundance of 

Lactobacillus in broilers provided with plant extracts. Observed differences in the composition of 

bacterial genera may influence the dynamics of feed to energy conversion in chickens from 

different treatment groups.  

There were no significant differences in the relative abundances of DNA viruses in the 

samples. However, based on presence or absence of a virus in a sample, bacteriophages e.g., Mu-

like viruses, N15-like viruses, Phikz-like viruses, T7-like viruses, and Inoviruses were more 

prevalent in group B (Fig. 5.3). In addition, numerical (but not statistically significant) increase in 
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the mean abundances of Lamda-like viruses, Mardiviruses, and T4-like viruses was noticed in 

group B. Metagenomic studies in swine and mice model reported phage induction in gut due to 

oral supplementation with antibiotics (Allen et al., 2011; Modi et al., 2013). A collateral 

consequence of phage induction is gene transfer that promote both pathogen evolution and transfer 

of antibiotic resistance genes (Allen and Stanton, 2014).     

 

Functional classification of chicken cecal microbiome. Assessment of the functional classification 

of open reading frames based on the KEGG Orthology (KO) database obtained from metagenomic 

datasets revealed significant variation in functional orthologs among the groups (Fig. 5.4). 

Analysis was directed towards enzymes that involved in carbohydrate metabolism and energy 

production and further sorted to enzymes showing variation among different datasets. Significant 

variations were observed in the relative abundance of several enzymes. Phosphoenolpyruvate 

carboxykinase, formate dehydrogenase major subunit, and 2-oxoglutarate dehydrogenase E1 

component (involved in carbon metabolism,  glyoxylate and dicarboxylate metabolism, methane 

metabolism, tryptophan metabolism, and lysine degradation) were more abundant in group C than 

in the other groups (P < 0.10). Whereas, L-xylulokinase, α-glucosidase, and tartronate-

semialdehyde synthase (involved in pentose and glucuronate interconversions, ascorbate, aldarate, 

starch, sucrose, glyoxylate, and dicarboxylate metabolism) were highly abundant in group B (P < 

0.10). Chicken cecal microbiome from group D possessed higher relative abundance of F-type H+-

transporting ATPase subunit beta, and glycerol kinase (P < 0.10). These observations indicate 

metabolic diversions in chickens that were provided with AGPs or BPE, though both of these 

treatments resulted in higher body weight in chickens. These differences can be explained by the 

variability in the microbial communities, especially, Bacteroidetes and Firmicutes, that harbor 

important enzymes (e.g., pectinase, and cellulase) to hydrolyze cell wall components from plant 

based diets (Thomas et al., 2011).   

 

Prediction of the cecal resistome profile. The core The core resistome of the microbial consortia 

residing in chicken cecal contents collected from various groups were generated by screening for 

known bacterial antibiotic resistance genes (ARGs) followed by sorting the genes based on their 

relative abundances (at-least one read per 10 million sequences) in the cecal samples. In silico 

analysis of the resistome profiles demonstrated a higher relative abundance of ARGs in group B 
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compared to group A (P = 0.067) (Fig. 5.5). Core resistomes of groups A, B, C, and D consisted 

69, 103, 88, and 69 ARGs (from 3286, 5870, 3685, and 3081 reads per 10 million sequences), 

respectively. Both transferable ARGs and efflux pump mediatory ARGs were present in these core 

resistomes. Core resistomes of the treatment groups were generated this way: 112, 79, and 103 

ARGs in group A; 129, 124, and 121 ARGs in group B; 108, 102, and 115 ARGs in group C; and 

finally 94, 111, and 80 ARGs in group D. Based on gene functions, the identified ARGs in 

individual samples were further assigned to 14 groups: resistance to aminocoumarin, 

aminoglycosides, beta-lactam, sulfonamides, bacitracin, chloramphenicol, fluoroquinolone 

(transferable element based), glycopeptide antibiotics, trimethoprim, macrolide-lincosamide-

streptogramin B, polymyxin, streptothricin, tetracyclines, and efflux pump conferring resistance. 

Chloramphenicol acetyltransferase (cat) and CcrA beta-lactamase genes were found in all the 

samples but due to assigned abundance threshold, i.e., at-least one read per 10 million sequences, 

these genes were not listed in core resistome of group B. Higher relative abundance of beta-

lactamases were previously reported in broilers grown with AGPs but absence of beta-lactam 

antibiotics in the AGP-mixture that was used in this study may be responsible for lower abundance 

of beta-lactamases (Laube et al., 2013; Mancabelli et al., 2016). Two out of 3 samples from group 

B contained trimethoprim resistance gene, dfrA1, hence missed from the group B resistome but no 

trimethoprim resistance gene was identified in other groups. Sulfonamide resistant dihydropteroate 

synthase genes (sul1 and sul2) were only observed in all the samples from group B but not in other 

groups. sul1 and sul2 are commonly associated with mobile genetic elements and predominance 

of resistant enteric bacteria associated with these genes has been reported in broilers grown with 

AGPs (Diarra et al., 2007; Simmons et al., 2016). In this study, percentages of ARGs associated 

with efflux pump mediated antibiotic resistance in core resistomes of groups A, B, C, and D were 

39.1, 49.5, 46.6, and 39.1, respectively.  

A total of 52 ARGs from 10 out of 14 ARG groups showed coexistence in all of the core 

resistomes. Relative abundances of aminoglycoside, bacitracin, fluoroquinolone (transferable 

elements), polymyxin, streptothricin, tetracycline and efflux pump conferring antibiotic resistance 

genes were higher in group B compared to the other groups (P < 0.05) (Fig. 5.5). Relative 

abundances of macrolide-lincosamaide-streptogramin resistance genes were also significantly 

higher in group B at alpha value of 0.10. No significant variation in the relative abundances of 

aminocoumarin and glycopeptide antibiotic resistance genes were observed. In this study, 
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incorporation of bacitracin (glycopeptide), erythromycin (macrolide), neomycin sulfate 

(aminoglycoside), oxytetracycline (tetracycline), and tylosin (macrolide), supplementation in 

chickens from group B is associated with higher relative abundances of ARGs in the cecal 

resistome. These findings are supported by previous studies that reported the association between 

the use of antibiotics in feed with development of ARGs in complex ecosystems (Andersson and 

Hughes, 2014; Levy 2014; Roca et al., 2015). 

Based on the best-hit results from the DIAMOND analysis using the CARD database, the 

majority of identified ARGs were highly similar to those previously identified in  Actinobacteria, 

Bacteroidetes, Firmicutes, and Proteobacteria (Fig. 5.5). Among the ARGs similar to those 

identified in Actinobacteria, 42 to 54% were more specifically similar to those previously 

identified in the Bifidobacteriales order. Significantly lower ARGs associated with Bacteroidetes 

were identified in group B (0.14%) compared to groups A, C, and D (19.03, 11.01, and 15.64%, 

respectively) which can be explained by reduced relative abundance of Bacteroidetes in cecal 

microbiome of group B. Mancabelli et al., (2016) also observed high abundance of Bacteroidetes-

associated ARGs in cecal resistomes of chickens grown without antibiotic supplementation. 

Alternatively, higher relative abundances of ARGs associated with Proteobacteria were observed 

in group B (41.93%) compared to the other groups. Higher relative abundances of Proteobacteria 

in chichen cecal microbiomes from group B were likely responsible for higher Proteobacteria-

associated ARGs (Danzeisen et al., 2011).   

 

Can C. jejuni become resistant towards BPE? In this study, with consecutive increase of antibiotic 

Kanamycin concentration in the growth medium, we developed C. jejuni strain possessing MIC 

value of > 100 µg/mL towards kanamycin. Consecutive increase of BPE concentration in the 

growth medium resulted in increased MIC to 0.9 mg GAE/mL from pre-documented MIC value 

of 0.3 mg GAE/mL. However, subculturing the BPE resistant C. jejuni in BPE-free medium 

resulted in revival of the original MIC of 0.3 mg GAE/mL. 

Expression of strss response genes in C. jejuni with qRT-PCR showed significant 

downregulation of peroxide-sensing regulator (perB), Flavodoxin I (fldA), Superoxide dismutase 

(sodB), Alkyl hydroperoxide reductase (ahpC), Nonheme iron-containing ferritin (cft), Ferredoxin 

(fdxA), Ferric uptake regulator (fur), Bacterioferritin comigratory protein homolog (BCP), Rod 

shape-determining protein (mreB), membrane fusion protein (cmeA), inner membrane transporter 
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(cmeC), outer membrane lipoprotein (porA), ATP-dependent Clp protease ATP-binding subunit 

(clpA).  

 

 

 

Discussion 

Modulation of gut microbiota with antibiotic growth promoters (AGP) for enhanced performance 

in poultry can be justified until acquisition of antibiotic resistance in zoonotic bacterial pathogens 

through inter-bacterial transfer of antibiotic resistance genes (ARGs) in a complex microbial 

community is considered. In this study, we adopted mass-spec, phylogenetic, and metagenomice 

approaches to evaluate bioactive phenolic extracts (BPE) from blueberry (Vaccinium 

corymbosum) and blackberry (Rubus fruticosus) pomaces as alternative performance enhancer in 

poultry. We raised a total of 300 Cobb-500 broiler chicks receiving water W/ or W/O AGP (tylosin, 

neomycin sulfate, bacitracin, erythromycin, and oxytetracycline), or BPE supplementation for six 

weeks and discovered more than 6% increase in mean chicken weight gain with BPE 

supplementation compared to 9.5% with AGP. BPE caused an AGP-like pattern in bacterial 

community with comparative increase of Firmicutes and a concomitant reduction of Bacteroidetes 

in chicken ceca. This finding is supported by previous literature that showed increased F/B ratio 

in correlation with AGP supplementation in feed and growth promotion in broilers (Singh et al., 

2013; Mancabelli et al., 2016). In previous in vitro studies, we observed growth stimulation in 

Firmicutes, specifically probiotic Lactobacillus strains in the presence of berry extracts in broth, 

or chicken fecal medium that presented selective bias towards probiotic population when co-

cultured with pathogens (Yang et al., 2014; Salaheen et al., 2015). These findings indicate 

increased Firmicutes level in chicken ceca might be one of the many factors behind growth 

promotion in chickens with BPE supplementation. 

AGP supplementation clearly caused phage induction and a richer resistome profile in 

cecal microbiome compared to BPE or regular tap water. Incorporation of bacitracin, 

erythromycin, neomycin sulfate, oxytetracycline, and tylosin, as water supplement in chickens 

from this group can be considered responsible for the phenomenon. Metagenomic studies in swine 

and mice model reported phage induction in gut due to oral supplementation with antibiotics (Allen 

et al., 2011; Modi et al., 2013). A collateral consequence of phage induction is gene transfer that 
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promote both pathogen evolution and transfer of antibiotic resistance genes (Allen and Stanton, 

2014). Both AGP and BPE supplementation resulted in elevated relative abundance of archaea. 

Methanogenic archaea in GI tract consume H2 and help to lower H2 partial pressure in gut 

(Saengkerdsub and Ricke, 2013). 
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Conclusions 

1. BPE supplementation in water increased the mean body weight of chickens by 6%. 

2. BPE caused an AGP-like pattern in bacterial community with comparative increase of 

Firmicutes and a concomitant reduction of Bacteroidetes in chicken ceca.  

3. AGP resulted higher prevalence of bacteriophages in the cecal microbiome compared to 

BPE. 

4. BPE and AGP resulted in cecal microbiome with over-represented functional orthologs 

involved in carbon fixation in photosynthetic bacteria, carbon and amino acid metabolism, 

starch and cellulose metabolism, oxidative phosphorylation, and lipid metabolism.  

5. Analysis of resistome profile of cecal microbiomes revealed higher predicted ARGs in 

chickens provided with AGP compared to BPE. 

6. Sequential increase of BPE in growth medium doubled the MIC of BPE to C. jejuni but 

the strain became susceptible to BPE just after one subculte in BPE-free medium. 

7. BPE significantly downregulated the C. jejuni genes involed in stress response. 
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List of Figures and Tables 

Table 5.1. List of primers for stress response gene expression of C. jejuni 

Function/protein Gene Primer Sequences (5’-3’) References 

Peroxide-sensing 

regulator 

perR Forward TTCAATCTCTTTAGCGACGG Xie et al., 20
11 Reverse CACATTTGGCGCAAACAACA 

Flavodoxin I fldA Forward TCCACCAAGACTAAGCCCTG Xie et al., 

2011 Reverse CAGAAGGAGCGGCTAATACAA 

Iron-binding 

protein 

dps Forward CCACTAATGTTAATATGCGTTCC Xie et al., 

2011 Reverse TGTGCTTGATAATCTTGCGACAA 

Superoxide 

dismutase (Fe) 

sodB Forward TGGCGGTTCATGTCAAAGTA Xie et al., 

2011 Reverse ACCAAAACCATCCTGAACCA 

Alkyl 

hydroperoxide 

reductase 

ahpC Forward AGTTGCCCTTCGTGGTTCGT Xie et al., 

2011 Reverse ATCGCCCTTATTCCATCCTG 

Catalase katA Forward ACCGTTCATGCTAAGGGAAG Xie et al., 

2011 Reverse CCTACCAAGTCCCAGTTTCC 

Nonheme iron-

containing ferritin 

cft Forward TTCTTCTTCGTGTTGTTCGC Xie et al., 

2011 Reverse GCTGGAGCCTTCTTGTTTGC 

Ferredoxin fdxA Forward CCCCACTTCTCATATCAGCG Xie et al., 

2011 Reverse ATGCGTTGAATGCGTAGGAC 

Rubrerythrin rbr Forward TGCAGCAGTTACTAGGTTTT Xie et al., 

2011 Reverse AGACATTTTAGAGAAGCGGC 

Ferric uptake 

regulator 

fur Forward CCATTTCTTTTGGTTCAGCAG Xie et al., 

2011 Reverse TGCAATCAAGGCTTGCTGTC 

Carbon storage 

regulator 

csrA Forward TCAAAGTCGTTCAAACAGGG Xie et al., 

2011 Reverse TCATTCTGAACAACAGAATGC 

Probable thiol 

peroxidase 

tpx Forward GCCAGTTACAATGGTGCTGA Xie et al., 

2011 Reverse TTTGCCACAAAATCACTTGC 

Cochaperonin groES Forward AAACAACAGCCTCAGGCATAA Xie et al., 

2011 Reverse TTCTGTTCCACCGTATTTAGCA 

Chaperonin groEL Forward GCAGGCGATGGAACAACTAC Xie et al., 

2011 Reverse TCCATACCGCGTTTTACCTC 

Chaperone dnaK Forward CGGTATGCCACAAATCGAAG Xie et al., 

2011 Reverse GCTAAGTCCGCTTGAACCTG 

Cochaperone dnaJ Forward TTTAAAAGGCGGTGGATTTG Xie et al., 

2011 Reverse TTTTCTACGACGCGATGATG 

Bacterioferritin 

comigratory 

protein homolog 

BCP Forward ACCCCAGGTTGTACTACAGAAG Xie et al., 

2011 Reverse AGCAATCTTACCTGTTTCATCG 

RelA/Spot family 

protein 

spoT Forward GCCCCAATAGCCCATAGAC Xie et al., 

2011 Reverse ACCCCAAGCAAATCAAGAAC 

Rod shape-

determining 

protein 

mreB Forward GAGCCTTCTGTTGTGGCAGTT Xie et al., 

2011 Reverse AGCGGATCATTTTTTCAGTCAT 

RND efflux 

system; membrane 

fusion protein 

cmeA Forward TATTACGCCGCTAACTTGAG Xie et al., 

2011 Reverse CAGCAAAGAAGAAGCACCAA 

RND efflux 

system; inner 

membrane 

transporter 

cmeB Forward TAATCCAGGTATGGGAGGTA Xie et al., 

2011 Reverse GGAAAGATAGAAATGTAAGCG 
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RND efflux 

system; outer 

membrane 

lipoprotein 

cmeC Forward GGACGTTGAAGCAAGATGGT Xie et al., 

2011 Reverse AGTTGGCGCTGTAGGTGAAT 

Major outer 

membrane protein 

porA Forward TTGATAGCGAACTTGATGAT Xie et al., 

2011 Reverse ATACGAAGTCAGCACCAACG 

Inner membrane 

protein 

yagU Forward CTATTTCCATACCCCACAGC Xie et al., 

2011 Reverse CCTTTAATTGCAGAAGTTCC 

ATP-dependent 

Clp protease ATP-

binding subunit 

clpA Forward GTAGGAGCTGGAAGCACAGG Xie et al., 

2011 Reverse ACGGCGACTTAGGGGTTTAT 
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Table 5.2. Relative organ to body weights and cecum length of broilers at day 42. 

Organs A B C D p-value 

Spleen1 0.13a 0.12a 0.12a 0.13a 0.844 

Liver1 2.18a  2.22a 2.07a 2.08a 0.548 

Heart1  0.53a 0.53a 0.50a 0.53a 0.56 

Pancrease1 0.86a 0.79a 0.79a 0.79a 0.599 

Cecum2 17.24a 18.64a 19.15b 19.43b 0.037 

1Ratio: Organ weight to total body weight during euthanasia; 

2Length (cm) 

Means with different letters (a-d) are significantly different (p < 0.05) 
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Table 5.3. Effect of BPE compared to AGPs on blood parameters and indices of broilers at day 

42. 

Blood parameters A B C D p-value 

RBC (×106/µL) 2.5±0.21 2.8±0.2 2.8±0.1 2.7±0.1 0.07 

WBC (×103/ µL) 551.5±212.6 644.2±159.2 565.7±100.3 774.6±87.3 0.11 

Neutrophil (×103/ µL) 532.4±206.9 617.8±150.5 544.7±93.7 744.4±71.3 0.11 

Lymphocyte (×103/ µL) 13.5±2.6 17.5±6.7 15.4±6.1 17.8±5.4 0.58 

Monocyte (×103/ µL) 0.4±0.4 0.5±0.3 0.7±0.4 0.8±1.5 0.85 

Eosinophil (×103/ µL) 2.5±3.2 5.8±5.8 3.7±5.3 8.6±13.5 0.64 

Basophil (×103/ µL) 2.7±1.7 2.7±1.5 1.3±0.5 3.0±1.0 0.16 

Hemoglobin (g/100mL) 8.2±0.5 8.8±0.6 9.1±0.4 8.8±0.3 0.07 

Hematocrit (%) 29.4±2.1 30.8±1.7 31.4±1.5 30.7±0.9 0.26 

1Values indicate Mean ± Standard deviation; 
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Fig. 5.1. Effect of berry pomace extracts compared to AGPs on the performance of broilers at 

day 42. Groups were assigned in the following manner; broilers from group A (negative control): 

only tap water, group B (positive control): tap water with AGP, group C: tap water with 0.1 g 

GAE/L of BPE, and group D: tap water with 0.1 g GAE/L of BPE for 39 days and 1.0 g GAE/L 

of BPE for last 3 days before euthanasia. * indicates significant variation compared to the 

negative control, group A (p < 0.05). 
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Fig. 5.2. Assessment of alpha-diversity in samples from the control and treatment groups. Panel 

A displays the rarefaction curve indicating genus richness at increasing sequencing depth of 

sample from groups A, B, C, and D. Panel B exhibits Neighbor-Joining tree based on Bray-

Curtis distance matrix encompassing 12 datasets from all the groups. Panel C shows relative 

abundances of various taxa at super kingdom level in various groups. * indicates significant 

difference in a group compared to negative control at P value < 0.05. 
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Fig. 5.3.  Differential composition of chicken ceca microbiota. Panel A depicts bacterial 

distribution at phylum level in 3D plot with pooled datasets. Panel B demonstrates a scatter plot 

of Firmicutes to Bacteoirdetes (F/B) ratio to broiler weight at 42 days of age. Panel C shows 

bacterial distribution at genus level in all the broiler groups.  Finally, panel D displays the 

variation in the presence or absence of DNA viruses at genus level in samples from groups A, B, 

C, and D. 
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Fig. 5.4. Functional classification of chicken cecal microbiomes from groups A, B, C, and D. 

Relative abundances were calculated based on the numbers for every 100 million sequences.  * 

and ** indicates significant difference in relative abundance of a KO functional orthog at alpha 

value of 0.10 and 0.05, respectively. 
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Fig. 5.5. Evaluation of resistome profiles in chicken gut microbiome. Panel A shows relative 

abundance (reads per 10 million sequences) of total Antibiotic Resistance Genes (ARGs) 

observed in core resistomes of broiler ceca from groups A, B, C, and D. Panel B depicts percent 

contribution of microbial taxa on  relative abundances of ARGs in the core resistomes. Panel C 

exhibits a heatmap encompassing relative abundances of shared ARGs among the treatment 

groups in logarithmic scale. 
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Fig. 5.6. Expression of stress response genes in C. jejuni in the presence of BPE. 
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Overall conclusions 

1. Berry pomaces are rich sources of bioactive phenolics. HPLC-MS analysis 

indicated that both blueberry and blackaberry pomace extracts contained thousands 

of compounds. 

2. BPE inhibited C. jejuni growth in vitro, altered its pathogenicity, and 

physicochemical properties, as well as, its interactions with cultured host cells ex-

vivo.  

3. BPE inhibited the growth of commercially important poultry pathogens, e.g., P. 

multocida, S. Gallinarum, and S. Pullorum in vitro. BPE supported probiotic L. 

plantarum to competitively inhibit the growth of pathogenic S. Gallinarum, and S. 

Pullorum in a co-culture model.  

4. 1.0 g GAE/L of BPE as water supplement reduced natural colonization of 

Campylobacter in broiler ceca by 5 logs at 6 weeks of age in floor pens, whereas 

1.0 g GAE/L of BPE as water supplement for 72 h before euthanasia resulted 

approximately 2 logs reduced natural colonization of Campylobacter in chicken 

ceca at 6 weeks of age in floor pens.  

5. 1.0 g GAE/L of BPE reduced marked C. jejuni colonization by 1 log upto 3 weeks 

of age while grown in isolated cageing system. 

6. BPE supplementation in water increased the mean body weight of chickens by 6% 

compared to 9.5% with AGP supplementation. 

7. BPE caused an AGP-like pattern in bacterial community with comparative increase 

of Firmicutes and a concomitant reduction of Bacteroidetes in chicken ceca. 

However, AGP was associated with increased relative abundance of Proteobacteria.  

8. AGP resulted higher prevalence of bacteriophages in the cecal microbiome 

compared to BPE. 

9. BPE and AGP resulted in cecal microbiome with over-represented functional 

orthologs involved in carbohydrate and energy metabolism.  

10. Analysis of resistome profile of cecal microbiomes revealed higher predicted ARGs 

in chickens provided with AGP compared to BPE. 

11. Sequential increase of BPE in growth medium doubled the MIC of BPE to C. jejuni 

but the strain became susceptible to BPE just after one subculte in BPE-free 

medium. 

12. BPE significantly downregulated the C. jejuni genes involed in stress response. 
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Future directions 

1. Supplementation of metagenomic data with metabolomic and    metatranscriptiomic 

datasets. 

2. Large scale growth promotion study at farm level. 

3. Extensive cost-benefit analysis for practical applicability of BPE in farm animal 

production. 
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Glossary 

Probiotics Microorganism that are introduced into the body for beneficial 

purposes. 

Metagenome The total extractable DNA from an environment. The chicken 

cecal metagenome is the collection of the DNA of the chicken 

and the cecal microbiota. Metagenome is often referred to as 

microbiome. 

Metagenomics The study of the metagenome or microbiome. Metagenomics 

can be targeted study with 16S ribosomal RNA or shotgun 

sequencing based untargeted study. 

Microbiota The collective microbial (bacteria, virus, archaea) community 

that inhabit a specific environment, e.g., chicken cecal 

microbiota or human skin microbiota.  

Microbiome The collective microbial genomic contents. It also provides 

information on the the total genetic capacity of the microbial 

community. 

Resistome The collection of antibiotic resistance genes in a microbiome.  

Zoonoses Diseases transmissible from animal to humans. 

 

 

 

 

 

 

 

 

 



 

 

128 

 

References 

[1] Aarestrup, F. M., Bager, F., Jensen, N. E., Madsen, M., Meyling, A., Wegener, 

H. C. (1998). Surveillance of antimicrobial resistance in bacteria isolated from 

food animals to antimicrobial growth promoters and related therapeutic agents in 

Denmark. Apmis 106:606-622. 

[2] Abuelsaad, A. S., Mohamed, I., Allam, G., Al-Solumani, A. A. (2013). 

Antimicrobial and immunomodulating activities of hesperidin and ellagic acid 

against diarrheic Aeromonas hydrophila in a murine model. Life sciences 93:714-

722.  

[3] Adl, S., D. Iron, and T. Kolokolnikov. 2011. A threshold area ratio of organic to 

conventional agriculture causes recurrent pathogen outbreaks in organic 

agriculture. Sci. Total Environ. 409:2192-2197. 

[4] Ahn, J., Almario, J.A., Salaheen, S., Biswas, D., 2014. Physicochemical, 

Mechanical, and Molecular Properties of Nonlysogenic and P22-Lysogenic 

Salmonella Typhimurium Treated with Citrus Oil. J. Food Prot. 77, 758–764. 

[5] Al-haj, A. H., T. Sawada, H. Hatakeyama, Y. Katayama, N. Ohtsuki, and O. Itoh. 

2004. Invasion of chicken embryo fibroblast cells by avian Pasteurella multocida. 

Vet. Microbial. 104:55–62. 

[6] Andersson, D. I., Hughes, D. (2010). Antibiotic resistance and its cost: is it 

possible to reverse resistance? Nat Rev Microbiol. 8:260-271. 

[7] Ankolekar, C. (2013). Lactic acid bacteria mediated phenolic bioactive 

modulation from fruit systems for health benefits. Dissertations. Paper 678. 

http://scholarworks.umass.edu/open_access_dissertations/678 (Accessed May 

29, 2015) 

[8] Aqil, F., Ahmad, I., Owais, M. (2006). Evaluation of anti‐methicillin‐resistant 

Staphylococcus aureus (MRSA) activity and synergy of some bioactive plant 

extracts. Biotec. J. 1:1093-1102. 

[9] Aqil, F., Khan, M. S. A., Owais, M., Ahmad, I. (2005). Effect of certain bioactive 

plant extracts on clinical isolates of β‐lactamase producing methicillin resistant 

Staphylococcus aureus. J Basic Microbiol. 45:106-114. 



 

 

129 

 

[10] Arif, M., and F. R. Champlin. 1998. Adaptive acquisition of novobiocin 

resistance in Pasteurella multocida strains of avian origin. Vet. Res. Commun. 

22:445–455. 

[11] Aura, A. M., Martin-Lopez, P., O’Leary, K. A., Williamson, G., Oksman-

Caldentey, K. M., Poutanen, K., Santos-Buelga, C. (2005). In vitro metabolism 

of anthocyanins by human gut microflora. Eur J Nutr. 44:133-142.  

[12] Ávila, M., M. Hidalgo, C. S. Moreno, C. Pelaez, T. Requena, and S. Pascual-

Teresa. 2009. Bioconversion of anthocyanin glycosides by Bifidobacteria and 

Lactobacillus. Food Res. Int. 42:1453-1461. 

[13] Bae, W., Kaya, K. N., Hancock, D. D., Call, D. R., Park, Y. H., Besser, T. E. 

(2005). Prevalence and antimicrobial resistance of thermophilic Campylobacter 

spp. from cattle farms in Will behington State. Appl Environ Microbiol. 71:169-

174. 

[14] Bajpai, V.K., Baek, K.H., Kang, S.C., 2012. Control of Salmonella in foods by 

using essential oils: a review. Food Res. Int. 45, 722-734. 

[15] Bakar, N. S., Zin, N. M., Basri, D. F. (2012). Synergy of flavone with vancomycin 

and oxacillin against vancomycin-intermediate Staphyloccus aureus. Pak J Pharm 

Sci. 25:633-638.  

[16] Barrow, P. A., and O. C. Freitas Neto. 2011. Pullorum disease and fowl typhoid-

-new thoughts on old diseases: a review. Avian Pathol. 40:1–13.  

[17] Bartosch, S., Fite, A., Macfarlane, G.T. and McMurdo, M.E.T. (2004) 

Characterization of bacterial communities in feces from healthy elderly 

volunteers and hospitalized elderly patients by using real-time PCR and effects 

of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol. 

70:3575–3581. 

[18] Belofsky G, Percivill D, Lewis K, Tegos GP, Ekart J. (2004). Phenolic 

metabolites of Dalea versicolor that enhance antibiotic activity against model 

pathogenic bacteria. J Nat Prod. 67:481–484. 

[19] Berchieri, A., C. K. Murphy, K. Marston, and P. A. Barrow. 2001. Observations 

on the persistence and vertical transmission of Salmonella enterica serovars 



 

 

130 

 

Pullorum and Gallinarum in chickens: effect of bacterial and host genetic 

background. Avian Pathol. 30:221–231.  

[20] Berndtson, E., Danielsson-Tham, M. L., Engvall, A. (1996). Campylobacter 

incidence on a chicken farm and the spread of Campylobacter during the slaughter 

process. Int J Food Microbiol. 32:35-47.  

[21] Berrang, M. E., Buhr, R. J., Cason, J. A., Dickens, J. A. (2001). Broiler carcass 

contamination with Campylobacter from feces during defeathering. J Food Prot. 

64:2063-2066. 

[22] Bialonska, D., Kasimsetty, S.G., Schrader, K.K., and Ferreira, D. 2009. The effect 

of pomegranate (Punica granatum L.) by-products and ellagitannins on the 

growth of human gut bacteria. J Agric Food Chem. 57:8344–8349. 

[23] Biswas, D., K. Itoh, and C. Sasakawa. 2000. Uptake pathways of clinical and 

healthy animal isolates of Campylobacter jejuni into INT-407 cells. FEMS 

Immunol. Med. Microbiol. 29:203–211. 

[24] Biswas, D., Wideman, N. E., O’Bryan, C. A., Muthaiyan, A., Lingbeck, J. M., 

Crandall, P. G., and Ricke, S. C. (2012). Pasteurized blueberry (Vaccinium 

corymbosum) juice inhibits growth of bacterial pathogens in milk but allows 

survival of probiotic bacteria. Journal of Food Safety, 32, 204–209.  

[25] Blaut, M., Clavel, T. (2007). Metabolic diversity of the intestinal microbiota: 

implications for health and disease. J. Nut. 137:751S-755S. 

[26] Boivin, J., Bunting, L., Collins, J.A., Nygren, K.G. (2007). International 

estimates of infertility prevalence and treatment-seeking: Potential need and 

demand for infertility medical care. Human Reproduction. 22:1506–1512. 

[27] Bolger AM, Lohse M, Usadel B. (2014) Trimmomatic: a flexible trimmer for 

Illumina sequence data. Bioinformatics. 30(15):2114±20. 

[28] Bomser, J., D. L. Madhavi, K. Singletary, M. A. Smith. 1996. In vitro anticancer 

activity of fruit extracts from Vaccinium species. Planta Med. 62:212-216. 

[29] Borrathybay, E., T. Sawada, Y. Kataoka, N. Ohtsu, M. Takagi, S. Nakamura, and 

E. Kawamoto. 2003. A 39kDa protein mediates adhesion of avian Pasteurella 

multocida to chicken embryo fibroblast cells. Vet. Microbiol. 97:229–243.  



 

 

131 

 

[30] Bull, S. A., Allen, V. M., Domingue, G., Jørgensen, F., Frost, J. A., Ure, R., 

Humphrey, T. J. (2006). Sources of Campylobacter spp. colonizing housed 

broiler flocks during rearing. App and Env Microbiol. 72:645-652.  

[31] Campieri, M., Gionchetti, P. (2001). Bacteria as the cause of ulcerative colitis. 

Gut, 48(1), 132-135. 

[32] Campos, F.M., Couto, J.A., Hogg, T.A. (2003). Influence of phenolic acids on 

growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J App 

Microbiol. 94:167-174. 

[33] Carpenter LE. 1951. The effect of antibiotics and vitamin B12 on the growth of 

swine. Arch. Biochem. Biophys. 32:187–91 

[34] Cavanagh, H. M., Hipwell, M., Wilkinson, J. M. (2003). Antibacterial activity of 

berry fruits used for culinary purposes. J Med food. 6:57-61.  

[35] CDC (Centers for Disease Control and Prevention) Foodborne Diseases Active 

Surveillance Network (FoodNet), 2011. FoodNet Surveillance 2011 Final Report. 

http://www.cdc.gov/foodnet/PDFs/2011_annual_report_508c.pdf (accessed 

11.13.2013). 

[36] Cermak, R., Breves, G., Lüpke, M., Wolffram, S. (2006). In vitro degradation of 

the flavonol quercetin and of quercetin glycosides in the porcine hindgut. Arch 

Anim Nutr. 60:180-189.  

[37] Chantarapanont, W., Berrang, M., Frank, J. F. (2003). Direct microscopic 

observation and viability determination of Campylobacter jejuni on chicken skin. 

J Food Prot. 66:2222-2230 

[38] Chen, H., Zuo, Y.G., Deng, Y.W. (2001). Separation and determination of 

flavonoids and other phenolic compounds in cranberry juice by high-performance 

liquid chromatography. J Chromatogr. 913:387-395. 

[39] Chiang, S. L., Taylor, R. K., Koomey, M., and Mekalanos, J. J. (1995). Single 

amino acid substitutions in the N-terminus of Vibrio cholerae TcpA affect 

colonization, autoagglutination, and serum resistance. Molecular Microbiology, 

17, 1133-42.  



 

 

132 

 

[40] Chiang, S.L., Taylor, R.K., Koomey, M., Mekalanos, J.J., 1995. Single amino 

acid substitutions in the N-terminus of Vibrio cholerae TcpA affect colonization, 

autoagglutination, and serum resistance. Mol. Microbiol. 17, 1133-1142.  

[41] Chow, S., Gu, K., Jiang, K., Nassour, L., 2011. Salicylic acid affects swimming, 

twitching and swarming motility in Pseudomonas aeroginosa, resulting in 

decreased biofilm formation. JEMI 15, 22-29. 

[42] Chow, S., Gu, K., Jiang, L., and Nassour. (2011). Salicylic acid affects 

swimming, twitching and swarming motility in Pseudomonas aeroginosa, 

resulting in decreased biofilm formation. Journal of Experimental Microbiology 

and Immunology, 15, 22-29. 

[43] Christensen, J. P., and M. Bisgaard. 2000. Fowl cholera Description of the 

aetiological agent. Rev. Sci. Tech. Off. Int. Epiz 19:626–637. 

[44] Chubiz, J.E.C., Golubeva, Y.A., Lin, D., Miller, L.D., Slauch, J.M., 2010. FliZ 

regulates expression of the Salmonella pathogenicity island 1 invasion locus by 

controlling HilD protein activity in Salmonella enterica serovar Typhimurium. J. 

Bacteriol. 192, 6261–6270. 

[45] Chung, K.T., Lu, Z., and Chou, M.W. (1998). Mechanism of inhibition of tannic 

acid and related compounds on the growth of intestinal bacteria. Food Chem 

Toxicol. 36:1053-1060. 

[46] Cisowska, A., Wojnicz, D., Hendrich, A.B. 2011. Anthocyanins as antimicrobial 

agents of natural plant origin. Nat Prod Commun. 6:149-56. 

[47] Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R., Nicholson, J. K. (2009). 

Pharmacometabonomic identification of a significant host-microbiome metabolic 

interaction affecting human drug metabolism. PNAS 106:14728-14733. 

[48] Clayton, T. A., Lindon, J. C., Cloarec, O., Antti, H., Charuel, C., Hanton, G., 

Nicholson, J. K. (2006). Pharmaco-metabonomic phenotyping and personalized 

drug treatment. Nature, 440:1073-1077.  

[49] Clifford, M.N. (2004). Diet-derived phenols in plasma and tissues and their 

implication for health. Planta Medica. 70:1103–1114. 



 

 

133 

 

[50] Clinical and Laboratory Standards Institute. 2009. Methods for Dilution 

Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; 

Approved Standard. Seventh Edition. M07-A7. CLSI, Wayne, PA. 

[51] Costa, E., Uwiera, R. R., Kastelic, J. P., Selinger, L. B., Inglis, G. D. (2011). Non-

therapeutic administration of a model antimicrobial growth promoter modulates 

intestinal immune responses. Gut Pathog. 3:1-15.  

[52] Cotter, P.D. and Hill, C. 2003. Surviving the acid test: Responses of Gram-

positive bacteria to low pH. Microbiology and Molecular Biology Reviews 

67:429–453. 

[53] Cox, L.A., Popken, D.A. (2010). Assessing potential human health hazards and 

benefits from subtherapeutic antibiotics in the United States: tetracyclines as a 

case study. Risk Analysis 30: 432-457. 

[54] Crichton, P. B., and D. C. Old. 1990. Salmonellae of serotypes gallinarum and 

pullorum grouped by biotyping and fimbrial-gene probing. J. Med. Microbiol. 

32:145–152. 

[55] Crosswell, H. E., Dasgupta, A., Alvarado, C. S., Watt, T., Christensen, J. G., De, 

P., Findley, H. W. (2009). PHA665752, a small-molecule inhibitor of c-Met, 

inhibits hepatocyte growth factor-stimulated migration and proliferation of c-

Met-positive neuroblastoma cells. BMC cancer, 9:411. 

[56] Crouvezier, S., Powell, B., Keir, D., Yaqoob, P. (2001). The effects of phenolic 

components of tea on the production of pro-and anti-inflammatory cytokines by 

human leukocytes in vitro. Cytokine, 13:280-286. 

[57] Crozier, A., Jaganath, I. B., Clifford, M. N. (2009). Dietary phenolics: chemistry, 

bioavailability and effects on health. Nat Prod Rep. 26:1001-1043.  

[58] Cui, S., Ge, B., Zheng, J., Meng, J., 2005. Prevalence and antimicrobial resistance 

of Campylobacter spp. and Salmonella serovars in organic chickens from 

Maryland retail stores. Appl. Environ. Microbiol. 71:4108-4111. 

[59] Del Re, B., Sgorbati, B., Miglioli, M., Palenzona, M., 2000. Adhesion, 

autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. 

Lett. Appl. Microbiol. 31, 438-442. 



 

 

134 

 

[60] Deng, Q., Xu, J., Yu, B., He, J., Zhang, K., Ding, X., Chen, D. (2010). Effect of 

dietary tea polyphenols on growth performance and cell-mediated immune 

response of post-weaning piglets under oxidative stress. Arch Anim Nutr. 64:12-

21. 

[61] Djilas, S.M., Tumbas, V.T., Savatovic, S.S., Mandic, A.I., Markov, S.L., 

Cvetkovic, D.D. (2009). Radicalvscavenging and antimicrobial activity of 

horsetail (Equisetum arvense L.) extracts. Food Sci Tech. 44:269-278. 

[62] Donohoe, D. R., Garge, N., Zhang, X., Sun, W., O'Connell, T. M., Bunger, M. 

K., Bultman, S. J. (2011). The microbiome and butyrate regulate energy 

metabolism and autophagy in the mammalian colon. Cell metabolism, 13:517-

526.  

[63] Dubreuil J. D., L. Gilbert, and M. Jacques. 1992. Cell surface characteristics and 

virulence in mice of Pasteurella multocida. Zentralblatt fur Bakteriologie. 

276:366–373 

[64] Ellermeier, C. D., Ellermeier, J.R., Slauch, J.M., 2005. HilD, HilC and RtsA 

constitute a feed forward loop that controls expression of the SPI1 type three 

secretion system regulator hilA in Salmonella enterica serovar Typhimurium. 

Mol. Microbiol. 57, 691–705. 

[65] Espina, L., T. K. Gelaw, S. de Lamo-Castellví, R. Pagán, and D. García-Gonzalo. 

2013. Mechanism of bacterial inactivation by (+)-limonene and its potential use 

in food preservation combined processes. PloS one. 8(2): e56769.  

[66] Esslinger, J., R. S. Seleim, G. Herrmann, and H. Blobel. 1994. Adhesion of 

Pasteurella multocida to HeLa cells and to macrophages of different animal 

species. Revue. Med. Vet. 145:49–53. 

[67] Fanatico, A. 2008. Organic poultry production in the United States. NCAT IP 

331:1–16. 

[68] Fisher, K., and C. Phillips. 2008. Potential antimicrobial uses of essential oils in 

food: is citrus the answer? Trends in Food Science & Technology. 19(3):156–

164.  

[69] Fleschhut, J., Kratzer, F., Rechkemmer, G., Kulling, S. E. (2006). Stability and 

biotransformation of various dietary anthocyanins in vitro. Eur J Nutr. 45:7-18.  



 

 

135 

 

[70] Foley, S. L., R. Nayak, I. B. Hanning, T. J. Johnson, J. Han, and S. C. Ricke. 

2011. Population dynamics of Salmonella enterica serotypes in commercial egg 

and poultry production. Appl. Environ. Microbiol. 77:4273–4279.  

[71] Food and Animal Organization (Fao). Animal production and health. Retrieved 

from http://www.fao.org/ag/againfo/themes/en/poultry/animal_health.html (Last 

accessed on 07.30.2014) 

[72] Food Drug Admin. 2012. Guidance for Industry: The Judicious Use of Medically 

Important Antimicrobial Drugs in Food-Producing Animals.Washington, DC: 

U.S. Food Drug Admin. 

[73] Fouts, D. E., Mongodin, E. F., Mandrell, R. E., Miller, W. G., Rasko, D. A., 

Ravel, J. (2005). Major structural differences and novel potential virulence 

mechanisms from the genomes of multiple Campylobacter species. PLoS Biolog. 

3:15. 

[74] Fouts, D. E., Mongodin, E. F., Mandrell, R. E., Miller, W. G., Rasko, D. A., 

Ravel, J., Brinkac, L. M., DeBoy, R. T., Parker, C. T., Daugherty, S. C., Dodson, 

R. J., Durkin, A. S., Madupu, R., Sullivan, S. A., Shetty, J. U., Ayodeji, M. A., 

Shvartsbeyn, A., Schat, M. C., Badger, J. H., Fraser, C. M., and Nelson, K. E. 

(2005). Major structural differences and novel potential virulence mechanisms 

from the genomes of multiple Campylobacter species. PLoS Biology, 3, e15. 

[75] Franco, D., Sineiro, J., Rubilar, M., Sánchez, M., Jerez, M., Pinelo, M., Costoya, 

N., and Núñez, M. J. (2008). Polyphenols from plant materials: extraction and 

antioxidant power. Electronic journal of environmental, agricultural and food 

chemistry, 7, 3210-3216.  

[76] Gibson, G. R., Macfarlane, G. T., and Cummings, J. H. (1993). Sulphate reducing 

bacteria and hydrogen metabolism in the human large intestine. Gut, 34(4), 437.  

[77] Golden, N. J. (2002). Identification of motility and autoagglutination 

Campylobacter jejuni mutants by random transposon mutagenesis. Infection and 

Immunity, 70, 1761–1771. 

[78] Golden, N.J., 2002. Identification of motility and autoagglutination 

Campylobacter jejuni mutants by random transposon mutagenesis. Infect. 

Immun. 70, 1761–1771. 



 

 

136 

 

[79] Golubeva, Y. A., Sadik, A.Y., Ellermeier, J.R., Slauch, J.M., 2012. Integrating 

global regulatory input into the Salmonella pathogenicity island 1 type III 

secretion system. Genetics 190, 79–90. 

[80] Gong, J., Yu, H., Liu, T., Gill, J.J., Chambers, J.R., Wheatcroft, R., and Sabour, 

P.M. (2008) Effects of zinc bacitracin, bird age and access to range on bacterial 

microbiota in the ileum and caeca of broiler chickens. J Appl Microbiol 104: 

1372–1382. 

[81] Gonthier, M. P., Cheynier, V., Donovan, J. L., Manach, C., Morand, C., Mila, I., 

Scalbert, A. (2003). Microbial aromatic acid metabolites formed in the gut 

account for a major fraction of the polyphenols excreted in urine of rats fed red 

wine polyphenols. J Nutr. 133:461-467.  

[82] Gradel, K. O., Nielsen, H. L., Schønheyder, H. C., Ejlertsen, T., Kristensen, B., 

Nielsen, H. (2009). Increased short-and long-term risk of inflammatory bowel 

disease after Salmonella or campylobacter gastroenteritis. Gastroenterology, 

137:495-501. 

[83] Guerry, P., Alm, R. A., Power, M. E., Logan, S. M., and Trust, T. J. (1991). Role 

of two flagellin genes in Campylobacter motility. Journal of Bacteriology, 173, 

4757–64.  

[84] Hald, B., Skovgård, H., Bang, D. D., Pedersen, K., Dybdahl, J., Jespersen, J. B., 

Madsen, M. (2004). Flies and Campylobacter infection of broiler flocks. 

Emerging Inf Dis. 10:1490.  

[85] Halliwell, B. (2007). Dietary polyphenols: good, bad, or indifferent for your 

health? Cardiovascular Research. 73:341-347. 

[86] Han, F., Lestari, S.I., Pu, S., Ge, B., 2009. Prevalence and antimicrobial resistance 

among Campylobacter spp. in Louisiana retail chickens after the enrofloxacin 

ban. Foodborne Pathog. Dis. 6:163-171. 

[87] Hanning, I., D. Biswas, P. Herrera, M. Roesler, and S. C. Ricke. 2010. Prevalence 

and characterization of Campylobacter jejuni isolated from pasture flock poultry. 

J. Food Sci. 75: M496–502. 



 

 

137 

 

[88] Harbourne, J. F., B. M. Williams, W. H. Parker, and I. H. Fincham. 1963. The 

prevention of fowl typhoid in the field using a freeze-dried 9R vaccine. Vet. Rec. 

75:858–861. 

[89] Harper, M., J. D. Boyce, and B. Adler. 2006. Pasteurella multocida pathogenesis: 

125 years after Pasteur. FEMS Microbiol Lett. 265:1–10.  

[90] Harris, L. J., Farber, J. N., Beuchat, L. R., Parish, M. E., Suslow, T. V., Garrett, 

E. H., Busta, F. F. (2003). Outbreaks associated with fresh produce: incidence, 

growth, and survival of pathogens in fresh and fresh‐cut produce. Comprehensive 

reviews in food science and food safety. 2:78-141. 

[91] Harvey, R. B., Hume, M. E., Droleskey, R. E., Edrington, T. S., Sheffield, C. L., 

Callaway, T. R., Nisbet, D. J. (2005). Further characterization of Campylobacter 

isolated from US dairy cows. Foodbourn Pathog Dis 2:182-187.  

[92] Heilig, H.G., Zoetendal, E.G., Vaughan, E.E., Marteau, P., Akkermans, A.D. de 

Vos, W.M. (2002) Molecular diversity of Lactobacillus spp. and other lactic acid 

bacteria in the human intestine as determined by specific amplification of 16S 

ribosomal DNA. Appl Environ Microbiol. 68:114–123. 

[93] Herath, C., P. Kumar, M. Singh, D. Kumar, S. Ramakrishnan, T. K. Goswami, 

and G. C. Ram. 2010. Experimental iron-inactivated Pasteurella multocida A: 1 

vaccine adjuvanted with bacterial DNA is safe and protects chickens from fowl 

cholera. Vaccine. 28:2284–2289. 

[94] Hernández, F., Madrid, J., García, V., Orengo, J., & Megías, M. D. (2004). 

Influence of two plant extracts on broilers performance, digestibility, and 

digestive organ size. Poultry Science, 83(2), 169–174. 

[95] Herrmann, K. 1989. Occurrence and content of hydroxycinnamic and 

hydroxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr. 28:315–347. 

[96] Hong, Y. H., Lillehoj, H. S., Lee, S. H., Park, D. W., Lillehoj, E. P. (2006). 

Molecular cloning and characterization of chicken lipopolysaccharide-induced 

TNF-α factor (LITAF). Developmental and Comparative Immunology, 30:919-

929. 

[97] Hörman, A., Rimhanen-Finne, R., Maunula, L., von Bonsdorff, C. H., Torvela, 

N., Heikinheimo, A., and Hänninen, M. L. (2004). Campylobacter spp., Giardia 



 

 

138 

 

spp., Cryptosporidium spp., noroviruses, and indicator organisms in surface water 

in southwestern Finland, 2000-2001. Applied and Environmental Microbiology, 

70(1), 87-95. 

[98] Howell, A.B. and Souza, D.H.D. 2013. The pomegranate: Effects on bacteria and 

viruses that influence human health. Evidence-Based Complementary and 

Alternative Medicine 2013:606212. 

[99] Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of 

metagenomic data. Genome research, 17(3), 377-386. 

[100] Hütt, P., J. Shchepetova, K. Lõivukene, T. Kullisaar, and M. Mikelsaar. 2006. 

Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- 

and uropathogens. J. Appl. Microbiol. 100:1324–1332.  

[101] ICMSF, 1996. Salmonellae. Ch 14 In: Microorganisms in food 5: Microbiological 

specifications of food pathogens. Blackie Academic and Professional, London, p. 

217–264 

[102] Inglis, G. D., Kalischuk, L. D., and Busz, H. W. (2004). Chronic shedding of 

Campylobacter species in beef cattle. Journal of applied microbiology, 97(2), 

410-420.  

[103] Jacobs-Rietsma, W., 2000. Campylobacter in the food supply, p 467-482. In 

Nachamkin I, Blaser MJ (ed), Campylobacter, 2nd ed. American Society for 

Microbiology, Washington, DC. 

[104] Jensen, A. N., Hansen, L. L., Baggesen, D. L., and Mølbak, L. (2013). Effects of 

feeding finisher pigs with chicory or lupine feed for one week or two weeks 

before slaughter with respect to levels of Bifidobacteria and Campylobacter. 

Animal, 7(01), 66-74. 

[105] Jepson, R. G. and J. C. Craig. 2008. Cranberries for preventing urinary tract 

infections. Cochrane Database of Systematic Reviews 1: Art. No.:CD001321. 

[106] Jepson, R. G., & Craig, J. C. (2007). A systematic review of the evidence for 

cranberries and blueberries in UTI prevention. Molecular nutrition & food 

research, 51(6), 738-745. 

[107] Johnston, C., Pegues, D.A., Hueck, C.J., Lee, A., Miller, S.I., 1996. 

Transcriptional activation of Salmonella typhimurium invasion genes by a 



 

 

139 

 

member of the phosphorylated response-regulator superfamily. Mol. Microbiol. 

22, 715–727. 

[108] Jukes TH. 1977. The history of the “antibiotic growth effect”. Fed. Proc. 

36:2514–18 

[109] Kaplan, J.B., 2011. Antibiotic-induced biofilm formation. Int. J. Artif. Organs. 

34(9), 737-751. 

[110] Keppler, K., and Humpf, H. U. (2005). Metabolism of anthocyanins and their 

phenolic degradation products by the intestinal microflora. Bioorganic and 

medicinal chemistry, 13(17), 5195-5205. 

[111] Kim, J.M., Marshall, M.R., Cornell, J.A., Preston, J.F., and Wei, C.I. 1995. 

Antibacterial activity of carvacrol, citral, and geraniol against Salmonella 

Typhimurium in culture medium and on fish cubes. Journal of Food Science 

60:1364–1368. 

[112] Klancˇnik, A., Mozˇina, S. S., and Zhang, Q. (2012). Anti-Campylobacter 

activities and resistance mechanisms of natural phenolic compounds in 

campylobacter. PLoS One, 7, e51800. 

[113] Klančnik, A., Botteldoorn, N., Herman, L., and Možina, S. S. (2006). Survival 

and stress induced expression of groEL and rpoD of Campylobacter jejuni from 

different growth phases. International journal of food microbiology, 112(3), 200-

207. 

[114] Konaté, K., Zerbo, P., Ouédraogo, M., Dibala, C. I., Adama, H., Sytar, O., 

Brestic, M., and Barro, N. 2013. Anti-nociceptive properties in rodents and the 

possibility of using polyphenol-rich fractions from sida urens L. (Malvaceae) 

against of dental caries bacteria. Annals of Clinical Microbiology and 

Antimicrobials, 12, 14 

[115] Konkel, M. E., Kim, B. J., Rivera-Amill, V., and Garvis, S. G. (1999). Bacterial 

secreted proteins are required for the internaliztion of Campylobacter jejuni into 

cultured mammalian cells. Molecular Microbiology, 32, 691–701. 

[116] Kristensen, I. 1998. Organic egg, meat and plant production – bio-technical 

results from farms In: Kristensen, T. (ed.) Report of the Danish Institute of 

Agriculture Science vol 1, pp. 95–169. 



 

 

140 

 

[117] Kuehn B. M. 2014. FDA moves to curb antibiotic use in livestock. The Journal 

of American Medical Association, 311: 347–348. 

[118] Kusumaningrum, H. D., Riboldi, G., Hazeleger, W. C., and Beumer, R. R. (2003). 

Survival of foodborne pathogens on stainless steel surfaces and cross-

contamination to foods. International journal of food microbiology, 85(3), 227-

236. 

[119] Kwon, H. J., T. E. Kim, S. H. Cho, J. G. Seol, B. J. Kim, J. W. Hyun, K. Y. Park, 

S. J. Kim, H. and S. Yoo. 2002. Distribution and characterization of class 1 

integrons in Salmonella enterica serotype Gallinarum biotype Gallinarum. Vet. 

Microbiol. 89:303-309. 

[120] Lacombe, A., S. Tadepalli, C. A. Hwang, and V. C. H. Wu. 2013. Phytochemicals 

in Lowbush Wild Blueberry inactivate Escherichia coli O157:H7 by damaging its 

cell membrane. Foodborne Pathog. Dis. 10:944-50.  

[121] Lara-Tejero, M., and Galan, J. E. (2001). CdtA, CdtB and CdtC form a tripartite 

complex that is required for cytolethal distending toxin activity. Infection and 

Immunity, 60, 4358–4365. 

[122] Lee, D.-H., Zo, Y.-G. and Kim, S.-J. (1996) Nonradioactive method to study 

genetic profiles of natural bacterial communities by PCR-single-strand-

conformation polymorphism. Applied Environmental Microbiology 62, 3112–

3120. 

[123] Lee, Y.J., K. S. Kim, J. H. Kim, and R. B. Tak. 2004. Salmonella Gallinarum 

gyrA mutations associated with fluoroquinolone resistance. Avian Pathol. 

33:251-257. 

[124] Lim, S., Lee, B., Kim, M., Kim, D., Yoon, H., Yong, K., Kang, D.H., Ryu, S., 

2012. Analysis of HilC/D-dependent invF promoter expression under different 

culture conditions. Microb. Pathog. 52, 359–366. 

[125] Lin, J. (2009). Novel approaches for Campylobacter control in poultry. 

Foodborne Pathogens and Disease, 6, 755–65. 

[126] Lipsitch, M., Singer, R. S., & Levin, B. R. (2002). Antibiotics in agriculture: 

When is it time to close the barn door?. Proceedings of the National Academy of 

Sciences, 99(9), 5752-5754. 



 

 

141 

 

[127] Liu, M. H., Otsuka, N., Noyori, K., Shiota, S., Ogawa, W., Kuroda, T., ... and 

Tsuchiya, T. (2009). Synergistic effect of kaempferol glycosides purified from 

Laurus nobilis and fluoroquinolones on methicillin-resistant Staphylococcus 

aureus. Biological and pharmaceutical bulletin, (32), 489-92. 

[128] Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression 

data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 25, 402-

408. 

[129] Lord, R. S., and Bralley, J. A. (2008). Clinical applications of urinary organic 

acids. Part 2. Dysbiosis markers. Altern Med Rev, 13(4), 292-306.  

[130] Lou, Z., Wang, H., Zhu, S., Ma, C., and Wang, Z. (2011). Antibacterial activity 

and mechanism of action of chlorogenic acid. Journal of food science, 76(6), 

M398–403. 

[131] Luangtongkum, T., Morishita, T.Y., Ison, A.J., Huang, S., McDermott, P.F., 

Zhang, Q., 2006. Effect of conventional and organic production practices on the 

prevalence and antimicrobial resistance of Campylobacter spp. in poultry. Appl. 

Environ. Microbiol. 72, 3600-3607. 

[132] M.E. Coates, R. Fuller, G.F. Harrison, M. Lev, S.F. Suffolk. A comparison of the 

growth of chicks in the Gustafsson germ-free apparatus and in a conventional 

environment, with and without dietary supplements of penicillin. British Journal 

of Nutrition, 17 (1963), pp. 141–150 

[133] Maillard, J.Y. 2002. Bacterial target sites for biocide action. Journal of Applied 

Microbiology (Symposium Supplement) 90:16S–27S. 

[134] Malorny, B., Paccassoni, E., Fach, P., Martin, A., Helmuth, R., and Bunge, C. 

(2004). Diagnostic Real-Time PCR for Detection of Salmonella in Food. Applied 

and Environmental Microbiology, 70(12), 7046–7052.  

[135] Manach, C., Hubert, J., Llorach, R., and Scalbert, A. (2009). The complex links 

between dietary phytochemicals and human health deciphered by metabolomics. 

Molecular nutrition and food research, 53(10), 1303-1315.  

[136] Manach, C., Mazur, A., and Scalbert, A. (2005). Polyphenols and prevention of 

cardiovascular diseases. Current opinion in lipidology, 16(1), 77-84.  



 

 

142 

 

[137] Manach, C., Scalbert, A., Morand, C., Rémésy, C., and Jiménez, L. (2004). 

Polyphenols: food sources and bioavailability. The American journal of clinical 

nutrition, 79(5), 727-747.  

[138] Mandrell, R.E., Brandl, M.T., 2004. Campylobacter species and fresh produce: 

outbreaks, incidence and biology, p 59-72. In Beier R, Ziprin R, Pillai S, Philips 

T (ed), Pre-harvest and post-harvest food safety: contemporary issues and future 

directions, Blackwell, Ames. 

[139] Mantley, J. A., and B. S. Buslig. 1998. “Flavonoids in the Living System,” In: J. 

A. Mantley and B. S. Buslig, Eds., Advances in Experimental Medicine and 

Biology, Plenum Press, New York, p. 278. 

[140] Matsuki, T., Watanabe, K., Fujimoto, J., Miyamoto, Y., Takada, T., Matsumoto, 

K., Oyaizu, H. and Tanaka, R. (2002) Development of 16S rRNA-gene-targeted 

group-specific primers for the detection and identification of predominant 

bacteria in human feces. Applied Environmental Microbiology 68, 5445–5451. 

[141] May, J., Shannon, K., King, A., and French, G. (1998). Glycopeptide tolerance in 

Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 42,189–197. 

[142] Mayer, R., Stecher, G., Wuerzner, R., Silva, R. C., Sultana, T., Trojer, L., ... and 

Bonn, G. K. (2008). Proanthocyanidins: target compounds as antibacterial agents. 

Journal of agricultural and food Chemistry, 56(16), 6959-6966. 

[143] McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar 

K, Canova MJ, De Pascale G, Ejim L, Kalan L. The comprehensive antibiotic 

resistance database. Antimicrobial agents and chemotherapy. 2013 Jul 

1;57(7):3348-57. 

[144] Meerburg, B. G., Jacobs-Reitsma, W. F., Wagenaar, J. A., and Kijlstra, A. (2006). 

Presence of Salmonella and Campylobacter spp. in wild small mammals on 

organic farms. Applied and environmental microbiology, 72(1), 960-962.  

[145] Menozzi, F. D., Boucher, P. E., Riveau, G., Gantiez, C., and Locht, C. (1994). 

Surface-associated filamentous hemagglutinin induces autoagglutination of 

Bordetella pertussis. Infection and Immunity, 62, 4261-4269. 

[146] Mertz, C., Cheynier, V., Günata, Z., Brat, P., 2007. Analysis of phenolic 

compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) 



 

 

143 

 

by high-performance liquid chromatography with diode array detection and 

electrospray ion trap mass spectrometry. J. Agric. Food Chem. 55, 8616-8624. 

[147] Modi SR, Lee HH, Spina CS, Collins JJ. 2013. Antibiotic treatment expands the 

resistance reservoir and ecological network of the phage metagenome. Nature 

499:219–22 

[148] Moore PR, Evenson A, et al. 1946. Use of Sulfasuxidine, streptothricin, and 

streptomycin in nutritional studies with the chick. J. Biol. Chem. 165:437–41 

[149] Murphy, C., Carroll, C., and Jordan, K. N. (2006). Environmental survival 

mechanisms of the foodborne pathogen Campylobacter jejuni. Journal of Applied 

Microbiology, 100(4), 623-632. 

[150] Muthaiyan, A., Martin, E.M., Natesan, S., Crandall, P.G., Wilkinson, B.J., and 

Ricke, S.C. 2012. Antimicrobial effect and mode of action of terpeneless cold-

pressed Valencia orange essential oil on methicillin-resistant Staphylococcus 

aureus. Journal of Applied Microbiology 112:1020–1033. 

[151] Nadeau, É., Messier, S., and Quessy, S. (2002). Prevalence and comparison of 

genetic profiles of Campylobacter strains isolated from poultry and sporadic 

cases of campylobacteriosis in humans. Journal of Food Protection, 65(1), 73-78. 

[152] Nicholson, J. K., Holmes, E., and Wilson, I. D. (2005). Gut microorganisms, 

mammalian metabolism and personalized health care. Nature Reviews 

Microbiology, 3(5), 431-438.  

[153] Nkanwen, E. R. S., D. Gatsing, D. Ngamga, S. P. C. Fodouop, and P. Tane. 2009. 

Antibacterial agents from the leaves of Crinum purpurascens herb 

(Amaryllidaceae). African health sciences. 9(4):264–269 

[154] Nohynek, L.J., Alakomi, H.L., Kähkönen, M.P., Heinonen, M., Helander, I.M., 

Oksman-Caldentey, K.M., 2006. Berry phenolics: antimicrobial properties and 

mechanisms of action against severe human pathogens. Nutrition & Cancer 54, 

18–32. 

[155] Nualkaekul, S. and Charalampopoulos, D. 2011. Survival of Lactobacillus 

plantarum in model solutions and fruit juices. International Journal of Food 

Microbiology 146(2):111–117. 



 

 

144 

 

[156] O’May, C. and Tufenkji, N. 2011. The swarming motility of Pseudomonas 

aeruginosa is blocked by cranberry proanthocyanidins and other tannin-

containing materials. Applied and Environmental Microbiology 77:3061–3067. 

[157] Obiri‐Danso, K., Paul, N., and Jones, K. (2001). The effects of UVB and 

temperature on the survival of natural populations and pure cultures of 

Campylobacter jejuni, Camp. coli, Camp. lari and urease‐positive thermophilic 

campylobacters (UPTC) in surface waters. Journal of applied microbiology, 

90(2), 256-267. 

[158] Oliveira, K., Oliveira, T., Teixeira, P., Azeredo, J., Oliveira, R., 2007. Adhesion 

of Salmonella Enteritidis to stainless steel surfaces. Brazilian J. Microbiol. 38, 

318-323. 

[159] O'May, C., and Tufenkji, N. (2011). The swarming motility of Pseudomonas 

aeruginosa is blocked by cranberry proanthocyanidins and other tannin-

containing materials. Applied Environmental Microbiology, 77, 3061-3067. 

[160] Pan, Z., X. Wang, X. Zhang, S. Geng, X. Chen, W. Pan, Q. Cong, and X. Liu. 

2009. Changes in antimicrobial resistance among Salmonella enterica subspecies 

enterica serovar Pullorum isolates in China from 1962 to 2007. Vet. Microbiol. 

136:387-392. 

[161] Peng, M., Aryal, U., Cooper, B., Biswas, D., 2015. Metabolites produced during 

the growth of probiotics in cocoa supplementation and the limited role of cocoa 

in host-enteric bacterial pathogen interactions. Food Control 53, 124-133. 

[162] Peng, M., Salaheen, S., Almario, J.A., Tesfaye, B., Buchanan, R., Biswas, D., 

2016. Prevalence and antibiotic resistance pattern of Salmonella serovars in 

integrated crop-livestock farms and their products sold in local markets. Environ. 

Microbiol. 18, 1654-1565. 

[163] Peter, H. and John, H. (2004). Antibiotic growth-promoters in food animals. Food 

and Agriculture Organization of the U.S. 

[164] Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., and Núnez, M.J. (2005). Effect of 

solvent, temperature, and solvent-to-solid ratio on the total phenolic content and 

antiradical activity of extracts from different components of grape pomace. 

Journal of Agricultural and Food Chemistry, 53, 2111–2117. 



 

 

145 

 

[165] Poly, F., and Guerry, P. (2008). Pathogenesis of Campylobacter. Current Opinion 

in Gastroenterology, 24, 27e31. 

[166] Pope, J. E., Krizova, A., Garg, A. X., Thiessen-Philbrook, H., and Ouimet, J. M. 

(2007, August). Campylobacter reactive arthritis: a systematic review. In 

Seminars in arthritis and rheumatism (Vol. 37, No. 1, pp. 48-55). WB Saunders. 

[167] Porter, R.E. 1998. Bacterial Enteritides of Poultry. Poult. Sci. 77:1159–1165. 

[168] Possemiers, S., Bolca, S., Grootaert, C., Heyerick, A., Decroos, K., Dhooge, W., 

and Van de Wiele, T. (2006). The prenylflavonoid isoxanthohumol from hops 

(Humulus lupulus L.) is activated into the potent phytoestrogen 8-

prenylnaringenin in vitro and in the human intestine. The Journal of nutrition, 

136(7), 1862-1867.  

[169] Price, L.B., Johnson, E., Vailes, R., Silbergeld, E., 2005. Fluoroquinolone-

resistant Campylobacter isolates from conventional and antibiotic-free chicken 

products. Environ. Health Perspect. 113, 557-560.  

[170] Puupponen-Pimiä, R., L. Nohynek, H. L. Alakomi, and K. M. Oksman-

Caldentey. 2005. Bioactive berry compounds-novel tools against human 

pathogens. Appl. Microbiol. Biotechnol. 67: 8–18. 

[171] Puupponen-Pimiä, R., Nohynek, L., Ammann, S., Oksman-Caldentey, K.M., and 

Buchert, J. 2008. Enzymeassisted processing increases antimicrobial and 

antioxidant activity of bilberry. Journal of Agricultural and Food Chemistry 

56:681–688. 

[172] Puupponen-Pimiä, R., Nohynek, L., Meier, C., Kahkonen, M., Heinonen, M., 

Hopia, A., and Oksman- Caldentey, K.M. 2001. Antimicrobial properties of 

phenolic compounds from berries. Journal of Applied Microbiology 90(4):494–

507. 

[173] Reid, G., Hsiehl, J., Potter, P., Mighton, J., Lam, D., Warren, D., and Stephenson, 

J. 2001. Cranberry juice consumption may reduce biofilms on uroepithelial cells: 

Pilot study in spinal cord injured patients. Spinal Cord 39:26–30. 

[174] Rhodes, J. M., and Campbell, B. J. (2002). Inflammation and colorectal cancer: 

IBD-associated and sporadic cancer compared. Trends in molecular medicine, 

8(1), 10-16. 



 

 

146 

 

[175] Rinttila, T., Kassinen, A., Malinen, E., Krogius, L. and Palva, A. (2004) 

Development of an extensive set of 16S rDNAtargeted primers for quantification 

of pathogenic and indigenous bacteria in faecal samples by real-time PCR. 

Journal of Applied Microbiology 97, 1166–1177. 

[176] Rodríguez, H., J. A. Curiel, J. M. Landete, B. de las Rivas, F. López de Felipe, 

C. Gómez-Cordovés, J. M. Mancheño, and R. Muñoz. 2009. Food phenolics and 

lactic acid bacteria. Int. J. Food Microbiol. 132:79–90. 

[177] Rosenberg, M., D. Gutnick, E. Rosenberg. 1980. Adherence of bacteria to 

hydrocarbons: a simple method for measuring cell surface hydrophobicity FEMS 

Microbiol. Lett. 9:29–33. 

[178] Rosenquist, H., Nielsen, N. L., Sommer, H. M., Nørrung, B., and Christensen, B. 

B. (2003). Quantitative risk assessment of human campylobacteriosis associated 

with thermotolerant Campylobacter species in chickens. International Journal of 

Food Microbiology, 83, 87–103. 

[179] Rowland I, Wiseman H, Sanders T, Adlercreutz H, Bowey E (1999) Metabolism 

of oestrogens and phytoestrogens: Role of the gut microflora. Biochemical 

Society Transactions 27:304–308. 

[180] Saavedra, M. J., Borges, A., Dias, C., Aires, A., Bennett, R. N., Rosa, E. S., and 

Simões, M. (2010). Antimicrobial activity of phenolics and glucosinolate 

hydrolysis products and their synergy with streptomycin against pathogenic 

bacteria. Medicinal Chemistry, 6(3), 174-183. 

[181] Saengkerdsub, S., & Ricke, S. C. (2014). Ecology and characteristics of 

methanogenic archaea in animals and humans. Critical reviews in microbiology, 

40(2), 97-116. 

[182] Salaheen, S., B. White, B. J. Bequette, and D. Biswas. 2014c. Peanut fractions 

boost the growth of Lactobacillus casei that alters the interactions between 

Campylobacter jejuni and host epithelial cells. Food Res. Int. 62:1141–1146.  

[183] Salaheen, S., C. Nguyen, D. Hewes, and D. Biswas. 2014b. Cheap extraction of 

antibacterial compounds of berry pomace and their mode of action against the 

pathogen Campylobacter jejuni. Food Control. 46:174–181. 



 

 

147 

 

[184] Salaheen, S., J. A. Almario, and D. Biswas. 2014a. Inhibition of growth and 

alteration of host cell interactions of Pasteurella multocida with natural 

byproducts. Poult. Sci. 93:1375–1382. 

[185] Salaheen, S., Jaiswal, E., Joo, J., Peng, M., Ho, R., OConnor, D., and Biswas, D. 

(2016). Bioactive extracts from berry byproducts on the pathogenicity of 

Salmonella Typhimurium. International Journal of Food Microbiology, 237, 128–

135. 

[186] Salaheen, S., Nguyen, C., Mui, C., Biswas, D., 2015. Bioactive berry juice 

byproducts as alternative and natural inhibitors for Salmonella Gallinarum and 

Salmonella Pullorum. J. Appl. Poult. Res. 24, 186-197. 

[187] Salihu, A. E., F. C. Onwuliri, and J. D. Mawak. 2014. Antimicrobial resistance 

profiles of Salmonella gallinarum isolates from free-range chickens in Nasarawa 

state, Nigeria. International Journal of Bacteriology. 2:19–27. 

[188] Santangelo, C., Var`ı, R., Scazzocchio, B., Di Benedetto, R., and Masella, R. 

(2007). Polyphenols, intracellular signalling and inflammation. Annali 

dell’Istituto Superiore di Sanita,` 43:394–405. 

[189] Saran, S., Bisht, M. S., and Singh, K. (2012). Comparing Adhesion Attributes of 

two Isolates of Lactobacillus Acidophilus for assessment of prebiotics, honey and 

Inulin. International Journal of Scientific and Research Publications, 2, 2–8. 

[190] Sasaki, M., and Klapproth, J. M. A. (2012). The role of bacteria in the 

pathogenesis of ulcerative colitis. Journal of signal transduction, 2012. 

[191] Sasaki, R., Nishimura, N., Hoshino, H., Isa, Y., Kadowaki, M. et al. 2007. 

Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to 

downregulation of retinol binding protein 4 expression in diabetic mice. 

Biochemical Pharmacology 74:1619–1627. 

[192] Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary 

polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306. 

[193] Scalbert A, Morand C, Manach C, Rémésy C (2002) Absorption and metabolism 

of polyphenols in the gut and impact on health. Biomed Pharmacother 56:276–

282. 



 

 

148 

 

[194] Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry, 30, 

3875–3883.  

[195] Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, 

S.L., Jones, J.L. and Griffin, P.M., 2011. Foodborne illness acquired in the United 

States—major pathogens. Emerg. Infect. Dis. 17(1). 

[196] Scharff, R. L. (2012). Economic burden from health losses due to foodborne 

illness in the United States. Journal of Food Protection, 75(1), 123-131. 

[197] Scheinberg, J., Doores, S., and Cutter, C. N. (2013). A microbiological 

comparison of poultry products obtained from farmers' markets and supermarkets 

in Pennsylvania. Journal of Food Safety, 33(3), 259-264. 

[198] Scherer, K., Bartelt, E., Sommerfeld, C., and Hildebrandt, G. (2006). 

Quantification of Campylobacter on the surface and in the muscle of chicken legs 

at retail. Journal of Food Protection, 69(4), 757-761.  

[199] Schmieder R, and Edwards R. (2011) Fast identification and removal of sequence 

contamination from genomic and metagenomic datasets. PLoS ONE 6:e17288. 

[200] Seeram, N.P., Henning, S.M., Zhang, Y., Suchard, M., Li, Z., and Heber, D. 2006. 

Pomegranate juice ellagitannins metabolites are present in human plasma and 

some persist in urine for up to 48 h. Journal of Nutrition 136:2481–2485. 

[201] Selma, M. V., Espin, J. C., and Tomas-Barberan, F. A. (2009). Interaction 

between phenolics and gut microbiota: role in human health. Journal of 

Agricultural and Food Chemistry, 57(15), 6485-6501. 

[202] Servin, A. L. 2004. Antagonistic activities of lactobacilli and bifidobacteria 

against microbial pathogens. FEMS Microbiol. Rev. 28:405-40. 

[203] Sharma HN, Mahanta HC. 2000. Modulation of morphological changes of 

endometrial surface epithelium by administration of composite root extract in 

albino rat. The Journal of Contraception 62:51-54. 

[204] Shivaprasad, H. L. 2000. Fowl typhoid and pullorum disease. Revue Scientifique 

et Technique (International Office of Epizootics), 19:405–24.  

[205] Silva E. N., G. H. Snoeyenbos, O. M. Weinack and C. F. Smyser. 1981. Studies 

on the use of 9R strain Salmonella Gallinarum as a vaccine in chickens. Avian 

Dis. 25:38–52. 



 

 

149 

 

[206] Singh, P., Karimi, A., Devendra, K., Waldroup, P.W., Cho, K.K., and Kwon, 

Y.M. (2013) Influence of penicillin on microbial diversity of the cecal microbiota 

in broiler chickens. Poult Sci 92: 272–276. 

[207] Singh, U., and Jialal, I. (2004). Anti-inflammatory effects of alpha-tocopherol. 

Annals of the New York Academy of Sciences, 1031(Cvd), 195–203. 

doi:10.1196/annals.1331.019 

[208] Singleton, V. L., Orthofer, R., and Lamuela-Raventos, R. M. (1999). Analysis of 

total phenols and other oxidation substrates and antioxidants by means of 

FolineCiocalteu reagent. Methods in Enzymology, 299, 152-178. 

[209] Smith, C. K., Kaiser, P., Rothwell, L., Humphrey, T., Barrow, P. A., and Jones, 

M. A. (2005). Campylobacter jejuni-induced cytokine responses in avian cells. 

Infection and immunity, 73(4), 2094-2100. 

[210] Smith, K.E., Besser, J.M., Hedberg, C.W., Leano, F.T., Bender, J.B., Wicklund, 

J.H., Johnson, B.P., Moore, K.A., Osterholm, M.T., 1999. Quinolone-resistant 

Campylobacter jejuni infections in Minnesota, 1992–1998. Investigation Team. 

N. Engl. J. Med. 340, 1525–1532. 

[211] Solomon, E. B., and Hoover, D. G. (2004). Inactivation of Campylobacter jejuni 

by high hydrostatic pressure. Letters in applied microbiology, 38(6), 505-509. 

[212] Soria, M. C., M. Soria, A, D. J. Bueno, and H. R. Terzolo. 2013. Comparison of 

3 culture methods and PCR assays for Salmonella gallinarum and Salmonella 

pullorum detection in poultry feed. Poult. Sci. 92:1505–1515.  

[213] Spigno, G., Tramelli, L., and De Faveri, D. M. (2007). Effects of extraction time, 

temperature and solvent on concentration and antioxidant activity of grape marc 

phenolics. Journal of Food Engineering, 81, 200–208. 

[214] Steinberg, F. M., Bearden, M. M., and Keen, C. L. (2003). Cocoa and chocolate 

flavonoids: implications for cardiovascular health. Journal of the American 

Dietetic Association, 103(2), 215-223.  

[215] Stern, N. J., Clavero, M. R. S., Bailey, J. S., Cox, N. A., and Robach, M. C. 

(1995). Campylobacter spp. in broilers on the farm and after transport. Poultry 

Science, 74(6), 937-941. 



 

 

150 

 

[216] Stokholm N. M., A. Permin, M. Bisgaard, and J. P. Christensen. 2010. Causes of 

mortality in commercial organic layers in Denmark. Avian Dis. 54:1241-1250. 

[217] Stokholm N. M., A. Permin, M. Bisgaard, and J.P. Christensen. 2010. Causes of 

mortality in commercial organic layers in Denmark. Avian Dis. 54:1241-1250. 

[218] Ternhag, A., Törner, A., Svensson, Å., Ekdahl, K., and Giesecke, J. (2008). Short-

and long-term effects of bacterial gastrointestinal infections. Emerging infectious 

diseases, 14(1), 143. 

[219] Thies, K. L., F. R. Champlin. 1989. Compositional factors influencing cell 

surface hydrophobicity of pasteurella multocida variants. Curr. Microbiol. 

18:385-390. 

[220] Torok, V. A., Allison, G. E., Percy, N. J., Ophel-Keller, K., & Hughes, R. J. 

(2011). Influence of antimicrobial feed additives on broiler commensal posthatch 

gut microbiota development and performance. Applied and environmental 

microbiology, 77(10), 3380-3390. 

[221] Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling AE, 

Phillippy AM, Pop M. MetAMOS: a modular and open source metagenomic 

assembly and analysis pipeline. Genome biology. 2013 Jan 15;14(1):1. 

[222] Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, 

C., Bisignano, G. 2005. Mechanisms of Antibacterial Action of Three 

Monoterpenes, 49(6), 2474–2478. 

[223] Tu, Q. V., McGuckin, M. A., and Mendz, G. L. (2008). Campylobacter jejuni 

response to human mucin MUC2: modulation of colonization and pathogenicity 

determinants. Journal of Medical Microbiology, 57, 795e802. 

[224] Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, 

R. E., and Gordon, J. I. (2009). A core gut microbiome in obese and lean twins. 

Nature, 457(7228), 480-484.  

[225] Turnbaugh, P. J., Ley, R. E., Mahowald, M. a, Magrini, V., Mardis, E. R., & 

Gordon, J. I. (2006). An obesity-associated gut microbiome with increased 

capacity for energy harvest. Nature, 444(7122), 1027–31. 

http://doi.org/10.1038/nature05414 



 

 

151 

 

[226] Tzounis, X., Rodriguez-Mateos, A., Vulevic, J., Gibson, G. R., Kwik-Uribe, C., 

& Spencer, J. P. (2011). Prebiotic evaluation of cocoa-derived flavanols in 

healthy humans by using a randomized, controlled, double-blind, crossover 

intervention study. The American journal of clinical nutrition, 93(1), 62-72. 

[227] Ultee, A., Bennik, M.H.J., and Moezelaar, R. 2002. The phenolic hydroxyl group 

of carvacrol is essential for action against the food-borne pathogen Bacillus 

cereus. Applied and Environmental Microbiology 68:1561–1568. 

[228] US Department of Agriculture (USDA). 2015. Noncitrus Fruits and Nuts—2014 

Preliminary Summary. Accessed July 2015. 

http://usda.mannlib.cornell.edu/usda/current/NoncFruiNu/NoncFruiNu-07-17-

2015.pdf 

[229] Uzoigwe, C. (2005). Campylobacter infections of the pericardium and 

myocardium. Clinical Microbiology and Infection, 11(4), 253-255. 

[230] Van Alphen, L. B., Burt, S. A., Veenendaal, A. K. J., Bleumink-Pluym, N. M. C., 

and van Putten, J. P. M. (2012). The natural antimicrobial carvacrol inhibits 

Campylobacter jejuni motility and infection of epithelial cells. PloS one, 7, 

e45343.  

[231] Van Dyke, M.I. and McCarthy, A.J. (2002) Molecular biological detection and 

characterization of Clostridium populations in municipal landfill sites. Applied 

Environmental Microbiology 68, 2049–2053. 

[232] Van Vliet, A. H. M., and Ketley, J. M. (2001). Pathogenesis of enteric 

Campylobacter infection. Journal of Applied Microbiology, 90, 45S–56S. 

[233] Vinderola, C. G., Medici, M., and Perdigón, G. (2004). Relationship between 

interaction sites in the gut, hydrophobicity, mucosal immunomodulating 

capacities and cell wall protein profiles in indigenous and exogenous bacteria. 

Journal of Applied Microbiology, 96, 230-243.  

[234] Walsh, S.E., Maillard, J.Y., Russell, A.D., Catrenich, C.E., Charbonneau, D.L., 

and Bartolo, R.G. 2003. Activity and mechanisms of action of selected biocidal 

agents on Gram-positive and -negative bacteria. Journal of Applied Microbiology 

94:240–247. 



 

 

152 

 

[235] Walter, J., Hertel, C., Tannock, G.W., Lis, C.M., Munro, K. and Hammes, W.P. 

(2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella 

species in human feces by using group-specific PCR primers and denaturing 

gradient gel electrophoresis. Applied Environmental Microbiology 67, 2578–

2585. 

[236] Waterman, S. R., and Small, P. L. C. (1998). Acid-sensitive enteric pathogens are 

protected from killing under extremely acidic conditions of pH 2.5 when they are 

inoculated onto certain solid food sources. Applied and Environmental 

Microbiology, 64(10), 3882-3886. 

[237] Wieczorek, K., Szewczyk, R., and Osek, J. (2012). Prevalence, antimicrobial 

resistance, and molecular characterization of Campylobacter jejuni and C. coli 

isolated from retail raw meat in Poland. Veterinary Medicine, 57, 293–299. 

[238] Wilkie I. W., M. Harper, J. D. Boyce, and B. Adler. 2012. Pasteurella multocida: 

diseases and pathogenesis. Curr. Top. Microbiol. Immunol. 361:1-22. 

[239] Williams, J. E. 1981. Salmonella in poultry feeds - A worldwide review. World’s 

Poult. Sci. J. 37:6–25. 

[240] Williamson, G., and Clifford, M. N. (2010). Colonic metabolites of berry 

polyphenols: the missing link to biological activity?. British Journal of Nutrition, 

104(S3), S48-S66. 

[241] Wilson, R. L., J. Elthon, S. Clegg, B. D. Jones. 2000. Salmonella enterica serovars 

Gallinarum and Pullorum expressing Salmonella enterica serovar Typhimurium 

type 1 fimbriae exhibit increased invasiveness for mammalian cells. Infect. 

Immun. 68:4782-4785. 

[242] Wood, D. E., & Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence 

classification using exact alignments. Genome biology, 15(3), 1. 

[243] WorldHealth Organ. 2012. Critically important antimicrobials for human 

medicine. Geneva:World Health Organ. 

[244] Xavier, J., D. Pascal, E. Crespo, H. L. Schell, J. Trinidad, and D. J. Bueno. 2011. 

Seroprevalence of Salmonella and Mycoplasma infection in backyard chickens 

in the state of Entre Rios in Argentina. Poult. Sci. 90:746–51.  



 

 

153 

 

[245] Xie, Y., He, Y., Irwin, P. L., Jin, T., and Shi, X. (2011). Antibacterial activity and 

mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. 

Applied and environmental microbiology, 77(7), 2325-2331. 

[246] Yang, H., D. Hewes, S. Salaheen, C. Federman, and D. Biswas. 2014. Effects of 

blackberry juice on growth inhibition of foodborne pathogens and growth 

promotion of Lactobacillus. Food Control. 37:15–20. 

[247] Yao, R., Burr, D. H., Doig, P., Trust, T. J., Niu, H., and Guerry, P. (1994). 

Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: 

the role of motility in adherence and invasion of eukaryotic cells. Molecular 

Microbiology, 14, 883–893. 

[248] Yoda, Y., Hu, Z.-Q., and Zhao, W.-H. 2004. Different susceptibilities of 

Staphylococcus and Gram-negative rods to epigallocatechin gallate. Journal of 

Infection and Chemotherapy 10:55–58. 

[249] Zafriri, D., Ofek, I., Adar, R., Pocino, M., and Sharon, N. 1989. Inhibitory activity 

of cranberry juice on adherence of type 1 and type P fimbriated Escherichia coli 

to eucaryotic cells. Antimicrobial Agents and Chemotherapy 33:92–98. 

[250] Zhao, C., Ge, B., De Villena, J., Sudler, R., Yeh, E., Zhao, S., White, D.G., 

Wagner, D., Meng, J., 2001. Prevalence of Campylobacter spp., Escherichia coli, 

and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater 

Washington, D.C., area. Appl. Environ. Microbiol. 67, 5431-5436. 

[251] Zhao, W.-H., Hu, Z.-Q., Okubo, S., Hara, Y., and Shimamura, T. 2001. 

Mechanism of synergy between epigallacatechin gallate and β-lactams against 

methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and 

Chemotherapy 45:1737–1742. 

[252] Zhong, X., Shi, Y., Chen, J., Xu, J., Wang, L., and Beier, R. C. (2014). Polyphenol 

extracts from Punica granatum and Terminalia chebula are anti-inflammatory and 

increase the survival rate of chickens challenged with Escherichia coli. Biological 

and Pharmaceutical Bulletin 37, 1575–1582.  

[253] Zoetendal, E. G., Vaughan, E. E., and De Vos, W. M. (2006). A microbial world 

within us. Molecular microbiology, 59(6), 1639-1650. 


