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The design and control of an optimal mirror plate actuator suitable for large channel 

count MEMS optical switch applications is researched. An optimal plate actuator 

structure is presented. Its performance in equilibrium status is analyzed. A design 

example, which is confirmed by ANSYS simulation, is given along with a design 

methodology. By considering the squeeze film damping effects, the transient response 

of this optimal plate actuator is performed.  The system stability is proven by using a 

Lyapunov function and the Routh-Hurwitz test. A conclusion is that the optimal tilted 

bottom plate can stably approach the maximum tilt angle with the minimum applied 

actuating voltage, which is one-half of the present industry standard actuating 

voltage. A four-level stage structure is given as an example of a practical multi-step 

realization of such an optimal plate structure.  A feedback control system is described 

using a sensing bridge with a sensing capacitor. Two optimal control methodologies 

are described, these being fast switching bang-bang control and closed loop feedback 



  

control.  A high voltage driving circuit is introduced along with design equations 

based on the special features needed in MEMS mirrors. In addition, by introducing a 

shift register, a modular architecture to control MEMS mirrors for scalable embedded 

systems is described. By using this modular structure with its shift register, the 

system can be scaled when there is a future need to increase channel counts.  

 

Overall, this research improves upon the performance of large channel count MEMS 

optical switches. It achieves low actuating voltage by reducing by one-half of the 

present industry standard actuating voltage, that is, a reduction from 250V to 120V. 

By using the new high voltage driving circuit, it cuts in half the number of required 

control actuating voltages. It obtains a scalable structure for the embedded system, 

which is beneficial to cost reduction, future maintainability and design simplification. 

It provides optimal control to switch the mirrors in order to achieve the minimum 

switching time and to maintain the stability of the system in the appearance of any 

perturbation.   
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Chapter 1: Introduction 
 
 

Abstract 

In this chapter, we present the introduction to this dissertation along with the outline 

of its structure. An overview is given on MEMS emphasizing its applications to the 

optical switch. Different actuation methods to activate MEMS are reviewed and 

compared, with the conclusion to use electrostatic actuation in the MEMS mirror for 

the optical switch. After a review of the research work that has been done in the areas 

to reduce the actuating voltage and to provide optimal control, the contributions of 

this dissertation are presented. 

 

1.1 Concept of MEMS with its applications to the optical switch  
 
MEMS, “Micro-Electro-Mechanical System”, provides the motion-ability to an 

otherwise all-stationary electrical system. By taking advantage of today’s matured 

planar integrated circuit process, MEMS technology has been springing rapidly into 

various areas [1] [2] [3], such as the MEMS projection display technology provided 

by Texas Instruments Inc. [4] [5] and MEMS based thermal inkjet heads from HP [6]. 

One of its most noticeable application areas is in optical telecommunication systems 

[3]. With considerable technology advances in MEMS along with the system 

demands in optical layered networks, MEMS based all optical components, such as 

optical switches, variable optical attenuators, and tunable lasers, have shown their 

great potentials; and some of these have been put into use in 

systems[1][8][9][10][11][28]. 
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Figure 1-1 A typical structure of a MEMS electrostatic actuator 

 

A typical MEMS mirror actuator in the optical switch applications is shown in Figure 

1-1 [12]. Mainly the mirror structure is composed of three parts, the mirror body, the 

bottom plates and the holding suspensions. The light beam is reflected by the upside 

surface of the mirror body. The mirror body can rotate around its axis, which is 

mechanically held by the suspensions. The bottom plates are fixed in position.  

 

Actuating voltage is applied on the top mirror body and the bottom plate. As shown in 

Figure 1-1, when an electrical voltage potential difference exists between the mirror 

and one of the bottom plates, the mirror rotates around its axis an amount determined 

by this applied torque (due to this potential difference). As long as the mirror rotates, 

a spring torque is applied to the mirror body from the suspension structures. Damping 

torque also appears, proportional to the rotational angular velocity. When the balance 

Bottom plates

Mirror body 

SuspensionSuspension 

Incoming  
light beam 

Outgoing 
light beam
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between these three torque is reached, the mirror is settled down at some equilibrium 

point. Thus we have successfully tilted the mirror to some desired angular position. 

Then the mirror can reflect the light beam from the input fiber to the output fiber. 

More details will be covered in Chapter 2. 

 

With the outgrowth in fiber optical communication at the end of the twentieth century 

fueled by the need of Internets and IP (Internet protocol) technology, major long haul 

telecommunication transmission has mostly migrated to optical transmission with 

WDM (Wavelength Division Multiplexing) technology, which has demands for large 

channel count optical switches that can handle optical signals with no restriction on 

wavelength and data rate. Two important functions are required for an optical switch. 

One is to restore a failed connection inside the network and the other is to make new 

connection provisioning [3] [12] [27]. As a very important optical component in a 

long haul telecommunication layered network, an optical switch system performs the 

function to connect and bypass the failed channel-path or to reconfigure the optical 

path according to the whole system load schedule change [27].  

 

Optical switches can be basically put into two main categories based on how the 

optical signals are handled. One is called an OEO (optical–electrical-optical) switch, 

where the optical signals are translated to electrical ones to be preceded and are 

translated back to optical ones afterwards. The other category is called an OOO 

(optical–optical-optical) or an all-optical switch, where all the signals are handled 

inside the optical domain. 
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The current popular optical switch systems are OEO switch systems. They convert 

optical signals to electrical ones (O/E conversion), perform switching in the electrical 

domain, and then translate the electrical signals back to optical ones, as shown in 

Figure 1-2. Figure 1-2 illustrates a multi-channel OEO switch. Examples include 

AOS products from Zhone-Tellium company [12] [26].  

 

Electrical
 switch
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 converter
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 converter
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 converter

Optical to 
electrical
 converter
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Input
channel i 

fiber

Input
channel n 
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Output
channel
fiber 1

Output
channel i

fiber

Output
channel n

fiber

Electrical
signal

Electrical
signal

 

Figure 1-2 A multi-channel OEO switch 

 

The advancement of the core electrical parts has made OEO switches dominant in the 

current market. By using multiple-stage structure, these OEO switches can handle 

thousands of switching channels according to [27]. However, because of the 

complexity in their signal-path translation, these OEO optical switches suffer from 

problems such as poor scaling to large channel count optical switches and poor 

performance due to the optical insertion loss involved in multi-stage structure. They 
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also can not meet the challenges to process data rate up to 40Gb/s, which is brought 

about by the WDM (Wavelength Division Multiplexing) technologies. 

 

OOO switches deal with the optical signals directly, without going through the stages 

to translate the signals to electrical ones and backwards, as shown in Figure 1-3. 

Because of using non-block light transmission in free space when switching, these 

OOO switches are immune to wavelength and data rate. They provide super optical 

performance.  
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Figure 1-3 A multi-channel MEMS based optical switch 

 

One important kind of OOO switches is MEMS based optical switch. This MEMS 

based optical switch distinguishes itself with super low power consumption and 

scalability. It is viewed as a long-term solution to the large channel count optical 

switch systems [12] [21]. Because it utilizes MEMS based micro mirrors to reflect the 

light beam, MEMS optical switch system is low in cost, easy to scale, capable to 
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handle large channels of fibers. It also has super optical performance parameters 

including low optical insertion loss and cross talk [12] [13]. These features make the 

MEMS optical switch to be the right candidate to solve the complex problems 

involved in long haul telecommunication transmission.  

 

Petersen [7] in IBM first presented the idea of using micro-mirrors to reflect light in 

1980. Since then, there are continuous researches and industrial efforts on the MEMS 

based large channel count optical switches [8]. Especially during the optical boom in 

the late twentieth century, a number of companies were involved in commercializing 

the MEMS based optical switches. Bell Labs in Lucent Technologies first 

demonstrated such an optical switch based on MEMS mirrors with channel numbers 

more than 100 [2] [3] [28] [30] [38] [39]. Company Tellium is another company 

working on MEMS based optical switches [15]. Following experimental 

demonstration of a few hundred channels in [30], Kim et al. from Lucent presented a 

MEMS based optical switch with 1100 channel counts [31].  

 

Large channel count optical switches have put special demands on the MEMS mirror 

actuation and control, the key to MEMS based optical switches. It requires special 

considerations on mirror structure, control signals and the embedded system to make 

successful mirror actuation.  
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1.2 Different actuation methods 

The first step to control the MEMS mirrors successfully is to select the right kind of 

actuation method. Several actuation methods have been investigated to actuate the 

movement of these mirrors. These mainly include thermal, piezoelectric, 

electromagnetic and electrostatic methods [15].  

1.2.1 Thermal actuation 

Thermal actuation utilizes the force developed in thermal expansion. One example of 

thermal actuation is the thermal expansion between two different material layers with 

different thermal coefficients. When the temperature increases, one layer expands 

more than the other, resulting in thermal bending forces.  Normally, thermal actuation 

gives large and long-range force. The required driving voltage is low and there is a 

linear relationship between the thermal stress and the displacement. However, this 

actuation method requires a lot of space and is slow in speed. It depends on the 

environmental temperature. It suffers low energy efficiency due to heat loss. As a 

result, it has pretty high power consumption [16] [17]. 

1.2.2 Piezoelectric actuation 

In piezoelectric actuation, the applied electrical voltage makes the internal electric 

dipoles inside the material to realign, causing the atoms to change positions, which 

results in observable dimensional changes. Conversely, if a strain is applied on the 

material, a related voltage can be measured between the two contacts terminals. The 

relationship between the applied voltage and the dimensional change of the material 

can be expressed as [18]:  
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V
Lc
AF
⋅
⋅

=
ε                                                           (1-1) 

 
Here c is the piezoelectricity coefficient; L is the thickness of the piezoelectric film; 

ε is the dielectric permittivity; A  is the contact area, which is perpendicular to the 

dimension L ; F is the piezoelectricity force; V  is the applied voltage across the 

material of length L . Figure 1-4 shows an example of a piezoelectric actuator. 

A

L

V

 

Figure 1-4 A piezoelectric actuator 

  

The piezoelectricity force is strong, especially when thick piezoelectric films are 

used. In the case of thin-films less than 5µm, the actuating force is in the range of 

mili-Newtons. However, the movement range is very small for piezoelectric 

actuation. This limits its application. Another issue with piezoelectric actuation is the 

challenge in process integration using the current silicon technology since 

piezoelectric films need special material depositions [18]. 



 

 9 
 

1.2.3 Electromagnetic actuation 

An electromagnetic force is generated when a loop with current I moves in a 

magnetic field B
r

. The magnetic force on the current loop is perpendicular to the 

magnetic field and the current. This force is expressed as 

 BldIF
C

rv
×= ∫                                                             (1-2) 

where F is the electromagnetic force; I is the current flowing in the loop; ld
v

is the 

differential vector along with the circumference of the loop; B
r

is the vector of 

direction and magnitude of the magnetic field; and C is the closed loop in which the 

current flows. For example, if mAI 10= , TeslaB 1.0=
r

, mmC 1=  in length, we have: 

NTmATmmmAF 63 1011.010101.01.0110 −− ⋅=⋅⋅⋅=⋅⋅=                                      (1-3) 

Thus we have a magnetic force in the range of several micro Newtons. For 

electromagnetic actuation, it features relatively high current and low driving voltage. 

The drawbacks for this actuation method are: 1) the low energy efficiency, so power 

consumption is high 2) the bulky space for the coil, 3) the difficulty to integrate with 

planar silicon technology [19]. 

1.2.4 Electrostatic actuation 

Contrary to electromagnetic actuation, in electrostatic actuation, the driving voltage is 

high and the current is very low, ideally zero. There is no power consumption in the 

ideal case due to the capacitive nature of the two terminals. When there is a voltage 

difference between two charged parallel conductive plates, the electrostatic force 

established between them is [40, p128-129]. 
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2

2

2d
AVF ε

=                                                        (1-4) 

where d  is the distance between the two plates; and ε is the dielectric permittivity. 

Battery

+V

 

Figure 1-5 An example of an electrostatic plate actuator 

 

As an example shown in Figure 1-5, if the supplied voltage is 100V; the spacing 

between the two plates is 30 µm; and the area of the two plates individually 

is mmA µµ 100100 ×= , the calculated electrostatic force is       

N
d

AVF 6
2

6

2
2

6
12

2

2

109.4

10
302

100
10
1001086.8

2
−

−

×=









×





××

==
ε                    (1-5) 

This force is also in the micro-Newtons range. One special advantage of this actuation 

method is its easy scalability, as this force is directly proportional to the area. Another 

advantage of this actuation is almost zero power consumption. These two features 

have made it possible for thousands of these actuators to be packaged into a single 

chip using the present silicon planar manufacturing processes with very little power 

consumption. Thus it has become the most common actuation method used to tilt the 

mirrors optical switch systems. The examples of using electrostatic actuation include 

the Lucent LambdaRouter cross-connect [3], 238x238 channel optical switches [30], 

and 1100x1100 optical switches [31].  
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1.3 Previous research work and motivation of this dissertation 

1.3.1 Methods to reduce the high actuating voltage 

The main drawback with the electrostatic actuation method in large channel count 

optical switch applications is the requirement of high actuating voltage. According to 

Petersen [7], an actuating voltage in the range of 100-400V is needed to drive the 

mirror body in the structure as shown in Figure 1-1.  

 

This high voltage requirement has put special demands in system design, such as a 

special power supply design and isolation materials. To reduce this requirement, 

several methods have been studied. One method is to expand the electro-plates’ area 

according to Equation (1-5), [29]. However, this negatively increases the space 

occupied, which is unrealistic to a large channel count optical switch with thousands 

of mirrors involved. Another solution is to decrease the gap between the two electro-

plates. Still, there is a physical process limit for such a decrease.  

 

An alternative method to reduce this high voltage requirement is to change the 

mechanical structure of the actuator. One such example is a comb driver, as shown in 

Figure 1-6 [22]. The actuating force in such a comb driver is expressed as [23] [24]: 

2V
g

tNF ε⋅
=                                                     (1-6) 
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where N is the number of fingers in a comb; t is the thickness of the electrodes; ε is 

the permittivity of the medium between the gap; g is the gap distance between the 

fingers; and V is the applied external voltage. 

 

Movable
 finger

Actuation
direction

g

Holding structure

Fixed
 finger

 

Figure 1-6 The top view of several fingers in a comb driver 

 

By using a large number of fingers in the comb, the required actuating voltage can be 

reduced according to Equation (1-6) to reach the same displacement. However, this 

comb driver structure suffers from a large area requirement and has limitation in the 

force direction [23] [24]. It can provide only one force direction, not suitable to rotate 

a mirror as the required in the optical switch applications.  
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One goal of this dissertation is to present a structure to reduce the actuating voltage, 

which can be reasonably handled by current manufacturing and circuit design 

technologies. Besides the reduction of the driving voltage, another issue addressed in 

this dissertation is the control in MEMS mirror’s actuating.  

 

1.3.2 Control in MEMS mirror’s actuating 

MEMS based optical switches can not succeed without the control of MEMS mirrors 

during their whole life time periods. Control theory has already been applied on 

MEMS mirror actuation to improve its performance. For example, Maithripala [32] 

provided a port-controlled Hamiltonian approach to analyze the stability and control 

of two parallel plates. Seeger [35] and Chan [33] investigated the methods to expand 

the system’s moving range by introducing a proper capacitor feedback. Wang [34] 

used proportional, integral, derivative (PID) linear feedback control to stabilize the 

MEMS mirror.   

 

However, the feedback control in Maithripala [32] has limitation because it assumes 

that the damping coefficient is constant with no change with time, which is not true in 

reality. Even though Seeger [35] has successfully increased the traveling range of the 

top plate with a capacitor, however, the fact that a higher actuating voltage needed 

than the case without the capacitor can not meet our goal to reduce the actuating 

voltage. In this dissertation we will provide an optimal control methodology for a 

MEMS mirror actuator system in the large channel count optical switch applications. 
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In a large channel count optical switch, because a mirror is used to reflect the light 

beam when tilted properly, a feedback control is targeted to achieve its stability. In 

order to construct such a feedback control, we need to figure out a way to sense the 

position of the mirror in real time. One popular way to construct such detection is by 

using light-power detection [34] [41].  

 

An optical tap module is used to detect the light-power density of the light beam. An 

optical tap is an optical component, which can extract a small portion of the light-

power away from a fiber [42], and let most light-power pass through without any 

interruption. Based on this light-power detection method, an example of feedback 

control architecture is shown in Figure 1-7.  

 

 

Figure 1-7  Closed loop control for a MEMS mirror actuator 
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This architecture is very popular to achieve the stability for a MEMS mirror in the 

industry [34] [41]. The incoming light signal is sampled or tapped first and then 

compared with the sample of the outgoing signal after the light beam is reflected. The 

result of this comparison is used to fine tune this mirror (by changing the actuating 

voltage) to the desired tilt angle to assure that the incoming light-power is the same as 

the outgoing light-power. In this way, a minimized overall insertion loss is achieved. 

 

There is a problem with the above popular position sensing method based on the 

light-power detection. It has position limitation. Because there are physical size and 

location limitation on the output light-power detector, this results in a threshed 

position detection range for the output light beam. If the output light beam is out of 

this detection range, the output light detector can not detect anything. When this 

happens, the system does not have any information about where the output light beam 

goes. The feedback fails when the mirror undergoing large rotation. To solve this, we 

will provide a sensing capacitor along with an optimal control methodology in this 

dissertation. 

 

The switching control signals, shown in Figure 1-7, from the control module normally 

is pretty low in value compared to what is required to actuate the mirror. An 

amplification circuit is needed.  For the large channel count optical switch 

applications, this circuit should be simple so that it can be small in size and low in 

power consumption. In this way, the size and power consumption of the whole 

system can be within a reasonable range. 
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Also this amplification circuit should be easy to be integrated with other parts of the 

system, ideally, the whole system integrated on a chip. Plus, the driving voltage 

involved here is quite high. Normally it is up to two to three hundred volts. By using 

an optimal bottom-plate structure presented here, this actuating voltage can be 

reduced to 120V. However, this is still such a high voltage that special attention 

should be paid. 

 

In response to this demand, some companies have already developed high voltage 

driver devices and made them commercially available. For example, there is a 16 

channel high voltage driver from Agere System [41]. That device has 16 independent 

channels. Each channel has two independent outputs up to 295 volts. It also has 16-bit 

digital control signals to select the two outputs of each channel. A 1024 by 1024 

optical switch in N2  structure needs 128 such driver devices, just for high voltage 

driving. This driving architecture makes the whole system very complex and 

contradicts the requirement of compact size for optical switches. Thus it motivates us 

to introduce a new simple driving circuit to overcome this complexity. 

 

In addition, a MEMS based large channel count optical switch can be composed of a 

large number of mirrors. For example, in a N2  structure, a 1024 by 1024 optical 

switch has 2048 mirrors and needs 4096 analog voltages as well as 4096 bits of 

digital control signals. Because the repetition nature of the same driving circuits for 
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hundreds or even thousands of mirrors, any effort to reduce the complexity of the 

driving control circuits can result in great benefits for the system as a whole. We will 

answer this call by providing simple driving-circuit architecture. 

 

The control loop shown in Figure 1-7 belongs to an embedded system for mirrors. 

The embedded system, which is popularly used today for an optical switch, features a 

fixed number channels, targeting specific channel numbers [3] [12]. As each DAC 

needs a control digital bit for selection, normally, a line decoder or cascaded line 

decoders are used to control the DACs [36], as shown in Figure 1-8. When there is a 

need for an increase in the number of channels, more DACs are in needed. The 

microprocessor provides more control digital bits correspondingly. However, there is 

a limit on the number of digital control bits a microprocessor can provide. 

 

 

Figure 1-8  One popular embedded system using a decoder in controlling DACs 
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For example, B bits digital output ports from the microprocessor are needed to drive 

the decoder. That is the decoder has B bits input, which has B2 bits output to drive the 

DACs. The DAC selection is made by keeping one of the B2 bits high and all the 

others low [36]. With more DACs to be controlled as a result of an increased channel 

numbers in an optical switch, the required number of digital ports, B, should be 

increased. However, the microprocessor has a limited capability to support the 

required number of digital ports. And this capability will quickly be exhausted as the 

demand in the number of DACs to drive more channels increases.  

 

Each time, when the need arises to increase the channel numbers by using different 

decoders, duplicate hardware and software are involved. However, for a large channel 

count optical switch, scalability is desired, which means that the system can be scaled 

up or down based on current system. Due to the narrow design margin in large 

channel count optical switch, scalability provides us the ability to reuse the system if 

more or less channels are needed. Thus a lot of design effort can be saved, so the 

system is low in cost. Further, reliability and easy maintenance can also be achieved 

through scalability. Our solution to obtain scalability is based on using a shift register 

to solve this lack of enough control bits from the microprocessor. 

 

1.4 Overview of the dissertation 
 
With the motivations to solve the problems and improve MEMS mirror performance 

in large channel count optical switch applications, this dissertation focuses on 
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reducing the mirror actuation voltage and optimal control. An optimal mirror plate 

structure to minimize the required actuating voltage is introduced along with a design 

methodology. Its equilibrium and transient analyses are performed. Its stability is 

confirmed by the control theory. Its optimal control in view of the control 

methodology, the position sensing method, the high voltage driving circuit and the 

embedded system are investigated.  

 

The outline of this dissertation is listed as the following. Chapter 1 is an introduction 

chapter, giving the motivation and contributions. Chapter 2 is the background review 

on MEMS applications to optical switches. Special attention is given to the structure 

of a MEMS mirror actuator in large channel count optical switch applications. 

Chapter 3 discusses an optimal actuator with a tilted bottom plate structure. By 

presenting a design methodology, the equilibrium status of the system is analyzed. 

Ways to calculate the spring stiffness are given. A design example is presented on the 

optimal actuator with a simulation in ANSYS, which is compared with a design 

example using a standard horizontal plate structure.   

 

Chapter 4 focuses on the transient responses of this presented optimal actuator. A 

transient response equation is set up and solved with the consideration of the squeeze 

damping effect. An analytic solution to the transient response is obtained from 

linearization of the transient equation. There is a comparison between the transient 

responses of optimal actuator and that of the standard horizontal plate actuator. 
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Chapter 5 discusses the stability and optimal control of the optimal actuator. The 

stability of the system is confirmed and the optimal control algorithm to improve the 

system performance is discussed. Architecture to implement these control 

methodologies with a sensing capacitor is presented. This chapter also introduces a 

high voltage driving circuit suitable for large channel count optical switch 

applications. In the last sub-section, a modular embedded system is presented. The 

last chapter is Chapter 6, which makes a review of the whole dissertation and points 

out future work. 

 

1.5 The main contributions 

In this dissertation, the research efforts are focused on reduction of the high voltage 

value involved in actuating a MEMS mirror and on its optimal control.  A mirror 

actuator with an optimal plate structure is introduced. Its equilibrium analysis is 

performed with the development of a design methodology.  

 

The stability of the system is confirmed by a Lyapunov function and the Routh-

Hurwitz test. Two optimal control methodologies, one being bang-bang control and 

the other being Kalman closed loop feedback control, are discussed to improve the 

system performance. The feedback control architecture is investigated using a sensing 

capacitor in a bridge circuit. This position sensing method does not have any 

limitation on the position of the output light beam.  
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A high voltage driving circuit is given by considering a special feature in actuating 

two bottom-electroplates related to single-axis rotation of each mirror. A simple 

circuit implementation is presented, which is low in cost and power consumption and 

benefits the idea of the system on a chip.   By introducing a shift register, a modular 

embedded system is presented to provide the scalability of the system, when there is 

need to increase the channel numbers.  

 

 
The contributions of this dissertation are the following: 

1. A mirror actuator with an optimal plate structure 

A mirror actuator with an optimal plate structure is presented, which can reduce its 

voltage requirement from the industry standard one of 250V to 120V to approach the 

same maximum tilt angle of the mirror.  

 

A design method of such an optimal plate actuator in large channel count optical 

switch applications is given. A design example is discussed, which is confirmed by 

ANSYS simulation. A four-level stage bottom plate is discussed as an example of a 

Multi-step approximation of such an optimal plate structure. By considering the 

squeeze film damping effect, the system’s transient analysis is set up in Chapter 4. 

This transient response is obtained by PSpice simulation from its analogous electrical 

circuit.  

 

2. Optimal control on the mirror actuator 
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Feedback control architecture is presented in Chapter 5. Two optimal control 

methodologies can be used in such architecture. One methodology is bang-bang 

control to achieve minimum switching time. The other methodology is the Kalman 

closed loop control to achieve the stability of the mirror.  The position sensing is 

accomplished by is a sensing bridge with a sensing capacitor in this architecture. This 

sensing method can detect any position of the mirror without any limitation. A 

variable resistor made from a MOSFET is used to balance this sensing capacitor 

inside the bridge.  

 

A new high voltage driving circuit architecture is introduced. Featuring very simple 

architecture, this circuit saves resources significantly in large channel count optical 

switch applications. It reduces by one-half the number of the required actuating 

voltages and eliminates the digital control bit, which is used to distinguish between 

the two bottom electroplates associated with single-axis rotation of the mirror. A 

bipolar transistor implementation of such architecture is presented with design 

analysis. Further this high voltage driving circuit benefits the idea of the system on a 

chip design, which answers the call of the trend of integrating electronic circuits with 

MEMS components.  

 

By using a shift register, modular embedded system architecture is presented to 

achieve the scalability of the system in the requirement of more channel counts. This 

benefits cost reduction, design simplification and future maintainability. 
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Chapter 2: Background 

Abstract 

In this chapter, we first give a brief review on optical switches including their 

functions and available technologies. Specifically we review the architecture of 

MEMS based optical switches. We then explain the structure of an electrostatic 

actuated MEMS mirror actuator, as well as its operation mechanism and system 

considerations.  

 

2.1 Concept of an optical switch 

Before giving the analysis of an optimal plate actuator as well as its control and 

driving circuits, a review of the optical switch concept including its system 

architecture and available technologies is beneficial to understand the requirements 

for such a plate actuator. Also a review of the structure of an electrostatic actuated 

MEMS mirror actuator and its operating mechanism is necessary to understand the 

problems and their solutions outlined in this dissertation. This chapter serves as 

foundations for the later chapters.  

 

With the growth in network capacity as a result of WDM and IP technology, optical 

switches have become important components in layered networks. The functions of 

an optical switch include restoring connections and provisioning new connections in a 

layered network. In case of a connection failure, an optical switch should have the 

ability to reconnect the failed connection in reasonable time. In case of network 
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system load rescheduling, an optical switch should provide the new connections in 

the required time frame without interruption of any other connections [26], [57]. 

 

Several optical switch technologies have been investigated in recent years, which 

mainly are categorized into two types, free space switches and waveguide switches 

depending on how the optical signal propagates [26].   

 

Waveguide switches can be based on optical interference, total internal reflection 

[51], thermo-optic effects and electro-optic effects. An Agilent lab has investigated a 

bubble actuated total internal reflection optical switch, which has a very fast 

switching time of 100µs. [52] [53]. A NTT lab has worked on a silica-based thermo-

optic switch, which is very easy to make fiber attachment [54]. By using electro-optic 

effects, the electro-optical switch has fast switching speed [55] [56] [57]. However, 

these waveguide optical switches suffer from very poor scalability and high power 

consumption [26] [57]. These have made them poor candidates for the large channel 

count optical switch applications.  

 

In the free-space switch category, there are MEMS switches and liquid crystal 

switches. A liquid crystal switch is based on controlling the polarization of the light 

by an electro-optic effect inside the liquid crystal. It has constant insertion loss when 

the channel count increases. However, it is poor for scalability [26], [57]. 
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A MEMS based optical switch belongs to the class of free space switches. This 

technology has distinguished itself over other technologies for its scalability and low 

power consumption, most suitable for the demands in the large channel count optical 

switch applications [26] [51] [52] [53] [57]. Because of free-space traveling of the 

light beam, this kind of optical switch has very low insertion loss, low cross-talk 

between signals and is transparent to signal data rate, protocol, wavelength and 

polarization. Though its switching time is not that fast among all the optical switches,  

this switching time is still within a reasonable range for large channel count optical 

switch applications [2][3][12][13][21][57][58]. More details about the architecture of 

the MEMS based optical switches will be given in the following sections.  

 

2.2. Architecture of MEMS based optical switches 

An 21 NN ×  optical switch means that there are 1N   input channel fibers and 2N  

output channel fibers in the system. Normally, NNN == 21 . There are two kinds of 

architectures for MEMS based optical switch systems. One is the 2N architecture, 

also called two dimensional. The other is the N2  architecture, also called three 

dimensional [21] [26] [28].  

 

In the 2N structure, the light beam always resides in the same plane before and after 

the reflection (from which the name two-dimensional comes). The position of the 

micro-mirror has only two states, namely, up or down. When one mirror is in the up 

state, directing the light beam signal from the input fiber to the output, all the other 

mirrors are in the down state, as shown in Figure 2-1.  
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As each mirror only involves two states, its driving voltage and circuits are quite 

simple and straightforward. However, the price for this simplicity is the potential 

optical loss for the traveling beams when a large number of mirrors are involved.  

 

 

Figure 2-1 The optical path in 2N architecture 

 

For a NN × switch, the required number of mirrors is 2N  in this 2N  structure. This is 

not a big number if N is small, and the insertion loss might be tolerable in terms of 

system requirements. However, the mirror numbers increase quadratically when more 

channels are needed, making this approach uneconomical for large channel counts. At 

the same time due to the optical path increase with the increasing channel number, the 

insertion loss becomes intolerable for the system requirement [12]. The maximum 

N is 32 limited by the light beam diffraction loss [29].  
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In conclusion, the 2N architecture is preferable for small optical switch systems 

because of its simple control. It is not a good choice for large channel count optical 

switches when 32>N  . 

 

In the N2 architecture, the light beam can travel in three-dimensional space before 

and after it is being reflected. There are two mirror arrays. One is an input mirror 

array and the other is an output mirror array. Schematics of these two arrays are 

shown in Figure 2-2. The mirror array can be one N×1  array as shown in Figure 2-2 

(a); or it can take a matrix format, as shown in Figure 2-2 (b), with I columns and J 

rows ( JIN ⋅= ) [3].  

 

For a NN × switch, the required number of mirrors is N2 . Instead of availability of 

two positions in the 2N architecture, each mirror in the N2 architecture can occupy 

one of N positions. Figure 2-2 (b) shows a complete optical path in the 

N2 architecture, including the optical input lens arrays and output lens arrays. 

 

The optical path length in the N2 structure is proportional to the square root of N , 

while the optical path length in the 2N  architecture is proportional to N . 

Correspondingly, with the same N , the light beam travels a longer distance in the 

2N configuration compared to the case in the N2  architecture. This results in much 

better optical performance when N  is a large number for the N2  architecture than 

for the 2N  architecture.  
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(b) JI × input and out mirror matrix 

Figure 2-2 The optical path in N2 architecture 
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For large channel count optical switch systems, usually when N  is larger than 32, the 

N2 architecture is preferred. Unfortunately, as the position of the mirror needs to 

have N  states, the N2  architecture achieves this super optical performance at the 

expense of complexity in controlling these mirrors [21]. Usually this involves high 

voltage control when the electrostatic actuation is used, as outlined in Chapter 1. 

 

Since we investigate the MEMS in large channel count optical switch applications, 

where N is much greater than 32, in the following of this dissertation, all our 

discussion will be based on the 2N architecture except what is explicitly mentioned. 

 

2.3 The electrostatic actuated MEMS mirror system 

Having introduced the architecture of the MEMS based optical switches, we will 

study the MEMS mirror actuator system’s physical structure and find out how these 

mirrors can perform their switching functions. Here we will review a popular MEMS 

structure for large channel count optical switch applications [29].   

 

2.3.1 The optical path in the 2N architecture   

Before reviewing a common structure of an electrostatic actuated MEMS mirror 

actuator systems in the N2  architecture, let us take a close look at the optical path 

shown in Figure 2-2 (b). The incoming light beam, from one input channel fiber, is 
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first collimated by a prepossessing input lens and then travels in free space to hit one 

of the N  input mirrors in the input mirror array. In turn, the reflected beam hits one 

of the N  MEMS output mirrors in the output mirror array, where it is redirected to 

the corresponding output lens, then it goes out of the output channel fiber. 

 

For example, let us study the switching process when there is a command to switch 

the light beam from the input fiber k to the output fiber. The input channel k and the 

output channel j will be selected and their related voltage control circuits will apply 

the corresponding voltage to tilt the input mirror k and output mirror j individually to 

some desired tilt angle. In this way, first the input light beam is reflected by the input 

mirror k. Then it is again reflected by the output mirror j. Thus it is switched from the 

input fiber k to the output fiber j.   

 

By tilting the input mirror in three dimensions and the corresponding output mirror, 

the input light beam from any one input channel can be reflected to any one of the 

output channels as desired. Here, single-axis rotation can be used to tilt the mirror 

when the mirror arrays are aligned as in Figure 2-2(a). Two-axis rotation can be used 

when the mirror arrays are aligned as in Figure 2-2(b).  

 

2.3.2 The structure of an electrostatic actuated MEMS mirror with one rotation axis  

 
A single-axis mirror actuator structure is shown in Figure 2-3 [7]. A two-axis mirror 

actuator structure is shown in Figure 2-4. The research in this dissertation is mainly 
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based on a single-axis mirror structure. The same methodology and similar results are 

held to the two-axis structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 The structure of a MEMS mirror with one rotation axis  

 

 

As shown in Figure 2-3, the mirror and its holding structure are made of the same 

material and originally they are one part. The mirror is etched out from this holding 

structure. This holding structure again is held by the four side walls. Two torsion 

springs are attached to the two ends of the mirror separately. There are two bottom 

plates (labeled A and B) under the mirror, which are electro-isolated from each other. 
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The top surface of the mirror body is flat with high reflective index, used to reflect 

the light beam. The edge points are labeled ‘a’ and ‘b’. 

 

A parallel plate actuator is formed between the mirror body, and one of the two 

bottom electro-plates. When there is a voltage difference between one of the bottom 

plates and the mirror, the mirror tilts. For example, there is a potential difference 

between the mirror and Bottom-plate A, then the edge point labeled ‘a’ on the mirror 

will move toward this Bottom-plate A. In this way, the mirror will reach an angle of 

α to the horizontal line when it is in equilibrium status. Here we will assume that the 

whole mirror structure is symmetric along the rotation axis. 

 

2.3.3 The structure of an electrostatic actuated MEMS mirror with two rotation axes  

Figure 2-4 presents a schematic view of the four bottom-electroplate structure for an 

electrostatic actuated MEMS mirror system according to Aksyuk [29]. This is also a 

popular mirror structure in the N2  structure [22]. It consists of a mirror body, four 

bottom electro-plates A, B, C, D (fixed in position), and additional suspension 

structures of a gimbal mount.   

 

This gimbal mount has two frames. The inner frame is movable, while the outer 

frame is fixed. The mirror body is suspended by two torsional springs inside the inner 

frame in the X direction. This frame is suspended by another two torsional springs in 

the Y direction inside the fixed outer frame. Additionally, the outer fixed frame is 

held in position by four holding sidewalls, (right and left, up and down).  
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Figure 2-4 The schematic of a two-axis structure of a MEMS mirror system 

 

The four electro-isolated bottom electro-plates are just underneath the mirror body. 

These four bottom electro-plates, labeled A, B, C, and D in Figure 2-4 and Figure 2-5, 

are electrically isolated. They are used to actuate two-axis tilting. The electrostatic 

torque can tilt the mirror in three-dimensions to allow the four edge points labeled 'a', 

'b', 'c','d' on the mirror to move up and down, as shown in Figure 2-5. Here, we 

assume that the suspension structures make the mirror body perfectly symmetrical in 

the right-left and in the up-down directions. Here again the whole mirror structure is 

assumed to be symmetric along its two-axis. 
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Figure 2-5 A side view of the mirror structure with and without tilting 

 

 

2.3.4 Restrictions to actuate a MEMS mirror actuator  

In fact, the mirror actuation is solely dependent on the relative voltage difference 

between the mirror body (top electro-plate) and the bottom electro-plate. Therefore, 

the sign of the external voltage applied does not really matter. This gives us great 

freedom in actual analog high voltage control circuit design when this principle is 

implemented. We will see that in Chapter 5. 
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So far, we have observed that each bottom electro-plate can be treated as an analog 

component individually in the view of circuit control.  Each of them needs to be 

controlled accurately to redirect the light beam.  

 

To reach a tilt angle, in the case of a single-axis rotation, the two bottom plates can 

not be actuated simultaneously. In the case of a two-axis rotation, one bottom plate 

can be actuated or only two adjacent bottom electro-plates out of the four can to be 

actuated at the same time. Other cases to actuate the bottom plates are forbidden in 

order to void bending the mirror. For example the two diagonally located bottom 

plates can not be actuated simultaneously. Another example is that three of the four 

bottom plates can not be actuated. These rules will result in a unique driving circuit 

architecture, which will be covered in more detail in Chapter 5. 

 

2.4 Process of light beam switching and its maximum tilt angle requirement 

A review on the light beam switching process inside the MEMS based optical switch 

will be helpful to study the control on the MEMS mirror actuator system. As 

discussed in the previous sections, the light beam path is shown in Figure 2-2 and 

redrawn in Figure 2-6. In a NN ×  MEMS optical switch, by actuating both input 

mirror and the output mirror correspondingly, the input light beam from one channel 

can be routed to any one of the output channels as needed, which is the process of 

“switching”. To accomplish this, one applied voltage is needed to control one 

rotation-axis motion of each mirror.  
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Normally, the mirror is applied a fixed electrical potential. The bottom-electroplates 

are fixed in position with external variable voltage applied. In order to control the 

angular position of the mirror, a desired actuated voltage is applied on the 

corresponding bottom-plate. When there is a potential difference between the mirror 

body and the fixed bottom-electroplate, the actuating electrostatic torque is generated 

on the mirror. When the bottom plate and the mirror have the same potential, there is 

no actuating on the mirror. The suspensions hold the mirror body (or called mirror 

plate), and provide the spring torque on the mirror to balance the actuated 

electrostatic torque in equilibrium. 

 

The maximum tilt angle needed to reflect the incoming beam to the farthest output 

fiber position is shown in Figure 2-6. As shown in Figure 2-6, every mirror needs to 

be able to tilt a variable angle α to redirect the beam from any input to any output 

fiber. The mirror tilts the maximum angle maxα when it redirects light beam from the 

input channel number 1 to the farthest output channel number N.  

 

The maximum title angle will determines the maximum channel count N and itself is 

determined by the actuation torque, normally is less than ±10 degree [26][29] [73]. 

The tilt angle along with the mirror size will determine the effective light beam size 

and eventually influence the optical performance, such as optical loss and crosstalk. 

Normally the mirror has a size around several hundreds of micrometers.  
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Figure 2-6 The maximum mirror tilt angle determination criteria 

 

 

Although the required mirror tilt angle α and maxα  can be reduced by increasing 

beam travel distance D, the parameter D is normally limited by the working distance 

of other optical components and/or system requirements, such as working distance of 

the collimating lenses and overall system size, etc.  
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2.5 The embedded system for MEMS actuators 

From the switching process described above, we can tell that a MEMS mirror actuator 

demands its embedded system to have the following control abilities: 1) be able to 

switch the mirror from one angular position to another as soon as a switching 

command is received. The mirror position can be one out of the N multiple available 

positions to accommodate the large channel count requirement. 2) be able to hold at 

that specific angular position after this switching command before the next switching 

command is received.  Based on these considerations, there are several points to be 

observed. 

 

First, the architecture of the optical switch should be in 3D instead of 2D, as 

discussed in the previous sections. Because the mirror has to be able to locate in 

multiple positions instead of only two positions [9]. This requires a complex control 

circuits to drive the mirror. A carefully selected control methodology needs to control 

the mirror accurately and instantly. The insertion loss of the optical switch is quite 

sensitive to the stability of the mirror. Thus a closed loop feedback control algorithm 

is necessary when any perturbation appears. The hardware control heart is the 

microprocessor or FPGA.  

 

Second, digital to analog converters (DACs) are used. This is because the 

microprocessor handles digital numbers internally. Inside the microprocessor, the 

feedback position information and other control signals are processed digitally 
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according to the control methodology used. These DACs convert the digital values 

out of the microprocessor into analog values to actuate the mirrors. 

 

Third, as the mirror actuator is composed of a two charged plate, an analog voltage 

with continuous value is needed to drive them. Because the computer can only output 

digital voltages in low values (normally less than 5V), accordingly, an amplification 

circuit is needed to amplify these low values to the required voltage level (more than 

100V). Due to the repetition of the mirror structure in large channel count optical 

switch applications, large number of amplification circuits and DACs are in use. 

 

It takes a lot of design efforts to have a successful MEMS based optical switch, and 

even greater effort to maintain it in the future. Thus we want the embedded system to 

have scalability, so that more modules can be added on to the present system when 

more channel number requirement comes. Scalability is one of the goals for the 

embedded system. 

 

2.6 Objectives for MEMS mirror control 

From the above illustration, MEMS actuators benefit the optical switch system in 

optical performance due to the nature of free space light beam traveling during 

switching. In order to make MEMS mirror actuator to be successful, the actuator 

system should achieve two objectives basically. One is that the mirror should be tilted 

to the desired angular position after it receives a switch command from the system. 

The other objective is that the mirror should be staying in the required angular 
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position before the next switch command is received. This time period can be as short 

as several seconds or as long as twenty years. The system should provide super-

optical performance with little optical degradation to the reflected light beam during 

this time interval [26]. 

 

To fulfill the task of switching function, the MEMS mirror system needs to have the 

ability to address the input and output mirrors of each channel individually and to 

control their tilting in a reasonable switching time. This translates to requirements on 

the MEMS mirror as parameters such as maximum tilt angle, mirror size, reflectivity 

and power dissipation, which contain both electrical and mechanical parameters.  

 

2.7 Other design considerations for MEMS mirror actuators 

In addition to the optimal mirror structure and its optimal control we focus on, to 

make the mirror perform its function, there are many considerations and trade-offs in 

the system design. These considerations can be on the mechanical ones, optical ones 

as well as electrical ones. In this dissertation, we will mainly answer the questions 

such as how to reduce the high driving voltage and how to control the mirror. 

 

We have discussed the structure of MEMS mirror actuator system along with its 

switching requirement, the maximum tilt angle requirement and the embedded system 

requirement. We will briefly discuss some other related design considerations. The 
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mirror length ML  and the required tilt angle α are determined by applications. ML  

must be larger than the size of the light beam to be reflected.  

 

The reflectivity of the mirror will impact the optical parameters such as optical 

insertion loss. A metal (such as gold) deposited surface is used to achieve the required 

reflectivity [26] [29]. Low heat dissipation is also necessary in a large mirror array. 

 

2.8 Summary 

We have briefly reviewed the concept of optical switches, with focus on MEMS 

based optical switches. We have reviewed the requirements of mirror structure, 

control, driving circuit and embedded system in large channel count optical switch 

applications. 

 

To analyze and design the MEMS mirror system, the mirror body and bottom electro-

plates can be treated as conductive plates [26]. The mirror body with the suspension 

torsional springs can be treated as a spring–mass system [7], where the spring 

stiffness is characterized by a spring constant k.  Keeping these models in mind, we 

will begin our discussion on the optimal electrostatic actuated MEMS plates. 
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Chapter 3: An Optimal Plate Actuator Design 
 

Abstract 

In this chapter, a design methodology of a plate actuator optimized for minimal 

actuation voltage is developed, along with the analysis of three different plate 

actuator structures. The electrostatic parallel plate actuator structure and its pull-in 

phenomena are reviewed first. Then the performance of an optimal tilted bottom plate 

actuator is analyzed and compared with the traditional horizontal bottom plate 

actuator. A design example is presented and simulated using the ANSYS simulation 

tool. Based on these, a methodology for multi-step approximation to the optimal plate 

actuator is developed after a brief review of characteristic MEMS mirror system 

requirements. 

 

3.1 Introduction 

As described in Chapter 1, among the different MEMS actuators, electrostatic 

actuation is the most suitable candidate for large channel count optical switch 

applications because of its super-low power consumption, small size, and scalability. 

In this chapter, three kinds configuration of electrostatic plate actuators are discussed, 

including one with both plates paralleling each other, one with a fixed horizontal 

bottom plate with the top plate tilting and the third one with both bottom and top 

plates tilting.  
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A design methodology is presented along with the force and torque analyses applied 

to these three cases. The conclusion is that the configuration with a tilted bottom plate 

is the optimal one in terms of the lowest voltage requirement. Then a design is 

illustrated by a simple example with a confirmation from an ANSYS simulation. 

Next, we apply this methodology to an optimal plate actuator as an optical MEMS 

mirror actuator system. The special characteristics of an optical MEMS mirror 

actuator system are reviewed and an actuator design meeting the three dimensional 

tilting requirement is developed. Based on a planar fabrication process, this design 

implementation uses multi-step approximation to this optimal tilted bottom plate. Its 

ANSYS simulation results are also presented.  

 

In principle, a simple electrostatic plate actuator is a system consisting of two parallel 

plates, one fixed at the bottom and one movable at the top. The movable plate is 

suspended by a spring with a spring constant k. When an actuation voltage V is 

applied across the two parallel plates, an electrostatic force is generated to move the 

movable plate toward the fixed plate while the spring is extended. The equilibrium 

status is reached when the electrostatic force equals the spring force. The movable 

plate then stops moving and the system is balanced. This status is called actuated. The 

principle of an electrostatic actuator is illustrated in Figure 3-1. 

 

Assume: 1) the area of both plates is A; 2) the downward movement amount of the 

movable top plate around equilibrium at H is y; 3) the permittivity of the homogenous 
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medium between the plates is ε; 4) neglecting fringe effect [44], [20], which is 

reasonable when the size of the plates is much bigger than the gap distance; 

 

 

Figure 3-1 The principle of an electrostatic plate actuator 

 

The upward force from the spring is  

ykFspring ⋅=                                                                     (3-1) 

The downward force from the electrostatic force is the following. 

2

2

)(2 yH
VAFstatic −⋅
⋅⋅

=
ε                                                          (3-2) 

In the dimensions of micrometers, as what is being discussed in this dissertation, the 

force due to gravity is very small and it is ignored. When the system is balanced in 

equilibrium, the spring force and the electrostatic force are the same in value and 

opposite in direction. That is 

staticspring FF =                                                        (3-3)                               

Spring force

+ 

Actuation 
voltage V 

fixed

movable

Moving direction

Electrostatic force
H

fixed

- 

y

0
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Substitute (3-1) and (3-2) into (3-3), we get: 

                              2

2

)(2 yH
VAyk
−⋅
⋅⋅

=⋅
ε                                                 (3-4) 

Or            

                                      
k
VAyHy

⋅
⋅⋅

=−⋅
2

)(
2

2 ε                                            (3-5)  

In practical systems, among the system parameters in (3-5), the spring constant k can 

be adjusted since it is determined by the spring structure and the material used. If a 

desired spring constant k is needed, it can be achieved by choosing a suitable material 

and the mechanical parameters, such as the spring shape, size and number of turns 

used, etc. In order to reach the same amount of the top plate movement, the larger the 

k value is, the higher the actuation voltage that will be needed; the larger the area of 

the actuator A is, the larger electrostatic force will be and the desired actuation 

voltage will be smaller.  

 

But this parameter will be limited by the overall system size and at the same time 

determined by the functions of the system. For example, the top plate size will be 

determined by the beam size if it is used to reflect or block a light beam. Gap distance 

H is the initial gap distance between the two plates. It must be large enough to allow 

enough space for the movable plate to move in order to accomplish desired system 

functions, for example, to block or reflect a light beam. In order to achieve the same 

amount of movement, from Equation (3-5), it can be seen that the larger the H is, the 

higher the actuation voltage will be needed.  
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What a system designer needs to do is to make a best design so that all the system 

requirements are met and the lowest possible actuation voltage is achieved. Very 

often, the actuation voltage V can go as high as several hundred volts. This brings a 

lot of problems, including driving circuit design, dielectric material selection and 

special power supply design, etc. 

 

One of the main goals of this research is to develop a method to design a plate 

actuator structure with which the maximum possible displacement can be reached 

with a minimum voltage possible. Because the top plate needs to be horizontal and 

movable to redirect the light beam in the optical switch, the main focus will be on the 

bottom plate, which is fixed in position. This means that our goal is to find the 

optimal bottom plate to meet the minimum voltage required.  

 

3.2 A plate actuator with two parallel plates 

In Equation (3-5), for any given constant actuation voltage V, the maximum 

obtainable equilibrium movement of the movable plate can be calculated by taking 

the first order derivative with respect to y on both sides of (3-5) and let
0=

dy
dV

. We 

get: 

0)1()(2)( 2 =−⋅−⋅⋅+− yHyyH                                    (3-6) 

Or   

                                               0)2)(( =⋅−−− yyHyH                                          (3-7) 
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The solutions to (3-7) are Hy = and 
3
Hy = . When Hy = , it means that the top 

plate and the bottom plate occupy the same y position, which results in the system 

collapse with no physical meaning. This solution needs to be neglected.  Then we 

have the solution to (3-6) is  

3
Hy =                                                     (3-8)  

By substituting (3-8) into (3-5) we get  

           
A
HkH

A
ykyHV H

y
inpull ⋅⋅

⋅⋅
⋅⋅=

⋅
⋅⋅

⋅−=
=

− εε 3
2

3
22)(

3

                                    (3-9) 

 

The voltage corresponding to (3-8) is called the pull-in voltage inpullV − , meaning that 

the actuation voltage can not increase beyond inpullV − . If the actuation voltage is 

greater than inpullV − , the movable plate with the initial gap distance of H will snap 

toward the fixed plate and the system collapses. When that happens, the top plate fails 

to perform its function such as to redirect a light beam in our case. The 

range Hy > has no physical meaning, as the bottom plate serves as a stopper to the 

top plate. 
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3
H H

inpullV −

y

V

0

Unreachable area

 

Figure 3-2 The relationship between the top plate moving distance and its actuating 
voltage 

 

According to (3-5), the relationship between the displacement of the top plate and the 

actuation voltage applied is shown in Figure 3-2. From Figure 3-2, we can notice that 

in the range
3

0 Hy ≤≤ , the voltage has a maximum point at 
3
Hy = . Beyond this 

point, the actuator system is unstable. It can also be observed from Figure 3-2 that the 

displacement of the top plate is first increased with the increase of the actuation 

voltage applied within the range
3

0 Hy << . When the actuation voltage 

reaches inpullV − , the movable plate has reached a critical point, where
3
Hy = . Then the 

distance y increases in an unstable manner during range HyH
>>

3
 until the top 

plate hits the bottom plate where Hy = . This is the pull-in phenomenon.   

Comment: v_x_plot.m
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Therefore, the maximum displacement of the top plate in the equilibrium status can 

not exceed one third of the original gap width H, and this value has nothing to do with 

other system parameters, such as the spring constant k, and the plate size A, etc. 

However, from (3-9), inpullV −  is dependant on these parameters. Specially, we observe 

that inpullV −  is a monotonic function of H. So in order to reduce the actuation voltage 

needed, we need to reduce H. However, the reduction of H is limited by the pull-in 

point
3
Hy = , which determines the maximum range of displacement of the top plate. 

Therefore, the parallel plate actuator design procedure will be the following: based on 

the application, we need to decide how much displacement the movable top plate 

needs to have. It can be denoted as 0y . Then the initial gap distance between the two 

actuator plates will be 03 yH ⋅= . This system will have the lowest actuating voltage 

as expressed by 

                        2
3

0
3 )2(

3
2

3
2 y

A
kH

A
kV ⋅⋅

⋅
=⋅

⋅
=

εε
                               (3-10) 

In a practical design, some safety margin is needed to the theoretical value 03 yH ⋅= . 

It is not only because we need some design tolerance, but also because of a desired 

controllability.  From Figure 3-2 we observe that in the region where V is close to 

inpullV − , the curve is very horizontal. That means a very small voltage change will 

cause a relatively large change in y. This makes the y displacement very sensitive to a 

very small voltage change, including the noise related to the control voltage signal. 

Thus for this controllability reason, we want to move our system working region to 
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some region where the V-y curve is not that horizontal; that is to the region where 

3
0 Hy <≤ . 

 

3.3 A plate actuator with a tilting top plate and a horizontal bottom plate 

3.3.1 Torque analysis 

Now, we expand our plate actuator concept in Section 3.1 further to the case similar 

to MEMS mirror actuator system. In a tilting mirror system, the movable top plate in 

Figure 3-1 is replaced by a rotational top plate, which is fixed at one end, freely tilting 

at the other end. At the fixed end, there is a torsion spring providing spring torque. 

Such a tilting top plate actuator system is shown in Figure 3-3. 

H

L

α0

Torsion
spring torque

Electrostatic force

Rotation
Torsion axis

Actuation voltage V

+

-

Fixed plate

Tilting plate

Mirror body

 

Figure 3-3 The plate actuator system with a tilting top plate 

 

Assume: 1) the area of both plates is A, LWA ⋅= with width W and length L. 2) one 

plate is on top of the other initially, with initial gap distance of H; 3) the tilting top 
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plate is fixed at point 0 and is attached to a torsion spring at 0. When the actuating 

voltage is applied, the tilting top plate can rotate by angle α around the axis passing 

through point 0; 4) Mαα ≤≤0 , where Mα  is the maximum tilt angle; 5) neglecting 

the fringe effects 

 

To analyze the forces in such a top plate tilting actuator system, a torque analysis is 

illustrated in Figure 3-4. 

 

Figure 3-4  Force analysis of the tilting plate actuator system 

 

The upward torque from the spring is: 

α⋅= kTspring                                                    (3-11) 

The downward torque from the actuation voltage V is: 

∫
⋅

⋅−⋅
⋅⋅

⋅=
α

α
εcos

0
2

2

)tan(2

L

static dx
xH

VWxT
                                  (3-12) 

In order to solve (3-12), let:                  

x 

y=H 

α 

y 

∆x

0 

x·tanα
x

Torsion 
spring torque 

Electrostatic force

Rotation

L·sinα 

L·cosα
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xHy ⋅−= αtan                                                 (3-13) 

So                                     
αtan
yHx −

= ,           dydx
αtan
1−

=                                   (3-14) 

when ]cos,0[ α⋅∈ Lx ,                   ]sin,[ α⋅−∈ LHHy                                      (3-15) 

Substitute (3-14) and (3-15) into (3-12), we get: 

∫
⋅− −

⋅
⋅
⋅⋅

⋅
−

=
α

α
ε

α

sin

2

2

tan
1

2tan

LH

H
static dy

y
VWyHT                          (3-16) 

∫
⋅−

⋅−+⋅
⋅

⋅⋅
=

−
⋅

⋅⋅
=

α
α

α
ε

α
ε sin

sin
2

2

22

2

)(ln
tan2tan2

LH

H

LH
Hstatic y

HyVWdy
y

HyVWT  

)1
sin

sin(ln
tan2 2

2

−
⋅−

+
⋅−

⋅
⋅⋅

=
α

α
α

ε
LH
H

H
LHVW

                           (3-17) 

When the system is balanced, staticspring TT = , we have 







 −

⋅−
+

⋅−
⋅

⋅
⋅⋅

=⋅ 1
sin

sinln
tan2 2

2

α
α

α
εα

LH
H

H
LHVWk                     

(3-18)
 

That is:             






 −

⋅−
+

⋅−
⋅⋅

⋅⋅
=

1
sin

sinln

2tan

α
αε

αα

LH
H

H
LHW

kV    

                         
2
1

1
sin

sinln2tan
−







 −

⋅−
+

⋅−
⋅

⋅
⋅⋅

=
α

α
ε

αα
LH
H

H
LH

W
k              (3-19)

 
For a desired mirror tilt range, ],0[ MR α∈ , where Mα  is the maximum tilt angle, we 

want to find the minimum actuating voltage needed.  

 

From the discussion in Section 3.1, we know that the smaller gap H  is, the lower the 

actuating voltage that is needed, as long as H  is not too small to let pull-in happen. 

In order to find the smallest possible H, let us repeat the calculation we did in Section 
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3.2, that is to take the first order derivative to H on both sides of (3-19) and let 

0=
dH
dV . We get 

 ( )
3

22

1
sin

sinln2

sinsin
1sin

sin2tan



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

 −
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+
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⋅
⋅

⋅−
−

⋅
⋅
⋅⋅
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1
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1
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
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
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H inc re a s e s  

V

0 α  

(a) V-α relationship at different H using Equation (3-15) 



 

 54 
 

H inc re a s e  

Mα

pullinV

 

(b) pullinV  - Mα using Equation (3-28) 

Figure 3-5 The V-α relationship at different H 

 

As k , W , α, L , H and ( 1
sin

sinln −
⋅−

+
⋅−

α
α

LH
H

H
LH ) need to be positive to 

have physical meaning, the right side of Equation (3-20) is always greater than 0. 

Therefore, V is a monotonic-rising function of H  and the required actuating voltage 

will drop with the decrease of H , until H  is limited by the pull-in phenomena, as 

shown in Figure 3-5. 

 

A MATLAB simulation result for Equation (3-19) is shown in Figure 3-5(a), to 

illustrate the angular displacement of the tilting top plate vs. the actuating voltage 

with different H  values. Similar to what we observed in Section 3.2, we can see from 

Figure 3-5, the angular displacement increases first with the increase of actuating 

Comment: horizontal_V_pullin_alfa.m 

Comment: fla_V_alfa_mtplot.m 
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voltage. Then it reaches one critical point. The system moves to the unstable range if 

the angular displacement increases any further. Again here the pull-in phenomena 

appear. Another observation from Figure 3-5 is that the higher the H  value the 

higher the pull-in voltage and the maximum tilt angle. 

 

3.3.2 The pull-in condition: the relationship between H  and ML αsin⋅  

Now, let us find the pull-in condition in the electrostatic plate actuator system. In 

Equation (3-19), for any given actuating voltage V, the maximum obtainable 

equilibrium angular position of the tilting top plate can be calculated by the first order 

derivative with respect to α on both sides of (3-19) and let 0=
αd

dV  at Mαα = . We 

have 

0
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That is                   0
1
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Or                          
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Or  replacing Mαα = ,  
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 (3-22) can be written in another form with H normalized to ML αsin⋅ . That is: 
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(3-23) 

From (3-22) or (3-23), we can obtain the maximum equilibrium angular position of 

the tilting top plate. From (3-23) we can tell that Mα is a function of the plate actuator 

parameters L
H . That is 

                                                      )( L
H

MM ααα ==                                          (3-24) 
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Figure 3-6 The relationship between L
H  and Mαsin  
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This relationship between Mαsin  and L
H  is shown in Figure 3-6 as the red line. 

From this figure, it is very interesting to notice that there is almost a liner relationship 

between Mαsin  and L
H . For comparison, )(13.2sin L

H
M =α is also shown in 

Figure 3-6 as the starred line. This straight starred line coincides well with the red one 

pretty. This also agrees well with )(sin46.0 L
H

M =α , which is 

)(1739.2sin L
H

M =α ,  according to the measurements from Buhler [69]. 

 

We can proceed further to prove that this linear relation between Mαsin  and L
H  

does exist. As mentioned in Chapter 2, the mirror angular displacement is less than 10 

degrees (about 0.17 radians). which is a small number compared to 1. Thus for any 

],0[ Mαα ∈ , αα ≈sin and 1cos ≈α . Then (3-23) can be written as the following: 
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
−

⋅

=

ML
H
α

            (3-25) 

The solution to (3-25) will be 

 m
L

H

M

=
⋅ αsin

                                               (3-26) 

where m is some constant satisfying: 

( )21
1

3
11

1
1ln

−
=






 −

−
+

−
mm

m
m

m                          (3-27) 

Comment: horizontal_H_alfa_plot.m 
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In (3-27) m must be greater than 1 to keep (3-27) to have a solution; 1>m . This is 

consistent with the physical picture that H  should be greater than ML αsin⋅ . At this 

point, we have finished the proof that a linear relationship holds between Mαsin  and 

L
H . This simplifies our design if we want to reach some specified Mα  with the 

minimum actuating voltage. We can simply set MmLH αsin⋅= without going 

through a very complex math calculation if we choose a reasonable m. 4.2=m  is 

such a reasonable number, as shown in Figure 3-6 with the straight crossed line. 

4.2=m  is higher than 2.13, because we want to have some design margin.   

 

3.3.3 The pull-in voltage 

If we substitute (3-24) back into (3-19), we get the pull-in voltage.  
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
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LH αααα
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1sin 2 ⋅+⋅⋅

⋅
⋅

⋅
⋅

⋅⋅−=  (3-28) 

One observation from (3-28) is that by reducing H, we can reduce the pull-in voltage, 

while maintain the same maximum angular displacement of the top plate, as shown in 

Figure 3-5(b). This also agrees with our intuition that the reduction of the initial gap 

distance between the two plates will bring down the pull-in voltage. However, the 
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initial gap between the two plates must be greater than ML αsin⋅  to allow the rotation 

of the top movable plate. This is consistent with our previous conclusion that 1>m . 

 

These observations also agree with the discussion in Section 3.2, where H reduction 

has a limit to allow the top plate to have a specified movable range. Here the 

minimum of H is limited by the angular displacement Mα  of the tilting top plate. 

 

To reduce the overall gap distance between the two plates, we can make the bottom 

fixed plate be tilted. So the overall gap distance between the two plates will become 

smaller, and the pull-in voltage will be reduced. If we tilt the bottom plate to an 

optimal angle, we will get the least pull-in voltage, which is the minimum required 

voltage corresponding to the same maximum tilt angle of the top plate.  

 

3.4 An optimal plate actuator with the tilted fixed bottom plate 

In this section, we will discuss the plate actuator with a tilted bottom plate. This 

actuator has the same movable top plate as discussed in the previous section with a 

horizontal bottom plate. The difference is the bottom plate. Here, the fixed bottom 

plate tilts an angle β relative to the horizontal line, as shown in Figure 3-7. The torque 

analysis of this system is shown in Figure 3-8. The assumptions in Section 3.3 are 

still held in this section. 
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Figure 3-7 A plate actuator with a fixed bottom plate tilted by an angle β 

 

Figure 3-8 The torque analysis of a plate actuator with a fixed bottom plate tilted  

by an angle β 
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In this system, the upward torque from the spring is the same as in (3-11) and the 

downward torque from the electrostatic force is 

( )( )

∫ ∫
−⋅ −⋅

−⋅⋅
⋅⋅⋅

=
−⋅⋅
⋅⋅⋅⋅

=
αβ

δ

αβ

δ αβ
ε

αβ
εcos cos

2

2

2

2

)(tan2))tan((2

L L

static x
dxVW

x
dxVxWT

             (3-29) 

There are a couple of points to be observed from Figure 3-7 and 3-8. First, since the 

fixed bottom plate and the movable top plate are applied with different electrical 

potential, they can not electrically contact each other. Thus the fixed bottom plate can 

not touch the point 0, as the movable top plate does. Therefore, we let it start at 

δ=x , which is a number with a very small value, very close to but not equal to zero, 

to keep the two plates electrically isolated. That is why the integration lower limit of 

(3-29) is δ. Second, the angular displacement of the top plate can not be greater than 

β. That is αβ > . The bottom plate serves as a physical stopper to the rotation of the 

top plate. 

  

To solve equation (3-29), we get: 

( )

∫
−⋅ ⋅

⋅
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⋅⋅
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δαβ
ε cos
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cosln LVW

                                  
(3-30) 

When the system is balanced, staticspring TT = , we have 
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That is:                        
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To obtain the minimum actuation voltage V, let us take the first order derivative to β 

on both sides of (3-32) and let 0=
βd

dV . 
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Since αβ > , Equation (3-33) tells that 0≥
βd

dV  in the range of ],0[ βα ∈  and 

]90,0[ o∈β . Thus V is a monotonic function of β. And because V is proportional to 
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( )αβ −tan , the actuating voltage V will be reduced when β is reduced. Again, 

reducing β is limited by the happening of pull-in with the maximum angular 

displacement Mα . Next, we will find the relationship between Mα and β. 

 

Repeat the same calculation we did to get equation (3-23) in Section 3.3, which is to 

keep β fixed and take the first order derivative to α on both sides of (3-32) and let 

0=
αd

dV . We can get the pull-in voltage inpullVV −=  and the corresponding maximum 

equilibrium rotation position Mα  of the top plate in the balanced electrostatic plate 

actuator system. 
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Or           
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Equation (3-37) gives the relationship between the tilt angle β of the bottom fixed 

plate and the maximum tilt angle Mα of the top movable plate. It tells that Mα  is a 

variable determined by β. This suggests that if we want to design a plate actuator with 

a maximum tilt angle of Mα , the tilt angle β for the bottom plate must be no less than 

the value β that satisfies (3-37). 

 

 

 



 

 66 
 

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45

50

α

β

β  vs. α  in optimal case

equation(3-37) 

β  =3 α

 

(a) The relationship between Mα (mirror tilt angle) and β (the angle of the bottom 
plate) in the tilted bottom plate actuator. The unit for both Mα and β is degree. 

Mα

pullinV

α  
 (b) The relationship between V and α as in Equation (3-32) 

Figure 3- 9 The relationships about α which hold in the fixed tilted bottom plate 



 

 67 
 

 

Combining (3-32) and (3-37), we can obtain the corresponding pull-in voltage at 

equilibrium. The relationship between β and Mα  as expressed in (3-37) is illustrated 

in Figure 3-9 (a). The unit of both α and β is degree, with 4=δ and 125=L . Figure 

3-9 (b) shows the relationship between V and α as in Equation (3-32). 

 

Therefore, after the top plate’s maximum tilt angle Mα  is determined by the specific 

application, the fixed bottom plate’s tilt angle β can be determined by Equation  

(3-37). This tilted bottom plate structure will result in a minimum actuating voltage 

inpullV −  according to Equation (3-32). A detailed design example will be given in the 

next two sections. 

 

Until to this point, we have studied three cases of plate actuator systems. One has two 

parallel plates; one has a tilting top plate and the fixed horizontal bottom plate; and 

the other one has a tilting top plate and the fixed tilted bottom plate. For comparison, 

the relationships between V and α for both the last two cases are shown in Figure 3-

10. This comparison is based on to achieve the same Mα , the maximum angular 

displacement of the top plate as well as the same top plate and the same torsion spring 

in the systems. The data used to obtain Figure 3-10 are shown in Table 3-1. The 

conclusion is that for a tilting top plate actuator, the tilted bottom plate structure has 

less voltage requirement than the horizontal bottom plate structure.  
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Figure 3-10 The comparison between the horizontal bottom plate and the tilted 
bottom plate 

 

A horizontal fixed bottom plate A tilted fixed bottom plate 

8=Mα degrees 

9103901.3 −×=k N/m, 1210854.8 −×=ε  

125=L µm, 250=W µm 

235.40=H µm according to (3-23) 

208.11 =pullinV V 

8=Mα degrees  

9103901.3 −×=k N/m, 1210854.8 −×=ε  

125=L µm, 250=W µm, 4=δ µm, 

7179.27=β degrees according to (3-37) 

127.82 =pullinV V 

Table 3-1 The data used to compare the horizontal bottom plate structure and the 
tilted bottom plate structure 
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3.5 Design examples 

In this section, two design examples will be presented, after the methodology to use 

an optimal bottom plate was developed. For comparison, in both examples, they have 

the same top plate as well as the torsion spring. One of the examples has a fixed 

horizontal bottom plate as shown in Figure 3-3. The other example has a fixed tilted 

bottom plate as shown in Figure 3-7. The schematic of the structure shown in Figure 

3-11 is developed from Figure 3-3 and the schematic of the structure shown in Figure 

3-12 is developed from Figure 3-7. The top plate is made of gold with width of 

250µm, thickness of 2µm and length of 125 µm. The torsion spring, too made of 

gold, has width of 2µm, thickness of 2µm, and length of 35µm. That is  

125=ML  µm, 250=W µm, 2=t µm                        (3-38) 

35=tl  µm, 2=tW µm, 2=t µm                             (3-39) 

Because the torsion axis is located at the center of the torsion spring, L corresponding 

to what shown in Figure 3-3 and Figure 3-7 is  

1241125
2

=−=−= t
M

W
LL µm.                              (3-40) 

 
The structure of this section is the following. First the methods to calculate the spring 

stiffness constant k are presented. Then an example is given using a tilted bottom 

plate, followed by another example using a horizontal bottom plate for comparison. 

ANSYS simulations are presented in each example. The conclusion will be that lower 

voltage is obtained in the tilted bottom example than in the horizontal bottom 

example to reach the same tilt angle of the top movable plate. 

 



 

 70 
 

 
 

t

L

W

tl

tl

tW

 

(a) top view 

t

H

γ

ML

L

Rotation
 axis

tW

tW=γ2

 

(b) side view 

Figure 3-11 The schematic of the parallel plate structure 
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(b) side view 

Figure 3-12 The structure of a design example 
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3.5.1 Calculation of the torsion stiffness  

To proceed with our design, we need to know the torsion stiffness k related to the 

specific torsion spring. Two methods are used to calculate k here. One of the methods 

is to obtain k by using the mechanical structure data of the torsion spring directly. The 

other method is to obtain k according to Equation (3-32) based on ANSYS 

simulation. These methods can achieve two purposes here. One purpose is to obtain k 

to pursue our design. Another purpose is to check the correctness of (3-32) by 

calculating the torsion stiffness k through it.  

 

The torsion spring, as shown in Figure 3-11 and Figure 3-12, has a cross section 

shown in Figure 3-13. One end of the torsion spring is connected with the top plate, 

while the other end is fixed in position. For a torsion spring using isotropic material 

with a rectangular cross-section, according to Young [66], its stiffness can be 

expressed approximately as: 

















−⋅⋅−

⋅⋅
= 4

43

12
136.3

3
16

a
b

a
b

l
baGk

t

                           (3-41) 

( )ν+⋅
=

12
EG                                                        (3-42) 

2b

2a  

Figure 3-13 A cross-section of the flexure hinge suspension 
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where G is the shear modulus for the material; E is the Young’s modulus of the 

material; ν is the Poisson’s ratio of the material; tl is the length of the torsion spring; 

a is the half of the hinge width, b is the half of the hinge thickness.  

 

Equation (3-41) suggests that several ways can be implemented to change the 

stiffness k , such as the change of the material or the size of the flexure hinge. For 

example, we can increase the length l  or decrease the thickness t  to decrease k .  

 

With the structure data here for the torsion spring as shown in Figure 3-11 or Figure 

3-12, using (3-39), we have  

35=tl  µm, 22 == aWt µm, 22 == bt µm                        (3-43) 

The material of the hinge is gold, with parameters  

10107.7 ×=E Pa, 42.0=ν                                   (3-44) 

Combined (3-41), (3-42), (3-43), and (3-44), the stiffness constant k is 

9109146.3 −×=k  Nm/radian                                        (3-45) 

 
So far, the stiffness constant k has been calculated on the basis of its mechanical 

structural data. Another way to get the stiffness constant k is from an ANSYS 

simulation result.  We can rewrite (3-32) as  

( )
( )
δ

αβ
α

ε
αβ

−⋅
⋅

⋅
⋅








−

=
cosln

2tan

2
LWVk

                        (3-46) 

If we know the applied voltage V and the resulting tilt angle α from ANSYS 

simulation along with other structure parameters such as β, W and L, k can be 
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calculated using (3-46). Two cases of ANSYS simulation results are listed in the 

Table 3-2, based on the structure shown in Figure 3-12. 

 

4838.0=β , 250=W µm, 124=L µm, 
( )4838.0cos/2cos/ == βγδ µm

 Case number 
 

Applied voltage 
V 

Tilting displacement 
µm 

1 111 11.66 

2 125 14.77 

Table 3-2 ANSYS simulation results with a tilted bottom plate
  

In the first case, the tilt displacement of the top plate is 66.11=md  µm, the tilt angle 

α is 3525.5)124/66.11sin()/sin( === aLda mα  degrees. Putting all these 

parameters into (3-46), the calculated k is ,     

9109031.3 −×=k                                             (3-47) 

To check this, we recalculate k by using the second case in Table 3-1. This time, the 

tilt displacement at the end of 77.14=md µm, using the k just calculated from (3-47) 

into (3-32), the calculated V is 124.7409, a very good approximation to 125V from 

the ANSYS simulation.   

 

The error between the k calculated from theoretical Equation (3-41) and the one 

calculated from the ANSYS simulation along with (3-46) is  
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%29.0%100
109146.3

109031.3109146.3
9

99

≈×
×

×−×
= −

−−

error                        (3-48) 

This shows a good agreement between Equation (3-41) and (3-46). As Equation (3-

46) is obtained from Equation (3-32), this agreement verifies the correctness of our 

Equation (3-32).  

 

3.5.2 A design example of an optimal plate actuator with the tilted bottom plate  

Our first design example is based on the structure shown in Figure 3-12. Assume that 

the system requirement is to have the maximum tilt angle to be 8 degrees. To give 

some design margin, the maximum tilt angle is set to be 8.7 degrees, which is 

1517.0=Mα radians.  

 1517.0=Mα radians                                          (3-49) 

To find the needed tilt angle β for the bottom plate, using (3-37), (3-38), (3-40) 

( )
( )

( )
4

1517.0cos124ln

1517.0tan1517.01
1517.02sin

1517.04
−⋅

−
⋅−=

−
⋅

β
β

β
                    (3-50) 

Solving (3-50),  

4833.0=β radians                                                  (3-51) 

This is 71.27=β degrees, which means that the bottom fixed plate for the optimal 

plate actuator has an angle of 27.71 degrees with the horizontal line. To design such a 

tilted bottom plate, we can use Figure 3-12(b): 









−
−

=
γ

β
L

hha 12tan                                         (3-52) 

If we choose 9.11 =h µm, 662 =h µm, γ=2µm, then  
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9.166tantan 12 =







−
−

=







−
−

= a
L

hh
a

γ
β            (3-53) 

Equation (3-53) shows that the bottom plate does have the desired angle. 

 

Using this β value and the structure shown in Figure 3-12, we can write an ANSYS 

simulation program with a simulation result shown in Figure 3-14. The ANSYS 

simulation shows that When 118=V V, a tilt displacement at the free end of the top 

plate of 134.18=md um. This corresponds to a tilt angle of 

1468.0)124/134.18sin()/sin( === aLda mα radians, which is 8.411 degrees. This 

result meets our expectation to tilt the top plate to 8 degrees.  
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Figure 3-14 The ANSYS simulation of a plate actuator with a tilted bottom plate  

When 118=V V,  the tilt displacement at the free end of the top plate of 
134.18=md um 

 

 

To this point, we have finished our design of an optimal plate actuator with a fixed 

bottom plate with a tilt angle of 0.4838 radians (27.7197 degrees). Next we compare 

this fixed tilted bottom structure with the structure of a fixed horizontal bottom plate, 

in order to emphasize the benefits of using a tilted bottom plate to reduce the driving 

voltage in the plate actuator systems. 
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3.5.3 A design example with the horizontal bottom plate structure  

In this subsection, our design example is based on the structure shown in Figure 3-11. 

Our target is the same as before, to have the top plate to achieve a desired maximum 

tilt angle of  8 degrees. Again by taking some design margin, the designed maximum 

tilt angle is set to be 8.7 degrees; that is 1517.0=Mα radians.  To find the needed H 

for this horizontal bottom plate, using (3-22), (3-38), (3-40), that is  

( ) ( )1517.201517.0cos1517.0sin
1517.0cos1517.0

1517.0sin124
1517.0sin124

1
1517.0sin124

1517.0sin124ln

2

2

22

+⋅⋅−
⋅

=







 −

⋅−
+

⋅−

α
H

H
H

H
H

     (3-54-a) 

Or       

                                                          25.41=H µm                                       (3-54-b) 

We can also use (3-26) with 4.2=m , 8=α degrees, which is 0.1396 radians to 

calculate H. 

4179.411396.0sin1244.2sin =⋅⋅=⋅⋅= αLmH µm                  (3-55) 

(3-55) and (3-54) agrees very well. One point to be mentioned is that in using (3-55), 

because we put margin in choosing m , α is the desired maximum value of 8 degrees 

without adding any margin. 
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Figure 3-15 The ANSYS simulation of a plate actuator system with a horizontal fixed 
bottom plate.  

When 8.226=V V,  the tilt displacement at the free end of the top plate of 
203.18=md um. 

 

Based on the above calculations, the bottom fixed plate will be at H=42µm below the 

top plate, as shown in Figure 3-11. Using the structure in Figure 3-11 to run an 

ANSYS simulation, when V=226.8V, the ANSYS simulation presents a tilting 

displacement at the free end of the top plate of 203.18=md um, as shown in Figure 3-

15. This corresponds to a tilt angle of 

147.0)124/203.18sin()max/_sin( === aLdaα radians, which is 8.45 degrees.  
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Compared the data we have for the tilted bottom plate, where a tilt angle of 0.14368 

radians when V=118V, here for a horizontal bottom plate, we achieve a tilt angle of 

0.147 radians when V=226.8V. From these simulations, we get the conclusion that 

the tilted fixed bottom plate structure reduces by about half of the required voltage 

over that required by the horizontal bottom structure.  

3.5.4 Summary of the comparison of three plate-actuator configurations 

So far, beginning with the concept of pull-in phenomena in electrostatic actuated 

plate actuators, we have developed a methodology to design a tilted fixed bottom 

electrostatic plate actuator in an effort to reduce the actuating voltage. This has been 

confirmed by the ANSYS simulation. We have found that there is a very simple 

linear approximation between the initial gap distance H and Lsinα, which holds for 

the horizontal bottom plate. Bearing all these in mind, we will begin our next section 

to design the optimal plate actuators in MEMS mirror actuator system for the optical 

switch applications. 

 

3.6 Multi-step approximation to an optimal tilted bottom plate 

In this section, we apply the plate actuator optimization method developed in 

previous sections to design and implement actual MEMS mirror actuators in optical 

switch applications. First we need to review some of the special characters of these 

optical MEMS actuators to make sure that our design will meet all those 

requirements. Second, our design should be able to be implemented using the 

available planar fabrication technologies, so implementation limitations need to be 



 

 81 
 

considered and some trade-offs need to be made to balance the performance and 

implementation cost. The goal is to use current matured silicon planar processes to 

implement the designed optimal actuators using the least number of process steps, 

which means the lowest cost.  

3.6.1 A half-mirror structure analysis for a MEMS mirror actuator  

We implement the optimal tilted bottom plate discussed in the previous sections with 

a Multi-step (N-steps) approximation. As discussed in Chapter 2, each mirror in the 

MEMS actuator can have one rotation-axis or two-rotation axis. Because it is easy to 

analyze one rotation-axis case and the same methodology can be applied on the two 

rotation-axis case, here we will focus on the analysis of the mirror structure with one 

rotation-axis.  

 

A one rotation-axis has two independent electroplates. Recall Equation (3-2), which 

shows that the electrostatic force is proportional to the area of the actuator plate; so a 

two- electro-plate design occupying the full area is made and shown in Figure 3-16 

(a). A two electro-plate actuator occupies as much area as the entire mirror plate 

occupied to get the maximum actuation force. This translates into minimum actuation 

voltage needed.  
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Figure 3-16 The top view of an MEMS actuator with one rotation-axis  

and the maximum area usage 
 

Thus if we ignore the isolation area width, which normally is very small, for each 

electro-plate shown in Figure 3-16, its width is mW  and its length is 2
mLL =  

As pointed out in Chapter 2, when actuating the mirror, only one of two electro-plates 

will be actuated. This means that these two bottom electroplates A and B can not be 

actuated simultaneously.  
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(a)  with the horizontal bottom plate 
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(b)  with the fixed bottom plate tilted by angle β 

              Figure 3-17 The schematics of a MEMS mirror actuator (side view) 

 

Comparing Figure 3-16(a) with Figure 3-3, the similarity is straightforward. We will 

get the same results for our MEMS mirror actuator as in Section 3.3 for the structure 
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with a horizontal bottom plate. The only difference is the integral upper limit, which 

is 2
mLL = here. All the equations in Section 3.3 hold with a replacement of 

2
mLL = . 

 

This is the same as the case with Figure 3-16(b). Comparing Figure 3-16(b) with 

Figure 3-7, the similarity is also straightforward. We will get the same results for our 

MEMS mirror actuator as in Section 3.4 for the structure with a tilt bottom plate with 

a fixed tilted angle of β. The only difference is the integral upper limit, which is 

2
mLL = here. All the equations in Section 3.4 hold with a replacement of 2

mLL = . 

Thus to simplify our analysis of a MEMS mirror actuator system, a half-mirror 

structure such as the one in Figure 3-7 can be used. We will still use this half-mirror 

structure to discuss the multi-level bottom plates. 

 

3.6.2 Multi-stage implementation of the optimal tilted bottom plate 

 

 

Figure 3-18 Side view of Multi-step approximation of tilted plate actuators 

 

side view 
Actuator

A
Actuator
B

Mirror body 
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As described in Chapter 2, a real MEMS based mirror system in large channel count 

optical switch applications normally consists of a large number of mirrors. When 

considering the implementation of these tilted bottom plates in fabrication, we are 

facing a difficult task to make such a large quantity of independently tilted plates on a 

substrate. In order to use the matured planar silicon process technologies widely used 

in the semiconductor industry today, it is quite natural to consider multi-steps to 

approximate this tilted bottom surface, as shown in Figure 3-18. 

 

Theoretically, if an infinite numbers of levels are used, the multi-step approximation 

will be the same as the optimal tilted plate. In practice, only limited levels of multi-

steps can be manufactured. As a result, the actuator with a multi-step electro-plate 

may be different from the optimal tilted plate actuator in voltage requirement. This 

brings an issue of trade-off between the number of multi-steps used and its voltage 

requirement. More levels of the bottom plate will achieve better approximation with 

less required voltage while making the fabrication more complex. 

 

The force and torque analyses of this multi-step bottom plate system, basically, are 

exactly the same as what was discussed in the Section 3.3 and Section 3.4. The 

difference will be in the integral limit L and the width W in the formulas such as (3-

12) and (3-26), etc., which are determined by the size of the individual electro-plate. 

However, care must be taken about the fringe effects. In the discussion of Section 3.3 

and Section 3.4, the fringe effects have been ignored as the mirror size is large 

compared with the gap distance or the angular gap. However, when the size of the 
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electro-plates is not much bigger than the gap distance or the angular, the fringe 

effects can not be ignored any more. Numerical analysis based on Laplace’s equation 

should be pursued. According to Nishiyama [67] , Nemirovosky [68] , there will be 

an error of about 10%.  
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Figure 3-19 Four-stage implementation of an optimal tilted bottom plate 

 

Figure 3-18 is a four-level implementation example. Altogether four stages are used 

to approximate the tilted bottom plate with an angle of β relative to the horizontal 

line. The length of each stage is 
4
cosα⋅L  and the width of each stage is still W. The 

distance between each stage is 
4

0H
i ⋅ , where i  is the sequence number of the stage. 
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3.7 Conclusions 

We have discussed the methodology to develop an optimal plate actuator based on 

three different configurations of the plate actuator system. By using force or torque 

analysis at equilibrium status, it is shown that the optimal tilted bottom plate results in 

the minimum driving voltage required compared with the horizontal bottom plate. In 

order to fabricate such an optimal tilted bottom plate using planar silicon processes, 

multi-steps are implemented and a four-stage design is given.  
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Chapter 4: Transient Analysis 
 

Abstract 

The transient response of the top plate movement for the actuator in the optimal plate 

structure is discussed in this chapter. The transient response equation is developed 

with consideration of damping effects, especially the squeeze film damping. It is 

solved both in a numerical way by using PSpice and in an analytical way by 

linearizing the equation. A comparison is performed between the transient response 

of this same top plate in the optimal plate structure and that in a standard horizontal 

plate structure. 

 

4.1 Introduction 

After the equilibrium analysis in Chapter 3, the transient analysis of the movement of 

the top plate in this optimal plate actuator system will be discussed in this chapter. 

The structure of this chapter is the following: First a system definition is given for 

this optimal plate structure based on the study in Chapter 3. Then by applying 

Newton’s law for a rotational rigid body on the top plate, a second order differential 

equation to describe the transient response is developed taking account of damping 

effects. 

 

In order to solve this non-linear differential equation, an analogous electrical circuit is 

set up in PSpice using GVALUE components. Based on this analogy, this non-linear 
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equation is solved by a PSpice transient simulation. By using the same analogous 

concept, a transient response of the top plate of a standard horizontal plate structure is 

obtained as a comparison to the optimal bottom plate structure. In the last section, 

since the tilt angle is small, by using linearization of the nonlinear equation, an 

analytical solution is obtained for the transient response. From this solution, we can 

directly have the relationship between the applied step voltage and the transient 

switching time or the damping amplitude.  

 

4.2 System definition 

In the actuator system with the optimal bottom plate structure, the bottom plate is 

fixed. So we describe the transient response of the top plate after there is a voltage 

applied between the two plates.  

 

To describe the transient response of the top plate, we recall the Newton’s law to 

describe rotation in a rigid body: 

∑=⋅ )(2

2

t
dt
dJ τα                                                                                                      (4-1) 

where J is the moment of inertia; α is the angular displacement of J  with respect to a 

frame of reference; τ is the torque applied on J with respect to the same frame of 

reference. The right side of (4-1) includes all the torque applied on J [61, pages 53-

68]. 
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When the top plate rotates along its axis, there are three noticeable rotation toque. 

One is the torque eτ  due to the electrostatic force, one is the torque mτ  due to the 

torque spring and the other one Bτ is due to damping effects of the system.  

 

By using (4-1), the transient response of this top plate is: 

Bmedt
dJ τττα

++=⋅ 2

2

                                                                                             (4-2) 

When writing (4-2), we assume that the top plate is a rigid body and again due to the 

small size of the whole system, the torque due to gravity force is ignored. 

 

Before we proceed on the study of the transient analysis of the top movable plate in 

the optimal plate actuator system, the system we are going to study is defined as the 

following. Its structure is based on the same example of the optimal bottom plate 

structure, which is given in Figure 3-11. Here we redraw it as Figure 4-1 with the 

following structure data. W, the width of the top mirror, is 250µm; L, the half length 

of the mirror, is 125µm; and t , its thickness, is 2µm; γ as labeled is 3µm.  

 

In order to reach a design goal of 8 degrees tilt angle for the top mirror, for such a 

fixed bottom plate structure, by using (3-37), the optimal angle β can be calculated as 

the following.  

Here, 
β

γδ
cos

= , 125=L , with some design margin, the 7.8=Mα degrees, which is 

0.1518 radian. 
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( )
( )
( )

γ
βαβ

αβ
α

αβ
α

coscos
ln

tan
1

2sin
4

⋅−⋅
−

⋅−=
−

⋅

M

M
M

M

M

L
                               (4-3) 

Solving (4-3), the optimal angle of β is: 4839.0=β  radians ( or 27.7254 degrees). 
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Figure 4-1 The schematic of the system with the optimal bottom plate structure 
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4.3 The transient equation to describe the top movable plate 

For such a system with the optimal structure defined in Figure 4-1, Equation (4-2) 

applies to its top movable plate. Its electrostatic torque eτ  has been described in 

Chapter 3 as in Expression (3-30). The mechanical restoring torque mτ  , for a first 

order of approximation, holds a linear relationship with the angular displacement α.  

The damping torque Bτ  is complex to describe, which includes several factors that 

contribute to the energy loss during the transient process.  

 

When the plate rotates, there can be acoustic radiation to transfer energy from the 

mechanical rotation to sound energy and this energy can propagate in the air. The 

rotation can also introduce the internal friction due to the thermal energy flowing out 

of the compressed region to the tensile region. In addition, a third factor is the 

squeeze damping due to the compression of the air gap between the movable top plate 

the fixed bottom plate. However, this last term contributes to the main energy loss 

[75] [64] [65]. We will consider this dominant damping in our analysis. 

 
 

4.3.1. The moment of inertia 

With a cube shape, the moment of inertia J for the top plate is: 

WtdrrJ
L

L

ρ⋅= ∫
−

2  

3
2 3LWt ⋅

= ρ                                                                                                              (4-4)  
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Where ρ is the density of the top plate; W is the width of the top plate, L is the half-

length of the plate; and t is the thickness of the plate. 

 

For this example of the optimal plate structure, we assume that its top plate is made of 

gold with density ρ, 333 /103.19/3.19 mkgcmg ×==ρ . When we can put additional 

structural parameters inside (4-4), the moment of inertia of the plate is  

( ) ( ) ( )
217

36
663

102565.1
3

10125210210250103.19

mKg

J

⋅×=

×⋅
⋅×⋅×⋅×=

−

−
−−

                                          (4-5)  

 

4.3.2 The electrostatic torque and the mechanical torque 

As described in Chapter 3, the torque due to the electrostatic force is expressed in  

(3-30), which is rewritten here as (4-6) 

eτ

( )

( )αβ
δ

αβε

−⋅

−⋅
⋅⋅⋅

= 2

2

tan2

cosln LVW
                                                                             (4-6) 

where V is the applied voltage and β is the tilt angle of the bottom plate. 

 

The torque due to spring 

ατ ⋅−= km                                                                                                                (4-7) 

where k  is the mechanical stiffness constant of the torsion spring, which has been 

discussed in Section 3.5. Here minus sign is taken because this spring torque is 

always opposite to the moving direction. We use the same method to calculate k  as 
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what we did in Chapter 3 and get 9109031.3 −×=k Nm/radian. This is the number that 

we will use in the following analysis. 

 

4.3.3 The damping torque: squeeze film damping effect 

According to Murray [61], the damping torque Bτ  is proportional to the angular 

velocity of J , that is  

dt
dBB
ατ ⋅−=                                                                                                            (4-8) 

Here minus sign is taken because friction is always opposite to the moving direction. 

As stated earlier, though several mechanisms appeared during damping process, most 

of them are not significant to be considered. The main dominant factor is the squeeze 

film damping due to the air gap between the rotational top plate and the fixed bottom 

electrode. In general, the squeeze film damping contains both the air spring effect and 

energy loss damping effect, between which the dissipative damping is the more 

important effect [62], [63].  

 

If the roughness of both plates is neglected, according to Chang et al [47], the 

damping coefficient related to the air squeeze damping for the top plate is: 

( ) 3
0

5

26

)2(
4

48
h

LW
B air ⋅

+
=

µ
ηπ

                                                                                  (4-9) 

Here again W is the width of the mirror, 2L is the length of the mirror. 
W

L⋅
=

2η  . airµ  

is the air viscosity, a variable with the air pressure. At room temperature, when the air 

pressure is 510013.1 ×=airP Pa (1 atm), 51079.1 −×=airµ kg/ 3m .  0h  is the initial 
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average air gap distance between the top plate and the fixed bottom plate. Here the 

there is an initial angle β  between the fixed bottom plate and the movable top plate. 

4839.0=β  radians. Initially, the air gap distance is separately 1h  and 2h at the two 

ends of the plates:  

1.57674839.0tan3tan1 =⋅== βγh µm                                                               (4-10) 

65.69724839.0tan125tan2 =⋅== βLh µm                                                        (4-11) 

 So 

33.6369
2

21
0 =

+
=

hhh µm                                                                                     (4-12) 

Chang et al [47] also mentioned to consider the roughness factor σ  in (4-8). In our 

case here, both the top and the bottom plate are considered to be a smooth surface.   

1
250
12522

=
⋅

=
⋅

=
W

Lη                                                                                              (4-13) 

Putting the structure parameters of the example actuator in (4-9), the damping 

coefficient for this tilted fixed bottom plate tiltedB  is 

15101466.1 −×=tiltedB                                                                                              (4-14) 

Here we assume a constant damping coefficient during the transient periods. We will 

use a time variable damping coefficient in Chapter 5. 

 

4.3.4 The transient equation to describe the top plate rotation 

Combined with equation (4-2), (4-6), (4-7) and (4-8) in (4-1): 

Bmedt
dJ τττα

++=⋅ 2

2
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( )

( ) dt
dBk

LVW αα
αβ
δ

αβε
−⋅−

−⋅

−⋅
⋅⋅⋅

= 2

2

tan2

cosln
                                                         (4-15) 

That is: 

( )

( ) 0
tan2

cosln
2

2

2

2

=
−⋅

−⋅
⋅⋅⋅

−⋅++⋅
αβ
δ

αβε
ααα

LVW
k

dt
dB

dt
dJ                                       (4-16) 

If we put all the structure data of the example, such as W, L, k and t, etc into (4-16) 

and assume that the applied voltage is a step function at time zero, then (4-16) 

becomes: 

 

( )
( )

0
)4839.0tan(

)4839.0cos(36.8828ln0812.88103.106391.2532 2
28

2

2

=
−

−⋅
⋅⋅−⋅×+⋅+

α
αααα V

dt
d

dt
d     

(4-17)         

Equation (4-16) is the transient equation to describe the transient response of the top 

plate. It is a nonlinear differential equation due to the term involved with the 

electrostatic torque. Its analytical solution is not easy to get. In order to solve (4-16), 

two approaches are illustrated here. One is to use PSpice simulation directly with an 

analogous circuit; the other is to linearize (4-16) to develop an analytical expression. 

 

4.4 Transient response by simulation with PSpice  

In this section, we solve (4-16) by PSpice using an analogous circuit. We first define 

a circuit with GVALUE components. Then a second order differential equation about 

one specific node voltage will be derived, which shares the same format as (4-16). 

Based on this analogy, if we replace the variables, the transient response for this 
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circuit should be the same as the transient response describe in (4-16). Thus, PSpice 

simulation tool can be utilized to solve (4-16) and thus the transient response of the 

top plate is obtained.  

 

4.4.1 An analogous circuit with GVALUE components 

GVALUE is a two-port circuit component in PSpice. The output is voltage and the 

input is the current. There is a defined function between the output voltage and the 

input current. The analogous circuit is shown in Figure 4-2. It has two GVALUE 

components, one G component, two capacitors and two resistors. Here the currents 

flowing through the resistors have been ignored, because the resistors have the value 

of 10G ohms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-2 An analogous circuit to calculate the transient response 
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As shown in Figure 4-2, the voltage on node x1 referenced to ground is labeled as 

)1(xV ; the voltage on node x2 is labeled as )2(xV . Capacitor 11 =C F with 0 initial 

charge. Capacitor 12 =C with 0 initial charge. R1 and R2 are there for convergence 

purpose, both 10G ohms. G1 and G2 are both GVALUE components, whose current 

is controlled by the GVALUE expression shown. G3 is a normal ideal voltage 

controlled current source with the gain of –1. 

 

For G1, its GVALUE expression is   

)2(_1 xVdampBriG ⋅⋅=                                                                                        (4-18) 

where 1=r , and 91.2532_ =dampB  

For G2, its GVALUE expression is  

( )
( )2

2
2 ))1(tan(

))1(cos(8828.36ln1)1(
xV

xVVtxVkkiG −
−⋅

⋅−⋅=
β

β                                              (4-19) 

where 8101063.3 ×=kk , 0812.881 =t , 4839.0== βbeta  

For G3, its G value is  

)2(3 xViG −=                                                                                                           (4-20) 

For C1,  

dt
xdV

dt
xdVCiC

)1()1(11 ==                                                                                      (4-21) 

where 11 =C  

For C2,  

dt
xdV

dt
xdVCiC

)2()2(22 ==                                                                                    (4-22) 

where 12 =C  
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After we have defined the parameters of the components in Figure 4-2, we will 

proceed to show that the equation to describe V(x1), which is a second order 

differential equation, has the same format as (4-16).  

 

4.4.2 The second order differential equation for the node voltage V(x1) 

In Figure 4-2, for Node x1, ignoring the current flowing over R1, then 

31 GC ii −=                                                                                                                 (4-23) 

Combined (4-23), (4-20) and (4-21), then  

dt
xdVxV )1()2( =                                                                                                      (4-24) 

For node x2, the current flowing to the IN+ pin of G1, G2 and G3 is zero according to 

the GVALUE model. Again if ignoring the current flowing over R2, then 

212 GGC iii −−=                                                                                                        (4-25) 

Combined (4-25), (4-18), (4-19) and (4-22), then 

( )
( )2

2

2

))1(tan(
))1(cos(8828.36ln1)1()2(_

)2(

xV
xVVtxVkkxVdampBr

dt
xdViC

−
−⋅

⋅⋅+⋅−⋅⋅−=

=

β
β            (4-26)  

Combined (4-24), (4-26) and the parameters shown in Figure 4.2,   

( )
( )

0
))1(4839.0tan(

))1(4839.0cos(8828.36ln0812.88)1(101063.3)1(91.2532)1(
2

28
2

2

=
−

−⋅
⋅⋅−⋅×+⋅+

xV
xVVxV

dt
xdV

dt
xVd

                                                                                                                                       

(4-27) 

The similarity between (4-27) and (4-17) is apparent, as long as we set  
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α=)1(xV                                                                                                                (4-28) 

That means that the transient response of the system represented in (4-27) is the same 

as the transient response represented in (4-16) or (4-17). Because PSpice can be used 

to simulate the circuit described by (4-27), the same result will be obtained for the 

mechanical system described by (4-16) or (4-17), as long as by using a variable 

change α=)1(xV . 

 
Figure 4-3 is the transient response according to the circuit shown in Figure 4-2. In 

Figure 4-3(a), V is100V. In Figure 4-3(b) are the transient settling responses when 

V=130V, 90V and 50V separately. Figure 4-3(b) shows that the higher the voltage 

applied, the higher the damping amplitude is. These analyses are the same to our 

mechanic system described by (4-16), when α=)1(xV . 

 

(a) when V=100V 
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(b) when V=50V, 90V and 130V 

Figure 4-3 Transient response for the analogous circuit 

 

4.5 Comparison between the transient response in a horizontal bottom plate actuator 

and that in the optimal bottom plate actuator 

 
In this section, we will compare the transient response of the top plate in the actuator 

between the tilted bottom plate structure and the horizontal bottom plate structure. 

Both these actuators have the same top plates. The schematic of the actuator with the 

horizontal plate structure is shown in Figure 4-4.  The top movable plate is the same 

in both Figure 4-1 and Figure 4-4. The only difference is the bottom plate structure.  

 

Using the same analogue method, we will begin the comparison by defining the 

horizontal bottom plate actuator system as shown in Figure 4-4. 
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This actuator system shown in Figure 4-4 is based on the same example of the 

horizontal actuator structure, which is given in Figure 3-4 of Chapter 3. Here we 

redraw it as Figure 4-4 with the following structure data. W the width of the top 

mirror is 250µm; L the half length of the mirror is 125µm; and t its thickness is 2µm; 

δ as labeled is 3µm. To obtain a tilt angle of 8 degrees, H is 41.600µm according to 

Equation (3-23) with 7.8=Mα degrees. 

 

To analyze the transient response of the top plate shown in Figure 4-4, Equation (4-2) 

again is used. Because both top plates are the same in Figure 4-1 and Figure 4-4, J in 

Equation (4-7) holds here too.  The same mechanical spring torque holds here as in 

(4-7). 9109031.3 −×=k Nm/radian. As described in Chapter 3, the torque due to the 

electrostatic force is expressed in (3-17).  

 

For damping torque, (4-8) and (4-9) hold also. However, there is a different damping 

coefficient B due to the different shape of the horizontal bottom plate between the 

two structures. In the horizontal bottom plate actuator system, 0h  is the initial air gap 

distance between the top plate and the fixed bottom plate, which is a constant H. 

Putting the structure parameters in (4-9), the damping coefficient for a fixed 

horizontal bottom plate flatB  is 

16106.0615 −×=flatB  N-s/m                                                                                   (4-29) 

It is apparent flatB is smaller than tiltedB  in (4-14) 
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(a) top view 
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(b) side view 

Figure 4-4 A plate actuator with a horizontal bottom plate structure 

 

 
Combining with Equation (4-2), (3-17), (4-7) and (4-8) in (4-1): 

Bmedt
dJ τττα

++=⋅ 2

2

 



 

 104 
 

dt
dBkLH

H
H
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α
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−⋅−

⋅
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 −

⋅−
+

⋅−
⋅⋅⋅

= 2

2
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1
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sinln
                                                              

That is: 

0
tan2

1
sin

sinln

2

2

2

2

=
⋅







 −

⋅−
+

⋅−
⋅⋅⋅

−⋅++⋅
α

α
αε

ααα LH
H

H
LHVW

k
dt
dB

dt
dJ        (4-30) 

If we put all the structure data, such as W, L, k and t, into (4-30) and assume that the 

applied voltage is a step function at time zero, then (4-30) becomes: 

0
tan

sin125-41.6
sin125

41.6
sin125-41.6ln

0812.88103.106348.2410 2
28

2

2

=⋅
⋅

+
⋅

⋅⋅−⋅×+⋅+
α

α
αα

ααα V
dt
d

dt
d

    

                                                                                                                                (4-31)         

 

(a) An analogous circuit to describe the transient response of a horizontal bottom 

plate actuator system 
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(b) PSpice transient response when V=100V 

Figure 4-5 PSpice transient response with an analogous circuit to the horizontal 
bottom plate actuator system 

 

Equation (4-30) is a nonlinear differential equation also. Its analytical solution is not 

easy to get. Again we use an analogous circuit and its corresponding PSpice 

simulation to obtain the result. This analogous circuit is shown in Figure 4-5 (a). Due 

to the convergence problem involved in PSPICE, the term αtan is replaced by the 

two Taylor expansion terms, this is
3

tan
3ααα += . The transient response at 

V=100V is shown in Figure 4-5(b). Compared with Figure 4-5(b) and Figure 4-3(a). 

They are almost the same.  
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4.6 Transient analysis using linearization approximation 

In the previous section, we obtain the transient response using an analogous electrical 

circuit. However, this methodology does not release any detailed analytical 

discussion, such as the impact of the mechanical structure parameters on the transient 

responses. In this section, we will focus on an analytical solution to the transient 

equation (4-16). Linearization is applied on the equation, specifically on the term with 

electrostatic torque eτ , which has the nonlinear nature. In this way, analytical 

discussion can be performed. Because, as mention in Chapter 2, in large channel 

count optical switch applications, the maximum tilt angle of the top plate is somewhat 

around 8 degree, which is 0.1517 radians, so this linearization approximation around 

0=α degree is reasonable in practice.  

 

For convenience, we rewrite (4-16) here. 

( )

( ) 0
tan2

cosln
2

2

2

2

=
−⋅

−⋅
⋅⋅⋅

−⋅++⋅
αβ
δ

αβε
ααα

LVW
k

dt
dB

dt
dJ                                       (4-16) 

Because ε, W and V (if we assume a step voltage function) are in simple format, the 

term needs linearization is the last term as 
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−


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L

                          (4-30) 

 
 
As α is sufficiently small as in our case here 10≤α degrees, which is about 0.1745 

radians as discussed in Chapter 2, we can use the following approximation: 

2

2
11cos αα ⋅−≈                                                                                                     (4-31) 

αα ≈sin                                                                                                                 (4-32) 

Then the right side of (4-30) becomes: 
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neglecting the higher orders, (4-33) becomes 
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Recall that if x is sufficiently small, using: 

xx ≈+ )1ln(                                                                                                            (4-35) 

( )
x

x
21

1
1

2 +≈
−

                                                                                                     (4-36) 

( ) xx 211 2 +≈+                                                                                                      (4-37) 

(4-34) becomes: 
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(4-38) 
Assume that the applied voltage is a step function at time zero. With (4-38), Equation 

 (4-16) becomes: 
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That is: 
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                (4-40) 

 

From (4-40), we can observe the “spring softness” effect as mentioned in Senturia 

[40]. 

(4-40) can be written 
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Where β is selected as in Chapter 3 to give the optimal angle of the bottom plate.  

In (4-43), because the last term after k is always greater than 0, so 
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The Laplace transform of Equation (4-41) is  

0212 =⋅+⋅+ fsfs                                                                                                (4-46) 

21
2

12,1 4
2
1

2
1 ffffs −±−=   

















+






 ⋅

⋅
⋅

−−±−=
β
β

δ
β

βββ
βε

cos
sincosln

cossin
2

sin
cos

2
14

2
1

2 2

22

2

2 LVWk
JJ

B
J

B  

2
0

2 ωγγ −±−=                                                                                                   (4-47) 

The solution to (4-41) depends on the relation between γ and 0ω . As the damping 

torque associated with the squeeze damping effect, which is expressed in (4-16), is 

always small in magnitude compared with the electrostatic torque, γ is a very small 

number compared with 0ω . Then the solution to (4-41) is  
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where 1A and φ are constants determined by the initial conditions, which is 

0
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α
ω
ω0

1 −=A                                                                 (4-51) 

α is the equilibrium angular displacement for the top plate and ω is the damping 

oscillator frequency. Then (4-48) becomes 

( ) ( )( ) αφωα γ ++= − teAt t cos1                                                (4-52) 

Using the system parameters in the example, (4-51) becomes 
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                 (4-53) 

We can put the inertia moment J from (4-4) and damping coefficient B from (4-9) in 

 (4-53) 
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(4-54) 

Equation (4-53) releases the relationship between the oscillating amplitude 1A and the 

mechanical structure data, such as β. L,t,W, ρ, of the system described in Figure 4-1.  
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The squeeze damping results from Chang [47] is used in getting this relationship. For 

example, in Figure 4-6, we show the relationship between 1A  and L. The relationship 

between α and L is also plotted for comparison.  

 

Three points are emphasized here in Figure 4-6. First is that 1A and α is almost the 

same. In (4-50), as γ is pretty small compared to 0ω , we will expect that 1A and α is 

almost the same. This is confirmed in Figure 4-6. The red line is the relationship 

between α and L while the blue line is the relationship between 1A  and L. They 

coincide with each other. Second, as α is the equilibrium tilt angular position of the 

top movable plate, it increases with the increase of the applied voltage until the pull-

in point is reached. This implies that the higher applied voltage results in higher 

damping oscillating and we have to pay for larger equilibrium tilt angle.   

 

Third, it is observed in Figure 4-6 that in the structure as in Figure 4-1, 1A increases 

when L increases, which implies for the same applied voltage, a bigger length will 

result in bigger tilt angle of the top plate. This agrees with the discussion in Chapter 

1, where larger area of the electrode plate, which is the multiple of L and W, results in 

lower driving voltage. Table 4-1 is the data used to obtain Figure 4-8.  
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The top plate width W=250µm, the thickness t =2µm 

The top plate is made of gold, with density of 3103.19 × kg/m^3 

The average gap between the top plate and bottom plate is 33.6369µm 

The air viscosity at 1 (atm) air pressure is 51079.1 −× kg/ m^3 

The bottom fixed plate has angle 4839.0=β radian, with 891.3cos/3 == βδ µm 

Applied voltage is 50V 

Table 4-1 Parameters used to evaluate the transient responses of the top plate. 
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Figure 4-6 The relationship between the damping amplitude of and the length of the 
top plate 

 

  



 

 114 
 

4.7 Conclusions 

In this chapter, we have analyzed the transient response of the top plate in the optimal 

plate actuator system introduced in Chapter 3. The squeeze film damping effect is 

considered to be dominant. A second order differential equation is set up according to 

Newton’s law. It is solved by an analogous circuit with GVALUE components. We 

have compared the transient responses of the top plate in an actuator system between 

the case with our optimal bottom-plate structure and the case with standard horizontal 

bottom-plate structure. Using linearization approximation to this transient equation, 

we are able to give an analytic solution. A spring softness effect is observed after an 

analytical solution is obtained. When a step voltage is applied, the damping 

oscillation amplitude is proportional to the top plate’s final equilibrium position, and 

the switching time is determined by the damping coefficient. These will help a system 

designer to trade off between the system parameters to achieve the design goal. 
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Chapter 5: Stability and Control 
 

Abstract 

In this chapter, we study the stability and control of the actuator system with the 

optimal plate structure. After the state equations are introduced, the stability of the 

system is discussed. Then two control methodologies to improve the system 

performance are discussed. In order to implement them, a feedback architecture 

using a sensing bridge circuit with a position sensing capacitor is introduced. A high 

voltage actuating circuit is introduced. A design example to implement this circuit is 

presented with a design analysis. Using a shift register, a modular embedded system 

is introduced to achieve scalability. 

 

5.1 Introduction 

As mentioned in Chapter 2, there are two main objectives for MEMS mirror control. 

One is to make the mirror tilt to the desired angle as soon as possible after the receipt 

of the switching command; another is to keep the mirror stable after it has reached its 

desired angular position until the next switching command. To achieve these two 

objectives, we study optimal control theory in this chapter. 

 

For our optimal plate actuator system, we have studied its equilibrium status in 

Chapter 3 by torque analysis and its transient response in Chapter 4 by using 

Newton’s law and circuit analogues. In essence, these treatments can be discussed via 

control theory by using state equations. Using state variable theory, we will further 
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our discussion of the previous two chapters by considering more complex system 

configurations. One of the configurations is that the voltage source driving the 

actuator is not an ideal voltage source. It has an output resistance sR or internal 

conductance sg . The other configuration is that the damping coefficient is no longer 

to be considered constant. Due to the gap distance change during dynamic motion of 

the top plate, the variation of the damping coefficient is included in the state 

equations. 

 

Control theory not only provides another view of the system behavior, but, more 

importantly, it also provides a theoretical methodology to improve the system 

behavior. In this chapter we provide the theoretical background of our control 

methodologies for MEMS mirror in a large channel count optical switch. 

 

A popular control schema for a MEMS mirror actuator in the industry is shown in 

Figure 1-7 [41]. It is based on light-power detection of the beam to be switched, with 

limitation of a threshed to detect the position of the outgoing light beam. In this 

chapter, we introduce a sensor capacitor located on the mirror plate. The capacitance 

of this sensor capacitor can determine the position of the mirror. A sensing bridge 

detects this capacitance change when the mirror tilts.  

 

Based on this, two optimal control methodologies are presented, including bang-bang 

control and Kalman closed loop feedback control. With these methodologies, the 

mirror can switch fast and can be as stable as desired. Additionally, using this 



 

 117 
 

capacitor sensor to detect the mirror position makes it possible to design future 

systems on a chip.  

 

Another two control implementation topics are also discussed in this chapter; these 

also improve the possibilities to design a system on a chip. One topic is a featured 

high voltage driving circuit to reduce the complexity of the driving circuit. The other 

one is a modular structure for the embedded system.   

 

5.2 System description in state variable forms 

5.2.1 System description  

In this section, we will study the behavior of this optimal plate actuator system by 

using state equations in control theory. In this way, we will study the stability of the 

top movable plate, reviewing the pull-in phenomena and transient responses. Further, 

and most importantly, we will show the ways to improve the system response by 

using feedback control theory.  

fixed

α

fixed

β

( )tVs

b

k

αβ −

0
sg

Positive rotation
 direction

 

Figure 5-1 A plate actuator system with the optimal plate structure 
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Same as what did in Chapter 3 and Chapter 4, for simplification, we only consider 

half of the mirror actuator structure here due to the symmetry in the system. Figure 5-

1 represents the same optimal plate actuator as discussed in Chapter 3, which is 

developed from Figure 3-7. The top plate is the movable mirror plate. Its one end is 

fixed at point 0 with a fixed rotation axis. A torsion spring is attached to this end. The 

other end of the top plate can freely rotate.  

 

The position of the torsion spring is at the fixed end of the top plate, it is drawn at the 

free end for simplification. The bottom plate is fixed with an angle of β to the 

horizontal line. The difference between Figure 3-7 and Figure 5-1 is the inclusion of 

the damping effects shown as the dashpot, and the appearance of internal conductance 

sg of the voltage source.  

 

Originally, the top plate is in the horizontal position when the applied voltage is zero. 

Thus the two conducting plates have an angular gap of β initially. We denote β as 0α  

in this chapter. The width of the two plates is both W. The length of both plates is L. 

There is a gap distance of δ between the origin point 0 and the end of the bottom 

plate, which keeps the two plates electrically isolated from each other.  
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When the voltage source ( )tVs  is applied across the two plates, there is electrostatic 

torque on the top plate. Because of this electrostatic torque, the top plate rotates 

toward the bottom plate, making an angle of α to the original horizontal line. This 

results in an angle of αβ −  or αα −0 between the two plates. The torsion spring 

attached to the end of the top plate applies an elastically spring torque on the top 

plate, if the top plate rotates. 

 

 

 

 

 

 

Figure 5-2 The schematic of the optimal plate actuator in cylindrical coordinates 
 

The system is re-plotted in Figure 5-2 to show in cylindrical coordinates. The positive 

rotation direction is in the clockwise direction. The positive Z direction points into the 

paper. Additionally, the tip at the end of the top plate has a distance of 0H referenced 

to the fixed bottom plate. To keep the top plate electrically isolated from the bottom 

plate in case it touches the bottom plate, a thin isolation coating of thickness δt  is 

covered on the top of the bottom plate. This is the shadowed thin layer shown in 

Figure 5-2. δt  is such a small value that it will be ignored in our later discussion for 
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simplification. When ( )tVs  is a constant DC value, we denote the final equilibrium 

angular position of the top plate as α . Having finished the system definition, we will 

work on the torque elements involved in the state equations before we introduce these 

equations. 

 

5.2.2 The electrostatic torque on the top plate in cylindrical coordinates 

In Section 3.3, we have derived the torque applied on the top plate by the electrostatic 

force using Cartesian coordinates. Here to simply the later format of state equations, 

we derive the same torque using cylindrical coordinates. In essence, they are the 

same.  

 

If we make an assumption that both of the two plates are semi-infinitely long in our 

discussion, we can ignore the fringe effects in our analysis. In the case when the size 

of the plates is much larger than the separated angular gap between them, the 

assumption is valid. When the size of the plates is comparable with the angular gap, 

fringe effects have to be considered. According to Nishiyama [67], Nemirovosky 

[68], there will be an error about 10% if the size of the plate is comparable to the gap.  

 

We denote E
v

as the electrical field intensity between the two plates; Q  as the charge 

on either plate. Based on Laplace’s equation, according to Shen [48], we have the 

following:  
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( )φαα
ˆ1

0 t
V

r
E s

−
−=

v
                                                   (5-1) 

where φ̂ is the unit vector in cylindrical coordinates. 

Because the left side of Gauss’s law is 

( )( )∫∫∫ •
−

=•
S

s

S

drdz
tr

V
sdE φφ

αα
ˆˆ

0

vv

( )( )∫ ∫
= = −

=
L

r

W

z

s drdz
tr

V

δ αα0 0

 

( )( ) δαα
L

t
WVs ln

0 −
⋅

=                                                                     (5-2) 

Using Gauss’s Law  
ε
QsdE =•∫

vv
, we have 

( )
( )( )

( )
εδαα
tQL

t
WtVC =

−
⋅

ln
0

                                                (5-3-a) 

 Or       

        ( )
( ) ( )( ) δαα

ε L
t

W
tV
tQ

C

ln
0 −
⋅

=                                             (5-3-b) 

Then the total charge ( )tQ  on either of the plates is  

( ) ( )
( ) δαα

ε L
t
tVW

tQ C ln
0 −
⋅⋅

=                                                   (5-4) 

As the definition of capacitance C is
CV

QC = , thus we have the capacitance between 

the two plates as  

( ) ( )( ) δαα
ε L

t
WtC ln

0 −
⋅

=                                                    (5-5) 
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To simplify, we can denote  

LWA ⋅=  and 

δ
L

LL
ln

=                                                      (5-6) 

Then                                                  ( ) ( )( )tL
AtC
αα

ε
−
⋅

=
0

                                       (5-7) 

The electrostatic energy stored between the two plates is, by Ida [44, page 248]   

( ) ( )
( )

( )( ) ( )

L
A

tQt
tC
tQtU e ε

αα 2
0

2

2
1

2
1 ⋅−

==                           (5-8)  

The torque eT
v

on the top plate due to the electrostatic force is, by Ida [44, page 254] 

( ) ( )
( ) φ
εα

ˆ
2
1 2

L
A
tQ

t
U

tT e
e

⋅
=

∂
∂

−=
v

                                (5-9) 

So far, we have finished the calculation of the electrostatic torque. Next, we will work 

on the damping torque. 

5.2.3 The damping coefficient–a variable of time 

In Chapter 4, according to Chang [47], we have written Equation (4-9) to evaluate the 

damping coefficient. Squeeze film damping is considered to be dominant. In (4-9) 0h  

is the average distance between the two plates. It is calculated as 
2

0
0

H
h =  where 

0H is the distance from the tip point of the top plate to the fixed bottom plate as 

shown in Figure 5-2. In Chapter 4, to simplify the discussion, the damping coefficient 

is treated as a constant during the entire transient response because of the usage of a 
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constant 0h . However, in reality, when the top plate is moving toward the bottom 

plate, 0H changes, resulting in 0h  decreasing. Thus a time constant damping 

coefficient seems not enough. With state equations, we consider that 0h in Equation 

(4-9) is a variable of time t  in this chapter. That is ( )thh 00 = . Recall the definition of 

η  as 
W

L⋅
=

2η . We can rewrite the damping coefficient of Equation (4-9) as  

                                                     ( ) ( )30

5

26

)2(
4

48
th

LW
B air ⋅

+
=

µ
ηπ

              

( ) ( )

( )30

3
0

5

26

2

)2(
4

48

tH

tH
LW

B

air

ρ

µ
ηπ

=









⋅
+

=

                                  (5-10)   

where                                   ( )4
482)2( 26

35

+
⋅⋅⋅=

ηπ
µρ LWairB                   (5-11) 

Thus the damping coefficient B is a variable of the position of the top plate. When the 

position of the top plate changes with time, it becomes a variable of time.  If we 

denote 01H  as to the distance between the tip of the top plate and the bottom plate 

when the top plate is at its original horizontal position with ( ) 00 =α , then  

 βcos01 LH =                                            (5-12) 

When the top plate moves to a position at ( )tα , ( ) ( )( )tLtH αβ −⋅= cos0 . Practically 

in our application, the tilt angle ( )tα  of the top mirror plate is around 8 degrees, 
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which is about 0.1517 radians. As what has been done in Chapter 4, this means that 

α is a quite small number, so we can write the first degree approximation as 

( ) ( )tLHtH α⋅−≈ 010                                     (5-13) 

Thus the damping coefficient (5-10) becomes 

( )
( )( )301 tLH

tB B

α
ρ
−

=                                    (5-14) 

Equation (5-14) is a nonlinear damping coefficient which varies with the tilt angle 

( )tα . We then can write the damping torque as 

( ) ( )
( )( )

φα
α

ρ
φα ˆˆ

3
01

&&
v

tLH
tBtT B

damp
−

−=−=                  (5-15) 

Where ( )
dt
dt αα =& . 

5.2.4 State equations for the optimal plate actuator system 

Notice that there is a stopper to the position of the top plate, that is ( ) βα ≤≤ t0 . This 

means that the top mirror cannot move beyond the boundary set by β . Keeping this 

in mind, with the damping torque and the electrostatic torque developed in the 

previous sections, we can write the equations to describe the motion of the system as  

( )
( )( )

( ) ( ) ( )

L
A
tQtkt

tLH
tJ B

ε
αα

α
ρ

α
2

2

3
01

+−
−

−= &&&              (5-16) 
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( ) ( ) ( ) ( )( )


















−

−⋅=

L
A

ttQtVgtQ ss

ε

αβ&                               (5-17) 

Equation (5-16) is the rewritten of Newton’s law. On the right side of (5-16), the first 

term corresponds to the damping torque; the second term corresponds to the spring 

torsion torque; and the third term corresponds to the electrostatic torque. Basically (5-

17) is the Kirchhoff’s current law. Its last term in the right side is the applied voltage 

over the two plates. Based on (5-16) and (5-17), we will construct the state equations 

in terms of state variables Q ,α and α& . To simply the later discussion, we will use 

( )tQ  as Q , ( )tα  as α  and ( )tα&  as α& . 

 

In order to obtain a better-behaved matrix later, we will do normalization here. We 

define constants κ , γ and new variables q , ϕ  to normalize Q and α  before the 

introduction of the state equations, 

qQ κ=      γϕα =    bγϕβ =                                 (5-18) 

The value of κ and γ will be shown after we have finished this normalization. 

Then Equation (5-17) becomes 

( )

L
A
qgtVgq sss

ε

ϕκγκ −=&                                       (5-19) 

Or                                           
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            ( ) ( )

L
A

q
gtV

g
q b

ss
s

ε

ϕϕγ
κ

−
−=&                               (5-20) 

Again using a constant υ  to normalize ( )tVs  then  

( )tV
g

s
s

κ
υ =                                          (5-21) 

and define                                                     

    
sg
L
Aε

γ =                                               (5-22) 

so that (5-20) becomes                           

    ( )ϕϕυ −−= bqq&                                       (5-23) 

Put (5-18) (5-22) into (5-16) 

( ) L
AJ

q
J
k

t
H
LJH

B

γε

κϕϕ

ϕγ

ρ
ϕ

21

22

3

01

3
01

+−









−

−= &&&                         (5-24) 

If we set                                  

 γεκ J
L
A

= , 2
JJ

k ω= , J
B

kH
ω

ρ
τ 3

012
=                      (5-25) 

using (5-12), (5-24) becomes our normalized equation of motion 

( )
2

cos
1

2 2
2

3

q

t
J

J +−









−

−= ϕωϕ

ϕ
β

γ

τω
ϕ &&&                         (5-26) 
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So far, we have had system equations as (5-23) and (5-26). In order to analyze the 

stability of the system, we need to take care of the behavior of the system at 

γ
α

γ
βϕϕ 0

0 ===b , where the bottom plate located. Referenced to Maithripala [46] 

and Senturia [40], the system behavior at this boundary can be defined in the 

following:  

1) When the electrostatic torque is higher than the mechanical spring torque, the top 

plate stays at 
γ
α

ϕ 0=b , with zero velocity. It has lost all of its kinetic energy. In 

this case only Equation (5-17) holds and Equation (5-16) does not hold any more. 

That is 

0=bϕ&          and ( ) υϕϕ +−−= bqq&                          (5-27) 

2) When the electrostatic torque is less than the mechanical spring torque, the top 

plate moves up toward its original position at 0=ϕ , and the top plate has zero 

velocity.  

 

Now we can begin to construct the state equations. From the previous illustration, the 

state variables are qx =1 , ϕ=2x , ϕ&=3x , with the state space of the system as  

b
T xRxxxX ϕ≤≤∈= 2

3
321 0,],,[                                    (5-29)  

The output vector is Tyyy ],[ 21= , where 1y  is the normalized voltage across the two 

plates. 2y  is the normalized angular position of the top movable plate. Then we 

obtain the state equations of the system are  
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
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






=

2

21
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1

x
xx

y
y

y bϕ                                            (5-31) 

with (5-27) at bϕϕ =  and qx =1 , ϕ=2x and ϕ&=3x . We have two output variables. 

One is 1y , which is the voltage across the two plates. The other is 2y , which is the 

angular position of the top plate. It is interesting to notice that all the three state 

variables 1x , 2x , and 3x  are detectable.  

5.3 Stability analysis 

5.3.1 An equilibrium point solved from state equations 

When the system is in an equilibrium state at some given input ( )tVs , corresponding 

to the normalized υ , we can obtain the corresponding equilibrium state vector, with  

03 =x  Txxx ]0,,[ 21=                                      (5-33) 

From (5-30) or (5-26) 

 2
22

1 2 xx Jω=                                           (5-34) 

From (5-30) or (5-23), we have 

( )21 xx b −= ϕυ                                     (5-35) 



 

 129 
 

Combining (5-34) and (5-35), we have a cubic order equation related to 1x  or 2x . 

That is 

                                                          









−=

J
b

x
x

ω
ϕυ

2

2
1

1                                  (5-36-a) 

Or                                                      0
2 1

3
1 =+− υϕ
ω b

J

x
x

                                (5-36-b) 

Equation (5-36) has three solutions. From the mathematical handbook by Gui [49], of 

these three solutions, two of them are complex numbers, only one is a real solution. 

Because 1x  is a state variable with real physical meaning; only the real number 

solution is kept. The other complex-number solutions are discarded. Equation (5-36) 

is quite similar to what we have in Equation (3-5), which has three equilibria, with 

only one being a stable state as shown in Figure 3-2. 

5.3.2 Linearization around an equilibrium point 

Since Equation (5-30) is a nonlinear equation, in order to perform stability analysis, 

we want to analyze the system around some equilibrium point x . To do that, we 

define new variables as xx −=ξ , that is    
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                                     (5-37) 

As  03 =x  at equilibrium, (5-37) becomes 



 

 130 
 

 















−
−

=
















3

22

11

3

2

1

x
xx
xx

ξ
ξ
ξ

                                    (5-38) 

Where the new state space is [ ]{ }b
T xxR ϕξξξξ +−≤≤−∈=Ω 222

3
321 ,, , (

γ
βϕ =b ). 

Accordingly, the output variable y  becomes η , which is 







−
−

=

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η

; and the 

input variable υ becomes µ , which is υυµ −= . From (5-31) 
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Using these new definitions and (5-35), Equation (5-30) becomes 

( ) µξξξϕξξ +++−= 2112211 xx b
&                                          (5-40) 

32 ξξ =&                                                                                    (5-41) 
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J&                  (5-42) 

And Equation (5-31) and (5-32) becomes 

( ) 1221211 xxb ξϕξξξη −−+−=                                         (5-43) 

22 ξη =                                                                           (5-44) 

Thus by using these new variables, the state equations (5-30) becomes 

( ) guf += ξξ&          ( )ξη h=                                                 (5-45) 
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where         ( )
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and                                       ( )
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Using (5-45), we can write the linear approximation of (5-30) around the equilibrium 

point x with a small variation. By the definition of the new variable in (5-38), x is 

the original point in the new variable system, then 

δµδξ
ξ

ξδ gf
+

∂
∂

=&                                              (5-50) 
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  where                           3
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5.3.3 Routh-Hurwitz test 

For the linearized equation δµδξξδ BA +=& , we can perform the Routh-Hurwitz test 

to check the stability of the system. In order to make the system to be stable at the 

original equilibrium point, it should satisfy the following criteria: 
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All the system’s eigenvalues should be in the left half plane. That is all the roots of 

( ) 0det 3 =− AsI  must be in the left half plane, where 















=

100
010
001

3I , s  is the 

Laplace transform complex. 

 

              ( )
( )

JJ

b

sx
s

xxs
AsI

ωτω

ϕ

2
10

0
det

2
1

12

3

+−
−

−−−
=−         

                = ( )[ ]( ) ( )[ ]bJJb xsxsxss ϕωωτϕ −−+−+−− 2
22

12 2  

           = ( )[ ] ( )[ ] ( )bJbJJbJ xxxsxss ϕωϕωτωϕωτ −−−−−+−−+ 2
22

12
2

2
23 22    (5-54) 

For (5-54), the coefficients of this polynomial are listed in Table 5-1. 

3a  2a  1a  0a  

1 ( )bJ x ϕωτ −− 22  ( )bJJ x ϕωτω −− 2
2 2  ( )bJ xx ϕω −−− 2

22
1  

Table 5-1 The coefficients of ( ) 0det 3 =− AsI  

 

As the coefficient 3a  is 1, which is greater than 0, in order to make the roots of 

( ) 0det 3 =− AsI  lying in the left half plane, all the other coefficients must be greater 

than 0.   To avoid solving (5-55) directly for its roots, we use the Routh-Hurwitz test.  

 

According to the Routh-Hurwitz test, ia  comes from the coefficients of the original 

polynomial; ib  and ic have a pattern defined as following:  
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ns   na  2−na  3−na  … 

1−ns   1−na  3−na  5−na  … 

2−ns   1−nb  3−nb  5−nb  … 

3−ns   1−nc  3−nc  5−nc  … 

…  … … … … 
0s       

Table 5-2 The Routh Array to determine the stability of the system 
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=
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n
n bb

aa
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c                                 (5-55-c) 

This test confirms the stability of the system if there is no sign change for all the 

entries of the first column in the Routh Array (blanks or ends of rows are treated as 

zero values to calculate), as shown in Table 5-2. Using the Routh-Hurwitz test to our 

case here, we have the Routh Array table as shown in Table 5-3. And we have 

 ( )1203
202

13

2
2

11 aaaa
aaa

aa
a

b −
−

=
−

=                  (5-56-a) 

00 =b                                                                (5-56-b) 

( ) 00202
202

02

2
2

11 aabba
bbb

aa
b

c =−
−

=
−

=          (5-56-c) 

  First coefficient column 
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3s   13 =a  

2s   ( )bJ xa ϕωτ −−= 22 2  

1s   ( )1203
2

2
1 aaaa

a
b −

−
=  

0s   02 ac =  

Table 5-3 The Routh-Hurwitz test used for the plate actuator system 

 
There are four coefficients in the first coefficient column of the Routh-Array. There 

are 3a , 2b  and 2c . Because 013 >=a , in order to keep no sign change in this 

column, it is required that 02 >a , 02 >b  and 02 >c  in Table 5-3.  

Since ( ) ( )222 22 xxa bJJ −+=−−= ϕωτϕωτ ,  as bx ϕ<2 , τ   and Jω are greater 

than 0, so 02 >a  automatically holds. 

In order to make 02 >c , from (5-56-c), we have 00 >a , that is  

( ) 02
1

2
20 >−−−= xxa Jb ωϕ                                  (5-57-a) 

using  (5-34) 2
22

1 2 xx Jω= , (5-58-a) becomes    

                    
32

bx
ϕ

<                                                         (5-57-b) 

Since 2x is the normalized angular position of the top plate and it has to be no less 

than zero to keep its physical meaning, we can write   

3
0 2

bx
ϕ

<≤                                                      (5-58) 
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In order to make 02 >b , that is ( ) 01
1203

2
2 >−

−
= aaaa

a
b . Because 02 >a , then it 

requires that  

( ) 01203 <− aaaa                                              (5-59).  

It can be proved that (5-59) does holds for our system. For details, please refer to 

Appendix 1.  

 

Till this point, we have proved that there is no sign change for all the four coefficients 

inside the first coefficient column of the Routh Array in Table 5-3 under the 

constraints of (5-58).  Thus we have shown that the system is stable under the 

condition of (5-58), which is 
3

0 2
bx

ϕ
<≤ . When 

32
bx

ϕ
> , at least the last coefficient 

0a  is in the Routh-Array is less than 0, the Routh-Hurwitz test fails, so the system is 

unstable. In reality, when 
32

bx
ϕ

> , the top plate can no longer hold an equilibrium 

position on top of the bottom plate. It instantly draws to the bottom plate by the 

electrostatic torque and then drops onto the bottom plate. If we remember that the 

derivation so far is based on the assumption of semi-infinite long plates, which is a 

good approximation when 2x is a very small number, then the result that the system is 

stable under the condition 
3

0 2
bx

ϕ
<≤  agrees with the result in Section 3.3 quite 

well. 
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5.3.4 Lyapunov function  

According to control theory, if we want to check the stability of a system 

( )( )ttxfx ,=& , there should exist a scalar function ( )( )ttxV , , which satisfies the 

following criteria, then the system is asymptotically stable at 0x ([50, pages 101-102], 

[70]): 

1) The partial derivatives of 
x
V
∂
∂ and 

t
V
∂
∂  are continuous functions 

2) ( )( ) 0, ≥ttxV or bounded below 

3) 0<
dt
dV  for all x in the neighborhood of 0x and 0

0

=
=xxdt

dV  

Then ( )( )ttxV ,  is the Lyapunov function of the system. Next we will show the 

existence of a Lyapunov function of our system. In this way we prove the stability of 

our system.  

 

Using the new vector variable ξ  defined by (5-38), we choose the following scalar 

function: 

 ( ) =ξH ( ) 21122
2

1
2
2

22
3 2

1
2
1

2
1 ξξξϕξξωξ xxbJ −−−++                           (5-62) 

In the following, we want to prove that ( )ξH  in (5-62) is a local Lyapunov function 

under the condition in (5-58), namely
32

bx
ϕ

< , when ξ is a very small number, 
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bxx ϕξ +−≤≤− 222 , (
γ
βϕ =b ). If this is confirmed, then the system is locally 

asymptotically stable around this original equilibrium point.  

 

Apparently, ( ) 0=ξH  ( 0=ξ ). 

( ) 0>ξH  ( 0≠ξ ) is approved in this way. Because the first two terms in (5-62) are 

definite greater than zero, 0
2
1 2

3 >ξ , 0
2
1 2

2
2 >ξω J , then the 3rd term under the 

condition of 
32

bx
ϕ

< , will be 

( ) 2112
2

121122
2

1 33
1

2
1 ξξξϕϕξξξξϕξ xxx b

bb −





 −−>−−−  

2112
2

1 3
2

3
1 ξξξ

ϕ
ξ xb −






 −=                                                                       (5-63-a) 

Notice that from (5-58) bxx ϕξ +−≤≤− 222  

3
2

3
2

3
2

2

222
bb

b

b

x

xx ϕξϕϕ
ϕξ

−>





 −⇒







<

+−≤≤−
                                          (5-63-b) 

Thus both 





 − 23

2
ξ

ϕb  and 2ξ  are bounded, there must exit a 0>rε , and rεξ <1 , 

such that 0
3

2
3
1

2
1

2
1

2112
2

1
2
2

22
3 >−






 −++ ξξξ
ϕ

ξξωξ xb
J . Thus we have the conclusion 

that ( ) 0>ξH  ( 0≠ξ ). 
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Second we want to show that ( )ξH ’s time derivative is smaller than 0. 

( ) ( )( ) ( ) 1211212
2

1112222
2

33 2
1 ξξξξξξξξξϕξξωξξξ &&&&&& xxx

dt
dH

bJ −−−





+−−+⋅+⋅=    

( )[ ] 112122211
2

1112
2

33 2
1 ξξξξϕξξξξξωξξ &&& xxxx bJ −−−+⋅






 −−−+⋅=         (5-64) 

To proceed (5-64) further, put (5-40), (5-41) and (5-42). Then (5-64) becomes 

( )

( )[ ] ( )[ ]( )µξξξϕξξξϕ

ξξξξω
ξ

ξωξωτξξξ

+−−−−−−−

+




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 −−+








++−−⋅=

1212212122

3
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1112
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2
1

11
2

233 2
1

2
2

xxxx

xx
dt

dH

bb

JJJ  

( ) ( )[ ] ( )[ ]12122
2

12122
2

3 2 xxxx
dt

dH
bbJ ξξξϕµξξξϕωτξξ

−−−+−−−−⋅−=      (5-65) 

For (5-65), if the input µ is zero, then it is apparently that ( ) 0<
dt

dH ξ  if ,0≠ξ  

,Ω∈ξ ; and ( ) 0=
dt

dH ξ  if 0=ξ . 

 If µ  is not zero, because the first two terms in ( )
dt

dH ξ is less than zero, and because 

( )
dt

dH ξ  is a continuous function, so that should exist some uε , such that uεµ ∈ , 

satisfies ( ) 0<
dt

dH ξ . 
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So far, we have proved that ( )ξH  is the local Lyapunov function of the system. Thus 

the system is locally asymptotically stable around this original equilibrium point, if 

3
0 2

bx
ϕ

<≤ . 

 

5.4 Control algorithms  

Now that we have introduced the state equations of the optimal plate actuator system, 

we will work on the control laws to improve the system behavior. As mentioned 

before, we have two objectives to optimize the system. First is to make the top plate 

tilt to the desired position as soon as possible. The second objective is to have the top 

plate be as stable as possible at this desired position under the condition of any 

perturbation.  

 

Based on these objectives, we present two control algorithms, combining both bang-

bang control and Kalman closed loop feedback control. Inside the system, there are 

two controllers for realize these two algorithms. These two controllers are 

independent and separate from each other. The system feedback will be switched to 

either one depending on the value or the estimation of the performance index. This is 

shown in Figure 5-3 
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Plant

Bang-bang 
controller

Closed loop 
feedback 
controller

Performance index 
evaluation

input output

 
 

Figure 5-3 Integrating a bang-bang controller and a Kalman closed loop feedback 
controller 

 

It is known from control theory that a bang-bang feedback control achieves the 

minimum time response; while a free final state needs Kalman closed loop-control to 

achieve system stable, (according to Lewis[71, pages 47-53]) . Thus, it is natural to 

integrate both of them in our optimal plate actuator system control. These two 

feedback modules are totally independent of each other.  The system is monitoring a 

performance index constantly. The value of this performance index will determine in 

the next time period to which feedback control the system will go. Specifically, in our 

case here, the performance index is the following [71, page 161]: 

( ) ( ) ( ) ( ) f
T

f
T xtPxtPxtxtJ 0−=                     (5-66-a) 

where P  is the matrix which determines the weight of each state component of ( )0tx . 

fx  is the final desired state with 03 =fx . fx2  is the desired final position.  As the 



 

 142 
 

accurately located position is the first control priority, P can be chosen as the 

following:















=

100
010
000

P . In this way, (5-66-a) becomes: 

( ) ( ) ( ) 2
2

2
3

2
2 fxtxtxtJ −+=                            (5-66-b) 

5.4.1 Bang-bang minimum time control 

The first control objective is to make the top plate to move as fast as possible to the 

desired position. We have analyzed the transient response of the top plate in Chapter 

4. There we have observed the oscillatory damping at the beginning time period after 

a step constant voltage is applied. This means that some settling time period is needed 

until the top plate is in an equilibrium status.  

 

Obviously, these observations conflict with our system requirements to have the 

mirror tilt the desired position in a smooth and fast way. This introduce bang-bang 

optimal control to achieve the minimum switching time as mentioned in Elbert [50,  

pages 289 to 291] and Lewis [70, pages 259-280]. By using this control methodology, 

the input will be swung from the maximum value to the minimum value to reach a 

minimum time requirement. Assume that the top plate is at fixed at Vcc, the highest 

voltage. Then this algorithm suggests that the bottom plate should be driven by the 

zero ( to reach the maximum potential difference) from the initial time it  to some 

inter time mt ; and then the bottom plate should be driven by Vcc (to reach the 

minimum potential difference) from this inter item mt  to the final time ft . 
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5.4.2 Kalman closed loop control at an equilibrium position  

The objective for the Kalman closed loop control is to make the system stable to track 

some desired status, [70, pages 185-198]. When any perturbation appears, the system 

can automatically go back to its desired position by using this closed loop feedback 

control.  

 

The system state equations (5-30) are nonlinear by nature. The control theory behind 

the closed loop feedback is based on linearization of the nonlinear system at its 

equilibrium point, which we have already used in (5-54) to proceed with our stability 

analysis ([50, pages 125-128]). Thus the system state equations considered here are 

(5-45) and (5-54), and rewrite here briefly: 

















−−

−
=

JJ

b

x

xx
A

ωτω

ϕ

2
100

0

2
1

12

                                       (5-53) 

                                                                δµδξξδ BA +=&                                     (5-54) 

The advantage of this method is that there are many optimal control tools available in 

the literatures of linear systems. The one utilized here is the optimal control law for 

free-final-state and closed loop control from Lewis [70, pages 170-173] for a linear 

system µξξ BA +=&  with the performance index function: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )dtTuTRTuTTQTTTSTtJ
T

t

TTT ∫ ++=
0

2
1

2
1)( 0 ξξξξ          (5-67) 
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where T is the final time; ( )TS and ( )TQ  are symmetric and positive semi-definite; 

( )TR is symmetric and positive definite.  

With the definition of Kalman gain K, a time variable. 

( ) ( )tSBRtK T1−=                                              (5-68) 

then the feedback law is 

 ( ) ( ) ( )ttKtu ξ−=                                                (5-69)      

In (5-68),   

( ) ( )tTStS T −=                                                 (5-70) 

TS  is the solution to the matrix Riccati equation: 

QSBBRSASSAS T
T

TTT
T

T +−+= −1&                              (5-71) 

We can use (5-68) to (5-69), (5-70) to find the optimal feedback control law for the 

system. In our case here, assume that the performance index has the coefficient 

matrix as the following, we can calculate K(t): 

 ( )















=

100
010
001

TS  ( ) ( )















==

100
010
001

TQTR                           (5-72) 

First, we will find TS . By using (5-68) and (5-72), (5-71) becomes: 

QSASSAS TTT
T

T +−+= 2&                                   (5-73) 

According to Darling [72], the solution to (5-73) is  
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( )TT
T AALXXLS ++= −

2
11 &                                     (5-74) 

where L  is given by  

( )TAALL −=
2
1&   when ( ) IL =0                              (5-74-a) 

and the Jacobi equation  

( ) ( ) 0
2
1

4
1 2

=





 ++−++− TTTT LAAAAAAQXLX&&                 (5-74-b) 

Using the parameters available in our optimal plate actuator system, we can easily get 

the Kalman gain K(t) with the help of Matlab from the control tool box. 

 

5.5 Feedback control system architecture to implement the optimal control 

methodologies 

Having discussed the two control methodologies to optimally control the mirror 

actuator system, here we present the feedback control architecture with a 

microprocessor to implement them. Among the three state variables, the angular 

position α  can be sensed by a sensing bridge circuit. Its velocity can be used as a first 

degree approximation ( ) ( ) ( )
t

ttt
t

∆
∆+−

= 00
0

αα
α& . The third state variable Q is 

obtained by using CVQ = , where C is given in Equation (5-5). With a 

microprocessor serving as the control core, the control methodologies discussed in the 

previous section can be implemented. 
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Accordingly, a precisely positioning sensor served in the feedback is critical for the 

success of this optimal control. As mentioned in Chapter 1, there is a threshed range 

problem for the position sensors in the light-power detection method. In this 

dissertation, we solve this sensing threshed problem by introducing a sensing 

capacitor. This sensing capacitor is located on the mirror. So any mirror position 

change will result in its capacitance change. By realizing that the Wheatstone bridge 

can precisely measure small value change in capacitance due to its high sensitivity 

[34] [43], an electrical sensing bridge is used here to sense the position of the mirror.  

 

In a MEMS actuator system, the bottom plate is fixed in position while only the top 

mirror plate can tilt. We know that there is a one to one relationship between the 

position of the top mirror and its capacitance to the substrate. So this capacitance 

seems to be the candidate to fulfill the job of position sensing at a first thought. 

However, in order to perform measurement using the bridge circuit, a high frequency 

signal source is needed to drive the bridge. Thus a separate sensing capacitor for 

position sensing is utilized in this dissertation.  

 

One pad of this sensing capacitor is located on the mirror and the other pad is located 

on the substrate right below. The position of the mirror plate can be detected from the 

capacitance sC of this sensing capacitor. Different mirror position results in 

different sC . There is no position limitation of the outgoing light beam for this 

sensing capacitor to detect.  Thus this detection method successfully eliminates the 

problem regarding to the threshed position as mentioned in Chapter 1. By using such 
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a sensing capacitor, the feedback control is functional during the full traveling range 

of the mirror. Without any optical components (such as a top module), this method 

makes possible  systems on a chip in the future.  

5.5.1 A sensing capacitor  

Before we outline the implementation architecture of the optimal control 

methodology, we will study in detail the sensing capacitor. We will answer the 

questions such as what its structure is and how it works.  

 

Because a high frequency signal is needed to a drive a capacitance load during the 

measurement, in order to avoid the disturbance between the main mirror capacitance 

and other noise, a separate sensing capacitor sC  is used instead of using the direct 

capacitance between the top plate and the bottom plate.  For this sensing capacitor, 

one of its pads, which is a narrow strip, is located at the end of the top mirror plate 

directly. The other pad sC , which is another narrow metal strip, is located on the 

substrate, right underneath the top strip. There is electrical isolation between the top 

mirror plate electrode and the top electrode of this sensing capacitor, while there is 

electrical isolation between the bottom actuation electrode plate and the bottom pad 

of this sensing capacitor.  

 

Several points need to be mentioned about Figure 5-4. First, it is not to scale. Second, 

for simplification purpose, no suspension structure is plotted. Third, for symmetry 

purpose, four sensing capacitors are plotted. However, only one sensing capacitor is 
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needed to detect the position of the top mirror plate, due to the one rotation axis of the 

top plate.  

Sensing capacitor top pad

Mirror mechanical body

Mirror actuation pad

Side view

Top view

Bottom actuation
electrode

Sensing capacitor bottom pad

 

Figure 5-4  The side view and top view of the mirror top plate with the sensing 
capacitor 

 

The sensing capacitor introduced above has the ability to sense the position of the top 

plate. However, the magnitude of such sensing capacitance is quite small. For 

example, for a top pad with dimension of 218µm long and 10µm wide, the calculated 

capacitance is 

( ) ( ) 16
6

6612

1083.4
1040

10101021810854.8 −
−

−−−

×=
×

×⋅×⋅×
=

⋅⋅
=

⋅
≈

d
LW

d
AC ss

s
εε F   

This means that the sensing capacitance is in the order of fF, a small value. To make 

things worse, there is always some parasitic capacitance in the system. To answer this 
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challenge, a sensing bridge is used in the control system as shown in Figure 5-5. The 

sensor capacitor forms one arm of the bridge 4Z .  

 

 

Figure 5-5 The Wheatstone bridge circuit 

 
 

The bridge is balanced when 1324 ZZZZ = . Then 12 XX VV = , referenced to ground, at 

this time, the detected voltage difference between node X1 and node X2 will be zero. 

Normally in such a bridge, 1Z  and 3Z  are fixed in values. If 4Z  is changed, a change 

of 2Z will need to be made to keep the bridge balanced. This is exactly the case in our 

position sensing. When 4Z is changed due to the mirror movement, the bridge is out 

of balance. At this time, if 2Z is kept constant, there will be a voltage difference 

between 1XV  and 2XV . When 2Z is changed accordingly until a balance bridge is 

1Z

3 Z 
4Z 

2 Z 

SV

detector

X1 
X2
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satisfied, no voltage difference will be detected at the detector, and the value of 4Z is 

calculated as 
2

1
34 Z

Z
ZZ ⋅= . 

 

5.5.2 A testing capacitor structure 

To implement the Wheatstone bridge in our control system, when the sensing 

capacitor is used as one arm of 4Z , another three arms need to be selected. As 

discussed above, to keep the bridge balanced when 4Z  is changed, 2Z has to be 

changed. In the meantime, we choose constant capacitance values in the arms of 

1Z and 3Z .  

n+ n+

gatedrain source

body

 

Figure 5-6 The testing resistor made from a MOSFET.  

 

To realize such a variable impedance of arm 2Z  to balance the capacitor in the 

bridge, we introduce a variable resistance 2R , made from a MOSFET, with a 

structure shown in Figure 5-6. 2R  is the resistance between the drain and source of 

MOSFET 1M , which is in its triode region by applying appropriate gate voltage. In 
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this way, different gate voltages applied on 1M will result in different values of 2R . 

2R  serves as 2Z in the bridge. 

 

So far, we have set the sensing capacitor as 4Z and the MOSFET resistor 2R as 2Z in 

the bridge. Accordingly, we choose another identical structure MOSFET resistor 1R , 

and another capacitor 3C as 3Z . Both 1R and 3C are constant values. 

 

5.5.3 The feedback control architecture 

 
 

Figure 5-7 The architecture of the feedback control 
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Having discussed the sensing bridge, we are ready to determine the architecture of the 

feedback control for a MEMS mirror in a large count optical switch. This architecture 

is shown in Figure 5-7. 

 

As shown in Figure 5-7, the feedback control schema is composed of several blocks. 

One block is the sensing bridge, which detects the angular position of the top mirror 

plate. Another block is the detection block, which filters out the noise and amplifies 

the position signals. These sensing signals are translated to digital signals and are sent 

to the controller block. The controller block receives these angular position signals, 

calculates the corresponding two other state variables, and then determines the 

required driving voltage based on the optimal control methodologies. Then through a 

Digital to Analog converter (DAC), the control block sends out the driving voltage to 

the bottom plate. (Top plate is applied a fixed Vcc). The electrical potential difference 

between this driving voltage and Vcc will determine the angular position of the top 

mirror plate. 

 

As shown in Figure 5-7, the sensing pads can detect every angle through which the 

mirror turns. The sensing bridge is composed of four components. sC  is the sensing 

capacitor. 1R  is a variable resistor made from a MOSFET. The MOSFET’s gate 

voltage determines the value of 1R . bC  is a fixed value balancing capacitor. 2R  is 

fixed value balancing resistor made from another MOSFET. sC is located at the edge 

of the mirror. bC , 1R , 2R  are located outside of the mirror.  
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A high frequency signal source drives the sensing bridge. Initially, the sensing bridge 

is balanced. The working function of the sensing bridge is illustrated in two cases. In 

one case, there is noise applied on the mirror plate. The mirror changes its angular 

position, deviating from its stable position. A change in sC  makes the bridge 

unbalanced, which means a voltage drop between 1XV  and 2XV . As long as this 

voltage difference is detected by the detection circuitry, these analog signals are sent 

to the controller block, where these analog signals are sampled and converted to 

digital signals and are processed based on the optimal control methodology. An 

optimal driving voltage is then calculated and sent to the bottom plate. This brings the 

top mirror back to its originally stable position. During this process, the variable 

resistance 1R  is unchanged. 

 

In anther case, there is a system command from the microprocessor to have the mirror 

switch the light beam from one channel to another channel,  making the top mirror 

travel a rather large angular position. With this system command, a new 1R  is 

calculated by the microprocessor, and its new control gate voltage is sent to the 

MOSFET 1M . At the same time, the sensing circuitry senses the voltage drop 

between 1XV  and 2XV . The microprocessor, just as in case one, processes these 

sensing signals on the basis of the optimal control methodologies. The optimal 

driving voltage is then calculated and sent to the bottom plate. This brings the top 

mirror quickly switched to the desired new position.  
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So far, we have studied the feedback control architecture of the MEMS mirror 

actuators and we have mentioned that the microprocessor sends the optimal driving 

voltages to the mirror actuators. We have already discussed in previous chapters that 

these driving voltages normally is high in value. Recall both the microprocessor and 

DAC have a limited range in output voltages. Thus there is a need to amplify these 

voltages up to the level of the high voltage range to drive the mirror actuators 

ultimately. In the next section, we will discuss the design of such high voltage drivers 

in this large channel count optical switch applications.  

 

5.6 High voltage driving circuits for MEMS actuators 

A MEMS based large channel count optical switch can consist of a large number of 

mirrors. Because the nature of repetition of the same driving circuits for hundreds or 

even thousands of mirrors, any effort reducing the complexity of such driving control 

circuits will result in great benefits for the system as a whole. This section will 

discuss the driving circuits for MEMS actuators. A circuit that can reduce by one-half 

the number of the driving control voltages is presented here. 

 

First let us briefly review the system requirement on these high voltage drivers. The 

large channel count optical switch has put the demand that the driving circuits need to 

be simple so that they can be small in size and low in power consumption. Also the 

circuit should be easy to be integrated with other parts of the system, ideally, the 

whole system integrated in a chip. Plus, the driving circuits should stand high 

voltages up to two to three hundred volts. A high voltage driving circuit proposed 
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here has very simple analog circuit architecture, reduces by half number of the 

voltage control signals and eliminates the digital control bit needed to select the two 

electro-plates for each mirror. Another benefit of this driver is its potential to be 

integrated with all the other circuits of the system in one single IC chip to ultimately 

achieve a SOC.  

5.6.1  A featured high voltage driving circuit 

Our design of the high voltage driving circuit has the architecture, as shown in Figure 

5.8.  It is based on the observation that only one electro-plate out of the two electro-

plates labeled as A and B is actuated at some specific time as mentioned in Chapter 2.  

Thus one analog voltage controller is needed to drive the bottom plate A or B. 

Additionally, a one-bit digital control signal is needed to distinguish between bottom 

plate A or B. 

 

 

Figure 5-8 One cell of high voltage driving circuits with one input port and two 
output ports 

 

The proposed high voltage driving circuit is composed of two amplifiers with one 

common input port, as shown in Figure 5-8. Figure 5-8 is one cell of such driving 

circuits. 

Amplifier 1

Amplifier 2

Input voltage  
from the DAC inside 

 the controller 
 in Figure 5-7 

Vout1

Vout2

1 i V 

2 i V 

1oV

2oV

One Electroplate 
A 

One Electroplate 
B 
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Figure 5-9  Comparison between the new and standard high voltage driving circuits to 
actuator N mirrors  

 

Figure 5-9 shows a comparison between the new high voltage driving circuits and the 

regular ones to actuate N mirrors. In the regular high voltage driving circuits, 2N 

driving control signals are needed to drive N mirrors. Each mirror has two bottom 

plates, with a total 2N bottom plates. As the two bottom plates are mutually 

exclusively actuated, N hardware switches can used to cut the driving control signals 

by half to N, with an introduction of N digital control signals to switch between the 

two bottom plates A or B of each mirror. 
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By introducing a new high voltage driving circuit, the driving control signals are still 

be N while the N digital control signals for selecting between A or B Bottom plate 

have been eliminated. Thus our new high voltage driving circuit can reduce half the 

number of the driving control signals while eliminates the digital control bit to select 

one of the bottom plates in each mirror. 

 

In Figure 5-8, the input comes from the DAC inside the controller in Figure 5-7. Both 

amplifiers in the circuit have the same output voltage range, which is the desired 

voltage to drive the micro mirrors in an optical switch. Here is the working principle 

of the circuit. 

 

Assume the gain of the first and the second amplifiers are 1g  and 2g  respectively, 

and the desired output driving voltage range is for both from LVo  to RVo  volt, that is 

),(
1 RL oOo VVV ∈ , and ),(

2 RL oOo VVV ∈                                       (5-75) 

where 
1oV , 

2oV  are the output voltages of the first and the second amplifiers 

respectively, and  LVo , RVo  are the lower and upper bound of  the desired mirror 

driving voltage range. The input of both the amplifiers will range from  

n

O
s g

V
V L

n
+   to 

n

O
s g

V
V R

n
+ , )2,1(∈n                                          (5-76) 

where 
nsV  is the DC offset of amplifier n. 

Therefore 
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),(
11

111 g
V

V
g

V
VV RL O

s
O

si ++∈ ,  and ),(
22

222 g
V

V
g

V
VV RL O

s
O

si ++∈             (5-77) 

where 
1i

V , 
2i

V  are input voltages of the first and the second amplifiers. 

 

The first and the second amplifier are designed to activate at mutually exclusive input 

signal ranges. Therefore, while one amplifier is actuated, the other will be cut off, and 

vice versa. That is 

 ),(
22

221 g
V

V
g

V
VV RL O

s
O

si ++∉ , ),(
11

111 g
V

V
g

V
VV RL O

s
O

si ++∉                 (5-78)  

Or 

φ=),(),(
2211 g

V
g

V
g

V
g

V
RLRL OOOO I                                    (5-79-a) 

21
21 g

V
V

g
V

V RL O
s

O
s +=+                                         (5-79-b) 

 

With this feature, the control input range can be determined in the following way: 

1) Shift the desired input signal for the first amplifier into the range 

),(
11

11 g
V

V
g

V
V RL O

s
O

s ++ ,  

2) Shift the desired input signal for the second amplifier into the range    

),(
22

22 g
V

V
g

V
V RL O

s
O

s +  
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3) Add these two ranges together. 

Therefore, with one input port without introducing any digital control bits, the circuit 

can be used to drive two different actuators working mutually in time. In this way, an 

automatic distinguish ability between two outputs is implemented and the need of one 

bit digital selecting signal is eliminated. 

5.6.2 Implementation of a high voltage driver and its simulation results 

A design example is given here. Assume we have the following parameter 

requirements:  





=
=

VV
VV

R

L

o

o

300
0

                                                                                                          (5-80) 

Let 

601 =g , 602 =g , VVs 1
1
= , VVs 4

2
−=                             (5-81) 

For the second amplifier, 

 ),(
11

111 g
V

V
g

V
VV RL o

s
o

si ++∈ )6,1()
60

3001,
60
01( =++=                   (5-82) 

For the second amplifier,  

),(
22

122 g
V

V
g
V

VV RL o
s

o
si ++∈ )1,4()

60
3004,

60
04( −=+−+−=                   (5-83) 

Combining (5-82) and (5-83), then we have )6,4( VVV
ni

−∈  
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Figure 5-10  A cell circuit for MEMS actuation 

One such cell is needed for each mirror actuator system because of two bottom 
electro-plates in each mirror system. 

 

           V_Vin

-4.0V -3.0V -2.0V -1.0V 0.0V 1.0V 2.0V 3.0V 4.0V 5.0V 6.0V
V(Q1:c)

0V

100V

200V

300V

350V

 

(a) DC sweep ( 1OUTV  vs. inV ) of the high voltage driver circuit with input sweep  
from -4V to 6V 
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           V_Vin

-4.0V -3.0V -2.0V -1.0V 0.0V 1.0V 2.0V 3.0V 4.0V 5.0V 6.0V
V(Q4:c)

0V

100V

200V

300V

350V

 

 (b) DC sweep ( 2OUTV  vs. inV ) of the high voltage driver circuit with input sweep  

from -4V to 6V 

           V_Vin

-4.0V -3.0V -2.0V -1.0V 0.0V 1.0V 2.0V 3.0V 4.0V 5.0V 6.0V
V(Q1:c) V(Vout2)

0V

200V

400V

-100V

 

(c) 1OUTV  and 2OUTV  DC sweeping for the whole input range  

Figure 5-11 DC sweep using PSpice simulation 

 

One of the simplest implementation of Figure 5-8 is shown in Figure 5-10 with 

Bipolar transistors in discrete components. There are only two transistors Q1 and Q2, 

along with four additional resistors to drive the two independent and mutually 

exclusive working electro-plates. Both Q1 and Q2 share the same input Vin. Properly 

biased, this circuit can generate the needed high voltage for the electro-plates in the 
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mirror actuator system, which are labeled 1OUTV  and 2OUTV  here, as shown in Figure 

5-10.  In future work, a MOSFET circuit can be implemented to achieve a SOC. 

 

The simulations using PSpice for the circuit shown in Figure 5-10 is displayed in 

Figure 5-10. We can assume that ccV  in Figure 5-10 is 300V and assume that the top 

mirror plate is biased to ccV (300V). The desired output range for both electro-plates 

is (0V, ccV ). When the input changes from –4V to 1V, which is the desired input 

signal range for the second amplifier, 2OUTV ,  the output from Q2 changes from 0V to 

ccV , linearly with the input change. At the same time, the output of the first amplifier, 

1OUTV , which is the output of Q1, keeps constant at ccV . As we bias the top mirror at 

fixed ccV  DC voltage, then this means that no potential difference between the first 

electro-plate and the mirror plate, resulting no electrostatic actuation. When the input 

changes from 1V to 6V, which is the desired input range for the first amplifier, the 

output of the first amplifier, 1OUTV , drops linearly from ccV  to 0V. The first electro-

plate is now being actuated by 1OUTV , while the output of the second amplifier, which 

is the output from Q2,  keeps the constant voltage level at ccV . This results in no 

actuation due to the second electro-plate. 

 

After a brief explanation of the working principle of the cell circuit shown in Figure 

5-10, we will detail its analysis. Specifically, we will give its design principle based 

on power consumption.  First assume that this circuit is designed for a 256x256 
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optical switch system. There will be 256 input mirrors and 256 output mirrors with 

N2  structure. As mentioned in Chapter 2, each mirror actuator system is composed 

of one top mirror and two bottom electro-plates. The top mirror is biased to CCV , 

while each bottom plate is connected to a high voltage driving circuit, which is 

mutually exclusively actuated. One such cell is needed for each mirror. Thus the total 

number needed for the high voltage driving cell is ( ) 512256256 =+ . Assume that the 

total power budget of all the high voltage cells is WPW 5= . Then for each driver cell 

shown in Figure 5-10, the power budget is WWPc 00977.0
512
5

== . Notice that this is 

the power budget for the whole cell during any time, no matter what the status of each 

bipolar transistor Q1 and Q2 is. Additionally, assume that the amplifier gain β for 

both Q1 and Q2 is the same. 

 

The input’s working range is ( )RINLIN VV __ , , that is (-4V, 6V) here. Assume at first, 

the input voltage is at the edge of LINV _ . Then Q1 is cut off, because its base voltage 

is less than the turn-on onBEV − threshold voltage. This results in VVV CCOUT 3001 == . 

However, Q2 is in its working range, because its base voltage is greater than its turn-

on onBEV − threshold voltage, and its 0<BCV . Thus at this moment, 2OUTV will be 

232 CccOUT IRVV ⋅−= .  

322 RIVV CCCOUT ⋅−=                                    (5-84) 
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To fit our design goal, it is required 

VVOUT 02 ≈                                                  (5-85) 

Because Q1 is cut off, and the electro-plate serves as a capacitor load, there is no 

current flowing except some ignorable leakage current. Thus at this moment, the 

circuit for the first channel 1OUTV  consumes no power. Q2 is in its active working 

range; As β of Q2 are normally above 100, so the power consumption on 4R  can be 

neglected compared with that of 3R . That is the power consumption of the cell 

circuits is mainly determined by its power consumption of 3R . Thus                                                   

          
Pc

V
R CC

2

3 ≈                                              (5-86) 

 Using the power budget we have and the CCV  value, the value of 3R  can be 

determined. 

 

If we increase INV , VVV LININ 4_ −=> . The base of Q1 still has lower voltage than its 

emitter, Q1 remains cutoff. In the meantime, the emitter voltage at Q2 is decreased, 

due to the increase of INV . However, the input voltage still sets positive base-emitter 

voltage and a negative base-collector voltage of Q2. Q2 is in its working active range. 

4

22
2 R

VVV
I BEINBias

B
−−

=                                 (5-87) 

22 BC II β=                                               (5-88) 

From the above two equations and (5-84), we can solve that  

4

22
2 3

R
VVV

RVV BEINBias
CCOUT

−−
⋅−= β                                (5-88-a) 
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Or                                  ( )22
4

2
3

BEBiasINCCOUT VVV
R

RVV +−
⋅

+=
β                     (5-89-b) 

The power consumption of the circuit during this linear range is composed of the 

power consumption in 3R and 4R . As β of Q1 and Q2 are normally above 100, so the 

power consumption on 4R  can be neglected compared with that of 3R . Then we have 

the relationship to determine the value of R4: 

c
BEINBias

BCRR PR
R

VVV
RIRIPPP ≤⋅







 −−
≈⋅+⋅=+= 3

2

4

22
4

2
23

2
243 β      (5-90-a) 

Or                                   ( )
c

BEINBias P
R

VVVR 3
224 ⋅−−≥ β                                (5-90-b) 

Or                          ( )
c

BEINBias P
R

VVVR 3
2min_24 ⋅−−≥ β                                   (5-90-c) 

 

From (5-89), we can tell that there is a linear relationship between 2OUTV and INV . 

This is exactly the linear range shown in Figure 5-11 (b). In estimation of 4R  using 

(5-90-b), min_INV should be used to keep the power consumption under budget. With 

the increase of INV , 2OUTV increases accordingly, while 2BEV  is decreased, until to the 

point where onBEBE VV −=2 . This is the point where Q2 will go into cut off with any 

more increase of INV . At the same time, when INV  increases, the base voltage of 1R  

increases. When it is higher than the threshold voltage of Q1, Q1 begins to work in 

the active range. In our design, we want to set the INV  point when Q2 cuts off as the 
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exact INV point when Q1 is turned on to the active range. That is if VVV TININ 1_ == , 

then VVV CCOUT 3002 == and onBEBE VV −=2 . This requires that (5-89) becomes 

( ) CConBEBiasINCCOUT VVVV
R

RVV =+−
⋅

+= −2
4

2
3 β  

 Or                                       02_ =+− −onBEBiasTIN VVV                                        (5-91-a) 

Or                                       onBETINBias VVV −+= _2                                              (5-91-b) 

For Q1, in order to have onBEBE VV −=1 at TININ VV _= , then it requires  

onBEBiasTINBE VVVV −=−= 1_1                                     (5-92-a) 

Or                                                        1_1 onBETINBias VVV −−=                             (5-92-b) 

After the point TININ VV _= , if INV  continues to increase, Q2 will completely cut off 

and Q1 is completely in the active work range. For Q1, we have 

211 RIVV CCCOUT ⋅−=                                    (5-93) 

1

11
1 R

VVV
I BEBiasIN

B
−−

=                                 (5-94) 

11 BC II β=                                               (5-95) 

Combining these three equations, we have: 

( )11
1

1
2

BEBiasINCCOUT VVV
R
RVV −−−=
β                (5-96) 

Equation (5-96) shows that with the continuous increase of INV  after TININ VV _= , 

there is a linear relationship between 1OUTV  and INV . 1OUTV  is decreased as a result of 

the increase of INV . This is exactly the linear range shown in Figure 5-11 (a). At this 
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moment, the power consumption of the cell is mainly due to power consumption of 

R2. Then we have 

c
BEBiasIN

BCRR PR
R

VVV
RIRIPPP ≤⋅







 −−
≈⋅+⋅=+= 2

2

1

22
1

2
22

2
121 β      (5-97-a) 

Or                                     ( )
c

BEBiasIN P
R

VVVR 2
221 −−≥ β                               (5-97 -b) 

Or                                       ( )
c

BEBiasIN P
R

VVVR 2
22max_1 −−≥ β                        (5-97 -c) 

Equation (5-97-c) is what we have obtained about the relationship between R1 and 

the power consumption. The highest value of INV  should be used to guarantee the 

power consumption is limited by Pc. So the value of R1 can be determined if other 

parameters are known. 

 

If INV  increases more, at the point RININ VV _=  , Q1 enters saturation. The equations 

(5-93), (5-94), (5-95) do not hold any more. At that moment, 1OUTV will be the 

saturation voltage across Q1. This is normally a very small number, in the range of 

0.1-0.3V, depending on the fabrication process of Q1. From (5-92-b), 

1_1 onBETINBias VVV −−= , which is a very small number, We can write 

 VVVV BiasCEOUT 0111 ≈+=                                          (5-98) 

 

As Q2 is cut off and Q1 is saturated, the power consumption at this moment is mainly 

determined by the power consumption of R2. Thus  
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( )
2

2
11

R
VVV

P BiasCECC
c

−−
=  

     Or           
c

CC

P
V

R
2

2 ≈                                              (5-99) 

 Using the power budget we have and (5-99), the value of R2 can be determined.  

After the determination of R2, R1 can be known from (5-97). 

 

So far we have finished the determination of each component inside the circuit shown 

in Figure 5-10. Table 5-5 is a summary. The corresponding PSpice simulation results 

are also presented. 

 

VVCC 300= , WWPc 00977.0
1024
10

==  

components PSpice 
simulation 

Calculated  
from the left 
column 

Formulas derived 

2R  10Meg 9.3Meg ( )
c

CECC

P
VV

R
2

1
2

−
=                                    (5-99) 

3R  10Meg 9.3Meg 
 

Pc
V

R CC
2

3 ≈                                                (5-86) 

2BiasV  1.3V 1.7V 2_2 BETINBias VVV +=                                (5-91-b) 

1BiasV  0.6V 0.3V 1_1 TTINBias VVV −=                                  (5-92-b) 

1R  25Meg 16Meg ( )
c

BEBiasIN P
RVVVR 2

22max_1 −−≥ β        (5-97-c)   

4R  24Meg 16Meg ( )
c

BEINBias P
R

VVVR 3
2min_24 ⋅−−≥ β      (5-90-b)  

Table 5-4 Summary of the design equations for the high voltage driving cell circuit 
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In this section, a high voltage driving circuit cell, which meets the special 

requirements of large channel count MEMS based optical switches, has been 

presented. The circuit is very simple in architecture; therefore, it can be easily 

integrated with other parts of the system and meet the trend of integrating the whole 

system on a chip. 

5.7 The modular architecture of a scalable embedded system 

In previous sections, we have mentioned that a microprocessor is inside the control 

block when we illustrated the feedback control architecture.  To implement the 

feedback control architecture, to supply the optimal input to the high voltage driver, 

an embedded system is needed to control in real time. The embedded system for the 

MEMS actuator system is an important part of the embedded system for the whole 

optical switch system. Large channel count optical switches have put special demands 

on this embedded control systems for their scalability and reliability. It is cost and 

design preferable to add more modules in scalability for the increased number of 

channels based on the present system instead of starting from zero. Here “scalable” 

means the architecture can be scaled up or down to follow the requirements arising 

from different channel numbers. In this section, we will focus on the embedded 

control system in the MEMS actuator system. Specifically, we will study a modular 

architecture of scalable embedded systems using a shift register. 
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5.7.1 Objectives of the embedded system for MEMS actuators 

The objective of the studied embedded system is to perform central control of the 

MEMS actuators to direct light beams and perform “switching” functions. Figure 5-

12 gives the block diagram for the architecture of an embedded system for MEMS 

actuator control in large channel count optical switch applications. Besides the 

feedback control illustrated in Figure 5-7, this embedded system provides the control 

over other important issues in the system as well, such as the temperature control. 

 

Figure 5-12 The embedded system for MEMS actuators in an optical switch 

 

As shown in Figure 5-12, the control center of the embedded system is the 

microprocessor. It performs control algorithms and other system programs. Memory 

is for data and program storage. Sensing and detection circuits send the parameters of 
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the mirror to the microprocessor. After the A/D converts these analog signals to 

digital signals, the microprocessor will process them with the optimal control 

algorithm. Initially, these are digital data. D/A converters (DACs) translate these 

digital data from the microprocessor to analog values in order to drive the amplifiers. 

The outputs from the amplifiers apply the required high voltages to drive the MEMS 

mirrors as in Figure 5-8. Also included in the architecture block is a temperature 

control subsystems. The register serves as a control buffer between the 

microprocessor and the targeted DACs.  

 
We have illustrated the concept of embedded system for MEMS actuators in Chapter 

2, where we pointed out the scalability is the goal for a good embedded system. 

Instead of using an embedded system targeted on a fixed number of channels, here a 

modular structure is illustrated by using a shift register. This will shorten the design 

cycle, increase the ability of easy maintenance, and reduce the system cost in the long 

run.  

 
 

5.7.2 Descriptions of the modular structure of the embedded system 

To solve the issue of limited capacity of output digital control ports of the 

microprocessor, we propose to use a serial shift register, as shown in Figure 5-13, to 

control between the microprocessor and DACs instead of using a decoder. 
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Figure 5-13 A series shift register used to get a modular structure of the embedded 
system 

 
 

The function of a shift clock works in this way [37]. The shift register can shift either 

left or right depending on the chip configuration. We can assume that it is up as a left 

shift register. With each cycle of an incoming clock, the data inside the shift register 

will shift left by one bit. If wanted, at some specific clock cycle, all the data 

information can be sent out as a parallel output, as in Figure 5-13. 

 

To select a specific DAC, the microprocessor provides the shift clock to the shift 

register, which has its parallel output wired to the chip enable pin of each DAC. 

Initially assume that all the data bits inside the shift register are all 0 except for only 

one 1. Assuming we use the left shift register, with each time a shift clock coming 

from the microprocessor, the data inside the shift register shifts one bit to the left.  

Microprocessor

DAC .   .   .DAC DAC

Input channels Output channels

.   .   ..   .   . DAC

CLK 

Shift register output
 in parallel

One bit digital control

Series shift 
register
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The number of shift clock cycles determines which specific DAC is selected by 

setting the corresponding chip enable signal high.  

 

In this configuration, when a need arises to increase the number of switch channels, 

no matter how many additional channels are needed, the hardware does not change at 

all except through adding more shift register bits while the software almost makes no 

change. No matter how many additional channels are needed, the microprocessor 

needs to provide only one digital control bit in this configuration. This one bit is used 

as the clock signal for the shift register. The modular structure is illustrated in Figure 

5-14.  

 

 

a) one module  

Channel M 
control signals

· ·· ·

· ·· ·

Channel 1 
control signals 

DAC

Channel 1 
amplifiers 

Channel 1 
MEMS actuator 

Channel M
amplifiers

Channel M
MEMS actuator

· ·· ·
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(b) The modular structure showing both input and output channels 

Figure 5-14 A modular structure of the scalable embedded system  

(M is the number of amplifiers that each DAC can drive) 

 
 

Next, we will give an example to illustrate the idea with one-bit from the 

microprocessor to control the shift register. Let us assume that we work on a 21 NN ×  

MEMS optical switch.  Also assume that the total number of amplifiers driven by 

each DAC is M. There are altogether 21 NN +  mirrors in the system.  From the 

discussion on the high voltage driving circuits in the previous section, we know that 

each mirror actuator needs one high voltage driving cell for its two bottom electro-

plates, while the top mirror is at fixed electrical potential of Vcc. Each cell needs one 

input from the DAC. That is one inputs needed for each mirror actuator. Thus 

( )
M

NN 21 +  DACs in a 21 NN × MEMS optical switch are needed. 
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In the modular structure shown in Figure 5-14, each module contains a DAC with M 

outputs. So each DAC can drive M  high voltage cells and M2 MEMS electro-plates. 

That is each DAC to control M mirror actuators. The microprocessor provides one 

I/O port as the serial clock signal to shift the shift register. This one shift register can 

control up to S number of DAC, where S is the bit size of the shift register. We use 

the shift register in parallel output mode. Each bit of the output of the shift register is 

connected to the chip-selection pin of each DAC, and we set only one 1 for the data 

inside the shift register initially by a fixed hardware setting, as shown in Figure 5-15. 

In this way, the number of clocks will determine the specific DAC to be selected. 

Once a specific DAC has been chosen, consequently the specific driving cell and the 

electro-plates to be driven are determined. Again keep in mind that the clock to 

control the shifting comes from one digital control bit of the microprocessor. 

CLK

Output in parallel

00000001
 

 8 bit shift register with initialization 

Figure 5-15 An example configuration of an 8-bit shift register 

 
 
For example, if we are constructing a 256256× optical switch, that is 

25621 == NN . So the number of input and output mirrors is each 256. The total 

number of mirrors is 512. If additionally the total number of outputs a single DAC 
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can handle is 32, which means 32=M , the number of DACs needed for the input 

mirror is 8
32
256

=  and the DAC number needed for the output mirror is 8
32
256

= . 

Based on this calculation, two 8-bit serial shift registers will be used in the system. 

One is for the input DACs, and one for output DACs. They both have the same 

initialization as shown in Figure 5-15.  

 
Suppose that the switch command is to switch input channel #33 to output channel 

#223. Each time the reset will set the register in the state of 1000,0000. As we want to 

select input channel #33, the 2nd input DAC will need to be selected. This requires the 

register to be in the state of 0000,0010, which can be realized by a left shift of two 

clocks cycles from its initial shift register status. As we want to select output channel 

#223, the 15th output DAC will need to be selected. This requires the register to be in 

the state of 0100,0000, which can be realized by a left shift of 15 bits from its initial 

shift register status by 15 clocks from the microprocessor. So the number of clock 

cycles sending from the microprocessor will determine the specific DAC to be 

selected. 

 

This example shows how the system, specifically the serial shift register, performs in 

the modular structure. However, in the meantime, it also releases the tradeoff 

involved in using a scalable structure. Speed is scarified in an attempt to have a 

modular structure. Nevertheless, consider that the switching time of the mirror is in 

the range of ms and the shift clock frequency provided from the microprocessor is in 

the range of 100MHz [37]. Thus the time delay caused by each shift clock cycle is 
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01.0
100

1
=

M
µs. Accordingly, this time delay due to the shift clock cycles is 

tolerable. 

 

In the software part, everything is scalable if more clock cycles are needed to drive 

the register. The database structure inside the memory is scalable too as shown in 

Figure 5-16. When using this data structure, additional channels are easily considered 

by the software when N is a new number ( NN × optical switch).  

 

In this section, a modular structure of a scalable embedded system, which meets the 

special requirements of large channel count MEMS based optical switches, is 

presented. By using a shift register, the scalability in both hardware and software is 

achieved. Though the system might face a tradeoff in response time, this is not a big 

issue with the current technology for both MEMS and shift register. Therefore, it can 

meet the trend of integrating the whole system on chip. 
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Figure 5-16 A data structure for the modular control of the MEMS actuators 

 
 

5.8 Conclusions 

We have covered the stability and control issues in the large channel count optical 

switch applications. From the view point of control theory, we have studied the 

stability of the optimal plate introduced in Chapter 3. Two control methodologies are 

applied to make the system immune to noise and any other disturbance. 

Implementation of these methodologies is realized by a feedback control architecture, 

which features a sensing bridge with a variable resistor made from a MOSFET and a 

variable sensing capacitor. Based on the special structural feature of the MEMS 

mirror introduced in Chapter 2, a novel high voltage driver is provided to cut the 

number of the required control actuating voltages by half and also to omit the digital 
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control bit and the corresponding digital control circuits for each MEMS mirror. In 

the last section, a modular architecture of the scalable embedded system is introduced 

by using a shift register.  
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Chapter 6: Future Work and Conclusions 
 

Abstract 

This chapter summarizes the research work done in this dissertation. It also discusses 

the open problems in this area of actuating and to controlling MEMS mirrors in 

large-channel-number optical switches. 

 

6.1 Conclusions 

The research work performed in this dissertation is targeted on optimal control and 

actuation of a MEMS mirror plate in the applications of large-channel-number optical 

switches. An optimal electrostatic plate actuator is discussed in Chapter 3 along with 

a design methodology. After a force and torque analysis of three different 

configurations of the plate actuator, an optimal tilted bottom plate is presented to 

reduce the required driving actuating voltage by one-half of the present industry 

standard one. By considering planar fabrication processes available, a four-level stage 

structure is given as an example of a practical multi-step realization of such an 

optimal plate structure.  

 

In Chapter 4, a transient analysis for the motion of the top plate in the optimal plate 

actuator is discussed with consideration of the squeeze film damping effects. The 

transient analysis is given for both the tilted bottom plate configuration and the 

horizontal bottom plate configuration. Their analogies to electrical circuits with 
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GVALUE components are recognized. Based on these, their transient responses are 

obtained from PSpice transient simulation.    

 

In Chapter 5, the MEMS mirror system in control theory is investigated. When the 

internal conductance of the voltage source and the position-variation of the damping 

coefficients are considered, the analysis of the system, which is discussed in Chapters 

3 and 4, is expanded further by using control state equations. Nonlinear state 

equations are presented after the introduction of the state variables. By using these 

nonlinear state equations directly, a Lyapunov function is investigated to confirm the 

system’s stability in its working range. The Routh-Hurwitz test is performed to study 

the system stability after the linearization of the state equations at some equilibrium 

point.   

 

By studying the special demands in large-channel-number optical switch applications, 

two optimal control methodologies are presented. A bang-bang control methodology 

is used to achieve fast settling time; while a feedback closed-loop control with real-

time changing feedback gain is used to achieve the stability of the system when any 

perturbation appears. System architecture to implement these control methodologies 

is investigated. In this architecture, instead of using a popular mirror position sensor 

by using light power detection theory, an accurate sensing capacitor located on the 

mirror is introduced. The sensing capacitor is used in a sensing bridge circuit to detect 

the mirror position in real time.  This mirror position information is fed back to the 

control microprocessor to be evaluated to determine the values of the actuating 
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control voltages. Additionally, a new high voltage driving circuit is introduced and 

analyzed to cut these actuating control signal numbers by one-half along with the 

elimination of the control digital bit for each MEMS mirror system. This circuit also 

benefits the SoC concept for the whole system. Further, by using a shift register, a 

modular architecture of the embedded system, which produces a scalable structure, is 

presented in the last section. The system can be updated by adding more modules to 

the present system instead of starting from zero when there is a need to increase the 

channel numbers. This scalable embedded system is beneficial to cost reduction, 

future maintainability and design simplification. 

 

6.2 Open problems for future study 

Designing a successful MEMS mirror actuator system in the large-channel-number 

optical switch applications involves integrating electrical, mechanical, optical and 

control theories. The research of this dissertation has focused only on a few 

interesting areas, leaving various problems open to further work and study.  

 

The number 1 problem is to analyze other 3D bottom plate structures, in addition to 

the one provided in Chapter 2. One such example is shown in Figure 6-1, in which 

case the mirror can perform a two-axis rotation. The structure of the bottom plate has 

the shape of a pyramid in Figure 6-1. 
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Figure 6-1 A 3D structure of the bottom plate for a MEMS mirror actuator 

 

The number 2 problem is on system implementation of the architecture shown in 

Figure 5-8. More work can be done to detail this architecture’s implementation, such 

as to fabricate the sensing capacitor and the variable MOSFET resistors, and to 

program software to implement the optimal control methodologies.   
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The number 3 problem is on how to interface both internally and externally. Due to 

the large number of MEMS mirrors and their control circuits involved in the large-

channel-number optical switch applications, internally these control circuits need to 

have an interface to connect the mirrors and their associated electro-plates. Externally 

there is a packaging issue. This can be eventually solved by designing for a system on 

a chip (SoC). 

 

The number 4 problem is related to fabricating mirrors. Even though MEMS 

manufacturing can be done using the present matured silicon planar technology, due 

to MEMS structure features there are special process problems to be solved to make 

MEMS fabrication as mature as its IC silicon process counterparts. In a MEMS 

mirror structure, complex geometries beyond the shape of thin plates are involved, 

such as the shape of a gimbal mount hinge. These require the fabrication processes 

involving a lot of etching and lifting, which make the MEMS fabrication quite 

different from its IC silicon counterpart. In addition, the large volume involved in IC 

technology helps to make the process mature quickly and to make the manufacturing 

price low. However, in the MEMS case, due to the low volume of products, MEMS 

products need a long time period for their fabrication to become as mature as their IC 

silicon counterparts.  

 

The number 5 problem is on the mechanical and material analysis of the supporting 

gimbal mount hinge. Careful mechanical design needs to provide a smooth, reliable 

and functional suspension hinge during the whole life-time of optical switches, which 
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is normally 20 years. Additionally, all the transient analyses we have covered here are 

based on the model of the squeeze film damping effects. Newly updated models to 

take care of the special shape of the bottom plate can help future system dynamical 

studies. 

 

The number 6 problem is on the optical part. This is not covered in this dissertation. 

However, this part is important to the success of the whole system. The objective of a 

MEMS mirror is to direct light accurately from one input fiber to the desired output 

fiber in the large-channel-number optical switch applications. To achieve this 

objective, besides the optimal actuating and control matters discussed in this 

dissertation, there are challenges in optical alignment due to the involvement of a 

large quantity of optical fibers. Because the number of fibers involved is not trivial 

and the system’s space is limited, a good optical path design including lens arrays and 

collimated fibers is critical to make the system successful with the required optical 

performance. 

 

6.3 Summary 

In summary, the demands arising from the high volume and high bit rate in 

transmitting information over optical fibers with the WDM and IP technologies have 

triggered the growth of a MEMS based OOO optical switch. As the key components 

in OOO optical switching, MEMS actuators provide the system with super-optical 

performance and low power consumption, which is especially beneficial to the large-

channel-number optical switch applications. The MEMS based optical switch is the 
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trend for the next generation of optical switch systems. As an integration of 

mechanical, electrical and optical components in a single system, MEMS actuators 

provide challenges along with opportunities to research and industry.  
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Appendix 
 

This appendix is to provide the detail proof in Chapter 5 that 

( ) 01203 <− aaaa                                              (5-59).  

Let us look at 1203 aaaa −  

( ) ( )( ) ( )( )02
2

0202
22

11203 22 ϕωτωϕωτϕω −−−−−−−−=− xxxxaaaa JJJJ  

( )( ) ( )( )02
2

020
2

2
2 223 ϕωτωϕωτϕωω −−−−−+−= xxx JJJJJ  

( )( ) ( )( )[ ]020202 223 ϕτωϕωτϕωωω −−−−−+−= xxx JJJJJ                                    

(A-1) 

Because 0>Jω , To make 01203 <− aaaa , it requires that  

( )( ) ( )( )[ ] 0223 020202 <−−−−−+− ϕτωϕωτϕωω xxx JJJJ            (A-2) 

Or                  

  ( )( ) ( )( ) 0223 020202 <−−−−−+− ϕτωϕωτϕωω xxx JJJJ                (A-3) 

Or          

  ( ) ( ) ( )[ ] 02423 2
020202

22
02 <−+−−−−−+− ϕτϕωϕωτωτϕωω xxxx JJJJJ        

(A-4) 

Or   

( ) ( )[ ] 0242423 2
002

2
20202

22
02 <+−+−−−−−+− ϕτϕττϕωϕωτωτϕωω xxxxx JJJJJ
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Or
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2
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Since the first term is always not less than 0, if we can show the second term is 

greater than zero, then (A-14) holds. Let us look at the second term in (A-14) 
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Since 0>Jω , then it requires that: 
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Similar we can have: 
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Combining (A-21), (A-20) and (A-19), we can have that  
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Combining (5-25), (5-11), and putting all the parameters as listed in Table A-1, (A-

23) becomes 

( )
( )

( )
23

6

44

4

320

24

4
4

02
2

102711.2
1822.01

107625.1108184.5

108184.5
1822.01104162.2

108184.54
107625.1107625.1

4

×=
−

×⋅×
−

×
−⋅×

+
×⋅

×
−×

≥+−−

−

−−

τ
ϕ

ωτ
τ
ω

ω J
J

J

                       (A-24) 

 

The tilted fixed bottom plate 

8=Mα , 3103.19 ×=ρ kg/m^3 

9103901.3 −×=k N/m, 1210854.8 −×=ε  

125=L µm, 250=W µm, 3=δ µm, 2=t µm 

7179.27=β degrees=0.4839 radians  according to (3-37) 

1822.0
cos3

=
β

β , -4105.8184×=τ second, 4101.7626×=Jω , 20
0 102.4162×=ϕ  

1=η , -5101.79×=airµ , Simens 100=sg  

Table A-1 Parameters used to check the Routh Arrays 

 

From(A-24), it can be seen that (A-17) is satisfied, which means (5-59) is satisfied 

( ) 01203 <− aaaa . Till this point, we finish the proof that (5-59) holds. 
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