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Modern software is increasingly developed using multi-language 

implementations, large supporting libraries and frameworks, callbacks, virtual 

function calls, reflection, multithreading, and object- and aspect-oriented 

programming.  The predominant example of such software is the graphical user 

interface (GUI), which is used as a front-end to most of today’s software applications.  

The characteristics of GUIs and other modern software present new challenges to 

software testing.  Because recently developed techniques for automated test case 

generation can generate more tests than are practical to regularly execute, one 

important challenge is test suite reduction.  Test suite reduction seeks to decrease the 

size of a test suite without overly compromising its original fault detection ability.  

This research advances the state-of-the-art in test suite reduction by empirically 



  

 

studying a coverage criterion which considers the context in which program concepts 

are covered.  Conventional approaches to test suite reduction were developed and 

evaluated on batch-style applications and, due to the aforementioned considerations, 

are not always easily applicable to modern software.  Furthermore, many existing 

techniques fail to consider the context in which code executes inside an event-driven 

paradigm, where programs wait for and interactively respond to user- and system-

generated events.  Consequently, they yield reduced test suites with severely impaired 

fault detection ability.  The novel feature of this research is a test suite reduction 

technique based on the call stack coverage criterion which addresses many of the 

challenges associated with coverage-based test suite reduction in modern 

applications.  Results show that reducing test suites while maintaining call stack 

coverage yields good tradeoffs between size reduction and fault detection 

effectiveness compared to traditional techniques.  The output of this research includes 

models, metrics, algorithms, and techniques based upon this approach. 
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Chapter 1: Introduction 

1.1. Automated Test Case Generation Landscape 

Interest in the development and application of automated test case generation 

techniques has grown in recent years.  The growing complexity of modern software 

applications has piqued test engineers’ interest in leveraging these new approaches to 

improve software quality.  And the reduced cost and increased availability of high-

performance hardware has expanded the range of techniques that can be implemented 

in practice.  Easy-to-use commercial tools such as those by Parasoft [32] and Agitar 

[1] can automatically generate unit tests based on C++ and Java source code, and 

model-based techniques can generate tests from UML diagrams [22] or maps of 

graphical user interfaces [29].  Most automated test case generation approaches share 

one common characteristic when applied to non-trivial software applications:  

Specifically, they generate a large quantity of tests. 

At the same time, the software development and release lifecycle is growing 

shorter.  Market demands are pushing practitioners toward “agile” development 

processes that include nightly builds and continuous integration [3].  These processes 

usually mandate regular automated testing.  However, if test suites are too large, the 

time it takes to run them can be the longest, most inefficient step of the process.  This 

can discourage engineers from taking full advantage of the aforementioned automated 

test case generation techniques. 
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1.2. Test Suite Reduction 

For this reason, the problem of test suite reduction [13][42][36] is interesting 

and relevant.  Test suite reduction seeks to reduce the number of test cases in a test 

suite while retaining a high percentage of the original suite’s fault detection 

effectiveness.  Most approaches to this problem are based on eliminating test cases 

that are redundant relative to some coverage criterion, such as program-flow graph 

edges [36], dataflow [42], or dynamic program invariants [12].  In such an approach, 

each coverage requirement (i.e., for “method” coverage, each method) covered by the 

original full test suite is also covered by the resulting reduced test suite.  

Traditionally, these approaches have been developed for and evaluated against 

conventional, batch-driven software applications such as parsers and interpreters.  

Test cases for these applications are generally built by partitioning the input space 

into equivalence classes and selecting one or more inputs from each class, along with 

test cases to cover boundary conditions. 

Of particular interest is how test suite reduction techniques perform when 

applied to modern software applications.  Consider the current leading paradigm for 

user interaction, the graphical user interface (GUI).  Testing GUIs for functional 

correctness is extremely important because (1) GUI code makes up an increasingly 

large percentage of overall application code and (2) due to the GUI’s proximity to the 

end user, GUI defects can dramatically influence the user’s impression of the overall 

quality of a system. Because of these factors, automated test case generation 

techniques for GUIs have been developed [28].  Modern approaches often leverage 

sophisticated models of the application under test to generate test inputs.  For 
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example, a recent test-case generation technique based on event-flow coverage has 

been shown to be effective for defect detection in GUI applications [29].  However, 

the number of tests generated by using event flow coverage can be quite large.  An 

event-flow-adequate test suite may be too large to fully execute regularly in a rapid 

development and integration environment that mandates, for example, nightly builds 

and smoke tests. 

1.3. Call-Stack-Based Test Suite Reduction 

This research develops a novel approach to test suite reduction based on the 

call-stack coverage criterion.  A call stack is the sequence of active calls associated 

with each thread in a stack-based architecture.  Methods are pushed onto the stack 

when they are called, and popped when they return or when an exception is thrown 

(where supported, as in Java or C++).  An example of a call stack from the simple 

Java program in Figure 1(a) appears in Figure 1(b). 
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public class HelloWorldApp { 

   public static void main(String[] args) { 

      System.out.println("Hello World!"); 

    } 

} 

 
(Ljava/lang/Object;ILjava/lang/Object;II)V Ljava/lang/System;arraycopy 

([BII)V Ljava/io/BufferedOutputStream;write 

([BII)V Ljava/io/PrintStream;write 

()V Lsun/nio/cs/StreamEncoder$CharsetSE;writeBytes 

()V Lsun/nio/cs/StreamEncoder$CharsetSE;implFlushBuffer 

()V Lsun/nio/cs/StreamEncoder;flushBuffer 

()V Ljava/io/OutputStreamWriter;flushBuffer 

()V Ljava/io/PrintStream;newLine 

(Ljava/lang/String;)V Ljava/io/PrintStream;println 

([Ljava/lang/String;)V LHelloWorldApp;main 

 

Figure 1:  (a) A Hello-world Example and (b) Associated Call Stack 

 

This call stack was collected by tools developed in support of this research.  In 

Figure 1(b), each line contains a method parameter list, return type, and name 

including any package or namespace qualifiers.  At the bottom of the stack appear the 

program’s entry point, main, and the println method call seen in Figure 1(a).  Above 

them are a number of library methods invoked as a consequence of the call to println. 

The basic intuition behind call-stack-based reduction is that two test cases are 

“equivalent” if they generate the same set of call stacks; hence one of them could be 

eliminated to conserve resources.  Unlike criteria such as line or branch coverage, call 

stack coverage has the benefit of encapsulating valuable context information, 
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specifically, the sequence of active method calls.  Besides having the advantage of 

taking into account the context in which a method is called and the relative ease with 

which call stacks may be collected, call-stack based reduction has additional 

advantages for modern software applications in the areas of libraries and frameworks, 

object-oriented language features, multithreading, and multi-language 

implementation.  These advantages are discussed in detail in the following sections. 

This research shows that the call stack coverage criterion provides effective 

tradeoffs between size and fault detection effectiveness for modern software 

applications when applied to the problem of test suite reduction. 

1.4. Test Suite Reduction Challenges Addressed by Call Stacks 

Modern software poses new challenges for coverage-based testing that require 

the development of new solutions.  For example, the execution model for a GUI, 

based on an event-listener loop, differs from that of conventional or batch-driven 

software. During GUI execution, users perform actions which result in events; in 

response, each event’s corresponding event handler is executed. The order in which 

event handlers execute depends largely on the order in which the user initiates the 

events. Hence, in a GUI application, a given piece of code called via an event handler 

may be executed in many different contexts due to the increased degrees of freedom 

that modern GUIs provide to users. The context may be essential to uncovering 

defects; yet most existing coverage criteria are not capable of capturing context. 

Furthermore, today’s sophisticated software applications increasingly 

integrate multiple source code languages and object code formats.  They are 

developed using new programming languages utilizing object-oriented or aspect-
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oriented paradigms.  They make use of virtual function calls, reflection, 

multithreading, and event handler callbacks.  Taken together, these features severely 

impair the applicability of techniques that rely on static analysis or the availability of 

language- and/or format-specific instrumentation tools. 

1.3.1.  Libraries and Frameworks: 

Libraries and frameworks are essential to modern software development in 

general and GUI applications in particular.  Many test coverage techniques only 

collect coverage requirement data based on instrumentation of first-party application 

source or object code.  The reasons for this include the unavailability of necessary 

third-party source code and the impracticality under most techniques of instrumenting 

an entire large framework such as the Java SDK.  By making this tradeoff, coverage 

techniques potentially overlook vast amounts of interesting behavior induced in 

library code by the application.  For example, consider the program in Figure 2.  If no 

library code is instrumented, every execution of this program against integral input 

will satisfy line, branch, and dataflow coverage.  Thus, when used in test suite 

reduction, each of those coverage approaches could potentially drop all tests that 

exercise the code with integral input greater than or less than zero, thereby missing 

coverage of the array-index-out-of-bounds exception that occurs with such input. In 

contrast, the call stack coverage technique presented in this research includes the 

library calls that appear on application-generated call stacks.  Therefore, it preserves 

at least one test that displays the abnormal control flow triggered by the exception. 
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public class ArrayTest { 

   public static void main(String args[]) { 

      String[] strings = {"first"}; 

      int index = Integer.parseInt( args[0] ); 

      System.out.println( strings[ index ] ); 

   } 

} 

Figure 2: A Simple Program Demonstrating the Impact of Library Code on 

Errors 

1.3.2.  Object-Oriented Language Features 

Modern GUI application frameworks, usually implemented in languages like 

C++, Java, or C#, make extensive use of object-oriented programming (OOP) 

language features such as virtual function calls, reflection, and callbacks for event 

handlers.  It is not possible in general to statically determine which methods will be 

invoked by a program execution.  Dynamic analysis based on call stacks is ideal in 

such an environment because in all cases the stack contains the actual methods 

invoked. Consider the program shown in Figure 3, which takes two command-line 

arguments to the main method: (1) a method name presumed to be toUpperCase or 

toLowerCase, and (2) a string argument to pass to the specified method via a dynamic 

invocation using Java’s reflection mechanism.  Because of the use of reflection, the 

call stacks generated by various executions of this program will differ based on the 

method name parameter.  Clearly this is behavior that should be captured and 

preserved after test suite reduction.  But static analysis cannot in general determine 

that toUpperCase or toLowerCase may be invoked by this program.  Similarly, 

modern GUI and server applications are often built using frameworks that employ 
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reflection-based component models where the types and methods to be used are not 

known until runtime.  Call stacks are ideal for recording test coverage in reflection 

scenarios. 

 

Figure 3: A Simple Example Demonstrating the Impact of OOP Features on 

Errors 

1.3.3.  Multithreading 

Most modern software runs with multiple threads of execution.  Indeed, 

current GUI applications are all multithreaded:  Minimally, there is one thread 

listening for user actions and another thread executing events.  And all Java and .NET 

import java.lang.reflect.*; 

public class ReflectionTest { 

 public static void main(String args[])  

  throws ClassNotFoundException, 

  NoSuchMethodException,   

  SecurityException, 

  IllegalAccessException,  

  InvocationTargetException 

 { 

  if( args.length != 2 || 

     !(args[0].equals("toUpperCase") || 

       args[0].equals("toLowerCase")) ) { 

           throw new IllegalArgumentException(); 

  } 

  String command = args[0]; 

  Class str = Class.forName( "java.lang.String" ); 

  Method m = str.getMethod( command, null ); 

  Object result = m.invoke( args[1], null ); 

  System.out.println( result.toString() ); 

 } 

} 
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applications are multithreaded, if for no other reason than the presence of the garbage 

collector.  Multiple threads of execution present challenges for traditional coverage 

techniques, which have typically been conceived for a sequential model [44].  For 

example, when collecting def-use coverage at runtime, it is not clear how to associate 

the use of a variable with a single definition when definitions can occur on multiple 

threads. 

Call stack coverage is fundamentally a sequential criterion.  However, as will 

be discussed in Chapter 3, it is straightforward to define an approach to collecting call 

stack coverage that is both simple and efficient to execute in a multithreaded 

environment. 

1.3.4.  Multi-Language Implementations 

Many traditional coverage criteria depend on the ability to fully instrument the 

source or object code of an application.  In a multi-language implementation, the 

necessary tools to insert this instrumentation may not exist for all source languages or 

object code formats in use.  Moreover, any tools that are available across 

technologies may not be interoperable in such a way to enable collection of complete 

coverage data.  Unlike coverage based on these criteria, call stack coverage is easily 

captured in a multi-language application, and with or without the availability of 

source code. In general, writing a tool to collect call stacks only requires method 

entry and exit hooks, which already exist inside most compilers or runtime platforms 

to enable the construction of call profilers. A large application implemented in 

multiple languages is no different from a single-language implementation when 

abstracted via the run-time call stack. 
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1.5. Test Suite Reduction Metrics 

Test suite reduction techniques are traditionally evaluated based on how small 

the reduced suites are and how effective they are at detecting a set of known faults 

[[42][36]].  Because the ideal reduced test suite – a single test case that detects all 

faults – is not generally obtainable, practitioners are left to evaluate the research data 

and pick the most appropriate tradeoff between the size reduction and fault detection 

reduction metrics.  To make a more informed decision, practitioners would benefit 

from different ways of looking at this tradeoff.  To assist in this matter, this research 

also develops a new weighted single-point metric for test suite reduction and applies 

it to the empirical results.  Additionally, no existing test suite reduction metric 

explicitly factors in test coverage data to account for and attempt to explain the 

performance of a given technique.  To remedy this situation, this research defines a 

new metric based on the average expected probability of finding each fault in a 

reduced test suite. 

1.6. Implementation and Evaluation 

To enable empirical studies of call-stack-based test suite reduction, a number 

of tools and analyses have been implemented.  These will be discussed in detail in 

Chapter 4.  Briefly, the tools include libraries for capturing call stacks from a running 

software application on two different platforms, along with an implementation of an 

existing test suite reduction heuristic.  Several programs were implemented to analyze 

coverage data and calculate metrics.  These metrics include the traditional test suite 

reduction metrics of percentage size reduction and percentage fault detection 

reduction, as well as the additional metrics proposed and developed by this research. 
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Additionally, this research has resulted in four publications to date.  Initial 

work with a conventional subject application on using call stacks as a coverage 

criterion in test suite reduction was presented at the International Conference on 

Software Maintenance (ICSM) in 2005 [24].  This work showed that the call stack 

coverage criterion provided good tradeoffs between test suite size reduction and loss 

of fault detection effectiveness.  The call stack approach was then targeted at modern 

subject applications in work presented at the International Symposium on Software 

Reliability Engineering (ISSRE) in 2006 [23].  This work showed that call-stack-

based test suite reduction is particularly effective in modern GUI-based software 

applications.  Expanded work from those conference papers has been accepted for 

journal publication in IEEE Transactions on Software Engineering (TSE).  The TSE 

paper includes comparisons of call-stack-based reduction to additional types of 

reduced test suites, and it incorporates new analyses.  A novel analysis approach 

developed by and key to this research was presented at the International Conference 

on Software Maintenance (ICSM) in 2007 [25].  This approach, based on the average 

probability of detecting each fault in a reduced test suite, has applicability to the 

general problem of test suite reduction. 

1.7. Contributions 

This research makes the following contributions to the fields of test suite 

reduction and software testing: 

1. It defines and develops call stacks as a coverage criterion for use in test 

suite reduction. 
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2. It empirically evaluates call stacks in the context of coverage-based test 

suite reduction versus several traditional coverage criteria. 

3. It investigates the importance of including library and framework coverage 

information when reducing test suites. 

4. It empirically shows that the effectiveness of test suite reduction techniques 

can differ between conventional and modern software applications. 

5. It develops a new weighted single-point metric for effectiveness of test 

suite reduction techniques to be applied by practitioners considering test 

suite reduction. 

6. It analyzes coverage-based test suite reduction techniques using a novel 

metric that explicitly accounts for test coverage data and the average 

expected probability of detecting each fault in a reduced test suite. 

7. As an effect, it produces tools and analyses that can be used by other 

researchers in furthering the study of call stacks and test suite reduction. 

8. It produces data including program artifacts, full and reduced test suites, 

fault matrices, and coverage data which can be made available to other 

researchers to aid in their investigations of test suite reduction in particular 

and test case management problems in general. 

The rest of this document is structured as follows.  Chapter 2 discusses related 

work.  In Chapter 3, a formal model for call stacks is defined.  Chapter 4 presents the 

tools and techniques developed and used in this research.  In Chapter 5, existing and 

novel metrics for the evaluation of coverage-based test suite reduction are discussed.  

Chapter 6 presents a series of experiments to answer research questions related to the 
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use of call stacks in test suite reduction.  In Chapter 7, the results are analyzed relative 

to a newly proposed metric for test suite reduction.  And Chapter 8 concludes and 

discusses future work in this line of research. 
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Chapter 2: Related Work 

Several approaches to the problem of test suite reduction have been proposed 

by other researchers.  Many of those employ test coverage information to determine 

which test cases should remain in a reduced suite and which should be discarded.  

Key problems remain with traditional approaches, including the challenge of 

collecting various types of coverage data in modern software applications and 

limitations in the tradeoff between size reduction and fault detection effectiveness – 

the two metrics against which test suite reduction has traditionally been evaluated. 

This work is particularly concerned with developing new coverage criteria for 

modern software applications.  Many applications that employ graphical user 

interfaces (GUIs) exemplify the characteristics of modern software that motivate this 

research, including object-orientation, extensive use of libraries, and multithreaded 

execution.  Other researchers have developed approaches to the general problem of 

GUI testing which will be used in this work. 

This research applies call stack coverage to the problem of test suite 

reduction.  Several researchers have developed other types of program analyses that 

leverage sequences of method calls. 

Related research from the areas of GUI testing, test suite reduction, and call 

chains are presented here. 

2.1. Test Suite Reduction 

There have been numerous studies of test suite reduction while holding 

coverage constant relative to some criterion and evaluating reduction’s relationship to 
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fault detection effectiveness.  Wong et al. [42] reduce relative to the all-uses coverage 

criterion and observe little or no fault detection effectiveness reduction in the reduced 

suites. They also find a direct relationship between the ease of finding faults and the 

likelihood that they will be detected after reduction.  In contrast, Rothermel et al. [35] 

reduce with respect to all-edges coverage and find significant reductions in fault 

detection effectiveness.  They contrast their results with those of Wong et al. [42] and 

suggest possible causes for the different conclusions. However, collecting all-uses 

and other dataflow coverage information generally requires tools that may be difficult 

to build and use for certain environments, particularly against an application built 

using multiple programming languages [15].  In contrast, call stack coverage 

information is relatively simple to obtain using tools developed and made available as 

a part of this research [17].  Additionally, call stack coverage can be analyzed on any 

stack-based runtime environment, which encompasses most language and system 

combinations in practical use today. 

To develop and evaluate the idea of call-stack-based test suite reduction, this 

research uses the ReduceTestSuite heuristic presented by Harrold et al. [13].  This 

heuristic is discussed in more detail in Section 4.2.  A different approach to coverage-

based test suite reduction known as the “ping-pong” heuristics is given by Offutt et 

al. [31].  Using the “ping-pong” heuristics in call-stack-based reduction is a possible 

avenue of future work. 

There are alternative approaches to test suite reduction that do not explicitly 

maximize test coverage relative to a traditional criterion.  One such alternative is the 

“operational difference” technique of Harder et al. [12].  This approach builds up a 
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reduced suite by pulling test cases from the test pool and adds them to the suite if they 

change the “operational abstraction,” which is a mathematical picture of the 

program’s dynamic behavior maintained across the execution of the test set.  This 

process terminates when a certain number of consecutive cases produce no 

abstraction changes.  Another approach that does not explicitly attempt to maximize 

test coverage is the cluster sampling of Leon and Podgurski [21], and Dickinson et al. 

[6].  The average probability of detecting each fault as defined in this research could 

be used to identify the best coverage criteria to be used as inputs for cluster 

formation.  Also, the context-preserving nature of call stack coverage should make it 

an excellent criterion on which to cluster test cases. 

Jeffery and Gupta [20] introduce a test suite reduction approach that combines 

“primary” and “secondary” coverage criteria in the reduction algorithm.  The 

“selective redundancy” technique is so named because certain test cases are known to 

add no additional coverage of the primary criterion, but by selecting such tests based 

on the second criterion, they are able to generate reduced test suites with fault 

detection effectiveness better than using either criterion alone.  Results from this 

research for the average probability of detecting each fault when using pairs of 

coverage criteria provide some additional evidence that combining criteria can be 

particularly effective in test suite reduction.  Additionally, call stack coverage would 

be an interesting choice as a criterion in this technique, perhaps as a secondary 

participant with one of the simpler but context-insensitive criteria such as statement 

or branch coverage. 
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Sampath et al. use concept analysis to generate minimal test suites from user 

sessions defined as URLs in a web application [39].  Their approach has the 

interesting property that test suites can be incrementally updated as new user session 

data becomes available.  Although web application URLs model program behavior at 

a very different level of abstraction from call stacks, it is possible that methods in a 

call stack could be arranged in a concept lattice and a similar reduction technique 

applied. 

In their study of test suite reduction for model-based tests, Heimdahl and 

George raise the notion of an “ideal coverage criterion” which “would detect all 

faults in the system under test and any test-suite, large or small, providing this 

coverage would reveal the same faults” [14].  Along the same line, Rothermel et al. 

point out that assuming an equal likelihood of selecting one of k test cases that hit a 

coverage requirement, and only one test case detects a given fault, the probability of 

omitting the fault-detecting test case under coverage-based test suite reduction is (k-

1)/k  [36].  This research claims to be the first to attempt to formalize and fully 

quantify these notions. 

The test suite reduction problem is closely related to test case prioritization 

[10], because any reduction technique can be turned into a prioritization technique by 

repeated application of the reduction algorithm to the remainder of the suite. 

2.2. GUI Testing 

This research conducts empirical studies to evaluate the effectiveness of the 

call stack coverage criterion in test suite reduction compared to other possible 

approaches.  When considering other approaches, it is notable that new coverage 
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techniques for GUIs have recently been developed.  Event-based coverage [29] is 

specially tailored for use in GUI applications, for which test cases can be modeled as 

sequences of events.  Events may be menu invocations, button clicks, key presses, 

etc.  The experiments in this research use two different event coverage criteria, 

“event” and “event-interaction” [29].  In event coverage, each event in isolation is a 

coverage requirement, while in event-interaction coverage, unique pairs of events are 

included as requirements.  

Empirical testing studies of GUI applications are aided by the availability of 

the GUITAR infrastructure [30].  GUITAR includes several subject applications 

along with fault-seeded versions, a universe of test cases, and fault matrices mapping 

test cases to the faults that they uncover.  This infrastructure also includes a test case 

automation runtime, the JavaGUIReplayer, which makes it possible to rapidly and 

automatically execute test suites against the subject applications for the purpose of 

collecting test coverage data. 

2.3. Call Chains 

Rountev et al. [38] also consider the problem of “call chain” coverage, 

beginning with a static analysis of potentially feasible call chains and dynamically 

measuring test coverage against it.  They use the results of this analysis to guide the 

augmentation of a test suite to achieve higher coverage.  Because the static analysis is 

conservative and therefore imprecise, achieving 100% coverage by these criteria is 

not in general possible.  Unlike this research, the authors do not address the impact of 

this type of coverage on test suite reduction, and their dynamic analysis assumes 

exception-free, single-threaded execution. 
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The Rostra framework [43] collects method sequences on a given object in an 

object-oriented system.  The sequences are then used as coverage criteria for test suite 

reduction (among other applications).  Unlike Rostra, the call stack approach used in 

this research operates on an entire program rather than individual objects.  Rostra is 

therefore focused on and only appropriate for unit-level testing.  This research shows 

that call stacks can be effective at the system level.  Also unlike Rostra, the call stack 

technique used in this research makes no assumptions about the threading behavior of 

test case executions or the usage of shared variables. 

This research makes use of the calling context tree (CCT) data structure to 

collect call stack coverage data.  The calling context tree provides an efficient 

approach to track the context of method calls in a running program.  Ammons et al. 

first proposed the calling context tree and provided a deterministic algorithm for 

building it at runtime [1].  Bond and McKinley present a probabilistic method of 

approximating the calling context tree which can be more efficient [4]. 

2.4. Summary 

Prior to this research, call stacks had not been used before as a criterion for 

coverage-based test suite reduction. This approach advances the state of the art in test 

suite reduction in three primary ways.  First, call stack coverage data is simple and 

efficient to collect in most runtime environments, and yet it still captures much 

interesting dynamic program behavior, including the context in which method calls 

occur.  Second, empirical results of this research show that call-stack-based test suite 

reduction provides unique and potentially desirable tradeoffs between reduction in 

size and reduction in fault detection effectiveness.  Finally, evaluating the 
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effectiveness of call-stack-based test suite reduction while performing this research 

has led to the development of new metrics and analyses which can be applied by 

other researchers in future studies. 
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Chapter 3: Modeling and Collecting Call Stacks 

This research is grounded in a robust formal model of call stacks which 

considers how call stack coverage data can be collected, and how that data is applied 

to the problem of test suite reduction.  The following sections develop this model and 

its motivations. 

3.1. Considerations in Modeling Call Stacks 

3.1.1. Runtime Feasibility 

There are multiple ways to collect call stack coverage data.  The most naïve 

approach is to collect from a running program a full trace of method calls and returns.  

Later, the set of call stacks can be trivially constructed offline by stepping through 

this trace.  This approach also has the benefit that no sophisticated in-memory data 

structures must be maintained during program execution.  In practice, this method 

proves infeasible for non-trivial programs and test cases as the size of the traces 

grows linearly with the length of the test cases, causing the resulting data sets to 

become awkward to store and post-process. 

A second approach is to capture a snapshot of the current call stack at each 

method call in the running program and add it to a set of all stacks observed during 

the test case. Compared to method traces, the volume of coverage data produced by 

this technique will scale better with the length of the test case as, over time, many 

stacks will be observed repeatedly.  However, a disadvantage of this approach is that 

maintaining the set of all stacks observed is relatively memory- and CPU-intensive at 
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runtime, as the stacks must be stored and available online, and newly observed stacks 

must be checked against those already observed. 

The problems with the second approach are largely due to the fact that it 

maintains a large amount of redundant data.  The observation that pushing a new 

method onto the runtime call stack (to make it “taller”) is actually just an extension of 

the (“shorter”) call stack that was current immediately prior leads to a more efficient 

approach.  In the third approach, only the unique deepest stacks are maintained, 

giving the same knowledge about the call stack coverage generated by a test case but 

with far less data volume and runtime overhead.  Sections 3.2 and 3.3 describe this 

approach in detail. 

All of the above approaches to collecting call stack data can easily be 

extended to apply to multithreaded programs by collecting coverage per thread of 

execution and merging the data after threads exit.  However, call stacks are 

intrinsically tied to a single thread and thus do not explicitly capture any information 

about thread interactions. 

3.1.2. Representation of Call Stacks 

There are also multiple ways to model and represent call stacks for use in test 

suite reduction. In Figure 1(b), a call stack is represented by the full method signature 

of each active method.  Other possible approaches include capturing each active 

method by its method name only, or by full signature plus parameter values.  

Additionally, each representation may be augmented by a maximum allowable depth 

of recursion. 
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In practice, the chosen call stack representation will have an impact on the 

feasibility and effectiveness of the reduction technique.  For coverage-based test suite 

reduction to work well, neither too many nor too few unique coverage requirements 

should be observed by a full test suite.  Some models may generate so many distinct 

call stacks that too little redundancy exists to serve as a basis for eliminating test 

cases.  Other models may generate so few different call stacks that differences 

between test cases are lost, leading too many test cases deemed redundant and 

therefore discarded.  In such a scenario, fault detection effectiveness is compromised. 

Additionally, collection and analysis for a highly granular model (such as one 

including method parameter values) may be infeasible from a resource perspective.  

Due to heavy use of libraries and the runtime environment itself, even an extremely 

simple Java application may generate thousands of call stacks.  Indeed, in the version 

of Java used in this work, when using full method signatures, a typical execution of 

the simple program in Figure 1(a) generates 803 call stacks; subject applications built 

with Java Swing and used in the experiments of Chapter 6 generate hundreds of 

thousands.  One possible approximation to complete call stack coverage which is far 

less resource-intensive is to omit library calls from the collected call stacks.  

Techniques with and without library call information are considered in the 

experiments of Chapter 6. 

3.2. Definitions 

Each running thread in a multithreaded application has a current stack of 

active method calls, where the most recently called method is at the top of the stack.  

Each thread generates a set of current stacks over its lifetime.  If c = <m1, m2, … mn> 
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is a call stack of depth n, we define a substack cs (denoted by a subscript s) and a 

superstack c
s
 (denoted by a superscript s) as the following ordered sequences, which 

are themselves call stacks: 

(1)  cs = <m1, m2, … mi>, i < n 

(2)  c
s 
= <m1,m2, … mn, … mi>, i > n 

Let the set of all unique stacks generated by a thread t be denoted as C(t).  For 

a given call stack c in any thread t, there is associated with c a set of substacks C(t)s 

and a set of superstacks C(t)
s
.  This research defines the set of deepest, or maximum 

depth, stacks C(t)max in a thread t as follows: 

(3)  C(t)max = {c  C(t) | C(t)
s
 = } 

Here,  is the empty set. That is, C(t)max is the set of all call stacks that do not have 

any superstacks. Since each maximum depth stack implies the existence of all of its 

substacks in C(t), C(t)max is a more compact representation of the set of all unique call 

stacks generated by thread t. 

To characterize the behavior of an entire multithreaded program, it is possible 

to combine call stack observations made on each thread that took part in a given 

program execution.  Thus, the set of threads that existed during execution is defined 

as: 

(4)  T = <t1, t2, … tn> 

The set of unique call stacks for a program input I is represented by: 

(5) Cmax(I)  { C(t)max | t T } 

Cmax(I) is the union of the sets of maximum-depth stacks observed on any 

thread, and each element of Cmax(I) is a coverage requirement in the reduction 
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technique.  Note that the definition of Cmax(I) allows for the possibility that a 

maximum-depth stack on one thread is a substack of a maximum-depth stack on 

another, and both stacks would appear in Cmax(I).  Therefore, Cmax(I)  is not 

necessarily a set of unique maximum-depth stacks.  Although this may cause the 

technique to produce less size reduction than it might otherwise, it is allowed for 

practical reasons, as checking for substack relationships across all stacks in every 

C(t)max for each thread t is computationally very expensive and of marginal benefit. 

This research defines a test case as input given to a program in order to test 

one or more aspects of the program. Running a test case tc from a test suite TS 

implies the execution of the program, which itself implies that a set of maximum 

depth call stacks Cmax(tc) generated by the execution can be associated with tc.  Two 

test cases tc1 and tc2 are considered to be equivalent if they generate identical sets of 

maximum depth call stacks. 

(6) tc1 ~ tc2 iff Cmax(tc1) = Cmax(tc2) 

Since a test suite is a set of test cases, we denote the union of all Cmax’s for all 

the test cases in a test suite TS as: 

(7) Stacks(TS) ={Cmax(tc) | tc TS } 

A test suite reduction technique is defined to be a complete approach for reducing 

the size of a test suite, including any necessary static or dynamic program analysis.  

For coverage-based test suite reduction, a technique consists of a coverage criterion 

and an algorithm for reducing the suite while holding coverage of that criterion 

constant.  The proposed technique considers a maximum depth call stack to be a 

coverage requirement in the test suite reduction algorithm ReduceTestSuite [13].  
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Thus, execution of a reduced test suite TS
reduced

 will generate the same set of unique 

call stacks as execution of its original (full) counterpart TS
full

, i.e., Stacks(TS
full

) = 

Stacks(TS
reduced

). 

3.3. Calling Context Tree 

An efficient data structure for recording call stacks on a given thread of execution 

is the calling context tree, or CCT [1].  The CCT is a tree data structure where the 

root represents the method that is the entry point of a thread, and each child node 

represents a call to a specific method made by its parent.  It is possible to construct a 

CCT efficiently at runtime by using the following process which is discussed in detail 

in Ammons et al. [1]: 

1. Create a node representing the entry point of the thread and make it the 

current node. 

2. When a method is called: 

a. If the current node has a child node representing the called method, 

make that the current node. 

b. If a node representing the called method is an ancestor of the current 

node, the call is recursive.  Create a backedge to that ancestor node 

and make it the current node. 

c. If the current node does not have a child node representing the called 

method, create such a node and make it the current node. 

3. When a method returns, set the current node to its parent. 

While generally large for non-trivial applications, the size of the CCT data 

structure does not grow unbounded (as a full method trace would) over the run-time 
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of a test case, thus making the resulting data volume constant and manageable.  Once 

a CCT is constructed, the set of unique maximum-depth call stacks recorded in that 

CCT may be calculated by traversing each path to a leaf in the tree. 

A CCT-based approach to collecting call stack coverage is easily extensible 

into a multithreaded environment.  One approach would be to maintain a single CCT 

shared and updated by all threads in a multithreaded program.  Synchronization of 

access to this data structure becomes an issue, however.  An alternative approach (and 

the approach used in this research) is to create a separate CCT for each thread as it is 

created, and then maintain that CCT over the thread’s lifetime as methods are entered 

and exited.  When a thread exits, its CCT is traversed to calculate the set of unique 

call stacks seen on that thread, and the unique stacks are synchronously merged into a 

master list of unique stacks seen on all threads.  This approach allows for greater 

application concurrency than the single-CCT alternative.  A potential drawback is that 

an application with many short-lived threads may stall frequently for processing of 

the CCTs, but this was not an issue in the applications or test cases used in this 

research. 

3.4. Summary 

By showing how the problem of collecting call stack coverage data is equivalent 

to computing the set of unique maximum-depth stacks for a given program input, and 

applying the CCT data structure at runtime, it becomes possible to efficiently 

determine call stack coverage of a test suite.  The following chapter presents a 

concrete implementation of these ideas which is suitable for experimentation. 



 28 

 

Chapter 4: Implementation 

No previously existing tools were found suitable to collect call stack coverage 

data from a running program in any environment.  Therefore, to conduct research into 

call-stack-based test suite reduction, it was necessary to build several tools from 

scratch.  Most important is JavaCCTAgent, a tool to collect call stacks from a running 

Java program that has been made available to the research community [17].  In the 

following sections, all of the tools will be discussed in detail. 

4.1 Collecting Call Stacks 

4.1.1. General Approach 

One of the key advantages to using call stack coverage as opposed to other 

types of coverage is that very little instrumentation or platform support is required to 

collect call stacks from a running program.  All that is strictly necessary is the ability 

to be dynamically notified when a method is called and when it returns, so that the 

proper state of a calling context tree (CCT) can be maintained.  These same 

operations are fundamental to the operation of call profilers, and therefore they have 

long been readily available in most language, environment, and platform 

combinations.  Indeed, both call stack coverage collection libraries used in this 

research operate with no modification to the original program source. 

As discussed in Section 3.3, collection of call stack coverage requires that a 

CCT must be maintained for each thread.  Therefore, it is also important for a call 

stack coverage implementation to be notified by the environment when threads are 
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created and destroyed.  In the multithreaded environment used in this research (Java), 

this requirement was well-supported. 

4.1.2. Detours-Based Implementation for Win32 

Two concrete implementations of the general approach were used in this 

research.  The first works on C/C++-language programs on the Windows platform, 

making use of the Detours package [16].  Detours is a library that allows dynamic 

interception of binary function calls on the Win32 platform without modifying the on-

disk program.  Detours’ “dynamic trampoline” functionality is used to insert hooks at 

each function entry and exit in the application-under-test to build the CCT.  This 

approach requires specific instrumentation code external to the target program for 

each function in the program, and the use of a binary version containing debugging 

symbols.  This instrumentation code was generated by a tool whose input was a list of 

function prototypes.  The generated code was built into a separate code module 

attached to the subject application’s process at runtime using functionality in Detours.  

Thus, neither the source code nor the on-disk program of the subject application is 

modified.  This implementation was not used on any recursive programs and 

therefore has no support for recursion built into the CCT module. 

Since it is expected that Win32 programs will make use of the Standard C 

Library, the instrumentation of that code is also addressed.  Instead of instrumenting 

all public and internal functions in the library (which would require examination of 

the full library source code to make use of a Detours-based approach), the 

implementation used in this research only tracks those functions defined in the public 

C library headers and called by an application under study or a macro used by an 
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application under study. Thus, internal library functions do not appear on the call 

stacks collected by this implementation, making them in fact an approximation (albeit 

a good one since most C library function implementations do not generate deep call 

graphs).  As discussed in Chapter 3, there is a tradeoff between the level of detail 

included in the call stacks (and thus the effectiveness of the technique) on one hand 

and the practicality of instrumentation and analysis time on the other.  The limitations 

inherent in the Detours-based approach served as a motivation to do an 

implementation for the Java environment, where the impact of library functions and 

the fidelity of call stacks could be studied in detail. 

4.1.3. JVMTI-Based Implementation for Java 

The second implementation for call stack coverage data collection targets Java 

programs.  The Java Virtual Machine environment has advantages over the 

Detours/Win32 environment for the study of call stacks.  By building a Java Virtual 

Machine Tool Interface (JVMTI) agent [33], it is a simple matter to collect call stack 

coverage data from the entire stack of runtime libraries.  Additionally, experimental 

artifacts more representative of the modern techniques that motivate this research 

were available for Java. 

JavaCCTAgent was built as a part of this research to collect the CCT data 

necessary for call stack coverage analysis [17].  In this implementation, call stacks are 

represented as an ordered set of full method signatures of the active methods.  The 

JVMTI hooks for method entry and method exit are used to maintain a CCT for each 

thread.   Direct recursive invocations are permitted in this tool but are only captured 

to a depth of one.  As threads die and at the end of program execution, the coverage 
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information from each CCT is merged and processed into a set of unique call stacks 

which are ultimately written to the file system. 

Since coverage is collected for each thread, data on system threads is being 

collected where the subject program is not even on the stack.  Since activity on 

system threads (such as the one on which the garbage collector runs, or the one that 

serves GUI events in the Java Swing libraries) is somewhat environmentally 

dependent and may vary from run to run, this introduces a potential element of non-

determinism into the data collection and, by consequence, may have an impact on the 

specific tests selected in the reduction process.  However, this could be considered a 

positive result, as certain test cases may be more likely than others to induce fault-

indicating activity on the aforementioned system threads. 

The output of the JVMTI agent consists of two files. The first file represents 

the observed call stacks as a list of tab-delimited method identifiers.  The agent stores 

Java Native Interface (JNI) [18] method identifiers instead of full method signatures 

in order to save space.  However, method identifiers are assigned by the JVM and are 

not necessarily consistent across different executions of the same program.  So the 

second output file contains a map of JNI method identifiers to the full method 

signatures.  When calculating the set of unique call stacks across two or more test 

cases, maps are used to create a canonical form based on the method signatures. 

4.2. Reducing Test Suites 

This research uses the ReduceTestSuite algorithm presented by Harrold et al. 

[13] to reduce a full test suite given its coverage information.  Because finding a 

minimal test suite that satisfies each coverage requirement is an NP-complete 
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problem [13], ReduceTestSuite takes a heuristic approach.  The algorithm includes in 

the reduced suite all test cases that cover a single coverage requirement.  Then it picks 

a test case that covers the most coverage requirements from the subsets of cases with 

the next lowest cardinality, marking all of the subsets that contain this case. This 

process occurs repeatedly for higher cardinality subsets until all subsets are marked 

and, therefore, all requirements are covered.  If n is the number of coverage 

requirements and m is the number of test cases, then runtime of this algorithm is 

O(n*Max(m,n)).  The implementation of ReduceTestSuite used in the subsequent 

empirical studies is written in C#. 

4.3. Other Tools 

Additional tools were utilized in the experiments to execute test cases and 

collect various types of coverage.  For GUI applications, a tool called GUI Ripper 

[26] automatically derives a model of a GUI, and from that model, test cases with 

varying event sequence lengths can be automatically generated.  Another tool, the 

JavaGUIReplayer [30], can subsequently be used to execute the test cases.   

In this research, line coverage data was obtained using the jcoverage tool [19] 

or the very similar Cobertura tool
1
 [5].  For feasibility, the line coverage technique 

does not include coverage of supporting libraries for Java programs, but rather only 

includes coverage of the subject application source. 

 

                                                 

1
 Over the course of this research program, jcoverage ceased to be freely available.  Cobertura provides 

equivalent functionality but is open-source. 
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Chapter 5:  Test Suite Reduction Metrics 

A primary concern of this research is determining how call stacks compare to 

other coverage criteria when used in coverage-driven test suite reduction.  The 

effectiveness of applying various coverage criteria in test suite reduction is 

traditionally based on empirical comparison of two metrics derived from the full and 

reduced test suites and information about a set of known faults.  The two metrics, 

which follow directly from the dual goals of test suite reduction, are percentage size 

reduction and percentage fault detection reduction.  Additionally, to further validate 

the usefulness of call stack coverage, this research seeks a deeper understanding of 

why a given criterion performs well or poorly in the test suite reduction problem.  

Along those lines, a novel contribution of this research is a new fault detection 

probability metric. 

5.1. Percentage Size Reduction 

Percentage size reduction is a direct measure of the number of test cases that 

are eliminated from a full test suite by a reduction technique.  Given the sizes of a full 

and corresponding reduced test suite, the value is given in Equation (8): 

(8)  % Size Reduction = 100 * (1 – SizeReduced / SizeFull) 

5.2. Percentage Fault Detection Reduction 

Percentage fault detection reduction measures the percentage of faults found 

by a full test suite that are not found by the corresponding reduced test suite.  In this 

research, fault detection effectiveness is measured on a per-test-suite basis, i.e., two 

test suites were considered to be equally effective at detecting a specific fault if they 
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each contain at least one case that exposes the fault.  This is the approach adopted by 

Rothermel et al.[35] and Wong et al.[42].  Given the number of faults detected by a 

full and corresponding reduced test suite, the value is given in Equation (9): 

(9)  % Fault Detection Reduction = 100 * (1 – FaultsDetectedReduced / 

FaultsDetectedFull) 

Other researchers sometimes use fault detection effectiveness as an alternative 

to percentage fault detection reduction.  Fault detection effectiveness measures the 

percentage of faults retained rather than lost in a reduced test suite.  Therefore: 

(10)  Fault Detection Effectiveness 

= 1 – [100 * (1 – FaultsDetectedReduced / FaultsDetectedFull)] 

= 1 - % Fault Detection Reduction 

5.3. Fault Detection Probability Metric 

Neither the percentage size reduction nor the percentage fault detection 

reduction explicitly factors test coverage data into the calculation.  This limits the 

usefulness of these metrics to account for and attempt to explain the performance of a 

given coverage criterion and technique.  This section defines a number of functions 

on the coverage and fault data collected from an application, its test pool, a set of 

known faults, and a coverage criterion.  These definitions lead to a new metric for 

coverage-based test suite reduction utilizing the average probability of detecting each 

fault.  Intuitively, this metric captures the likelihood that coverage-preserving reduced 

test suites will detect the same faults as their original counterparts, taking into account 

the number of coverage requirements which only appear in fault-detecting test cases.  

Subsequent experiments in Chapter 6 will show that this quantity varies greatly 
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depending on the selected coverage criterion, thus making it useful in selecting the 

best criterion to use in a test suite reduction technique. 

5.3.1.  Data Structures 

Given a subject application, a set of test cases TC(1..J), a set of known faults 

KF(1..K), and a set of coverage requirements CR(1..I), it is possible to obtain two 

artifacts important to the study of test suite reduction, as well as the closely related 

topics of test case prioritization [37] and regression test selection.  The first is the 

coverage matrix, C, [9] for a test suite.  In a coverage matrix, each row represents a 

coverage requirement, such as a line, edge or call stack, and each column represents a 

test case.  A cell value C(i, j) is 1 if coverage requirement i is satisfied by test case j 

and 0 otherwise.  Based on the coverage matrix, it is possible to define a function 

covReqTCs(C, i), which, given a coverage matrix C and a coverage requirement i, 

returns the set of test cases which satisfy the given requirement. 

(11) covReqTCs(C,i) = {j TC | C(i, j) = 1} 

Second, consider the fault matrix, F, where each row represents a known fault 

and each column is a test case.  A cell value F(k, j) is 1 if fault k is detected by test 

case j and 0 otherwise.  This leads to another function, detectsFaultTCs(F, k), which 

accepts a fault matrix F and fault number k and returns the set of test cases that detect 

k. 

(12) faultDetectingTCs(F,k) = {j TC| F(k, j) = 1} 

For a given test suite, the matrices C and F have the same column rank which 

is the number of test cases. 
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5.3.2.  Metric Definition 

Making use of the coverage matrix C and fault matrix F, this research defines 

a metric that captures the average expected probability of finding each fault after 

coverage-based test suite reduction.  This metric will be independent of the selection 

of a specific coverage-preserving reduction algorithm.  From C and F, the fault 

correlation for a coverage requirement i to a fault k is defined as the ratio of test cases 

in the test suite that satisfy the coverage requirement and detect the fault to the 

number of test cases that merely satisfy the coverage requirement.  This value is 

calculated from the cardinality of these sets as follows: 

(13)  faultCorr(C,F,i,k) = Card[ covReqTCs(C,i) faultDetectingTCs(F,k) ]  

/ Card[ covReqTCs(C,i) ] 

If a coverage requirement i is satisfied only by test cases that detect a given 

fault k, then faultCorr(C,F,i,k) = 1, the maximum possible fault correlation.  

Intuitively, any coverage-preserving test suite reduction technique must select a fault-

detecting test case for that fault. 

If a coverage requirement is satisfied by two test cases, one of which detects a 

given fault and one of which does not, the fault correlation with that coverage 

requirement is 0.5.  If no coverage requirement leads to a higher fault correlation, 

then a coverage-preserving test suite reduction technique would select a fault-

detecting test case with a minimum probability of 0.5.  The cumulative effect of fault 

correlations from other coverage requirements may further raise the actual probability 

of detecting the fault if those requirements are covered by different test cases than the 

coverage requirement with maximum fault correlation.  But for simplicity, consider 
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each coverage requirement and corresponding fault correlation independently, which 

reflects the worst-case scenario.  Then, the expected (minimum) probability of 

finding a given fault after test suite reduction is defined as the maximum fault 

correlation of all coverage requirements with that fault: 

(14)  expProbFindFault(C,F,k) =Max( faultCorr(C,F,i,k), i  CR) 

This definition can be extended to incorporate all known faults as follows:  

The expected probability of finding all faults after test suite reduction is the product 

of the expected probability of detecting each fault: 

(15)  expProbFindAll(C,F) = ( expProbFindFault(C,F,k), k  KF) 

Because a goal of this research is to compare how various coverage criteria 

(call stacks in particular) perform in test suite reduction, a metric which is normalized 

across subject applications and test suites with differing numbers of coverage 

requirements and detectable faults is required.  Thus, the metric that will be 

considered is the average expected probability of detecting each fault: 

(16)  avgExpProbFindEach(C,F) = Avg( expProbFindFault(C,F,k), k  KF ) 

Figure 4 presents an algorithm for calculating (16) for a given subject 

application, fault matrix, and coverage matrix. 
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The CalcFaultDetectionProbability algorithm assumes the coverage matrix 

and fault matrix as inputs (Lines 1 and 2).  It then declares an array with length equal 

to the number of known faults to hold the calculated probabilities (Line 3).  Then for 

each coverage requirement for each fault, counters are initialized to hold the number 

ALGORITHM:  CalcFaultDetectionProbability ( 

1  C(1..I, 1..J), /* coverage matrix, I=number of  

        coverage requirements,  J=number of test cases*/ 

2  F(1..K, 1..J) /* fault matrix, K=number of known  

                       faults, J=number of test cases */ 

3    Declare P(1..K) /* expected probabilities of  

                           finding faults 1..K */ 

4    for k = 1..K { /* for each fault */ 

5      P(k) = 0 

6      for i = 1..I { /* for each coverage  

                            requirement */ 

7        countCoveringCases <- 0 

8        countCoveringDetectingCases <- 0 

9        for j = 1..J { /* for each test case */ 

10         if C(i, j) = 1 then { 

11           countCoveringCases <-  

                         countCoveringCases + 1 

12         } 

13         if F(k, j) = 1 then { 

14           countCoveringDetectingCases <-  

                countCoveringDetectingCases + 1 

15         } 

16       } /* j */ 

17       if countCoveringCases = 0 then next i 

18       faultCorrelation =  

                countCoveringDetectingCases /  

                        countCoveringCases 

19       P(k) = Max(faultCorrelation, P(k)) 

20     } /* i */ 

21   } /* k */ 

22   Return Sum(P(1..K)) / K 

Figure 4:  CalcFaultDetectionProbability Algorithm 
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of test cases that cover the requirement, and both cover the requirement and detect the 

fault (Lines 4..8).  The coverage matrix and fault matrix are referenced for each test 

case to increment the counters (Lines 9..16).  It is possible that no test cases hit the 

coverage requirement, in which case the algorithm moves forward to the next one 

(Line 17).  The counters are then used to calculate the fault correlation number (Line 

18), and the maximum probability of detecting the fault is potentially updated (Line 

19).  After all coverage requirements and faults are evaluated, the average probability 

of detecting each fault is calculated (Line 22). 

This chapter has defined the traditional metrics for percentage size reduction 

and percentage fault detection reduction, as well as a novel metric based on the 

average probability of detecting each fault in a reduced suite.  In the next chapter, 

these metrics will be applied to the results of a set of experiments to compare the 

performance of different coverage criteria when used in test suite reduction. 
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Chapter 6:  Experiments 

Five experiments were performed to evaluate the effectiveness of call-stack-

based test suite reduction, each to address a specific research question.  This chapter 

will discuss the conduct of the experiments and their results. 

6.1. Research Questions 

Five research questions are posed in the following subsections.  Research 

Questions 1 through 4 (Q1-Q4) are addressed using experiments that capture the 

percentage size reduction and percentage fault detection reduction as given in 

Equations (8) and (9).  Since these experiments deal with a fairly small number of 

discrete faults (as will be seen in Section 6.2), averages of these quantities were taken 

over large numbers of suites.  Research Question 5 (Q5) will be answered using the 

average probability of detecting each fault, calculated as given in Equation (16).  To 

further explore Q5, analyses based on the number of faults always found in coverage-

equivalent reduced test suites will also be performed. 

6.1.1. Research Question Q1 

How do the size and fault detection effectiveness of call stack-based reduced 

test suites compare to those of suites reduced on the basis of existing coverage 

criteria? 

For call stack coverage to be compelling as a criterion for test suite reduction, 

it should provide new and useful characteristics for size reduction and fault detection 

effectiveness when compared to previously existing criteria.  This research compares 

coverage techniques using experiments involving both conventional, batch-oriented 
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applications and modern GUI applications.  (Subject applications are discussed in 

detail in Section 6.2.)  Method coverage (M) is compared to call stack coverage (CS) 

for all subjects.  For GUI subject applications, event (E) and event-interaction (E2) 

coverage are added.  (E1 and E2 do not apply to non-GUI applications.)  

Additionally, line coverage is used where readily available, specifically, in the Java-

based subjects. 

Event-based coverage [29] has been developed specifically for applications 

where test cases can be defined as sequences of events, and as such it is particularly 

suited to GUI applications.  Examples of events in GUI applications include button 

clicks, menu selections, and keystrokes.  In this work, reduction techniques based on 

two different event sequence lengths are considered.  In E1, each event in isolation is 

a coverage requirement to be covered by any reduced test suite, and in E2, coverage 

requirements are made up of pairs of events. 

Lines, methods, and edges are program elements measured in well-studied, 

traditional test coverage techniques.  In line coverage, the coverage of each source 

code line induced by test execution against a given subject application is measured.  

From this, it is possible to define reduction technique L, in which reduced test suites 

must obtain the same line coverage as their full counterparts.  Method coverage is 

used to reduce test suites in the M technique.  In M, each method appearing in the full 

test suite must also appear in the corresponding reduced suite.  This information is 

derivable from call stack coverage data and does incorporate coverage of libraries for 

Java programs. 
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6.1.2. Research Question Q2 

How does fault detection effectiveness of call-stack-based reduced test suites 

compare to suites of the same size created using other approaches? 

In the investigation of Q1, it is possible that reduced suites created using a 

given technique have better fault detection effectiveness due solely to the fact that the 

technique selects more test cases on average than another technique.  Q2, therefore, 

removes size as an independent variable.  Here, it is investigated whether test suites 

created by call stack reduction preserve more fault-detecting ability than randomly 

reduced suites of the same size, as well as line, event, and method-reduced suites (as 

applicable) augmented with additional random test cases to make them the same size. 

6.1.3. Research Question Q3 

How does including coverage information from third-party libraries affect the 

size and fault detection effectiveness of reduced test suites? 

A significant advantage of the call stack criterion is its ability to capture 

interesting behavior from platform libraries without necessarily requiring invasive 

instrumentation of those libraries.  For applications that make extensive use of 

libraries such as the Java 2 Software Development Kit (SDK), it is informative to 

evaluate the impact of including library routines in method and call stack reduction 

on size reduction and fault detection reduction.  This can be accomplished by 

reducing test suites using coverage information that includes library methods, 

reducing the same suites while excluding library methods, and comparing the 

resulting reductions in size and fault detection. 
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6.1.4. Research Question Q4 

Does call-stack-based test suite reduction perform differently between 

conventional and event-driven applications? 

Key to the idea of using call stacks is the notion of context.  That notion is 

very strong in GUI applications, where multiple degrees of freedom in the interface 

allow events to be executed from many different states.  Context is often not as 

important a factor in conventional or batch-oriented applications, which could cause 

call-stack-based test suite reduction to be less desirable in such scenarios.  Thus, to 

see if call-stack-based test suite reduction is sensitive to the style of application, its 

behavior was compared between non-event-driven, non-GUI applications to that 

observed for event-driven GUI applications. 

6.1.5. Research Question Q5 

Are certain types of coverage requirements more often associated with faults? 

If a specific coverage requirement is covered primarily by fault-revealing test 

cases, this intuitively provides strong evidence that the coverage requirement in 

question is related to a fault.  Moreover, if a coverage requirement is only hit by fault-

revealing test cases, no coverage-preserving test suite reduction technique can 

possibly lose that fault.  So in practice, it would be useful to identify and select a 

coverage technique that can be expected to maximize, on average, the number of such 

coverage requirements.  This leads to insight into which coverage criteria are best to 

use in coverage-preserving test suite reduction algorithms:  If coverage criteria differ 

in how strongly their coverage requirements are associated with known faults, this 

correlation will hopefully generalize to unknown faults and faults in different 
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applications when applied in practice.  The fault detection probability metric defined 

in Section 5.3 is suitable for this analysis. 

6.1.6. Overview of Experiments 

To answer these research questions, five experiments were designed and are 

presented in the remainder of the chapter.  In Experiment 1, call-stack-based 

reduction was compared with event, event-interaction, line, and method-based 

reduction for GUI subjects, and conventional criteria for non-GUI subjects.  

Experiment 2 compared call stack reduction to randomly selected and augmented 

line, event, and method-reduced suites of the same size.  In Experiment 3, method 

coverage and call stack coverage excluding information about library methods were 

considered.  Experiment 4 explores any differences observed in the effectiveness of 

call-stack-based reduction between conventional and event-driven GUI applications.  

And Experiment 5 relates coverage requirements to fault-revealing test cases for 

various types of coverage, using the new metric based on the average probability of 

detecting each fault. 

6.2. Subject Applications 

This research requires experimental subject applications which have a 

universe of test cases and a set of known faults.  Additionally, the absolute counts of 

test cases and faults for each application must be sufficiently large to support 

calculations based on reduction in suite size and fault detection.  As is often the case 

in empirical studies in software testing, very few appropriate subject applications are 

generally available.  In various experiments, this research will utilize five subject 



 45 

 

applications that have sufficient fault and test case information and display 

characteristics of interest in terms of programming style, source language, and 

execution style. Characteristics of these applications are listed in Table 1, and Table 2 

shows their test case and fault information.  These applications are discussed in more 

detail in the following sections. 

Application Source 

Language 

Execution Style Programming 

Style 

TerpPaint Java Event-Driven (GUI) Object-Oriented 

TerpWord Java Event-Driven (GUI) Object-Oriented 

TerpSpreadsheet Java Event-Driven (GUI) Object-Oriented 

Space C Conventional Procedural 

nanoxml Java Conventional Object-Oriented 

Table 1:  Subject Applications Characteristics 

 

Application TerpPaint 

(TP) 

TerpWord 

(TW) 

TerpSpreadsheet 

(TS) 

nanoxml space 

Test Universe Size 1500 1000 1000 216 13585 

# Detectable Faults 

(Versions) 

43 18 101 9 34 

Table 2: Subject Application Test Cases and Faults 

6.2.1. TerpOffice 

Object-oriented, event-driven GUI applications are taken from the TerpOffice 

Suite [30] to be subjects for the following experiments.  TerpOffice is a business 

productivity suite written in Java by senior software engineering students over a 

period of years.  The three applications under study are TerpPaint (TP), TerpWord 

(TW), and TerpSpreadsheet (TS).  Each TerpOffice application is associated with a 
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large universe of test cases generated using the event flow criterion [26] and a set of 

seeded mutation faults.  Each application comes with a set of versions each 

containing a single known fault and fault detection matrix for each test case. 

6.2.2. Space 

The well-studied space application [37] is used as a conventional, non-GUI 

subject application.  Space is an antenna-steering system developed by the European 

Space Agency commonly used in studies of test suite reduction, test case 

prioritization, and regression test selection.  It is written in C in the procedural style 

and executes sequentially.  The version used in this research comes with 13,585 test 

cases and 34 known faults.  Line coverage information for space was not available 

and therefore not used in subsequent experiments. 

6.2.3. nanoxml 

Nanoxml is a small XML parser which, like space, is a conventional non-

GUI application but, like TerpOffice, is written in Java and makes use of the Java 

libraries.  It was obtained via the Software-artifact Infrastructure Repository (SIR) 

hosted at the University of Nebraska [7].  Nanoxml exists in multiple versions to 

support different types of experiments.  A single version of nanoxml was used in this 

research which has 216 test cases and nine known faults.
2
  Unlike the other subject 

applications, most of nanoxml’s faults are detected by a large percentage of the test 

                                                 

2
  With nine, nanoxml has the smallest number of known faults of any of the subject applications used 

in this research.  Small numbers of faults present difficulties for test suite reduction research.  In the 

case of nanoxml, an individual fault missed by a reduced test suite increases fault detection reduction 

by 11.1%.  Other applications from SIR were rejected because they had even fewer known faults. 
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cases in its universe.  As a result, certain reduction techniques (such as those that 

involve random test case selection) would be expected to perform relatively better. 

6.3. Experimental Procedure 

Figure 5 shows a general procedure used for conducting test suite reduction 

experiments which is used in this research.  Ovals represent tools/processes; boxes 

represent experimental artifacts/results; hexagons represent calculated metrics.  For 

each subject application, the process begins with a pool of test cases, a set of known 

faults, and a fault matrix, i.e., information on which test cases detect which faults.  

The version of the subject application itself used in the coverage collection process 

contains none of the known faults and is therefore deemed to be “fault-free”.  This 

approach ensures that a complete set of coverage data may be collected without the 

collection process being confounded by faulty behavior.  Subsequent use of this data 

as a coverage baseline for test suite reduction simulates the realistic situation where 

faults are introduced over time during the development process and found via 

regression testing.  After coverage data is collected, the following steps are 

performed: 

1.  Randomly generate a set of test suites composed of test cases from the pool 

(not coverage-adequate for any particular criterion) 

2.  For each full (non-reduced) test suite, calculate the set of faults it detects. 

3.  Select a coverage criterion. 

4.  Reduce each test suite while maintaining coverage relative to the selected 

criterion. 

5.  For each reduced test suite, calculate the set of faults it detects. 
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6.  Compute the percentage size reduction and percentage fault detection 

reduction.  

This approach is discussed in more detail in the sections that discuss 

experiments where the procedure was applied. 

Replayer
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Matrix
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Application
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Coverage 
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Full Test 

Suites

Reduce Test 

Suite

Reduced Test 

Suites
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% Size 
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Avg. 

Expected 

Probably of 

Detecting 

Each Fault

 

Figure 5:  Experimentation Procedure 
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6.4. Threats to Validity 

6.4.1. Threats to External Validity 

Threats to external validity are factors that may impact the ability to 

generalize the results of this research to other situations.  The main threat to external 

validity in these experiments is the small sample size.  This research conducts test 

suite reduction experiments on a total of only five programs, which were chosen for 

their availability and the fact that they came with a sufficient number of test cases and 

known faults to support experimentation.  Three of these programs were constructed 

by undergraduate students, one by a governmental entity, and one is open-source.  

These applications therefore may not be representative of the broader population of 

programs.  An experiment that would be more readily generalized would include 

additional programs of different sizes and from different domains.  Additionally, one 

would expect the effectiveness of the call stack reduction process to vary depending 

on aspects of the programming style used in the target application.  In particular, 

when the application is composed of many small functions, call stacks provide finer-

grained dynamic state information.  Three of the subject applications used in this 

research are GUI-event-driven and thus contain many small event-handling methods.  

This should increase the effectiveness of the call stack-based reduction technique 

relative to what it could do against an application that implemented the same behavior 

using relatively fewer or more monolithic functions as we see in space.  (Consider the 

pathological case where a program is composed of a single large function, which 

would have but a single call stack for all executions.)  Also, this research, like much 

related work in the areas of test suite reduction, prioritization, and regression test 
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selection, performs experiments and analyses involving known faults.  This type of 

research assumes that the known faults are representative of the set of all faults which 

may appear in the subject applications, which may or may not hold in practice.  This 

is an even larger threat when using subject applications with a very small number of 

known faults, such as nanoxml, which only includes nine.  Finally, characteristics of 

original test suites (such as their fault detecting ability and how they were 

constructed) play a role in the size and fault detection reduction results.  This threat 

can be addressed in future work by choosing original test suites that are adequate for 

a variety of coverage criteria. 

6.4.2. Threats to Construct Validity 

Threats to construct validity are factors in the experiment design that may 

cause us to inadequately measure concepts of interest.  In these experiments, several 

simplifying assumptions were made in the area of costs.  In test suite reduction, 

researchers are primarily interested in two different effects on costs.  First, there is the 

cost savings obtained by running fewer test cases.  In this study, we assume that each 

test case has a uniform cost of running (processor time) and monitoring (human time).  

These assumptions may not hold in practice.  The second cost of interest is the cost of 

failing to find faults during testing as a result of running fewer test cases.  Here it is 

assumed that each fault contributes uniformly to the overall cost, which again may 

not hold in practice.  These assumptions are commonly made in other studies of test 

suite reduction [[36][42]].  Because test suite reduction seeks to permanently reduce 

the size of a test suite by discarding redundant or less effective test cases, the cost of 
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applying a given reduction technique is amortized across all future executions of the 

test suite and is therefore not factored into these experiments. 

Finally, for feasibility reasons, line coverage data did not include coverage of 

the underlying library code, in contrast to the approach taken for method coverage.  

Including line coverage of libraries may alter the performance of line-based test suite 

reduction relative to the other coverage criteria. 

6.4.3. Threats to Internal Validity 

Threats to internal validity include the possibility of defects in the tools used 

in the experiments and errors in the execution of the experimental procedure, any of 

which may impact the accuracy of the results and the conclusions drawn from them.  

These threats have been controlled for by testing the tools and the data quality. 

6.5. Data Collection Step 

6.5.1. Collection Process 

Coverage data from each subject application was collected before beginning 

the experiments.  The data gathered during this step allowed for the creation of any 

number of test suites composed of the previously executed test cases.  In each such 

test suite, the set of unique coverage requirements and faults detected by the suite are 

known without further execution of the subject applications.  Hence, it was not 

necessary to run each test suite against each version of the applications under study. 

This simulation approach is similar to one used by Frankl et al. [11] to evaluate 

adequacy criteria and test effectiveness. 
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For the TerpOffice applications, the JavaGUIReplayer application [30] 

(shown as “Replayer” in Figure 5) was used to execute each test case in each test pool 

against the fault-free versions of the subject programs.  Initially this process was used 

with JavaCCTAgent to collect the unique call stacks generated by each test case. This 

process was then repeated to collect line coverage using jcoverage [19] or Cobertura 

[5] as the instrumentation tool.  Method coverage was derived from the call stack 

coverage data.  Because the test cases for the GUI subject applications were event-

based, their event coverage was known a priori.  Coverage statistics aggregated over 

the entire test pool for each GUI application appear in Table 3.  For each subject 

application, the first two rows of Table 3 list the total number of unique call stacks 

and methods (including library methods, not limited to TerpOffice source code) 

observed in a test run of the entire test universe.  The next row shows the number of 

GUI events utilized in each application.  Finally, the last three rows are static counts 

of executable lines, classes, and methods comprising each application, as determined 

by the jcoverage instrumentation tool. 

 Includes 

Library 

Data? 

Terp 

Paint  

(TP) 

Terp 

Word  

(TW) 

Terp 

Spreadsheet  

(TS) 

# Call Stacks 

Observed 

Yes 413166 569933 333882 

# Methods 

Observed  

Yes 12277 12665 11103 

# Events N/A 181 219 110 

# Executable 

Lines 

No 11803 9917 5381 

# Classes No 330 197 135 

# Methods No 1253 1380 746 

Table 3: GUI Subjects’ Static and Dynamic Program Elements 
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A similar process was used to collect data for the conventional applications, 

nanoxml and space.  As these applications are not event-driven, event coverage 

does not apply.  As mentioned earlier in Section 6.2.2, line coverage was not 

addressed for space, and coverage of the C libraries used by space is subject to the 

limitations of the Detours-based implementation discussed in Section 4.1.2.  

Coverage statistics for the conventional applications appears in Table 4. 

 Includes 

Library 

Data? 

nanoxml Space 

# Call Stacks 

Observed 

Yes 6617 453 

# Methods 

Observed 

Yes 1126 143 

# Executable 

Lines 

No 3012 6218 

# Classes No 25 N/A 

# Methods No 232 123 

Table 4:  Conventional Subjects’ Static and Dynamic Program Elements 

6.5.2. Coverage of Library Elements 

As noted in Section 6.1, the instrumentation process for call stack coverage of 

the Java subjects used in this research incorporates the coverage of the supporting 

Java libraries induced by test case execution.  Because the raw call stack coverage 

data was used as the basis for method coverage, the method coverage approach also 

includes Java library methods.  However, because it was not feasible to instrument 

the entire Java SDK for line coverage, line coverage data is based solely on the 

subject application source.  Because of this, between the two approaches M and L, it 

is possible (and in fact the case) that tests may cover more methods than lines. 
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6.6. Reduction Approach  

Before reducing a test suite, the individual test case coverage information 

from Section 6.6 is used to calculate the full set of unique maximum-depth call stacks 

that an execution of the full suite can be expected to generate.  The full set is 

computed by merging the unique call stacks observed by each test case in the suite. 

Here the situation where a maximum-depth call stack from one test case is not 

maximum-depth in another must be considered.  For example, Test Case 1 (tc1) may 

generate the call stack c1 = <m1,m2, m3>, and Test Case 2 (tc2) may generate c2 = 

<m1, m2>.  The call stack c2 is not maximum-depth in a test suite containing both 

tc1 and tc2.  Two separate approaches were used in this research.  For the space 

application, this issue was addressed by computing substack relationships between 

each pair of unique maximum-depth call stacks globally, across the suite.  In the 

example, this would lead to a selection of just tc1, because it covers both stacks c1 

and c2.  However, it was observed that computing the substack relationships across 

an entire test suite with hundreds of thousands of unique (and deep) call stacks as in 

the Java-based applications is very computationally expensive.  Therefore, the 

experiments using the Java applications take a different approach, which is to forgo 

the computation of substack relationships and consider uniqueness of maximum-

depth call stacks on a per-test-case basis.  This approach is analogous to how 

maximum-depth stacks are treated across threads as discussed in Section 3.1.  So in 

the example, reduction of a full test suite composed of both tc1 and tc2 would lead to 

the inclusion of both test cases in the reduced suite.  The consequence of this decision 

is that this approach forgoes some potential size reduction in exchange for better 
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runtime performance of the reduction process.  The differences in reduction across 

the two approaches are expected to be very minor in practice, but future work may 

quantify the delta in size reduction. 

After merging the unique maximum-depth call stacks from each test case in a 

given test suite, the ReduceTestSuite heuristic [13] is applied to compute the reduced 

test suite.  Finally, the desired metrics are calculated based on the reduced suite. 

6.7. Experiment 1:  Comparing Coverage-Based Reduction 

The goal of Experiment 1 was to reduce randomly generated test suites of 

various sizes based on call stack coverage (CS) and the other coverage criteria under 

study:  event (E1), event-interaction (E2), line (L), and method (M) as applicable for 

the Java-based subjects, and method (M) for space.  Due to the differences in test 

universe size across the subject applications, different suite sizes were evaluated.  The 

sizes by application are listed in Table 5. Test suites were reduced based on each of 

the evaluated criteria and compared in terms of the percentage size reduction and 

percentage fault detection reduction metrics. 

Application Suite Sizes Evaluated Number of 

Suites Per Size 

TerpPaint, TerpWord, 

TerpSpreadsheet 

50, 100, 150, 200, 250, 300, 350. 

400 

25 

Nanoxml 20, 40, 60, 80, 100, 120, 140, 160 100 

Space 50, 100, 150, 200, 250, 300, 350, 

400, 450, 500, 550, 600, 650, 700, 

750, 800, 850, 900, 950, 1000 

50 

Table 5:  Random Suite Sizes Tested by Subject Application 
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6.7.1. Size Reduction 

Percentage size reduction results for the five subject applications for each 

applicable reduction approach appear in Figures 6 to 10.  (The SM and SCS 

approaches will be discussed in conjunction with Experiment 3, Section 6.9.) 
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Figure 6:  TP Percentage Size Reduction 
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TS - % Size Reduction
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Figure 7:  TS Percentage Size Reduction 
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Figure 8:  TW Percentage Size Reduction 
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Figure 9:  Nanoxml Percentage Size Reduction 

 

Figure 10:  Space Percentage Size Reduction 

Similar behavior in suite size reduction is observed for all three GUI subjects.  

E2 displays very little size reduction in all cases, which is expected because the 
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original test cases were generated using an algorithm based on event flow.  E1, M, 

and L are very close except in TW, where E1-reduced suites are smaller than M and L 

but still notably larger than CS.  The CS technique strikes a middle ground between 

E2 (and no reduction) and the other three techniques, yielding 38-50% reduction for 

the largest suite size.  For the non-GUI subject applications, the CS approach still 

results in less size reduction than the comparison techniques.  However, it is much 

closer than in the GUI applications.  This phenomenon will be considered in more 

detail in Section 6.11. 

To evaluate the statistical significance of differences between CS and the 

other techniques seen in Figures 6 through 10, paired-t testing was performed at the 

0.05 level with the null hypothesis that there is no statistically significant difference 

between the means of “CS percentage size reduction” and means of each of the other 

techniques.  The results appear in Table 6.  Since all the p-values for percentage size 

reduction are below 0.05, the null hypothesis is rejected and the alternative 

hypothesis, i.e., there is a statistically significant difference between the means of CS 

and the other techniques, is accepted. 

 % Size Reduction 

CS vs. p-Value 

 TP TS TW nanoxml Space 

M 7.84E-06 6.04E-09 3.52E-10 6.23E-08 2.06E-7 

L 3.02E-06 2.9E-08 1.29E-09 1.55E-12 -- 

E1 1.13E-05 4.59E-08 1.36E-05 -- -- 

E2 0.000823 0.000932 0.000414 -- -- 

SCS 7.13E-06 4.85E-08 1.54E-09 2.61E-06 -- 

SM 2.95E-06 2.96E-08 3.61E-09 1.07E-12 -- 

Table 6:  Paired-t Testing for Size Reduction of CS vs. Other Techniques 
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6.7.2. Fault Detection Reduction 

Percentage fault detection reduction results for the five subject applications 

appear in Figures 11 through 15.  (The RAND, E1A, LA, MA, SCS, and SM 

techniques will be discussed in subsequent experiments below.)  The graphs are 

jagged due to the relatively small-magnitude and discrete nature of the fault data and 

the high sensitivity to the selection of specific test cases that may detect multiple 

faults.  Nonetheless, some trends are clearly visible. 
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Figure 11:  TP Fault Detection Reduction 
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TS - % Fault Detection Reduction
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Figure 12:  TS Fault Detection Reduction 
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Figure 13:  TW Fault Detection Reduction 
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Figure 14:  Nanoxml Fault Detection Reduction 

 

 

As with percentage size reduction, there is no clear difference between M and 

L in the GUI subjects (recalling again that M includes methods from libraries and L 

Figure 15:  Space Fault Detection Reduction 
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does not).  But call stack-based reduction is clearly favored over M, L, and E1, losing 

fault detection effectiveness in the 0-5% range for all applications and original suite 

sizes.  Indeed, CS performs comparably to E2 even though E2-based reduction yields 

almost no size reduction in these experiments. 

Call stack coverage also performs relatively well in the non-GUI space 

application, with fault detection reduction less than half of that observed for method-

based reduction.  For nanoxml, however, results are less clear.  Seven of the nine 

faults in nanoxml are detected by a large number of test cases, which allows the 

techniques that utilize random test case selection (RAND, LA, and MA) to perform 

relatively well.  The CS technique is virtually indistinguishable from M and L.  For 

both conventional applications, the magnitude of percent fault detection reduction is 

notably higher than for the GUI subjects (up to 17% versus less than 5%).  Clearly 

more subject applications need to be studied in future work, but this result suggests 

that call stack coverage analysis may be particularly applicable to modern 

applications. 

To evaluate the statistical significance of the difference of means between CS 

and the other reduction techniques as seen in Figures 11 through 15, paired-t testing 

was performed at the 0.05 level with the null hypothesis that there is no statistically 

significant difference between “CS fault detection reduction” to each of the other 

techniques.  The results appear in Table 7.  For the TerpOffice applications and space, 

since all p-values of M, L, E1, and E2 for percentage fault detection reduction are 

below 0.05, the null hypothesis is rejected and the alternative hypothesis, i.e., there is 

a statistically significant difference between the means of CS and these techniques for 
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all subject applications, is accepted.  For nanoxml, the null hypothesis cannot be 

rejected, and in fact, it is observed that the best techniques are RAND and LA 

(discussed in Experiment 2). 

 % Fault Detection Reduction 

CS vs. p-Value 

 TP TS TW nanoxml Space 

RAND 0.001041 0.000803 0.002916 0.000665 2.67E-18 

M 8.48E-05 8.13E-05 0.000353 0.199924 6.98E-19 

L 8.07E-05 7.02E-05 7.26E-05 0.457429 -- 

E1 0.000426 8.9E-05 0.000792 -- -- 

E2 0.016876 0.039215 0.025051 -- -- 

LA 0.007803 0.002918 0.553965 0.000133 -- 

MA 0.006307 0.002236 0.10448 0.073261 -- 

E1A 0.000976 0.005401 0.010153 -- -- 

SCS 4.63E-05 1.11E-07 3.89E-05 0.226754 -- 

SM 4.78E-05 4.68E-05 4.35E-05 0.122060 -- 

Table 7:  Paired-t Testing for Fault Detection Reduction of CS vs. Other 

Techniques (Bold Values Not Statistically Significant at the 0.05 Level) 
 

In summary, this experiment finds that call-stack-based reduction of test suites 

for event-driven applications results in measurable size reduction and extremely low 

fault detection reduction compared to other techniques.  For conventional 

applications, call-stack-based test suite reduction provides an effective tradeoff in size 

reduction versus fault detection reduction in one of two subject applications.  This 

result answers research question Q1.  Additionally, the data collected in Experiment 1 

will be leveraged to answer additional research questions in the subsequent sections. 

6.8. Experiment 2:  Controlling for Size of Reduced Suite 

Experiment 1 showed that call stack coverage excelled at preserving the fault 

detection effectiveness of reduced test suites.  However, call stack-reduced suites 

were substantially larger than suites reduced by other criteria except for E2.  Thus, it 
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seemed possible that call stack coverage may have been preserving more fault 

detection capability solely on the basis of including more test cases.  The goal of 

Experiment 2 was to evaluate this hypothesis.  The call stack-reduced suites from 

Experiment 1 were paired with random suites of the same size (the RAND technique 

in Figures 11 through 15) and compared with respect to their fault detection 

effectiveness.  Also, the reduced suites resulting from L, M, and E1 were randomly 

augmented with additional test cases drawn from the full test suites so that the 

augmented suite sizes were equal to the CS suite sizes derived from each full test 

suite.  These “additional” or “augmented” techniques are the LA, MA, and E1A 

techniques, respectively, in Figures 11 through 15 

Referring back to those figures, in the GUI applications RAND loses fault 

detection effectiveness comparable to the unaugmented L and M techniques, thus 

performing considerably worse than CS.  The “additional” techniques perform better 

than RAND.  As per Table 7, for two of the three GUI subjects, CS shows 

significantly better percentage fault detection reduction.  For TW, the LA and MA 

techniques are not statistically distinguishable from CS.  For the conventional 

application nanoxml, Table 7 shows statistical evidence that CS is not an 

improvement over same-sized suites created using other approaches.  In fact, RAND, 

LA, and MA also appear to perform better than the other coverage-based approaches, 

L and M.  Thus it appears that reduced test suite size is a more important influence on 

fault detection than coverage for this application, possibly because most of nanoxml’s 

faults are detected by a large number of test cases in the universe. 



 66 

 

Considering that the suite sizes from RAND, E1A, LA, and MA are equal to 

those of CS, this research concludes that in most cases, call stack coverage contains 

valuable information that preserves fault detecting ability of test suites under 

reduction in modern GUI subject applications.  There is no evidence that this is the 

case in conventional, non-GUI subjects, but further research is needed to clarify this 

point.  This result addresses research question Q2. 

6.9. Experiment 3:  Omitting Library Methods 

In research and in industrial practice, most coverage techniques are evaluated 

only on those coverage requirements which can be derived from first-party source 

code.  This research hypothesizes that the ease with which the call stack coverage 

technique can incorporate context-sensitive coverage of library routines may be one 

of its major advantages. 

To further explore this notion, coverage information was generated for both 

methods and call stacks excluding methods from the Java platform libraries.  

(Because only 20 of 143 methods observed in space mapped to methods in the 

Standard C Library, this experiment was not performed for that application.)  These 

techniques are called “SCS” (for “short” call stack) and SM (for “short” method) in 

Figures 6 through 15.  The numbers of coverage requirements for the applications 

under study appear in Table 8.  Because most Java applications highly leverage the 

Java platform libraries for their GUI and I/O support, omitting library methods from 

coverage results in far fewer coverage requirements. 

 

 



 67 

 

 

Application Observed Method Count 

Excluding Library Methods 

Observed Call Stack Count 

Excluding Library Methods 

TerpPaint 680 923 

TerpWord 757 1780 

TerpSpreadsheet 525 2653 

nanoxml 137 652 

Table 8:   Non-Library Coverage Statistics 

When test suite reduction is performed based on the “short” call stack and 

method coverage data, size reduction is very comparable to L, M, and E1 in all of the 

GUI subject applications.  For the non-GUI nanoxml application, size reduction when 

using the “short” techniques is less comparable to L and M.  As can be seen in Tables 

9 and 10, size reduction relationships were found to be statistically significant except 

for SCS versus M in TS and TW. 

 % Size Reduction 

SCS vs. p-Value 

 TP TS TW nanoxml 

M 1.79E-05 0.520725 0.21264 5.02E-06 

L 1.75E-07 3.49E-08 2.95E-08 0.000153 

E1 0.000321 0.032248 0.000448 -- 

E2 7.11E-05 8.13E-08 8.42E-09 -- 

SM 1.29E-07 3.75E-08 4.51E-06 1.73E-05 

Table 9:  Paired-t Testing of SCS vs. Other Techniques for % Size Reduction 

(Bold Values Not Statistically Significant at the 0.05 Level) 

 

 % Size Reduction 

SM vs. p-Value 

 TP TS TW nanoxml 

M 4.19E-06 0.002928 0.001513 2.58E-11 

L 6.8E-06 1.54E-05 5.36E-05 2.05E-08 

E1 4.11E-05 0.003248 0.000284 -- 

E2 3.49E-05 7.24E-08 2.40E-09 -- 

SCS 1.29E-07 3.75E-08 4.51E-06 1.73E-05 

Table 10:  Paired-t Testing of SM vs. Other Techniques for % Size 

Reduction 
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Fault detection reduction displays quite a bit of variance between the 

applications.  For TerpPaint, SCS and SM perform very comparably to the least 

successful reduction technique, E1.  In TerpWord, SM tracks again with E1, but SCS 

fares better and is comparable to the line coverage based technique, L.  In 

TerpSpreadsheet, SM is similar to L, losing around 20% of its fault detection 

effectiveness for larger original suite sizes.  But SCS for TerpSpreadsheet does very 

well, losing no more than 10% fault detection, significantly better than M, L, E1, E2, 

and SM as can be seen in Table 11.  For nanoxml, the only statistically significant 

conclusion that can be drawn is that SM leads to greater fault detection reduction than 

L. 

 % Fault Detection Reduction 

SCS vs. p-Value 

 TP TS TW Nanoxml 

M 0.000252 0.006143 0.01079 0.625955 

L 0.000322 0.009559 0.305519 0.673211 

E1 0.176047 0.000728 0.047302 -- 

E2 3.77E-05 3.27E-06 5.83E-06 -- 

SM 0.235898 0.003313 0.000137 0.119509 

Table 11:  Paired-t Testing of SCS vs. Other Techniques for % Fault Detection 

Reduction (Bold Values Not Statistically Significant at the 0.05 Level) 

 

 

 % Fault Detection Reduction 

SM vs. p-Value 

 TP TS TW nanoxml 

M 0.000214 0.052797 8.68E-05 0.114183 

L 0.000301 0.000156 0.000168 0.014247 

E1 0.125103 0.000277 0.023723 -- 

E2 3.96E-05 2.83E-05 1.19E-05 -- 

SCS 0.235898 0.003313 0.000137 0.119509 

Table 12: Paired-t Testing of SM vs. Other Techniques for % Fault Detection 

Reduction (Bold Values Not Statistically Significant at the 0.05 Level)   
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Looking back at Table 8, the success of the SCS technique seems to correlate 

with how many call stacks can be generated by an application’s test suite, which itself 

can be highly influenced by the programming style.  Specifically, an application 

written using many smaller methods (generally considered to be good object-oriented 

programming style) will generate more unique call stacks than an application written 

using larger, more monolithic methods.  Future work may explore this intuition in 

more detail. 

Regardless, neither the SM nor the SCS technique approaches the CS 

technique at providing very small loss of fault detection where CS performs well, in 

GUI applications.  For those applications, results in Tables 7 and 12 indicate 

statistically significant differences between both SM and M, and SCS and CS.  Thus, 

this research concludes that it is helpful to consider the coverage of library elements 

in a test suite reduction technique when the goal is to minimize the loss of fault 

detection effectiveness.  Additionally, Experiment 5 (Section 6.11) provides further 

evidence that consideration of library methods is valuable by shows that the 

techniques that include library methods have higher average probabilities of detecting 

each fault.  This answers research question Q3. 

6.10. Experiment 4:  Conventional Application 

Results using the conventional, non-GUI, non-event-driven subject 

applications in Experiments 1 through 3 indicate that call stack coverage can be less 

effective for test suite reduction in those applications than it is in modern GUI 

applications.  Experiment 4 seeks to expand on these findings by reducing a different 

class of test suite in a conventional application, as well as determine whether call 



 70 

 

stacks give us any insights into understanding the differences in test suite reduction 

between conventional and event-driven software. 

This experiment makes further use of space.  Space was used as the 

conventional application because, compared to nanoxml, it is most dissimilar from 

the GUI subjects in that it is written in C rather than Java and does not make 

substantial use of an underlying library or platform.  Some pre-existing experimental 

artifacts and results from Rothermel et al. [36] were leveraged.  Starting with 1000 

test suites for space used by Rothermel et al. [37], each suite was reduced using call 

stack coverage and results compared to the edge coverage results of Rothermel et al. 

[36].  (Edge coverage measures traversals across each edge in a program control flow 

graph and is usually considered to be a relatively strong, yet practical, coverage 

criterion.)  As in Experiment 2, call stack-reduced suites were also paired with like-

sized randomly reduced suites.  The results appear in Table 13.  In this case, it is 

found that call-stack-based reduction results in slightly smaller reduced suites than 

edge coverage, but at the cost of over 7% additional loss in fault detection 

effectiveness.  Call-stack-based reduction does perform far better than random 

reduction, however. 

 

Means Over 1000 Test Suites 

Original Edge-Reduced Call Stack-Reduced Random-Reduced 

Size 
Faults 

Detected 
Size 

Faults 

Detected 
Size 

Faults 

Detected 
Size 

Faults 

Detected 

2399.5 33.5 121.7 30.4 60.0 28.0 60.0 24.2 

% Reduction From 

Original 
90.1 9.2 95.2 16.3 95.2 27.6 

Table 13:  Test Suite Reduction for space 
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Experiment 4 shows that call-stack-based test suite reduction can provide a 

good tradeoff between size reduction and fault detection reduction in a conventional 

application.  However, compared to the findings of Experiments 1 through 3 for GUI 

applications, call stack coverage seems to be a more effective criterion for test suite 

reduction against modern event-driven, GUI applications than for conventional 

software.  Note in Table 4 that for non-GUI applications, fewer call stacks are 

observed on a percentage basis relative to methods and lines.  Although further 

research using a wider variety of GUI and conventional subject applications is 

needed, one possible explanation relates to call stacks’ ability to capture the context 

in which a given method is invoked.  GUIs tend to have more degrees of freedom, 

and therefore more context sensitivity, than conventional software.  For example, the 

event-handling code for a particular event may execute differently depending on the 

nature of the specific event invocation (i.e. mouse versus keyboard), the sequence of 

preceding events, and the state of the program.  Because each such scenario 

potentially results in a unique call stack, call-stack-based test suite reduction will 

select such test cases and, by consequence, their potentially-unique fault-detecting 

capability.  This result addresses research question Q4. 

6.11. Experiment 5:  Coverage Requirements and Fault-Revealing Test Cases 

6.11.1. Average Probability of Detecting Each Fault 

Experiment 5 explores the relationship between coverage requirements for 

various criteria and test cases that reveal faults, using the newly developed average 

probability of detecting each fault metric, defined in Equation 16.  The 

CalcFaultDetectionProbability algorithm (see Figure 4) was applied to the previously 
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obtained fault and coverage matrices for each Java-based application
3
.  Table 14 

shows the resulting average expected probability of detecting each fault after test 

suite reduction for each application and coverage technique, including the “short” 

techniques proposed in Experiment 3.  The box plots in Figures 16, 17, 18, and 19 

show the other key statistics for individual fault probabilities, including the minimum, 

maximum, median, and upper and lower quartile values. 

 TP TS TW nanoxml 

E1 0.51 0.52 0.47 -- 

E2 0.92 0.88 0.96 -- 

L 0.84 0.69 0.77 1.00 

M 0.80 0.69 0.72 0.81 

CS 1.00 0.97 0.97 0.997 

SM 0.70 0.68 0.61 0.81 

SCS 0.73 0.85 0.77 0.94 

Table 14:  Average Expected Probability of Detecting Each Fault After Test 

Suite Reduction 

 

 

 

                                                 

3
 Space was not used in this analysis because, for reasons discussed in previous sections, its data does 

not enable SM, SCS, or L. 

Figure 16:  TP Fault Probability Statistics 
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Figure 18:  TW Fault Probability Statistics 

 

Figure 17:  TS Fault Probability Statistics 
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Figure 19:  nanoxml Fault Probability Statistics 

 

All of the coverage techniques perform relatively consistently across 

applications, the most notable exceptions being SCS’s better result in 

TerpSpreadsheet and L’s better results in TP and nanoxml.  Event coverage, E1, fares 

the worst, while line and method coverage are comparable between 69-84% average 

probabilities.  Event interaction coverage, E2, results in a very high average 

probability, but E2’s usefulness in test suite reduction is limited for these subject 

applications and test universe as it was shown in Experiment 1 that E2 results in very 

large reduced suite sizes.  The lower average probabilities for SM and SCS relative to 

M and CS, respectively, provides further evidence in favor of considering library 

coverage in test suite reduction.  The highest average probability is achieved with the 

call stack coverage criterion, CS, with a 97-100% average probability of detecting 

each fault.  This result shows quantitatively that many call stacks are highly 

correlated with fault-revealing test cases and therefore explains the extremely low 
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percentage fault detection reduction observed when using the CS technique on test 

suites generated randomly from this pool in Experiment 1.  The maximum values in 

Figures 16 through 19 indicate that all coverage criteria have coverage elements that 

display high correlation with at least some faults.  The narrow boxes for E2 and CS 

show that these two criteria are most effective at retaining the widest variety of faults. 

6.11.2. Faults Always Detected After Reduction 

When using a test suite reduction technique that preserves coverage of a given 

program element, a necessary condition for a fault to be missed by a reduced suite is 

that no coverage requirement is only covered by fault-revealing test cases.  If one or 

more such coverage requirements exist, intuition expects an above-average 

probability that it is related in some way to the source of the fault.  In this case, the 

reduction algorithm must select a fault-revealing test case lest coverage be lost. 

This observation motivates an analysis of coverage and fault data to determine 

how many faults must be detected by any coverage-adequate reduced test suite on the 

entire test pool using the various techniques CS, SCS, M, SM, L, E1, and E2.  The 

results of this analysis appear in Figures 20, 21, 22, and 23, where the x-axis shows 

the number of faults that will always be detected by any reduced suite which 

maintains coverage of a given criterion listed on the y-axis. 

The two method-based techniques, SM and M, and L perform similarly across 

applications.  In the conventional subject, nanoxml, L is the best technique, with all 

faults detected in test suites with coverage equal to that of the universe.  The context-

sensitive “short” call stack technique (SCS) performs comparably in TP and TW and 

relatively better in TS and nanoxml.  Looking at the CS technique, in all but a small 
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handful of cases, fault-revealing test cases generate call stacks which are never 

observed by non-fault-revealing test cases.  This phenomenon provides an 

explanation for the extremely low percentage fault detection reduction observed for 

CS in Experiment 1, lending support to the hypothesis that context information 

enhances coverage-based test suite reduction.  Further research is needed to 

characterize the non-CS techniques. 

 

Figure 20:  TP Faults Always Detected After Reduction, By Technique 
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Figure 21:  TS Faults Always Detected After Reduction, By Technique 

 

 

Figure 22:  TW Faults Always Detected After Reduction, By Technique 
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6.11.3. Faults Which May Be Missed After Reduction 

An analysis of the faults that can be missed by each technique as indicated by 

the average probability of detecting each fault was performed, with each fault 

characterized by its difficulty.  Wong et al. define four quartiles of faults, Quartile-I, 

II, III, and IV, which can be detected by [0-25)%, [25-50)%, [50-75)%, and [75-

100]%, respectively, of the test cases in the test pool [42]  However, by these 

standards, all of the known TerpOffice and nanoxml faults are “difficult” because 

they all fall into the low end of Quartile-I, with the median percentage of detecting 

cases ranging from 0.13% for TerpPaint to 11% for nanoxml.  Thus, this research 

instead characterizes faults into three buckets based on how many test cases detect 

them:  Hard (1-2 detecting cases), Medium (3-5 detecting cases), and Easy (6 or more 

detecting cases).  The counts of cases per bucket were defined to give a reasonable 

Figure 23:  nanoxml Faults Always Detected After Reduction, By 

Technique 
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distribution of faults into each bucket for each application.  Table 15 shows the 

distribution of faults by subject application. 

Fault Class TP TS TW nanoxml 

Easy 7 37 5 7 

Medium 3 28 3 0 

Hard 33 36 10 2 

Table 15:  Fault Difficulties 

For each subject application and coverage criterion, the faults which may be 

lost after coverage-preserving test suite reduction were categorized.  The results of 

this analysis appear in Table 16. 

 TP TS TW nanozml 

E1 Easy 7 

Med 3 

Hard 20 
 

Easy 26 

Med 17 

Hard 34 
 

Easy 2 

Med 3 

Hard 7 
 

N/A 

E2 Easy 0 

Med 0 

Hard 6 
 

Easy 0 

Med 0 

Hard 23 
 

Easy 0 

Med 0 

Hard 1 
 

N/A 

L Easy 6 

Med 1 

Hard 3 
 

Easy 13 

Med 13 

Hard 34 
 

Easy 3 

Med 0 

Hard 5 
 

Easy 0 

Med 0 

Hard 0 
 

M Easy 7 

Med 3 

Hard 8 
 

Easy 12 

Med 13 

Hard 34 
 

Easy 0 

Med 0 

Hard 7 
 

Easy 1 

Med 0 

Hard 2 
 

CS Easy 0 

Med 0 

Hard 0 
 

Easy 0 

Med 1 

Hard 5 
 

Easy 0 

Med 0 

Hard 1 

  

Easy 1 

Med 0 

Hard 0 
 

SM Easy 7 

Med 3 

Hard 8 
 

Easy 13 

Med 13 

Hard 34 
 

Easy 3 

Med 0 

Hard 9 

  

Easy 1 

Med 0 

Hard 2 
 

SCS Easy 7 

Med 2 

Hard 7 
 

Easy 2 

Med 10 

Hard 13 
 

Easy 1 

Med 0 

Hard 7 
 

Easy 1 

Med 0 

Hard 1 
 

Table 16:  Faults with No Coverage Requirements Unique to Detecting Test 

Cases by Criterion and Difficulty 
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No clear conclusions can be drawn for nanoxml, possibly because it has a very 

small number of faults (9) which are relatively easy to find compared to the 

TerpOffice applications.  For the TerpOffice applications, the CS and E2 techniques, 

which only have a handful of faults overall that are not necessarily detected after 

reduction, show a distinct tendency for those faults to fall into the “Medium” and 

“Hard” difficulty buckets.  For the other techniques, a trend is only visible for one of 

the three applications (specifically, TS).  This analysis suggests that fault detection 

reduction in coverage-adequate reduced test suites may only be related to fault 

difficulty for certain coverage criteria. 

6.11.4. Combining Coverage Criteria 

Looking at the unique coverage requirement counts for individual faults, a 

number of cases were observed where Fault A is guaranteed to be detected by 

Technique X but not Technique Y, but Fault B for the same application is guaranteed 

to be detected by Technique Y and not Technique X.  In other words, certain faults 

correlated more highly with different coverage criteria.  This motivated an 

examination of the average probability of detecting each fault for pairs of criteria.  

Identifying effective pairs of coverage criteria is important to guide the choice of 

criteria to utilize in a multi-criteria test suite reduction approach such as the one 

proposed by Jeffrey and Gupta [20]. 

The following analysis assumes a test suite reduction approach that maintains 

coverage relative to two distinct coverage criteria.  For such a coverage criteria pair, 

the average probability of detecting a fault is then the maximum of the individual 

probabilities of detecting that fault for each criterion in isolation.  Data for this 
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analysis appears in Table 17.  The pair E1+E2 is not included because E2 subsumes 

E1 – that is, an E2-adequate suite is by definition E1-adequate.  The technique M+CS 

is omitted for the same reason, namely that CS subsumes M.  Note that because M 

includes library coverage data and L does not, L does not subsume M.  The “short” 

techniques SM and SCS are subsumed by their counterparts that include library 

methods, M and CS, respectively. 

 TP TS TW nanoxml 

E1+L 0.88 0.71 0.91 -- 

E1+M 0.80 0.71 0.82 -- 

E1+CS 1.00 0.97 0.97 -- 

E2+M 0.97 0.91 0.96 -- 

E2+L 0.96 0.91 0.96 -- 

E2+CS 1.00 1.00 1.00 -- 

E1+SM 0.77 0.70 0.76 -- 

E1+SCS 0.80 0.86 0.87 -- 

E2+SM 0.96 0.91 0.96 -- 

E2+SCS 0.96 0.98 0.97 -- 

L+M 0.90 0.70 0.83 1.00 

L+CS 1.00 0.97 0.97 1.00 

L+SM 0.84 0.70 0.77 1.00 

L+SCS 0.84 0.85 0.83 1.00 

Table 17:  Average Probabilities for Coverage Criteria Pairs 

In Table 17, data points are highlighted in bold and italic where the 

combination of coverage criteria results in a better average probability of detecting 

each fault than either criterion in isolation.  We see such an improvement in over half 

(27 of 46) of the combinations.  This result suggests certain faults may be more 

highly correlated to different criteria, and thus combining multiple coverage criteria 

can dramatically reduce fault detection reduction.  However, maintaining coverage 

adequacy with respect to additional criteria in test suite reduction will lead to larger 

reduced test suites.  Indeed, many of the improvements in average probabilities in 

Table 17 for the GUI subjects involve the addition of the event-interaction criterion, 

E2, and E2 coverage adequacy in test suite reduction is known to lead to very little 
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size reduction for these applications and test suites (see Experiment 1, Figures 6 

through 8).  In test suite reduction, the tradeoff between fault detection and size 

reduction must be made based on situational engineering judgments. 

6.11.5. Summary of Experiment 5 

Call-stack-based test suite reduction exhibited several positive attributes in the 

analyses of Experiment 5, including a high average probability of detecting each fault 

and a high number of faults always detected after reduction of the test universe.  

These attributes were more pronounced for the event-driven, GUI subject 

applications; for the conventional application nanoxml, line-based reduction was the 

best approach.  These results of Experiment 5 do show that certain coverage criteria 

are more closely related to fault-detecting test cases and therefore may be better 

suited for use in test suite reduction, thus answering research question Q5. 
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Chapter 7:  Analysis – Test Suite Reduction Metric 

Prior work on test suite reduction provides very little guidance for 

practitioners who must make decisions about what reduction technique or techniques 

to use.  If anything, the prior work emphasizes minimal fault detection reduction over 

size reduction.  However, given trends in modern software development such as the 

increased use of test case generators and build-and-integration cycles often lasting a 

single day or less, this may not be the appropriate tradeoff in practice.  Because of 

this, there is a need for quantitative metrics that capture the size-versus-fault-

detection tradeoff to help guide practitioners needing to make a more holistic choice 

when applying test suite reduction techniques. 

The experiments in Chapter 6 analyzed call-stack-based test suite reduction in 

terms of size reduction and fault detection reduction independently.  In experiments 

using GUI applications as test subjects, call stack coverage-based reduction resulted 

in considerably larger reduced suite sizes than various approaches based on method, 

line, or simple event flow coverage.  In exchange for the larger reduced suite size, the 

call stack approach performed substantially better at retaining the fault detection 

capabilities of the original test suite.  In practice, this may or may not be 

advantageous.  For example, in a time-sensitive regression testing scenario, if there is 

sufficient time to run a call stack-reduced test suite in its entirety, this work suggests 

that it would be advisable to do so in order to obtain greater fault detection 

effectiveness.  If time is more critical, a subset of the call stack reduced suite may be 

executed instead. 
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In their work on test suite reduction in web applications, Sampath et al. [40] 

propose a “figure of merit” (fom) for test suite reduction as: 

(17) fom = redux * cvg * fd 

Here, redux is the percent size reduction, fd is the percentage of faults still 

detected after reduction, and cvg is the percent coverage remaining for some specific 

criterion other than the one used in the reduction algorithm.  This metric combines the 

desirability of high size reduction and the undesirability of high fault detection 

reduction into a single number. 

A weakness of Equation (17) is that the approach of using a simple product of 

terms does not allow practitioners to factor in the relative importance of size 

reduction and fault detection reduction when evaluating a technique.  To solve this, 

this research proposes evaluating test suite reduction relative to the following single-

point metric: 

(18) ReductionMetric = (WSR * % Size Reduction) + WFDR *  

(100 - % Fault Detection Reduction) 

WSR is defined to be a weight representing the relative importance of size 

reduction in a given scenario.  Similarly, WFDR is a weight for the relative importance 

of fault detection reduction.  It is expected that practitioners will choose the weights 

to capture the relative importance of fault detection and size reduction in a specific 

industrial scenario. 

To demonstrate this new metric, consider three sets of weights defined in 

Table 18.  In Scenario 1, small reduced test suite size is deemed more important than 

low fault detection reduction.  Scenario 2, conversely, considers low fault detection 
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reduction to be the stronger factor.  In Scenario 3, both measures are weighted 

equally.  The selection of weights was made to keep the results from each scenario 

close in absolute magnitude.  Conclusions should only be drawn based on relative 

values within a given scenario. 

Scenario Number and Description WSR WFDR 

1:  Emphasize Small Suite Size 2.0 0.5 

2:  Emphasize Low Fault Detection Reduction 0.5 2.0 

3:  Equal Emphasis 1.0 1.0 

Table 18:  Metric Weighting Scenarios 

Applying the metric from Equation (4) to the data collected in the experiments 

from Chapter 6 for the different reduction techniques, subject applications, and 

weighting scenarios yields the results in Figures 24 through 28. 

 

Figure 24:  TP Average Test Suite Reduction Metric Over All Suite Sizes 
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Figure 25:  TS Average Test Suite Reduction Metric Over All Suite Sizes 

 

Figure 26:  TW Average Test Suite Reduction Metric Over All Suite Sizes 
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Figure 28:  Space Average Test Suite Reduction Metric Over All Suite Sizes 

Figure 27:  nanoxml Average Test Suite Reduction Metric Over All 

Suite Sizes 
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When small suite size is the primary focus of the test suite reduction process 

(Scenario 1), the metric indicates that the favored techniques for modern GUI 

applications are based on line coverage (L), method coverage including library 

methods (M), method coverage not including library methods (SM), and call stack 

coverage not including library methods (SCS).  When low fault detection reduction is 

deemed more important (Scenario 2), the call stack technique (CS) is preferred, 

followed closely by several other techniques with similar performance.  With equal 

weighting applied to size reduction and fault detection reduction (Scenario 3), the 

relative metric values by technique again favor L, M, SM, and SCS, along with 

improved performance of the “additional” techniques MA, LA, and E1A.  In 

nanoxml, the relative performance of techniques is consistent across scenarios with 

the notable exception that SM performs particularly well when small suite size is the 

emphasis.  And for space, it is interesting to note that based on the metric, there is 

very little difference between edges and call stacks when used as reduction criteria in 

all three weighting scenarios. 

Absolute metric values across all scenarios indicate that test suite reduction in 

general is more effective when applied to TerpSpreadsheet (TS) and TerpWord  (TW) 

than in TerpPaint (TP) or nanoxml.  Future work may use this metric in an attempt to 

identify application construction factors influencing test suite reduction. 
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Chapter 8:  Conclusions and Future Work 

This research presented models, metrics, algorithms, techniques, and tools that 

support a novel approach to test suite reduction based on call stacks.  Experiments 

showed that this approach provides an effective tradeoff between size reduction and 

fault detection reduction, particularly for modern, event-driven GUI applications.  

Additionally, collecting and analyzing call stack coverage data was shown to be 

feasible in non-trivial modern software applications. 

It was shown that in most cases, call stack coverage contains valuable 

information that preserves fault detecting ability of test suites under reduction for 

modern applications.  Indeed, this research has shown that event-driven GUI 

applications are sufficiently different from traditional applications to benefit from 

new coverage criteria [29].  This research also found that considering coverage of 

library methods can improve the fault detection effectiveness of coverage-based 

reduced test suites. 

This work defined a new metric for coverage-based test suite reduction based 

on the average probability of detecting each fault.  This metric was applied to the set 

of test suite reduction experiments on GUI and conventional subject applications and 

contrasted the results using several different coverage criteria as well as combinations 

of criteria.  The analysis was extended to count faults detected by a full test suite 

which must necessarily be detected by any coverage-preserving reduced test suite for 

the different criteria, and the impact of fault difficulty was also considered.  Based on 

the analysis enabled by the average probability of detecting each fault metric, it was 

found that certain coverage criteria are more related to fault-detecting test cases than 
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others, and this behavior varies by application type.  In the modern GUI applications 

used in these experiments, test suite reduction based on call stacks provides the 

highest probability of detecting each fault in a reduced test suite, method (including 

libraries), and line coverage perform comparably, and length-1 event sequences are 

the least effective.  This relative ranking was consistent with empirical performance 

of the various criteria against the traditional percentage fault detection reduction 

metric.  Thus, this research concludes that the average probability of detecting each 

fault shows promise for identifying coverage criteria that work well for test suite 

reduction.  

Finally, a second metric for test suite reduction based on weighted importance 

of size reduction versus fault detection reduction was developed and applied to 

empirical data.  A comparison of results between conventional and event-driven GUI 

applications indicates that the “best” test suite reduction coverage criterion as 

measured by this metric may differ among other classes and styles of application.  It 

also showed that the choice of coverage criterion for test suite reduction can depend 

on whether size or fault detection is emphasized. 

This work has examined coverage-based test suite reduction for modern 

software applications from a single (albeit important) perspective, that of the single-

user GUI.  Additional styles of applications can be classified as “event-driven”, 

including server applications that use concurrent request-response or messaging 

paradigms, as well as the broader population of distributed and service-oriented 

computing systems.  In these applications, a software component receives a message 

or method call and optionally changes its state, invokes additional components, 



 91 

 

and/or formulates a response.  This situation is analogous to how a GUI responds to 

events.  Automatic test case generation techniques that apply to systems of multiple 

interacting processes have been developed.  Yet in the context of such systems, test 

suite reduction is a less well-studied problem.  Therefore, a key direction for future 

work is to extend and apply the notion of a context-sensitive coverage criterion to test 

suite reduction and other test case management problems in these systems. 

Additional directions for future work in this line of research may include: 

 Incorporating new subject applications that represent a wider variety 

of programming languages and styles, development paradigms, 

application domains, and sizes. 

 Expanding the range of coverage criteria in the comparison, perhaps 

including techniques less widely used in practice such as advanced 

dataflow criteria. 

 Analyzing characteristics of the faults lost by various reduction 

techniques to evaluate whether certain types of coding errors are more 

or less likely to remain undetected in reduced test suites.  A further 

potential consequence of such an evaluation would be quantifying the 

importance of calling context as represented in call stacks to the test 

suite reduction problem. 

 Applying call stack coverage to other software testing problems, such 

as test case generation, regression test selection, and test case 

prioritization. 
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 Comparing test suite reduction performance using different possible 

models of call stacks, particularly those that result in lower runtime 

overhead and coverage data volume.  Approaches could include 

building stacks using the different method representations discussed in 

Section 3.1.2.   Another idea is to define a “similarity metric” for call 

stacks such that stacks with a certain similarity value could be 

considered redundant and discarded.  Also, certain method calls may 

always appear together in a call stack so that they could be collapsed 

into a single stack entry to conserve space and simplify the analysis. 

 Incorporating more sophisticated cost models that do not necessarily 

treat all test cases and all faults equally.  A cost-benefit model for 

defect detection activities has been proposed by Wagner [41], and 

another model specifically focused on regression testing has been 

developed by Do and Rothermel [8].  Because of the close relationship 

between regression testing and test suite reduction, Do and 

Rothermel’s model (which explicitly factors in cost of missing faults 

and cost of test execution) may be a good candidate to apply to the test 

suite reduction problem. 
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