Simulation-Based Approach for Semiconductor
Fab-Level Decision Making - Implementation Issues

Ying He yhe@isr.umd.edu
Michael C. Fu mfu@isr.umd.edu
Steven I. Marcus marcus@isr.umd.edu
Institute for Systems Research
University of Maryland
College Park, MD 20742
http://www.isr.umd.edu/IPDPM/

Abstract

In this paper, we discuss implementation issues of applying a simulation-based approach to
a semiconductor fab-level decision making problem. The fab-level decision making problem is
formulated as a Markov Decision Process (MDP). We intend to use a simulation-based approach
since it can break the “curse of dimensionality” and the “curse of modeling” for an MDP with
large state and control spaces. We focus on how to parameterize the state space and the control
space.

Keywords: Simulation-Based Approach, Markov Decision Processes, Semiconductor Fab-Level
Decision Making, Cost Model, Demand Model.

1 Introduction

Problems of sequential decision making under uncertainty are common in manufacturing, computer
and communication systems. Many such systems are very large and complicated. Consider a
semiconductor fab capable of producing various wafers. The manufacturing process performed on
each wafer contains a few hundred process steps and involves many types of equipment. Each
piece of equipment can be used for various steps, and any given step can be executed on various
pieces of equipment, perhaps at different rates. The complication is exacerbated by uncertainties
such as frequent successive advances in technology and continual changes in demands for products
[1] [2]. Usually, the decision making of a semiconductor fab is carried out according to a general
hierarchical framework based on a temporal and/or physical decomposition of the system. In our
IPDPM (Integrating Product Dynamics and Process Models) project on planning and scheduling
of semiconductor manufacturing fabs, we attempt to deal with decision making at the fab level, and
issues that must be addressed at this level include, for example, when to add additional capacity
and when to convert from one type of production to another [3].

For fab-level decision making, our approach is to formulate it as a Markov Decision Process
(MDP) [4] by defining appropriate states, actions, transition probabilities, time horizon, and cost
criterion. The methodology for solving MDPs is dynamic programming. However, many decision
making problems such as our fab-level decision making problem involve a large state space and/or
a large control space (“curse of dimensionality”), which leads to difficulties on computation and
storage of cost functions. In addition, dynamic programming requires an explicit model for the cost
structure and the transition probabilities of the system, but such model is not accessible in some
systems (“curse of modeling”). This happens to the fab-level decision making problem too.

In order to break the “curse of dimensionality ”and the “curse of modeling”, we will discuss some
simulation-based algorithms based on the following ideas: 1) simulation for the above mentioned
systems is possible, where the task to evaluate the costs (cost-to-go, or average cost and differential
costs) is estimated from transitions on simulated sample paths; 2) compact representations can be
used for cost-to-go functions; 3) policies can be parameterized.

Then, we will propose ways to implement simulation-based algorithms on the fab-level decision
making problem. Some key issues on implementation are how to build an appropriate compact
representation of the cost-to-go function and how to parameterize the policy.

2 Markov Decision Processes

A Markov Decision Process is a framework containing states, actions, costs, probabilities and the
decision horizon for the problem of optimizing a stochastic discrete-time dynamic system. The
dynamic system equation is

Tt+1 :ft(mt,ut,wt), t:O,l,...,T—l, (1)

where t indexes a time epoch; z; is the state of the system; w; is the action to be chosen at
time ¢; wy is a random disturbance which is characterized by a conditional probability distribution
P(- | @, ut); and T is the decision horizon. We denote the set of possible system states by S and
the set of allowable actions in state i € S by U(i). We assume S, U(i), and P(- | 24, u¢) do not vary

with ¢. We further assume that the sets S and U(i) are finite sets, where S consists of n states
denoted by 0,1,...,n — 1.

If, at some time ¢, the system is in state x; = ¢ and action u; = u is applied, we incur a stage
cost g(x¢,us) = g(i,u), and the system moves to state ;41 = j with probability p;;j(u) = P(xi41 =
J | & =i,us = u). p;j(u) may be given a priori or may be calculated from the system equation and
the known probability distribution of the random disturbance. g(i,u) is assumed bounded.

Consider the stochastic shortest path problem, in which it is assumed that there is a
special cost-free termination state n in the system and the system remains there at no further cost
once it reaches that state. The objective is to minimize over all policies 7 = {po, p1,...} with
pe 2 S — U, (i) € U(d) for 7 and ¢, the total expected cost,

T-1
Jx(i) = lim E{Z 9(@e, () | 2o = @} : (2)

T—o00 =0

A stationary policy is an admissible policy of the form 7 = {u, y,...}; we denote it by pico.

The methodology for solving MDPs is dynamic programming, based on Bellman’s “Principle of
Optimality” [4]. One algorithm for solving MDPs is policy iteration. Policy iteration consists of a
sequence of policy evaluation and policy improvement at each iteration. At each iteration step k,
a stationary policy pk = {u*,u*,...} is given.

1. Policy evaluation: obtain the corresponding cost-to-go Jx (7) by solving a linear equation.

2. Policy improvement: find a stationary policy J,x+1, where for all 4, pF+1(i) is such that

n—1 n—1
900, 1 @) + o i ()T () = min (o) + Pop el ()
j=0 Jj=0

If Jkt1 = Jx for all 4, the algorithm terminates; otherwise, the process is repeated with pktt

replacing ¥

Under certain assumptions, the policy iteration algorithm terminates in a finite number of
iterations with a stationary optimal policy.

Another method of solving the optimality equations is value iteration. It is done by using the
recursion

Tri1(8) = mingep) lg(i,w) + X720 pij(w) Je ()], i=0,...,n—1. (4)
given any initial conditions Jy(0),...,JJo(n —1).
Consider the finite horizon problem, where T is finite. The objective is to minimize over

all policies m = {po, pi1, . . . pr—1} with decision rules p; : S — U, (i) € U(i) for i and ¢, the total
expected cost,

T-1
Jx(i) = E {G(SUT) +) g, (@) [o = Z} : (5)

t=0
The optimality equations are given by:
J5(i) = G(i); i=0,...,n—1
Ji (1) = min,ep() Y70 pij(w) (90, u, 5) + T (4))-

Note that the finite horizon problem can be converted into a stochastic shortest path problem
by viewing time as an extra component of the state. In the reformulation, transitions occur from
state-time pairs [i,t] to state-time pairs [j,¢ + 1] according to the transition probabilities p;;(u)
of the finite horizon problem; the termination state corresponds to the end of the horizon; it is
reached in a single transition from any state-time pair of the form [j, 7] at a terminal cost G(j) [5].
The reformulation is as follows:

J*([3,T]) = G(3); i=0,...,n—1
J*([i,1]) = mingep (i) =g pij (W) (9(i,u,) + J* ([, ¢ + 1])).

So potentially, policy iteration or value iteration algorithms for the stochastic shortest path
problem can be applied to a finite horizon problem.

3 Simulation-Based Algorithms

There are many simulation-based algorithms in the literature. Some of them are derived from policy
iteration or value iteration, and they are called simulation-based policy iteration or simulation-based
value iteration algorithms.

Simulation-based policy iteration algorithms have the same structure as exact policy iteration
except for two differences [5]:

e Given the current policy u, the corresponding cost-to-go function J,, is not computed exactly.
Instead, an approximate cost-to-go function J,(i,7) is computed, where r is a vector of tunable
parameters.

e Once approximate policy evaluation is completed and j“ (,7) is available, we generate a new
policy fi which is greedy with respect to .J,. The greedy policy can be calculated exactly, or
approximated.

There are several ways to estimate J, ,.(3,7), such as least squares, Kalman filtering and temporal-
difference learning etc. (see [5] chapter 3).

A simulation-based version of value iteration, often referred to as Q-learning, updates directly
estimates of the Q-factors associated with an optimal policy. The optimal Q-factor is defined as
Q*(i,u) = Elg(i,u,j) + J*(4) | 4,u]. In terms of the Q-factors, the value iteration algorithm can
be written as

uelU(j

n—1
Q(i,u) = Y pij(u)(g(i,u, 5) + min)Q(j,v)- (8)
j=0

Simple simulation-based algorithms only involve a lookup table representation of the cost-to-go
(differential costs for the average cost simulation-based policy iteration algorithm or Q-factor for
the Q-learning algorithm), in the sense that a separate variable J(7) is kept in memory for each
state i. J(i) can be calculated, for a stochastic shortest path problem for instance, as the sample
mean of the cumulative cost from state ¢ to the termination state. This cost-to-go can also be
evaluated by incremental methods such as temporal difference methods.

This lookup table representation is only applicable for moderate size problems. If a given
problem has very large state space, compact representation of cost-to-go need to be involved. The
cost-to-go approximator can be thought as a scheme for depicting a high-dimensional cost-to-go

vectors, j“ (i,7), using a lower-dimensional parameter vector. Developing a cost-to-go approximate
representation involves choosing an approximate architecture, a certain functional form involving
a number of free parameters, and features, which are meant to represent the most important
characteristics of a given state.

Broadly, approximation architectures can be classified into two main categories: linear and
nonlinear. A linear architecture is of the general form

M
J(i,T‘) = Z T(m)¢m(i)v
m=0
where r(m), m = 1,..., M, are the components of the parameter vector r, and ¢,, are fixed,

easily computable functions. A common nonlinear architecture is a neural network model such
as a multilayer perceptron with a single hidden layer. There are many algorithms to train the
parameters; see Chapter 3 of [5] for detail.

It is often the case that the approximation architecture is too complicated for state represen-
tation and one uses instead some structural pieces to represent states. These structural pieces are
called features, which are fed into the approximation architecture instead of the state itself. Usually,
these features are handcrafted, based on the particular problem. Some examples of features include
state variables, heuristic cost-to-go and/or past cost-to-go etc.

In some cases, the policy is also parameterized, as in [6] [7] [8]. And if algorithms only in-
volve parameterized policies, they are called actor-only algorithms, in which the gradient of the
performance, with respect to the actor parameters, is directly estimated by simulation, and the
parameters are updated in the direction of improvement [7]. And if the cost-to-go function or
Q-factor approximation are also involved to provide information to update the policy, they are
referred to as actor-critic algorithms.

Simulation-based policy iteration algorithms and simulation-based value iteration algorithms
have been successfully applied in several problems. Some of those problems are games, such as
American football, Tetris and backgammon [5]; others are maintenance/repair problems [5], com-
munication problems such as dynamic channel allocation [5] and call admission control [9], retailer
management problems [10], and missile defense and interceptor allocation problems [11] etc. The
features are problem dependent and in some cases, state vectors and their combinations, heuristic
policies and the cost-to-go for some sub-optimal solution have been used as features. And linear
architecture as well as more complicated nonlinear architectures have been applied.

Here we would like to discuss how to implement such algorithms on our fab-level decision making
problem.

4 Fab-Level Decision Making MDP Model

In our IPDPM project, we proposed a Markov Decision Process (MDP) model for the highest level
of the hierarchy that will yield decision support for operating the fab in each of the phases of its
life cycle and include life cycle dynamics [3].

The MDP adopts an aggregate factory model for describing the state of the fab. Aggregation
avoids excessive computational complexity, since a detailed factory model would have too many
states. The MDP models result in policies that utilize the available information in a way that
provides a trade-off between immediate and future benefits and costs, and that utilizes the fact

that observations will be available in the future (cf., e.g., [4], [12]). A policy will specify, for
each possible factory state, the best actions to implement according to the objective function of the
phase. Such actions include purchasing (or discarding) equipment, upgrading equipment/processes,
and the allocation of equipment to product lines. Actions have costs that include the investment
and operating cost and possible production shortages (from production targets), and benefits that
includes increased capacity. The costs, benefits, and the system state themselves are subject to
random uncontrollable events that are both exogenous and endogenous to the fab: equipment may
be delivered late or may fail, the performance of newly-installed equipment is uncertain, and the
market for certain chips may collapse.

In particular, the aggregate factory state is summarized by a vector of capacities X () at time
epoch ¢, where the components X ;,,(t) represent the capacity (measured, for example, in wafer
starts per day or number of machines) of type w allocated to product [and operation 4 (this could
be a type of sub-factory manufacturing a particular product or a type of process). Actions to be
taken could be the decisions to

(i) increase the capacity of type w by By, (t) units, possibly by the introduction of new technology;
or

(ii) switch over Vugl’i)’(m’j)(t) units of type w capacity from product [and operation ¢ to product

m and operation j (for example, by qualifying tools for a different process).

Randomness is explicitly modeled by the demand d;(t) for product I. The dynamics of the model
will include the fact that, after the decision is made to increase capacity, there is a delay, possibly
random, in the ability to fully utilize the increased capacity, and that the capacity may gradually
ramp up to the expected level. The evaluation criteria include a number of factors, including costs
for excess capacity and capacity shortages, cost of production, cost of converting capacity from one
type of operation to another, and the cost of increasing capacity. A more precise description of the
model is given below.

The state vector in period t (between time epoch ¢ and time epoch ¢t + 1) is given by X (¢) =
(Tw(t), X5 @), L(t),1 € PA\{0},i € w\{0},w € Ay)T. The actions vector in period ¢ is U(t) =
(Bw(t),Dw(t),Vlgl’i)’(m’j)(t), w € Ay, IL,bm € Py, i,j € w,w € Ay)T, where it is assumed that
Vlgl’i)’(m’j)(t) =01if (I,4) = (m,j). At the beginning of any period, the decision maker observes the
state of the system and chooses an action.

The total cost over the entire planning horizon that we want to minimize is

T-1
J=E lz g(X(t),U(t))]
=0

where
g(X(1),U1) = > (Co(Bu(®)+Co(Du(t)+ Y > Ce, (V& (1))
weEA: weAL {(1,3),(m,5)|l,mEP: i,j€w,(1,i)#(m,5)}
+(CHIE)+ D> Y CiXgaw®)
lePy weA {(1,3)EPr xw}

We have the following state equations:

To(t+1) = Tu(t) + Bu(t) — Du(t), we A, (9)

Xtiwt+1) = Xaiw)+ > (Vi () — y b md) ¢)), (10)
{(m,3)€Pe xw|(m,5)# (1) }
where | € Py, i € w, 1 #0,1# 0, w € Ay,

Lt+1) = I(t) +min > CliwXiw® p —dit), L€ PA{0}. (11)
{weAL|F1,5),, >0}

The second item on the right-hand side of Equation (11) is referred to as the throughput in
the inventory equation and gives the number of “finished wafers” of product [in period ¢. The
operation minimizing this throughput term is referred to as the bottleneck operation for product [
in period ¢.

See [3] for more details, such as notations and constraints on states.

Cost Model

The cost structure for our model is given by {C%(z),C%(z),CS(z), Ci(y), CS(x)}, which is rich
enough to capture most cost factors in fab-level decision making. Next, we will identify major cost
elements in each cost category, propose ways to estimate them, and discuss various approaches to
obtain parametric values of the cost model.

The cost for additional capacity, C%(x), covers equipment purchase cost, equipment installation
cost, equipment qualification cost, training cost, and necessary new facility cost (e.g. additional
clean room). Installation cost is certain percentage of total equipment purchase cost. Qualification
costs represents the cost directly involved in the initial processing of wagers to establish that the
equipment is performed within specifications; and the cost includes the total labor cost involved and
the production revenue lost during the period and the cost of wafer used. Training cost is counted
in man-hour spent on training engineer, maintenance, operator. New facility cost is proportional
to the floor space (square feet) of the clean room.

The cost for discarding capacity, CSJ (z) is equal to the residual value of the equipment, and can
be handled by the so-called straight line deprecation method in accounting. If a tool is discarded
within its life time (also called depreciation life), the cost for discarding is the original tool cost
multiplied by a ratio which equals (life time - used time)/ life time; otherwise, there is no cost for
discarding.

The switch-over cost, CS(x), also depending on products, is a function of the tool set-up time
and labor change time due to switch-over. Note there is no switch-over cost for batch tools if
products are switched among that batch tool group. And there is no switch-over cost for sending
capacity to reservation.

Inventory holding cost and backlogging cost are both described in C%(y). Inventory holding
cost is related to inventory quantity, item value and length of time the inventory is carried. The
cost consists of the cost of capital, variable costs of taxes and insurance on inventories, and the cost
involved in storing inventory. Backlogging cost, in our case, is equal to the product’s contribution
margin, which is the difference between the selling price and unit production cost. Note that C% (y)
can take market dynamics into account.

The operating cost, C¢ (z) covers the handling cost to load and unload product, tool recurring
cost, labor cost for operating tools, utility cost, supplies and consumables cost, and material cost
(e.g. mask), etc.

Many of the parametric values of the cost model developed are readily available or estimated
in the accounting departments or other departments in a company. Labor costs, for instance,
are available in the personnel department; tool purchasing costs can be obtained in the purchasing
department. Inventory costs can be obtained from warehouses. The lost profit due to backlogging is
not known before the total cost and income are calculated, but it can be estimated from accounting
records using regression analysis. Total set-up time for each piece of equipment is typically obtained
from recipes of processes. In addition, parameters can be obtained from parameters of COO models
in industry.

Demand Model

We model the demand in our operational model as stochastic processes and we consider three
demand patterns. It is assumed that there are three products A, B, and C, in the same product
family. For example, CMOS8, CMOS10 and CMOS12 can be three products in a memory chip
product family.

In pattern 1 and pattern 2, we assume that demands are independent among types of products
and over periods. In pattern 3, we assume that demands for different products are correlated.

In pattern 1, we consider a short time period, with about the duration of the product’s fitup
ramp, and assume that the demand for product A is decreasing, the demand for product B is
steady, and the demand for product C is increasing. It is meant to capture the situation that the
technology for these products migrates forward from product A to product C. A special case, in
which it is assumed that all demands have normal distribution and their averages are linear in time,
is shown in Figure 1.

In pattern 2, we consider a longer period that ranges from the time when product A emerges
to the time when product C dies out. Demand for each product has a life time. And the new
product upramp compensates the downramp of the old product. The slope is not necessarily the
same. If the upramp slope always greater than the downramp’s, we are dealing with increasing
total demand. A special case of pattern 2 with linear demand average is also shown in Figure 1.

In pattern 3, we consider correlated demand among products. Demands are given as the ag-
gregate demands for products existing in the product family. It is assumed that the aggregate
demands first increase, then become stable, and finally die out. It is meant to capture the fab life
cycle dynamics. A special case with normal distribution and linear slope is shown in Figure 2.

The parameters in the patterns, such as lifetime of products, are obtained via consulting industry
colleagues.

“Testbed” Example

In order to show how big our fab level decision making problem will be, we provide a “testbed”
example representing a medium-size fab.

This example originates from the SEMATECH “testbed” in http://www.eas.asu.edu/masmlab.
There are seven data sets with spreadsheets for factory, operation, products, tools, and processes
etc. We chose data set 4 since it has seven products and it represents a medium-sized fab. However,
there are no cost parameters in data set 4. Fortunately, data set 4 is a simple version of the ASPEN
data in Factory Explorer, which gives us more information, including the cost parameters.

From the original data set, we know that three of the seven products are produced using a
common process recipe A with 92 steps, and the other four products are produced using another

Time Horizon Time Horizon

Demand Demand
Average Product A Average
N Product A
Time :
Demand | Time Demand
Average Product B Average Product B
Time
Time Demand Product C
Demand ; Average
Average ProductC . _._._.____.__ .
B Time Time
Toia\llel:r)%gand T Total Demand
- k Average
Time Time -

Figure 1: Demand Pattern 1 and Demand Pattern 2

common process recipe B with 19 steps. Since there are several reentry process steps, we group
some reentries into one operation. For example, there are 8 clean steps and they are essentially the
same operation. In this way, the 92 process steps in recipe A are aggregated into 31 operations and
the 19 process steps in recipe B are aggregated into 11 operation.

So, in this example, the fab is characterized as follows. There are seven products: “A”, “B” ,“C”,
“D”, “E” ,“F” and “G”; 137 operations: 31 operations on each of “A” “B” and “E”, distinguished
by product, and 11 operations on each of “C”, “D”,“F” and “G”; 31 tools: 3 batch tools flexible
among all products, where switching-over only happens between ABE batch and CDFG batch,
batch 8 tools for product A,B, and E, 12 non-batch tools flexible among A,B, and E, and 8 non-
batch tools flexible among all products; operation times, which depend on the product and the
tool.

If we discretize every element in the state vector into 10 values, the cardinality of the state
space is 1017, If we discretize every element in the control vector into 10 values, the cardinality of
the control space is 1021,

Note that the MDP model for the “testbed” example not only has a large state space, but it
also has a large control space. Obviously, this example cannot be solved by the basic dynamic
programming algorithms in the Section 2. We need to seek new approaches to solve it, such as
simulation-based algorithms.

Concerning the cost model for the “testbed” example, parameters such as tool purchasing
cost, depreciation life, cost per raw unit released, overhead, supplied material costs, utility cost,

Time Horizon

Demand , |
Average | Aggregate demand of Product A, B, & C
Demand Time
Average Aggregate demand of product B & C

: Time

Aggregate demand of product C :
Demand
Average
Time

Figure 2: Demand Pattern 3

setup time and setup labor involved can be obtained from the spreadsheet for the example. Other
parameters can be obtained via consulting industrial colleagues.

In the “testbed” example, the demand model for products “A”, “B”,“E” can be built following
one of the three patterns in the demand model section, and demand model for products “C”,
“D” “F” and “G” can be built similarly.

5 Simulation-based Approach for Fab-Level Decision Making

We intend to use simulation-based algorithms to solve our fab-level decision making problem.

To build a compact representation for the cost-to-go function, we need to consider the following
issues: what is an appropriate approximation architecture for the cost-to-go function, what are
appropriate features to represent states, and how to train the approximate representation parame-
ters? Usually, the approximation architecture is required to be rich enough to provide an acceptably
close approximation of the cost-to-go function, and the features are expected to capture the most
important aspects of the states. Here in our fab-level decision making problem, we have to choose
between a linear architecture or a nonlinear architecture. After doing some numerical experiments,
we decided that a linear architecture is enough if we assume that the components in the cost model
{C%(Bw),Ch(Dw), C4 (X4 w), CL(TL), C&(Vu(,l’z)’(md))} of our problem are affine in their variables
separately. In the mean time, we chose the state components and their products as features. We
found that some products are not necessary to be features since the corresponding parameters are
zero. We can also choose estimated cost functions from some heuristic policies as features, where
the heuristic policies are obtained from solving similar or simplized capacity expansion or allocation
problems. If we need to trade off control space complexity with state space complexity, we will

build a compact representation for the new states based on further numerical experiments.

We propose two heuristic ways to parameterize the policy. The first one involves dividing
the original problem into several local problems, each of which relates to only one type of tool.
According to (11), only bottleneck operations, the operations minimizing throughputs for products,
affect the inventory level of products. Therefore, if a tool with word w, defined by a sequence of
operations, does not involve any bottleneck operation, the expansion and allocation of this tool’s
capacity can be done locally. We call such a tool a non-bottleneck tool (N-tool). For example, in the
simple example, the flexible tool with w = 013 is an N-tool if neither operation 1 nor operation 3 is a
bottleneck operation. Given a tool w, the local state is X (%) = (X (1,6),0> Tw)), where (1,7) € Py x w,
and the local objective function is

> " (X B, U®)]|

where

g“NX (), U1) = (C (w(t)) + Cpy(Du(t)))
(

n Z ce (leﬂ%()+ Z Ce(X(l z)’w() -
(L), (mog)} {0}

We solve these local MDP problems for all w, N-tool or not, analytically or numerically by
simulation-based dynamic programming algorithms. We call the resulting policy a local non-
bottleneck policy (LN-policy).

On the other hand, if a tool is utilized by bottleneck operations for all products in each period,
the original problem can also be solved locally. We call such a tool a bottleneck tool (B-tool). In
this case, the local state is X®) = (X(16),0> Tw)s L)), where (1,7) € Py x w and | € P, and the

local objective function is
T—1
E > [¢"(X®),U®)]],
=0

where

g“(X (1), U(t) = (Ci(Bu (1)) + Cl(Du (1))

Y CuVEI @) + Y CL(Xaaw(®) + D_(CHL(
{08),(m,5)} {9} !

We solve these local MDP problems for all w, B-tool or not, and the resulting policy is called a

local bottleneck policy (LB-policy).

After we solve the above local problems for each tool, we obtain two sets of policies (LN-policy
and LB-policy) for each tool. The proposed heuristic policy will choose these resulting LN-policies
or LB-policies with some probabilities depending on tool types (N-tool, B-tool, or neither) and
operations types (bottleneck operation or not) in each period. The probabilities can be viewed
as parameters to represent the policy, and the parameters can be learned by using actor-only
algorithms or actor-critic algorithms on the original problem.

The second way to parameterize the policy involves dividing the original problem into two
separate problems: an inventory control problem at the lower level and an expansion and allocation
problem at the higher level. The connections between these two problems are the throughputs
in the state equations and the cost model in the objective function. The idea is to first solve

10

the lower level problem with a new objective function depending on the inventory levels and the
desired throughputs, and then construct expansion and allocation policies based on the desired
throughputs by only considering the higher level problem with another new objective function
depending on the higher level state and control components. The lower-level policy, a sequence of
the desired throughouts, can be parameterized by some parameters 6;,,. For example, if the low-
level objective function has no set-up costs for the desired throughputs, a heuristic policy for the
lower level can be a generalized base-stock type policy, since the optimal policy for a multi-product
inventory control problem under appropriate assumptions is of this type [13]. The high-level policy,
a sequence of buying, discarding and switching actions, can be parameterized by some parameters
Onigh, following heuristic policies in the literature [14] [15].

After obtaining an appropriate compact representation for the cost-to-go function and an ap-
propriate way to parameterize the policy, we need to use the simulation-based algorithms in the
previous section.

6 Conclusion

In this paper, we discuss implementation issues of applying a simulation-based approach to a semi-
conductor fab-level decision making problem. The fab-level decision making problem is formulated
as a Markov Decision Process (MDP). We intend to use a simulation-based approach since it can
break the “curse of dimensionality” and the “curse of modeling” for the MDP with large state and
control spaces. We focus on how to approximate the problem and how to parameterize the state
space and control space.

Acknowledgement:

This work was supported in part by the National Science Foundation under Grant DMI-9713720,
in part by the Semiconductor Research Corporation under Grant 97-FJ-491, and in part by a
fellowship from General Electric Corporate Research and Development through the Institute for
Systems Research.

References

[1] S. Bermon, G. Feigin, and S. Hood, “Capacity analysis of complex manufacturing facilities,” in
Proc. of the 34th Conference on Decision and Control, New Orleans, LA, 1995, pp. 1935-1940.

[2] M. Zweben and M. S. Fox, Intelligent Scheduling, Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1994.

[3] S.Bhatnagar, M. C. Fu, S. I. Marcus, and Y. He, “Markov decision processes for semiconductor
fab-level decision making,” in Proc. of the IFAC 14th Triennial World Congress, Beijing, P.
R. China, 1999, pp. 145-150.

[4] M. L. Puterman, Markov Decision Processes, John Wiley & Sons, Inc., New York, 1994.

11

[5]

[6]

[7]

8]

D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, Belmont,
Massachusetts, 1996.

P. Marbach, Simulation-Based Optimization of Markov Decision Processes, Ph.D. thesis, MIT,
1998.

V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural Information
Processing Systems 12, 2000.

R. S. Sutton, D. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods for
reinforcement learning with function approximation,” in Advances in Neural Information
Processing Systems 12, 2000.

P. Marbach, O. Mihatsch, and J. N. Tsitsiklis, “Call admission control and routing in integrated
services networks using neuro-dynamic programming,” submitted to IEEE Journal on Selected
Areas in Communications, 1999.

B. Van Roy, D. P. Bertsekas, P. Lee, and J. N. Tsitsiklis, “A neuro-dynamic programming
approach to retailer inventory management,” Tech. Rep., Unica Technologies, 1997, Lincoln,
MA.

D. P. Bertsekas, M. L. Homer, D. A. Logan, S. D. Patek, and N. R. Sandell, “Missile defense
and interceptor allocation by neuro-dynamic programming,” to appear IEEFE transactions on
Systems Man and Cybernetics.

D. P. Bertsekas, Dynamic Programming and Optimal Control Vol 1 € 2, Athena Scientific,
Belmont, Massachusetts, 1995.

D. Beyer, S. P. Sethi, and R. Sridhar, “Stochastic multi-product inventory models with limited
storage,” submitted.

S. Li and D. Tirupati, “Dynamic capacity expansion problem with multiple products: tech-
nology selection and timing of capacity additions,” Operations Research, vol. 42, no. 5, pp.
958-976, 1994.

S. Li and D. Tirupati, “Technology choice with stochastic demands and dynamic capacity
allocation: A two-product analysis,” Journal of Operations Management, vol. 12, pp. 239—
258, 1995.

12

