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Data analysis applications such as Kronos, a remote sensing application, and the

Virtual Microscope, a telepathology application, require operating on and processing

large datasets. In such situations, it is important that the storage, retrieval, and manipu-

lation of these datasets is efficiently handled. Past research has focused on the creation

of database systems that abstract the data analysis process into a framework facilitating

the design of algorithms to optimize the execution of scientific queries and batches of

queries. These optimizations occur at different levels in the query processing chain in

the database system.

The present research deals with the optimizations performed by the database sys-

tem when processing batches of queries. It includes an end-to-end process starting at

parsing the declarative queries, converting them into imperative descriptions, merging

the imperative descriptions into an execution plan, optimizing the plan for lowering



execution time by employing basic compiler optimization techniques, and, finally, op-

timizing the plan for lowering memory consumption. The last two steps essentially aim

at reducing time and space for executing the batch. In particular, various algorithms

to optimize the memory utilization of multiple data analysis queries are presented and

the effect of each on query processing performance as well as their performance are

investigated.

The query plan that is output from the time optimizations consists of a set of re-

orderable loops over ranges of a dataset or multiple datasets. These loops comprise

the input set that is fed to the space optimization phase of the database system, which

aims to reduce the average or maximum memory usage of the entire loop set by de-

termining the order of execution of the loops. The methods used to optimize memory

usage that are investigated in this research can be classified into two distinct categories:

systematic and heuristic. The systematic methods, brute force and branch-and-bound,

arrive at the optimal solution yielding the lowest memory usage metrics; however,

their running times depend exponentially upon the size of the input set and thus cannot

be employed for large numbers of loops. As a result, we have devised the “greedy”

and “variable grouping” heuristics to address the need to optimize large numbers of

loops. Each heuristic arrives at a near-optimal solution and has a running time that de-

pends polynomially upon the size of the input set, with the variable grouping heuristic

yielding particularly favorable results.
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Chapter 1

Introduction

Several applications exist today that process very large multi-dimensional datasets.

An example of such an application is Kronos, which is used by earth scientists to pro-

cess satellite images of the Earth. Another example is the Virtual Microscope, which

provides realistic digital emulation of a high power light microscope. The common

processing structure of these applications has been defined in previous work [4]. A

database system has been developed to exploit the common processing structure of

data analysis applications to perform various optimizations geared toward reducing

turnaround time and improving throughput. The system accepts a declarative (SQL-

style) form of a data analysis query, or batch of queries, and converts it to an imperative

form, consisting of one or more loops over multidimensional ranges for some of the

dataset attributes. Once in the imperative form, the system performs optimizations

based on the algorithms commonly used by compilers to optimize intermediate or low

level representations of program source code. The three algorithms implemented in the

database system are loop fusion, common subexpression elimination, and dead code

elimination.

After performing these optimizations, the original query is transformed into a se-

quence of loops iterating on subsets of the original dataset range. Each loop requires
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the use of one or more datasets. When a loop starts computing the result for a query,

it must allocate memory for the query buffer holding intermediate aggregates and also

for the query if the final results have not yet been partially processed by a previous

loop. Additionally, once a query is returned to the client and completely computed it is

deallocated from memory. The loops have the property that their execution order does

not alter the result. Thus, the database system is able to arrange the execution of the

loops in order to optimize memory usage, which is the subject of the current work.

Memory usage by the application is important because it affects the performance

of the application, and may also affect performance of other applications sharing the

same processor and memory space. The metrics that the database system attempts to

optimize are the maximum and average memory usage of the loop set. The maximum

memory usage of the loop set is the maximum amount of allocated memory at any one

point in time during the execution of the entire loop set. The average memory usage of

the loop set is the total amount of memory at every point in time during the execution

of the loop set divided by the total amount of time the loop set requires to execute.

Maximum memory usage is important because it determines whether page swapping

will eventually be necessary during processing of the query. If the amount of memory

required by the application exceeds the available system memory, then the amount of

time for the loop set to complete will significantly increase due to page swapping.

Average memory usage is important because a low average allows other applications

to coexist on the same machine without these applications suffering from performance

degradation. Lower memory usage is also desirable because it may improve the cache

performance of the application.

In this paper, the author’s contributions are described as follows:

� The implementation and adaptation of an extended SQL parser to serve as the
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front-end of the database that converts the declarative form of a query to its

equivalent imperative form. The declarative form allows one to easily specify

the query without worrying about the exact process by which the results are

computed.

� The design and implementation of time optimization techniques in the current

database multi-query planner borrowed from algorithms commonly used by com-

pilers.

� The design and implementation of space optimization techniques in the cur-

rent database multi-query planner. This includes the development of a novel

heuristic, called “variable grouping”, to perform memory usage optimizations

that quickly arrive at a good loop ordering.
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Chapter 2

Related Work

In this chapter, we discuss work done by other researchers that is related to the current

work.

2.1 Register Allocation

The memory optimization problem is similar in many ways to the register allocation

problem found in compiler optimization research. The register allocation problem

consists of finding the best way to allocate registers in a code segment to minimize the

amount of spill-over to memory. Current methods accomplish this by converting the

problem to a graph where each node represents a variable and applying graph coloring

heuristics with distinct colors representing registers, as described in [22]. This problem

is of particular importance in embedded systems where the number of registers may

be small and code execution time is critical [17].
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2.2 Sparse Matrix Vector Multiplication

The current problem, particularly as formulated by the variable grouping heuristic that

will be described in Section 4.6, is similar in many ways to the problem of optimizing

sparse matrix vector multiplication. Sparse matrix vector multiplication involves the

multiplication of a sparse matrix with a dense vector. In many situations, it is prefer-

able that the non-zero elements of the sparse matrix appear near the diagonal of the

matrix so that certain algorithms for computing the matrix vector multiplication can

be applied which take advantage of the sparsity of the matrix. Much research has been

done to formulate heuristics that attempt to minimize the “profile” or “bandwidth” of

the sparse matrix ([9], [25], [11]). The profile of a matrix refers to the number of

elements that appear between the first non-zero element in each row and the diago-

nal. The bandwidth of a matrix refers to the maximum number of elements that occur

between the matrix diagonal and a non-zero element.

The problem of reordering the columns and rows of a matrix to minimize its profile

and bandwidth is NP-hard [18]. Therefore, heuristics must be applied for large ma-

trices. Many heuristics have been developed to optimize these quantities, notably the

reverse Cuthill-Mckee ordering [10].

2.3 Relational Database Memory Optimizations

Much research has focused on the optimization of relational database memory usage,

access, and structure. The performance of main-memory access is a growing bottle-

neck for database systems as the speed of CPUs outpace the speed of DRAM [20].

Vertically decomposed data structures can improve the cache performance of applica-

tions that require sequential access to data. Radix algorithms can typically improve
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the performance of random access operations. A new data organization model called

PAX (Partition Attributes Across) is proposed by [1] that improves cache performance

by grouping together attribute values in each page. This new model is demonstrated

to have significant performance benefits over the N-ary storage model traditionally

employed by relational database systems.
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Chapter 3

Database Infrastructure

This chapter describes the infrastructure of the database system that has been devel-

oped to handle multiple data analysis queries on large datasets.

3.1 Database Architectural Overview

The database architecture we developed, a product of ongoing research, allows the ef-

ficient handling of multi-query workloads where user-defined operations are also part

of the query plan [4, 6]. The architecture builds on a data and computation reuse

model that can be employed to systematically expose reuse sites in the query plan

when application-specific aggregation methods are employed. This model relies on

an “active semantic cache” that attaches semantic information to prior computed ag-

gregates and permits the query optimizer to retrieve matching aggregates based on a

query’s meta-data description. The cache is active in that it allows application-specific

transformations to be performed on the cached aggregates so that they can be reused

to speed up the evaluation of the query at hand. The reuse model and active seman-

tic caching have been shown to effectively decrease the average turnaround time for

a query, as well as to increase the database system throughput [4, 5, 6]. In essence,
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the previous approach leverages data and computation reuse for queries submitted to

the system over an extended period of time. For a batch of queries, on the other hand,

a global query plan that accommodates all the queries can be more profitable than

scheduling queries based on individual query plans, especially if information at the

algorithmic level for each of the query plans is exposed. A similar observation was the

motivation for a study done by Kang et al. [16] for relational operators.

The need to handle query batches arises in many situations. In a data server con-

currently accessed by many clients, there can be multiple queries awaiting execution.

A typical example is the daily execution of a set of queries for detecting the probabil-

ity of wildfire occurring in Southern California. In this context, a system could issue

multiple queries in batch mode to analyze the current (or close to current) set of re-

motely sensed data at regular intervals and trigger a response by a fire brigade. In such

a scenario, a pre-optimized batch of queries can result in better resource allocation and

scheduling decisions by employing a single comprehensive query plan.

3.1.1 Data Analysis Queries

Queries in many data analysis applications can be defined as range-aggregation queries

(RAGs) [7]. The datasets for range-aggregation queries can be classified asinput,

output, or temporary. Input (I) datasets correspond to the data to be processed. Output

(O) datasets are the final results from applying one or more operations to the input

datasets. Temporary (T) datasets (temporaries) are created during query processing

to store intermediate results. A user-defined data structure is usually employed to

describe and store a temporary dataset. Temporary and output datasets are tagged

with the operations employed to compute them and also with the query meta-data

information (i.e., the parameters and predicates specified for the query). Temporaries
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R Select(I;O;Mi)

foreach(r2 R) f

O[SL(r)] = F(O[SL(r)]; I1[SR1(r)]; : : : ; In[SRn(r)])

g

Figure 3.1: General Data Reduction Loop.

are also referred to asaggregates, and we use the two terms interchangeably.

A RAG query typically has both spatial and temporal predicates, namely a multi-

dimensional bounding box in the underlying multi-dimensional attribute space of the

dataset. Only data elements whose associated coordinates fall within the multidimen-

sional box must be retrieved and processed. The selected data elements are mapped to

the corresponding output dataset elements. The mapping operation is an application-

specific function that often involves finding a collection of data items using a specific

spatial relationship (such as intersection), possibly after applying a geometric trans-

formation. An input element can map to multiple output elements. Similarly, multiple

input elements can map to the same output element. An application-specific aggrega-

tion operation (e.g., sum over selected elements) is applied to the input data elements

that map to the same output element.

Borrowing from a formalism proposed by Ferreira [12], a range-aggregation query

can be specified in the general loop format shown in Figure 3.1. ASelectfunction

identifies the sub-domain that intersects the query meta-dataMi for a queryqi. The

sub-domain can be defined in the input attribute space or in the output space. For

the sake of discussion, we can view the input and output datasets as being composed

of collections of objects. An object can be a single data element or a data chunk

containing multiple data elements. The objects whose elements are updated in the
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loop are referred to asleft hand side, or LHS, objects. The objects whose elements are

only read in the loop are consideredright hand side, or RHS, objects.

During query processing, the sub-domain denoted byR in the foreach loop

is traversed. Each pointr in R and the correspondingsubscript functions

SL(r);SR1(r); : : : ;SRn(r) are used to access the input and output data elements for

the loop. In the Figure 3.1, we assume that there aren RHS collections of objects,

denoted byI1; : : : ; In, contributing to the values of aLHS object. It is not required that

all n RHS collections be different, since different subscript functions can be used to

access the same collection.

In iterationr of the loop, the value of an output elementO[SL(r)] is updated using

the application-specific functionF . The functionF uses one or more of the values

I1[SR1(r)]; : : : ; In[SRn(r)], and may also use other scalar values that are inputs to the

function, to compute an aggregate result value. The aggregation operations typically

implementgeneralized reductions[14], which must be commutative and associative

operations.

3.2 Query Server

The compiler approach described in this work has been implemented as a front-end

to the Query Server component of the database engine described in [2]. The Query

Server is responsible for receiving declarative queries from the clients, generating an

imperative query plan, and dispatching them for execution. It invokes the Query Plan-

ner every time a new query is received for processing, and continually computes the

best query plan for the queries in the waiting queue, which essentially form a query

batch.
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Given the limitations of SQL-2, we have employed PostgreSQL [24] as the declar-

ative language of choice for our system. PostgreSQL has language constructs for cre-

ating new data types (CREATE TYPE) and new data processing routines, called user-

defined functions (CREATE FUNCTION). The only relevant part of PostgreSQL to

our system is its parser, since the other data processing services all are handled within

our existing database engine.

3.2.1 The Multi-Query Planner

The multi-query planner is the system module that receives an imperative query de-

scription from the Query Server and iteratively generates an optimized query plan for

the queries received, until the system is ready to process the next query batch. The loop

body of a query may consist of multiple function primitives registered in the database

catalog. In this work, a function primitive is an application-specific, user-defined, min-

imal, and indivisible part of the data processing [6]. A primitive consists of a function

call that can take multiple parameters, with the restriction that one of them is the input

data to be processed and the return value is the processed output value. An important

assumption is that the function has no side effects. The function primitives in a query

loop form a chain of operations, called a processing chain, transforming the input data

elements into the output data elements. A primitive at levell of a processing chain in

the loop body has the dual role of consuming the temporary dataset generated by the

primitive immediately before (at levell � 1) and generating the temporary dataset for

the primitive immediately after (at levell + 1).

Figure 3.2 shows two sample Kronos queries that contain multiple function prim-

itives. In the figure, the spatio-temporal bounding box is described by a pair of 3-

dimensional coordinates in the input dataset domain. Retrieval, Correction, and Com-
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posite are the user-defined primitives.I designates the portion of the input domain

(i.e., the raw data) being processed in the current iteration of the “foreach” loop and

T0 andT1 designate the results of the computation performed by the Retrieval and

Correction primitive calls.O1 andO2 designate the output for Query 1 and Query 2,

respectively.

QUERY1:
select *
from
Composi te (Correc tion ( Re trie val(AVHRR_DC), WaterVapor),MaxNDVI)
where
(lat>0 and lat<=20) and (lon>15.97 and lon<=65) and (day=1992/06) and
(deltalat=0.036 and deltalon=0.036 and deltaday=1);

QUERY2:
select *
from
Composi te (Correc tion ( Re trie val(AVHRR_DC), WaterVapor),MinCh1)
where
(lat>14.9 and lat<=20) and (lon>19.96 and lon<=55) and (day=1992/06) and
(deltalat=0.036 and deltalon=0.036 and deltaday=1);

for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)
T2 = copy .Retrieval(T0)
T3 = copy .Correction(T1, WaterVapor)
O2 = Composite(T3, MinCh1)

}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {

T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {

T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {

T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}

for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)
T2 = Retrieval(I)
T3 = Correction(T2, WaterVapor)
O2 = Composite(T3, MinCh1)

}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {

T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {

T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {

T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}

IMPERATIVE DESCRIPTION

DECLARATIVE DESCRIPTION

AFTER LOOP FUSION

AFTER COMMON SUBEXPRESSION ELIMINATION

for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)
O2 = Composite(T1, MinCh1)

}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {

T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {

T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {

T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}

AFTER DEAD CODE ELIMINATION

for each point in bb: (0.000,15.972,199206) (20.000,65.000,199206) {
T0 = Retrieval(I)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {

T0 = Retrieval(I)
T1 = Correction(T0,WaterVapor)
O2 = Composite(T1, MinCh1)

}

Figure 3.2: An overview of the entire optimization process for two queries.MaxNDVI

andMinCh1are different compositing methods andWater Vapordesignates an atmo-

spheric correction algorithm. All temporaries have local scope with respect to the

loop.

Query 1 selects the raw AVHRR data from a data collection named AVHRRDC,

for the spatio-temporal boundaries stated in the WHERE clause (within the boundaries
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for latitude, longitude, and day). The data is sub-sampled in such a way that each out-

put pixel represents 4KM 2 of data (with the discretization levels defined bydeltalat,

deltalonanddeltaday). Pixels are also corrected for atmospheric distortions using the

WaterVapormethod and composited to find the maximum value of the Normalized

Difference Vegetation Index (MaxNDVI). Query 2 selects data from the same collec-

tion as Query 1 with overlapping spatio-temporal boundaries. A different compositing

method is used for this query.

Optimization for a query in a query batch occurs in a three-phase process in which

the query is first integrated into the current plan, the redundancies are eliminated, and

the loops comprising the imperative form of the query are reordered to reduce memory

usage. The integration of a query into the current plan is a recursive process, defined by

the spatio-temporal boundaries of the query, which describe the loop iteration domain.

3.3 Time Optimization Techniques

Time optimization involves the institution of methods to reduce the amount of time re-

quired to execute a query batch submitted to the database. Many projects have worked

on database support for scientific datasets [8, 27]. Optimizing query processing for

scientific applications using compiler optimization techniques to improve the speed at

which queries are processed has attracted the attention of several researchers, including

those in our own group. Ferreira et. al. [12, 13] have done extensive studies on using

compiler and runtime analysis to speed up processing for scientific queries. They have

investigated compiler optimization issues related to single queries with spatio-temporal

predicates, which are similar to the ones we target [13].

The database system we implemented uses compiler optimization strategies to ex-
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ecute a batch of queries for scientific data analysis applications as opposed to a single

query. Our approach is a multi-step process consisting of the following tasks:

1. Converting a declarative data analysis query into an imperative description.

2. Sending the set of imperative descriptions for the queries in the batch to the

query planner.

3. Employing traditional compiler optimization strategies in the planner, such as

common subexpression elimination, dead code elimination, and loop fusion, to

generate a single, global, efficient query plan.

Loop Fusion

The first stage of the optimization mainly employs the bounding boxes for the new

query, as well as the bounding boxes for the set of already optimized loops in the

query plan. The optimization essentially consists ofloop fusionoperations – merging

and fusing the bodies of loops representing queries that iterate at least partially over

the same domainR. The intuition behind this optimization goes beyond the tradi-

tional reasons for performing loop fusion, namely reducing the cost of the loops by

combining overheads and exposing more instructions for parallel execution. The main

goal of this phase is to expose opportunities for subsequent common subexpression

elimination and dead code elimination.

Two distinct tasks are performed when a new loop (newl) is integrated into the cur-

rent query batch plan. First, the query domain for the new loop is compared against the

iteration domains for all the loops already in the query plan. The loop with the largest

amount of multidimensional overlap is selected to incorporate the statements from the

body of the new loop. The second task is to modify the current plan appropriately,
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based on three possible scenarios:

1. The new query represented bynewl does not overlap with any of the existing

loops, sonewl is added to the plan as is.

2. The iteration domain for the new loopnewl is exactly equal to that of a loop

already in the query plan (loopbestl). In this case, the body ofbestl is merged

with that ofnewl.

3. The iteration domain fornewl is either subsumed by that ofbestl, or subsumes

that of bestl, or there is a partial overlap between the two iteration domains.

This case requires computing several new loops to replace the originalbestl.

The first new loop iterates only on the common, overlapping domain ofnewl

andbestl. The body ofnewl is merged with that ofbestl and the resulting loop

is added to the query plan (i.e.,bestl is replaced byupdatedl). Second, loops

covering the rest of the domain originally covered bybestl are added to the

current plan. Finally, the additional loops representing the rest of the domain

for newl are computed, and the new loops becomecandidatesto be added to

the updated query plan. They are considered candidates because those loops

may also overlap with other loops already in the plan. Each of the new loops is

recursively inserted into the optimized plan using the same algorithm. This last

step guarantees that there will be no iteration space overlap across the loops in

the final query batch plan.

Redundancy Elimination

After the loops for all the queries in the batch are added to the query plan, redundan-

cies in the loop bodies can be removed, employing straightforward optimizations –
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common subexpression elimination and dead code elimination. In our case, common

subexpression elimination consists of identifying computations and data retrieval op-

erations that are performed multiple times in the loop body, eliminating all but the first

occurrence [22].

Each statement in a loop body creates a new available expression (i.e., represented

by the right hand side of the assignment), which can be accessed through a reference to

the temporary aggregate on the left hand side of the assignment. The common subex-

pression algorithm [3] performs detection of new available expressions and substitutes

a call to a primitive by acopyfrom the temporary aggregate containing the redundant

expression. The equivalence of the results generated by two statements is determined

by inspecting thecall sitefor the primitive function invocations. Equivalence is deter-

mined by establishing that in addition to using the same (or equivalent) input data, the

parameters for the primitives are also the same or equivalent. Because the primitive

invocation is replaced by a copy operation, primitive functions are required to not have

any side effects.

The removal of redundant expressions often causes the creation of useless code

– assignments that generatedead variablesthat are no longer needed to compute the

output results of a loop. We extend the definition ofdeadvariable to also accommodate

situations in which a statement has the formTi  copy(Tj), whereTi andTj are both

temporaries. In this case, all uses ofTi can be replaced byTj. We employ the standard

dead code elimination algorithm, which requires marking all instructions that compute

essential values. Our algorithm computes the def-use chain (connections between a

definitionof a variable and all itsuses) for all the temporaries in the loop body. The

dead code elimination algorithm [3] makes two passes over the statements that are part

of a loop in the query plan. The first pass detects the statements that define a temporary
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and the ones that use it, A second pass over the statements looks for statements that

define a temporary value, checking for whether they are utilized, and removes the

unneeded statements.

Both the common subexpression elimination and the dead code elimination algo-

rithms must be invoked multiple times, until the query plan remains stable, meaning

that all redundancies and unneeded statements are eliminated. Although similar to

standard compiler optimization algorithms, all of the algorithms were implemented in

the Query Planner to handle an intermediate code representation we devised to rep-

resent the query plan. We emphasize that we are not compiling C or C++ code, but

rather the query plan representation. Indeed, the runtime system implements a virtual

machine that can take either the unoptimized query plan or the final optimized plan

and execute it, leveraging any, possibly parallel, hardware resources available for that

purpose.
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Chapter 4

Space Optimization Techniques

Space optimization involves the methods employed to make memory utilization as

efficient as possible. This chapter details the notation and defines the terms used in

this work. It also defines the evaluation metrics maximum and average memory usage.

The brute force and branch-and-bound methods for obtaining optimal loop set orders

are discussed, as well as the greedy and variable grouping heuristics for obtaining

near-optimal loop orders.

4.1 Loop Sets

The multi-query planner of the database system performs optimizations on the sub-

mitted query batch and produces a sequence of loops that will be executed to compute

the query results as seen in Chapter 3. The loops require the use of one or more

query buffers to hold intermediate aggregates and the final results for the queries in

the batch. The query planner uses bothtemporaryandoutputquery buffers. The out-

put query buffer is used to store the final results of the query to be sent back to the

client. The temporary query buffer is used to store intermediate results which are sub-

sequently used to compute part of the contents of either the output query buffer or
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another temporary query buffer. For the purposes of this paper, each loop employs a

set of variables and each variable requires a certain amount of memory. There is a

one-to-one mapping between the set of variables and the set of query buffers. The set

of variables required by loopi, here referred to as a “loop required variable set”, is de-

notedLi wherei ranges between 1 and the total number of loops in the loop sequence,

denoted byN . Variables are referred to by the notationvj, wherej ranges between

1 and the total number of variables used by all loops, denoted byK. For example, if

loop1 uses variablesv1 andv2, then the following relationship holds:L1 = fv1, v2g.

The set of loop required variable setsL containsN loop required variable sets and

is defined as follows:

L = fL1; L2; :::; LNg (4.1)

A permutationO defining the order of loop execution is used to orderL and is defined

as follows:

O = (o1; o2; :::; oN) (4.2)

Each element ofO is a positive integer corresponding to a loop subscript inL such

thatoi = oj if and only if i = j and1 � oi � N . The total ordering of loop setL with

permutationO, denoted(L;O), is defined as follows:

(L;O) = (Lo1 ; Lo2 ; :::; LoN ) (4.3)

O defines an order in which loops are executed, and(L;O) defines an order in which

the variables of each loop are allocated and deallocated.

The default sequenceO = (1; 2; :::; N) represents the order of the loops as they are

submitted to the optimization algorithms. The output of the optimization algorithms is

a new permutationO0
= (o01; o

0

2; :::; o
0

N ) such that the resulting loop ordering has the

minimum (or near-minimum) maximum or average memory usage.
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4.2 Calculating the Metrics

The maximum and average memory usage metrics can be computed for a given loop

ordering. The order of execution of the loops affects the allocation and deallocation

of query buffers. Buffer space for a query is allocated for a given loop if it has not

already been allocated by a previous loop. Thus, the first loop that is executed must

allocate memory for all of the queries that it partially or completely computes. A

variable corresponding to a query buffer that a loop partially or completely computes

is referred to here as a “required variable”. The set of variables that are live during the

execution of a particular loop are the “allocated variables” of the loop. If a particular

variable is allocated but not required, then it is termed an “unused variable”. Buffer

space for a query is deallocated after a loop completes and the query computation has

finished and the results can be returned to the client. Thus, the last loop must deallocate

all memory used by all of the query buffers that it uses once it completes its execution.
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for each point inbb1:(14.964, 19.954, 199206)(20.000,55.000,199206)f

v2[bb1] = Retrieval(I)

g

for each point inbb2:(0.000, 15.972, 199206)(14.928, 65.000, 199206)f

v3[bb2] = Composite(v2;MaxNDV I)

g

for each point inbb3:(14.964, 55.038, 199206)(20.000, 65.000, 199206)f

v1[bb3] = Retrieval(I)

g

for each point inbb4:(14.964, 15.972, 199206)(20.000, 19.929, 199206)f

v2[bb4] = Correction(v2;WaterV apor)

g

Figure 4.1: Example Query in Imperative Form.
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Loop Required Variables Allocated Variables Allocated Memory Running Time

1 L1 = fv1, v2g fv1, v2g 25 10

2 L2 = fv2, v3g fv1, v2, v3g 45 30

3 L3 = fv1g fv1, v2g 25 20

4 L4 = fv2g fv2g 15 15

Table 4.1: Example Loop Set.v1 = 10,v2 = 15, andv3 = 20.

Consider the example given in Table 4.1, corresponding to the query shown in

Figure 4.1. The first column of the table identifies the loop and the contents of the

loop’s required variable set is shown in the second column. The allocated variables

are shown in the third column and the amount of memory allocated for these variables

is given in the fourth column. The last column,Running Time, refers to the amount

of time that the loop requires to execute and is a function of the loop iteration domain

and the execution time of the individual loop body statements. In the example, there

are a total of three variables used by all of the loops:v1, v2, andv3. Suppose the table

defines the loop execution order, with the first row corresponding to the first loop to

be executed and the last row corresponding to the last loop to be executed. The first

loop allocates variablesv1 andv2. Once the first loop completes, it does not deallocate

any variables because both variables are used by subsequent loops. The second loop

allocates variablev3 and leaves variablev1 allocated even though it does not require the

variable becausev1 is used in the next loop. The second loop deallocates variablev3

once it completes execution because no subsequent loops compute results to be stored

into this variable. The third loop does not need to allocate any variables because the

variable it requires,v1, has already been allocated by a previous loop. After the third

loop completes, it deallocates variablev1 because it will no longer be used, i.e. the
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query results stored inv1 are completely computed and can be returned to the client.

Finally, the last loop does not allocate any new variables and deallocatesv2 after it

completes. The third column in the table gives the variables that are allocated while

each loop executes as described. The general equation defining the allocated variable

set of loopoi given the set of loop required variable setsL ordered by the permutation

O = (o1; o2; :::; oN ), denotedA(Loi ; L;O), is as follows:

A(Loi ; L; O) =

8>><
>>:

Loi

S��Si�1
j=1 Loj

�T �SN
k=i+1 Lok

��
: 2 � i � N � 1

Loi : i = 1; N

(4.4)

In order to determine the value of the maximum memory usage metric for this

example loop ordering, the memory usage for each loop must be computed. Suppose

variablesv1, v2, andv3 have sizes 10, 15, and 20, respectively. The units are omitted

because they are not relevant to describing the method used to compute the metric.

The amount of memory used by loop1 is equal tov1 + v2 = 10 + 15 = 25. The

Allocated Memory column in the table gives the amount of memory allocated for each

loop. The maximum value in this column occurs at the second row for loop2 and is

45, which is the maximum memory usage of this example loop ordering. The general

equation defining the maximum memory usage of setL and permutationO denoted by

Mmax(L;O) is as follows:

Mmax(L;O) = max(jA(Lo1; L;O)j; jA(Lo2 ; L; O)j; :::; jA(LoN ; L; O)j) (4.5)

where the notationjA(Loi ; L;O)j is used to denote the summation of the sizes of all of

the variables in setA(Loi ; L; O).

In order to determine the value of the average memory usage metric for this ex-

ample loop sequence, both the memory usage and running times of each loop must be

considered. The fourth column in Table 4.1 gives the running time of the loop. The
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Loop Required Variables Allocated Variables Allocated Memory Running Time

3 L3 = fv1g fv1g 10 20

1 L1 = fv1, v2g fv1, v2g 25 10

2 L2 = fv2, v3g fv2, v3g 35 30

4 L4 = fv2g fv2g 15 15

Table 4.2: Example Loop Set After Reordering.

units of time are omitted because they are not relevant to describing the method used

to obtain the average memory usage metric. The general equation defining the average

memory usage of setL and permutationO, denotedMavg(L;O), is as follows:

Mavg(L;O) =

�PN
i=1 jA(Loi; L; O)jR(oi)

�
�PN

i=1R(oi)
� (4.6)

where the notationR(oi) is used to denote the running time of loopoi. The average

memory usage metric for the example ordered input loop set has a value of 31.

To demonstrate the effect of loop order on the average and maximum memory

usage metrics, consider Table 4.2 in which loop 3 has been moved to the beginning of

the loop order from its original position shown in Table 4.1. The memory utilization for

loop 2 decreased from 45 to 35. Similarly, the memory utilization for loop 3 decreased

from 25 to 10. The maximum memory usage occurs at loop 2 and now has a lower

value of 35. Indeed, the average memory usage decreased to 23 from its original value

of 31. There is no allocated memory due to unused variables in this loop ordering

because the set of required variables is equivalent to the set of allocated variables for

every loop. As a result, one can conclude that the ordering is optimal with respect to

both maximum and average memory usage metrics. However, it is important to note

that the loop order yielding the minimum maximum memory usage may not always be
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the same as that yielding the minimum average memory usage.

4.3 Brute Force Method

In order to determine the order of the loops such that either maximum or average mem-

ory usage metrics are minimized, every possible loop set order has to be considered

and the metrics computed for each. This is the essence of the “brute force” method.

The order computed by this method always yields the optimal maximum or average

memory usage. Unfortunately, the brute force method requires exponential time in the

number of loops in the loop set and, therefore, can only be employed for very small

numbers of loops. This is due to the fact that the method relies on computing all pos-

sible combinations of loop orderings. For a loop set of sizeN , the number of possible

loop orderings isN !. This can be seen if one considers the possible loop orderings as

forming a tree. The root node of this tree hasN children, and each node at depthd has

N � d children, with each node corresponding to a particular loop. At depthd there

will be N !

(N�d)!
nodes and the total number of nodes in the brute force tree forN loops,

T (N), is the sum:

T (N) =

NX
d=0

 
N !

(N � d)!

!
(4.7)

4.4 Branch-and-Bound Method

A somewhat more effective technique is to use a “branch-and-bound” strategy [19]

on the tree constructed during the brute force search. The branch-and-bound strategy

is generally used to prune the brute force tree by maintaining a cost value or bound

at each node and prioritizing the search along lower cost branches. The branch-and-
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bound technique was applied by employing a lower bound estimation of either the

maximum or average memory usage of a prefix of a loop order, i.e. the sequence

of nodes from the root to a non-leaf node. The technique allows us to prioritize the

exploration of branches with the minimum lower bound and maximum depth, avoid-

ing branches with confirmed poor orders, until a complete loop order is found. The

branch-and-bound algorithm can significantly reduce the amount of time required to

compute the optimal loop set order; however, the running time of this algorithm is still

exponential in the number of loops in the worst case. This is the case because the lower

bound may not be effective in pruning the brute force tree for certain loop sets.

The algorithm implementation uses tree and list data structures. The tree represents

the loop ordering prefixes explored so far. The root of the tree represents the initial

state of the execution of the loop set in which no variables are allocated. It hasN

children corresponding to theN possible choices for the first loop in the loop order,

but the root itself does not represent a loop. The children of the root each haveN � 1

children because the number of possible choices for the next loop to be executed has

been reduced by 1. In general, a node in the tree at depthd hasN �d children because

d loops have been chosen from the set ofN loops and there areN�d remaining loops.

The list data structure is maintained in order to keep track of the search order of the

branches in the tree. The leaves of the tree form the elements of the list data structure.

The list nodes are sorted in order of increasing lower bound for either maximum or

average memory usage. The following formulas are used to compute the lower bound

Bavg(n; T; L) for average memory usage of a tree node,n, given treeT and loop list

L:

Prefix(n; T ) =

(LoopNum(Parent(n; T; d));
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LoopNum(Parent(n; T; d� 1));

:::; LoopNum(Parent(n; T; 1)); LoopNum(n)) (4.8)

LoopOrder(n; T; L) = Concatenate(Prefix(n; T ); L� Prefix(n; T )) (4.9)

AllocMem(n; L; T ) = jA (Loop (n) ; L; LoopOrder (n; T; L)) j (4.10)

Bavg(n; T; L) =

Bavg (Parent (n) ; T; 1) +

(AllocMem(n; L; T )� jLoop (n) j)R (n) (4.11)

The LoopNum(n) function, used in Equation 4.8, returns the loop number corre-

sponding to the tree node passed as a parameter. TheParent(n; T; d) function, used

in Equations 4.8 and 4.11, returnsdth ancestor of tree noden in treeT . Thedth an-

cestor of a tree noden is the parent node of the(d� 1)th ancestor ofn. If d = 1 then

the immediate parent node ofn is returned. TheConcatenate(P;Q) function, used in

Equation 4.9, concatenates the elements of listP to the end of listQ. Also in Equation

4.9, the subtraction operator with list operands,P � Q, results in a list containing all

of the elements in listP that are not also contained in listQ. Equation 4.11 holds for

all non-root tree nodesn. The root node,r, has its lower bound initialized to:

Bavg(r; T; L) = jL1jR(1) + jL2jR(2) + � � �+ jLN jR(N) (4.12)

where the elements of listL are represented asLi for 1 � i � N . The intuition behind

this lower bound is that the minimum average memory usage must be the weighted

average of the required variables of each loop, and increases based on the discovery of

unused variables as nodes are added to the tree.

27



The following formula is used to compute the lower bound of maximum memory

usage,Bmax(n; T; L), for noden in treeT and loop listL:

Bmax(n; T; L) =

max( Bmax(Parent(n); T; 1);

jA(Loop(n); L; LoopOrder(n; T; L))j) (4.13)

Equation 4.13 holds for all non-root tree nodesn. The root node,r, has its lower bound

initialized as follows:

Bmax(r; T; L) = max(jL1j; jL2j; :::; jLN j) (4.14)

Once the lower bound has been computed for each list node, the list is ordered

by increasing lower bound and secondarily by decreasing depth. The first list node

corresponds to the tree node with the minimum lower bound and maximum depth. The

implementation proceeds by replacing the first list node with list nodes corresponding

to the child tree nodes of the tree node corresponding to the first list node. After this

modification is made, the list is again sorted in order of increasing lower bound and

decreasing depth. Branches in the tree are pruned by virtue of the fact that the first node

of the list always has the lowest bound and is always chosen for further processing.

Furthermore, if there are several nodes with the same lowest bound the node at the

front of the list will have the maximum depth among these nodes. The process of

replacing the first list node repeats until the first list node contains a tree node with

depthN because at this point a complete optimal loop order has been found.

As an example of the operation of this algorithm when optimizing for average

memory usage, consider the input loop set given in Table 4.3. For simplicity, the

running time of each loop is 1. The variablesv1, v2, andv3 have sizes 10, 15, and 20,

respectively. The state of the tree at different points in the processing of the algorithm
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Loop Required Variables Running Time

1 L1 = fv1, v2g 1

2 L2 = fv2, v3g 1

3 L3 = fv1g 1

Table 4.3: Example Loop Set for Branch-and-Bound.v1 = 10,v2 = 15,v3 = 20.

is depicted in Figures 4.2(a), 4.2(b), 4.2(c), and 4.2(d), with each tree node containing

its associated loop number,i, and lower bound,b, in the pair(i; b). The algorithm

begins by initializing the lower bound of the root node. Then the immediate children

of the root node are added and their lower bounds computed, as seen in Figure 4.2(a).

The most recently added nodes are bordered by a dashed line. The next node to be

explored is marked by a thicker border. Since all of the leaf nodes have the same lower

bound, the node to be explored next is simply the node with the lowest loop number.

In Figure 4.2(b), the children of this node have been added to the tree and their lower

bounds computed. The algorithm terminates with the tree in Figure 4.2(d), since the

node at the front of the list has depth 3 and the number of loopsN=3. The number

of nodes in the tree explored using branch-and-bound before an optimal solution was

found in this example is 9. In comparison, the brute force method would have searched

the entire tree of 16 nodes.

For certain input loop sets, it may be possible to divide the original set into two

or more subsets that are independent of each other in terms of the variables that the

loops share among the subsets. These subsets represent what are known as connected

components [26]. Therefore, in our implementation the input loop set is preprocessed

with a connected components analysis and each of the individual trees that result from

this analysis is submitted separately to the branch-and-bound algorithm.
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Figure 4.2: Branch-and-bound Example
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4.5 Greedy Heuristic

As we have previously stated, loops may sometimes have live variables (query buffers)

allocated that are not needed by the loop. This condition arises because there may exist

at least one loop before and after that loop in the loop set order computing the variable.

The greedy heuristic attempts to identify the loops using the maximum amount of

memory and reduce this maximum by rearranging the loops to eliminate the allocation

of any unused variables. The rearrangement occurs using the following method:

1. The unused variable set of the loop with maximum memory usage,imax, is de-

termined.

2. For each unused variablevu, the loops precedingimax in the current loop order

that usevu are moved immediately afterimax. If this rearrangement results in

a lower maximum or average memory usage, the rearrangement is kept and the

new loop with maximum memory usage is determined; otherwise, the rearrange-

ment is reversed.

3. If the previous step did not result in a new ordering with a lower maximum or av-

erage memory usage, the loops succeedingimax in the current loop order that use

vu are moved immediately beforeimax. If this rearrangement results in a lower

maximum or average memory usage, the rearrangement is kept and the new

loop with maximum memory usage is determined; otherwise, the rearrangement

is reversed.

This process is iterated for each unused variablevu until no rearrangement results

in an improved memory usage. The process is then recursively applied to the loops

preceding and succeedingimax.
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Loop Required Variables Allocated Variables Allocated Memory

1 L1 = fv1, v2g fv1, v2g 25

2 L2 = fv2, v3g fv1, v2, v3g 45

3 L3 = fv1g fv1, v2g 25

4 L4 = fv2g fv2g 15

Table 4.4: Example Loop Set for Greedy Heuristic.

Loop Required Variables Allocated Variables Allocated Memory

1 L1 = fv1, v2g fv1, v2g 25

3 L3 = fv1g fv1, v2g 25

2 L2 = fv2, v3g fv2, v3g 35

4 L4 = fv2g fv2g 15

Table 4.5: Example Loop Set for Greedy Heuristic Reordered.

As an example of applying this algorithm when optimizing for maximum memory

usage, consider the loop order given in Table 4.4. The loop with maximum memory

usage is 2. The unused variable in this loop isv1. Therefore, the loops after loop 2 that

use variablev1 are moved immediately before loop 2, as in Table 4.5. This reduces

the maximum memory usage at loop 2 to 35 because variablev1 is now deallocated

before loop 2 begins execution. Since there are no longer any unused variables for loop

2 there is no way to reduce the memory usage for this loop further and, therefore, in

this case the optimal loop order to minimize maximum memory usage has incidentally

been found.
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4.6 Variable Grouping Heuristic

The variable grouping heuristic considers each variable (query buffer) in turn and

groups the loops using this variable together in the loop execution order. The intu-

ition is that once the loops using a common variable are grouped together, there are no

intervening loops that will require the memory space for a variable to be held unnec-

essarily. This section describes several aspects and variations of this heuristic.

4.6.1 Representing Loops Using Bit Vectors

Each loop in the input loop order is mapped to a bit vector and the mapping is main-

tained by mapM . The bit vectors contain one bit per variable and each bit is a 1 or 0

depending on whether the loop uses or does not use the variable corresponding to that

bit position. Bit vectors are denoted bybi in this section, with the following general

form:

bi = (d1; d2; :::; dK) (4.15)

wheredj for 1 � j � K represents a binary digit in the bit vectorbi. dj represents

the usage of variablevj andK represents the total number of variables used by all of

the loops in the loop set. If two or more loops happen to use the exact same variables

or, in other words, have the same “variable usage pattern” then they will be mapped to

the same bit vector. For example, in Table 4.6 loops 1, 2, and 4 have the same variable

usage pattern and, therefore, correspond to the same bit vector(1; 1; 0). Although

there are four loops in Table 4.6, there are only two distinct bit vectors representing

two distinct variable usage patterns and the resulting mapping is shown in Table 4.7.

After all of the loops are mapped to a bit vector, the resulting mapM containsQ

elements whereQ can range anywhere between1 andN depending upon how many
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Loop Required Variables Bit Vector

1 L1 = fv1, v2g (1; 1; 0)

2 L2 = fv1, v2g (1; 1; 0)

3 L3 = fv3g (0; 0; 1)

4 L4 = fv1, v2g (1; 1; 0)

Table 4.6: Example Loop Set for Variable Grouping Heuristic with Identical Loops.

Bit Vector Loops

(1; 1; 0) f1, 2, 4g

(0; 0; 1) f3g

Table 4.7: Bit Vector-Loop MappingM for Example Loop Set.

loops share the same variable usage pattern. In addition, the algorithm maintains a bit

vector setB of sizeQ containing only the bit vector keys contained by mapM :

B = fb1; b2; :::; bQg (4.16)

This bit vector set is used in subsequent stages of the algorithm.

Once the input loop set is converted to a bit vector setB, the algorithm must first

determine the order to process the bit positions, described in Section 4.6.2, and then

order the bit vectors inB to produce a loop execution order that minimizes maximum

or average memory usage, which is the objective of theAggregate function described

in Section 4.6.3. The notation used here to define an ordering of setB is similar to

that described in Section 4.2 to denote the ordering of setL. We use a permutation

W = (w1; w2; :::; wQ) containingQ positive integers such thatwi = wj if and only if

i = j and1 � wi � Q. The bit vector setB and the permutationW together form a
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total ordering of setB, denoted(B;W ), defined as follows:

(B;W ) = (bw1
; bw2

; :::; bwQ) (4.17)

4.6.2 Variable-Bit Position Ordering Methods

After the bit vector setB corresponding to the input loop order has been created, the

variable grouping heuristic decides the order in which to process the bit positions, and

hence the variables, of the bit vectors representing the loops. This order is important in

determining whether the algorithm produces a good result because an order that is im-

posed on the loop set by theAggregate method (see Section 4.6.3) for a given variable

may affect any order that may be imposed by the processing of subsequent variables.

The variable ordering methods used by the current work and the abbreviations for the

corresponding algorithm are listed in Table 5.1.

The first variable ordering method, the “unused memory potential” method, is

based on the observation that the cost that this algorithm attempts to minimize is the

amount of unused memory allocated during the execution of any loop. Given a bit

vector setB and a permutationW = (w1; w2; :::; wQ) of this bit vector set, one may

compute the set of allocated variables for the loops mapped to any bit vectorbwi in set

B where1 � i � Q using the following equation:

A(bwi ; B; R) = V (bwi)
[0
@
0
@i�1[
j=1

V (bwj)

1
A\

0
@ N[
k=i+1

V (bwk)

1
A
1
A (4.18)

FunctionV in Equation 4.18 accepts as its only parameter a bit vector and returns

the set of variables that are used by the loops mapped to this bit vector in mapM

described in Section 4.6.1. Equation 4.18 can be used to determine the set of unused

variablesU(bwi ; B; R) for the loops mapped to bit vectorbwi contained in bit vector
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setB ordered by sequenceW defined as follows:

U(bwi ; B;W ) = A(bwi ; B;W )� V (bwi) (4.19)

The unused memory cost functionC(bwi; B;W ) gives the amount of memory that is

allocated to unused variables for the set of loops that correspond to bit vectorbwi and

is defined as follows:

C(bwi ; B;W ) = jU(bwi; B;W )jR(bwi) (4.20)

Equation 4.20 uses the functionR to return the total running time of all loops that are

mapped to bit vectorbwi via mapM . The total amount of unused memoryCtotal(B;W )

is the summation of Equation 4.20 over all of the bit vectors inB:

Ctotal(B;W ) =

QX
i=1

(C(bwi ; B;W )) (4.21)

which is the quantity that the variable grouping heuristic seeks to minimize.

The notion of unused variables is displayed graphically for three variables in Figure

4.3 which depicts a Venn diagram consisting of three setsV1, V2, andV3 such that set

Vi contains the loops that use variablevi for 1 � i � 3. The three circles representing

the sets divide the space into seven distinct subsets which have been labeledSj for

1 � j � 7 (omitting the eighth subset which lies outside all of the circles). Each

subsetSj corresponds to a bit vector representing a distinct variable usage pattern. The

dashed line indicates a possible “path” through these subsets which gives the order

of loop execution. Entry of the line into a subset represents the fact that the loops

that are contained by the subset have begun execution. Exit of the line from a subset

represents the fact that the loops that are contained by the subset have all completed

execution. It is possible for a subset to be empty representing the case where no loops

have the variable usage pattern of the associated bit vector. In such a case, unused
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variables that may be allocated will not contribute to the unused memory cost function

for this subset. The subsets visited by the path are listed in Table 4.8. The second

column of the table “Equivalent” lists the set operations performed onVi for 1 �

i � 3 to yield the corresponding subset. The associated bit vector is listed under the

column “Bit Vector”. The last column “Unused Variables” lists the result of applying

Equation 4.19 with bit vectorbwi given by the “Bit Vector” column, bit vector set

B given by the set containing all of the bit vectors in this column, and permutation

W = (1; 3; 2; 6; 7; 5; 4). The variablev1 is allocated unnecessarily during the execution

of loops contained by subsetsS2 andS6. The part of the path in Figure 4.3 with this

unused variable allocated is shown with a darker line.
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V1
V2

V3

S1 S2
S3

S4

S5 S6

S7

Figure 4.3: Variable Grouping Heuristic: Set Representation of Bit Vectors Showing

Unused Memory on Loop Execution Path

Subset Equivalent Bit Vector Unused Variables

S1 V1 � V2 � V3 b1 = (1; 0; 0) ;

S3 (V1
T
V2)� V3 b3 = (1; 1; 0) ;

S2 V2 � V1 � V3 b2 = (0; 1; 0) fv1g

S6 (V2
T
V3)� V1 b6 = (0; 1; 1) fv1g

S7 V1
T

V2
T

V3 b7 = (1; 1; 1) ;

S5 (V1
T
V3)� V2 b5 = (1; 0; 1) ;

S4 V3 � V1 � V2 b4 = (0; 0; 1) ;

Table 4.8: Subset Equivalent of Bit Vectors and Possible Loop Execution Order
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vghu

Consequently, the permutationW chosen in the variable grouping heuristic to order

the bit vector setB can be based on the amount of unused memory that a variable

contributes given some loop order. The maximum amount of unused memory that a

variable can contribute is termed its “unused memory potential”, denotedU(vk; L) for

variablevk and set of loop required variable setsL, defined in the following equation:

U(vk; L) = vk

0
@ X
i2fi:vk 62Lig

R(i)

1
A (4.22)

Equation 4.22 states that the unused memory potential of a given variablevk is the

product of the variable’s size and the sum of the running times of all loops that do

not require this variable to be allocated, where the notationR(i) is used as defined in

Section 4.2 to mean the running time of loopi. This quantity can be used to prioritize

the variables used by all of the loops and assign an order in which to process the bit

positions of the bit vector representations of the loops.

vghs

The second method is to prioritize variables solely based on their size. The reasoning

behind this method is that the unused memory cost function (Equation 4.21) depends

directly on the size of the variables used by the loops and, therefore, grouping loops

together according to the size of the shared variable may reduce the amount of unused

memory in the resultant loop execution order. This method ignores the running time

of each loop as a factor in determining the variable order; therefore, it may be most

productive when applied to an input loop set that has an even running time distribution

among the loops.
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vghr

The third method is to randomly choose an order in which to process the bit positions.

This method could arrive at an order that may not be the best; however, if several

random orders are tried and theAggregate function (see Section 4.6.3) is executed

using each of the resulting bit position orders, it may be possible to arrive at a very

good loop execution order by sheer chance. The implementation of this method in the

vghr algorithm involves randomly generating 100 different bit position orders.

vghd

The fourth method is called “deterministic reordering” and reorders loops based on

decreasing values for the unused memory cost function computed for each bit vec-

tor, using Equation 4.20 after an arbitrary bit position order has been tried and the

Aggregate function has been executed using this order. After loops have been thus

reordered, theAggregate function is executed yielding a new loop execution order

and the unused memory cost function for each bit vector is recomputed, resulting in

a new bit position order. This process repeats until the average or maximum memory

does not decrease for several iterations.

4.6.3 Aggregate Function

Once the variable bit position order has been chosen and each variable has been as-

signed a distinct bit position in the bit vectors that represent the loops, theAggregate

function is invoked. The purpose of this function is to iteratively group bit vectors

together according to the values of the bits in each bit position while, at the same time,

preserving the groupings of previous iterations. The reason that previous groupings

are preserved is that the function assumes the variable bit position order prioritizes
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the variables that potentially contribute the most to the unused memory cost function.

Thus, the bit vector order imposed by processing a given bit position should not be

disturbed by future orderings that may arise from processing subsequent bit positions

in an attempt to avoid the introduction of unused memory by such a disruption.

TheAggregate function uses a data structure, here called anRSet, that is recur-

sively defined as a set containing the following elements:

� A bit vector

� An unordered set ofRSets

� An ordered set ofRSets

The inputRSet is initially equivalent to the bit vector setB described in Section

4.6.1. TheAggregate function attempts to find an order for the bit vector set according

to the bit values in the bit vectors contained by theRSet. The function imposes a

partial or, in some cases, a total order on the inputRSet parameter by performing one

of the following actions:

� Creating unordered subsets out of elements of an unordered set.

� Converting unordered sets to ordered sets.

The actions performed are driven by the value of the bit located at a particular bit

position in each of the bit vectors contained by theRSet.

The inputRSet is denotedG and is represented as a set ofQ bit vectors from set

B described in Section 4.6.1:

G = fb1; b2; :::; bQg (4.23)
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Bit Vector Name Bit Vector Contents

b1 (0, 1, 0)

b2 (1, 1, 0)

b3 (0, 1, 1)

b4 (1, 0, 1)

Table 4.9: Example Bit Vector Set Input for Aggregate Function

For example, consider the set of bit vectors in Table 4.9. There are four bit vectors

with each vector containing a total of three bits. These bit vectors represent different

variable usage patterns in the input loop set and each vector maps to one or more

loops; however, the actual loops are unimportant in demonstrating the operation of the

Aggregate function. There are three variables in use among all of the loops in the

input loop set, hence three bit positions appear per bit vector. TheAggregate function

will be invoked three times, once for each of the three bit positions.

The followingRSet will be passed to theAggregate function on the first invoca-

tion:

G1 = f010; 110; 011; 101g (4.24)

where the unordered set is signified with braces. TheAggregate function accepts the

G1 parameter of typeRSet and processes the first bit position in each bit vector con-

tained in bit vector setB. Once this processing is complete, theAggregate function

will return the followingRSet as output:

G2 = f010; 011; f110; 101gg (4.25)

This demonstrates the partitioning effect that theAggregate function will have on

unordered sets that contain 1s and 0s. The partitioning process results in a grouping
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of the 1 bits such that the outputRSet effectively groups loops together that use the

variable corresponding to the bit position that was just processed, in this case the first

bit position.

The function will also convert an unorderedRSet into an ordered one under the

following conditions:

� A partition between 1 bits and 0 bits is not possible.

� A 0 bit is contained in a subset that also contains a 1 bit.

This conversion is performed to prevent the 0 bit from being relocated in between

the 1 bits when a subsequent bit position is processed or when the final loop execution

order is output resulting in additional unused memory from the allocation of an unused

variable. As an example of this effect consider the invocation ofAggregate on theG2

RSet, which is the output of the previous invocation given in Equation 4.25, resulting

in the following output:

G3 = (101; 110; f010; 011g) (4.26)

where the parentheses are used to denote the ordered set. Now the loops that use the

variable mapped to the second bit position in each bit vector,v2, will all be grouped

together in the final loop execution order. The last invocation ofAggregate results in

the following output:

G4 = (101; 110; 011; 010) (4.27)

Equation 4.27 corresponds to a total ordering of bit vector setB = fb1; b2; b3; b4g by

permutationW = (4; 2; 3; 1):

(B;W ) = (b4; b2; b3; b1) (4.28)

The final bit vector order and the contents of each bit vector is listed in Table 4.10.
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Bit Vector Name Bit Vector Contents

b4 (1, 0, 1)

b2 (1, 1, 0)

b3 (0, 1, 1)

b1 (0, 1, 0)

Table 4.10: Example Bit Vector Set Output for Aggregate Function

Consider the larger example input loop set given in Table 4.11 which was taken

from a synthetic loop set used to obtain the results in Section 5.2. This example con-

tains eight loops using a total of seven different variables, with the first variablev1

unused. The loop set is converted to the bit vector set shown in Figure 4.4 such that

each loopi is mapped to a bit vectorbi. Figure 4.5 shows the output bit vector set after

theAggregate function completes processing the input bit vector set in Figure 4.4. A

box is drawn around the groupings of 1 bits with the top-most 1 bit in each box repre-

senting the point at which the corresponding variable is allocated and the bottom-most

1 bit representing the point at which this variable is deallocated. Thus, the area of the

boxes divided by the sum of loop running times approximates the average amount of

memory allocated. These figures demonstrate that theAggregate function reduces the

average memory usage of the loop set since the area of the boxes in the input bit vector

set shown in Figure 4.4 is greater than the area of the boxes in the output bit vector set

shown in Figure 4.5.
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v1 v2 v3 v4 v5 v6 v7 v8

b1 0 0 0 0 0 0 0 1

b2 0 0 0 0 0 0 1 1

b3 0 0 0 0 1 1 0 0

b4 0 0 0 1 0 0 0 0

b5 0 0 0 1 0 0 1 1

b6 0 0 1 0 0 0 0 0

b7 0 0 1 0 1 1 0 0

b8 0 1 1 0 1 1 0 0

Figure 4.4: Variable Grouping Heuristic: Aggregate Function Input. Note that the

boxes contain zeros.

v1 v2 v3 v4 v5 v6 v7 v8

b6 0 0 1 0 0 0 0 0

b7 0 0 1 0 1 1 0 0

b8 0 1 1 0 1 1 0 0

b3 0 0 0 0 1 1 0 0

b4 0 0 0 1 0 0 0 0

b5 0 0 0 1 0 0 1 1

b2 0 0 0 0 0 0 1 1

b1 0 0 0 0 0 0 0 1

Figure 4.5: Variable Grouping Heuristic: Aggregate Function Output. Note that the

boxes do not contain zeros.
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Loop Set Name Required Variable Set

1 L1 = fv8g

2 L2 = fv7, v8g

3 L3 = fv5, v6g

4 L4 = fv4g

5 L5 = fv4, v7, v8g

6 L6 = fv3g

7 L7 = fv3, v5, v6g

8 L8 = fv2, v3, v5, v6g

Table 4.11: Variable Grouping Heuristic: Example Loop Set Input

Loop Set Name Required Variable Set

6 L1 = fv3g

7 L2 = fv3, v5, v6g

8 L3 = fv2, v3, v5, v6g

3 L4 = fv5, v6g

4 L5 = fv4g

5 L6 = fv4, v7, v8g

2 L7 = fv7, v8g

1 L8 = fv8g

Table 4.12: Variable Grouping Heuristic: Example Loop Set Output
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Chapter 5

Performance Studies

This chapter presents the performance evaluation of the various memory optimizing

algorithms for actual queries from an application that processes remote sensing data

and for synthetic loops which allows us to explore a larger portion of the optimization

space in a more controlled fashion. Table 5.1 lists the algorithms discussed in this

paper and the abbreviations used in the performance result figures. The metrics as-

sociated with the optimal order obtained using the branch-and-bound method will be

compared with the metrics obtained for the heuristics to assess their efficiency, or how

close to the optimal ordering with respect to our performance metrics the heuristics

can typically reach. In addition, the running times of the algorithms will be studied.

5.1 Case Study Application: Kronos

The performance of the loop ordering algorithms is studied in a real world setting

using the Kronos remote sensing application. Remote sensing has become a very pow-

erful tool for geographical, meteorological, and environmental studies [15]. Usually

systems processing remotely sensed data provide on-demand access to raw data and

user-specified data product generation. Kronos [15] is an example of such a class of
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Method Abbreviation

Unoptimized none

Time optimized only time

Original order (synthetic) orig

Branch-and-bound method bnb

Greedy heuristic grd

Variable grouping heuristic,unused memory potential vghu

Variable grouping heuristic, variablesize vghs

Variable grouping heuristic,random vghr

Variable grouping heuristic,deterministic reordering vghd

Table 5.1: Algorithm Abbreviations

applications. It targets datasets composed of remotely sensed AVHRR GAC level 1B

(Advanced Very High Resolution Radiometer – Global Area Coverage) orbit data [23].

The raw data is continuously collected by multiple satellites and the volume of data

for a single day is about 1 GB. The processing structure of Kronos can be divided into

several basic primitives that form a processing chain on the sensor data. The primitives

are: Retrieval, Atmospheric Correction, Composite Generator, Subsampler, and Car-

tographic Projection. More details about these primitives can be found in a technical

report [3].

All the primitives (with the exception of Retrieval) may employ different algo-

rithms (i.e., multiple atmospheric correction methods) that are specified as a parameter

to the actual primitive (e.g., Correction(T0,Rayleigh/Ozone), where Rayleigh/Ozone

is an existing algorithm and T0 is the aggregate used as input). In fact, Kronos imple-

ments 3 algorithms for atmospheric correction, 3 different composite generator algo-
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rithms, and more than 60 different cartographic projections.

5.1.1 Solving the Multi-Query Optimization Problem

For our study, Kronos queries are defined as a 3-tuple:[ spatio-temporal bounding box

and spatio-temporal resolution, correction method, compositing method]. The spatio-

temporal bounding box specifies the spatial and temporal coordinates for the data of

interest. The spatio-temporal resolution (or output discretization level) describes the

amount of data to be aggregated per output point (i.e., each output pixel is composed

from x input points, so that an output pixel corresponds to an area of, for example,

8 Km2). The correction method specifies the atmospheric correction algorithm to be

applied to the raw data to approximate the values for each input point to theideal

corrected values. Finally, the compositing method defines the aggregation level and

function to be employed to coalesce multiple input grid points into a single output grid

point.

5.1.2 Experimental Evaluation With Kronos

The evaluation of the techniques presented in this paper was carried out on the Kronos

application (see Section 5.1.4). It was necessary to re-implement the Kronos primi-

tives to conform to the interfaces of our database system. However, employing a real

application ensures a more realistic scenario for obtaining experimental results. On

the other hand, we had to employ synthetic workloads to perform a parameter sweep

of the optimization space. We utilized a statistical workload model based on how real

users interact with the Kronos system, which we describe in Section 5.1.3.

We designed several experiments to illustrate the impact of the time and space

optimizations on the overall batch processing performance, using AVHRR datasets
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and a mix of synthetic workloads. All the experiments were run on a 24-processor

SunFire 6800 machine with 24 GB of main memory running Solaris 2.9. We used a

single processor of this machine to execute queries. Leverage from running in a multi-

processor environment will be investigated in future work, to obtain further decreases

in query batch execution time. A dataset containing one month (January 1992) of

AVHRR data was used, totaling about 30 GB.

5.1.3 A Query Workload Model

In order to create the queries that are part of a query batch, we employed a variation

of the Customer Behavior Model Graph (CBMG) technique [21]. CBMG is utilized,

for example, by researchers analyzing performance aspects of e-business applications

and website capacity planning. A CBMG can be characterized by a set ofn states,

a set of transitions between states, and by ann � n matrix, P = [pi;j], of transition

probabilities between then states.

In our model, the first query in a batch specifies a geographical region, a set of tem-

poral coordinates (a continuous period of days), a resolution level (both vertical and

horizontal), a correction algorithm (from 3 possibilities), and a compositing operator

(also from 3 different algorithms). The subsequent queries in the batch are generated

based on the following operations: anothernew point of interest, spatial movement,

temporal movement, resolution increaseor decrease, applying a differentcorrection

algorithm, or applying a differentcompositing operator. In our experiments, we used

the probabilities shown in Table 5.2 to generate multiple queries for a batch with dif-

ferent workload profiles. For each workload profile, we created batches of 2, 4, 8, 16,

24, and 32 queries. A 2-query batch requires processing around 50 MB of input data

and a 32-query batch requires around 800 MB, given that there is no redundancy in
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Transition Workload 1 Workload 2 Workload 3 Workload 4

New Point-of-Interest 5% 5% 65% 65%

Spatial Movement 10% 50% 5% 35%

New Resolution 15% 15% 5% 0%

Temporal Movement 5% 5% 5% 0%

New Correction 25% 5% 5% 0%

New Compositing 25% 5% 5% 0%

New Compositing Level 15% 15% 10% 0%

Table 5.2: Transition probabilities.

the queries forming the batch and also that no optimization is performed. There are 16

available points of interest; for example, Southern California, the Chesapeake Bay, the

Amazon Forest, etc. This way, depending on the workload profile, subsequent queries

after the first one in the batch may either remain around that point (moving around

its neighborhood and generating new data products with possibly other types of atmo-

spheric correction and compositing algorithms) or move on to a different point. These

transitions are controlled according to the transition probabilities in Table 5.2. More

details about the workload model can be found in [6].

For the results shown in this paper each query returns a data product for a256�256

pixel window. We have also produced results for larger queries –512 � 512 data

products. The results from those queries are consistent with the ones we show here.

In fact, in absolute terms the performance improvements are even larger. However, for

the larger data products we had to restrict the experiments to smaller batches of up to

16 queries, because the memory footprint exceeded 2 GB (the amount of addressable

memory using 32-bit addresses available when utilizing gcc 2.95.3 in Solaris).
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5.1.4 Experimental Study

We studied the impact of the proposed optimizations varying the following quantities:

� The number of queries in a batch (from a 2-query batch up to a 32-query batch).

� The memory optimizations (none, bnb, grd, vghu, vghs, vghr, vghd) that were

turned on. In all cases, the common subexpression elimination, dead code elim-

ination, and loop fusion optimizations were enabled.

� The workload profile for a batch. Workload 1 represents a profile with high

probability of reuse across the queries. In this workload profile, there is high

overlap in regions of interest across queries. This is achieved by a low proba-

bility for the New Point-of-Interest and Spatial Movement values, as seen in the

table. Moreover, the probabilities of choosing new correction, compositing, and

resolution values are low. Workload 4, on the other hand, describes a profile

with the lowest probability of data and computation reuse. The other profiles –

2 and 3 – are in between the two extremes in terms of the likelihood of data and

computation reuse.

Our study collected metrics on average memory usage, maximum memory usage,

and batch execution time, in addition to the running times of the space optimization

methods.

Average and Maximum Memory Usage

A comparison of average and maximum memory usage among the various memory

optimization algorithms, as well as the unoptimized value, is presented in Figures

5.1(a)-5.2(d). The branch-and-bound algorithm was used to determine the optimal
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loop ordering in batches where the number of loops resulting from the time optimiza-

tions did not exceed 8. This was done because the amount of time required to compute

the optimal order of larger numbers of loops was too long. Table 5.3 lists the number

of queries and the corresponding number of loops for each workload profile as a re-

sult of applying the time optimizations. For example, the branch-and-bound algorithm

was not applied for greater than 8 queries for workload 1 because the number of loops

exceeded 8 for the higher number of queries. Thus, in Figure 5.1(a), the bar forbnb is

missing for workload 1 with 16 and 32 queries.

As shown in Figures 5.1(c) and 5.2(c), there are large savings in both average and

maximum memory usage for workload 3 using 32 queries, in which average and maxi-

mum memory usage were reduced by in excess of 80% after application of the variable

grouping heuristic. In Figures 5.1(d) and 5.2(d), large savings are also observable for

workload 4 using 32 queries, albeit to a lesser extent, in which average and maximum

memory usage were reduced by about 80% and 70%, respectively. These workloads

involve less inter-dependent loop sets and ordering of the loops brings about more

efficient memory usage. In no case does the memory usage increase as a result of

applying the memory optimizations. The other algorithms performed well in reducing

the amount of average and maximum memory used; however, there did not appear to

be a clearly superior algorithm. The reduction in maximum memory when optimizing

for average memory is about the same as when optimizing for maximum memory. In

addition, the reduction in average memory when optimizing for maximum memory is

about the same as when optimizing for average memory. This result indicates that only

one application of the algorithms to optimize either maximum or average memory may

be necessary to reduce both metrics.
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Batch Execution Time

The amount of time required to execute the optimizations and the query are given

in Figures 5.3 and 5.4. The amount of time required to execute time optimized query

batches (time) that have not undergone memory optimization is significantly decreased

from the unoptimized batch (none), due to the fact that after time optimization all of the

queries are computed simultaneously. The execution time is not significantly affected

by any of the heuristics from the execution time of the time optimized loops.
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Figure 5.1: Average memory usage for Kronos queries
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Figure 5.2: Maximum memory usage for Kronos queries
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Figure 5.3: Batch execution times when optimizing average memory usage for Kronos

queries
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Figure 5.4: Batch execution times when optimizing maximum memory usage for Kro-

nos queries
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Workload 1

Q N

2 2

4 2

8 2

16 23

24 40

32 70

Workload 2

Q N

2 1

4 4

8 16

16 71

24 78

32 90

Workload 3

Q N

2 2

4 2

8 6

16 22

24 99

32 131

Workload 4

Q N

2 3

4 9

8 14

16 31

24 63

32 110

Table 5.3: Kronos Query Batches: Number of Loops (N ) Per Number of Queries (Q)
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5.2 Experimental Results With Synthetic Loops

We studied the impact of the number of loops on the performance of each loop ordering

algorithm, as well as the effect of loop inter-dependency, using generated synthetic

input loop sets. Performance results with synthetic loops were obtained for all of

the algorithms mentioned. The synthetic loops were randomly generated with the

parameters shown in Table 5.4. It should be noted that these loops do not correspond

to actual queries, but represent the output of the time optimization performed on a

query batch. The number of loops was varied to provide results on the dependency of

the algorithms on this value, but values larger than 8 were not considered due to the

amount of time required to determine the optimal result via the brute force method or

the branch-and-bound method.

The “Variable Pool Size” determines the number of variables in the “variable pool”.

The variable pool is a set of variables from which are drawn the variables that comprise

the generated loops. The Variable Pool Size determines the degree of interdependency

among the loops because a smaller number of variables in the pool increases the like-

lihood that loops share variables. This is true because the probability that two loops

share a variable decreases as the total number of variables in the pool increases. To

prove this, suppose the Variable Pool Size is given by� and we are concerned with

finding the probability that two loops1 and2 are dependent, i.e. share a variable. Fur-

thermore, suppose loop1 uses!1 variables and loop2 uses!2 variables. The following

equation gives the probabilityP (�; !1; !2) that loops1 and2 share a variable:

P (�; !1; !2) =

!minX
i=1

0
@
�
!1
i

��
��!1
!2�i

�
�
�

!2

�
1
A (5.1)

or, equivalently,

P (�; !1; !2) =

!minX
i=1

 
!1!!2! (�� !1)! (�� !2)!

(!1 � i)!i! (!2 � i)! (�� !1 � !2 + i)!�!

!
(5.2)
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where!min = min(!1; !2). In Equation 5.2 it is also assumed that!1 + !2 � �. This

condition is required because the equation is undefined when!1 + !2 > �; however,

in this case it is certain, with probability 1, that loops1 and2 share a variable. The

limit lim�!1 P (�; !1; !2) is 0. This can be seen intuitively by considering the case

where!1 = !2 = 1, in which case Equation 5.2 simplifies to1
�
, which approaches 0

as� approaches1.

We have chose two values, 8 and 20, for the Variable Pool Size. For a Variable Pool

Size of 8 variables, the probability that two loops share at least one common variable,

assuming that on average each loop has 3 variables, is 82%. This probability can be

derived from Equation 5.1 by using� = 8 and!1 = !2 = 3. Synthetic loops generated

with a Variable Pool Size of 8 are characterized as “highly dependent” loops. For a

Variable Pool Size of 20 variables, the probability that two loops share at least one

common variable, again assuming that on average each loop has 3 variables, is 40%.

This probability can be derived from Equation 5.1 by using� = 20 and!1 = !2 = 3.

Synthetic loops generated with a Variable Pool Size of 20 are characterized as “highly

independent” loops.

The value of the other parameters were chosen arbitrarily because their exact values

were considered unimportant in assessing the relative performance of the various al-

gorithms. It should be noted, however, that the absolute magnitude of the performance

gains are affected by the choice of variable sizes and loop running times.

The relative penalties of heuristics with respect to the optimal order as a function

of loop set size is presented for both highly dependent and highly independent inputs

in Figures 5.5 and 5.6. The results are presented in terms of percentage increase above

the optimal value determined via brute force. All of the heuristics achieve results that

are near-optimal, with the variable grouping heuristic using 100 randomized variable
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Parameter Value

Number of Loops 5, 6, 7, 8

Variable Pool Size 8, 20

Minimum Variables Per Loop 1

Maximum Variables Per Loop 5

Minimum Variable Size 10

Maximum Variable Size 100

Minimum Loop Running Time 10

Maximum Loop Running Time 100

Table 5.4: Synthetic Loop Parameters

orders (vghr) yielding the best results.vghr achieved within 0.06% of the optimal av-

erage memory usage for highly independent loop sets, as shown in Figure 5.5(b), and

0.1% of optimal for highly dependent loop sets, as shown in Figure 5.5(a). Further-

more,vghr achieved within 0.2% of the optimal maximum memory usage for highly

independent loops, as shown in Figure 5.6(b), and achieved the optimal maximum

memory usage for highly dependent loops. Among the variable bit position ordering

methods, it appears the worst-performer was ordering according to the unused memory

potential,vghu, which still achieved within 10% of the optimal average and maximum

memory usage. Overall, there is a significant improvement in both average and maxi-

mum memory usage metrics over the original input loop set order.

The running times of the algorithms are presented in Figures 5.7 and 5.8. It is clear

that the brute force method (bru) is correlated exponentially to the number of loops,

since there is a linear increase in the logarithm of the running time with the number of

loops. The same is true of the branch-and-bound method (bnb) albeit with a smaller
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Parameter Value

Number of Loops 16, 32, 64, 128, 256

Variable Pool Size 20, 40

Minimum Variables Per Loop 6

Maximum Variables Per Loop 10

Minimum Variable Size 10

Maximum Variable Size 100

Minimum Loop Running Time 10

Maximum Loop Running Time 100

Table 5.5: Synthetic Loop Parameters: Large Input Loop Sets

rate of increase. The running time of the greedy heuristic (grd) also increases with the

number of loops. The running time of the variable grouping heuristics (vghu, vghs,

vghr, vghd) do not appear to be correlated strongly with number of loops, at least for

these small numbers of loops. The heuristic is polynomial in the number of loops and

variables which makes the dependence on number of loops difficult to discern from

Figures 5.7 and 5.8 given the small numbers of loops and the logarithm running time

scale. The running time results as a whole suggest that the branch-and-bound method

should be applied for small numbers of loops (e.g., less than 8). For larger numbers of

loops, the variable grouping heuristic using several randomized variable orders should

be applied.

The performance of the heuristics for larger synthetic loop sets was also studied.

The larger sets were generated using the parameters given in Table 5.5. The highly

dependent loop sets correspond to a Variable Pool Size of 20, which leads to a 99%

probability of loop interdependency by application of Equation 5.2. The highly in-
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dependent loop sets correspond to a Variable Pool Size of 40, which leads to an 86%

probability of loop interdependency. The performance results are shown in Figures 5.9

and 5.10. The results are presented in terms of percentage decrease from the original

average and maximum memory usage. The optimal values for these metrics could not

be obtained because the amount of time required to determine them via brute force

was too long. For highly dependent loops, the heuristics are able to decrease the aver-

age memory usage from the value for the original loop set order by up to 25% for 16

loops, but are less effective for higher numbers of loops. As was observed for lower

numbers of loops, the best performer was the variable grouping heuristic using 100 ran-

domized variable orders (vghr), which lowered the average memory usage by at least

20% for all numbers of loops tested. The greedy heuristic (grd) and variable group-

ing heuristic using deterministic reordering (vghd) also performed well. The worst

performance was observed for variable grouping heuristic with the unused variable

potential method (vghu) which still reduced average memory usage by 11%-15%. For

highly independent loops, the heuristics performed significantly better than for highly

dependent loops. Thevghr, vghd, andgrd heuristics all performed similarly, reducing

average memory usage by up to 34%. Again, it was observed thatvghuyielded the

worst performance but still reduced average memory usage by 12%-20%. The perfor-

mance results for reduction of maximum memory usage show that the heuristics are not

effective for high numbers of highly dependent loops. It is observed that the reduction

in maximum memory usage is closely correlated to the number of loops in the input

loop set for both highly dependent and independent loops, and decreases markedly as

the number of loops increases. For highly dependent loops, the heuristics are able to

decrease maximum memory usage by 5%-15% for 16 loops. This percentage quickly

goes to 0 for higher numbers of loops. For highly independent loops, the heuristics
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are able to decrease maximum memory usage by 14%-28%, but this percentage goes

to near 0% for 256 loops. This phenomenon may be due to the fact that for higher

numbers of loops it is more likely that for a given loop there exist several other loops

that utilize the same variable in the same input loop set, which increases the interde-

pendency of the loops. As a result, it is less likely that a reduction in the maximum

memory usage metric can be found by the algorithms through loop reordering because

any reordering based on a given variable is likely to be affected by the memory usage

contributed by other variables that are shared by the loops.

The running times when optimizing the larger synthetic input loop sets for average

and maximum memory usage are given in Figures 5.11 and 5.12. The running times

for each heuristic appear to be correlated linearly with the number of loops in the input

loop set. Optimizing highly independent loop sets required more time than the highly

dependent loop sets because the variable pool size for highly independent loop sets was

twice that of the highly dependent loop sets. This result indicates that the heuristics

are also dependent on the total number of variables used by all of the loops in the

input loop set, in addition to the number of loops in this set. There does not appear

to be a significant difference in running time when optimizing for average memory

usage versus maximum memory usage. The heuristics with the fastest running times

are the variable grouping heuristics using the unused memory potential and variable

size methods (vghu, vghs). These heuristics required between 0.02 and 0.2 seconds to

complete optimization. The greedy heuristics required the most time to run and had

a running time of up to 92 seconds when optimizing for average memory for highly

independent loops.
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Figure 5.5: Percent above optimal average memory usage of heuristics applied to a)

highly dependent loops and b) highly independent loops.
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Figure 5.6: Percent above optimal maximum memory usage of heuristics applied to a)

highly dependent loops and b) highly independent loops.
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Figure 5.7: Running times of algorithms in seconds when optimizing for average mem-

ory usage for a) highly dependent loops and b) highly independent loops.
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Figure 5.8: Running times of algorithms in seconds when optimizing for maximum

memory usage for a) highly dependent loops and b) highly independent loops.
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Figure 5.9: Percent decrease from original average memory usage of heuristics applied

to a) highly dependent loops and b) highly independent loops.
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Figure 5.10: Percent decrease from original maximum memory usage of heuristics

applied to a) highly dependent loops and b) highly independent loops.
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Figure 5.11: Execution times of algorithms in seconds when optimizing for average

memory usage for a) highly dependent loops and b) highly independent loops.
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Figure 5.12: Execution times of algorithms in seconds when optimizing for maximum

memory usage for a) highly dependent loops and b) highly independent loops.
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Chapter 6

Conclusions and Future Work

In this chapter, we conclude by summarizing our contributions and by presenting some

directions for future work.

6.1 Contributions

The current work presented various methods that may be used to optimize the execu-

tion time and memory footprint of multiple data analysis queries for a database system.

Heuristics were presented that provide a good loop order and have a much shorter run-

ning time than the optimal brute force methods.

This work makes the following contributions:

� A method for the conversion of the declarative form of a query to its equivalent

imperative form performed by our database system. The declarative form allows

one to easily specify the query without worrying about the exact process by

which the results are formed.

� A method for reducing the time to compute the results for query batches. These

implemented optimizations are based on the algorithms commonly employed by
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compilers to reduce the execution time of compiled code.

� Methods for optimizing the memory footprint for an executing batch of queries.

These optimizations, with the exception of the greedy heuristic, have been shown

to improve the total query execution time without significantly impacting the ex-

ecution time of the query. We have developed a novel heuristic, called “variable

grouping”, to perform memory usage optimizations that quickly arrive at a near-

optimal loop ordering for executing a batch of range-aggregation queries. This

heuristic has a low running time that does not grow significantly with the size of

the input loop set and provides near-optimal results.

6.2 Future Work

Our work opens many opportunities for productive and innovative future research.

It may be possible to improve the variable grouping heuristic further by devising a

method to determine the variable bit position order in a way that utilizes the output of

previous optimization attempts. In this way, the optimal loop ordering may be deter-

mined by iterating some number of variable bit position re-orderings and optimization

attempts. Additionally, a combination of systematic and heuristic procedures can be

used to optimize loop ordering, for example the partition of large query batches and

the application of branch-and-bound method on these smaller batches. On a different

note, an interesting course of study would be to prove the complexity of the loop or-

dering methods presented, or the difficulty of the loop ordering problem in general, i.e.

proving its NP-completeness.

Furthermore, optimizations can be made to take advantage of memory hierarchies.

For example, iteration over datasets can be done in such a way that improves cache
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performance by increasing spatial and temporal locality of data accesses. Certain in-

tegrated methods that optimize space and time simultaneously may be implemented

that may be more desirable in certain situations where the optimal execution time or

memory usage is not required. Composite methods can also be instituted in situations

where the optimization of both space and time is not completely feasible. Loops may

also be made to run in parallel to make use of parallel processor machines resulting in

much faster absolute execution times.
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