

ABSTRACT

Title of Document: A CONTEXT-SENSITIVE COVERAGE

CRITERION FOR TEST SUITE REDUCTION

 Scott David McMaster, Doctor of Philosophy,

2008

Directed By: Professor Atif Memon, Department of Computer

Science, University of Maryland, College Park

Modern software is increasingly developed using multi-language

implementations, large supporting libraries and frameworks, callbacks, virtual

function calls, reflection, multithreading, and object- and aspect-oriented

programming. The predominant example of such software is the graphical user

interface (GUI), which is used as a front-end to most of today’s software applications.

The characteristics of GUIs and other modern software present new challenges to

software testing. Because recently developed techniques for automated test case

generation can generate more tests than are practical to regularly execute, one

important challenge is test suite reduction. Test suite reduction seeks to decrease the

size of a test suite without overly compromising its original fault detection ability.

This research advances the state-of-the-art in test suite reduction by empirically

studying a coverage criterion which considers the context in which program concepts

are covered. Conventional approaches to test suite reduction were developed and

evaluated on batch-style applications and, due to the aforementioned considerations,

are not always easily applicable to modern software. Furthermore, many existing

techniques fail to consider the context in which code executes inside an event-driven

paradigm, where programs wait for and interactively respond to user- and system-

generated events. Consequently, they yield reduced test suites with severely impaired

fault detection ability. The novel feature of this research is a test suite reduction

technique based on the call stack coverage criterion which addresses many of the

challenges associated with coverage-based test suite reduction in modern

applications. Results show that reducing test suites while maintaining call stack

coverage yields good tradeoffs between size reduction and fault detection

effectiveness compared to traditional techniques. The output of this research includes

models, metrics, algorithms, and techniques based upon this approach.

A CONTEXT-SENSITIVE COVERAGE CRITERION FOR TEST SUITE

REDUCTION

By

Scott David McMaster

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2008

Advisory Committee:

Professor Atif Memon, Chair

Professor Adam Porter

Professor James Purtilo

Professor Ramani Duraiswami

Professor Gang Qu

© Copyright by

Scott David McMaster

2008

 ii

Acknowledgements

Gregg Rothermel provided the space program and test artifacts. Portions of

the space package were previously developed by Alberto Pasquini, Phyllis Frankl,

and Filip Vokolos. The Galileo group at the University of Nebraska - Lincoln

provided the nanoxml program and test artifacts, and Alex Kinnear provided valuable

assistance in working with nanoxml. I would like to thank Xun Yuan for providing

the TerpOffice applications and fault matrices, and Jaymie Strecker for her work on

the GUITAR benchmark web site.

 iii

Table of Contents

Acknowledgements ... ii

Table of Contents ... iii

List of Tables .. vii

List of Figures .. ix

Chapter 1: Introduction ... 1

1.1. Automated Test Case Generation Landscape .. 1

1.2. Test Suite Reduction .. 2

1.3. Call-Stack-Based Test Suite Reduction ... 3

1.4. Test Suite Reduction Challenges Addressed by Call Stacks 5

1.3.1. Libraries and Frameworks: .. 6

1.3.2. Object-Oriented Language Features .. 7

1.3.3. Multithreading.. 8

1.3.4. Multi-Language Implementations .. 9

1.5. Test Suite Reduction Metrics ... 10

1.6. Implementation and Evaluation ... 10

1.7. Contributions.. 11

Chapter 2: Related Work .. 14

2.1. Test Suite Reduction .. 14

2.2. GUI Testing ... 17

2.3. Call Chains ... 18

2.4. Summary .. 19

Chapter 3: Modeling and Collecting Call Stacks .. 21

 iv

3.1. Considerations in Modeling Call Stacks .. 21

3.2. Definitions.. 23

3.3. Calling Context Tree .. 26

3.4. Summary .. 27

Chapter 4: Implementation ... 28

4.1 Collecting Call Stacks ... 28

4.1.1. General Approach ... 28

4.1.2. Detours-Based Implementation for Win32 29

4.1.3. JVMTI-Based Implementation for Java .. 30

4.2. Reducing Test Suites.. 31

4.3. Other Tools .. 32

Chapter 5: Test Suite Reduction Metrics ... 33

5.1. Percentage Size Reduction ... 33

5.2. Percentage Fault Detection Reduction ... 33

5.3. Fault Detection Probability Metric .. 34

5.3.1. Data Structures ... 35

5.3.2. Metric Definition ... 36

Chapter 6: Experiments.. 40

6.1. Research Questions .. 40

6.1.1. Research Question Q1... 40

6.1.2. Research Question Q2... 42

6.1.3. Research Question Q3... 42

6.1.4. Research Question Q4... 43

 v

6.1.5. Research Question Q5... 43

6.1.6. Overview of Experiments ... 44

6.2. Subject Applications .. 44

6.2.1. TerpOffice ... 45

6.2.2. Space ... 46

6.2.3. nanoxml... 46

6.3. Experimental Procedure ... 47

6.4. Threats to Validity ... 49

6.4.1. Threats to External Validity .. 49

6.4.2. Threats to Construct Validity .. 50

6.4.3. Threats to Internal Validity ... 51

6.5. Data Collection Step .. 51

6.5.1. Collection Process ... 51

6.5.2. Coverage of Library Elements .. 53

6.6. Reduction Approach .. 54

6.7. Experiment 1: Comparing Coverage-Based Reduction 55

6.7.1. Size Reduction .. 56

6.7.2. Fault Detection Reduction .. 60

6.8. Experiment 2: Controlling for Size of Reduced Suite 64

6.9. Experiment 3: Omitting Library Methods .. 66

6.10. Experiment 4: Conventional Application ... 69

6.11. Experiment 5: Coverage Requirements and Fault-Revealing Test

Cases ... 71

 vi

6.11.1. Average Probability of Detecting Each Fault 71

6.11.2. Faults Always Detected After Reduction 75

6.11.3. Faults Which May Be Missed After Reduction 78

6.11.4. Combining Coverage Criteria ... 80

6.11.5. Summary of Experiment 5 .. 82

Chapter 7: Analysis – Test Suite Reduction Metric 83

Chapter 8: Conclusions and Future Work .. 89

Bibliography ... 93

 vii

List of Tables

Table 1: Subject Applications Characteristics ... 45

Table 2: Subject Application Test Cases and Faults 45

Table 3: GUI Subjects’ Static and Dynamic Program Elements 52

Table 4: Conventional Subjects’ Static and Dynamic Program Elements 53

Table 5: Random Suite Sizes Tested by Subject Application........................ 55

Table 6: Paired-t Testing for Size Reduction of CS vs. Other Techniques ... 59

Table 7: Paired-t Testing for Fault Detection Reduction of CS vs. Other

Techniques (Bold Values Not Statistically Significant at the 0.05 Level) 64

Table 8: Non-Library Coverage Statistics .. 67

Table 9: Paired-t Testing of SCS vs. Other Techniques for % Size Reduction

(Bold Values Not Statistically Significant at the 0.05 Level) 67

Table 10: Paired-t Testing of SM vs. Other Techniques for % Size Reduction

... 67

Table 11: Paired-t Testing of SCS vs. Other Techniques for % Fault

Detection Reduction (Bold Values Not Statistically Significant at the 0.05 Level) ... 68

Table 12: Paired-t Testing of SM vs. Other Techniques for % Fault Detection

Reduction (Bold Values Not Statistically Significant at the 0.05 Level) 68

Table 13: Test Suite Reduction for space .. 70

Table 14: Average Expected Probability of Detecting Each Fault After Test

Suite Reduction ... 72

Table 15: Fault Difficulties .. 79

 viii

Table 16: Faults with No Coverage Requirements Unique to Detecting Test

Cases by Criterion and Difficulty ... 79

Table 17: Average Probabilities for Coverage Criteria Pairs 81

Table 18: Metric Weighting Scenarios .. 85

 ix

List of Figures

Figure 1: (a) A Hello-world Example and (b) Associated Call Stack 4

Figure 2: A Simple Program Demonstrating the Impact of Library Code on

Errors... 7

Figure 3: A Simple Example Demonstrating the Impact of OOP Features on

Errors... 8

Figure 4: CalcFaultDetectionProbability Algorithm 38

Figure 5: Experimentation Procedure .. 48

Figure 6: TP Percentage Size Reduction ... 56

Figure 7: TS Percentage Size Reduction ... 57

Figure 8: TW Percentage Size Reduction .. 57

Figure 9: Nanoxml Percentage Size Reduction ... 58

Figure 10: Space Percentage Size Reduction... 58

Figure 11: TP Fault Detection Reduction .. 60

Figure 12: TS Fault Detection Reduction .. 61

Figure 13: TW Fault Detection Reduction ... 61

Figure 14: Nanoxml Fault Detection Reduction .. 62

Figure 15: Space Fault Detection Reduction ... 62

Figure 16: TP Fault Probability Statistics .. 72

Figure 18: TW Fault Probability Statistics .. 73

Figure 17: TS Fault Probability Statistics .. 73

Figure 19: nanoxml Fault Probability Statistics... 74

Figure 20: TP Faults Always Detected After Reduction, By Technique 76

Dissertation03022008a.doc#_Toc192234642
Dissertation03022008a.doc#_Toc192234653
Dissertation03022008a.doc#_Toc192234654
Dissertation03022008a.doc#_Toc192234656

 x

Figure 21: TS Faults Always Detected After Reduction, By Technique 77

Figure 22: TW Faults Always Detected After Reduction, By Technique 77

Figure 23: nanoxml Faults Always Detected After Reduction, By Technique

... 78

Figure 24: TP Average Test Suite Reduction Metric Over All Suite Sizes ... 85

Figure 25: TS Average Test Suite Reduction Metric Over All Suite Sizes ... 86

Figure 26: TW Average Test Suite Reduction Metric Over All Suite Sizes . 86

Figure 27: nanoxml Average Test Suite Reduction Metric Over All Suite

Sizes .. 87

Figure 28: Space Average Test Suite Reduction Metric Over All Suite Sizes

... 87

Dissertation03022008a.doc#_Toc192234661
Dissertation03022008a.doc#_Toc192234661
Dissertation03022008a.doc#_Toc192234666
Dissertation03022008a.doc#_Toc192234666

 1

Chapter 1: Introduction

1.1. Automated Test Case Generation Landscape

Interest in the development and application of automated test case generation

techniques has grown in recent years. The growing complexity of modern software

applications has piqued test engineers’ interest in leveraging these new approaches to

improve software quality. And the reduced cost and increased availability of high-

performance hardware has expanded the range of techniques that can be implemented

in practice. Easy-to-use commercial tools such as those by Parasoft [32] and Agitar

[1] can automatically generate unit tests based on C++ and Java source code, and

model-based techniques can generate tests from UML diagrams [22] or maps of

graphical user interfaces [29]. Most automated test case generation approaches share

one common characteristic when applied to non-trivial software applications:

Specifically, they generate a large quantity of tests.

At the same time, the software development and release lifecycle is growing

shorter. Market demands are pushing practitioners toward “agile” development

processes that include nightly builds and continuous integration [3]. These processes

usually mandate regular automated testing. However, if test suites are too large, the

time it takes to run them can be the longest, most inefficient step of the process. This

can discourage engineers from taking full advantage of the aforementioned automated

test case generation techniques.

 2

1.2. Test Suite Reduction

For this reason, the problem of test suite reduction [13][42][36] is interesting

and relevant. Test suite reduction seeks to reduce the number of test cases in a test

suite while retaining a high percentage of the original suite’s fault detection

effectiveness. Most approaches to this problem are based on eliminating test cases

that are redundant relative to some coverage criterion, such as program-flow graph

edges [36], dataflow [42], or dynamic program invariants [12]. In such an approach,

each coverage requirement (i.e., for “method” coverage, each method) covered by the

original full test suite is also covered by the resulting reduced test suite.

Traditionally, these approaches have been developed for and evaluated against

conventional, batch-driven software applications such as parsers and interpreters.

Test cases for these applications are generally built by partitioning the input space

into equivalence classes and selecting one or more inputs from each class, along with

test cases to cover boundary conditions.

Of particular interest is how test suite reduction techniques perform when

applied to modern software applications. Consider the current leading paradigm for

user interaction, the graphical user interface (GUI). Testing GUIs for functional

correctness is extremely important because (1) GUI code makes up an increasingly

large percentage of overall application code and (2) due to the GUI’s proximity to the

end user, GUI defects can dramatically influence the user’s impression of the overall

quality of a system. Because of these factors, automated test case generation

techniques for GUIs have been developed [28]. Modern approaches often leverage

sophisticated models of the application under test to generate test inputs. For

 3

example, a recent test-case generation technique based on event-flow coverage has

been shown to be effective for defect detection in GUI applications [29]. However,

the number of tests generated by using event flow coverage can be quite large. An

event-flow-adequate test suite may be too large to fully execute regularly in a rapid

development and integration environment that mandates, for example, nightly builds

and smoke tests.

1.3. Call-Stack-Based Test Suite Reduction

This research develops a novel approach to test suite reduction based on the

call-stack coverage criterion. A call stack is the sequence of active calls associated

with each thread in a stack-based architecture. Methods are pushed onto the stack

when they are called, and popped when they return or when an exception is thrown

(where supported, as in Java or C++). An example of a call stack from the simple

Java program in Figure 1(a) appears in Figure 1(b).

 4

public class HelloWorldApp {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

}

(Ljava/lang/Object;ILjava/lang/Object;II)V Ljava/lang/System;arraycopy

([BII)V Ljava/io/BufferedOutputStream;write

([BII)V Ljava/io/PrintStream;write

()V Lsun/nio/cs/StreamEncoder$CharsetSE;writeBytes

()V Lsun/nio/cs/StreamEncoder$CharsetSE;implFlushBuffer

()V Lsun/nio/cs/StreamEncoder;flushBuffer

()V Ljava/io/OutputStreamWriter;flushBuffer

()V Ljava/io/PrintStream;newLine

(Ljava/lang/String;)V Ljava/io/PrintStream;println

([Ljava/lang/String;)V LHelloWorldApp;main

Figure 1: (a) A Hello-world Example and (b) Associated Call Stack

This call stack was collected by tools developed in support of this research. In

Figure 1(b), each line contains a method parameter list, return type, and name

including any package or namespace qualifiers. At the bottom of the stack appear the

program’s entry point, main, and the println method call seen in Figure 1(a). Above

them are a number of library methods invoked as a consequence of the call to println.

The basic intuition behind call-stack-based reduction is that two test cases are

“equivalent” if they generate the same set of call stacks; hence one of them could be

eliminated to conserve resources. Unlike criteria such as line or branch coverage, call

stack coverage has the benefit of encapsulating valuable context information,

 5

specifically, the sequence of active method calls. Besides having the advantage of

taking into account the context in which a method is called and the relative ease with

which call stacks may be collected, call-stack based reduction has additional

advantages for modern software applications in the areas of libraries and frameworks,

object-oriented language features, multithreading, and multi-language

implementation. These advantages are discussed in detail in the following sections.

This research shows that the call stack coverage criterion provides effective

tradeoffs between size and fault detection effectiveness for modern software

applications when applied to the problem of test suite reduction.

1.4. Test Suite Reduction Challenges Addressed by Call Stacks

Modern software poses new challenges for coverage-based testing that require

the development of new solutions. For example, the execution model for a GUI,

based on an event-listener loop, differs from that of conventional or batch-driven

software. During GUI execution, users perform actions which result in events; in

response, each event’s corresponding event handler is executed. The order in which

event handlers execute depends largely on the order in which the user initiates the

events. Hence, in a GUI application, a given piece of code called via an event handler

may be executed in many different contexts due to the increased degrees of freedom

that modern GUIs provide to users. The context may be essential to uncovering

defects; yet most existing coverage criteria are not capable of capturing context.

Furthermore, today’s sophisticated software applications increasingly

integrate multiple source code languages and object code formats. They are

developed using new programming languages utilizing object-oriented or aspect-

 6

oriented paradigms. They make use of virtual function calls, reflection,

multithreading, and event handler callbacks. Taken together, these features severely

impair the applicability of techniques that rely on static analysis or the availability of

language- and/or format-specific instrumentation tools.

1.3.1. Libraries and Frameworks:

Libraries and frameworks are essential to modern software development in

general and GUI applications in particular. Many test coverage techniques only

collect coverage requirement data based on instrumentation of first-party application

source or object code. The reasons for this include the unavailability of necessary

third-party source code and the impracticality under most techniques of instrumenting

an entire large framework such as the Java SDK. By making this tradeoff, coverage

techniques potentially overlook vast amounts of interesting behavior induced in

library code by the application. For example, consider the program in Figure 2. If no

library code is instrumented, every execution of this program against integral input

will satisfy line, branch, and dataflow coverage. Thus, when used in test suite

reduction, each of those coverage approaches could potentially drop all tests that

exercise the code with integral input greater than or less than zero, thereby missing

coverage of the array-index-out-of-bounds exception that occurs with such input. In

contrast, the call stack coverage technique presented in this research includes the

library calls that appear on application-generated call stacks. Therefore, it preserves

at least one test that displays the abnormal control flow triggered by the exception.

 7

public class ArrayTest {

 public static void main(String args[]) {

 String[] strings = {"first"};

 int index = Integer.parseInt(args[0]);

 System.out.println(strings[index]);

 }

}

Figure 2: A Simple Program Demonstrating the Impact of Library Code on

Errors

1.3.2. Object-Oriented Language Features

Modern GUI application frameworks, usually implemented in languages like

C++, Java, or C#, make extensive use of object-oriented programming (OOP)

language features such as virtual function calls, reflection, and callbacks for event

handlers. It is not possible in general to statically determine which methods will be

invoked by a program execution. Dynamic analysis based on call stacks is ideal in

such an environment because in all cases the stack contains the actual methods

invoked. Consider the program shown in Figure 3, which takes two command-line

arguments to the main method: (1) a method name presumed to be toUpperCase or

toLowerCase, and (2) a string argument to pass to the specified method via a dynamic

invocation using Java’s reflection mechanism. Because of the use of reflection, the

call stacks generated by various executions of this program will differ based on the

method name parameter. Clearly this is behavior that should be captured and

preserved after test suite reduction. But static analysis cannot in general determine

that toUpperCase or toLowerCase may be invoked by this program. Similarly,

modern GUI and server applications are often built using frameworks that employ

 8

reflection-based component models where the types and methods to be used are not

known until runtime. Call stacks are ideal for recording test coverage in reflection

scenarios.

Figure 3: A Simple Example Demonstrating the Impact of OOP Features on

Errors

1.3.3. Multithreading

Most modern software runs with multiple threads of execution. Indeed,

current GUI applications are all multithreaded: Minimally, there is one thread

listening for user actions and another thread executing events. And all Java and .NET

import java.lang.reflect.*;

public class ReflectionTest {

 public static void main(String args[])

 throws ClassNotFoundException,

 NoSuchMethodException,

 SecurityException,

 IllegalAccessException,

 InvocationTargetException

 {

 if(args.length != 2 ||

 !(args[0].equals("toUpperCase") ||

 args[0].equals("toLowerCase"))) {

 throw new IllegalArgumentException();

 }

 String command = args[0];

 Class str = Class.forName("java.lang.String");

 Method m = str.getMethod(command, null);

 Object result = m.invoke(args[1], null);

 System.out.println(result.toString());

 }

}

 9

applications are multithreaded, if for no other reason than the presence of the garbage

collector. Multiple threads of execution present challenges for traditional coverage

techniques, which have typically been conceived for a sequential model [44]. For

example, when collecting def-use coverage at runtime, it is not clear how to associate

the use of a variable with a single definition when definitions can occur on multiple

threads.

Call stack coverage is fundamentally a sequential criterion. However, as will

be discussed in Chapter 3, it is straightforward to define an approach to collecting call

stack coverage that is both simple and efficient to execute in a multithreaded

environment.

1.3.4. Multi-Language Implementations

Many traditional coverage criteria depend on the ability to fully instrument the

source or object code of an application. In a multi-language implementation, the

necessary tools to insert this instrumentation may not exist for all source languages or

object code formats in use. Moreover, any tools that are available across

technologies may not be interoperable in such a way to enable collection of complete

coverage data. Unlike coverage based on these criteria, call stack coverage is easily

captured in a multi-language application, and with or without the availability of

source code. In general, writing a tool to collect call stacks only requires method

entry and exit hooks, which already exist inside most compilers or runtime platforms

to enable the construction of call profilers. A large application implemented in

multiple languages is no different from a single-language implementation when

abstracted via the run-time call stack.

 10

1.5. Test Suite Reduction Metrics

Test suite reduction techniques are traditionally evaluated based on how small

the reduced suites are and how effective they are at detecting a set of known faults

[[42][36]]. Because the ideal reduced test suite – a single test case that detects all

faults – is not generally obtainable, practitioners are left to evaluate the research data

and pick the most appropriate tradeoff between the size reduction and fault detection

reduction metrics. To make a more informed decision, practitioners would benefit

from different ways of looking at this tradeoff. To assist in this matter, this research

also develops a new weighted single-point metric for test suite reduction and applies

it to the empirical results. Additionally, no existing test suite reduction metric

explicitly factors in test coverage data to account for and attempt to explain the

performance of a given technique. To remedy this situation, this research defines a

new metric based on the average expected probability of finding each fault in a

reduced test suite.

1.6. Implementation and Evaluation

To enable empirical studies of call-stack-based test suite reduction, a number

of tools and analyses have been implemented. These will be discussed in detail in

Chapter 4. Briefly, the tools include libraries for capturing call stacks from a running

software application on two different platforms, along with an implementation of an

existing test suite reduction heuristic. Several programs were implemented to analyze

coverage data and calculate metrics. These metrics include the traditional test suite

reduction metrics of percentage size reduction and percentage fault detection

reduction, as well as the additional metrics proposed and developed by this research.

 11

Additionally, this research has resulted in four publications to date. Initial

work with a conventional subject application on using call stacks as a coverage

criterion in test suite reduction was presented at the International Conference on

Software Maintenance (ICSM) in 2005 [24]. This work showed that the call stack

coverage criterion provided good tradeoffs between test suite size reduction and loss

of fault detection effectiveness. The call stack approach was then targeted at modern

subject applications in work presented at the International Symposium on Software

Reliability Engineering (ISSRE) in 2006 [23]. This work showed that call-stack-

based test suite reduction is particularly effective in modern GUI-based software

applications. Expanded work from those conference papers has been accepted for

journal publication in IEEE Transactions on Software Engineering (TSE). The TSE

paper includes comparisons of call-stack-based reduction to additional types of

reduced test suites, and it incorporates new analyses. A novel analysis approach

developed by and key to this research was presented at the International Conference

on Software Maintenance (ICSM) in 2007 [25]. This approach, based on the average

probability of detecting each fault in a reduced test suite, has applicability to the

general problem of test suite reduction.

1.7. Contributions

This research makes the following contributions to the fields of test suite

reduction and software testing:

1. It defines and develops call stacks as a coverage criterion for use in test

suite reduction.

 12

2. It empirically evaluates call stacks in the context of coverage-based test

suite reduction versus several traditional coverage criteria.

3. It investigates the importance of including library and framework coverage

information when reducing test suites.

4. It empirically shows that the effectiveness of test suite reduction techniques

can differ between conventional and modern software applications.

5. It develops a new weighted single-point metric for effectiveness of test

suite reduction techniques to be applied by practitioners considering test

suite reduction.

6. It analyzes coverage-based test suite reduction techniques using a novel

metric that explicitly accounts for test coverage data and the average

expected probability of detecting each fault in a reduced test suite.

7. As an effect, it produces tools and analyses that can be used by other

researchers in furthering the study of call stacks and test suite reduction.

8. It produces data including program artifacts, full and reduced test suites,

fault matrices, and coverage data which can be made available to other

researchers to aid in their investigations of test suite reduction in particular

and test case management problems in general.

The rest of this document is structured as follows. Chapter 2 discusses related

work. In Chapter 3, a formal model for call stacks is defined. Chapter 4 presents the

tools and techniques developed and used in this research. In Chapter 5, existing and

novel metrics for the evaluation of coverage-based test suite reduction are discussed.

Chapter 6 presents a series of experiments to answer research questions related to the

 13

use of call stacks in test suite reduction. In Chapter 7, the results are analyzed relative

to a newly proposed metric for test suite reduction. And Chapter 8 concludes and

discusses future work in this line of research.

 14

Chapter 2: Related Work

Several approaches to the problem of test suite reduction have been proposed

by other researchers. Many of those employ test coverage information to determine

which test cases should remain in a reduced suite and which should be discarded.

Key problems remain with traditional approaches, including the challenge of

collecting various types of coverage data in modern software applications and

limitations in the tradeoff between size reduction and fault detection effectiveness –

the two metrics against which test suite reduction has traditionally been evaluated.

This work is particularly concerned with developing new coverage criteria for

modern software applications. Many applications that employ graphical user

interfaces (GUIs) exemplify the characteristics of modern software that motivate this

research, including object-orientation, extensive use of libraries, and multithreaded

execution. Other researchers have developed approaches to the general problem of

GUI testing which will be used in this work.

This research applies call stack coverage to the problem of test suite

reduction. Several researchers have developed other types of program analyses that

leverage sequences of method calls.

Related research from the areas of GUI testing, test suite reduction, and call

chains are presented here.

2.1. Test Suite Reduction

There have been numerous studies of test suite reduction while holding

coverage constant relative to some criterion and evaluating reduction’s relationship to

 15

fault detection effectiveness. Wong et al. [42] reduce relative to the all-uses coverage

criterion and observe little or no fault detection effectiveness reduction in the reduced

suites. They also find a direct relationship between the ease of finding faults and the

likelihood that they will be detected after reduction. In contrast, Rothermel et al. [35]

reduce with respect to all-edges coverage and find significant reductions in fault

detection effectiveness. They contrast their results with those of Wong et al. [42] and

suggest possible causes for the different conclusions. However, collecting all-uses

and other dataflow coverage information generally requires tools that may be difficult

to build and use for certain environments, particularly against an application built

using multiple programming languages [15]. In contrast, call stack coverage

information is relatively simple to obtain using tools developed and made available as

a part of this research [17]. Additionally, call stack coverage can be analyzed on any

stack-based runtime environment, which encompasses most language and system

combinations in practical use today.

To develop and evaluate the idea of call-stack-based test suite reduction, this

research uses the ReduceTestSuite heuristic presented by Harrold et al. [13]. This

heuristic is discussed in more detail in Section 4.2. A different approach to coverage-

based test suite reduction known as the “ping-pong” heuristics is given by Offutt et

al. [31]. Using the “ping-pong” heuristics in call-stack-based reduction is a possible

avenue of future work.

There are alternative approaches to test suite reduction that do not explicitly

maximize test coverage relative to a traditional criterion. One such alternative is the

“operational difference” technique of Harder et al. [12]. This approach builds up a

 16

reduced suite by pulling test cases from the test pool and adds them to the suite if they

change the “operational abstraction,” which is a mathematical picture of the

program’s dynamic behavior maintained across the execution of the test set. This

process terminates when a certain number of consecutive cases produce no

abstraction changes. Another approach that does not explicitly attempt to maximize

test coverage is the cluster sampling of Leon and Podgurski [21], and Dickinson et al.

[6]. The average probability of detecting each fault as defined in this research could

be used to identify the best coverage criteria to be used as inputs for cluster

formation. Also, the context-preserving nature of call stack coverage should make it

an excellent criterion on which to cluster test cases.

Jeffery and Gupta [20] introduce a test suite reduction approach that combines

“primary” and “secondary” coverage criteria in the reduction algorithm. The

“selective redundancy” technique is so named because certain test cases are known to

add no additional coverage of the primary criterion, but by selecting such tests based

on the second criterion, they are able to generate reduced test suites with fault

detection effectiveness better than using either criterion alone. Results from this

research for the average probability of detecting each fault when using pairs of

coverage criteria provide some additional evidence that combining criteria can be

particularly effective in test suite reduction. Additionally, call stack coverage would

be an interesting choice as a criterion in this technique, perhaps as a secondary

participant with one of the simpler but context-insensitive criteria such as statement

or branch coverage.

 17

Sampath et al. use concept analysis to generate minimal test suites from user

sessions defined as URLs in a web application [39]. Their approach has the

interesting property that test suites can be incrementally updated as new user session

data becomes available. Although web application URLs model program behavior at

a very different level of abstraction from call stacks, it is possible that methods in a

call stack could be arranged in a concept lattice and a similar reduction technique

applied.

In their study of test suite reduction for model-based tests, Heimdahl and

George raise the notion of an “ideal coverage criterion” which “would detect all

faults in the system under test and any test-suite, large or small, providing this

coverage would reveal the same faults” [14]. Along the same line, Rothermel et al.

point out that assuming an equal likelihood of selecting one of k test cases that hit a

coverage requirement, and only one test case detects a given fault, the probability of

omitting the fault-detecting test case under coverage-based test suite reduction is (k-

1)/k [36]. This research claims to be the first to attempt to formalize and fully

quantify these notions.

The test suite reduction problem is closely related to test case prioritization

[10], because any reduction technique can be turned into a prioritization technique by

repeated application of the reduction algorithm to the remainder of the suite.

2.2. GUI Testing

This research conducts empirical studies to evaluate the effectiveness of the

call stack coverage criterion in test suite reduction compared to other possible

approaches. When considering other approaches, it is notable that new coverage

 18

techniques for GUIs have recently been developed. Event-based coverage [29] is

specially tailored for use in GUI applications, for which test cases can be modeled as

sequences of events. Events may be menu invocations, button clicks, key presses,

etc. The experiments in this research use two different event coverage criteria,

“event” and “event-interaction” [29]. In event coverage, each event in isolation is a

coverage requirement, while in event-interaction coverage, unique pairs of events are

included as requirements.

Empirical testing studies of GUI applications are aided by the availability of

the GUITAR infrastructure [30]. GUITAR includes several subject applications

along with fault-seeded versions, a universe of test cases, and fault matrices mapping

test cases to the faults that they uncover. This infrastructure also includes a test case

automation runtime, the JavaGUIReplayer, which makes it possible to rapidly and

automatically execute test suites against the subject applications for the purpose of

collecting test coverage data.

2.3. Call Chains

Rountev et al. [38] also consider the problem of “call chain” coverage,

beginning with a static analysis of potentially feasible call chains and dynamically

measuring test coverage against it. They use the results of this analysis to guide the

augmentation of a test suite to achieve higher coverage. Because the static analysis is

conservative and therefore imprecise, achieving 100% coverage by these criteria is

not in general possible. Unlike this research, the authors do not address the impact of

this type of coverage on test suite reduction, and their dynamic analysis assumes

exception-free, single-threaded execution.

 19

The Rostra framework [43] collects method sequences on a given object in an

object-oriented system. The sequences are then used as coverage criteria for test suite

reduction (among other applications). Unlike Rostra, the call stack approach used in

this research operates on an entire program rather than individual objects. Rostra is

therefore focused on and only appropriate for unit-level testing. This research shows

that call stacks can be effective at the system level. Also unlike Rostra, the call stack

technique used in this research makes no assumptions about the threading behavior of

test case executions or the usage of shared variables.

This research makes use of the calling context tree (CCT) data structure to

collect call stack coverage data. The calling context tree provides an efficient

approach to track the context of method calls in a running program. Ammons et al.

first proposed the calling context tree and provided a deterministic algorithm for

building it at runtime [1]. Bond and McKinley present a probabilistic method of

approximating the calling context tree which can be more efficient [4].

2.4. Summary

Prior to this research, call stacks had not been used before as a criterion for

coverage-based test suite reduction. This approach advances the state of the art in test

suite reduction in three primary ways. First, call stack coverage data is simple and

efficient to collect in most runtime environments, and yet it still captures much

interesting dynamic program behavior, including the context in which method calls

occur. Second, empirical results of this research show that call-stack-based test suite

reduction provides unique and potentially desirable tradeoffs between reduction in

size and reduction in fault detection effectiveness. Finally, evaluating the

 20

effectiveness of call-stack-based test suite reduction while performing this research

has led to the development of new metrics and analyses which can be applied by

other researchers in future studies.

 21

Chapter 3: Modeling and Collecting Call Stacks

This research is grounded in a robust formal model of call stacks which

considers how call stack coverage data can be collected, and how that data is applied

to the problem of test suite reduction. The following sections develop this model and

its motivations.

3.1. Considerations in Modeling Call Stacks

3.1.1. Runtime Feasibility

There are multiple ways to collect call stack coverage data. The most naïve

approach is to collect from a running program a full trace of method calls and returns.

Later, the set of call stacks can be trivially constructed offline by stepping through

this trace. This approach also has the benefit that no sophisticated in-memory data

structures must be maintained during program execution. In practice, this method

proves infeasible for non-trivial programs and test cases as the size of the traces

grows linearly with the length of the test cases, causing the resulting data sets to

become awkward to store and post-process.

A second approach is to capture a snapshot of the current call stack at each

method call in the running program and add it to a set of all stacks observed during

the test case. Compared to method traces, the volume of coverage data produced by

this technique will scale better with the length of the test case as, over time, many

stacks will be observed repeatedly. However, a disadvantage of this approach is that

maintaining the set of all stacks observed is relatively memory- and CPU-intensive at

 22

runtime, as the stacks must be stored and available online, and newly observed stacks

must be checked against those already observed.

The problems with the second approach are largely due to the fact that it

maintains a large amount of redundant data. The observation that pushing a new

method onto the runtime call stack (to make it “taller”) is actually just an extension of

the (“shorter”) call stack that was current immediately prior leads to a more efficient

approach. In the third approach, only the unique deepest stacks are maintained,

giving the same knowledge about the call stack coverage generated by a test case but

with far less data volume and runtime overhead. Sections 3.2 and 3.3 describe this

approach in detail.

All of the above approaches to collecting call stack data can easily be

extended to apply to multithreaded programs by collecting coverage per thread of

execution and merging the data after threads exit. However, call stacks are

intrinsically tied to a single thread and thus do not explicitly capture any information

about thread interactions.

3.1.2. Representation of Call Stacks

There are also multiple ways to model and represent call stacks for use in test

suite reduction. In Figure 1(b), a call stack is represented by the full method signature

of each active method. Other possible approaches include capturing each active

method by its method name only, or by full signature plus parameter values.

Additionally, each representation may be augmented by a maximum allowable depth

of recursion.

 23

In practice, the chosen call stack representation will have an impact on the

feasibility and effectiveness of the reduction technique. For coverage-based test suite

reduction to work well, neither too many nor too few unique coverage requirements

should be observed by a full test suite. Some models may generate so many distinct

call stacks that too little redundancy exists to serve as a basis for eliminating test

cases. Other models may generate so few different call stacks that differences

between test cases are lost, leading too many test cases deemed redundant and

therefore discarded. In such a scenario, fault detection effectiveness is compromised.

Additionally, collection and analysis for a highly granular model (such as one

including method parameter values) may be infeasible from a resource perspective.

Due to heavy use of libraries and the runtime environment itself, even an extremely

simple Java application may generate thousands of call stacks. Indeed, in the version

of Java used in this work, when using full method signatures, a typical execution of

the simple program in Figure 1(a) generates 803 call stacks; subject applications built

with Java Swing and used in the experiments of Chapter 6 generate hundreds of

thousands. One possible approximation to complete call stack coverage which is far

less resource-intensive is to omit library calls from the collected call stacks.

Techniques with and without library call information are considered in the

experiments of Chapter 6.

3.2. Definitions

Each running thread in a multithreaded application has a current stack of

active method calls, where the most recently called method is at the top of the stack.

Each thread generates a set of current stacks over its lifetime. If c = <m1, m2, … mn>

 24

is a call stack of depth n, we define a substack cs (denoted by a subscript s) and a

superstack c
s
 (denoted by a superscript s) as the following ordered sequences, which

are themselves call stacks:

(1) cs = <m1, m2, … mi>, i < n

(2) c
s
= <m1,m2, … mn, … mi>, i > n

Let the set of all unique stacks generated by a thread t be denoted as C(t). For

a given call stack c in any thread t, there is associated with c a set of substacks C(t)s

and a set of superstacks C(t)
s
. This research defines the set of deepest, or maximum

depth, stacks C(t)max in a thread t as follows:

(3) C(t)max = {c  C(t) | C(t)
s
 = }

Here,  is the empty set. That is, C(t)max is the set of all call stacks that do not have

any superstacks. Since each maximum depth stack implies the existence of all of its

substacks in C(t), C(t)max is a more compact representation of the set of all unique call

stacks generated by thread t.

To characterize the behavior of an entire multithreaded program, it is possible

to combine call stack observations made on each thread that took part in a given

program execution. Thus, the set of threads that existed during execution is defined

as:

(4) T = <t1, t2, … tn>

The set of unique call stacks for a program input I is represented by:

(5) Cmax(I)  { C(t)max | t T }

Cmax(I) is the union of the sets of maximum-depth stacks observed on any

thread, and each element of Cmax(I) is a coverage requirement in the reduction

 25

technique. Note that the definition of Cmax(I) allows for the possibility that a

maximum-depth stack on one thread is a substack of a maximum-depth stack on

another, and both stacks would appear in Cmax(I). Therefore, Cmax(I) is not

necessarily a set of unique maximum-depth stacks. Although this may cause the

technique to produce less size reduction than it might otherwise, it is allowed for

practical reasons, as checking for substack relationships across all stacks in every

C(t)max for each thread t is computationally very expensive and of marginal benefit.

This research defines a test case as input given to a program in order to test

one or more aspects of the program. Running a test case tc from a test suite TS

implies the execution of the program, which itself implies that a set of maximum

depth call stacks Cmax(tc) generated by the execution can be associated with tc. Two

test cases tc1 and tc2 are considered to be equivalent if they generate identical sets of

maximum depth call stacks.

(6) tc1 ~ tc2 iff Cmax(tc1) = Cmax(tc2)

Since a test suite is a set of test cases, we denote the union of all Cmax’s for all

the test cases in a test suite TS as:

(7) Stacks(TS) ={Cmax(tc) | tc TS }

A test suite reduction technique is defined to be a complete approach for reducing

the size of a test suite, including any necessary static or dynamic program analysis.

For coverage-based test suite reduction, a technique consists of a coverage criterion

and an algorithm for reducing the suite while holding coverage of that criterion

constant. The proposed technique considers a maximum depth call stack to be a

coverage requirement in the test suite reduction algorithm ReduceTestSuite [13].

 26

Thus, execution of a reduced test suite TS
reduced

 will generate the same set of unique

call stacks as execution of its original (full) counterpart TS
full

, i.e., Stacks(TS
full

) =

Stacks(TS
reduced

).

3.3. Calling Context Tree

An efficient data structure for recording call stacks on a given thread of execution

is the calling context tree, or CCT [1]. The CCT is a tree data structure where the

root represents the method that is the entry point of a thread, and each child node

represents a call to a specific method made by its parent. It is possible to construct a

CCT efficiently at runtime by using the following process which is discussed in detail

in Ammons et al. [1]:

1. Create a node representing the entry point of the thread and make it the

current node.

2. When a method is called:

a. If the current node has a child node representing the called method,

make that the current node.

b. If a node representing the called method is an ancestor of the current

node, the call is recursive. Create a backedge to that ancestor node

and make it the current node.

c. If the current node does not have a child node representing the called

method, create such a node and make it the current node.

3. When a method returns, set the current node to its parent.

While generally large for non-trivial applications, the size of the CCT data

structure does not grow unbounded (as a full method trace would) over the run-time

 27

of a test case, thus making the resulting data volume constant and manageable. Once

a CCT is constructed, the set of unique maximum-depth call stacks recorded in that

CCT may be calculated by traversing each path to a leaf in the tree.

A CCT-based approach to collecting call stack coverage is easily extensible

into a multithreaded environment. One approach would be to maintain a single CCT

shared and updated by all threads in a multithreaded program. Synchronization of

access to this data structure becomes an issue, however. An alternative approach (and

the approach used in this research) is to create a separate CCT for each thread as it is

created, and then maintain that CCT over the thread’s lifetime as methods are entered

and exited. When a thread exits, its CCT is traversed to calculate the set of unique

call stacks seen on that thread, and the unique stacks are synchronously merged into a

master list of unique stacks seen on all threads. This approach allows for greater

application concurrency than the single-CCT alternative. A potential drawback is that

an application with many short-lived threads may stall frequently for processing of

the CCTs, but this was not an issue in the applications or test cases used in this

research.

3.4. Summary

By showing how the problem of collecting call stack coverage data is equivalent

to computing the set of unique maximum-depth stacks for a given program input, and

applying the CCT data structure at runtime, it becomes possible to efficiently

determine call stack coverage of a test suite. The following chapter presents a

concrete implementation of these ideas which is suitable for experimentation.

 28

Chapter 4: Implementation

No previously existing tools were found suitable to collect call stack coverage

data from a running program in any environment. Therefore, to conduct research into

call-stack-based test suite reduction, it was necessary to build several tools from

scratch. Most important is JavaCCTAgent, a tool to collect call stacks from a running

Java program that has been made available to the research community [17]. In the

following sections, all of the tools will be discussed in detail.

4.1 Collecting Call Stacks

4.1.1. General Approach

One of the key advantages to using call stack coverage as opposed to other

types of coverage is that very little instrumentation or platform support is required to

collect call stacks from a running program. All that is strictly necessary is the ability

to be dynamically notified when a method is called and when it returns, so that the

proper state of a calling context tree (CCT) can be maintained. These same

operations are fundamental to the operation of call profilers, and therefore they have

long been readily available in most language, environment, and platform

combinations. Indeed, both call stack coverage collection libraries used in this

research operate with no modification to the original program source.

As discussed in Section 3.3, collection of call stack coverage requires that a

CCT must be maintained for each thread. Therefore, it is also important for a call

stack coverage implementation to be notified by the environment when threads are

 29

created and destroyed. In the multithreaded environment used in this research (Java),

this requirement was well-supported.

4.1.2. Detours-Based Implementation for Win32

Two concrete implementations of the general approach were used in this

research. The first works on C/C++-language programs on the Windows platform,

making use of the Detours package [16]. Detours is a library that allows dynamic

interception of binary function calls on the Win32 platform without modifying the on-

disk program. Detours’ “dynamic trampoline” functionality is used to insert hooks at

each function entry and exit in the application-under-test to build the CCT. This

approach requires specific instrumentation code external to the target program for

each function in the program, and the use of a binary version containing debugging

symbols. This instrumentation code was generated by a tool whose input was a list of

function prototypes. The generated code was built into a separate code module

attached to the subject application’s process at runtime using functionality in Detours.

Thus, neither the source code nor the on-disk program of the subject application is

modified. This implementation was not used on any recursive programs and

therefore has no support for recursion built into the CCT module.

Since it is expected that Win32 programs will make use of the Standard C

Library, the instrumentation of that code is also addressed. Instead of instrumenting

all public and internal functions in the library (which would require examination of

the full library source code to make use of a Detours-based approach), the

implementation used in this research only tracks those functions defined in the public

C library headers and called by an application under study or a macro used by an

 30

application under study. Thus, internal library functions do not appear on the call

stacks collected by this implementation, making them in fact an approximation (albeit

a good one since most C library function implementations do not generate deep call

graphs). As discussed in Chapter 3, there is a tradeoff between the level of detail

included in the call stacks (and thus the effectiveness of the technique) on one hand

and the practicality of instrumentation and analysis time on the other. The limitations

inherent in the Detours-based approach served as a motivation to do an

implementation for the Java environment, where the impact of library functions and

the fidelity of call stacks could be studied in detail.

4.1.3. JVMTI-Based Implementation for Java

The second implementation for call stack coverage data collection targets Java

programs. The Java Virtual Machine environment has advantages over the

Detours/Win32 environment for the study of call stacks. By building a Java Virtual

Machine Tool Interface (JVMTI) agent [33], it is a simple matter to collect call stack

coverage data from the entire stack of runtime libraries. Additionally, experimental

artifacts more representative of the modern techniques that motivate this research

were available for Java.

JavaCCTAgent was built as a part of this research to collect the CCT data

necessary for call stack coverage analysis [17]. In this implementation, call stacks are

represented as an ordered set of full method signatures of the active methods. The

JVMTI hooks for method entry and method exit are used to maintain a CCT for each

thread. Direct recursive invocations are permitted in this tool but are only captured

to a depth of one. As threads die and at the end of program execution, the coverage

 31

information from each CCT is merged and processed into a set of unique call stacks

which are ultimately written to the file system.

Since coverage is collected for each thread, data on system threads is being

collected where the subject program is not even on the stack. Since activity on

system threads (such as the one on which the garbage collector runs, or the one that

serves GUI events in the Java Swing libraries) is somewhat environmentally

dependent and may vary from run to run, this introduces a potential element of non-

determinism into the data collection and, by consequence, may have an impact on the

specific tests selected in the reduction process. However, this could be considered a

positive result, as certain test cases may be more likely than others to induce fault-

indicating activity on the aforementioned system threads.

The output of the JVMTI agent consists of two files. The first file represents

the observed call stacks as a list of tab-delimited method identifiers. The agent stores

Java Native Interface (JNI) [18] method identifiers instead of full method signatures

in order to save space. However, method identifiers are assigned by the JVM and are

not necessarily consistent across different executions of the same program. So the

second output file contains a map of JNI method identifiers to the full method

signatures. When calculating the set of unique call stacks across two or more test

cases, maps are used to create a canonical form based on the method signatures.

4.2. Reducing Test Suites

This research uses the ReduceTestSuite algorithm presented by Harrold et al.

[13] to reduce a full test suite given its coverage information. Because finding a

minimal test suite that satisfies each coverage requirement is an NP-complete

 32

problem [13], ReduceTestSuite takes a heuristic approach. The algorithm includes in

the reduced suite all test cases that cover a single coverage requirement. Then it picks

a test case that covers the most coverage requirements from the subsets of cases with

the next lowest cardinality, marking all of the subsets that contain this case. This

process occurs repeatedly for higher cardinality subsets until all subsets are marked

and, therefore, all requirements are covered. If n is the number of coverage

requirements and m is the number of test cases, then runtime of this algorithm is

O(n*Max(m,n)). The implementation of ReduceTestSuite used in the subsequent

empirical studies is written in C#.

4.3. Other Tools

Additional tools were utilized in the experiments to execute test cases and

collect various types of coverage. For GUI applications, a tool called GUI Ripper

[26] automatically derives a model of a GUI, and from that model, test cases with

varying event sequence lengths can be automatically generated. Another tool, the

JavaGUIReplayer [30], can subsequently be used to execute the test cases.

In this research, line coverage data was obtained using the jcoverage tool [19]

or the very similar Cobertura tool
1
 [5]. For feasibility, the line coverage technique

does not include coverage of supporting libraries for Java programs, but rather only

includes coverage of the subject application source.

1
 Over the course of this research program, jcoverage ceased to be freely available. Cobertura provides

equivalent functionality but is open-source.

 33

Chapter 5: Test Suite Reduction Metrics

A primary concern of this research is determining how call stacks compare to

other coverage criteria when used in coverage-driven test suite reduction. The

effectiveness of applying various coverage criteria in test suite reduction is

traditionally based on empirical comparison of two metrics derived from the full and

reduced test suites and information about a set of known faults. The two metrics,

which follow directly from the dual goals of test suite reduction, are percentage size

reduction and percentage fault detection reduction. Additionally, to further validate

the usefulness of call stack coverage, this research seeks a deeper understanding of

why a given criterion performs well or poorly in the test suite reduction problem.

Along those lines, a novel contribution of this research is a new fault detection

probability metric.

5.1. Percentage Size Reduction

Percentage size reduction is a direct measure of the number of test cases that

are eliminated from a full test suite by a reduction technique. Given the sizes of a full

and corresponding reduced test suite, the value is given in Equation (8):

(8) % Size Reduction = 100 * (1 – SizeReduced / SizeFull)

5.2. Percentage Fault Detection Reduction

Percentage fault detection reduction measures the percentage of faults found

by a full test suite that are not found by the corresponding reduced test suite. In this

research, fault detection effectiveness is measured on a per-test-suite basis, i.e., two

test suites were considered to be equally effective at detecting a specific fault if they

 34

each contain at least one case that exposes the fault. This is the approach adopted by

Rothermel et al.[35] and Wong et al.[42]. Given the number of faults detected by a

full and corresponding reduced test suite, the value is given in Equation (9):

(9) % Fault Detection Reduction = 100 * (1 – FaultsDetectedReduced /

FaultsDetectedFull)

Other researchers sometimes use fault detection effectiveness as an alternative

to percentage fault detection reduction. Fault detection effectiveness measures the

percentage of faults retained rather than lost in a reduced test suite. Therefore:

(10) Fault Detection Effectiveness

= 1 – [100 * (1 – FaultsDetectedReduced / FaultsDetectedFull)]

= 1 - % Fault Detection Reduction

5.3. Fault Detection Probability Metric

Neither the percentage size reduction nor the percentage fault detection

reduction explicitly factors test coverage data into the calculation. This limits the

usefulness of these metrics to account for and attempt to explain the performance of a

given coverage criterion and technique. This section defines a number of functions

on the coverage and fault data collected from an application, its test pool, a set of

known faults, and a coverage criterion. These definitions lead to a new metric for

coverage-based test suite reduction utilizing the average probability of detecting each

fault. Intuitively, this metric captures the likelihood that coverage-preserving reduced

test suites will detect the same faults as their original counterparts, taking into account

the number of coverage requirements which only appear in fault-detecting test cases.

Subsequent experiments in Chapter 6 will show that this quantity varies greatly

 35

depending on the selected coverage criterion, thus making it useful in selecting the

best criterion to use in a test suite reduction technique.

5.3.1. Data Structures

Given a subject application, a set of test cases TC(1..J), a set of known faults

KF(1..K), and a set of coverage requirements CR(1..I), it is possible to obtain two

artifacts important to the study of test suite reduction, as well as the closely related

topics of test case prioritization [37] and regression test selection. The first is the

coverage matrix, C, [9] for a test suite. In a coverage matrix, each row represents a

coverage requirement, such as a line, edge or call stack, and each column represents a

test case. A cell value C(i, j) is 1 if coverage requirement i is satisfied by test case j

and 0 otherwise. Based on the coverage matrix, it is possible to define a function

covReqTCs(C, i), which, given a coverage matrix C and a coverage requirement i,

returns the set of test cases which satisfy the given requirement.

(11) covReqTCs(C,i) = {j TC | C(i, j) = 1}

Second, consider the fault matrix, F, where each row represents a known fault

and each column is a test case. A cell value F(k, j) is 1 if fault k is detected by test

case j and 0 otherwise. This leads to another function, detectsFaultTCs(F, k), which

accepts a fault matrix F and fault number k and returns the set of test cases that detect

k.

(12) faultDetectingTCs(F,k) = {j TC| F(k, j) = 1}

For a given test suite, the matrices C and F have the same column rank which

is the number of test cases.

 36

5.3.2. Metric Definition

Making use of the coverage matrix C and fault matrix F, this research defines

a metric that captures the average expected probability of finding each fault after

coverage-based test suite reduction. This metric will be independent of the selection

of a specific coverage-preserving reduction algorithm. From C and F, the fault

correlation for a coverage requirement i to a fault k is defined as the ratio of test cases

in the test suite that satisfy the coverage requirement and detect the fault to the

number of test cases that merely satisfy the coverage requirement. This value is

calculated from the cardinality of these sets as follows:

(13) faultCorr(C,F,i,k) = Card[covReqTCs(C,i) faultDetectingTCs(F,k)]

/ Card[covReqTCs(C,i)]

If a coverage requirement i is satisfied only by test cases that detect a given

fault k, then faultCorr(C,F,i,k) = 1, the maximum possible fault correlation.

Intuitively, any coverage-preserving test suite reduction technique must select a fault-

detecting test case for that fault.

If a coverage requirement is satisfied by two test cases, one of which detects a

given fault and one of which does not, the fault correlation with that coverage

requirement is 0.5. If no coverage requirement leads to a higher fault correlation,

then a coverage-preserving test suite reduction technique would select a fault-

detecting test case with a minimum probability of 0.5. The cumulative effect of fault

correlations from other coverage requirements may further raise the actual probability

of detecting the fault if those requirements are covered by different test cases than the

coverage requirement with maximum fault correlation. But for simplicity, consider

 37

each coverage requirement and corresponding fault correlation independently, which

reflects the worst-case scenario. Then, the expected (minimum) probability of

finding a given fault after test suite reduction is defined as the maximum fault

correlation of all coverage requirements with that fault:

(14) expProbFindFault(C,F,k) =Max(faultCorr(C,F,i,k), i  CR)

This definition can be extended to incorporate all known faults as follows:

The expected probability of finding all faults after test suite reduction is the product

of the expected probability of detecting each fault:

(15) expProbFindAll(C,F) = (expProbFindFault(C,F,k), k  KF)

Because a goal of this research is to compare how various coverage criteria

(call stacks in particular) perform in test suite reduction, a metric which is normalized

across subject applications and test suites with differing numbers of coverage

requirements and detectable faults is required. Thus, the metric that will be

considered is the average expected probability of detecting each fault:

(16) avgExpProbFindEach(C,F) = Avg(expProbFindFault(C,F,k), k  KF)

Figure 4 presents an algorithm for calculating (16) for a given subject

application, fault matrix, and coverage matrix.

 38

The CalcFaultDetectionProbability algorithm assumes the coverage matrix

and fault matrix as inputs (Lines 1 and 2). It then declares an array with length equal

to the number of known faults to hold the calculated probabilities (Line 3). Then for

each coverage requirement for each fault, counters are initialized to hold the number

ALGORITHM: CalcFaultDetectionProbability (

1 C(1..I, 1..J), /* coverage matrix, I=number of

 coverage requirements, J=number of test cases*/

2 F(1..K, 1..J) /* fault matrix, K=number of known

 faults, J=number of test cases */

3 Declare P(1..K) /* expected probabilities of

 finding faults 1..K */

4 for k = 1..K { /* for each fault */

5 P(k) = 0

6 for i = 1..I { /* for each coverage

 requirement */

7 countCoveringCases <- 0

8 countCoveringDetectingCases <- 0

9 for j = 1..J { /* for each test case */

10 if C(i, j) = 1 then {

11 countCoveringCases <-

 countCoveringCases + 1

12 }

13 if F(k, j) = 1 then {

14 countCoveringDetectingCases <-

 countCoveringDetectingCases + 1

15 }

16 } /* j */

17 if countCoveringCases = 0 then next i

18 faultCorrelation =

 countCoveringDetectingCases /

 countCoveringCases

19 P(k) = Max(faultCorrelation, P(k))

20 } /* i */

21 } /* k */

22 Return Sum(P(1..K)) / K

Figure 4: CalcFaultDetectionProbability Algorithm

 39

of test cases that cover the requirement, and both cover the requirement and detect the

fault (Lines 4..8). The coverage matrix and fault matrix are referenced for each test

case to increment the counters (Lines 9..16). It is possible that no test cases hit the

coverage requirement, in which case the algorithm moves forward to the next one

(Line 17). The counters are then used to calculate the fault correlation number (Line

18), and the maximum probability of detecting the fault is potentially updated (Line

19). After all coverage requirements and faults are evaluated, the average probability

of detecting each fault is calculated (Line 22).

This chapter has defined the traditional metrics for percentage size reduction

and percentage fault detection reduction, as well as a novel metric based on the

average probability of detecting each fault in a reduced suite. In the next chapter,

these metrics will be applied to the results of a set of experiments to compare the

performance of different coverage criteria when used in test suite reduction.

 40

Chapter 6: Experiments

Five experiments were performed to evaluate the effectiveness of call-stack-

based test suite reduction, each to address a specific research question. This chapter

will discuss the conduct of the experiments and their results.

6.1. Research Questions

Five research questions are posed in the following subsections. Research

Questions 1 through 4 (Q1-Q4) are addressed using experiments that capture the

percentage size reduction and percentage fault detection reduction as given in

Equations (8) and (9). Since these experiments deal with a fairly small number of

discrete faults (as will be seen in Section 6.2), averages of these quantities were taken

over large numbers of suites. Research Question 5 (Q5) will be answered using the

average probability of detecting each fault, calculated as given in Equation (16). To

further explore Q5, analyses based on the number of faults always found in coverage-

equivalent reduced test suites will also be performed.

6.1.1. Research Question Q1

How do the size and fault detection effectiveness of call stack-based reduced

test suites compare to those of suites reduced on the basis of existing coverage

criteria?

For call stack coverage to be compelling as a criterion for test suite reduction,

it should provide new and useful characteristics for size reduction and fault detection

effectiveness when compared to previously existing criteria. This research compares

coverage techniques using experiments involving both conventional, batch-oriented

 41

applications and modern GUI applications. (Subject applications are discussed in

detail in Section 6.2.) Method coverage (M) is compared to call stack coverage (CS)

for all subjects. For GUI subject applications, event (E) and event-interaction (E2)

coverage are added. (E1 and E2 do not apply to non-GUI applications.)

Additionally, line coverage is used where readily available, specifically, in the Java-

based subjects.

Event-based coverage [29] has been developed specifically for applications

where test cases can be defined as sequences of events, and as such it is particularly

suited to GUI applications. Examples of events in GUI applications include button

clicks, menu selections, and keystrokes. In this work, reduction techniques based on

two different event sequence lengths are considered. In E1, each event in isolation is

a coverage requirement to be covered by any reduced test suite, and in E2, coverage

requirements are made up of pairs of events.

Lines, methods, and edges are program elements measured in well-studied,

traditional test coverage techniques. In line coverage, the coverage of each source

code line induced by test execution against a given subject application is measured.

From this, it is possible to define reduction technique L, in which reduced test suites

must obtain the same line coverage as their full counterparts. Method coverage is

used to reduce test suites in the M technique. In M, each method appearing in the full

test suite must also appear in the corresponding reduced suite. This information is

derivable from call stack coverage data and does incorporate coverage of libraries for

Java programs.

 42

6.1.2. Research Question Q2

How does fault detection effectiveness of call-stack-based reduced test suites

compare to suites of the same size created using other approaches?

In the investigation of Q1, it is possible that reduced suites created using a

given technique have better fault detection effectiveness due solely to the fact that the

technique selects more test cases on average than another technique. Q2, therefore,

removes size as an independent variable. Here, it is investigated whether test suites

created by call stack reduction preserve more fault-detecting ability than randomly

reduced suites of the same size, as well as line, event, and method-reduced suites (as

applicable) augmented with additional random test cases to make them the same size.

6.1.3. Research Question Q3

How does including coverage information from third-party libraries affect the

size and fault detection effectiveness of reduced test suites?

A significant advantage of the call stack criterion is its ability to capture

interesting behavior from platform libraries without necessarily requiring invasive

instrumentation of those libraries. For applications that make extensive use of

libraries such as the Java 2 Software Development Kit (SDK), it is informative to

evaluate the impact of including library routines in method and call stack reduction

on size reduction and fault detection reduction. This can be accomplished by

reducing test suites using coverage information that includes library methods,

reducing the same suites while excluding library methods, and comparing the

resulting reductions in size and fault detection.

 43

6.1.4. Research Question Q4

Does call-stack-based test suite reduction perform differently between

conventional and event-driven applications?

Key to the idea of using call stacks is the notion of context. That notion is

very strong in GUI applications, where multiple degrees of freedom in the interface

allow events to be executed from many different states. Context is often not as

important a factor in conventional or batch-oriented applications, which could cause

call-stack-based test suite reduction to be less desirable in such scenarios. Thus, to

see if call-stack-based test suite reduction is sensitive to the style of application, its

behavior was compared between non-event-driven, non-GUI applications to that

observed for event-driven GUI applications.

6.1.5. Research Question Q5

Are certain types of coverage requirements more often associated with faults?

If a specific coverage requirement is covered primarily by fault-revealing test

cases, this intuitively provides strong evidence that the coverage requirement in

question is related to a fault. Moreover, if a coverage requirement is only hit by fault-

revealing test cases, no coverage-preserving test suite reduction technique can

possibly lose that fault. So in practice, it would be useful to identify and select a

coverage technique that can be expected to maximize, on average, the number of such

coverage requirements. This leads to insight into which coverage criteria are best to

use in coverage-preserving test suite reduction algorithms: If coverage criteria differ

in how strongly their coverage requirements are associated with known faults, this

correlation will hopefully generalize to unknown faults and faults in different

 44

applications when applied in practice. The fault detection probability metric defined

in Section 5.3 is suitable for this analysis.

6.1.6. Overview of Experiments

To answer these research questions, five experiments were designed and are

presented in the remainder of the chapter. In Experiment 1, call-stack-based

reduction was compared with event, event-interaction, line, and method-based

reduction for GUI subjects, and conventional criteria for non-GUI subjects.

Experiment 2 compared call stack reduction to randomly selected and augmented

line, event, and method-reduced suites of the same size. In Experiment 3, method

coverage and call stack coverage excluding information about library methods were

considered. Experiment 4 explores any differences observed in the effectiveness of

call-stack-based reduction between conventional and event-driven GUI applications.

And Experiment 5 relates coverage requirements to fault-revealing test cases for

various types of coverage, using the new metric based on the average probability of

detecting each fault.

6.2. Subject Applications

This research requires experimental subject applications which have a

universe of test cases and a set of known faults. Additionally, the absolute counts of

test cases and faults for each application must be sufficiently large to support

calculations based on reduction in suite size and fault detection. As is often the case

in empirical studies in software testing, very few appropriate subject applications are

generally available. In various experiments, this research will utilize five subject

 45

applications that have sufficient fault and test case information and display

characteristics of interest in terms of programming style, source language, and

execution style. Characteristics of these applications are listed in Table 1, and Table 2

shows their test case and fault information. These applications are discussed in more

detail in the following sections.

Application Source

Language

Execution Style Programming

Style

TerpPaint Java Event-Driven (GUI) Object-Oriented

TerpWord Java Event-Driven (GUI) Object-Oriented

TerpSpreadsheet Java Event-Driven (GUI) Object-Oriented

Space C Conventional Procedural

nanoxml Java Conventional Object-Oriented

Table 1: Subject Applications Characteristics

Application TerpPaint

(TP)

TerpWord

(TW)

TerpSpreadsheet

(TS)

nanoxml space

Test Universe Size 1500 1000 1000 216 13585

Detectable Faults

(Versions)

43 18 101 9 34

Table 2: Subject Application Test Cases and Faults

6.2.1. TerpOffice

Object-oriented, event-driven GUI applications are taken from the TerpOffice

Suite [30] to be subjects for the following experiments. TerpOffice is a business

productivity suite written in Java by senior software engineering students over a

period of years. The three applications under study are TerpPaint (TP), TerpWord

(TW), and TerpSpreadsheet (TS). Each TerpOffice application is associated with a

 46

large universe of test cases generated using the event flow criterion [26] and a set of

seeded mutation faults. Each application comes with a set of versions each

containing a single known fault and fault detection matrix for each test case.

6.2.2. Space

The well-studied space application [37] is used as a conventional, non-GUI

subject application. Space is an antenna-steering system developed by the European

Space Agency commonly used in studies of test suite reduction, test case

prioritization, and regression test selection. It is written in C in the procedural style

and executes sequentially. The version used in this research comes with 13,585 test

cases and 34 known faults. Line coverage information for space was not available

and therefore not used in subsequent experiments.

6.2.3. nanoxml

Nanoxml is a small XML parser which, like space, is a conventional non-

GUI application but, like TerpOffice, is written in Java and makes use of the Java

libraries. It was obtained via the Software-artifact Infrastructure Repository (SIR)

hosted at the University of Nebraska [7]. Nanoxml exists in multiple versions to

support different types of experiments. A single version of nanoxml was used in this

research which has 216 test cases and nine known faults.
2
 Unlike the other subject

applications, most of nanoxml’s faults are detected by a large percentage of the test

2
 With nine, nanoxml has the smallest number of known faults of any of the subject applications used

in this research. Small numbers of faults present difficulties for test suite reduction research. In the

case of nanoxml, an individual fault missed by a reduced test suite increases fault detection reduction

by 11.1%. Other applications from SIR were rejected because they had even fewer known faults.

 47

cases in its universe. As a result, certain reduction techniques (such as those that

involve random test case selection) would be expected to perform relatively better.

6.3. Experimental Procedure

Figure 5 shows a general procedure used for conducting test suite reduction

experiments which is used in this research. Ovals represent tools/processes; boxes

represent experimental artifacts/results; hexagons represent calculated metrics. For

each subject application, the process begins with a pool of test cases, a set of known

faults, and a fault matrix, i.e., information on which test cases detect which faults.

The version of the subject application itself used in the coverage collection process

contains none of the known faults and is therefore deemed to be “fault-free”. This

approach ensures that a complete set of coverage data may be collected without the

collection process being confounded by faulty behavior. Subsequent use of this data

as a coverage baseline for test suite reduction simulates the realistic situation where

faults are introduced over time during the development process and found via

regression testing. After coverage data is collected, the following steps are

performed:

1. Randomly generate a set of test suites composed of test cases from the pool

(not coverage-adequate for any particular criterion)

2. For each full (non-reduced) test suite, calculate the set of faults it detects.

3. Select a coverage criterion.

4. Reduce each test suite while maintaining coverage relative to the selected

criterion.

5. For each reduced test suite, calculate the set of faults it detects.

 48

6. Compute the percentage size reduction and percentage fault detection

reduction.

This approach is discussed in more detail in the sections that discuss

experiments where the procedure was applied.

Replayer

Coverage

Matrix

Subject

Application
Test Cases

Coverage

Libraries /

Instrumentation

Full Test

Suites

Reduce Test

Suite

Reduced Test

Suites

Fault Matrix

% Fault

Detection

Reduction

% Size

Reduction

Avg.

Expected

Probably of

Detecting

Each Fault

Figure 5: Experimentation Procedure

 49

6.4. Threats to Validity

6.4.1. Threats to External Validity

Threats to external validity are factors that may impact the ability to

generalize the results of this research to other situations. The main threat to external

validity in these experiments is the small sample size. This research conducts test

suite reduction experiments on a total of only five programs, which were chosen for

their availability and the fact that they came with a sufficient number of test cases and

known faults to support experimentation. Three of these programs were constructed

by undergraduate students, one by a governmental entity, and one is open-source.

These applications therefore may not be representative of the broader population of

programs. An experiment that would be more readily generalized would include

additional programs of different sizes and from different domains. Additionally, one

would expect the effectiveness of the call stack reduction process to vary depending

on aspects of the programming style used in the target application. In particular,

when the application is composed of many small functions, call stacks provide finer-

grained dynamic state information. Three of the subject applications used in this

research are GUI-event-driven and thus contain many small event-handling methods.

This should increase the effectiveness of the call stack-based reduction technique

relative to what it could do against an application that implemented the same behavior

using relatively fewer or more monolithic functions as we see in space. (Consider the

pathological case where a program is composed of a single large function, which

would have but a single call stack for all executions.) Also, this research, like much

related work in the areas of test suite reduction, prioritization, and regression test

 50

selection, performs experiments and analyses involving known faults. This type of

research assumes that the known faults are representative of the set of all faults which

may appear in the subject applications, which may or may not hold in practice. This

is an even larger threat when using subject applications with a very small number of

known faults, such as nanoxml, which only includes nine. Finally, characteristics of

original test suites (such as their fault detecting ability and how they were

constructed) play a role in the size and fault detection reduction results. This threat

can be addressed in future work by choosing original test suites that are adequate for

a variety of coverage criteria.

6.4.2. Threats to Construct Validity

Threats to construct validity are factors in the experiment design that may

cause us to inadequately measure concepts of interest. In these experiments, several

simplifying assumptions were made in the area of costs. In test suite reduction,

researchers are primarily interested in two different effects on costs. First, there is the

cost savings obtained by running fewer test cases. In this study, we assume that each

test case has a uniform cost of running (processor time) and monitoring (human time).

These assumptions may not hold in practice. The second cost of interest is the cost of

failing to find faults during testing as a result of running fewer test cases. Here it is

assumed that each fault contributes uniformly to the overall cost, which again may

not hold in practice. These assumptions are commonly made in other studies of test

suite reduction [[36][42]]. Because test suite reduction seeks to permanently reduce

the size of a test suite by discarding redundant or less effective test cases, the cost of

 51

applying a given reduction technique is amortized across all future executions of the

test suite and is therefore not factored into these experiments.

Finally, for feasibility reasons, line coverage data did not include coverage of

the underlying library code, in contrast to the approach taken for method coverage.

Including line coverage of libraries may alter the performance of line-based test suite

reduction relative to the other coverage criteria.

6.4.3. Threats to Internal Validity

Threats to internal validity include the possibility of defects in the tools used

in the experiments and errors in the execution of the experimental procedure, any of

which may impact the accuracy of the results and the conclusions drawn from them.

These threats have been controlled for by testing the tools and the data quality.

6.5. Data Collection Step

6.5.1. Collection Process

Coverage data from each subject application was collected before beginning

the experiments. The data gathered during this step allowed for the creation of any

number of test suites composed of the previously executed test cases. In each such

test suite, the set of unique coverage requirements and faults detected by the suite are

known without further execution of the subject applications. Hence, it was not

necessary to run each test suite against each version of the applications under study.

This simulation approach is similar to one used by Frankl et al. [11] to evaluate

adequacy criteria and test effectiveness.

 52

For the TerpOffice applications, the JavaGUIReplayer application [30]

(shown as “Replayer” in Figure 5) was used to execute each test case in each test pool

against the fault-free versions of the subject programs. Initially this process was used

with JavaCCTAgent to collect the unique call stacks generated by each test case. This

process was then repeated to collect line coverage using jcoverage [19] or Cobertura

[5] as the instrumentation tool. Method coverage was derived from the call stack

coverage data. Because the test cases for the GUI subject applications were event-

based, their event coverage was known a priori. Coverage statistics aggregated over

the entire test pool for each GUI application appear in Table 3. For each subject

application, the first two rows of Table 3 list the total number of unique call stacks

and methods (including library methods, not limited to TerpOffice source code)

observed in a test run of the entire test universe. The next row shows the number of

GUI events utilized in each application. Finally, the last three rows are static counts

of executable lines, classes, and methods comprising each application, as determined

by the jcoverage instrumentation tool.

 Includes

Library

Data?

Terp

Paint

(TP)

Terp

Word

(TW)

Terp

Spreadsheet

(TS)

Call Stacks

Observed

Yes 413166 569933 333882

Methods

Observed

Yes 12277 12665 11103

Events N/A 181 219 110

Executable

Lines

No 11803 9917 5381

Classes No 330 197 135

Methods No 1253 1380 746

Table 3: GUI Subjects’ Static and Dynamic Program Elements

 53

A similar process was used to collect data for the conventional applications,

nanoxml and space. As these applications are not event-driven, event coverage

does not apply. As mentioned earlier in Section 6.2.2, line coverage was not

addressed for space, and coverage of the C libraries used by space is subject to the

limitations of the Detours-based implementation discussed in Section 4.1.2.

Coverage statistics for the conventional applications appears in Table 4.

 Includes

Library

Data?

nanoxml Space

Call Stacks

Observed

Yes 6617 453

Methods

Observed

Yes 1126 143

Executable

Lines

No 3012 6218

Classes No 25 N/A

Methods No 232 123

Table 4: Conventional Subjects’ Static and Dynamic Program Elements

6.5.2. Coverage of Library Elements

As noted in Section 6.1, the instrumentation process for call stack coverage of

the Java subjects used in this research incorporates the coverage of the supporting

Java libraries induced by test case execution. Because the raw call stack coverage

data was used as the basis for method coverage, the method coverage approach also

includes Java library methods. However, because it was not feasible to instrument

the entire Java SDK for line coverage, line coverage data is based solely on the

subject application source. Because of this, between the two approaches M and L, it

is possible (and in fact the case) that tests may cover more methods than lines.

 54

6.6. Reduction Approach

Before reducing a test suite, the individual test case coverage information

from Section 6.6 is used to calculate the full set of unique maximum-depth call stacks

that an execution of the full suite can be expected to generate. The full set is

computed by merging the unique call stacks observed by each test case in the suite.

Here the situation where a maximum-depth call stack from one test case is not

maximum-depth in another must be considered. For example, Test Case 1 (tc1) may

generate the call stack c1 = <m1,m2, m3>, and Test Case 2 (tc2) may generate c2 =

<m1, m2>. The call stack c2 is not maximum-depth in a test suite containing both

tc1 and tc2. Two separate approaches were used in this research. For the space

application, this issue was addressed by computing substack relationships between

each pair of unique maximum-depth call stacks globally, across the suite. In the

example, this would lead to a selection of just tc1, because it covers both stacks c1

and c2. However, it was observed that computing the substack relationships across

an entire test suite with hundreds of thousands of unique (and deep) call stacks as in

the Java-based applications is very computationally expensive. Therefore, the

experiments using the Java applications take a different approach, which is to forgo

the computation of substack relationships and consider uniqueness of maximum-

depth call stacks on a per-test-case basis. This approach is analogous to how

maximum-depth stacks are treated across threads as discussed in Section 3.1. So in

the example, reduction of a full test suite composed of both tc1 and tc2 would lead to

the inclusion of both test cases in the reduced suite. The consequence of this decision

is that this approach forgoes some potential size reduction in exchange for better

 55

runtime performance of the reduction process. The differences in reduction across

the two approaches are expected to be very minor in practice, but future work may

quantify the delta in size reduction.

After merging the unique maximum-depth call stacks from each test case in a

given test suite, the ReduceTestSuite heuristic [13] is applied to compute the reduced

test suite. Finally, the desired metrics are calculated based on the reduced suite.

6.7. Experiment 1: Comparing Coverage-Based Reduction

The goal of Experiment 1 was to reduce randomly generated test suites of

various sizes based on call stack coverage (CS) and the other coverage criteria under

study: event (E1), event-interaction (E2), line (L), and method (M) as applicable for

the Java-based subjects, and method (M) for space. Due to the differences in test

universe size across the subject applications, different suite sizes were evaluated. The

sizes by application are listed in Table 5. Test suites were reduced based on each of

the evaluated criteria and compared in terms of the percentage size reduction and

percentage fault detection reduction metrics.

Application Suite Sizes Evaluated Number of

Suites Per Size

TerpPaint, TerpWord,

TerpSpreadsheet

50, 100, 150, 200, 250, 300, 350.

400

25

Nanoxml 20, 40, 60, 80, 100, 120, 140, 160 100

Space 50, 100, 150, 200, 250, 300, 350,

400, 450, 500, 550, 600, 650, 700,

750, 800, 850, 900, 950, 1000

50

Table 5: Random Suite Sizes Tested by Subject Application

 56

6.7.1. Size Reduction

Percentage size reduction results for the five subject applications for each

applicable reduction approach appear in Figures 6 to 10. (The SM and SCS

approaches will be discussed in conjunction with Experiment 3, Section 6.9.)

TP - % Size Reduction

0

10

20

30

40

50

60

70

80

90

50 100 150 200 250 300 350 400

Original Suite Size

A
v
g

 %
 R

e
d

u
c
ti

o
n

 O
v
e
r

2
5
 S

u
it

e
s

CS

M

L

E1

E2

SCS

SM

Figure 6: TP Percentage Size Reduction

 57

TS - % Size Reduction

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

Original Suite Size

A
v
g

 %
 R

e
d

u
c
ti

o
n

 O
v
e
r

2
5
 S

u
it

e
s

CS

M

L

E1

E2

SCS

SM

Figure 7: TS Percentage Size Reduction

TW - % Size Reduction

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

Original Suite Size

A
v
g

 %
 R

e
d

u
c
ti

o
n

 O
v
e
r

2
5
 S

u
it

e
s

CS

M

L

E1

E2

SCS

SM

Figure 8: TW Percentage Size Reduction

 58

Figure 9: Nanoxml Percentage Size Reduction

Figure 10: Space Percentage Size Reduction

Similar behavior in suite size reduction is observed for all three GUI subjects.

E2 displays very little size reduction in all cases, which is expected because the

 59

original test cases were generated using an algorithm based on event flow. E1, M,

and L are very close except in TW, where E1-reduced suites are smaller than M and L

but still notably larger than CS. The CS technique strikes a middle ground between

E2 (and no reduction) and the other three techniques, yielding 38-50% reduction for

the largest suite size. For the non-GUI subject applications, the CS approach still

results in less size reduction than the comparison techniques. However, it is much

closer than in the GUI applications. This phenomenon will be considered in more

detail in Section 6.11.

To evaluate the statistical significance of differences between CS and the

other techniques seen in Figures 6 through 10, paired-t testing was performed at the

0.05 level with the null hypothesis that there is no statistically significant difference

between the means of “CS percentage size reduction” and means of each of the other

techniques. The results appear in Table 6. Since all the p-values for percentage size

reduction are below 0.05, the null hypothesis is rejected and the alternative

hypothesis, i.e., there is a statistically significant difference between the means of CS

and the other techniques, is accepted.

 % Size Reduction

CS vs. p-Value

 TP TS TW nanoxml Space

M 7.84E-06 6.04E-09 3.52E-10 6.23E-08 2.06E-7

L 3.02E-06 2.9E-08 1.29E-09 1.55E-12 --

E1 1.13E-05 4.59E-08 1.36E-05 -- --

E2 0.000823 0.000932 0.000414 -- --

SCS 7.13E-06 4.85E-08 1.54E-09 2.61E-06 --

SM 2.95E-06 2.96E-08 3.61E-09 1.07E-12 --

Table 6: Paired-t Testing for Size Reduction of CS vs. Other Techniques

 60

6.7.2. Fault Detection Reduction

Percentage fault detection reduction results for the five subject applications

appear in Figures 11 through 15. (The RAND, E1A, LA, MA, SCS, and SM

techniques will be discussed in subsequent experiments below.) The graphs are

jagged due to the relatively small-magnitude and discrete nature of the fault data and

the high sensitivity to the selection of specific test cases that may detect multiple

faults. Nonetheless, some trends are clearly visible.

TP - % Fault Detection Reduction

0

5

10

15

20

25

30

35

40

45

50

50 100 150 200 250 300 350 400

Original Suite Size

A
v
g

 %
 R

e
d

u
c
ti

o
n

 O
v
e
r

2
5
 S

u
it

e
s

CS

RAND

M

L

E1

E2

LA

MA

E1A

SCS

SM

Figure 11: TP Fault Detection Reduction

 61

TS - % Fault Detection Reduction

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300 350 400

Original Suite Size

A
v
g

 %
 R

e
d

u
c
ti

o
n

 O
v
e
r

2
5
 S

u
it

e
s

CS

RAND

M

L

E1

E2

LA

MA

E1A

SCS

SM

Figure 12: TS Fault Detection Reduction

TW - % Fault Detection Reduction

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300 350 400

Original Suite Size

A
v
g

 %
 R

e
d

u
c
ti

o
n

 O
v
e
r

2
5
 S

u
it

e
s

CS

RAND

M

L

E1

E2

LA

MA

E1A

SCS

SM

Figure 13: TW Fault Detection Reduction

 62

Figure 14: Nanoxml Fault Detection Reduction

As with percentage size reduction, there is no clear difference between M and

L in the GUI subjects (recalling again that M includes methods from libraries and L

Figure 15: Space Fault Detection Reduction

 63

does not). But call stack-based reduction is clearly favored over M, L, and E1, losing

fault detection effectiveness in the 0-5% range for all applications and original suite

sizes. Indeed, CS performs comparably to E2 even though E2-based reduction yields

almost no size reduction in these experiments.

Call stack coverage also performs relatively well in the non-GUI space

application, with fault detection reduction less than half of that observed for method-

based reduction. For nanoxml, however, results are less clear. Seven of the nine

faults in nanoxml are detected by a large number of test cases, which allows the

techniques that utilize random test case selection (RAND, LA, and MA) to perform

relatively well. The CS technique is virtually indistinguishable from M and L. For

both conventional applications, the magnitude of percent fault detection reduction is

notably higher than for the GUI subjects (up to 17% versus less than 5%). Clearly

more subject applications need to be studied in future work, but this result suggests

that call stack coverage analysis may be particularly applicable to modern

applications.

To evaluate the statistical significance of the difference of means between CS

and the other reduction techniques as seen in Figures 11 through 15, paired-t testing

was performed at the 0.05 level with the null hypothesis that there is no statistically

significant difference between “CS fault detection reduction” to each of the other

techniques. The results appear in Table 7. For the TerpOffice applications and space,

since all p-values of M, L, E1, and E2 for percentage fault detection reduction are

below 0.05, the null hypothesis is rejected and the alternative hypothesis, i.e., there is

a statistically significant difference between the means of CS and these techniques for

 64

all subject applications, is accepted. For nanoxml, the null hypothesis cannot be

rejected, and in fact, it is observed that the best techniques are RAND and LA

(discussed in Experiment 2).

 % Fault Detection Reduction

CS vs. p-Value

 TP TS TW nanoxml Space

RAND 0.001041 0.000803 0.002916 0.000665 2.67E-18

M 8.48E-05 8.13E-05 0.000353 0.199924 6.98E-19

L 8.07E-05 7.02E-05 7.26E-05 0.457429 --

E1 0.000426 8.9E-05 0.000792 -- --

E2 0.016876 0.039215 0.025051 -- --

LA 0.007803 0.002918 0.553965 0.000133 --

MA 0.006307 0.002236 0.10448 0.073261 --

E1A 0.000976 0.005401 0.010153 -- --

SCS 4.63E-05 1.11E-07 3.89E-05 0.226754 --

SM 4.78E-05 4.68E-05 4.35E-05 0.122060 --

Table 7: Paired-t Testing for Fault Detection Reduction of CS vs. Other

Techniques (Bold Values Not Statistically Significant at the 0.05 Level)

In summary, this experiment finds that call-stack-based reduction of test suites

for event-driven applications results in measurable size reduction and extremely low

fault detection reduction compared to other techniques. For conventional

applications, call-stack-based test suite reduction provides an effective tradeoff in size

reduction versus fault detection reduction in one of two subject applications. This

result answers research question Q1. Additionally, the data collected in Experiment 1

will be leveraged to answer additional research questions in the subsequent sections.

6.8. Experiment 2: Controlling for Size of Reduced Suite

Experiment 1 showed that call stack coverage excelled at preserving the fault

detection effectiveness of reduced test suites. However, call stack-reduced suites

were substantially larger than suites reduced by other criteria except for E2. Thus, it

 65

seemed possible that call stack coverage may have been preserving more fault

detection capability solely on the basis of including more test cases. The goal of

Experiment 2 was to evaluate this hypothesis. The call stack-reduced suites from

Experiment 1 were paired with random suites of the same size (the RAND technique

in Figures 11 through 15) and compared with respect to their fault detection

effectiveness. Also, the reduced suites resulting from L, M, and E1 were randomly

augmented with additional test cases drawn from the full test suites so that the

augmented suite sizes were equal to the CS suite sizes derived from each full test

suite. These “additional” or “augmented” techniques are the LA, MA, and E1A

techniques, respectively, in Figures 11 through 15

Referring back to those figures, in the GUI applications RAND loses fault

detection effectiveness comparable to the unaugmented L and M techniques, thus

performing considerably worse than CS. The “additional” techniques perform better

than RAND. As per Table 7, for two of the three GUI subjects, CS shows

significantly better percentage fault detection reduction. For TW, the LA and MA

techniques are not statistically distinguishable from CS. For the conventional

application nanoxml, Table 7 shows statistical evidence that CS is not an

improvement over same-sized suites created using other approaches. In fact, RAND,

LA, and MA also appear to perform better than the other coverage-based approaches,

L and M. Thus it appears that reduced test suite size is a more important influence on

fault detection than coverage for this application, possibly because most of nanoxml’s

faults are detected by a large number of test cases in the universe.

 66

Considering that the suite sizes from RAND, E1A, LA, and MA are equal to

those of CS, this research concludes that in most cases, call stack coverage contains

valuable information that preserves fault detecting ability of test suites under

reduction in modern GUI subject applications. There is no evidence that this is the

case in conventional, non-GUI subjects, but further research is needed to clarify this

point. This result addresses research question Q2.

6.9. Experiment 3: Omitting Library Methods

In research and in industrial practice, most coverage techniques are evaluated

only on those coverage requirements which can be derived from first-party source

code. This research hypothesizes that the ease with which the call stack coverage

technique can incorporate context-sensitive coverage of library routines may be one

of its major advantages.

To further explore this notion, coverage information was generated for both

methods and call stacks excluding methods from the Java platform libraries.

(Because only 20 of 143 methods observed in space mapped to methods in the

Standard C Library, this experiment was not performed for that application.) These

techniques are called “SCS” (for “short” call stack) and SM (for “short” method) in

Figures 6 through 15. The numbers of coverage requirements for the applications

under study appear in Table 8. Because most Java applications highly leverage the

Java platform libraries for their GUI and I/O support, omitting library methods from

coverage results in far fewer coverage requirements.

 67

Application Observed Method Count

Excluding Library Methods

Observed Call Stack Count

Excluding Library Methods

TerpPaint 680 923

TerpWord 757 1780

TerpSpreadsheet 525 2653

nanoxml 137 652

Table 8: Non-Library Coverage Statistics

When test suite reduction is performed based on the “short” call stack and

method coverage data, size reduction is very comparable to L, M, and E1 in all of the

GUI subject applications. For the non-GUI nanoxml application, size reduction when

using the “short” techniques is less comparable to L and M. As can be seen in Tables

9 and 10, size reduction relationships were found to be statistically significant except

for SCS versus M in TS and TW.

 % Size Reduction

SCS vs. p-Value

 TP TS TW nanoxml

M 1.79E-05 0.520725 0.21264 5.02E-06

L 1.75E-07 3.49E-08 2.95E-08 0.000153

E1 0.000321 0.032248 0.000448 --

E2 7.11E-05 8.13E-08 8.42E-09 --

SM 1.29E-07 3.75E-08 4.51E-06 1.73E-05

Table 9: Paired-t Testing of SCS vs. Other Techniques for % Size Reduction

(Bold Values Not Statistically Significant at the 0.05 Level)

 % Size Reduction

SM vs. p-Value

 TP TS TW nanoxml

M 4.19E-06 0.002928 0.001513 2.58E-11

L 6.8E-06 1.54E-05 5.36E-05 2.05E-08

E1 4.11E-05 0.003248 0.000284 --

E2 3.49E-05 7.24E-08 2.40E-09 --

SCS 1.29E-07 3.75E-08 4.51E-06 1.73E-05

Table 10: Paired-t Testing of SM vs. Other Techniques for % Size

Reduction

 68

Fault detection reduction displays quite a bit of variance between the

applications. For TerpPaint, SCS and SM perform very comparably to the least

successful reduction technique, E1. In TerpWord, SM tracks again with E1, but SCS

fares better and is comparable to the line coverage based technique, L. In

TerpSpreadsheet, SM is similar to L, losing around 20% of its fault detection

effectiveness for larger original suite sizes. But SCS for TerpSpreadsheet does very

well, losing no more than 10% fault detection, significantly better than M, L, E1, E2,

and SM as can be seen in Table 11. For nanoxml, the only statistically significant

conclusion that can be drawn is that SM leads to greater fault detection reduction than

L.

 % Fault Detection Reduction

SCS vs. p-Value

 TP TS TW Nanoxml

M 0.000252 0.006143 0.01079 0.625955

L 0.000322 0.009559 0.305519 0.673211

E1 0.176047 0.000728 0.047302 --

E2 3.77E-05 3.27E-06 5.83E-06 --

SM 0.235898 0.003313 0.000137 0.119509

Table 11: Paired-t Testing of SCS vs. Other Techniques for % Fault Detection

Reduction (Bold Values Not Statistically Significant at the 0.05 Level)

 % Fault Detection Reduction

SM vs. p-Value

 TP TS TW nanoxml

M 0.000214 0.052797 8.68E-05 0.114183

L 0.000301 0.000156 0.000168 0.014247

E1 0.125103 0.000277 0.023723 --

E2 3.96E-05 2.83E-05 1.19E-05 --

SCS 0.235898 0.003313 0.000137 0.119509

Table 12: Paired-t Testing of SM vs. Other Techniques for % Fault Detection

Reduction (Bold Values Not Statistically Significant at the 0.05 Level)

 69

Looking back at Table 8, the success of the SCS technique seems to correlate

with how many call stacks can be generated by an application’s test suite, which itself

can be highly influenced by the programming style. Specifically, an application

written using many smaller methods (generally considered to be good object-oriented

programming style) will generate more unique call stacks than an application written

using larger, more monolithic methods. Future work may explore this intuition in

more detail.

Regardless, neither the SM nor the SCS technique approaches the CS

technique at providing very small loss of fault detection where CS performs well, in

GUI applications. For those applications, results in Tables 7 and 12 indicate

statistically significant differences between both SM and M, and SCS and CS. Thus,

this research concludes that it is helpful to consider the coverage of library elements

in a test suite reduction technique when the goal is to minimize the loss of fault

detection effectiveness. Additionally, Experiment 5 (Section 6.11) provides further

evidence that consideration of library methods is valuable by shows that the

techniques that include library methods have higher average probabilities of detecting

each fault. This answers research question Q3.

6.10. Experiment 4: Conventional Application

Results using the conventional, non-GUI, non-event-driven subject

applications in Experiments 1 through 3 indicate that call stack coverage can be less

effective for test suite reduction in those applications than it is in modern GUI

applications. Experiment 4 seeks to expand on these findings by reducing a different

class of test suite in a conventional application, as well as determine whether call

 70

stacks give us any insights into understanding the differences in test suite reduction

between conventional and event-driven software.

This experiment makes further use of space. Space was used as the

conventional application because, compared to nanoxml, it is most dissimilar from

the GUI subjects in that it is written in C rather than Java and does not make

substantial use of an underlying library or platform. Some pre-existing experimental

artifacts and results from Rothermel et al. [36] were leveraged. Starting with 1000

test suites for space used by Rothermel et al. [37], each suite was reduced using call

stack coverage and results compared to the edge coverage results of Rothermel et al.

[36]. (Edge coverage measures traversals across each edge in a program control flow

graph and is usually considered to be a relatively strong, yet practical, coverage

criterion.) As in Experiment 2, call stack-reduced suites were also paired with like-

sized randomly reduced suites. The results appear in Table 13. In this case, it is

found that call-stack-based reduction results in slightly smaller reduced suites than

edge coverage, but at the cost of over 7% additional loss in fault detection

effectiveness. Call-stack-based reduction does perform far better than random

reduction, however.

Means Over 1000 Test Suites

Original Edge-Reduced Call Stack-Reduced Random-Reduced

Size
Faults

Detected
Size

Faults

Detected
Size

Faults

Detected
Size

Faults

Detected

2399.5 33.5 121.7 30.4 60.0 28.0 60.0 24.2

% Reduction From

Original
90.1 9.2 95.2 16.3 95.2 27.6

Table 13: Test Suite Reduction for space

 71

Experiment 4 shows that call-stack-based test suite reduction can provide a

good tradeoff between size reduction and fault detection reduction in a conventional

application. However, compared to the findings of Experiments 1 through 3 for GUI

applications, call stack coverage seems to be a more effective criterion for test suite

reduction against modern event-driven, GUI applications than for conventional

software. Note in Table 4 that for non-GUI applications, fewer call stacks are

observed on a percentage basis relative to methods and lines. Although further

research using a wider variety of GUI and conventional subject applications is

needed, one possible explanation relates to call stacks’ ability to capture the context

in which a given method is invoked. GUIs tend to have more degrees of freedom,

and therefore more context sensitivity, than conventional software. For example, the

event-handling code for a particular event may execute differently depending on the

nature of the specific event invocation (i.e. mouse versus keyboard), the sequence of

preceding events, and the state of the program. Because each such scenario

potentially results in a unique call stack, call-stack-based test suite reduction will

select such test cases and, by consequence, their potentially-unique fault-detecting

capability. This result addresses research question Q4.

6.11. Experiment 5: Coverage Requirements and Fault-Revealing Test Cases

6.11.1. Average Probability of Detecting Each Fault

Experiment 5 explores the relationship between coverage requirements for

various criteria and test cases that reveal faults, using the newly developed average

probability of detecting each fault metric, defined in Equation 16. The

CalcFaultDetectionProbability algorithm (see Figure 4) was applied to the previously

 72

obtained fault and coverage matrices for each Java-based application
3
. Table 14

shows the resulting average expected probability of detecting each fault after test

suite reduction for each application and coverage technique, including the “short”

techniques proposed in Experiment 3. The box plots in Figures 16, 17, 18, and 19

show the other key statistics for individual fault probabilities, including the minimum,

maximum, median, and upper and lower quartile values.

 TP TS TW nanoxml

E1 0.51 0.52 0.47 --

E2 0.92 0.88 0.96 --

L 0.84 0.69 0.77 1.00

M 0.80 0.69 0.72 0.81

CS 1.00 0.97 0.97 0.997

SM 0.70 0.68 0.61 0.81

SCS 0.73 0.85 0.77 0.94

Table 14: Average Expected Probability of Detecting Each Fault After Test

Suite Reduction

3
 Space was not used in this analysis because, for reasons discussed in previous sections, its data does

not enable SM, SCS, or L.

Figure 16: TP Fault Probability Statistics

 73

Figure 18: TW Fault Probability Statistics

Figure 17: TS Fault Probability Statistics

 74

Figure 19: nanoxml Fault Probability Statistics

All of the coverage techniques perform relatively consistently across

applications, the most notable exceptions being SCS’s better result in

TerpSpreadsheet and L’s better results in TP and nanoxml. Event coverage, E1, fares

the worst, while line and method coverage are comparable between 69-84% average

probabilities. Event interaction coverage, E2, results in a very high average

probability, but E2’s usefulness in test suite reduction is limited for these subject

applications and test universe as it was shown in Experiment 1 that E2 results in very

large reduced suite sizes. The lower average probabilities for SM and SCS relative to

M and CS, respectively, provides further evidence in favor of considering library

coverage in test suite reduction. The highest average probability is achieved with the

call stack coverage criterion, CS, with a 97-100% average probability of detecting

each fault. This result shows quantitatively that many call stacks are highly

correlated with fault-revealing test cases and therefore explains the extremely low

 75

percentage fault detection reduction observed when using the CS technique on test

suites generated randomly from this pool in Experiment 1. The maximum values in

Figures 16 through 19 indicate that all coverage criteria have coverage elements that

display high correlation with at least some faults. The narrow boxes for E2 and CS

show that these two criteria are most effective at retaining the widest variety of faults.

6.11.2. Faults Always Detected After Reduction

When using a test suite reduction technique that preserves coverage of a given

program element, a necessary condition for a fault to be missed by a reduced suite is

that no coverage requirement is only covered by fault-revealing test cases. If one or

more such coverage requirements exist, intuition expects an above-average

probability that it is related in some way to the source of the fault. In this case, the

reduction algorithm must select a fault-revealing test case lest coverage be lost.

This observation motivates an analysis of coverage and fault data to determine

how many faults must be detected by any coverage-adequate reduced test suite on the

entire test pool using the various techniques CS, SCS, M, SM, L, E1, and E2. The

results of this analysis appear in Figures 20, 21, 22, and 23, where the x-axis shows

the number of faults that will always be detected by any reduced suite which

maintains coverage of a given criterion listed on the y-axis.

The two method-based techniques, SM and M, and L perform similarly across

applications. In the conventional subject, nanoxml, L is the best technique, with all

faults detected in test suites with coverage equal to that of the universe. The context-

sensitive “short” call stack technique (SCS) performs comparably in TP and TW and

relatively better in TS and nanoxml. Looking at the CS technique, in all but a small

 76

handful of cases, fault-revealing test cases generate call stacks which are never

observed by non-fault-revealing test cases. This phenomenon provides an

explanation for the extremely low percentage fault detection reduction observed for

CS in Experiment 1, lending support to the hypothesis that context information

enhances coverage-based test suite reduction. Further research is needed to

characterize the non-CS techniques.

Figure 20: TP Faults Always Detected After Reduction, By Technique

 77

Figure 21: TS Faults Always Detected After Reduction, By Technique

Figure 22: TW Faults Always Detected After Reduction, By Technique

 78

6.11.3. Faults Which May Be Missed After Reduction

An analysis of the faults that can be missed by each technique as indicated by

the average probability of detecting each fault was performed, with each fault

characterized by its difficulty. Wong et al. define four quartiles of faults, Quartile-I,

II, III, and IV, which can be detected by [0-25)%, [25-50)%, [50-75)%, and [75-

100]%, respectively, of the test cases in the test pool [42] However, by these

standards, all of the known TerpOffice and nanoxml faults are “difficult” because

they all fall into the low end of Quartile-I, with the median percentage of detecting

cases ranging from 0.13% for TerpPaint to 11% for nanoxml. Thus, this research

instead characterizes faults into three buckets based on how many test cases detect

them: Hard (1-2 detecting cases), Medium (3-5 detecting cases), and Easy (6 or more

detecting cases). The counts of cases per bucket were defined to give a reasonable

Figure 23: nanoxml Faults Always Detected After Reduction, By

Technique

 79

distribution of faults into each bucket for each application. Table 15 shows the

distribution of faults by subject application.

Fault Class TP TS TW nanoxml

Easy 7 37 5 7

Medium 3 28 3 0

Hard 33 36 10 2

Table 15: Fault Difficulties

For each subject application and coverage criterion, the faults which may be

lost after coverage-preserving test suite reduction were categorized. The results of

this analysis appear in Table 16.

 TP TS TW nanozml

E1 Easy 7

Med 3

Hard 20

Easy 26

Med 17

Hard 34

Easy 2

Med 3

Hard 7

N/A

E2 Easy 0

Med 0

Hard 6

Easy 0

Med 0

Hard 23

Easy 0

Med 0

Hard 1

N/A

L Easy 6

Med 1

Hard 3

Easy 13

Med 13

Hard 34

Easy 3

Med 0

Hard 5

Easy 0

Med 0

Hard 0

M Easy 7

Med 3

Hard 8

Easy 12

Med 13

Hard 34

Easy 0

Med 0

Hard 7

Easy 1

Med 0

Hard 2

CS Easy 0

Med 0

Hard 0

Easy 0

Med 1

Hard 5

Easy 0

Med 0

Hard 1

Easy 1

Med 0

Hard 0

SM Easy 7

Med 3

Hard 8

Easy 13

Med 13

Hard 34

Easy 3

Med 0

Hard 9

Easy 1

Med 0

Hard 2

SCS Easy 7

Med 2

Hard 7

Easy 2

Med 10

Hard 13

Easy 1

Med 0

Hard 7

Easy 1

Med 0

Hard 1

Table 16: Faults with No Coverage Requirements Unique to Detecting Test

Cases by Criterion and Difficulty

 80

No clear conclusions can be drawn for nanoxml, possibly because it has a very

small number of faults (9) which are relatively easy to find compared to the

TerpOffice applications. For the TerpOffice applications, the CS and E2 techniques,

which only have a handful of faults overall that are not necessarily detected after

reduction, show a distinct tendency for those faults to fall into the “Medium” and

“Hard” difficulty buckets. For the other techniques, a trend is only visible for one of

the three applications (specifically, TS). This analysis suggests that fault detection

reduction in coverage-adequate reduced test suites may only be related to fault

difficulty for certain coverage criteria.

6.11.4. Combining Coverage Criteria

Looking at the unique coverage requirement counts for individual faults, a

number of cases were observed where Fault A is guaranteed to be detected by

Technique X but not Technique Y, but Fault B for the same application is guaranteed

to be detected by Technique Y and not Technique X. In other words, certain faults

correlated more highly with different coverage criteria. This motivated an

examination of the average probability of detecting each fault for pairs of criteria.

Identifying effective pairs of coverage criteria is important to guide the choice of

criteria to utilize in a multi-criteria test suite reduction approach such as the one

proposed by Jeffrey and Gupta [20].

The following analysis assumes a test suite reduction approach that maintains

coverage relative to two distinct coverage criteria. For such a coverage criteria pair,

the average probability of detecting a fault is then the maximum of the individual

probabilities of detecting that fault for each criterion in isolation. Data for this

 81

analysis appears in Table 17. The pair E1+E2 is not included because E2 subsumes

E1 – that is, an E2-adequate suite is by definition E1-adequate. The technique M+CS

is omitted for the same reason, namely that CS subsumes M. Note that because M

includes library coverage data and L does not, L does not subsume M. The “short”

techniques SM and SCS are subsumed by their counterparts that include library

methods, M and CS, respectively.

 TP TS TW nanoxml

E1+L 0.88 0.71 0.91 --

E1+M 0.80 0.71 0.82 --

E1+CS 1.00 0.97 0.97 --

E2+M 0.97 0.91 0.96 --

E2+L 0.96 0.91 0.96 --

E2+CS 1.00 1.00 1.00 --

E1+SM 0.77 0.70 0.76 --

E1+SCS 0.80 0.86 0.87 --

E2+SM 0.96 0.91 0.96 --

E2+SCS 0.96 0.98 0.97 --

L+M 0.90 0.70 0.83 1.00

L+CS 1.00 0.97 0.97 1.00

L+SM 0.84 0.70 0.77 1.00

L+SCS 0.84 0.85 0.83 1.00

Table 17: Average Probabilities for Coverage Criteria Pairs

In Table 17, data points are highlighted in bold and italic where the

combination of coverage criteria results in a better average probability of detecting

each fault than either criterion in isolation. We see such an improvement in over half

(27 of 46) of the combinations. This result suggests certain faults may be more

highly correlated to different criteria, and thus combining multiple coverage criteria

can dramatically reduce fault detection reduction. However, maintaining coverage

adequacy with respect to additional criteria in test suite reduction will lead to larger

reduced test suites. Indeed, many of the improvements in average probabilities in

Table 17 for the GUI subjects involve the addition of the event-interaction criterion,

E2, and E2 coverage adequacy in test suite reduction is known to lead to very little

 82

size reduction for these applications and test suites (see Experiment 1, Figures 6

through 8). In test suite reduction, the tradeoff between fault detection and size

reduction must be made based on situational engineering judgments.

6.11.5. Summary of Experiment 5

Call-stack-based test suite reduction exhibited several positive attributes in the

analyses of Experiment 5, including a high average probability of detecting each fault

and a high number of faults always detected after reduction of the test universe.

These attributes were more pronounced for the event-driven, GUI subject

applications; for the conventional application nanoxml, line-based reduction was the

best approach. These results of Experiment 5 do show that certain coverage criteria

are more closely related to fault-detecting test cases and therefore may be better

suited for use in test suite reduction, thus answering research question Q5.

 83

Chapter 7: Analysis – Test Suite Reduction Metric

Prior work on test suite reduction provides very little guidance for

practitioners who must make decisions about what reduction technique or techniques

to use. If anything, the prior work emphasizes minimal fault detection reduction over

size reduction. However, given trends in modern software development such as the

increased use of test case generators and build-and-integration cycles often lasting a

single day or less, this may not be the appropriate tradeoff in practice. Because of

this, there is a need for quantitative metrics that capture the size-versus-fault-

detection tradeoff to help guide practitioners needing to make a more holistic choice

when applying test suite reduction techniques.

The experiments in Chapter 6 analyzed call-stack-based test suite reduction in

terms of size reduction and fault detection reduction independently. In experiments

using GUI applications as test subjects, call stack coverage-based reduction resulted

in considerably larger reduced suite sizes than various approaches based on method,

line, or simple event flow coverage. In exchange for the larger reduced suite size, the

call stack approach performed substantially better at retaining the fault detection

capabilities of the original test suite. In practice, this may or may not be

advantageous. For example, in a time-sensitive regression testing scenario, if there is

sufficient time to run a call stack-reduced test suite in its entirety, this work suggests

that it would be advisable to do so in order to obtain greater fault detection

effectiveness. If time is more critical, a subset of the call stack reduced suite may be

executed instead.

 84

In their work on test suite reduction in web applications, Sampath et al. [40]

propose a “figure of merit” (fom) for test suite reduction as:

(17) fom = redux * cvg * fd

Here, redux is the percent size reduction, fd is the percentage of faults still

detected after reduction, and cvg is the percent coverage remaining for some specific

criterion other than the one used in the reduction algorithm. This metric combines the

desirability of high size reduction and the undesirability of high fault detection

reduction into a single number.

A weakness of Equation (17) is that the approach of using a simple product of

terms does not allow practitioners to factor in the relative importance of size

reduction and fault detection reduction when evaluating a technique. To solve this,

this research proposes evaluating test suite reduction relative to the following single-

point metric:

(18) ReductionMetric = (WSR * % Size Reduction) + WFDR *

(100 - % Fault Detection Reduction)

WSR is defined to be a weight representing the relative importance of size

reduction in a given scenario. Similarly, WFDR is a weight for the relative importance

of fault detection reduction. It is expected that practitioners will choose the weights

to capture the relative importance of fault detection and size reduction in a specific

industrial scenario.

To demonstrate this new metric, consider three sets of weights defined in

Table 18. In Scenario 1, small reduced test suite size is deemed more important than

low fault detection reduction. Scenario 2, conversely, considers low fault detection

 85

reduction to be the stronger factor. In Scenario 3, both measures are weighted

equally. The selection of weights was made to keep the results from each scenario

close in absolute magnitude. Conclusions should only be drawn based on relative

values within a given scenario.

Scenario Number and Description WSR WFDR

1: Emphasize Small Suite Size 2.0 0.5

2: Emphasize Low Fault Detection Reduction 0.5 2.0

3: Equal Emphasis 1.0 1.0

Table 18: Metric Weighting Scenarios

Applying the metric from Equation (4) to the data collected in the experiments

from Chapter 6 for the different reduction techniques, subject applications, and

weighting scenarios yields the results in Figures 24 through 28.

Figure 24: TP Average Test Suite Reduction Metric Over All Suite Sizes

 86

Figure 25: TS Average Test Suite Reduction Metric Over All Suite Sizes

Figure 26: TW Average Test Suite Reduction Metric Over All Suite Sizes

 87

Figure 28: Space Average Test Suite Reduction Metric Over All Suite Sizes

Figure 27: nanoxml Average Test Suite Reduction Metric Over All

Suite Sizes

 88

When small suite size is the primary focus of the test suite reduction process

(Scenario 1), the metric indicates that the favored techniques for modern GUI

applications are based on line coverage (L), method coverage including library

methods (M), method coverage not including library methods (SM), and call stack

coverage not including library methods (SCS). When low fault detection reduction is

deemed more important (Scenario 2), the call stack technique (CS) is preferred,

followed closely by several other techniques with similar performance. With equal

weighting applied to size reduction and fault detection reduction (Scenario 3), the

relative metric values by technique again favor L, M, SM, and SCS, along with

improved performance of the “additional” techniques MA, LA, and E1A. In

nanoxml, the relative performance of techniques is consistent across scenarios with

the notable exception that SM performs particularly well when small suite size is the

emphasis. And for space, it is interesting to note that based on the metric, there is

very little difference between edges and call stacks when used as reduction criteria in

all three weighting scenarios.

Absolute metric values across all scenarios indicate that test suite reduction in

general is more effective when applied to TerpSpreadsheet (TS) and TerpWord (TW)

than in TerpPaint (TP) or nanoxml. Future work may use this metric in an attempt to

identify application construction factors influencing test suite reduction.

 89

Chapter 8: Conclusions and Future Work

This research presented models, metrics, algorithms, techniques, and tools that

support a novel approach to test suite reduction based on call stacks. Experiments

showed that this approach provides an effective tradeoff between size reduction and

fault detection reduction, particularly for modern, event-driven GUI applications.

Additionally, collecting and analyzing call stack coverage data was shown to be

feasible in non-trivial modern software applications.

It was shown that in most cases, call stack coverage contains valuable

information that preserves fault detecting ability of test suites under reduction for

modern applications. Indeed, this research has shown that event-driven GUI

applications are sufficiently different from traditional applications to benefit from

new coverage criteria [29]. This research also found that considering coverage of

library methods can improve the fault detection effectiveness of coverage-based

reduced test suites.

This work defined a new metric for coverage-based test suite reduction based

on the average probability of detecting each fault. This metric was applied to the set

of test suite reduction experiments on GUI and conventional subject applications and

contrasted the results using several different coverage criteria as well as combinations

of criteria. The analysis was extended to count faults detected by a full test suite

which must necessarily be detected by any coverage-preserving reduced test suite for

the different criteria, and the impact of fault difficulty was also considered. Based on

the analysis enabled by the average probability of detecting each fault metric, it was

found that certain coverage criteria are more related to fault-detecting test cases than

 90

others, and this behavior varies by application type. In the modern GUI applications

used in these experiments, test suite reduction based on call stacks provides the

highest probability of detecting each fault in a reduced test suite, method (including

libraries), and line coverage perform comparably, and length-1 event sequences are

the least effective. This relative ranking was consistent with empirical performance

of the various criteria against the traditional percentage fault detection reduction

metric. Thus, this research concludes that the average probability of detecting each

fault shows promise for identifying coverage criteria that work well for test suite

reduction.

Finally, a second metric for test suite reduction based on weighted importance

of size reduction versus fault detection reduction was developed and applied to

empirical data. A comparison of results between conventional and event-driven GUI

applications indicates that the “best” test suite reduction coverage criterion as

measured by this metric may differ among other classes and styles of application. It

also showed that the choice of coverage criterion for test suite reduction can depend

on whether size or fault detection is emphasized.

This work has examined coverage-based test suite reduction for modern

software applications from a single (albeit important) perspective, that of the single-

user GUI. Additional styles of applications can be classified as “event-driven”,

including server applications that use concurrent request-response or messaging

paradigms, as well as the broader population of distributed and service-oriented

computing systems. In these applications, a software component receives a message

or method call and optionally changes its state, invokes additional components,

 91

and/or formulates a response. This situation is analogous to how a GUI responds to

events. Automatic test case generation techniques that apply to systems of multiple

interacting processes have been developed. Yet in the context of such systems, test

suite reduction is a less well-studied problem. Therefore, a key direction for future

work is to extend and apply the notion of a context-sensitive coverage criterion to test

suite reduction and other test case management problems in these systems.

Additional directions for future work in this line of research may include:

 Incorporating new subject applications that represent a wider variety

of programming languages and styles, development paradigms,

application domains, and sizes.

 Expanding the range of coverage criteria in the comparison, perhaps

including techniques less widely used in practice such as advanced

dataflow criteria.

 Analyzing characteristics of the faults lost by various reduction

techniques to evaluate whether certain types of coding errors are more

or less likely to remain undetected in reduced test suites. A further

potential consequence of such an evaluation would be quantifying the

importance of calling context as represented in call stacks to the test

suite reduction problem.

 Applying call stack coverage to other software testing problems, such

as test case generation, regression test selection, and test case

prioritization.

 92

 Comparing test suite reduction performance using different possible

models of call stacks, particularly those that result in lower runtime

overhead and coverage data volume. Approaches could include

building stacks using the different method representations discussed in

Section 3.1.2. Another idea is to define a “similarity metric” for call

stacks such that stacks with a certain similarity value could be

considered redundant and discarded. Also, certain method calls may

always appear together in a call stack so that they could be collapsed

into a single stack entry to conserve space and simplify the analysis.

 Incorporating more sophisticated cost models that do not necessarily

treat all test cases and all faults equally. A cost-benefit model for

defect detection activities has been proposed by Wagner [41], and

another model specifically focused on regression testing has been

developed by Do and Rothermel [8]. Because of the close relationship

between regression testing and test suite reduction, Do and

Rothermel’s model (which explicitly factors in cost of missing faults

and cost of test execution) may be a good candidate to apply to the test

suite reduction problem.

 93

Bibliography

[1] Agitar Automated JUnit Generation information on the web at

http://www.agitar.com/solutions/products/automated_junit_generation.html,

viewed September 2007.

[2] G. Ammons, T. Ball, and J.R. Larus. Exploiting hardware performance counters

with flow and context sensitive profiling. SIGPLAN ’97 Conf. on Programming

Language Design and Implementation, 1997.

[3] Beck, K. and Andres, C. Extreme Programming Explained: Embrace Change

(Second Edition). Addison-Wesley Professional, 2004.

[4] Bond, M. D. and McKinley, K. S. Probabilistic calling context. OOPSLA’07,

October 21–25, 2007, Montreal, Qúebec, Canada.

[5] Cobertura information on the web at http://cobertura.sourceforge.net/, October,

2007.

[6] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster analysis of

execution profiles. Proceedings of the 23rd International Conference on

Software Engineering, pages 339-348, 2001.

[7] H. Do, S. Elbaum, and G. Rothermel. Infrastructure support for controlled

experimentation with software testing and regression testing techniques.

Proceedings of the International Symposium on Empirical Software Engineering,

August, 2004, pages 60-70.

http://www.agitar.com/solutions/products/automated_junit_generation.html
http://cobertura.sourceforge.net/

 94

[8] H. Do and G. Rothermel. An empirical study of regression testing techniques

incorporating context and lifecycle factors and improved cost-benefit models.

Proceedings of the ACM SIGSOFT Symposium on Foundations of Software

Engineering, November, 2006, Portland, Oregon, USA.

[9] Elbaum, S.; Gable, D. & Rothermel, G. The impact of software evolution on code

coverage information. Proceedings of the IEEE International Conference on

Software Maintenance, 2001, pp. 170--179.

[10] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case prioritization: A

family of empirical studies. IEEE Transactions on Software Engineering Volume

28, no. 2, February, 2002, pages 159-182.

[11] P. G. Frankl and O. Iakounenko. Further empirical studies of test

effectiveness. ACM SIGSOFT Sixth International Symposium on the Foundations

of Software Engineering, Nov. 1998.

[12] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites via operational

abstraction. Proceedings of the 25th International Conference on Software

Engineering, pp. 60-71, 2003, Porland, Oregon, United States.

[13] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the

size of a test suite. ACM Transactions on Software Engineering and Methodology

(TOSEM) July 1993 Volume 2 Issue 3.

[14] Heimdahl, M. & George, D. Test-suite reduction for model based tests:

effects on test quality and implications for testing. Proceedings of the 19
th

 95

International Conference on Automated Software Engineering, 2004, pp. 176--

185.

[15] J. R. Horgan and S. London. Data flow coverage and the C language. TAV4:

Proceedings of the symposium on Testing, analysis, and verification, 1991,

Victoria, British Columbia, Canada.

[16] G. Hunt and D. Brubacher. Detours: binary interception of Win32 functions.

Proceedings of the 3rd USENIX Windows NT Symposium, pp. 135-143. Seattle,

WA, July 1999.

[17] JavaCCTAgent information on the web at

http://sourceforge.net/projects/javacctagent/, April, 2007.

[18] Java Native Interface specification at

http://java.sun.com/j2se/1.4.2/docs/guide/jni/, September, 2006.

[19] jcoverage information on the web at http://www.jcoverage.com/, April, 2006.

[20] D. Jeffrey and N. Gupta. Improving fault detection capability by selectively

retaining test cases during test suite reduction. IEEE Transactions on Software

Engineering, Vol. 33, no. 2, pp. 108-123, February, 2007.

[21] D. Leon and A. Podgurski. A comparison of coverage-based and distribution-

based techniques for filtering and prioritizing test cases. Proceedings of the 14th

IEEE International Symposium on Software Reliability Engineering (ISSRE

2003), November 2003, Denver, Colorado, United States.

[22] Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., and

Guoliang, Z. Generating test cases from UML activity diagram based on gray-

http://java.sun.com/j2se/1.4.2/docs/guide/jni/
http://www.jcoverage.com/

 96

box method, Proceedings of the 11th Asia-Pacific Software Engineering

Conference (APSEC'04), pp. 284-291.

[23] S. McMaster and A. Memon, Call Stack Coverage for GUI Test-Suite

Reduction, Proceedings of the 17th IEEE International Symposium on Software

Reliability Engineering (ISSRE 2006), Raleigh, NC, USA, Nov. 6-10 2006.

[24] S. McMaster and A. Memon. Call stack coverage for test suite reduction.

IEEE International Conference on Software Maintenance (ICSM) 2005, pages

539-548, Budapest, Hungary, 2005.

[25] S. McMaster and A. Memon. Fault detection probability analysis for

coverage-based test suite reduction. IEEE International Conference on Software

Maintenance (ICSM) 2007, Paris, France, 2007.

[26] A. Memon, A. Nagarajan, and Q. Xie. Automating regression testing for

evolving GUI software. Journal of Software Maintenance and Evolution:

Research and Practice, 17(1):27.64, 2005.

[27] A. Memon, M. Pollack, and M. L. Soffa. Automated test oracles for GUIs.

SIGSOFT Eighth International Symposium on the Foundations of Software

Engineering (2000), pages 30-39, San Diego, California, USA, 2000.

[28] A. Memon, M. Pollack, M. L. Soffa. Hierarchical GUI test case generation

using automated planning. IEEE Transactions on Software Engineering 27(2),

pages 144-155, (2001).

[29] A. Memon, M. L. Soffa, and M. Pollack. Coverage criteria for GUI testing.

ESEC / SIGSOFT FSE 2001, pages 256-267, Vienna, Austria, 2001.

 97

[30] A. Memon and Q. Xie. Studying the fault-detection effectiveness of GUI test

cases for rapidly evolving software. IEEE Transactions on Software Engineering,

vol. 31, no. 10, pp. 884-896, October, 2005.

[31] J. Offutt, J. Pan, and J. Voas. Procedures for reducing the size of coverage-

based test sets. Proceedings of the Twelfth International Conference on Testing

Computer Software, pages 111--123, June 1995.

[32] Parasoft JTest information on the web at http://www.parasoft.com/jtest,

viewed September, 2007.

[33] C.K Prasad, R. Ramchandani, G. Rao, and K. Levesque (June 24, 2004).

Creating a debugging and profiling agent with JVMTI. Retrieved September 22,

2007, from http://java.sun.com/developer/technicalArticles/Programming/jvmti/.

[34] S. Rapps. and E. J. Weyuker. Selecting software test data using data flow

information. IEEE Transactions on. Software Engineering. 11, 4 (Apr. 1985),

367-375.

[35] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An empirical study of

the effects of minimization on the fault detection capabilities of test suites.

Proceedings of the International Conference on Software Maintenance, pages 34-

43, November 1998.

[36] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong. Empirical studies of

test-suite reduction. Journal of Software Testing, Verification, and Reliability, V.

12, no. 4, December, 2002.

http://www.parasoft.com/jtest
http://java.sun.com/developer/technicalArticles/Programming/jvmti/

 98

[37] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for

regression testing. IEEE Transactions on Software Engineering, vol. 27, no. 10,

pp. 929-948, October, 2001.

[38] A. Rountev, S. Kagan, and M. Gibas, Static and dynamic analysis of call

chains in Java. ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA’04), pages 1-11, July 2004.

[39] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A. Souter. Applying

concept analysis to user-session-based testing of web applications. IEEE

Transactions on Software Engineering, Vol. 33, No. 10, pgs 643 - 658, October

2007.

[40] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock. Web application testing

with customized test requirements – an experimental comparison study,

Proceedings of the 17th IEEE International Symposium on Software Reliability

Engineering (ISSRE 2006), Raleigh, NC, USA, Nov. 6-10 2006.

[41] S. Wagner. A model and sensitivity analysis of the quality economics of

defect-detection techniques. Proceedings of the ACM International Symposium

on Software Testing and Analysis, July 2006, Portland, Maine, USA.

[42] W. E. Wong, J. R. Horgan, S. London, A. P. Mathur. Effect of test set

minimization on fault detection effectiveness. Proceedings of the 17th

International Conference on Software Engineering, p.41-50, 1995, Seattle,

Washington, United States.

 99

[43] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting

redundant object-oriented unit Tests. 19th IEEE International Conference on

Automated Software Engineering, Sep. 2004, pp. 196-205, Linz, Austria.

[44] C. Yang and L. L. Pollock. The challenges in automated testing of

multithreaded programs. In the 14th International Conference on Testing

Computer Software, pages 157--166, June 1997.

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1. Automated Test Case Generation Landscape
	1.2. Test Suite Reduction
	1.3. Call-Stack-Based Test Suite Reduction
	1.4. Test Suite Reduction Challenges Addressed by Call Stacks
	1.3.1. Libraries and Frameworks:
	1.3.2. Object-Oriented Language Features
	1.3.3. Multithreading
	1.3.4. Multi-Language Implementations

	1.5. Test Suite Reduction Metrics
	1.6. Implementation and Evaluation
	1.7. Contributions

	Chapter 2: Related Work
	2.1. Test Suite Reduction
	2.2. GUI Testing
	2.3. Call Chains
	2.4. Summary

	Chapter 3: Modeling and Collecting Call Stacks
	3.1. Considerations in Modeling Call Stacks
	3.2. Definitions
	3.3. Calling Context Tree
	3.4. Summary

	Chapter 4: Implementation
	4.1 Collecting Call Stacks
	4.1.1. General Approach
	4.1.2. Detours-Based Implementation for Win32
	4.1.3. JVMTI-Based Implementation for Java

	4.2. Reducing Test Suites
	4.3. Other Tools

	Chapter 5: Test Suite Reduction Metrics
	5.1. Percentage Size Reduction
	5.2. Percentage Fault Detection Reduction
	5.3. Fault Detection Probability Metric
	5.3.1. Data Structures
	5.3.2. Metric Definition

	Chapter 6: Experiments
	6.1. Research Questions
	6.1.1. Research Question Q1
	6.1.2. Research Question Q2
	6.1.3. Research Question Q3
	6.1.4. Research Question Q4
	6.1.5. Research Question Q5
	6.1.6. Overview of Experiments

	6.2. Subject Applications
	6.2.1. TerpOffice
	6.2.2. Space
	6.2.3. nanoxml

	6.3. Experimental Procedure
	6.4. Threats to Validity
	6.4.1. Threats to External Validity
	6.4.2. Threats to Construct Validity
	6.4.3. Threats to Internal Validity

	6.5. Data Collection Step
	6.5.1. Collection Process
	6.5.2. Coverage of Library Elements

	6.6. Reduction Approach
	6.7. Experiment 1: Comparing Coverage-Based Reduction
	6.7.1. Size Reduction
	6.7.2. Fault Detection Reduction

	6.8. Experiment 2: Controlling for Size of Reduced Suite
	6.9. Experiment 3: Omitting Library Methods
	6.10. Experiment 4: Conventional Application
	6.11. Experiment 5: Coverage Requirements and Fault-Revealing Test Cases
	6.11.1. Average Probability of Detecting Each Fault
	6.11.2. Faults Always Detected After Reduction
	6.11.3. Faults Which May Be Missed After Reduction
	6.11.4. Combining Coverage Criteria
	6.11.5. Summary of Experiment 5

	Chapter 7: Analysis – Test Suite Reduction Metric
	Chapter 8: Conclusions and Future Work
	Bibliography

