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ABSTRACT

In this paper we provide an accurate analysis of the performance of a random-carrier (RC)
code-division multiple-access (CDMA) scheme recently introduced for use in high-capacity optical
networks. According to this scheme coherent optical techniques are employed to exploit the huge
bandwidth of single-mode optical fibers and are coupled with spread-spectrum direct-sequence
modulation in order to mitigate the interference from other signals due to the frequency overlap
caused by the instability of the carrier frequency of the laser, or to the mistakes in the frequency
coordination and assignment.

The average bit error probability of this multiple-access scheme is evaluated by using the char-
acteristic function of the other-user interference at the output of the matched optical filter. Both
phase noise and thermal noise are taken into account in the computation. Time-synchronous as
well as asynchronous systems are analyzed in this context. Binary phase-shift-keying (BPSK) and
on-off-keying (OOK) data modulation schemes are considered. The analysis is valid for arbitrary
values of the spreading gain and the number of interfering users. The performance evaluation of RC
CDMA establishes the potential advantage in employing hybrids of wavelength-division multiple-
access (WDMA) and CDMA to combat inter-carrier interference in dense WDMA systems.

This research was supported in part by the Office of Naval Research under contract N00014-
89-J-1375 and in part by the Systems Research Center at the University of Maryland, College
Park, through the National Science Foundation’s Engineering Research Centers Program, NSF
CDR 8803012.






1. Introduction

The random-carrier (RC) code-division multiple-access (CDMA) scheme was first in-
troduced in [1] for use in high-capacity optical networks. According to this scheme. coher-
ent optical techniques are employed to exploit the huge bandwidth (tens of thousands of
GHz) of single-mode optical fibers. The inherent instabilities of present-day semiconductor
lasers are circumvented by coupling the optical multiple-access system, which is assumed
to place randomly the modulated carriers in the available optical band, with CDMA. In
particular, spread-spectrum direct-sequence modulation is employed in order to mitigate
the interference from other signals, that is due to the frequency overlap caused by the
instability of the carrier frequency of the laser.

Analysis of RC CDMA provides the basis for exploiting the potential advantage of
employing hybrids of wavelength-division multiple-access (WDM4 ) and CDMA to combat
inter-carrier interference in dense WDMA schemes. That hybrid scheme used WDMA for
providing multiple-access capability and CDMA for protection against laser-frequency m-
stabilities and mistakes in the frequency coordination and assignment. Such a combination
of the best features of both WDMA and CDMA was recently proposed in [2].

We complete, extend, and validate the work of {1] by providing a more accurate evalu-
ation of the performance of the RC CDMA scheme, without making all the approximations
and limiting assumptions made there. Here are the specific contributions of our work: (a)
The performance measure considered is the average probability of a bit error at the out-
put of the RC CDMA system’s optical matched filter and is evaluated via an approach
that can achieve any desirable accuracy. (b) Our analysis is valid for an arbitrary spread-
ing gain (number of chips per bit) and an arbitrary number of interfering users. (c) In
this evaluation, we also take into account the effects of phase noise of the lasers and shot
noise; the former is modeled as a Brownian motion process and the latter as additive white
Gaussian noise (AWGN). (d) Not only chip-synchronous, but also asynchronous multi-user
systems are analyzed; thus the effect of time delays between the various users are taken
into account. (e) Besides PSK, on-off-keying (OOK) data modulation is also considered.

For the evaluation of the bit error probability, we use the characteristic-function

method introduced in [3] for radio-frequency (RF) CDMA communication systems. The
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evaluation of error probability in [3] was carried out for arbitrary deterministic signature
sequences. In [4], the results of [3] were extended to CDMA systems employving random
signature sequences (i.e., i.i.d. sequences that assume the values +1 and —1 with equal
probability and are mutually independent for different users). In this work, we analyze
optical RC CDMA systems with random signature sequences. In our analysis, BPSIX mod-
ulation, as well as OOK modulation is used to modulate the data bit stream. while M-ary
PSK modulation is employed for the signature sequence stream. Electro-optical phase
modulators [6] make these features feasible.

We evaluate the average bit error probability by averaging over the data streams,
signature sequences, carrier frequencies, phases of the interfering users, and time delays
(for asynchronous systems). This is accomplished by computing the characteristic function
of the interference due to the other users at the output of the optical filter that is matched
to a particular signal. The accuracy of this computational technique can be completely
controlled by the user and is determined by the accuracy of the integration routines invoked:
as the the number of points in the integration rule increases, the required computer CPU
time increases. Any desirable accuracy can be attained with the help of this techuique.

In the calculation of the characteristic function of the multiuser interference the Cen-
tral Limit Theorem (CLT) is used once; however, its use is properly justified and the results
are compared to those obtained via another approach that makes no use of the CLT.

In our analysis, the characteristic function method is actually applied to more general

situations than those considered in [3]-[5], which deal with other-user interference and

5
multipath interference and have a symmetric probability density function (pdf). In our
work, the characteristic function technique used for the evaluation of the average error
probability of systems with additive interference is extended to the case of interference
with non-symmetric pdfs (the case when the interference does not assume positive and
negative values with equal probability).

Another useful product of our analysis of RC CDMA systems is an exact expression
for the error probability of a single-user coherent optical system disturbed by phase noise

and AWGN.

We provide numerical results describing the performance of the RC CDMA systems.
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The tradeoffs between the various system parameters are illustrated and interpreted. Be-
sides the average error probability as a function of system parameters, the maximum
number of users that can be supported with this scheme at a given error probability is also
obtained. Moreover, the performance of a single user coherent optical system disturbed
by phase noise and AWGN is analyzed in detail.

Our analysis of the RC CDMA system paves the way for accurately evaluating the
performance of dense WDMA systems and of hybrid WDMA/CDMA systems. and for
comparing the performance of such systems in terms of average error probability and
multiple-access capability (i.e., the maximum number of simultaneous users that can be
supported at a prespecified error probability) for realistic environments characterized by
asynchronous users, laser phase noise, shot (AWGN) noise, and frequency instability of
lasers. In Chapter 3, we provide the analysis of pure WDMA and hybrid WDMA /CDMA
systems and a comparison of their performance.

This paper is organized as follows. In Section 2, the model and the receiver structure
are described. In Section 3, the single user performance for the BPSK and OO modulation
1s obtained. Section 4 extends the analysis to the multiuser case, in which I\ active users
share a common optical channel. The average bit error probability for the intended user
is obtained by using the characteristic functions of the interference and AWGN. Section
5 contains computation of the characteristic function of other-user interference. Based on
two different sets of assumptions, this function is obtained for both BPSKX and OO mod-
ulation. In Section 6, the pdf of a useful random variable, which plays an important role
in the analysis of both single user and multiuser systems, is estimated. Section 7 extends
the analysis to the asynchronous system, in which random delays are introduced to the
signals of the interfering users. Section 8 presents the numerical results and comparisons

of different systems. Finally, Section 9 contains the summary.

2. Model

K high data rate users share a common optical channel in a multi-access fashion.
These users are scattered in an optical bandwidth as big as W = 10THz. Due to the

frequency instabilities of lasers, each carrier frequency wanders around its designated fre-
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quency. We assume that each carrier frequency is randomly distributed in the total optical
bandwidth W. The transmitted optical signal is denoted by S(t), which is a complex signal

as

K
S@t)= Y VP b(t = T )am(t — 7 )ellom (7 7m) H (0] (2.1)
m=1

where associated parameters are as follows:
o P is the transmitted signal power of each user

o b,,(t) is the data stream of the m-th user given by

>

bn(t) = Y b™p(t —nT)

n=—o

where bﬁ[") denotes the n-th bit of the m-th user; b(nm)e{—l, 1} for BPSK modulation
and b(nm)e{(), 1} for OOK modulation; p(t) is a pulse of unit amplitude in [0, T].
® a,,(?) is the addressing function or signature sequence stream used by user m. That
15
00
am(t) = elem () Z giomn h(t —nT,)
n=—-o00
where h(t) is a pulse of unit amplitude in [0,T.] and T, = %% is the chip duration,
where N is the number of chips per bit. @, is a phase taking values in [0, 27].
® W, is the carrier on which the m-th signal is sent. This value is randomly chosen by
the transmitter laser for (RC) CDMA, or is preassigned for hybrid WDMA /CDMA.
e 0,(t) is the phase noise associated with the m™ transmitter laser, which is a Brownian
motion process with Lorentzian bandwidth 5. The mean of this process is zero and
the variance is 27 t.
o 7, is the m-th time delay which is a uniform random variable distributed in [0, T].
For the synchronous system, this time delay 1s zero.
At the k-th receiver, the optical signal S(¢t) is first despread by af(¢), which is the

complex conjugate of ax(t) , and then homodyne-detected for the transmitted signal from
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user k (see Fig. 1). The output of the photodetector is

r(t) = VP bp(t)e 2% Lon(t)+

!
Z A /P bm(t — Tn_l)ei[“/:n(t—rm)+¢m(t—rrn)_¢k(t'—7'm )+A97n(t)]
m

where

Om(t) — 60(1)

where 61(¢) is the phase noise of the local laser and n(t) is the complex AWGN process
with double-sided spectral density ]—VQ—O . The receiver used is a correlation receiver. which
is optimum for the single user case with no phase noise (see Fig. 2). The performance of
this suboptimum receiver in the presense of phase noise and AWGN is obtained for the

single user and multiuser situations in the subsequent sections.



3. Single User Analysis
Here the performance of the system described in Section 2, is evaluated in terms of

BER for the single-user case. The real part of the output of the integrator is denoted by

Y, which is
Y =M X VP +nV/P (3.1)

where

1 T
X = —/ cos[Afk(t)]dt (3.2)
T Jo

and 7 is a zero mean Gaussian random variable of variance Ny /2PT. According to Ap-

pendix A, the probability of error P, for BPSK modulation is obtained as

1 _ [3PT\ 1 _ [2PT |
Pe=§Q<(P+A) W)%‘g@ <(/)—:\) NO> (3.3)

where Q(-) and ®(-) are related to the standard normal distribution as follows:

Qla) = / 1 ey

2

S
@(a)=/ \/-—;_—T—e-f/«dm

The overlines in (3.3) indicate expectation with respect to the random variable X. Simi-

larly, for OOK modulation, P, is obtained as

1 2PT 1 2PT
= — , - - X . 3.4
P, 2@(/)\/ NO>+2<1><(/) ) N0> (3.4

It is easy to show that the optimum value of p for (3.3) and (3.4) is 0 and 1/2. respectively.




4. Multiuser Analysis
Here the performance of the system of Section 2.1 is evaluated in terms of BER for
the multiuser case. The synchronous case (7, = 0) is considered first; the asynchronous

case is studied in a separate section. The output of the integrator V is

!
V=69VPr + VP ip +iVP, (4.1)

where
1T,
x:?/eﬂmwf (4.2)
0
1 [T o |
tm = bgm) . ?/‘ el[me‘(Dm(f)-—Ok(fH-—’lem(t)]dt (4.3)
0
and
1 T
n = ﬁ/ n(t)dt. (4.4)

In order to calculate the integral in (4.3) we make some assumptions. First, we assume
that the phase addressing functions ¢, (t) and ¢x(t) in the chip interval ((n — 1) T,. nT,]
take the values @, and ¢i, in [0,2r], respectively. Second, for large values of N. we

assume that
Abp(t) = A0 (nT.) £ Opmn,  for (n—1)T. <t < nT, (4.5)

where 0,,, is a zero-mean Gaussian random variable of variance 473n7. . Under these

assumptions,

b(m) w/ T N ot ) , 5
im — (jv SZTLC ( 'n; C) Z 6l[¢mn_@kn+6mn+wm(n—l/-ﬂ)Ts}' (46)
B n=1

By taking the real part of V in (4.1), we have -

Y= (bé"') X +) In+t n> VP (47)
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where X and n are defined in (3.1) and (3.2) and I, is

bf)m) . wlmTc al - ,
Iy = —ysine ( 5 ) Z} cos( X)) (+.8)
where
AX’mn =< ¢mn - (ﬁkn + gmn +w:n(n - 1/2)TC > (49)

In (4.9), < - > represents [-]| mod.27 . To evaluate the bit error probability let us rewrite

(4.7) as

v = (3" X +T+7) VP (4.10)
where

I:Z L. (4.11)

m

According to Appendix A, the average probability of error for BPSK modulation is ob-

1  [3PT\ 1 _ [2PT
PeziQ <(,0—+—}x) ‘/V() > +§(p ((P_-X) -TVO )

sin(uX)

[24

tained as

+ ;1;/ (1 —@r(u)) ®,(u)cos(pu) du (4.12)
0

provided that I and X are independent. However, this assumption is discussed in detail
in Section 2.4, where it is justified by the evaluation of the characteristic function of I via

two different methods. Similarly, for OOK modulation, P, is

1 2PT 1 2PT
P, == - -X
2Q<p N, >+2<I> ((p ) 7 )

sin(pu) — sin(p — X )u

- du (4.13)

1 oo
+ —-—~/ (1= @7(u)) P,(u)
27 Jo U
where

.ZV() 5.
u’). 4.14
ipT" ) ( )

®,(u) = exp(—
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As shown in [3]-[5] where the characteristic-function method was applied to other
systems with additive interference, expressions similar to those in (4.12) and (4.13) can
be evaluated with any desirable accuracy. Therefore, for all practical purposes results
obtained via this method are considered exact and have been used in the literatnre for
checking the accuracy of other techniques. In particular, the infinite integrals in (4.12)
and (4.13) are first truncated (for the specific acceptable truncation error) and then the
integration is carried out using standard methods (for the specific acceptable integration

error).

5. Computation of the Characteristic Function
The computation of P, in (4.12) and (4.13) requires the characteristic function of

multiuser interference ®y(w) . This is defined as

(mj
! bO m
o

. . . w! Te N -
@I(U) :E[ﬁluI] - E eme o sinc( —%— )anlcost\mn) (51)

where X, is defined in (4.9). We pursue two approaches for obtaining the characteristic
function.

According to the first approach, it is assumed that the carrier frequencies of the
users are uniformly distributed in a bandwidth of W. The phase signature sequences are
uniformly distributed in the set of equally spaced phases, {0,27/M, ... (A — 1)27/M},
where M is the number of points in this set. This means that the phase signature sequence
is modulated by an M-ary phase shift keying scheme. M=2 corresponds to the commonly
used BPSK case.

According to the second approach, it is assumed that the phase signature sequences
are continuous and uniformly-distributed in [0,27]. This approximates the case in which
the number of levels M is large. The choice of carrier frequencies distributions is arbitrary.

As it will become clear in the following, the two approaches not only correspond to two
different sets of assumptions that can be useful under a variety of system conditions, but
are also necessary to validate the use of characteristic-function method and the evaluation

of the characteristic function of other-user interference.



First we prove the following two lemmas. follows.

e Lemmal
Let X be a random variable uniformly distributed in the bandwidth [0.117]. Let
Y =< X >. Then the distribution of ¥ approaches to a uniform distribution in
[0,27], as W — oo.

¢ Proof: See Appendix B.

¢ Lemma 2
Let the sequence {¢,}, be i.i.d. and uniform in [0,27] and let the sequence {1\, },
be arbitrary. Assume that these two sequences are independent for all n. Then the
sequence {X,}, defined as

Xp =<+ A, >

is i.i.d. and uniform in [0, 27].

e Proof: See Appendix C.

1. Assumption of Uniform Carriers

Let X;np in (4.9) be

Xmn =< Ymn + fmn > (5.2)

where
Ymn = @mn = Pkn + Imn (5.3)
Bmn = w;n(‘n - 1/2)T.. (5.4)

{w!,} is assumed to be i.i.d. and uniformly distributed in a bandwidth W as big as 10
THz. Therefore, {fmn} for fixed n are 1.i.d. and uniformly distributed in a bandwidth of
(n — 1/2)W/(RN), where R is the data rate. For typical values of R and N, this value
is still very large and according to Lemma 1, it is reasonable to consider {< Fm, >} as
ii.d. random variables uniformly distributed in [0,27]. Consequently, Lemma 2 asserts
that {X .} with respect to m are i.i.d. and uniformly distributed in [0,27]. Therefore.

(5.1) is expressed as

plm?

’
Q0 “’mTc

!
(I’I(U)=HE piu—S—sine( 23 ) SN cos(Xmn) _ (
m

Ut
Ut
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This is independent of the index m . Hence
(LK —1)
. by . w!'Te N -
®r(u) = {E [6111—1%81'10(7) P onet °°S‘<‘n>] } . (5.6)

Conditioned on w in (5.6), it is easy to show that the sequence {cos X,} has zero-mean
and zero correlation. Therefore, this sequence is a “p —mizing” one with p(n) = 0 (See [7]
and [8]). We want to apply the CLT to the sequence {cos X, }. To achieve that we report
a theorem from [§].
e Theorem

Let {X,} be a second-order stationary, centered, and p-mixing sequence; let 02 — o

and Y, p(2") < co. Then {s,/0,} satisfies the CLT, where s, = .1, X, and 02 =

Var(sy,).

The variance of the sequence {cos X, } turns out to be

2 _
g, =

3+ 3 coslw'(2n = DT E{cos(26,)}, for M =:
I for M >

29

Since 26, is a zero-mean Gaussian random variable of variance 167 nT¢. it is easy to show

that the expectation in (5.7) is exp(—8n3nT.). Hence,

2
=1

Apparently, all conditions of the theorem are satisfied for A/ > 2. But, for A/ = 2. the

+ % cosw'(2n — 1)T.]exp(—873nT.), for M =

for M > (5:8)

SRR

?

[

N

sequernce is not second-order stationary. The variance of the term 71—1\7 > cos(X,) is
n=1

2 _ [ 3+ By cosle/(2n = DT exp(~8npnTe), for M =
> fOI‘ J/_[ >

SV V)
(&4
o

It is easy to show that

1 1
lim —N—ETILI cos[w'(2n — 1)T,] exp(—87pnT,) = / cos(2w'T) exp(—8n3Tt)dt
0

N—c
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which is easy to compute. Therefore, as N — oo, (5.9) converges to

SV

) { T+ 2(a21T2) [(bsin(b) — acos(b))exp(—a)+a}, for A =
ot =

5.10
5 for M > (510

S]

where a = 87T and b = 2w/, T. This limit is positive (non zero) for almost all values of w'.
Despite the fact that for M = 2 the condition of stationarity required by the theorem is not

. . N
satisfied, we have shown that for almost any given w’ the sequence {71\7 Y o—y &} converges

to a positive limit. This also leads to the satisfaction of the condition Z‘:le ol — . as

N — oo, stated in the theorem. We may thus proceed under the assumption that the CLT
]\7
1

holds. Then, for large N, the term Ve > cos(X,) in (5.6) can be replaced by ¢ . where

n=1
. . . . 9 ..
¢ is a Gaussian random variable of zero-mean and variance o=. Conditioned on by and w’,

(5.6) becomes

o

&1(w) = { Bpgpr { B [/ 7e5570¢] }}(K_U_ (5.11)

The inner expectation in (5.11) is the characteristic function of a Gaussian random variable.

Therefore,

Ct
i
Lo

—u2i<sinc(“‘yln )202 (=D :
@](u) =< Fle N 2 (D.

where the expectation is with respect to by and w’. For BPSI(, bpe{—1, 1} and consequently

we obtain
= (K-1)
&(u) = { exp [—;—N <3i7zc(w;TC )) }2} . (5.13)
For OOK, bye{0,1} and thus we obtain
= (K-1)
&7(u) = % n %exp [—gf— (smc(wl_zTc ))daz} . (5.14)

Notice that this characteristic function does not depend on the phase noise for M > 2.

Thus, when conditioned on the phase noise random process, the pdf of the other-user
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interference term I defined by (4.11) and (4.8) turns out to be independent of X. This
provides partial justification for the independence of I and X in (4.10) and thus for the
validity of (4.12) and (4.13) under this approach. For M = 2, ¢? in (5.10) depends on this
phase noise. However, the numnerical calculation of the characteristic functions for both
cases (M =2 and M > 2) shows a negligible difference between these two (see Figure 2.6).
Therefore, for M=2, the independence assumption is also well made and consequently,
the validity of (4.12) and (4.13) is justified. The issue of the independence of I and X
[necessary for the validity of (4.12)-(4.13)] is raised by the fact that, although I,, and X are
mutually independent for all m (and so are I, and I, for m # m'), X and ([1. L. -- . Iy)
may not be mutually independent. Final justification for the validity of this approach is
provided by its close agreement (refer to the section on numerical results, i particular
to Figures 2.9 and 2.10) with the results obtained via the second approach that follows.

Under the second approach, I and X are guaranteed to be independent.

2. Assumption of Uniform Phase Signature Sequence

For the case in which the signature sequence phases are uniformly distributed 11 a set
of equally spaced discrete levels, if the number of levels in this set is reasonably large, this
discrete uniform distribution is approximated with a continuous uniform phase in [0.27] .

Let us express the characteristic function of the interference I as

®(u) = Ey Ep Ex [e™] (5.

Tt
fu—y
w4

where I is given by (4.11) and (4.8). E+ is the expectation with respect to the N(\' —1)

dimensional vector in { X, } . Ey-is the expectation with respect to the I\ — 1 dimensional

vector 1n {b(()m)}. Finally, E— is the expectation with respect to the ' — 1 dimensional
vector w' = (w},...,w} ). Since {¢pmn} in (4.9) are i.i.d. and uniformly distributed in
[0,27] for all m and n , {Xmn} are also 1.i.d. and uniform in [0, 27], for all m and n (based

on Lemma 2). Therefore,

! N b\ sin e “m cos( X un
&r(u) =[] Eo,, {Ebgm> {H Ex... {ezwbé | ( i ) . )}}} (5.16)

n=1

13



We use the identity

. 1o
Ean [ezucos(‘\mn)} — plucosT | o
e

2 7\'/2
= —/ cos (ucosz)dr = Jy(u) (5.17)
T Jo

where Jo(-) is the Bessel function of the first kind. Using (5.17) the inner expectation in

5.16) becomes J, B2 gine (¥mTe , which is independent of n. Also using the fact
0 N 2 p S

that Jo(a) = Jo(—a) we obtain the following expression for BPSK:

N " ST N
Ebgm) {H Ex, []} = l:JO <‘V3inc (—mz—c)>} . (5.18)
n=1

Moreover, if we assume that the sequence {w,,} is1.i.d., (5.18) is independent of the index

m and (5.16) becomes

KN-1

’ T N
Or{u) = { [JO (j—\?sinc <u,.) p))} } (5.19)

where the overline is the expectation with respect to the generic w’ scattered in the band-

width of the channel. Similarly , for OOK modulation. ®;(u) is obtained as

K—1

f N
®r(u) = {—;— + % [Jo <%3inc (szc>>} } . (5.20)

Under the conditions of this approach, (I, s, -, Ix) and X are mutually independent

and thus X and I are mutually independent; this justifies the use of (4.12) and (4.13).
6. PDF of X
The pdf of X as defined in (3.2) depends on 57T, where 24 is the Lorentzian bandwidth

of the Brownian motion process Afr(t) .

a) Monte Carlo
14



In order to obtain this pdf through Monte Carlo simulation, we write (3.2) as

F né

7

X == cos (AGy(t)) dt (6.1)
T Z (n—1)6

n=1

where F' is the number of divisions of T into smaller portions of size 6, where 6 = T/F .

For F' large enough, let
AGp(t) = AB(n6) 2 0,  for (n—1)5 <t < nb. (6.2)

By substitution of (6.2), (6.1) becomes

F
Z = G(9) (6.3)

where {©,}1_, is a sequence of zero-mean Gaussian random variables of variance 47 3né
and correlation 4736 min{m,n) . The statistics of X' are estimated through the generation
of the random sequence {©,}f_, in a computer by using (6.3). The probability that ¥

lies in a set A = [ay1, as], where ay,as€[0,1] , is obtained as

Py = / 14[G(8)].Po(8)d6 (6.4)
RF

where Pg is the joint distribution of ©@ = {©1,03,.... O} and 1 4[] the indicator function.

The Monte Carlo estimate of this probability is

Py= MZMG (6.5)

where M is the number of independent simulation runs in the computer and ©, is generated

according to the pdf Pg. The sequence {0,}5_; generated in (6.5) is obtained via the

iteration

@1 =1 -
{e'nzen—1+yn ZSTLSF (6.0)
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where {v,} is a sequence of i.i.d. zero-mean Gaussian random variables of the variance
4w 36. .1t is easy to show that the sequence {©,} has the required properties.
The estimate in (6.5) is an unbiased estimate whose variance is given by

s . Py—P3

var(Pay) = i (6.7)

The accuracy of this estimate is limited by the statistical fluctuations in the simulation.
More specifically the accuracy of the estimate probability of a quantile ¢ obtained after A/
independent simulation trials is approximately \/T7.—\[_q . At low probabilities, the number
of simulation trials increases drastically, which prohibits the utilization of the simple Monte
Carlo method. To >circumvent this problem a modified Monte Carlo simulation. namely

the Importance Sampling method, is implemented.

b) Importance Sampling
The idea is that the input distribution is biased so that more samples lie in the region

of interest at the output. Let us write (6.4) as

Py= / 14 [G(8)].W(8). Po- (8)d8 (6.5)
RF

where W(§) = 7'%%(_(% and Pg+ is the biased distribution of ©. The Importance Sampling

estimate of P4 in (6.8) is given by

M
* i f * * -
Pi= < g 14[G(O))). W (9)) (6.9)

where Q7 is generated from the distribution Pg+. The variance of this estimate is given

by (see [10])

. WP}
UCZT(PA) = “‘}U—i (610)
where the average weight W is
W= / 1A[G()]W(8) Po (8)d8. (6.11)
RF



The fundamental issue in Importance Sampling is the determination of the biasing dis-
tribution Pg+, so that the variance of the Importance Sampling estimator is minimized.
The proposed biasing distribution is obtained by shifting the original input samples ©,, by
+and | i.e.,

Or=0,+ Zand (6.12)

where Z takes values in {—1,1} with probability 1/2 . The parameter a > 0 is the identity
which should be optimized accordingly. Given Pg and using (6.12) we can easily show

that

a 2
Po(8)  exp(2Lk)

Po-(8) ~ cosh(5L22)’

Wie) =

(6.13)

This is the same expression which was given in [11] in a similar context. However. it was
not proposed in [11] how to optimize (6.13) in terms of «.

In order to reduce the variance in (6.10) with respect to the one in (6.7) we need to make
sure that W < P4. In what follows, although we do not provide the optimum value for
a such that this condition holds, but we argue for an approximation in the hope that the
numerical results will provide encouraging results.

First let rewrite expressions (6.4) and (6.11) as

Pa= [ Polt)as (6.14)
B
W:/ W(8).Po(8)dd (6.15)
B
respectively, where B is the inverse image of the set A, i.e., B = G~(4). Also let the

set A be A = {a},ae[—1,1], which is a reasonable assumption due to the probabilities of
bins of small sizes. Pg(f) is the joint pdf of a multivariate Gaussian with zero mean and

covariance %, where

111 1
1 2 2 2

S=4786|1 2 3 3 (6.16)
1 3 F
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It 1s easy to show that

Po(8) = (21) T || T . 28O +(P2—00) 4 4 (8 —0p-1)7] (6.17)

At this point, we attempt to minimize W (6) in (6.15) with respect to « for the values
of § in B which maximize Pg(#). In other words, the effect of the integrand in (6.15) is
reduced when it is maximum. As we proceed, we find the optimum value of o in (6.13),
which minimizes W(8) when Pg(8) is maximum, and we also express the conditions under
which this minimum value is less than one.

First, (6.17) is maximum when § is in the set S = {8:6; = 6, = ... = §p} C RF. This
reduces (6.17) into

Po(6) = (2m) 3 [S| T e for geS. (6.18)

Second, we need to maximize (6.18) with the constraint §ef3. In other words. we should

maximize (6.18) for 8eS N B. But it is obvious that

SNB=1{8:0,=0,=...=0p =2Kr£cos '(a), for K integer} (6.19)

and the values which maximize (6.18), and consequently (6.17), are in the set
L={8:6,=6,=...=0p=cos"Ha)} C(SNB)CB. (6.20)
Next, we minimize W(§) in (6.13) with the constraint §eL. i.e.,

(aT)?
exp( g757) |

Té
cosh( 57T )

min{W(§) = OeL} (6.21)

or

excp( @)
min{WV(6) = = T (6.22)

where ¢ = cos™(a). A simple derivative of W (@) in (6.22) with respect to o renders the

necessary condition for the minimum points. This is

y = tanh(~vy) (6.23)
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where y = % and v = I% For v < 1, (6.23) has only one solution at y = 0. This means

that W(6) is minimized at o = 0 and W(8) = 1 . This is the useless trivial reduction
of the problem to the simple case of Monte Carlo. For v > 1, (6.23) has three roots. At
a =0 W(8) is maximized; at the other two symmetric roots (amin), W () is minimized
and this minimum value is less than one. In other words, the minimum of W (#) in (6.22)
for nonzero « is achieved when I%;'T > 1 and this minimum is less than one. However. for

practical values of ¢ and ST, this condition is always satisfied.

7. Asynchronous System

In this section, the analysis developed for the synchronous system is extended to the
asynchronous case. The time delay 7,, in (2.1) is considered to be a uniformly distributed
random variable in [0, T}, which represents the m-th user’s time delay. At the k-th receiver,
the matched filter is synchronized with the k-th signal, i.e. 7, = 0. Therefore. (4.10) 1s
still valid and the average probability of error is given in (4.12) and (4.13) for BPSK
and OOK modulation, respectively. Evaluation of the characteristic function of multiuser

interference for the asynchronous case follows next. Let us write 7,, as

Tm = 'emTc + T,In (71)

where £, = | 7| is a discrete random variable taking values in {0.1..... N — 1} with

equal probability. 7/, is uniformly distributed in [0,7¢]. The counterpart of (4.3) becomes

-1
SV

. 1 T R ‘ y
P = f/ bm(t _ Tm)ez[wmt—wmrm+@m(t—rm) @k(t)+A9m(t)]. (7.
0

The integral in (7.2) can be written as

T Tri T
/ :/ +/ (7.3)
0 0 Tm

where
Tm 1 (Tl—l)Tc‘l’T,’n b 'nTc
/ =Y / +3 / (7.4)
0 n=1 Y (n—1)T¢ n=1 J(n=1)Tc+rl,

19



(n=1)Te+7.,
+ / (7.5)
/ Z /(Anwl)TC Z {(n=1T.+r!,

n=4¢,, n={,,+1

By using (7.3), (7.4) and (7.5) in (7.2) 2, becomes

L X (n=DTetry, T, o
=7 Z r / elmn (Bt 1 e,_nn/ e mnlO gt (7.6)
n=1 {(n—-1)T. (n—=1)T.+r},
where

A —_—
gr-;-n(t) zw:nt_win’rm +¢m(n—1) —Qbkn‘Jf‘emn (‘-‘)

— Ay ’ ) —
gmn(t) =Wt =Wy, Tm + @mn — Qkn + G (7.8)
er 2™ n) + b0 1 7.9
€mn [, em+11(1) + 0 [Cn+2.8](12) (7.9)

_ A (m) , ~
= =0 T () B e vin) (7.10)

A1 1 <n<y ~
1s.(m) = { snsy 11
.1 (n) 0 other (i1

The counterpart of (4.8) is obtained as

. 1 L
Im:Re{zm}:NZ[e;;n cos Xih L, Fem, amcos X, ] (7.12)
n=1
where
+ 9_ _T_rln_ . w:n Tvln —_
ay = Tcamc< 5 (7.13)
! ! T !
o, = (1- :"l)bznc {wm( C,) T’n)} (7.14)
. 2
A w! ! ‘ e
X;,tn =< w' (Tl — l)T + TR w:n'rm + (/:)m(n—l) - C,bkn + em'n > ( ‘~1D)
A / !
X, =<wh (n—=1/2)T. + m)m —wh Tm + Omn — Pkn + Omn > - (7.16)

At this point, we make two assumptions similar to those of the synchronous case. two

assumptions as follows.



1. Assumption of Uniform Carriers
As before, we observe that, conditioned on 7 = (71. 72, ..., The1s Tht1e - - i) X ]

and {X .} are i.i.d. with respect to m and uniformly distributed in [0.27]. Therefore,

N

!
®;(u) = Ex {H E [ef%‘f (0 o0y et cos Xihatar, 300 e cos -\'@:)} }
= E- .
m

The sequences {e} cos Xt 1, and {e cos X }, are zero-mean and have zero correla-
tions. Therefore, they are p-mixing sequences. Also notice that these two sequences are
uncorrelated with respect to each other. By conditioning on w/, and by using the CLT

(7.17) yields

!
@I(u)zE?{HEw,mE [efi%(af’n"f’ﬁa%”%q} (7.18)

+ — . . v . i 2 2
where n1 and 7 are zero-mean Gaussian random variables of variances T+ and o°_.

I]’H)

respectively. It is easy to show that, for BPSIX modulation,

N . » —8mdjTe [ ="
o2, = 3 2% Lzt €082l = b = DT =y )70, M =20 L)
ok Y AM>2
1, 1 N 2] " whmh e8I =
213 1k ijl cos(wh, (2] — 20 — 1) T, — !, 7}, )e Srite M =2 . (T7.20)
= %’ A > 2

The two summations in (7.19) and (7.20), as N — oc. are equal to the integral

/1 cos [bmt - bm%‘— —w,, Th, | exp(—at)dt (7.21)
0 ]
where b, = 2w], T and a = 87 fT. Let define n,, as
i £ okt + @ | (7.22)
The variance of this zero-mean Gaussian random variable is
Tp = (am)ols + (ag)?ol. = [(ah)? + (a)?] o (lm) (7.23)
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where o2,(n) = § for M > 2, and for M = 2,
1
2(a® + b7,)

n
acos(—=by, +w T

1
m(n) ; + V m'm

)+ b bln( Vb T+ L‘"in Tzln )+

(bm sin(bm (1 — J%—) —wh Th) — acos(bm (1 — 1—) — u,mrm)> exp(—a)]
(7.24)

If we substitute (7.22) in (7.18) and perform the inner expectation, we obtain

u):E?{II—IE% [e—o]} (7

7 is an 1.i.d. and uniform random vector. Hence, the outer expectation is interchanged

~1
Q]
(@7

with the product and the result is independent of the index m.

a2 s (AN—1)
B1(u) = {EE [TH . (7

The expectation with respect to 7 is reduced to 7' and ¢. Hence, finally

1 N
r(u) = {]—\; > <I>n<u>}
n=1

~3
SV
[

(LK'—1)

=1
[B]
-~1

where

=1
L\
oo

o2 = [(a®) +(a7)?*] o*(n). (7.29)

For OOK modulation, (7.27), (7.28) and (7.29) still hold and only o?(n) is divided by a

factor of 2.

2. Assumption of Uniform Phase Signature Sequence
Since the two sequences {¢;(n—1)} In (7.15) and {¢nn} in (7.16) are 1.1.d. and uni-
formly distributed in [0,27], for all m and n, the two sequences {X,} and {X,} are

also i.i.d. and uniformly distributed in [0, 2], for all m and n (Lemma 2). Therefore.

!
O(u) = HE [ej%(ai S my Ghacos XE ban 3TN encos XoL) | (7.30)
m

[SV]
o



Moreover, the two sequences {X } and {X .} are independent of each other. To prove
this we need to show that the two random variables X and X7 are independent for
all m,n,7 and j. For all cases, except the case in which i = m and j = n — 1, the i.i.d.
and uniform phase sequences {¢,,(,—1)} in (7.15) and {¢;;} in (7.16) provide the proof
in a straightforward manner. For the case i = m and j = n — 1, X and X are still

independent, because ¢rn and ¢y (,—1) are independent and uniform for this case. Using

these facts

n=1

! N
i ot ot cos X F W= e™  cos N7 ~
@I(u) — HEm {H El\’;'m [GT X €in COb‘\mnjt . E‘\_;m {6 T ¥y €y COS A\mnj| } (13]_)
m

where the expectation E,, is with respect to the all random variables with index m. Upon

substitution from (5.17)
!

B(u) = ImIEn {n: 7, (%aj,ej;n) Jo (%ff)} . (7.32)

For BPSK modulation, e}, and e}, belong to {—1,1}. Therefore. the inner product is

independent of n and (7.32) becomes

() = fIEm [Jo (%a+> J, (%a‘)}w (7.33)

Moreover, by assuming that the sequences {w!,} and {+] } are i.i.d., the expectation above
becomes independent of the index m and, finally, the characteristic function of the mul-

tiuser interference for BPSK modulation is obtained as

u T w!r! u 7! . w (T, —7') N
H"" G e[ ]) (5 (- ) ooe [ <52 }

(7.34)

where the expectation in (7.34) is with respect to «' and r', which are distributed in

[-W/2,W/2] and [0, T¢], respectively.



The evaluation of the characteristic function of the multiuser interference for OOL in

this case, is more tedious than for BPSK. We know that €,, is a uniform discrete random

variable which takes values in {0,1,..., N —1}. By assuming
em = Jo(ma kb)) I bY) (7.35)
dm £ Ty Zah b ) (e b)) (7.36)
v 2 T %a;b(_‘";)).]o(%a;bg””) (7.37)

(7.32) becomes

&r(u) =[] Em {

. N ,
Cm dm | Vm ? . (7.38)
e[ 11 ]

n=4_{,,+2

n=1

Since ¢, , dym and v, are independent of n, then
!
N~ — in
®r(u) = [[ Em {omelpdy =7} (7.39)
m

Performing the expectation above with respect to (,,, vields

! N-1
®(u) = [[ En {U/T > cfndﬁz"l“i} : (7.40)

1=0

By taking expectation with respect to (b(_ml'),bgm)) and rearranging the terms the final

result becomes

1 ,
@r(u) = {Z + %[R"(wl’T')Ru(wlaTc - T’)}N
(KN=1)
o LRt o) 4 R T — ooy Lo Bl TR T = 7))
4N w(@'s7") w(w', Te = ')] 1 — [Ry(w!, 7)) Ru(w!', T, — 7))




where

{1
W T

5 ) (

sy

Ry(w' 7" = Jg(—%rlsinc(

=1
He
V]

8. Numerical Results

Figures 3a and 3b illustrate the pdf for the random variable X, which was defined
in (3.2). According to Section 2.5, by using the importance sampling technique this pdf
is obtained for different values of the parameter 8T. As expected from (3.2), for lower
values of phase noise (low 8), this pdf tends to accumulate around the point X=1 which
corresponds to the noiseless case. By using the importance sampling method we were able
to find the tail of this pdf down to 1077,

Figure 4 shows the performance of the single-user system for the BPSIX case. Degra-
dation of this performance is due to two factors, additive white Gaussian noise and phase
noise. For values of 3T higher than 0.05, the average probability of bit error is higher than
1073, even for values of E4 /Ny up to 20 dB, where E} is the average bit energy. Reduction
of the phase noise by 50% (8T = 0.025) reduces P, to the range of 1075, Even higher
performance is obtained for the lower values of 3T. The lower bound is achieved when
BT = 0 (no phase noise).

In Figure 5, the performance of the two schemes, BPSK and OOK, for the single-user
case are compared. For the no-phase-noise case, OOK is worse than BPSIX for 3 dB. This
value increases adversely due to phase noise. As shown, for #T = 0.015. the two curves for
BPSK and OOK diverge even further for higher values of SNR. This asserts the inferior
performance for OOK due to phase noise.

Numerical calculation of the characteristic function, for typical values of the system
parameters, reveals that the binary and M-ary phase signature sequence in the first method
yields values that are very close to each other. This not only validates the average prob-
ability of bit error formulation for the case of binary phase signature sequence (M=2),
but also suggests considering the M-ary case (M > 2) (which is computationally easier to
obtain) as the representative case for all numerical results. Figure 6 shows how close these

two cases are.
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Multiuser performance of the asynchronous system for BPSIK is illustrated in Figure
7. For 5000 high data rate users of data rate 10 Mbs, the average probability of error is
obtained for different values of AT and SNR. For this high number of high data rate users
and for values of AT such as 0.015, the average probability of bit error in the range of
1075 becomes feasible by introducing more signal power (higher SNR). The total optical
bandwidth W and the spreading gain N are set to be 10 THz and 1000, respectively. The
multiuser capability of the same system is obtained in Figure 8. For a P, in the range
of 10™*, this system can support almost 10000 high data rate users by tolerating a phase
noise as high as g7 = 0.015, while keeping Ej /Ny higher than 12 dB.

Performance of the synchronous and asynchronous systems using the two proposed
methods of evaluation of the characteristic functions is obtained for BPSK and OOIX in
Figure 9 and Figure 10, respectively. For the proposed values of parameters indicated, the
performance of the synchronous system using cither method and the asynchronous system
using the first method are exactly the same. In fact, we obtained computationally exactly
the same values for the corresponding characteristic functions. The asynchronous system
using second method is slightly different from the others. Also notice that, in the OO
case, the degradation of the performance is mainly due to the single-user contribution of
error in the total average probability of error.

The close agreement of the results provided by the two methods observed in Fig-
ures 9 and 10 justifies the use of the first method, which corresponds to more realistic
system modeling assumptions, whereas the second method, which is analytically very ac-
curate (actually exact within the framework of the characteristic-function method), relies
on modeling assumptions that are less realistic. Therefore, depending on the modeling

assumptions we can use the most suitable method with full knowledge of the accuracy of

the method.

9. Conclusions

In this paper we provided the modeling and the tool for analyzing the performance
of an RC CDMA network with coherent optical detection. The average bit error prob-

ability of this multiple-access scheme was evaluated using the characteristic function of
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multiuser interference at the output of the matched optical filter. Based on two set of
assumptions, we proposed two approaches for obtaining the characteristic function. These
two methods were numerically evaluated and the results proved to be very close to each
other. Both phase noise and thermal noise were taken into account in the analysis. The
effects of AWGN and phase noise were studied numerically for single-user syvstems with
spreading and despreading and for multiuser systems. Importance-sampling techniques
were developed to simulate a given function of phase noise. It was shown that thousands
of high data rate users can communicate reliably in a multiaccess optical channel corrupted
by AWGN and phase noise. Time-synchronous as well as asynchronous systems were an-
alyzed in this context. The nearly equal performance of synchronous and asvnchronous
schemes indicated that synchronization does not enhance performance significantly. Bi-
nary phase-shift-keying (BPSK) and on-off-keying (OOK) data modulation schemes were
considered. Considerable performance degradation of OOK due to phase noise left the
BPSK scheme as the dominant viable scheme.

The performance evaluation of RC CDMA established the potential advantage in
employing hybrids of wavelength-division multiple-access (WDMA ) and CDMA to combat

inter-carrier interference in dense WDMA systems.
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Appendix A
In this appendix, we provide the average probability of bit error for single and mul-

tiuser systems. BPSK and OOK modulation are both considered.
1. Single User Analysis

The probability of error P, for BPSK modulation is
1 ‘ 1 :
Po= 5Pr[Y > pVPY = <1] 4 5Pr [V < pVPIY = 1 (A1)
where pv/P is the threshold. Upon substitution for ¥~ from (3.1)
1 401 .
Pez5Pr[77>p—|—4X]+3Pr[77<p—.X]. (4.2)

The random variable X takes values in [—1,1]. P. in (A.2) takes two possible forms,

depending on the values of X,

P _ s—3Prip-X<n<p+X/X >0 wp p* 2 py [X > 0] (4.3)
’ % + %Pr [+ X <n<p-—X/X<0] wp ¢ 2 pr [X < 0]
where “w.p.” means “with probability”. By taking the average of (A.3), we obtain
1 g . s
P, = 5t 7]37“[,0-{—‘\; <n<p-=X/X <0
~LPrp-X<n<p+X/X >0 (A4.4)
Next we find the two probabilities in {A.4). The first one is
1 S
FPr[p—f—X <n<p-X,X <0
1 0
= — Prip+z<n<p—zl fx(a)d (4.5)
9 J-1

where fx(-) is the pdf of the random variable X'. By using the functions ®(.) and Q(.)
(A.5) takes the form

1 [0 [oPT 2PT
q_*/;1 {@((p—-m) N >+Q<[)+l N0> }f\ Ydz (A.6)




where @(-) and ®(-) are related to the standard normal distribution as follows:

Similarly, the second integral in (A.4) is

2PT L 2PT
(e B (A

Upon substitution of (A.6) and (A.7) in (A.4) the final result is obtained as

2PT 1 2PT
= Q((/)+X A0>+ <1><< X) NO>~ (4:8)

fx(z)dr. (A.T)

The overlines in (A.8) indicate expectation with respect to the random variable X. Simi-

larly, for OOK modulation P, is obtained as

3PT\ 1. (. .. [2PT |
=-Q( .\70>+§(I) <(p—_X) N0>' (4.9)

It is easy to show that the optimum value of p for (A.8) and (A.9) is 0 and 1/2. respectively.

2. Multiuser Analysis

The probability of error P, for BPSK modulation is obtained from (A.1) as follows. If we
replace “n” with “I +n”, (A.2),(A.3), and (A.4) are still valid in the multiuser case. The
first probability in (A.4) is

1
(—];-Pr[p+X<I+17<p—X,X<O]

0
= :};/ Prip+a<I+4+n<p—az]fx(z)de. (4.10)

-1
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Here we made the assumption that I and X are independent. The validity of this as-
sumption is justified in Section 2.4 by evaluating the characteristic function of multiuser

interference. Upon substitution of Pr[-] in (A.10) by an integral, we obtain

1 0 p—r
= | fx(e) / Friaty) dyd A11)
q -1 ptz

where fri,(-) is the pdf of I +7. Since the pdf fry,(-) is a real function. it is easy to show
that

freq(y) = —71; /0 [Re {®r4,(u)} - cos(yu) + Im {@ry(u)} sin(yu)] du (4.12)

where Re{-} and Im{-} denote the real and imaginary parts, respectively, of their complex
arguments. Considering that I and 5 are independent and that ®;(u) turned out to be

real (see Section 2.4),

freq(y) = %/ Or(u) ®,(u) cos(yu)du. (4.13)
0

Substituting (A.13) in (A.11) and perforfning the integration fp’:f, the first probability in
(A4)is
2

ya

oo 0 ,
/ ®r(u) ®,(u) cos(pu) [ fa(z) sin(ux) d(zr} E{E (4.14)
0 -1

Tq* u

Using the same procedure, the second probability in (A.4) is

2 fe%e} 1 1
*/ Dr(u) @p(u) cos(pu) [/ fx(2) sin(uz) dfl’:l Sy (A.15)
ﬂ'p 0 o U
Combining (A.14) and (A.15) in (A.4) we obtain
P, = l — l/ D r(u) &,(u) cos(pu)M du, (A.16)
2 7, U

where

1
sin(uX) =/ fx(z) sin(uz) d.
-1
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To evaluate P, for OOK modulation we follow the same method as before and obtain

o1 o Do) By (u). sin(pu) — m‘_—:{fﬁ

1
P, =— —-
2 27 Js U

- du. (A4.17)

In order to put (A.16) in a more meaningful format and also to facilitate the computations.

we rewrite (A.16) as

1 1 [ in(uX
P,= = -—/ @, (u) cos(pu)ir—lgudu
2 0 u

™

/ (1 —=®7(u)) @,(u) cos /)u)sm(u‘\ )du. (4.18)

U

The third term in (A.18) includes the contribution of multiuser interference in BER. The

first two terms are single user contributions. Therefore. by using (A.9) in (A.18) we obtain

1 _[2PT\ 1 _ [2PT
Pe:.-jQ((p—{—.X) No>+ @(( - X) M)

/ (1 —=®r(u)) ®,(u) COb(/)U)Sln( T&——>du (4.19)

U

Similarly, for OOK modulation, P, is

1 2PT 1 . [2PT
Pe=§Q <P N >+§(I’ <(P X \/—NB“>

1 [ ' .sin{pu) —sin(p — X)u
- 5 A (1= @7(u)) ®,(u) ”

du (4.20)

where

P, (u) = exp(—

Appendix B
In this appendix, the distribution of a random variable which is the mod.27 of a

uniform random variable is derived. Let X be a uniform random variable distributed in
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the bandwidth [0, W]. We are interested in knowing the distribution of the random variable

Y, which is defined as
V=< X >. (B.1)

The random variable Y is expressed in terms of some disjoint intervals as follows:

v - X —-2nm if 2nr <X <2n+1)m; 0<n<M
X =2Mr if 2Mr< X <W

where

M = |W/2x].

For ae[0,27], the event (Y < «) is expressed as
M-1
U (X —2nm <a, 2n7m <X <2(n+1)m) U(.X —-2Mr <a, 2nr< X <W) (B.3)
n=0

The probability of (B.3) is the summation of the probabilities of the ndividual events in
(B.3). By using the conditional probability and after some simplifications, Fy(a) (the

cumulative distribution function of ¥') becomes

_a|W/2r] +min(a , W —27|W/2r])

Fy(a) = . b4
v (@) W (D.4)
As W — oo, this distribution approaches to the uniform one.
Appendix C
Let {X,} be
Xn =< ¢‘n + Ap > (C‘l)

where {¢n} is assumed to be i.i.d. and uniform in [0, 27], for all n, and {/\n} is a sequence
of random variables with arbitrary distribution. These two sequences are independent of

each other for all n. Here we establish two claims:

e Claim 1: {Xn} are uniform for all n.



e Proof : It is a known fact that

Xolgiven Ay = 6. (C.2)

The pdf of X,, is obtained as
Frale) = [ fron el 00 (C3)

By using (C.2) (C.3) becomes
Fr.(a) = A Fon (@) fan (VAN = Fon (). (C.4)

e Claim 2: {Xn} are independent for all n.
e Proof : We show that any two random variables X, and .X; (n # /) are independent.

To show this, it suffices to show that, for any function g(-),
Elg(Xa)g(X0)] = Elg(Xo)| E[g(X0)]. (C.5)
Given A, and A; in (C.1), the first side of (C.5) conditioned on these values is
Elg(< ¢n+An >)g(< o0+ A >)An, A (C.6)
Since ¢, and ¢; are independent, (C.6) becomes
Elg(< ¢n + An >)|An] - E[g(< 0+ A >)[A] (C.7)

or
Elg(X)|\a] - Elg(X0)IN)- (C.8)

From Claim 1:

X, < Xy |given Ay

X; £ X)|given A. (C.9)
Therefore, (C.8) is
Blg(X0)] - Elg(X0). (C.10)
This means that
Elg(X.)g(X0)|An. M = Elg(X)] - Elg(X)]. (C.11)

Taking expectation with respect to A\, and A; gives (C.5) and this completes the proof.
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