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In the last two decades, experimental progress in controlling cold atoms and ions

now allows us to manipulate fragile quantum systems with an unprecedented degree

of precision. This has been made possible by the ability to isolate small ensembles of

atoms and ions from noisy environments, creating truly closed quantum systems which

decouple from dissipative channels. However in recent years, several proposals have

considered the possibility of harnessing dissipation in open systems, not only to cool

degenerate gases to currently unattainable temperatures, but also to engineer a variety

of interesting many-body states.

This thesis will describe progress made towards building a degenerate gas appara-

tus that will soon be capable of realizing these proposals. An ultracold gas of ytterbium

atoms, trapped by a species-selective lattice will be immersed into a Bose-Einstein con-

densate (BEC) of rubidium atoms which will act as a bath. Here we describe the chal-

lenges encountered in making a degenerate mixture of rubidium and ytterbium atoms

and present two experiments performed on the path to creating a controllable open

quantum system.

The first experiment will describe the measurement of a tune-out wavelength where

the light shift of 87Rb vanishes. This wavelength was used to create a species-selective

trap for ytterbium atoms. Furthermore, the measurement of this wavelength allowed



us to extract the dipole matrix element of the 5s → 6p transition in 87Rb with an

extraordinary degree of precision. Our method to extract matrix elements has found use

in atomic clocks where precise knowledge of transition strengths is necessary to account

for minute blackbody radiation shifts.

The second experiment will present the first realization of a degenerate Bose-

Fermi mixture of rubidium and ytterbium atoms. Using a three-color optical dipole trap

(ODT), we were able to create a highly-tunable, species-selective potential for rubidium

and ytterbium atoms which allowed us to use 87Rb to sympathetically cool 171Yb to

degeneracy with minimal loss. This mixture is the first milestone creating the lattice-

bath system and will soon be used to implement novel cooling schemes and explore the

rich physics of dissipation.
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Chapter 1: Engineering many-body dark-states in degenerate gases

Ultracold atoms have drawn immense interest in precision metrology [1], condensed

matter [2,3] and quantum information [4] due to their ability to realize isolated, defect-

free quantum systems. Experiments with ultracold atoms and ions remain the hallmark

of quantum coherence with the stability of atomic clocks and coherence times of qubits

being continually improved [5]. While much of the work performed with atomic clocks

and quantum gates relies on creating isolated quantum systems, dissipation into an en-

vironment is necessary for cooling and can even be used to create interesting many-body

states such as supersolids [6]. Just as dissipation into a photon bath allows for Doppler

or resolved-sideband cooling, several proposals [7,8] have considered using phonon exci-

tations in a Bose-Einstein condensate to carry away energy and entropy from a gas of

lattice-trapped atoms, to cool the lattice to currently unattainable temperatures. More

generally, the concept of engineering open many-body quantum systems has recently

garnered significant theoretical interest [9,10] due to possibility of using a bath to create

many-body “dark” states with interesting properties. This thesis will describe progress

towards engineering a degenerate mixture capable of performing these open quantum-

system experiments.

1.1 Open quantum systems

Before the formulation of quantum mechanics, some of the earliest works addressing

closed, many-body systems were provided by Hamilton and Liouville. The dynamics of

such systems were described by the Liouville equation which governs the time-evolution

of the phase-space density ρ(p,q, t) of a system under a Hamiltonian H(p,q).

∂ρ

∂t
= −{ρ,H} (1.1)
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where p and q represent the canonical co-ordinates and momenta of each of the particles

in the many-body system. The Heisenberg equation was formulated as a natural exten-

sion of this concept to a quantum system, where the phase-space density is replaced by

the density matrix ρ̂ representing the state of the system and the Hamiltonian Ĥ is a

Hermitian operator.
∂ρ̂

∂t
= − i

h̄

[
ρ̂, Ĥ

]
(1.2)

Time evolution under Eqn. 1.2 is described by the action of a unitary operator Û(t) =

exp
[
−iĤt/h̄

]
.

In contrast, the evolution of an open system interacting with a bath cannot be

described through unitary evolution. Interactions between the system and bath create

correlations between the two subsystems and generate an inseparable entangled state,

ρ̂s(t = 0)⊗ ρ̂b(t = 0) −→ ρ̂sb(t) 6= ρ̂s(t)⊗ ρ̂b(t)

where the evolution of the system can no longer be determined independently of the

bath. As an example, the spontaneous decay of a two-level atom (the system) entangles

the sate of the atom with the state of the electromagnetic field (the bath),

|e〉 |0〉 −→ |e〉 |0〉+ |g〉 |1〉

where |0〉 (|1〉) represent the absence (presence) of an emitted photon in the field.

While, the emitted photon carries away information about the full state ρ̂sb(t), the

evolution of a reduced system density matrix ρ̂S(t) = Trb[ρ̂sb(t)] can still be determined

by a non-unitary version of the Eqn. 1.2,

∂ρ̂S
∂t

= − i
h̄

[ρ̂S, Ĥs] + L[ρ̂S] (1.3)

which makes no reference to the state of the bath. The second term of Eqn. 1.3 (the

Liouvillian), arises from dissipation into the bath and results in non-unitary evolution

of ρ̂S(t). Under certain conditions, it is possible to find ”dark” states of the the system

that does not evolve under L[ρ̂S]. Such dark states have two important properties,

• The dark state is a pure state ρ̂D = |ψD〉 〈ψD|

2



• It decouples from the dissipative channel of the bath. L[ρ̂S] = 0

and have been studied exhaustively in the context of coherent population trapping and

stimulated Raman adiabatic passage (STIRAP). The existence of a dark-state can be

illustrated in the case of a three-level atom driven by two lasers with Rabi frequencies

Ω1 and Ω2, as shown in Fig. 1.3(a). The Hamiltonian describing this system may be

expressed as,

V̂ = ωg2 |g2〉 〈g2|+ ωe |e〉 〈e|+ Ω1(|e〉 〈g1|+ h.c.) + Ω2(|e〉 〈g2|+ h.c.) (1.4)

When Ω2 = 0, the atom is driven out of |g1〉 and spontaneous emission drives it into |g2〉,

which remains unaffected by V̂ . In other words, |g2〉 is a dark state. Conversely, when

Ω1 = 0, the dark state is |g1〉. In general for an arbitrary Ω1 and Ω2, the dark state is a

superposition of |g1〉 and |g2〉. For example, in the case Ω1 = Ω2 = Ω one can trivially

show that the state (|g1〉− |g2〉)/
√

2 does not get excited to |e〉 by the two lasers, and is

therefore dark.

1.2 Engineering dissipation in ultracold atoms

The concept of dark states has been extended in several proposals [8–10] to many-

body systems, particularly to degenerate Bose and Fermi gases. These proposals rely on

creating a system of lattice-trapped atoms (hereby referred to as the system), immersed

in a Bose-Einstein condensate (the bath) of another species (See Fig. 1.3(b)). Collisions

between the lattice atoms and the BEC provide a way for lattice atoms to shed energy

and create an open system. The remainder of this section will briefly discuss two such

proposals, one with lattice-trapped bosons and another with fermions.

1.2.1 Cold atoms in lattices

The energy of a single, atom with mass m is simply the quadratic dispersion

relation of the Hamiltonian,

Ĥ =
p̂2

2m

3
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Figure 1.1: The bandgap spectrum of a single atom trapped in a sinusoidal lattice
potential of different depths V0. All energy units are stated in recoil energies ER =
h2/8ma2. The band structure is periodic in quasimomentum space q with periodicity of
2π/a.

which displays a continuous spectrum as a function of the momentum p. However, in the

presence of a deep sinusoidal lattice potential, with spacing a and depth V0 � h2/ma2,

the energy spectrum becomes discrete displaying energy levels similar to those of a

harmonic oscillator located at each lattice. More generally, in the intermediate regime

the lattice displays a band gap spectrum, with bands of energy where the spectrum is

continuous, and gaps where no energy levels exist, as shown in Fig. 1.1.

As an example, we calculate the spectrum for a lattice in one dimension by solving

Schrodinger’s equation with a sinusoidal lattice potential,

Ĥψ(x) =

(
− h̄2

2m

d2

dx2
+
V0

2
cos (2kx)

)
ψ(x) = Eψ(x) (1.5)

where k = π/a. The first term of Eqn. 1.5 is simply the free particle Hamiltonian with

plane-wave eigenfunctions eiqx and eigenenergies h̄2q2/2m. Since the second term (the

lattice potential) only couples plane-waves that differ in momentum by 2k, we can use

an ansatz wavefunction of the form,

ψ(q, x) =
+∞∑

n=−∞

cne
iqxei2nkx (1.6)

to solve Eqn 1.5 and find the eigenstates. Substituting Eqn. 1.6 into Eqn. 1.5 and

simplifying, we get set of linear equations for cn that must be simultaneously satisfied

for an eigenstate.

h̄2

2m
(q + 2nk)2cn(q)− V0

4
(cn+1(q) + cn−1(q)) = E(q)cn(q) (1.7)

4



Eqns. 1.7 represent an eigenvalue problem that is solved efficiently by matrix diagonal-

ization, to get the eigenstates c(q) = [· · · c−1(q) c0(q) c+1(q) · · · ] and band energies

E(q). By diagonalizing this system of equations at each value of q, we can construct the

energy spectra for a single particle on a lattice, which are shown in Fig. 1.1(a),(b) and

(c) for three different lattice depths. For weak lattices, a small energy gap opens up at

the edge (q = ±π/a) of the lowest and first excited bands, and increases in size as the

lattice depth is increased. For large lattice depths (V0 � ER), the width of the bands

(4J0) decreases, until the bands become flat and the spectrum becomes discrete as one

would expect for a harmonic oscillator. In most degenerate gas experiments, all relevant

temperatures are usually much smaller than the gap 4ER and only the ground and first

excited bands are of importance.

The lattice wavefunctions ψq(x) (also known as the Bloch waves) can be calculated

at each q using the eigenvectors c(q) which are found by solving the eigenvalue problem

in Eqn. 1.7. The ground-band Bloch waves for q = 0 and q = ±π/a are shown in

Fig. 1.2 and will be of particular importance to the two proposals that will be discussed

later in this chapter. An noteworthy difference between the two Bloch functions is that

while the phase of the q = 0 Bloch function does not change with position, the phase

of the q = ±π/a Bloch functions varies by π over a distance a, and the sign of these

wavefunctions alternates between neighboring lattice sites.

1.2.2 Driven dissipative preparation of a BEC

One of the driving forces behind research into degenerate lattice gases, has been to

understand the magnetic exchange interactions that take place in real materials. Pro-

posals to realize these interactions have considered a range of options, from using the

superexchange interaction, to using dipolar atoms and polar molecules. However, real-

izing all of these proposals requires creating low-entropy lattice gases with temperatures

much smaller than width of the ground band of the lattice, which in typical lattices

can be as small at 5 nK. Hence a variety of cooling schemes, involving lattice gases im-

mersed in a Bose-Einstein condensate, have been proposed to reach these low entropies

and temperatures.

5
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Figure 1.2: The real and imaginary components of the q = 0 (blue) and q = π/a
(yellow) Bloch waves in a 5ER deep lattice. For q = 0, the sign of the wavefunction
is the same over all lattice sites while for q = π/a, the wavefunction alternates in sign
between lattice sites. Hence wavefunctions at the edge of the band have neighboring
sites that are exactly out of phase while in the middle of the ground bad, neighboring
sites are in phase. As a result |ψπ/a(x)|2 has a node between neighboring lattice sites
while |ψ0(x)|2 does not.
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One such scheme, presented in [8] considers using a low temperature bath to

“phase-lock” bosonic atoms on neighboring sites of a lattice, thus creating a Bose-

Einstein condensate in the q = 0 state of the lattice ground band. This scheme may be

implemented by trapping lattice atoms on double-well lattice as shown Fig. 1.3(b). The

two ground states of neighboring lattice sites can be considered as |g1〉 and |g2〉 in the

three-level atom picture, while the ground state of the auxiliary lattice sites of the lattice

can represent |e〉. Transitions between |g〉 and |e〉 on such a lattice may be driven using

two-photon Raman processes. Spontaneous decays between |e〉 and |g1〉 and |g2〉 occur

by the emission of a phonon into the bath. Analogous to the Λ-level scheme illustrated

in Fig. 1.3(a), for any choice of Rabi frequencies Ω1 and Ω2, there exists a dark state

which is a superposition of |g1〉 and |g2〉. In the special case where Ω1 = −Ω2 the dark

state is the in-phase superposition,

|ψD〉 =
1√
2

(|g1〉+ |g2〉) (1.8)

where the phase of the wavefunction between two neighboring sites is the same. For

the case of N bosons on M lattice sites with a Rabi frequencies Ωm,m+1 = −Ωm+1,m the

dark-state becomes,

|ψD〉 =

(
1√
M

M∑
m=1

|gm〉

)⊗N
(1.9)

where the phase of the wavefunction is uniform over the entire lattice. In other words,

this state consists of macroscopic occupation in the q = 0 state of the lattice and repre-

sents a BEC. Consequently in the presence of out-of-phase driving between neighboring

lattice sites, the BEC becomes a dark-state and spontaneous emission of phonons drives

the system into this state, thus cooling it.

For 51 bosons trapped in a 10ER deep lattice, [7] claims that a similar lattice

cooling scheme can reach temperatures as low as 10−3J0. However, these and other

calculations for similar proposals neglect the effect of interactions between the lattice

bosons. In a lattice-trapped BEC, contact interactions between atoms dephase clouds

trapped on neighboring lattice sites and drive the system out of the q = 0 dark-state,

ultimately limiting the lowest temperatures accessible using this method of cooling. The

7
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(d)E(q)

q
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Figure 1.3: (a) Illustration of a 3-level atom in the λ-level configuration, coupled by
lasers Ω1 and Ω2. The dark state is unaffected by the two drives and spontaneous
emission of photons (red lines) populates this state. (b) Dissipative scheme for preparing
BECs on a lattice. The anti-symmetric drive leaves the BEC state dark to the excitation
while decays from the auxiliary sites populate this state. A similar scheme illustrated in
(d) may be used to prepare the η-condensate with spin-1/2 fermions on a lattice, where
the pair distribution of fermions peaks at the edge of the Brillouin zone as shown in (c).

energy scale of interactions is typically on the order of J0 and we consequently do not

expect to observe cooling significantly below this energy scale.

1.2.3 Dissipative preparation of η-condensates

At low temperatures, bosons undergo a phase transition to a BEC which displays

long range order characteristic of superfluids and superconductors. However, the same

phenomenon is not seen in not often seen in the ground state of Fermi gases. The η-

condensate was first proposed in [11], as an excited eigenstate of the Fermi-Hubbard

Hamiltonian that displays motional long-range order. It consists of pairs of lattice-

8



trapped spin-up and and spin-down fermions, whose center-of-mass momentum distri-

bution is peaked at the q = ±π/a states of a lattice as shown in Fig. 1.3(c). Such a state

may be prepared through dissipation using a scheme similar to the one presented in Fig.

1.3(b). Pairs of degenerate fermions in the ground band |gi, ↑〉 ⊗ |gi, ↓〉 of a lattice can

be driven to the auxiliary band |e〉 using an in-phase drive (Ωm,m+1 = Ωm+1,m), instead

of the out-of-phase drive used to create a BEC. Such a drive results in a dark state of

the form,

|ψD〉 =

(
1√
M

M∑
m=1

(−1)m |gm, ↑〉 ⊗ |gm, ↓〉

)⊗N
(1.10)

where the phase alternates between 0 and π between neighboring lattice sites. Hence this

wavefunction represents a distribution of N pairs of fermions that is peaked at q = ±π/a

in the ground band of the lattice – in other words an η-condensate.

Unlike the proposal in the previous section where interactions would dephase the

BEC dark-state, Yang argued in [11] that the η-condensate is stable to short-ranged two-

particle interactions and creating this state is therefore a more promising experimental

avenue.

1.3 Outline of thesis

This thesis will describe the apparatus built to conduct the aforementioned open

quantum-system experiments. Chapter 2 will discuss the technical requirements for cre-

ating a mixture capable performing these experiments, and elaborate on our choice to

use ytterbium and rubidium as the lattice and bath species respectively. Chapter 3

will provide an overview of the apparatus constructed over the last six years to create

degenerate mixtures of rubidium and ytterbium. Finally, Chapters 4 and 5 will present

two experiments performed on this apparatus – the first one being the precision mea-

surement of tune-out wavelengths in 87Rb and the second being the creation of the first

Bose-Fermi mixture of rubidium and ytterbium.
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Chapter 2: Degenerate gases of rubidium and ytterbium

Since the creation of the first BECs in 1995 [12, 13], the list of degenerate atomic

gases has grown longer and begun encroaching on the farthest corners of the periodic

table. While the alkali metals rubidium, sodium and lithium [14] have been workhorses

for degenerate gas experiments, alkaline-earths such as strontium [15] and rare-earths like

ytterbium [16,17], have also been brought to degeneracy. More recently the degeneracy

of strongly dipolar atoms such as chromium [18], dysprosium [19] and erbium [20] has

opened the possibility of observing magnetic dipole-dipole interactions in ultracold gases.

At the same time, experiments with mixtures of degenerate gases have gained

momentum, fueled by an interest in observing long-range interactions between polar

molecules [21, 22], for example. However, creating a degenerate mixture requires simul-

taneously satisfying several stringent requirements regarding the stability, miscibility

and collisions between the two gases:

• The single-species and interspecies inelastic collision rates must be low.

• The single-species and interspecies elastic collision rates must be large enough to

allow for thermalization and evaporative cooling.

• The two gases must be stable to collapse, and miscible when degenerate.

This chapter is intended to provide an overview of the properties of rubidium and

ytterbium, which make them an ideal choice for engineering the open quantum systems

discussed in Chapter 1. The first section will provide an overview of the electronic

structure of the two atoms, as it pertains to degenerate gas experiments. The second will

provide a brief introduction to degenerate gases and the third will analyze the collisional

properties of a rubidium-ytterbium mixture, in the context of the three requirements

10



stated previously. Finally the fourth section will describe details of the trap we have

engineered to bring rubidium-ytterbium mixtures to degeneracy.

2.1 Electronic structure of Rb and Yb

2.1.1 Rubidium

Bose-Einstein condensation was first achieved in 87Rb and it still remains the gold

standard for degenerate gas experiments. Its popularity stems from a variety of factors

such as its favorable scattering properties, low melting point and ease of laser cooling at

commercially available laser wavelengths.

Being an alkali metal, its valence shell (n = 5) has one electron resulting in a 5S1/2

ground state as shown in 2.1(a). The two lowest energy transitions in the atom are to

the 5P1/2 (795 nm) and 5P3/2 (780 nm) states, separated by the fine structure splitting

∆F . In addition, the nuclear spin of the atom (I = 3/2 in 87Rb and 5/2 in 85Rb) results

in a hyperfine splitting ∆HF of both the ground and excited states and the total angular

momentum F = I + J of either isotope is always an integer, causing both isotopes to

obey Bose-Einstein statistics.

Over the years, techniques to create 87Rb BECs have improved tremendously and

a de facto standard exists within the JQI, for reliably producing large condensates of up

to 2× 106 atoms [23]. Hence rubidium was a natural choice to create a large degenerate

bosonic bath for engineering open quantum systems.

2.1.2 Ytterbium

A remarkable property of ytterbium is its rich isotopic composition shown in Table

2.1(a), consisting of five stable bosonic isotopes with no nuclear spin and two stable

fermionic ones - 171Yb and 173Yb - with nuclear spins of I = 1/2 and 5/2 respectively.

As a result it is an ideal choice for investigating Bose-Bose, Bose-Fermi and Fermi-

Fermi mixtures, all three of which have been realized in Yb through various experiments

conducted by the Takahashi group [24–26]. The ability to easily switch between bosonic

11



(a)

(b)

Table 2.1: (a) The abundance and scattering lengths (a0) of different isotopic com-
binations of Rb and Yb. The Rb-Yb scattering lengths were determined in [27] and
the Yb-Yb lengths in [28]. (b) Three-body recombination constants K3 for different
isotopic combinations of 87Rb and Yb. The symbols next to each isotope indicate why
a degenerate mixture with 87Rb would not work.

and fermionic isotopes, made ytterbium an attractive choice to use as a lattice gas in

engineering open quantum systems.

The ground state of ytterbium has two valence electrons in the 6s orbital, result-

ing in an electronic structure that resembles alkaline-earth atoms such as strontium or

calcium. Consequently, the electronic states of ytterbium can be sorted into singlet

(S = 0) or triplet (S = 1) manifolds as illustrated in Fig. 2.1(b). While electric-dipole

selection rules allow transitions within a given spin manifold (eg. 1S0 → 1P1), an electric

field cannot change electron spin and transitions between manifolds (eg. 1S0 → 3P1)

should be forbidden. However in heavy atoms like ytterbium (Z = 70), j − j spin-orbit

coupling introduces a small admixture of the 1P1 state into the 3P1 state, weakly allow-

ing inter-manifold transitions such as the narrow intercombination transition at 556 nm

in ytterbium. As a result, ytterbium atoms have both a broad principal transition at
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399 nm useful for capturing atoms from a thermal gas, and a narrow intercombination

transition at 556 nm with a laser cooling Doppler limit of 4.3 µK.

The 1S0 ground state of Yb has no electronic angular momentum and is truly non-

magnetic for the bosonic isotopes, which additionally lack a nuclear spin. Consequently,

both the principal and intercombination lines of bosonic isotopes are J = 0→ 1 transi-

tions, as shown by Fig. 2.1(d). In contrast, the nuclear magnetic moment of the fermions

171Yb and 173Yb leads to magnetic structure in 1S0 (see Fig. 2.1(e)). Furthermore the

excited states, which do have an electron spin, experience a hyperfine splitting, leading

to multiple hyperfine states in 1P1 and 3P1. Both the principal and intercombination

transitions experience large differential Zeeman splittings, since the excited states have

a magnetic moment proportional to the Bohr magneton µB while the ground states

Zeeman shift is determined by the much smaller nuclear magneton µN .

2.2 Degenerate gases

2.2.1 Fermions

An unpolarized spin S Fermi gas at zero temperature will uniformly fill the single-

particle eigenstates below the Fermi energy εF with an occupation of 2S+1 while leaving

those above the Fermi energy unoccupied (see Fig. 2.2(a)) . At a finite temperature T ,

the occupancy of a state with energy ε is given by the Fermi-Dirac distribution,

n(ε) =
2S + 1

e(ε−µ)/kBT + 1
(2.1)

where the chemical potential µ is set by the normalization condition,∫
g(ε)n(ε)dε = N (2.2)

where g(ε) is the density of states. In the limit T = 0, the chemical potential µ is

equal to the Fermi energy εF . The Fermi-Dirac distribution may be used to evaluate the

energy, density and momentum distributions of a harmonically trapped Fermi-gas with

a single particle energy,

ε(p, r) =
p2

2m
+

1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.3)
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(c)

(d) (e)

(a) (b)

Figure 2.1: Electronic level structure of Rb and Yb atoms. (a) Electronic structure of
Rb atoms. (b) Electronic structure of Yb atoms. (c) Dipole trap wavelengths used. (d)
Magnetic structure of Yb bosons. (e) Magnetic structure of a Yb fermion (171Yb). The
ground state sublevels of Yb fermions experience a negligible Zeeman shift of (375 Hz/G
for 171Yb and 516 Hz/G for 173Yb), arising solely from the magnetic moment of the
nucleus.

Typically the Fermi energy εF is greater than the spacing between the harmonic oscillator

eigenstates ω by at least an order of magnitude and in this regime the states may be

enumerated by p and x instead of the harmonic oscillator numbers (nx, ny, nz). The

Fermi energy of a harmonically trapped gas is obtained by evaluating the normalization
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condition in Eqn. 2.2 at T = 0.

εF =

(
6N

2S + 1

)1/3

h̄ω̄ (2.4)

where ω̄ = 3
√
ωxωyωz. The equilibrium density and momentum distributions may be

obtained by integrating the Fermi-Dirac distribution (Eqn. 2.1) over momentum and

position space respectively (see Appendix A for a detailed derivation),

n(r) = −(2S + 1)

(
2π

λT

)3

Γ(3/2)Li3/2
{
e[µ−V (r)]/kBT

}
(2.5)

n(p) = −(2S + 1)
(σT
h

)3

Li3/2

{
e[µ−p2/2m]/kBT

}
(2.6)

where λT is the thermal deBroglie wavelength, σT =
√
kBT/mω̄2 the thermal width of

a trapped non-degenerate cloud, and Li3/2 is a polylogarithm of order 3/2. Comparing

the density distribution of a zero-temperature trapped Fermi-gas to that of a harmonic

oscillator, we find that its size is much larger than than the harmonic oscillator length

aho.

2.2.2 Bosons

As is well known from statistical mechanics, an ideal Bose gas trapped in a po-

tential V (r), undergoes a phase transition to a Bose-Einstein condensate (BEC) near

degeneracy. The defining property of a BEC is a macroscopic occupation of the ground

(zero-momentum) state, |k = 0〉. The critical temperature for the BEC phase transition

in a uniform gas with density n is given by,

Tc =
( n

2.614

)2/3 2πh̄2

mkB
(2.7)

and in the more commonly used harmonic trap is,

Tc =
h̄ω̄

kB

(
N

Li3{1}

)
(2.8)

as derived in Appendix A. For T � Tc, since the many-body wavefunction |Ψ〉 we can

assume that the many-body wavefunction |Ψ〉 consists of all particles in the same same
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single-particle ground state |ψ〉 allowing us to write a Hartree-Fock approximation for

the many-body wavefunction,

|Ψ〉 = |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉 ⊗ ... (2.9)

In this regime, the dyanmics of a BEC are well approximated by mean-field theory, with

an order parameter ψ(r) to represent the wavefunction of the entire BEC. The spatial

wavefunction of the BEC ψ(r) is normalized to the the total number of particles N in

the condensate.

For a non-interacting, trapped BEC, ψ(r) satisfies Schrodinger’s equation. Weak

contact interactions between bosons may be modeled by a psuedopotential of the form

V (ri − rj) = gδ(ri − rj). These interactions introduce a non-linear, density-dependent

term into the Hamiltonian resulting in the Gross-Pitaevskii equation,

− h̄2

2m
∇2ψ(r) + V (r)ψ(r) + g|ψ(r)|2ψ(r) = µψ(r) (2.10)

Vanishing interactions (g → 0) reduce Eqn. 2.10 to Schrodinger’s equation and the BEC

wavefunction is simply the ground state of the trap V (r). In the case of a harmonic trap,

as is typically used in most BEC experiments, the wavefunction is the Gaussian ground

state of a harmonic oscillator. While Eqn. 2.10 cannot always be solved analytically for

repulsive interactions (g > 0), we can use the Thomas-Fermi approximation to estimate

a BEC wavefunction. This approximation assumes that at low enough temperatures,

the density |ψ(r)|2 of the Bose gas is large enough that interactions dominate and the

kinetic energy term of the Hamiltonian may be neglected. Under this condition Eqn.

2.10 is trivially solved for the Thomas-Fermi solution,

ψTF (r) = eiφ

√
µ− V (r)

g
(2.11)

where the chemical potential µ is set by the normalization condition,∫
|ψ(r)|2d3r = N

Eqn. 2.11 shows that the density distribution |ψTF (r)|2 mirrors the trap potential. In

a harmonic trap with frequencies (ωx, ωy, ωz), the Thomas-Fermi density distribution
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(a) (b)

Figure 2.2: (a) Occupation of degenerate bosons (blue) and fermions (red) in a harmonic
trap. (b) Comparison of the ground state harmonic oscillator wave function (blue) and
the Thomas-Fermi solution (gray) for a BEC in a harmonic trap.

|ψTF (r)|2 is given by,

|ψTF (r)|2 = n0

(
1− x2

R2
x

− z2

R2
y

− z2

R2
z

)
(2.12)

where the Thomas-Fermi radii Ri are determined by the atom number, trap frequency ωi

and interaction strength g. Qualitatively comparing the Thomas-Fermi solution to the

ground state of a harmonic oscillator (see Fig. 2.2(b)), we can see that the Thomas-Fermi

radii for repulsive interactions are typically much larger than than harmonic oscillator

length aho. This is the result of an outward pressure against the trap potential caused

by repulsive interactions between atoms. While this may qualitatively seem similar to

behavior of a degenerate Fermi gas, it is important to note that this pressure arises from

real interactions in bosons, while in fermions this is caused by the Fermi pressure. The

case for attractive interactions is more complicated and will be discussed later in this

chapter.

The density and momentum distributions of an uncondensed Bose gas near de-

generacy may be evaluated using the Bose-Einstein distribution. The full derivation,

presented in Appendix A, yeilds the results,

n(r) = (2S + 1)

(
2π

λT

)3

Γ(3/2)Li3/2
{
−e−V (r)/kBT

}
(2.13)

n(p) = (2S + 1)
(σT
h

)3

Li3/2

{
e−p

2/2mkBT
}

(2.14)
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Figure 2.3: (a) An illustration of the van Der Waals’ potential experience by two
colliding atoms in their ground states. (b) The energy of colliding atoms at ultracold
temperatures is typically well below the p-wave barrier ∆p. (c) Three-body inelastic
collisions. Two atoms bind of form a molecule and the binding energy Eb is carried
away by the third.

analogous to those of fermions.

2.3 Collisional properties

Knowledge of the scattering amplitudes between two atoms is crucial to degenerate

gas experiments as it determines the elastic collision rates, two and three-body inelastic

rates, the stability of BECs and behavior of two-species mixtures. These amplitudes are

determined by the molecular potential (illustrated in Fig. 2.3) between the two atoms

which may be approximated by the van der Waals’ potential,

V (r, l) =
C12

r12
− C6

r6
+
h̄l(l + 1)

2µr2
(2.15)

where the first two terms represent the van der Waals’ potential and the second term is

the effective centrifugal potential for the scattering in the l-th partial wave. This section

will discuss the self and interspecies scattering properties of Rb and Yb atoms that made

them a good choice for satisfying the three requirements stated at the beginning of this

chapter.

2.3.1 Elastic collision rates

The temperatures required to reach degeneracy are reached by evaporative cooling

which relies on elastic collisions to thermalize a non-equilibrium gas. At the low temper-
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atures typically encountered in degenerate gas experiments, the energy of two colliding

atoms is well below the p-wave centrifugal barrier (∆p in Fig. 2.3) and elastic scattering

is dominated by the s-wave channel. In this regime the scattering cross-section is given

by the s-wave scattering length as,

σs = 4πa2
s (2.16)

and the average elastic collision rate per atom in a gas with density n and temperature

T is,

γel = nσs〈vr〉T (2.17)

with 〈vr〉T representing the relative thermal velocity between two atoms in the gas.

The characteristic timescale for performing efficient evaporation is on the order of

2.8/γel. For a trapped 87Rb gas (as = 98a0) at 10 µK with a typical density of 10 µm−3,

this timescale is on the order of 0.2 s, allowing for rapid production of BECs. The

scattering lengths for different Yb isotopes, presented in Table 2.1, vary over a wide

range as a function of the isotope mass. 168Yb, 170Yb, 173Yb and 174Yb have scattering

lengths large enough to allow for efficient evaporation and have been brought to Bose or

Fermi degeneracy [16,17,24]. The remaining isotopes have been sympathetically cooled

to degeneracy using either 174Yb or 173Yb, with the exception of 172Yb which we have

not been able to condense for reasons that will be discussed later in this chapter.

During the construction of this project, the exact values of interspecies scattering

lengths between Rb and Yb isotopes were unknown. However, choosing an atom with a

large number of stable isotopes increased the probability of finding favorable scattering

lengths and motivated ytterbium as a choice for a second species. Interspecies scattering

lengths, first determined in 2011 in [27], are tabulated in Table 2.1(a) and plotted in

Fig. 2.4. The Rb-Yb scattering lengths display behaviour analogous to a Feshbach

resonance, which can be tuned by the reduced mass µ of the Rb-Yb isotopologue. The

hollow circles in Table 2.1(a) indicate isotopes whose interspecies scattering length with

87Rb is too low to conduct two-species experiments on a reasonable timescale.
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Figure 2.4: s-wave scattering lengths of Rb-Yb isotopologues as a function of reduced
mass µ [27]. The dotted vertical line indicates the reduced mass of the effective Feshbach
resonance, where the scattering lengths diverge. Most isotopologues with 87Rb lie near
this resonance and consequently have a wide range of scattering lengths.

2.3.2 Inelastic collision rates

Inelastic collisions between atoms occur when the internal state of either atom

changes during a collision, resulting in a release of kinetic energy. Typically, inelastic

collisions are undesirable as they cause trap loss in a cloud, and care must be taken to

minimize three-body inelastic rates which tend to be the dominant sources of atom loss

in dilute, trapped gases.

Three-body recombination occurs when a pair of colliding atoms form a molecular

bound state by releasing the binding energy through a third atom (see Fig. 2.3). These

binding energies tend to be orders of magnitude larger the trap depth and all three atoms

are typically lost from the trap. While the molecular branching ratios for three-body

recombination are not well known in most atomic gases, one can nevertheless construct
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a phenomenological expression of the three-body recombination rate per atom,

γ3 = K3n
2 (2.18)

where K3 is the three-body constant in units of cm6s−1. In a spin polarized 87Rb gas, the

value of K3 has been measured by several groups [29,30] to be 4.3(1.8)× 10−29 cm6s−1.

At typical experimental densities of 10 µm−3, the results in a thermal recombination

rate of γ
(Rb)
3 = 0.0043 s−1, which is over four orders of magnitude slower than the elastic

scattering rates necessary for efficient evaporation.

Through trap loss measurements done by the Takahashi group [16], the three-

body recombination constant in 174Yb was estimated to be 4 × 10−30 cm6s−1 resulting

in favorable recombination rates of γ = 4×10−4 s−1. Recombination constants for other

Yb isotopes can be extrapolated from the 174Yb value, using a simple scaling law that

depends on as. The probability of any given atom in a gas colliding with a second atom

is proportional to the elastic collision rate Pcoll ∝ γel ∝ a2
s mentioned in the previous

subsection. Three-body recombination occurs when a single atom collides with two

other atoms, and the probability of such an event happening must be given by P 2
coll ∝ a4

s

leading to the relation K3 ∝ a4
s. A more rigorous derivation presented in [31] arrives at

the scaling law,

K3 ∝
a4
s

µ
(2.19)

from which the three-body constants for isotopes other than 174Yb were determined

are are presented in Table 2.1(b). The interspecies three-body rate between 87Rb and

174Yb was inferred thorough phase separation measurements carried out in [32], to be

K3 = 1.1×10−26 cm6s−1. The approximate three-body constants for other isotopologues

are extrapolated from this value using the scaling law in Eqn. 2.19 and are presented in

Table 2.1(b).

Efficient evaporation or sympathetic cooling requires the elastic scattering rate

between two gases to cause rethermalization well before inelastic collisions lead to trap

loss. In other words, under typical densities of 10 µm3 and temperatures of 10 µK, the

condition

γel � γ3 (2.20)
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must be satisfied for single-species and interspecies collisions. The red circles in Tables

2.1(a) and (b) indicate Yb isotopes that would undergo rapid three-body recombination,

either with themselves or with 87Rb, and Eqn. 2.20 cannot be satisfied. While the

interspecies interactions with 85Rb result in more favorable recombination rates, 85Rb

has a large negative self-scattering length of −400 a0. While a magnetic Feshbach

resonance was used in [33], to tune the s-wave scattering length 85Rb and create a stable

BEC, our apparatus uses a quadrupole magnetic trap with non-uniform magnetic fields.

Consequently, creating an 85Rb-Yb mixture would not be a trivial task and would require

a significant overhaul of the experiment.

2.3.3 Miscibility of degenerate gases

The interactions in a degenerate Bose-Bose RbYb mixture can be characterized

by three different s-wave scattering lengths – the two single-species lengths arr and ayy

for Rb and Yb respectively, and an interspecies one ary. The miscibility of the two

gases is determined by the relative magnitudes and signs of the three scattering lengths.

For ary < 0 miscibility is guaranteed since an Rb atom can always lower its energy

by interacting with a Yb atom. For repulsive interspecies interactions, the miscibility

condition may be estimated by a mean-field approach presented in [34]. This approach

considers two interacting gases with numbers NR and NY , mutually trapped in a square

well with volume V . In this trap, the Thomas-Fermi solution (Eqn. 2.11) for the BEC

wavefunction is a uniform cloud with density NR(Y )/V . The kinetic energy of the two

gases may be neglected and the ground-state energy E0 will be dominated by the non-

linear interaction term of the Gross-Pitaevskii equation,

E0 ≈ 〈ψBEC | g|ψ(r)|2 |ψBEC〉 = g
N2

V
(2.21)

where g = 4πh̄2as/m is the contact interaction strength. The contribution to this energy

from Rb (Yb) cloud interacting with itself scales as N2
R(Y ) and the contribution from the

interspecies interaction scales as NRNY .

In the absence of interspecies interactions (ary = 0), the two-species ground-state

is miscible and homogeneous with a constant density Ni/V for each species i. Hence the

22



energy of the ground state can be written as,

E0 = 4πh̄2

[
arr
mR

N2
R

V
+
ayy
mY

N2
Y

V

]
where the first and second term represent the Rb and Yb interaction energies. The

energy of this homogeneous state with an interspecies interaction is,

Ehom = 4πh̄2

[
arr
mR

N2
R

V
+
ayy
mY

N2
Y

V
+

2ary
µRY

NYNR

V

]
(2.22)

However if we consider an inhomogeneous state, with Rb atoms exclusively occupying a

volume VR and the Yb atoms occupying VY , the energy of this state becomes,

Ein = 4πh̄2

[
arr
mR

N2
R

VR
+
ayy
mY

N2
Y

VY

]
which when minimized with respect to VR and VY , under the constraint VR + VY = V

results in,

Ein = 4πh̄2

[
arr
mR

N2
R

V
+
ayy
mY

N2
Y

V
+

2
√
arrayy

µRY

NYNR

V

]
(2.23)

Comparing Eqns. 2.22 and 2.23, one can see that under the condition
√
arrayy < ary,

the inhomogeneous state has a lower energy than the homogeneous one. Consequently,

when the miscibility condition is violated, the Rb and Yb atoms can always lower their

energy by phase-separating at different locations.

The Bose-Bose miscibility condition for Rb-Yb is not satisfied with 174Yb and

176Yb, leading to their elimination as possible candidates for a degenerate mixture. The

fermionic isotopes 173Yb and 171Yb are guaranteed to be miscible since their interspecies

scattering lengths with 87Rb are negative. The purple squares in Tables 2.1(a) and (b)

indicate isotopes of Yb that would be immiscible with an 87Rb BEC.

2.3.4 Stability under interactions

In the absence of interactions a trapped Bose-gas will condense into the k = 0

momentum state and its excitation spectrum is simply the quadratic spectrum of a free

particle. The Bogoliubov spectrum of a weakly interacting BEC with density n is given

by,

ε(k) =

√
h̄2k2

2m
(k2 + 16πnas) (2.24)
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Repulsive interactions (as > 0) result in a linear spectrum ε(k) ≈ ck at low momenta,

which arises from phonon modes in the BEC. In contrast, attractive interactions (as < 0)

cause an instability of the low energy modes as the energy becomes imaginary for k2 <

16πn|as|. However in any trapped gas, k cannot be arbitrarily small and its minimum

value kmin ∼ π/R0 is determined by the size - R0 - of the ground state of the trap. An

attractively interacting BEC is stable as long as the ε(kmin) remains real, which sets an

upper limit on BEC density n according to Eqn. 2.24. In a harmonic trap R0 is on the

order of the harmonic oscillator length aho, and this can be used to estimate a critical

number, beyond which a BEC becomes unstable to collapse.

Nmax ≈
aho
as

=

√
2h̄

mω0a2
s

(2.25)

In a typical 100 Hz trap, the attractively interacting bosons 172Yb and 176Yb would have

critical numbers of 150 and 760 respectively, and do not form large stable condensates.

Creating usable condensates (≈ 104 atoms) of these isotopes would require extremely

loose traps (0.001 Hz for 172Yb and 0.1 Hz for 176Yb) which are extremely challenging

to implement in practice. An alternative route to creating condensates of these isotopes

would involve using an optical Feshbach resonance (OFR) [35] on the intercombination

transition of Yb, as suggested in [36]. Such resonances rely on coupling the ground

state motional wavefunction of two colliding atoms to an that of an electronically ex-

cited molecular state, in order to change the scattering length between the two atoms.

Unfortunately, the excited molecular state can decay by imparting a large kinetic energy

to both atoms, leading to trap loss characterized by a two-body loss coefficient K2

Γ2 = K2n (2.26)

Resonant values of K2 were calculated in [36] for promising OFRs in 172Yb and 176Yb

to be 2.8× 10−14 cm3s−1 and 2.5× 10−15 cm3s−1 respectively. For a typical BEC atomic

density of n = 100 µm−3, the loss rates near the OFR would be 2.8 s−1 for 172Yb, which

would lead to a short lived BEC and 0.25 s−1 for 176Yb. Hence while creating a 172Yb

BEC might not be possible, 176Yb still remains a candidate for creating a Bose-Bose

mixture with 87Rb. However, this route was not pursued since it requires a second

556 nm laser to implement an OFR on the intercombination transition.
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The stability condition for a Fermi-gas is slightly more complicated since the Fermi-

energy is typically larger than the interactions by over an order of magnitude. As a result,

the outward Pauli pressure stabilizes the Fermi sea against collapse even in the presence

of attractive interactions. Consequently, both 171Yb and 173Yb are stable to collapse

near degeneracy. However, in the presence of a high-density 87Rb BEC, the strong

attractive interspecies interaction between 173Yb and 87Rb can destabilize the Fermi

sphere and cause collapse. The condition for interspecies collapse may be estimated by

a variational principle similar to the one described in the previous section and explained

in detail in [37]. At zero temperature, the total energy of the interacting RbYb Bose-

Fermi mixture is given by,

E0 = 8πh̄2

[
1

2

arr
mR

N2
R

V
+

ary
µRY

NRNY

V
+

3

5
NY ε

(Y )
F

]
(2.27)

where the last term represent the total energy of the ytterbium Fermi sphere. For a

minimum to exist for small variations in the densities ni = Ni/V , the condition,

∂µR
∂nR

∂µY
∂nY

− ∂µR
∂nY

∂µY
∂nR

≥ 0 (2.28)

must be satisfied where µi are the chemical potentials for Rb and Yb.

µR = 8πh̄2

[
1

2

arr
mR

N2
R

V
+

ary
µRY

NRNY

V

]
µY = ε

(Y )
F + 4πh̄2 ary

µRY

NR

V

One can show that Eqn. 2.28 can only by satisfied under the condition,

n
1/3
Y ≤ (6π2)2/3

12π

µ2
RY

mRmY

aRR
a2
RY

(2.29)

which sets an upper limit on the density required to keep the attractively interacting

mixture from collapsing. For the scattering lengths presented in Table 2.1, the upper

limit for 173Yb density is on the order of 1 µm−3. The Fermi energy at these densities

is 50 nK and reaching into the deeply degenerate regime would be challenging. Hence

173Yb was eliminated as a candidate for a degenerate mixture. The yellow triangles in

Tables 2.1(a) and (b) indicate the isotopes of Yb that would be unstable to collapse due

interactions.
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2.4 A tunable species-selective trap for Rb and Yb

Given the conditions presented in the previous three sections, the only isotope

available for creating a stable, degenerate mixture with 87Rb is the fermion 171Yb. Un-

fortunately, due to its small s-wave scattering length of −3a0 it cannot be evaporated

using our procedures, and must be sympathetically cooled to degeneracy by 87Rb. This

requires that the trap depth for 171Yb be larger than the trap depth of 87Rb, and a

three-color optical dipole trap (ODT) [38,39] was developed to achieve this.

An ODT traps atoms by using the AC stark shift (light shift) U(r) = −d · E(r)

of an atom, in the presence of a laser beam with an oscillating electric field E(r). The

light shift of the ground state of two-level atom driven by a laser with frequency ω and

intensity I is,

Udip =
h̄Γ2

8

I

Is

(
1

ω − ω0

+
1

ω + ω0

)
where Γ, Is and ω0 are the linewidth, saturation intensity and frequency of the transition.

For any real atom with transitions to multiple excited states (indexed by i), the total

light shift is the sum of contributions from all transitions,

Udip =
h̄I

8

∑
i

Γ2
i→g

I
(i→g)
s

(
1

ω − ωi
+

1

ω + ωi

)
= αI (2.30)

where α is defined as the scalar polarizability of the atom 1. The Gaussian transverse

mode I(r) of a laser beam focused with a waist w0, gives rise to a spatially varying light

shift,

Udip(r, λ) =
U0(λ)√

1 + (z/zR)2
e−(x2+y2)/w2

0 (2.31)

which can be used as a harmonic trap with a minimum at (x, y, z) = (0, 0, 0) for U0 < 0.

The details of all transitions used in the calculation of the light shift U0 for rubidium

and ytterbium are presented in Appendix B and plotted in Fig. 2.5. From this we can

see that there are very few wavelengths in the usable range (350–1200 nm) where the

U
(Yb)
0 is negative and larger in magnitude than U

(Rb)
0 . In fact, the only places where this

1Since we typically operate at detunings much larger than the hyperfine splittings of either atom,

the tensor light shift can be neglected and since all our beams are linearly polarized, the vector light

shift may also be neglected.
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Figure 2.5: Scalar light shifts of the Rb and Yb atom as a function of wavelength. The
vertical dotted lines indicate wavelengths of the dipole trap beams. The arrows indicate
relevant atomic resonances.

condition is satisfied, is near the Yb atomic resonances where operating an ODT would

cause severe heating of the Yb cloud from inelastic photon scattering.

As a result we decided to trap and cool the cloud using a bichromatic optical dipole

trap (BIODT), consisting of two beams of 532- and 1064-nm light focused down to an

identical and overlapped waists w0. The 1064-nm (infrared) beam provides a negative

light shift for both atoms, creating a trap for both species which is deeper for Rb by a

factor of 4.5. However the 532-nm (green) beam provides a positive light shift for Rb,

reducing its trap depth, but a negative one of Yb. Therefore by appropriately controlling

the power of the green and infrared beam, the ratio of trap depths U
(Rb)
0 /U

(Yb)
0 can be

tuned over a wide range, allowing us to engineer a trap that will preferentially evaporate

rubidium atoms, while sympathetically cooling ytterbium. The geometry of this trap is

illustrated in Chapter 3.
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In addition, a “tune-out” wavelength at 423 nm is used to provide a species-

selective light shift for Yb, which allows us to implement a species-selective lattice po-

tential for Yb as discussed in Chapter 1. The light shift of Rb at this wavelength vanishes

due to opposing contributions from the 5s→ 5p and 5s→ 6p transitions and a precision

measurement of this wavelength is presented in Chapter 4. In addition, this wavelength

also acts as a crossed-dipole trap and allows us to provide additional confinement for

the Yb cloud along the BIODT beams.

The nonmagnetic nature of Yb atoms, allows a quadrupole magnetic trap to pro-

vide species-selective confinement for Rb. Atoms pumped into the |F = 1,mF = −1〉

state of 87Rb have a magnetic moment µ = −mFµB/2 and in a magnetic field B, expe-

rience a Zeeman shift,

Uz = −µ ·B =
1

2
mFµB|B|

proportional to the magnitude of the field. A quadrupole magnetic field with a field

gradient B′ has a minimum with |B| = 0, which can be used to trap magnetic atoms

such as 87Rb. The trap potential for a quadrupole magnetic trap is given by,

Uq(r) =
1

2
mFµBB

′

√
x2

4
+
y2

4
+ z2 (2.32)

with the field minimum located at (0, 0, 0). The quadrupole trap is used to provide

confinement for Rb along the BIODT beams, and as an added benefit, can also be used

to translate the rubidium cloud in order to control the overlap with ytterbium.

Using a combination of the BIODT, tune-out wavelength and quadrupole trap we

create a fully tunable, species-dependent trap capable of bringing 87Rb and 171Yb to

degeneracy. The following chapters will describe the apparatus used in the implementa-

tion of this trap and present data from two experiments - the creation of the degenerate

mixture and the precision measurement of the 87Rb 5s → 6p matrix elements through

the tune-out wavelength.
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Chapter 3: Apparatus

This chapter describes the apparatus used to create degenerate mixtures of ru-

bidium and ytterbium. The setup occupies three optical tables holding the vacuum

chamber and the MOT, dipole trap and lattice lasers. The experiment table holds the

vacuum chamber where all our experiments are conducted, along with the MOT lasers

for ytterbium. Two separate laser tables house the lasers, from which light is sent over

optical fibers to the experiment table. In addition, three high-current power supplies

and water cooling pumps for the magnetic coils are placed in a closet 8 meters away from

experiment chamber to prevent stray magnetic field noise from coupling to the atoms.

The first section will give an overview of the vacuum system consisting of the

rubidium and ytterbium ovens, the rubidium slower and the experiment chamber. The

second will describe the optics setup near the experiment chamber used for the MOTs,

dipole traps and imaging. The third will present the frequency and intensity stabilization

of all lasers used on this experiment and the fourth will describe how we control the

magnetic fields for the quadrupole and bias coils.

3.1 Vacuum Chamber

The description of the vacuum system is be broken down into three separate sec-

tions: the ytterbium source, the rubidium source and the experiment chamber. The

rubidium and ytterbium sources provide cold atomic beams to load their respective

MOTs, while the preparation of the MOTs and degenerate cold gases takes place in the

experiment chamber.
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3.1.1 Ytterbium source

The design for the ytterbium source was derived from a similar lithium 2D-MOT

source described in [40,41], since a Zeeman slower for ytterbium would severely restrict

the amount of space and optical access available near the experiment chamber. The

principle of operation for a 2D-MOT is identical to that of a 3D-MOT with cooling and

confinement along one of the three axes removed, resulting in a cold elongated cloud

(see Figure 3.1). A cold atomic beam can be derived from a 2D-MOT by using a near-

resonant push beam to accelerate atoms along the elongated axis of the MOT, into the

experiment chamber. The velocity of atoms leaving the 2D-MOT can be controlled using

both the detuning and intensity of the push beam.

The principal transition in ytterbium at 399 nm is used to make the 2D-MOT as

its broad linewidth allows for a large capture velocity. Our push beam on the other

hand, uses the much narrower intercombination transition at 556 nm which falls out of

resonance once the atoms are accelerated to an approximate velocity of 10 m/s from

their initial velocity. This allows us to produce a low velocity ytterbium beam that can

be efficiently captured into the 3D-MOT operating on the intercombination transition

of ytterbium at 556 nm.

The 2D-MOT chamber and ytterbium oven are constructed from a modified six-

way Conflat cross shown in Figure 3.1, connected to the experiment chamber. In addition

to four viewports for the 2D-MOT beams the cross includes a protruded section for an

Ytterbium oven, a differential pumping tube to maintain a pressure differential between

the Yb source and experiment chamber and a gate valve to isolate the source from

the experiment chamber if needed. The Yb oven, typically operated at 390 ◦C, was

positioned to eliminate line of sight to the 2D-MOT viewports as ytterbium is known

to coat windows over time, making them opaque. A magnetic field gradient of 50 G/cm

is provided by two pairs of permanent neodymium magnets attached to the sides of the

2D-MOT chamber.

Capture velocities for the 2D-MOT were estimated using standard Doppler cooling

theory presented in [42]. The force on a two-level atom exerted by a laser beam with
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Figure 3.1: An illustration of the ytterbium 2D-MOT chamber. The 2D-MOT beams
(blue) create an elongated MOT (bottom left) and the push beam accelerates atoms
along the axis of the 2D-MOT, into the experiment chamber. The dotted red circles
indicate the permanent magnets used to form the 2D-MOT field. The image on the
bottom left shows a view of the 2D-MOT along the direction of the push beam. The
bright spot in the center is the 2D-MOT while the diffuse glow is along the arrows is
the fluorescence of the 2D-MOT beams.

31



momentum ~k, intensity I and detuning δ is given by,

~F = h̄~k

(
Γ

2

)
(I/Is)

1 + I
Is

+
(

2δ
Γ

)2 (3.1)

where Γ is the linewidth of the transition and Is, the saturation intensity defined by

Is =
πh̄Γc

3λ3
(3.2)

By including the Doppler shift δD = −~k · ~v of the laser beam and Zeeman shift δZ =

−µB ~B(x) induced by the magnetic field gradient, the equations of motion for a 174Yb

atom in the 2D-MOT were integrated to estimate MOT capture velocities, shown in

Figure 3.2. The calculations presented are for typical experimental parameters with

MOT beam intensity of 1.3Is, field gradient of 50 G/cm and and a 2D-MOT beam

detuning of −50 MHz. While these calculations were performed for 174Yb, they hold

true for most of the bosonic isotopes of ytterbium. The operation of the 2D-MOT for

the fermions 171Yb and 173Yb, is complicated by the large differential Zeeman splitting

between the ground and excited states shown in Fig. 2.1(e). Using 171Yb as an example,

a fixed detuning of δ of a σ+ polarized MOT beam, results in significantly different

detunings δ+ and δ− for atoms in the m = +1/2 and −1/2 states respectively, as

illustrated in Fig. ??. Consequently, the +1/2 atoms feel a weaker trapping potential

than the −1/2 atoms and the performance of the 2D-MOT degrades significantly for the

fermionic isotopes.

An atomic beam produced from the 2D-MOT has a transverse velocity distribution

with a calculated Doppler limited width of 0.18 m/s. The longitudinal velocity of the

atomic beam can be controlled by the both the intensity and detuning of the 556 nm push

beam and we observe efficient loading of the 3D-MOT over a wide range of push beam

parameters, though we typically operate with a detuning of +10 MHz and intensity of

180Is. An atomic beam can be created for both red and blue detunings for push beams

operating on both 556 nm and 399 nm transitions. Calculations for beam velocity as a

function of push beam detuning are shown in Figure 3.3 for 174Yb. Due to its narrower

linewidth, the 556 nm push typically leads to a slower atomic beam velocity than the

399 nm push beam, which requires a very large detuning 150 MHz to be usable. An
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Figure 3.2: Calculated cooling curves for a 2D-MOT of 174Yb operating on the 399 nm
transition of Yb in a field gradient of 50 G/cm. In each case, the atom was assumed
to start on one edge of a 2 cm MOT beam (dashed purple lines) and its evolution in
the presence of two counter-propagating MOT beams was numerically evaluated using
Equation 3.1. Note that atoms faster than 54 m/s do not get slowed sufficiently before
escaping the MOT beam and hence are not cooled and trapped.

interesting point to note about Fig. 3.3(a) is the kink in the velocity curves for large

blue detunings of the push beam. This is caused by the atoms being Doppler-shifted

into resonance with the narrow intercombination transition, for a very short time as they

are accelerated out of the 2D-MOT.

Typically the 2D-MOT, operating at a MOT beam intensity of 1.3Is and detuning

of −50 MHz, can be used to load a 174Yb 3D-MOT in the experiment chamber at a rate

of 6 × 107 s−1. The 3D-MOT loading rate for the rest of the bosonic isotopes scales

with their natural abundance, but the loading rate for the fermions 171Yb and 173Yb is

significantly below what one would expect for their natural abundances, due to the poor

performance of the 2D-MOT for these isotopes. With 171Yb we achieve a loading rate of

2.4×106 s−1 which, while slow does not significantly affect the production of degenerate

171Yb since we can cool it sympathetically, with minimal loss, using 87Rb as a coolant.

3.1.2 Rubidium source

The rubidium source (shown in Figure 3.4) consists of a Zeeman slower which is

fed by a rubidium oven heated to 110 ◦C. The design of the oven is identical to [23], with

the exception that the nozzle is loaded with an array of 15 stainless steel hypodermic
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Figure 3.3: The velocity of as a function of position for a Yb atom accelerated from rest
by a push beam of different detunings. The calculations for a 556 nm push beam are
shown in (a), while those for a 399 nm push beam are shown in (b). The detunings are
stated in units of the natural linewidth γ of the relevant transition and the intensisty in
units of Is. The vertical dotted line in both plots indicates the distance to the 3D-MOT,
were a beam velocity of approximately 10 m/s is required for efficient loading. Due to
the large acceleration provided by a 399 push beam a 556 nm push beam was used,
although a 399 nm push with a lower intensity is feasible and has been used in [41].

needles to narrow the transverse velocity distribution of the Rb atomic beam. In order

to prevent the needles from clogging during extended ( 2 days) operation of the oven,

the nozzle is permanently held at a higher temperature (140 ◦C).

The atomic beam leaving the oven has a longitudinal velocity distribution peaked

at 300 m/s and enters the Zeeman slower, where it is decelerated to 20 m/s during

its 77 cm path to the experimental chamber. The magnetic field gradient along the

slower is provided by a pair of opposing coils wound around the slower tube with a

spatially varying pitch. The field profile of the slower is designed to allow a far-detuned

(−126 MHz) slower laser beam to be used, in order to reduce scattering of the slower

laser beam in the Rb MOT. The longitudinal field profile along the slower axis is shown

in Figure 3.5 with the typical slowing performance shown in Figure 3.6. In addition to

the slower coils, a compensation coil is wound with opposite helicity at the end of the

Zeeman slower minimize the field gradient from the Zeeman slower at the position of

the MOT.

The data in Figure 3.6 was taken by monitoring the fluorescence of a near-resonant

780 nm probe beam intersecting the Rb atomic beam at θ = 45◦, at the exit of the slower.
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Figure 3.4: The rubidium atomic beam oven and Zeeman slower.
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Measured field
Designed field

Figure 3.5: The designed and measured axial magnetic field profiles along the
length of the slower for 2A running through the slower coils. The lower plot
shows the residual between the designed and measured axial field strength.

Figure 3.6: The performance of the slower during daily operation. Due to
the design of the slower, atoms around 300m/s are decelerated by a factor
of 10 to 30m/s while faster atoms are left largely unaffected. As a result
the slower carves out a hole in the velocity distribution around 300m/s and
creates a tall, low velocity peak at 20m/s which can be efficiently captured
in the Rb MOT.
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The velocity ~v of the fluorescing atoms along the probe beam’s direction was inferred

from the probe detuning via the Doppler effect, and a beam velocity distribution was

constructed. As shown in Figure 3.6 in the absence of a slower beam, the beam has a

peak longitudinal velocity of 300 m/s. With the slower beam on, atoms around 300 m/s

are decelerated to 30 m/s resulting in the large, low velocity peak shown in the same

figure. While atoms can be captured in a MOT directly from the low velocity tail of a

thermal beam, the slower drastically improves the Rb MOT loading rate by a factor of

300 to around 3× 108 s−1 allowing for larger MOTs and faster experimental cycles.

3.1.3 Experimental chamber

Both atomic beam sources feed their respective beams into the experiment cham-

ber, where the MOTs are prepared and evaporative cooling to degeneracy takes place.

This section of the vacuum system is maintained at a lower pressure of 10−11 Torr to

extend BEC lifetimes. In order to accommodate the large number of MOT and dipole

beams required for this experiment, this chamber is constructed from an 8-inch spheri-

cal square shown in Figure 3.7. The four 4.5” Conflat viewports provide optical access

for the Rb MOT beams, Yb MOT beams, the probe beams and the Yb lattice, while

a pair of 2.75” viewports are used for the bichromatic optical dipole trap. Each 4.5”

viewport has four 1.33” conflat connections around it, one of which is connected to the

Yb 2D-MOT chamber. A pair of recessed 8” viewports are used to enclose the top and

bottom of the chamber. The quadrupole and vertical bias coils are placed and secured

into this recessed viewport in order to get as close to the atoms as possible and achieve

a high magnetic field gradient for a given current.

In addition, the front of the chamber has a 4.5” conflat connection to the pump-

ing assembly (Figure 3.8) holding the ion and titanium-sublimation pumps required to

maintain a low pressure. Manually operated shutters placed between the experiment

chamber and pumping assembly prevent titanium from coating the chamber windows

when the sublimation pump is activated. Finally, the Rb Zeeman slower is secured to a

2.75” conflat connection at the rear end of this chamber.
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Figure 3.7: A side view (a) and top view (b) of the experiment chamber. All dimensions
are in inches.

3.2 Experiment table optics

The optical setup near the experiment chamber (See Figure 3.9) consists of MOT

beams for Rb and Yb (780 and 556 nm), imaging systems along the Y’Z and XY planes,

mode-matching optics and intensity stabilization for the bichromatic optical dipole trap

(BIODT) beams (1064 and 532 nm) and finally optics for the magic wavelength cross-

dipole and lattice beams (423 nm). Due to the large number of wavelengths used in this

experiment, special care had to be taken to ensure efficient usage of the limited optical

access available on the experiment chamber.

In particular the MOT and recessed viewports needed to transmit the Rb MOT

and probe beams at 780 nm, the Yb MOT beams at 556 nm, the Yb probe beam at

399 nm and the lattice beam at 423 nm. In addition, imaging of trapped Rb and Yb

clouds with a resolution of 2 µm or better was required along two orthogonal directions
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Figure 3.8: Front (a) and rear (b) views of the pumping assembly attached to the
experiment chamber. A 60 L/s ion pump in conjunction with a titanium sublimation
pump can maintain pressures as low as 3×10−11 Torr. The sublimation pump is mounted
on bellows to allow the pump to be retracted from the line of slight of the slower beam,
when not in use.

for precise and repeatable alignment of the 27 µm waist BIODT beams. The optical

setup currently in use near the experiment chamber is illustrated in Figure 3.9. The

remainder of this section will refer heavily to this illustration. The horizontal plane (XY

in Fig. 3.9) holds the optics for the bichromatic trap, lattice and horizontal 3D-MOT

beams as well as a lens system for imaging Rb and Yb atoms in the vertical (Y’Z) plane.

The vertical plane (YZ) holds optics for the vertical MOT beams and imaging in the

XY plane.

3.2.1 3D-MOT optics

The 780 nm MOT beams for Rb are fiber-coupled to the experiment table while the

556 nm beams for Yb are sent over free-space from the laser located on the experiment

table. In order to increase the capture volume of the Rb and Yb 3D-MOTs, the 780 nm
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Figure 3.9: Schematic of the optical setup near the experiment chamber. The
solid lines represent various MOT and trapping lasers while the dotted lines
represent the imaging paths. The table in (d) shows the calculated resolution
of each imaging system. The calculation was performed by raytracing in
OSLO and takes into account all aberrations present in the imaging lenses.
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and 556 nm 3D-MOT beams were designed to be 2” in diameter and are combined on

the dichroic beamsplitter before being sent to the vacuum chamber. A dichroic quarter-

waveplate (QWP) placed just before the chamber windows ensures that both MOT

beams have the appropriate circular polarization before entering the vacuum chamber.

The dichroic QWP performs a λ/4 rotation at 780 nm but a 3λ/4 rotation at 556 nm.

Hence the MOT beams need to have orthogonal linear polarizations prior to the QWP

in order to have the same circular polarization inside the chamber.

In the horizontal plane, all MOT beams are retroreflected through a second dichroic

QWP attached outside the opposite side of the chamber. The situation in the vertical

plane is complicated by the fact that the beams need to propagate downwards through

the XY imaging optics, some of which cause significant loss at 780 nm. As a result the

556 nm Yb MOT beam is retroreflected through the XY imaging setup while a separate

upwards-propagating Rb MOT beam is used.

3.2.2 Imaging and data analysis

The Rb and Yb clouds are probed using the absorption imaging technique where

the transmission of a probe beam through the atomic cloud is measured on a CCD.

The intensity I(x, y) of a probe beam passing through a cloud with a spatial density

distribution n(x, y, z), is given by the Beer-Lambert law,

I(x, y) = I0(x, y) exp

(
−
∫
σ(I, δ)n(x, y, z)dz

)
(3.3)

where I0 is the probe intensity before the cloud and σ is the photon scattering cross-

section for an atom, which in the general case is determined by the I0 and the probe

beam detuning δ,

σ(I, δ) =
3λ2/2π

1 + I0
Is

+ 4δ2

Γ2

(3.4)

However in the limit of a weak (I0 � Is) resonant (δ = 0) probe beam, the cross-

section is independent of intensity and detuning. In this regime the probe transition

is unsaturated and one can infer the column density n2(x, y) of the cloud along the
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propagation direction of the probe beam,

n2(x, y) =

∫
σ0n(x, y, z)dz = − 1

σ
log

I(x, y)

I0(x, y)
= − 1

σ0

logOD(x, y) (3.5)

where OD(x, y) is the optical depth of the cloud and σ0 = 3λ2/2π for a two-level

atom with a transition wavelength λ. In practice OD(x, y) is calculated by dividing an

absorption image I(x, y) containing the atomic cloud by a probe image I0(x, y) without

an atomic cloud, and in the unsaturated regime OD(x, y) is independent of the probe

intensity.

The Rb cloud is probed on the F = 2→ F ′ = 3 transition of the D2-line at 780 nm

while the Yb cloud is probed on the 399 nm transition due to its larger saturation

intensity compared to the 556 nm line. Simultaneous, diffraction limited imaging of

both Rb and Yb clouds was required, but doing so with a single imaging system is a

challenge as most lenses have very strong chromatic aberrations between 399 nm and

780 nm. Hence, four separate imaging systems were designed to image each cloud in

two orthogonal directions (Y’Z and XY) as shown in Fig. 3.9. The Rb and Yb images

along each direction share a common objective lens to collect light from the atoms, but

have separate image lenses to form an image on the two CCDs. The two images in each

direction are separated onto two separate cameras using longpass dichroic beamsplitters

with an edge at 540 nm. The aberrations and resolutions of each of the four imaging

systems were simulated by raytracing in OSLO and characterized offline using a USAF

resolution test chart. A schematic of each imaging direction is illustrated by the dotted

lines in Fig. 3.9(a) and Fig. 3.9(b) and a description of the lenses used, along with the

measured imaging resolution is presented in 3.9(c)and 3.9(d).

3.2.2.1 Thermal gases

The number of atoms N in an absorption image may be obtained by numerically

integrating over the column density distribution n2(x, y) of atoms in the image.

N =

∫
n2(x, y)dxdy (3.6)

The temperature of a thermal cloud can be extracted using the time-of-flight (TOF)

technique where a cloud, initially trapped at t = 0, is released from the trap and allowed
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to undergo ballistic expansion for a long time t before an absorption image is taken. For a

sufficiently large t, the fastest atoms travel to the edge of the cloud while the slowest ones

remain in the center. As a result, the long TOF image n2(x, y, t) represents the velocity

distribution of the cloud, from which one can extract a temperature. For a thermal gas,

the velocity distribution is a Gaussian and the temperature may be extracted by fitting

a two-dimensional Gaussian of the form,

n2(x, y, tTOF ) = n0 exp

(
−(x− x0)2

w2
x

− (y − y0)2

w2
y

)
(3.7)

to the TOF image. The free-fit parameters are the peak density n0, the centers (x0, y0)

and the Gaussian waists (wx, wy). Comparing this to the Boltzmann velocity distribution

for a thermal gas, we obtain expressions for the temperature in the x- and y-directions

Ti =
(wi
t

)2
√

m

2kB
(3.8)

which are then averaged to report a cloud temperature T = (Tx +Ty)/2. The long time-

of-flight assumption holds on timescales much longer than a trap period and is almost

always valid in all our measurements since our trap frequencies are large. Under typical

conditions, our trap frequencies are ω = 2π100 Hz and time-of-flight larger than 15 ms

are large enough to ensure that our images are always in the long TOF regime.

3.2.2.2 Fermi gases

The velocity distribution of a degenerate Fermi gas is given by Eqn. 2.6 and

may be integrated along the imaging direction z, to obtain a two-dimensional velocity

distribution that corresponds to the TOF image,

n2(px, py) = −(2S + 1)
(σT
h

)2 σT
λT

Li2

{
e[µ−(p2x+p2y)/2m]/kBT

}
(3.9)

Unlike a classical thermal cloud, the peak density of this distribution is no longer tem-

perature independent and cannot be used as an independent fit parameter. In order to

overcome this issue, we fit a normalized Fermi-Dirac distribution of the form,

n2(x, y) = n0

Li2

{
Ze−(x−x0)2/w2

xe−(y−y0)2/w2
y

}
Li2 {Z}

(3.10)
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with an additional fit parameter called the fugacity Z = eµ/kBT , which determines

the deviation of a Fermi-Dirac distribution from a Gaussian, and is a measure of the

degeneracy of Fermi gas. A comparison between a Gaussian and various Fermi-Dirac

momentum distributions at the same temperature is illustrated in Fig. 3.10(a). For a

fixed temperature, the Fermi-Dirac distributions with a larger Z correspond to a cloud

with a larger number and lower effective temperature T/TF .

Qualitatively, the momentum distributions for a deeply degenerate Fermi gas (Z �

1) look almost identical to a Gaussian allowing us to use one dimensional Gaussian fits,

along the horizontal and vertical slices of the image, to retrieve initial guesses for the

fit parameters x0, y0, wx, wy and n0. Performing a full two-dimensional fit of Eqn.

3.10 using these initial guesses leads to a reliable convergence of the “waists” wi and

fugacity Z. We have implemented the two-dimensional Fermi-Dirac fit using a nonlinear

least squares routine written in MATLAB. The absolute temperature of the Fermi-gas

is inferred using Eqn. 3.8, where wi are extracted from the Fermi-Dirac fit instead of a

thermal fit. In the case of a deeply degenerate Fermi gas, the effective temperature may

be extracted as T/TF = 1/ln(Z) since µ(T = 0) = εF .

3.2.2.3 Bose gases

Extracting the temperature of a degenerate Bose gas is a more involved procedure

since it undergoes a phase transition at the critical temperature Tc. Below this tempera-

ture, the equilibrium distribution consists of a degenerate thermal component described

by the Bose-Einstein distribution and a condensate described by the Thomas-Fermi pro-

file described in Chapter 2. While time-of-flight expansion of the thermal component is

ballistic, repulsive interactions in the dense condensate cause it to expand hydrodynam-

ically [43]. In an anisotropic harmonic trap, the tightly trapped directions expand faster

than the weak ones resulting in a self-similar expansion of the Thomas-Fermi profile.

nTF (x, y, z, t) = n0

(
1− x2

(λx(t)Rx)2
− y2

(λy(t)Ry)2
− x2

(λz(t)Rz)2

)
(3.11)

The Thomas-Fermi radii Ri of the condensate are rescaled in time by a scale factor λi(t)

which depends on the trap frequency ωi, condensate number N0 and s-wave scattering
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Figure 3.10: (a) Generated radial profiles of the TOF images of degenerate Fermi gases
for various fugacities. The dotted lines show the result of fitting a Gaussian to the
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87Rb BEC. The red and blue profiles are slices through the center of the cloud in the
x- and y-directions, showing the bimodal distributions. The white lines in the inset
indicate the location of the initial guesses.

length as. An image of the density distribution of a 87Rb BEC in time-of-flight is shown

in Fig. 3.10(b) with a slice along the x-direction in Fig. 3.10(c). The distribution is

bimodal with the central feature displaying a Thomas-Fermi distribution, while the wings

display the thermal Bose-Einstein distribution presented in Chapter 2. A temperature

may be extracted by fitting a bimodal distribution of the form,

n2(x, y) =


n0

(
1− x2

R2
x

− y2

R2
y

)
+ nthLi2

{
−e−x2/w2

xe−y
2/w2

y

}
if
x2

R2
x

+
y2

R2
y

< 1

nthLi2

{
−e−x2/w2

xe−y
2/w2

y

}
if
x2

R2
x

+
y2

R2
y

≥ 1

(3.12)

to the TOF image with wi, Ri, n0 and nth as free fit parameters. Inside the Thomas-

Fermi radii, the distribution is a sum of a Thomas-Fermi distribution for the condensed

gas and a thermal Bose-Einstein distribution for the uncondensed gas.

The bimodal distribution of a BEC deviates strongly from a simple Gaussian and
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a two-step fitting procedure is required. Initially a one-dimensional Gaussian fit is

performed on slices of the thermal cloud, well outside the Thomas-Fermi radius (see Fig.

Fig. 3.10(b)). The initial fit provides a guess for the cloud centers x0, y0, “waists” wx,

wy and thermal cloud amplitude nth. Using these as initial guesses, a two-dimensional

fit of Eqn. 3.12 provides values for the condensate peak density n0 and Thomas-Fermi

radii Ri, as well as corrected values for the waists wi and the thermal cloud density nth.

The number of BEC atoms is inferred from the Thomas-Fermi fit, while the temperature

of the cloud is extracted from the parameters wi of the Bose-Einstein fit.

3.2.3 BIODT beams

Light for the BIODT is fiber-coupled on seperate fibers, from the 532 nm and

1064 nm lasers to the experiment table. The outputs of both the 1064 nm and 532 nm

fibers are overlapped using a dichroic beamsplitter and focused down to give a waist of

27 µm at the location of the atoms, as shown in Figure 3.9. Both beams are aligned at an

angle of 4◦ with respect to the chamber windows in order to avoid weak backreflections

creating a lattice at the location of the atoms. The final lens is a 250 mm plano-convex

lens shared by both beams, with a strong chromatic focal shift of 2 mm between the two

wavelengths. The chromatic shift can be eliminated to under 20 µm by slight defocusing

of one of the two beams before the final 250 mm lens. The change in waist size from

the 2 mm translation is negligible and therefore the defocusing method serves as a fine

control of the relative longitudnal positions of the two waists. The power in each BIODT

beam is monitored by photodiodes on the experiment table, and actively stabilized by

feeding back to acousto-optic modulators (AOMs) placed before the fiber inputs.

While our first attempts at the bichromatic trap involved the 532 nm light sent

to the chamber over free space, I soon realized that this configuration was not viable

since the AOM used to control the beam intensity, alters the TEM00 spatial mode out

of the laser and results in poor overlap between the red and green trap beams. The

long path length from the Verdi to the chamber further complicated trap alignment

as the position of 532 nm beam drifted significantly with thermal expansion of mirror

mounts. Fiber-coupling the BIODT beams solves both these issues as the single-mode
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fiber acts a mode filter to provide a clean TEM00 spatial mode and significantly shortens

the free-space path length. Large mode-area photonic bandgap fibers (NKT photonics,

LMA-PM-10) were used in order to handle the large powers typically used to create the

dipole trap. Up to 5 W of light at each of the BIODT wavelengths is available at the

output of each fiber.

We have also considered using a single photonic bandgap fiber to carry both wave-

lengths to the experiment table and using parabolic mirrors, instead of lenses, to focus

the BIODT beams inside the chamber. The mode-diameter of the LMA-PM-10 fiber is

wavelength-independent and achromatically imaging the tip of the fiber onto the atoms

ensures that the waists of the 532 nm and 1064 nm beams are perfectly matched. Fur-

thermore, since both BIODT beams share the same optical path between the fiber and

the atoms, drift between the relative alignment of the two beams should be minimized

in this configuration. While we were able to achieve stable, drift-free alignment using

this method, an anomalous focal shift of 210 µm was consistently measured between the

532 nm and 1064 nm beams. While this focal shift was extremely small compared to

the 250 mm focal length of the parabolic mirror, it would have been large enough to

significantly reduce the thermal overlap between 87Rb and 171Yb and hence this method

for creating the BIODT was not used.

3.2.4 Lattice beams

Light from a pair of 423 nm lasers (Toptica TA-SHGpro) is used to create a Rb-

blind crossed dipole trap and a two-dimensional lattice for Yb in the XY-plane. Each of

the 423 nm beams is focused to a waist of 50 µm near the atoms. During evaporation,

the Lattice-XY beam is turned off and the cross beam provides confinement for Yb along

the Y-direction. After evaporation a two-dimensional lattice for Yb, with basis vectors x̂′

and ŷ′, may be created by increasing the power in the Lattice-XY beam. Alternatively,

a one-dimensional lattice along Y can be created by blocking the retroreflection mirror

for the Lattice-XY. Up to 90 mW of light is available out of the cross beam fiber and

40 mW out of the Lattice-XY fiber.
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3.3 Lasers

3.3.1 780 nm lasers for rubidium

As described in the previous chapter, laser cooling of rubidium-87 requires lasers

for both the F = 2 → 3′ cycling and the F = 1 → 2′ repumping transitions. The

two transitions are separated by 6.835 GHz and have linewiths of around 6 MHz and

therefore cannot be simultaneously addressed by a single laser. Light from our cooling

laser (Toptica DLpro) drives the F = 2→ 3′ cycling transition while the repumper laser

(Toptica DLpro) drives the F = 1 → 2′ transition. In addition, a third master laser

(Newport Vortex II) locked to a Doppler-free 85Rb absorption line serves as a stable

frequency reference for stabilization of cooling and rempumper lasers. When stabilized,

all our 780 nm lasers have linewidths under 300 kHz.

Beams from all three 780 nm lasers are combined on a single mode optical fiber

splitter to obtain three beat frequencies: the master-cooling (≈ 5.5 GHz), master-

repump (≈ 1.1 GHz) and cooling-repump (≈ 6.6 GHz) beatnotes. The output of the

splitter is incident on a fast photodetector (Hamamatsu G4176-03) with a bandwidth

high enough to resolve the master-cooling and master-repumper beat frequencies. The

two lasers are then locked to the master by stabilizing the two beat frequencies to the

outputs of a low-noise direct digital synthesizer (DDS). This scheme allows us to tune

the frequencies of the cooling and repumper in a controlled fashion by changing the

frequency of the DDS output. Figure (3.11) shows a schematic of the locking scheme

and gives an indication of the frequency of each laser beam with respect to the cooling

and rempumper transitions of rubidium-87.

On the chamber table the Rb MOT beams are made by combining the cooling

and repumper light from their respective fibers and splitting them equally into three

beams using a fiber splitter. The slower beam and slower repumper are combined after

their fibers using a polarizing beamsplitter. Enclosing the laser systems in black PVC

cases and placing computer controlled shutters before the fibers prevents stray resonant

photons from causing spin-flips in the quadrupole trap and drastically improves the trap
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Figure 3.11: Schematic of 780 nm laser setup. The cooling and repumper
laser frequencies are labeled by C and R respectively. The frequency differ-
ence between the master and cooling (rempump) is labeled by ∆C(R) and
is controlled through the DDS. Sl, M and P denote the frequencies of the
Slower, MOT and probe beams while SlR and MR denote the frequencies of
the slower and MOT repumpers.
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lifetime.

3.3.2 399 nm laser for ytterbium

The broad linewidth of the 1S0 →1P1 transition provides an efficient way to slow

and capture atoms from a high velocity thermal source into a 2D MOT. Up to 300 mW of

light for this transition is generated by a frequency-doubled 798 nm diode laser (Toptica

TA-SHG pro) and is stabilized to a Doppler-free absorption line in an Yb hollow cathode

lamp running at 200 V. An error signal for locking the frequency of this laser is generated

using a modulation-free method [44, 45] that relies the birefringence of a spin-polarized

atomic gas. A schematic for the implementation of this lock is shown in Fig. 3.12(a)

along with the error signal generated for locking to the atomic transitions in Fig. 3.12(c).

The circularly polarized (σ+) pump beam saturates the |1S0,m〉 → |1P1,m
′ = m+ 1〉

transition of Yb, in addition to polarizing the gas for the fermionic isotopes 171Yb

and 173Yb in the direction of its propagation z. The horizontally polarized, counter-

propagating probe beam may be expressed as a linear combination of the two circular

polarizations σ+ and σ−.

Ein
probe =

1√
2

(E+ + E−) (3.13)

For the fermionic isotopes such as 171Yb, the σ+ and σ− transitions do not have

equal Clebsh-Gordon coefficients (see Fig. 3.12(b)) and the two components of the probe

beam acquire different phases φ+ and φ−,

φ+(−) = (CG+(−)) ∗OD0
2δ/Γ

1 +
(

2δ
Γ

)2 (3.14)

as it traverses through the spin-polarized Yb vapor. CG+/− are the Clebsch-Gordon

coefficients of their respective transitions, OD0 is the resonant optical depth of the Yb

vapor and δ is the detuning of the laser from resonance. The differential phase shift

∆φ = φ+ − φ−, changes its sign on resonance and it can therefore be used as an error

signal to stabilize the 399 nm laser. ∆φ is measured by analyzing the polarization of

the probe beam using PBS and HWP3 shown in Fig. 3.12(d).

MOTs made on this transition require large amounts of optical power due to its

high saturation intensity, which scales linearly with the linewidth as shown in Eqn. 3.2.
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To eliminate fiber coupling losses, MOT light from the 399 nm laser is sent to the 2D-

MOT chamber over free space, while light for the two probe beams is coupled over two

fibers. A schematic of the 399 nm laser system is shown in Figure 3.12. While Yb

does not suffer from spin-flip losses like Rb in a quadrupole trap, stray 399 nm photons

hitting the dipole trap can still cause slow heating of the cloud, resulting in inefficient

evaporation. Hence, a shutter is placed on the 2D-MOT beams to prevent any light

from reaching the experiment chamber once the dipole trap is loaded and evaporation

begins.

3.3.3 556 nm laser for ytterbium

The narrow 1S0 →3 P1 transition has a low Doppler cooling limit of 4 µK and

allows for the creation of cold, high density MOTs which can be efficiently loaded into

dipole traps. Laser light at 556 nm is provided by a doubling an 1112 nm fiber laser

(Menlo Orange One) in a periodically-poled lithium-niobate waveguide. The frequency

of this laser is stabilized to a homebuilt ytterbium vapor cell heated to 550C (see Fig.

3.13). The vapor cell is constructed from 12” long 1-1/3” tube with Conflat flange

connectors at both ends. BK-7 windows are glued at Brewster’s angle (55◦) on both

ends of the tube using Torr-seal. While the Brewester’s angle maximizes transmission of

light through the cell window (0.4% reflection), it is not necessary of proper operation

of the cell. However, any small angle between the two windows prevents etaloning of a

transmitted laser beam and improves the quality of the absorption signal. 3 grams of

ytterbium are placed in the center of the cell and the cell is evacuated, before being filled

with 10 mTorr of helium. The helium serves as an inert buffer gas to drastically reduce

the mean free path of atoms in the ytterbium vapor and prevents them from migrating

to and coating the cell windows.

The absorption signal of our first vapor cell disappeared after one continuous day

of use, which we attributed to impurities from the helium buffer gas and the cell walls,

reacting with the ytterbium to creating an oxide layer on its surface. During the con-

struction of our second cell, we initially baked the cell at 150◦C without ytterbium in

order pump out impurities from the cell walls using a turbo pump. Following the bake,
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Figure 3.12: Schematic of 399 nm laser setup. The laser is locked 100 MHz
above the 1S0 →1 P1 transition and downshifted to −35 MHz for the 2D-
MOT beams and 0 MHz for the two probe beams. The 2D-MOT beams are
sent over free space to the 2D-MOT chamber while both probe beams are
fiber-coupled.

52



Menlo2systems
OrangeOne2@25562nm

To2push
beam

To23DFMOT
beams

To2spectroscopy

AOM
F702MHz

F22x241.52MHz

AOM
F802MHz

ProbeYb2Spectroscopy2heat2pipe

5562Lock
photodiode Pump2beam

From2
laser

(a)

2

1

0

-1

P
ho

to
di

od
eH

si
gn

al
H(

V
)

6543210

FrequencyH(GHz)

10

0.3

0.2

0.1

0.0P
ho

to
di

od
eH

si
gn

al
H(

V
)

-10 -5 0 5
FrequencyH(MHz)

(b)

Figure 3.13: (a) Schematic of 556 nm laser setup. The laser is locked 80 MHz
above the 1S0 →3 P1 transition and downshifted to −3 MHz for the 3D-MOT
beams and +10 MHz for the push beam. The 3D-MOT beams are sent over
free space to the experiment chamber while the push beam is fiber coupled. A
Doppler broadened spectrum of 174Yb is shown in (b), with the inset showing
a saturated absorption spectrum, in the presence of a strong magnetic field.
The J = 0 → 1 transition displays a Zeeman splitting with the 0 → 0 and
0→ ±1 transitions clearly visible.
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the cell was temporarily reopened to add the ytterbium before being evacuated again at

room temperature. Once evacuated, the cell was filled with 99.99% helium to a pressure

of 10 mTorr before being permanently sealed with a copper pinch-off. The new cell

design has a much longer lifetime and can be operated for over a year before the ytter-

bium has to be replaced. During normal operation the cell is heated to a temperature

of 450◦C, although as the cell ages this temperature needs to be increased significantly

in order to maintain an observable absorption signal.

A typical doppler-free absorption signal from the vapor cell is shown in Figure

3.13(b), and displays a full width at half maximum (FWHM) of 1 MHz, which is much

broader than the natural linewidth of 182 kHz. Broadening from stray, inhomogeneous

magnetic fields can be eliminated by using a strong bias magnetic field to split the

J = 0 → 1 peak into its three Zeeman sublevels, with the m = 0 → 0 transition being

field insensitive and having an FWHM of about 1 MHz. We attribute this to power

broadening since we need 50 Isat of power in the pump beam to see a visible doppler-free

signal.

3.3.4 BIODT lasers

BIODT light at 1064 nm is generated from a fiber amplified laser (IPG photonics

YAR-30K-1064-LP-SF) and 532 nm light is provided by a separate frequency doubled

1064 nm laser (Coherent Verdi V-18). Light out of both lasers is sent through AOMs

for intensity control and the first order diffraction peaks from the AOMs are launched

into photonic bandgap fibers (NKT photonics LMA-PM-10) and sent to the experiment.

Up to 5 W of 1064 nm light (BIODT-R) and 8 W of 532 nm light (BIODT-G) can be

coupled through these fibers with a large, wavelength independent mode diameter of

8.5 µm. A schematic of the 1064 nm and 532 nm laser setups is shown in Figure 3.14.

3.3.5 423 nm laser for the lattice

The 423 nm light for the magic-wavelength lattice is primarily provided by a TA-

SHGpro system similar to the one used for the 399 nm transition in Yb. This laser can
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Figure 3.14: Schematic of the 1064 nm and 532 nm laser setups. Both
dipole beams are fiber coupled to the experiment and intensity stabilized at
the fiber output. The intensity of the BIODT-R(G) is controlled through
AOM-R(G).

provide up to 200 mW of light which is sent through an AOM for intensity control and

then over a fiber to the experiment table. Up to 100 mW of 423 nm light is available on

the experiment table and we are currently in the process of constructing an injection-

locked diode laser to provide additional power for more lattice beams. A schematic of

the 423 nm laser system is shown in Figure 3.15.

3.4 Magnetic field control

Preparation of the two MOTs and Rb magnetic trap requires a quadrupole mag-

netic field with a field gradient that can be varied between 1 G/cm (for the Yb MOT)

and 200 G/cm (for efficient RF evaporation of Rb). The quadrupole field is provided by

a pair of magnetic coils running currents in opposite directions, placed in the recessed

viewports of the experiment chamber. These coils are water cooled and capable of car-

rying up to 300 A of current in order to achieve field gradients up to 242 G/cm. In

addition, three pairs of Helmholtz coils (the shim coils) oriented along three orthogonal

55



Toptical
TA-SHGpro

@423lnm

AOM-C
-80lMHz

Crosslbeam
Tolexperiment

To
injection-locked

diodellaser

From
TA-SHGpro

Faraday
isolator

423lnml
diodellaser

AOM-XY
-80lMHz

Fabry-Perot
cavityl

Lattice-XYlbeam
Tolexperiment

Figure 3.15: Setup of 423 nm laser and injection locked diode. The Toptica
TA-SHGpro provides power to the cross-dipole beam, whose intensity is con-
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axes, can provide an arbitrary uniform magnetic field which is typically used to move

the position of the quadrupole field zero (See Figure 3.16). The vertical shim (called

the Bias coil) is also water cooled with the capacity to carry a up tp 300 A, although

we typically never run more than 50 A through this coil, which provides a bias field of

62 G in the vertical direction.

The quadrupole and bias coils were constructed from insulated 0.158” square cop-

per tubing to allow for water cooling. Each quadrupole coil was constructed as a two

coils, connected in series. The first coil has two layers of six turns each, with an inner
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layer having an inner diameter of 1.7”. The second coil consists of four layers with

three turns each, wound around the top of the first coil. The bias coil also created

from the same square copper tubing has four, three-turn layers which are wound around

the quadrupole coil. The horizontal shim coils are made from 10 turns 14 guage insu-

lated magnet wire, wound around the 4.5” Conflat viewports shown in Fig. 3.7. The

quadrupole coils generate a field gradient of 0.81 G cm−1 A−1, the bias coil generates a

magnetic field of 1.1 G A−1 and the horizontal shims generate fields of 0.3 G A−1.

In order to achieve noiseless control of the quadrupole field over two orders of

magnitude, the currents in the quadrupole coil and vertical shim are stabilized using the

current servo shown in 3.17. The current flowing through the coils is measured using

a Hall sensor (F.W. Bell ) and stabilized to a programmable analog voltage (current

setpoint), by controlling the gate voltage of a bank of six MOSFETs (ST-E250NS10) by

means of a PI filter. The bandwidth of the PI filter for the quadrupole and bias coils is

limited to around 200 Hz by their large inductances of 440 µH and 300 µH respectively.

Since the quadrupole coil is required to run a significantly larger current than the rest,

a ”feed-forward” stage is added which increases the power supply voltage, in proportion

to the coil current. This ensures that the voltage drop across the MOSFETs is not

excessively large at low currents and reduces power dissipation in the MOSFETs, thus

increasing their lifetime.
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Chapter 4: Precision measurement of 5s→ 6p matrix elements in 87Rb

The species-selective lattice for ytterbium is made possible due to a tune-out wave-

length in 87Rb where opposing light shifts from the 5s → 5p and 5s → 6p transitions

cancel out, resulting in a vanishing light shift. The value of this tune-out wavelength

is determined predominantly by the ratio of the two transitions matrix elements and

a precise measurement of its position allowed us to extract the value of the 5s → 6p

matrix element. This chapter is focused on a new method we developed to measure the

extremely weak light shifts near the tune-out wavelength and will present the data from

our measurement.

While our interest in the tune-out wavelength stems from the implementation of a

species-selective lattice, the ability to precisely measure matrix elements has far-reaching

applications, especially in the context of atomic clocks [46,47] and tests of fundamental

symmetries [48,49]. In atomic clocks, the largest contribution to the uncertainties arises

from the blackbody radiation shift [50] caused by the non-zero temperature of the en-

vironment where the experiment is performed. Typically, the blackbody spectrum of a

room temperature environment is spectrally broad and a precise knowledge of transition

strengths to various excited states is necessary to calculate the AC Stark shift from this

spectrum.

The conventional method of measuring dipole matrix elements involves either mea-

suring lifetimes of an excited state [51] or performing photoassociation spectroscopy to

calculate strength of the dipole-dipole interaction between two atoms [52]. The former

method yields inaccurate results when the excited state branches to multiple lower-lying

levels while the latter requires using purely long range excited molecular states, which

do not always exist. Here we present a more general method, first proposed in [53], to
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extract matrix elements using tune-out wavelengths. We demonstrate the measurement

of 5s→ 6p matrix elements in 87Rb to a precision of 0.3%.

4.1 Measuring matrix elements through multi-pulse diffraction

The wavelength where the light shift of 5s1/2 vanishes may be precisely determined

by measuring the extremely weak light shifts near the region of the tune-out wavelength

λ0, as shown in Fig. 4.1. Near 420 nm, two tune-out wavelengths exist – one between

the 6p1/2 and 6p3/2 states, and another between the 5p and 6p manifolds of 87Rb. While

a precise determination of the absolute light shift in this region would allow us to infer

the 5s → 6p matrix element, such measurements are notoriously difficult since they

require detailed knowledge of the spatial profile and optical intensity of the laser beam

providing the light shift. However by measuring the relative light shift as a function of

wavelength near λ0, one can infer the 6p matrix elements from the 5p matrix elements,

which are known to a precision of 0.25% [54].

The light shift of 5s1/2 was measured through Kapitza-Dirac diffraction [55] of a

87Rb BEC, from the Lattice-XY beam shown in Fig. 3.9. At t = 0, the lattice beam is

pulsed on and the population in the diffracted order is measured as a function of pulse

time t. The amplitude and oscillation frequencies of the diffracted orders are dependent

on the lattice depth, and can be used to infer the size of the light shift as a function

of the wavelength of the lattice light. Since the light shift is proportional to the atomic

polarizibility, a measurement of the light shift is sufficient to precisely determine the

positions of λ0.

The time-evolution of the diffracted orders is governed by the lattice Hamiltonian,

Ĥ =
h̄2

2m
∂2
x +

V0

2
cos (2kLx) (4.1)

where the second term is the lattice potential formed by a retro-reflected lattice beam

with wavevector kLx̂. The time-dependent Schrodinger’s equation may be solved by

expanding the BEC wavefunction in the basis of plane waves, ψ(x, t) =
∑

n cn(t)ei2nkLx

where n = 0 is the undiffracted BEC, and n = ±1,±2, . . . correspond to the diffracted
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Figure 4.1: Calculated polarizability of 87Rb. The vertical lines indicate electronic
transitions of 87Rb and the arrows mark the tune-out wavelengths λ0. The polarizibilities
were calculated as described in Appendix B. In order to extract an accurate value of the
polarizibility, we included contributions from the 5s → 7p and 5s → 8p transitions, as
well as a wavelength independent term to account for levels above 8p and excitations of
the core electrons of 87Rb.

momenta 2h̄nkL. This expansion results in a set of linear, coupled differential equations,

ih̄
dcn
dt

=
(
4n2Er

)
cn +

V0

4
(cn+1 + cn−1) (4.2)

where Er = h̄2k2
L/2m is the recoil energy from a single lattice photon. The solutions

corresponding to Kapitza-Dirac diffraction of an initially stationary BEC are found by

solving Equations 4.2 with the initial condition cn(0) = δn,0. The evolution of the

diffracted populations Pn(t) = |cn(t)|2 + |c−n(t)|2 is shown in Fig. 4.2 for several lattice

depths from V0 = 20Er − 2Er.

The oscillation amplitude Pn, and frequency both increase with lattice depth V0,

as the population in first-order diffraction peaks becomes large for large lattice depths.

For the weak lattices (V0 < Er) we were interested in measuring, the amplitude is under

1% and the diffracted signal is very weak, but the period of oscillation approaches the
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Figure 4.2: The evolution of the diffracted populations, P0 (blue), P1 (red), P2 (yellow)
and P3 (green) for various lattice depths V0. For weak lattices, the population oscillates
between P0 and P1 and all higher orders are negligible. The period of oscillation also
approaches the Talbot time τ .

Talbot time, τ = h/4Er. Hence, we developed a pulse sequence to amplify the diffracted

population for weak lattices that allowed us to measure very weak light shifts near λ0.

The sequence illustrated in Fig. 4.3, involves a series of lattice pulses of length τ/2,

interleaved with τ/2 long periods of free evolution. The effect of this sequence is most

easily visualized by the Bloch spehere in Fig. 4.3(b). The first pulse (blue) is a π-

pulse about a tilted axis of the Bloch sphere and the free evolution (red) of τ/2 causes

precession about the polar axis of the sphere with a period of τ . Consequently, a series

of Np pulses of a weak lattice results in an amplified population in the ±2h̄kL diffracted

orders allowing us to measure lattices created from light shifts as low as 0.09Er, where

the single pulse diffracted population would have been 0.00025%, and well below our

signal-to-noise ratio.
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Figure 4.3: (a) Multi-pulse sequence for amplifying the diffracted amplitude from weak
lattices. The evolution of the Bloch vector is illustrated in (b) and is shown for a
1ER deep lattice. Typically, we measure lattice depths well under 1ER. The diffracted
fraction as a function of pulse number Np is shown in (d).

4.2 Experimental procedure

The experiment was performed with an 87Rb BEC containing 3.5 × 104 atoms in

the |F = 1,mF = −1〉 state with a negligible thermal fraction. The BEC was trapped in

the hybrid optical and magnetic trap described in Chapter 2, with a dipole beam waist

of 50 µm. The small size of the BEC ensured that its chemical potential µ/h ∼ 40 Hz

was small compared to the recoil energy Er ≈ 12.8 kHz of the lattice, and interactions

between atoms did not significantly affect the diffraction dynamics. For this experiment,

the Lattice-XY beam mentioned in Chapter 2 was focused down to a waist of 110 µm

with its intensity varying by only a few percent over the Thomas-Fermi radius of the

BEC.

The light shift was measured by applying a series of Np pulses to the BEC and

measuring the diffracted fraction f = P1/(P0 + P1) as a function of lattice wavelength

between 419 and 424 nm. For the wavelengths we used, the lattice was weak enough
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to ensure that the second-order diffraction peaks had no discernible population. The

wavelength of the lattice light was monitored by a wavemeter to an accuracy of 18 fm

and the intensity of each lattice pulse was monitored by a photodiode. The diffracted

population as a function of Np is shown in Fig. 4.3(c) and shows a quadratic dependence

on Np up to 18 pulses. The deviation from theory at larger Np is caused the diffracted

orders separating in the trap during the pulse sequence, leading to a reduced overlap.

Therefore, in order to accurately measure the light shift we used fewer than 15 pulses

for all our data.

While the lattice light used was linearly polarized to eliminate the vector light

shift, we measured an ellipticity of ≈ 1% in the polarization of our lattice beam after

transmission through our chamber window. In order to account for a systematic shift

of λ0 from window birefringence, we repeated the diffraction measurements for S and

P polarizations with respect to the chamber window. The induced ellipticity, and con-

sequently vector light shift contributions have opposite signs for S and P polarizations

and averaging the two measurements cancels the contribution of the vector shift to the

measurement of the tune-out wavelength, down to 10 fm.

4.3 Analysis and results

In order to determine the lattice depth V0 from a measurement of f , Equations

4.2 were numerically solved in Mathematica for our pulse sequence and the diffracted

fraction f(Np, V0) was calculated. This relation was inverted to find V0(f,Np), allowing

us to infer the lattice depth for a measured f and a known Np. In order to remove the ef-

fects of intensity fluctuations between shots, the calculated lattice depth was normalized

by the average measured intensity of Np pulses to extract a value proportional to the

polarizability α of 87Rb. Finally, statistical uncertainties were reduced by averaging over

20 repetitions of the experiment at each wavelength and the resulting data are presented

in Fig. 4.4.

Near each of the two tune-out wavelengths, the light shift was measured for both

S- and P -polarizations in order to eliminate the effect of the vector light shift. The light
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shift near both tune-out wavelengths was simultaneously fit to a function of the form,

α ∝ 1

3

∑
n

∑
j

|dnpj |2ωnpj
ω2 − ω2

npj

+ Ctail + Ccore (4.3)

where dnpj are the dipole matrix elements, ωnpj are the frequencies of the 5s1/2 → npj

transitions and ω is the frequency of the lattice light. The dipole matrix elements d6p1/2

and d6p3/2 were the only free fit parameters. The values of d5pj were set by accurate

lifetime measurements [54] while the 7p and 8p matrix elements, along with Ccore (the

contribution of the core electrons of 87Rb) are calculated in [53]. The Ctail term includes

corrections to the polarizability from higher-lying states with n > 8 that add a frequency
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independent contribution to the light shift. Fitting Eqn. 4.3 to the λ0 near 421 nm

constrains the ratio R6p = d6p3/2/d6p1/2 since the position of this zero depends strongly

on the relative size of the 6p matrix elements. Performing the same fit around the λ0

near 423 nm constrains the average value of d6pj , with respect to the values of d5pj which

are well-known.

The values of the matrix elements, and uncertainties in d6p1/2 , d6p3/2 and R6p are

summarized in Table 4.1. The statistical uncertainties in all three values are approx-

imately the same, at the level of 0.1%. The largest contribution to the uncertainties

in d6p1/2 and d6p3/2 arises from the theoretical uncertainty in np3/2 component of Ctail

and an uncertainty in the experimentally measured value of d5p3/2 . Contributions to the

uncertainty of R6p arising from sources other than statistical uncertainty are negligible

since current atomic theory can more accurately predict ratios, rather than the absolute

value of matrix elements. Finally in order to account for a possible drift in the alignment

of the lattice beams, we simulated the effect of a 5% drift in the position of the lattice

beams across a data set. This resulted in 0.2% uncertainty in d6p1/2 and a 0.1% in R6p

and d6p3/2 .

Using our method we determine the ratio of the 6p matrix elements to be R6p =

1.617(2) and their absolute values to be d6p1/2 = 0.3235(9)ea0 and d6p1/2 = 0.5230(8)ea0,

in excellent agreement with the theory presented in [53]. Using these values we determine

the position of the λ0 points to be 421.075(2) nm and 423.018(7) nm. Our uncertainties

in the matrix element measurements are a significant improvement over the theory in

[53], and provide a benchmark needed to test these calculations. Furthermore this

measurement technique can by applied to optical clock states, such as the 3P0 state

in Yb and Sr, in order to precisely determine dipole matrix elements and account for

blackbody radiation shifts in clocks.
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Contribution δd6p1/2 δd6p3/2 δR6p

statistical 1.79 1.90 11.1

d5p1/2 0.84 1.34 0.004

d7p1/2 0.08 0.13 0.012

d8p1/2 0.02 0.04 0.003

np1/2 tail 0.56 0.92 0.029

d5p3/2 1.77 2.87 0.007

d7p3/2 0.22 0.36 0.031

d8p3/2 0.06 0.10 0.007

np3/2 tail 2.01 3.28 0.104

core 1.25 2.05 0.064

alignment drift 7.82 6.18 19.9

Total 8.62 8.24 22.8

theoretical value [53] 0.325(9) 0.528(13) 1.624(7)

our results 0.3235(9) 0.5230(8) 1.617(2)

Table 4.1: Absolute uncertainty contributions (in ea0 × 10−4) for the 5s-6p matrix el-

ements and their ratio (×10−4). Note the insensitivity of R6p to uncertainty in the fit

parameters. Total uncertainty is summed in quadrature. Additionally, our 5s-6p matrix

elements are compared to the theoretical values (in ea0).
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Chapter 5: Degenerate mixtures of rubidium and ytterbium

A degenerate mixture is a prerequisite to performing the studies presented in Chap-

ter 1. While rubidium and ytterbium were initially considered promising choices, the

collisional properties of most ytterbium isotopes with 87Rb were later found to be un-

favorable as explained in Chapter 2. As a result, we have pursued 171Yb, the only

remaining choice, and developed a procedure to sympathetically cool this isotope to

degeneracy using 87Rb. This isotope of ytterbium is frequently used as a reference for

optical clocks [56, 57] due to its ultra-narrow 1S0 → 3P0 transition at 578 nm, and is

a prime choice to study ideal, non-interacting Fermi gases due to its vanishing s-wave

scattering length.

While one other experiment has realized a degenerate 171Yb gas [25], we have

demonstrate a method to create larger, colder degenerate gases of 171Yb which will allow

us to realize the lattice cooling schemes presented in Chapter 1. Unlike [25], we use 87Rb

as a coolant instead of 173Yb and our species-dependent trap provides a greater degree

of control over the sympathetic cooling process. We increase the phase-space density of

ytterbium over four orders of magnitude with minimal loss while simultaneously cooling

the 87Rb down to degeneracy. This chapter will discuss the details of the cycle we

have developed for creating a degenerate mixture and demonstrate the species-selective

control that our trap allows.

5.1 Cooling a mixture to degeneracy

Typically a dilute gas is said to be degenerate when its phase space density ρ

approaches unity. The peak phase space density of a classical, harmonically trapped gas
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is given by,

ρ0 = n0Λ3
T = n0

(
h̄√

2πmkBT

)3

(5.1)

where n0 is the peak density of the gas and ΛT is the thermal deBroglie wavelength,

and for typical MOT temperatures and densities is around 10−7 − 10−8. Loading the

gas into a tight harmonic trap increases its density, and evaporative cooling reduces its

temperature until ρ0 ≈ 1 and we achieve degeneracy.

Our approach to create a degenerate mixture is outlined in Fig. 5.1(a). We

first load laser-cooled nonmagnetic Yb atoms into the green dipole trap and hold them

while a Rb magneto-optical trap (MOT) is prepared and transferred into the magnetic

quadrupole trap for forced rf evaporation. The two MOTs have to be loaded sequentially

since light-assisted collisions in a two-species MOT severely limit its lifetime and size.

The repulsive potential created by the green (532-nm) BIODT beam prevents hot Rb

atoms from heating the colder Yb atoms out of the dipole trap. After RF evaporation

of the Rb to the temperature of the Yb cloud, the red (1064-nm) beam is turned on,

changing the repulsive green potential into an attractive BIODT potential and initiat-

ing thermal contact between the two species. Evaporation of Rb in the BIODT is then

performed to cool the rubidium and ytterbium clouds to degeneracy.

5.2 Rubidium and ytterbium MOTs

Since ground-state Yb atoms are insensitive to magnetic fields1, we first transfer

Yb into the dipole trap. An 8-s MOT loading stage loads 2 × 107 Yb atoms into

the 3D-MOT with a field gradient of 2.4 G/cm. The loading rate of the Yb MOT is

improved by spectrally broadening the 556-nm MOT beams from 20 kHz to 5 MHz in

order to increase the MOT capture velocity. A 200-ms-long cooling and compression

stage reduces the MOT beam linewidth to 20 kHz, reduces the intensity from 10Is to

1.2Is, and increases the field gradient from 2.4 to 12 G/cm resulting in a cloud with a

1The ground state of Yb has no electronic magnetic moment.171Yb has a nuclear magnetic moment

which is smaller than the electronic one by three orders of magnitude and therefore negligible for our

purposes.
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Figure 5.1: (Color online) (a) Experimental sequence for creating degenerate mixtures
of 87Rb and 171Yb from steps (i) to (v). (i) 171Yb MOT and transfer into BIODT, (ii)
87Rb MOT and transfer into magnetic trap (iii) RF evaporation of 87Rb in magnetic
trap, (iv) transfer of 87Rb into BIODT accompanied by sympathetic cooling of 171Yb
and (v) dipole evaporation of 87Rb to degeneracy. (b)-(d) show plots of the full trapping
potential for Rb and Yb during points t1, t2, and t3 respectively.

density of 0.03 µm−3 and a temperature of 7 µK. We then move the compressed MOT,

using uniform magnetic fields, onto the focus of the BIODT before the power in the

MOT beams is ramped down, transferring 1.5× 106 atoms into the trap at 45 µK. The

rise in Yb temperature occurs since Doppler-cooling on the narrow 556 nm transition is

inefficient in the dipole trap, where both the 1S0 and 3P1 states experience light shifts

much larger than the 182 kHz linewidth of the intercombination transition. At this stage

the Yb trapping potential of the BIODT is provided by the 532-nm beam at 5 W and

the 423-nm beam at 72 mW, resulting in a 325 µK trap depth. The initial temperature

of the Yb cloud is much larger than the 4 µK depth of the 423-nm crossed dipole beam,

so its contribution at this stage is negligible.

We load the Rb MOT from a Zeeman-slowed atomic beam 2.5 mm above the

BIODT to prevent light-assisted collisions from heating Yb atoms out of the trap. Fur-
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thermore since the Rb MOT requires a field gradient of 13 G/cm, significantly higher

than that for a Yb MOT, we find that sequential loading of the MOTs results in larger

trapped clouds compared to simultaneous loading. Using our apparatus, we can only

load a very small 171Yb MOT of 1× 105 atoms at the Rb MOT gradient. Conversely at

the Yb MOT gradient of 2.4 G/cm, our Rb MOTs only contain 2× 107 atoms.

After a 6-s Rb MOT loading stage and a compression and optical pumping stage,

3.5× 108 atoms of Rb in the |F = 1,mF = −1〉 state are transferred into the magnetic

quadrupole trap at a field gradient of 192 G/cm. The field zero of the quadrupole trap

is situated 50 µm above the BIODT and thermalization between the 105 µK Rb and

the 45 µK Yb clouds is initially suppressed by the large repulsive potential of the green

BIODT beam for Rb (See Fig.5.1(b)).

5.3 Trap calibration and alignment

Achieving optimal thermal contact between the rubidium and ytterbium clouds

in the BIODT requires exceptional control over the overlap between the red and green

BIODT beams. A comprehensive trap alignment and calibration procedure was devel-

oped to ensure repeatable alignment of of the two BIODT beams. All calibration and

alignment procedures were performed with 87Rb and 174Yb due to its larger abundance

and larger elastic cross-section compared to 171Yb.

5.3.1 Characterization of BIODT waists

The waists of the beams were characterized through trap frequency measurements.

The red beam was characterized through parametric heating measurements of 87Rb and

the green beam was characterized through similar measurements with 174Yb. These

measurements were performed by weakly modulating the trap depth with a frequency

ω as illustrated in Fig. 5.2(a). The modulation couples harmonic oscillator states of

the trap that differ by a quantum number of 2, resulting in heating and atom loss. The

loss feature is resonant when ω = 2ω0, where ω0 is the trap frequency, and a Gaussian

fit to the peak of the loss feature allows us to extract ω0 as shown in Fig. 5.2(b). In
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addition, dipole oscillation measurements of a 87Rb BEC were performed at low 1064-nm

powers by kicking the 87Rb BEC in the harmonic trap using the quadrupole magnetic

field. The resulting oscillation of the cloud velocity was measured by imaging the BEC

in time-of-flight, and is shown Fig. 5.2(c). A sinusoidal fit to the oscillation yields the

trap frequency ω0. The parametric heating and dipole oscillation measurements for 87Rb

were performed at several different 1064-nm powers and the results are plotted in Fig.

5.2(d). Since ytterbium is non-magnetic, it cannot be kicked using a magnetic field, and

dipole oscillation measurements could not be performed easily. As a result, the 532-nm

trap frequency measurements for 174Yb were performed solely using parametric heating.

The waist w0 of the Gaussian BIODT beams may be inferred from fits to Fig.

5.2(d) by a Taylor expansion of the trap potential around the minimum. Expanding

Eqn. 2.30 in the x-direction about (0, 0, 0) yields,

U(x) = −U0e
−x2/w2

0 ≈ −2αP

πw2
0

(
1− x2

w2
0

+ . . .

)
where P is the power in the dipole beam. The quadratic term allows us to extract a

trap frequency,

f =
1

πw2
0

√
αP

πm
(5.2)

Fitting Eqn. 5.2 to the data in Fig. 5.2, with w0 as the only free fit parameter, allows

us to infer the waists from trap frequency measurements at various powers. The polar-

izibilities α at each of the BIODT wavelengths, for 87Rb and 174Yb were calculated was

calculated as outlined in Appendix B. Using this method, the waists were measured to

be w
(1064)
0 = 27.0(2) µm and w

(532)
0 = 27.4(1.5) µm respectively. The uncertainty in these

waists is dominated by astigmatism in BIODT optics, that result in a slight ellipticity

in the shape of the Gaussian beam at its waist. This ellipticity breaks the degeneracy

between trap-frequencies along the X- and Z-directions (See Fig. 3.9) resulting in broad-

ened, asymmetric parametric heating peaks. The astigmatism is small in the 1064 nm

beam resulting in the symmetric signals shown in Fig. 5.2(b). However The 532 nm

beam experiences a larger astigmatism and the Yb heating signals display a significantly

larger degree of asymmetry, resulting in a larger uncertainty in its waist. The waists
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Figure 5.2: (a) Illustrations of performing parametric heating and dipole oscillation
measurements. All parametric heating measurements were done with a modulation
amplitude (∆U/U0) between 0.07 and 0.15. (b) Resonant atom loss of 87Rb in the 1064-
nm trap, caused by parametric heating at the twice trap frequency. The inset shows
the increase in cloud size in a TOF image which corresponds to an effective increase in
temperature from resonant heating. The results for 174Yb in a 532-nm trap are similar.
(c) Dipole oscillations of a 87Rb in a 1064-nm trap. (d) Scaling of trap frequencies with
power for the red and green trap beams.

calculated from these measurements are used along with the light shift calculations to

calculate the trap potentials presented in Fig. 5.1.

5.3.2 Thermalization and BIODT alignment

Measurements of the beam waists were confirmed through two-species cross ther-

malization experiments in the BIODT. A large (2 × 107 atoms) magnetically trapped

cloud of 87Rb at Tr was brought into thermal contact with a small (1× 106 atoms) yt-
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terbium cloud trapped in the BIODT at a temperature of Ty. The subsequent (lossless)

thermalization of the ytterbium cloud to Tr was observed and is shown in Fig. 5.3(a) for

174Yb. The time-evolution of the 174Yb temperature can be modeled by a two-species

rate equation,
d(Ty − Tr)

dt
=
ζ

α
n̄oσry 〈vry〉 (Ty − Tr) (5.3)

where n̄o is the overlap density between the rubidium and ytterbium clouds, γry is the

inter-species scattering cross-section and 〈vry〉 is the thermally averaged relative velocity

between a 87Rb and an ytterbium atom. The constant ζ = 0.89 accounts for the mass

difference between the two atoms and α = 2.8 is the average number of collisions required

to reach thermal equilibrium [MonteCarlo]. The overlap density is a measure of thermal

contact between the two trapped clouds with density profiles nR(r) for rubidium and

nY (r) for ytterbium,

n̄o =

(
1

NY

+
1

NR

)∫
nY (r)nR(r)d3r

The value of no is strongly dependent on the trap parameters, particularly the balance

between the red and green BIODT beams, as illustrated in Fig. 5.3(c). Since the

rubidium cloud is much larger in size than the ytterbium cloud, we may treat it as a

heat bath and assume Tr is approximately constant during the thermalization process

and its density profile nR(r) does not change significantly. This allows to analytically

solve 5.3 to obtain a solution of the form,

Ty(t) = Ty(∞) + ∆Te−
t
τ (5.4)

which can be fit to the data to extract the thermalization rate τ−1 and an equilibrium

temperature Ty(∞).

In order to characterize the thermal contact between rubidium and ytterbium,

we measure Ty(∞) as a function of the power ratio R = P1064/P532 between the red

and green BIODT beams (See Fig. 5.3(b)). For any given value of P532, we observe a

minimum of Ty(∞) at R0 = 0.34. This can be explained by examining the calculated trap

potential at various values of P1064 as shown in Fig. 5.3(c). For equal beam waists, at

R = 0.36, the repulsive potential from the 532-nm beam is exactly balanced by attractive

contribution from the 1064-nm beam and the clouds have sufficient spatial overlap to
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Figure 5.3: (a) Thermalization curves of Yb after it is brought into thermal contact with
the Rb magnetic trap. In this dataset Tr was 6.1 µK. The value of Ty(∞) for a fixed
P1064 is shown as a function of P532 in (b). The minimum of each curve corresponds
to the point where the 532-nm and 1064-nm light shifts of 87Rb should exactly balance
each other. The inset shows the value of the minimum as a function of the 1064-nm
power and a linear fit to the data yields R0 = 0.34(3), in excellent agreement with our
light shift calculations with predict R0 = 0.36. Plots of the calculated trap potentials for
87Rb and 171Yb are shown in (c). The plots correspond to the points 1,2 and 3 labeled
in (b).

thermalize. At lower values of R, the repulsive 532-nm potential prevents rubidium from

coming into thermal contact with ytterbium and its cooling in consequently suppressed.

For significantly higher values of R, rubidium atoms accelerate into the deep, attractive

BIODT potential, gaining kinetic energy and heating the ytterbium cloud in the process.

The value of Ty(∞) at R = 0.36 is incredibly sensitive to the relative position of the red

and green BIODT beam waists and is therefore used as a signal to align the two beams

to each other. The alignment of the green beam is changed using a picomotor mirror

mount, to minimize Ty(∞) and ensure optimal overlap. We find that we can achieve

similar levels of overlap by monitoring the positions of ytterbium clouds, trapped in the
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Figure 5.4: Phase separation between the 87Rb and 174Yb clouds trapped in the BIODT
at 4 µK. The power in red beam was 1 W while the power in the green beam was 0.7 W.

1064-nm and 532-nm beams and overlapping the two positions in the y′z- and xy-imaging

directions.

For temperatures below 5 µK, the large scattering length between 174Yb and 87Rb

(see Table 2.1) leads to an unusual density distribution for the trapped ytterbium cloud

as shown in Fig. 5.4. The center 87Rb cloud creates a density “hole” in the middle of

the trapped 174Yb cloud [32], characteristic of phase separation discussed in Chapter

2. While the two clouds in Fig. 5.4 are far from degeneracy and uncondensed, the

interspecies scattering length is still large enough to overcome the thermal kinetic energy

and cause phase separation. Since the hole occurs at the location of 87Rb, centering the

hole along the 174Yb cloud, guarantees alignment of the two BIODT beam waists.

5.4 Radiofrequency evaporation and Rb BIODT load

Once the rubidium and ytterbium clouds are transferred from the MOTs into their

respective traps, the first stage of cooling involves forced RF evaporation of the Rb cloud

in the magnetic trap. During this stage [stage (iii) in Fig. 5.1(a)], we evaporate the Rb
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cloud using RF from 18 MHz to 5 MHz over 5 s, reducing its temperature to 27 µK and

increasing its density from 7×1010 cm−3 to 1×1013 cm−3. At the same time we linearly

increase the power of the red BIODT beam to 2 W in order to gradually initiate thermal

contact with the Yb cloud towards the end of this stage. Throughout this process, the

Yb number and temperature remain constant at 1.5× 106 and 45 µK (Fig. 5.5).

We then load the Rb cloud into the BIODT by decompressing the magnetic trap to

22 G/cm while further lowering the RF frequency from 5 MHz to 1 MHz over 2.5 s [stage

(iv) in Fig. 5.1(a)]. The magnetic field gradient of 22 G/cm provides some levitation

against gravity for Rb and confinement along the BIODT with a trap frequency of 8 Hz.

A linear ramp of BIODT powers, as shown in stage (iv) of Fig. 5.1, increases the overlap

between the two species and cools the Yb. Optimal loading of Rb into the BIODT occurs

when the green power is reduced to 1.4 W and the red power to 0.8 W. We attribute this

to a reduced capture volume at high powers, which stems from differing Rayleigh lengths

of the 532- and 1064-nm BIODT beams when their waists are matched as shown in Fig.

5.6. The temperature of both species is reduced to 6 µK at the end of decompression

as shown in Fig. 5.5(a) and the Yb cloud suffers minimal loss during this stage. At the

end of stage (iv), a Rb cloud containing 7×106 atoms and a Yb cloud containing 8×105

atoms coexist in the BIODT at 6 µK.

A Ramsauer-Townsend scattering minimum at 50 µK [58] in the interspecies ther-

malization cross section causes the 171Yb temperature to lag behind the 87Rb temper-

ature during stage (iv). At this temperature, the interspecies cross section drops to

1.2×103 a2
0, well below its low energy s-wave value of 4.4×104 a2

0. However, the thermal

distribution of velocities allows us to cool the Yb cloud despite the existence of a scat-

tering minimum, and the two cloud temperatures converge to the same value towards

the end of stage (iv).

5.5 BIODT evaporation to degeneracy

We perform the final stage of evaporation [stage (v) in Figs. 5.1 and 5.5] with

an exponential ramp of both BIODT powers with a time constant τ = 0.5 s over a
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Figure 5.5: (Color online) (a) Temperature evolution of Rb and Yb clouds throughout
the evaporation procedure. The labeled steps and times correspond to the ones shown
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the phase space density and number during the evaporation procedure. The steep slope
of the Yb data is indicative of efficient sympathetic cooling by Rb. The inset shows the
evolution of the Yb number over time during the BIODT evaporation. The total number
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potential for 2.1 W and 5 W in the 1064- and 532-nm beams respectively.

period of 2 s. Towards the end of this stage the Rb cloud condenses to form a BEC

while Yb reaches Fermi degeneracy. The Rb images show a strong bimodal distribution

characteristic of a BEC, while the Yb cloud shows significant deviations from a Gaussian

distribution (Fig. 5.7). After 1.7 s of evaporation in the BIODT, the Yb cloud reaches

a temperature of T = 0.62(8)TF = 220 nK with 4.2 × 105 atoms while the Rb cloud

condenses to form a BEC of 3.5× 105 atoms. Evaporating for 2 s cools the Yb cloud to

T = 0.16(2)TF = 90 nK with 2.4×105 atoms, at the cost of reducing the Rb BEC number

to 1.1 × 105. This is over an order of magnitude improvement over previous methods

to cool 171Yb [25] which resulted in 8× 103 atoms at T = 0.46TF . The uncertainties in

our values for T/TF are dominated by noise in the number of Yb atoms and not by our

temperature measurement.

Near degeneracy, we extract the number and temperature of the 171Yb cloud from

a two-dimensional fit of a Fermi-Dirac distribution,

n(x, y) = B − A
Li2

[
−z exp

(
x2

w2
x

+ y2

w2
y

)]
Li2 (−z)

(5.5)

to the absorption image, with fit parameters A, B, z, wx, and wy. Li2 is a polylogarithm

of order 2 and z = eµ/kBT is the fugacity that determines the deviation of the Fermi-Dirac
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Figure 5.7: (Color online) (a) A 22-ms time-of-flight (TOF) image of a condensed Rb
cloud of 5× 105 atoms at 112 nK, as extracted from a Gaussian fit to the wings of the
image. The plot shows a slice of the image across 10 pixels, along with the fits. The
bimodal fit is performed only on points with an OD below 3 in order to avoid artifacts
from saturation of the probe beam. (b) A 12-ms TOF image of a degenerate Yb cloud at
90 nK with 2.4×105 atoms. The plot shows azimuthal averages of the image along with
the 2D fits performed on the image. At this temperature the Rb cloud forms a nearly
pure BEC, without any discernible thermal wings. (c) For comparison, the momentum
distribution of a non-degenerate Fermi gas of 171 Yb is shown at 1.25TF .
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distribution from a thermal Gaussian. For a thermal gas at T � TF , z = 0 while in

the limit T � TF the fugacity diverges. We extract the temperature of the degenerate

Fermi gas from wx and wy. The number of atoms is determined using two methods:

through direct integration of the column density, and indirectly from the fugacity and

temperature using the relation

T

TF (ω,N)
=

1

ln(z)
, (5.6)

which holds in the limit T � TF . The former method gives a value of 2.4 × 105

atoms while the latter gives a value of 3.1 × 105, using calculated Yb trap frequencies,

(ωx, ωy, ωz) = (150, 140, 75) Hz and assuming an unpolarized Fermi gas2.

The inset in Fig. 5.5(a) shows the fugacity while the inset in Fig. 5.5(b) shows the

evolution Yb number during the final stage of evaporation. The fugacity rises rapidly

during the last second of the evaporation as the cloud becomes degenerate but the

number, which does not change significantly during the early stages of evaporation,

drops as the trap becomes too shallow to support Yb against gravity.

5.6 Trap lifetimes

The lifetime of the degenerate mixture is limited by photon scattering of Yb atoms

from the 423 nm beam with calculated rate of 0.4 s−1. We measure the lifetimes of both

degenerate clouds under three different conditions shown in Fig. 5.8: Rb in the absence

of Yb, Yb in the absence of Rb, and a degenerate mixture. Scattering of 423-nm photons

heats the Yb cloud in the absence of Rb, as shown in the inset in Fig. 5.8(b). In the

presence of the Rb BEC, this heating rate is reduced and the Rb lifetime is reduced from

2.8 s to 1.5 s [Fig. 5.8(a)] as the Rb cloud evaporates to keep the Yb temperature fixed.

The Rb cloud has a peak density of 2.8(5) × 1014 cm−3 and its lifetime in the absence

of Yb is limited by three-body recombination. Using a 87Rb three-body rate constant of

K3 = 5.8×10−30 cm6s−1 [29], we calculate a three body rate of 0.45 s−1, in approximate

agreement with our measured lifetime.

2The extremely small energy difference between the m = 1/2 and m = −1/2 sublevels of 171Yb

guarantees our magnetic field variations will be non-adiabatic, leading to an unpolarized gas.
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Figure 5.8: (Color online) (a) Lifetime of the Rb BEC with and without the degenerate
Yb gas present. (b) Lifetime of the Yb gas with and without the Rb BEC present. The
inset in (b) shows the evolution of the Yb temperature in the presence (circles) and
absence (crosses) of the Rb BEC. The lines in both plots are fits of an exponential decay
to the data.

5.7 Independent control of Rb and Yb clouds

The flexible nature of our trap allows us to control overlap between the two species,

and independently address either Rb or Yb atoms. The nonmagnetic Yb atoms are

unaffected by the magnetic trap used to confine the Rb cloud along the BIODT beam.

Similarly the Rb cloud does not see the 423-nm crossed dipole beam that provides

longitudinal confinement for the Yb gas.

The overlap between the two clouds can be controlled by adding a uniform magnetic

field to the quadrupole magnetic trap, to shift the position of the magnetic trap along

the BIODT. Before BIODT evaporation, the magnetic Rb atoms are moved along the

dipole trap while the position of the nonmagnetic Yb atoms is left unchanged. We use

the Yb temperature after 0.5 s of BIODT evaporation as an indicator of overlap between

the two species, as the noninteracting Yb atoms cannot be efficiently evaporated. This

temperature is shown in Fig. 5.9 as a function of the Rb cloud position, with a clear

minimum in the Yb temperature indicating optimal longitudinal overlap of the two

clouds.

Independent manipulation of the Yb cloud can be achieved through the 423-nm

crossed dipole beam. To demonstrate this, we resonantly heat the Yb by modulating
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Figure 5.10: (Color online) (a) Yb temperature as a function of 423 nm modulation
frequency, showing a resonance at 310 Hz. (b) Rb temperature as a function of modu-
lation frequency in the presence, (red filled circles) and absence (black empty circles) of
Yb. The Rb cloud is heated only in the presence of Yb confirming that both species are
overlapped and that the 423 nm beam does not affect Rb.
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the intensity of the crossed dipole beam at the trap frequency (Fig. 5.10(a)). This in

turn heats up the Rb, resulting in a rise in its temperature as shown in Fig. 5.10(b).

When this experiment is repeated in the absence of Yb, we observe no heating of the Rb

cloud, confirming that the two clouds are overlapped and that the crossed dipole beam

only affects Yb.

5.8 Other isotopes of Yb

While 171Yb is the only isotope that can be brought to degeneracy with 87Rb, we

also have the capability to create BECs of 174Yb and 170Yb without the use of 87Rb.

Due to their favorable scattering lengths (see Table 2.1), sympathetic cooling with 87Rb

is not necessary. The evaporation of these isotopes is performed in a combination of

the 532-nm BIODT and 423-nm crossed dipole beams and involves a simple exponential

ramp of the 532-nm power in time. We can create BECs of 2×105 atoms of 174Yb using

a 9 s long ramp with time constant of 2 s. A longer, slower exponential ramp is required

for 170Yb due to its smaller scattering length and produces condensates of 3×104 atoms.

5.9 Outlook

Over the last six years we have built an apparatus to trap and cool mixtures of

rubidium and ytterbium to degeneracy. Unfortunately, while the scattering properties of

most isotopes made them unfeasible for degenerate mixture experiments we have found

that 171Yb behaves extremely well with 87Rb, allowing us to create a large degenerate

Fermi gas of this isotope, by sympathetic cooling. In the immediate future a two-

dimensional species-selective lattice for 171Yb will be implemented, with the ability to

shake the lattice in both directions, and explore the dynamics of excited bands of the

lattice in the presence of a BEC bath. This is the first step to realizing several proposals,

including new lattice-cooling schemes [7] and methods to generate many-body entangled

states [10]. Finally, the ability to create degenerate mixtures also allows us to perform

photoassociation experiments between the two species, with the possibility of finding

optical Feshbach resonances to tune the interspecies interactions.
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Chapter A: Bose and Fermi gases in a harmonic trap

A.1 Density distributions

The energy distribution functions for a unpolarized Fermi (Bose) gas is given by,

n(ε) =
2S + 1

e(ε−µ)/kBT ± 1
(A.1)

where ε is the single particle energy. Typically, the temperature and chemical potential

for trapped, degenerate gases is much larger than the harmonic trap frequency ω̄ and in

this regime, one can forego the quantized description of the harmonic oscillator energy

levels in favor of a continuous energy spectrum.

ε(p, r) =
p2

2m
+

1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) =

p2

2m
+ U(r)

The density distribution of a degenerate Bose (Fermi) may be calculated by integrating

Eqn. A.1 over all momentum states, which is most conveniently performed in spherical

co-ordinates.

n(r) =
1

h3

∫
(2S + 1)d3p

e(ε−µ)/kBT ± 1
=

2S + 1

h3

∫ ∞
0

4πp2dp

e(p2/2m+U(r)−µ)/kBT ± 1

The above expression may be evaluated making the substitutions k = p2/2m, Z =

exp [(µ− U(r))/kBT ] and using the integral representation of a polylogarithm,

∓Lis+1(∓Z) = Γ(s)

∫ ∞
0

ksdk

ek/Z ± 1
(A.2)

where the polylogarithm Lis(x) is defined through the series expansion,

Lis(x) =
∞∑
n=1

xn

ns
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The result of integrating over momentum space is the density distribution of a trapped

degenerate gas given by,

n(r) = ∓(2S + 1)

(
2π

λ2
T

) 3
2

Γ

(
3

2

)
Li3/2

{
∓ exp

[
µ− U(r)

kBT

]}
(A.3)

A.2 Momentum distributions

Similarly, the momentum distributions of degenerate gases in a harmonic trap may

be evaluated by integrating Eqn. A.1 over r.

n(p) =
2S + 1

h3

∫ ∞
−∞

1

e(p2/2m+U(r)−µ)/kBT ± 1
dxdydz (A.4)

The first integral over x may be performed by using Eqn.A.2 with the substitutions,

k =
mω2

xx
2

2kBT

A =
1

kBT

(
µ− p2

2m
− 1

2
mω2

yy
2 − 1

2
mω2

zz
2

)
which results in,

n(p) = ∓2S + 1

h3
Γ

(
1

2

)√
kBT

mω2
x

∫
Li1/2

{
∓ exp

[
µ− p2/2m− U(y, z)

kBT

]}
dydz

The intergral over y and z may be performed using the indentity,∫ ∞
−∞

Lin

(
Ae−x

2
)

dx = Lin+1/2(A)
√
π (A.5)

and the resulting three-dimensional momentum distributions are given by,

n3(px, py, pz) = ∓(2S + 1)
(σ
h

)3

Li3/2

{
∓ exp

[
µ

kBT
− p2

2mkBT

]}
(A.6)

where σ =
√
kBT/mω̄2 is the size of a non-degenerate thermal cloud in a harmonic trap

with frequency ω̄ = (ωxωyωz)
1/3, and λT is the thermal deBroglie wavelength. Eqn. A.5

may be further used to evaluate the integrated momentum distributions in one- and

two-dimensions,

n2(px, py) = ∓(2S + 1)

(
σ3

h2λT

)
Li2

{
∓ exp

[
µ

kBT
−
p2
x + p2

y

2mkBT

]}
(A.7)

n1(px) = ∓(2S + 1)

(
σ3

hλ2
T

)
Li5/2

{
∓ exp

[
µ

kBT
− p2

x

2mkBT

]}
(A.8)
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Finally integrating over the momentum co-ordinates using the same substitution method,

one can obtain expressions for the total number of atoms in a Fermi (Bose) gas.

N = ∓(2S + 1)

(
σ

λT

)3

Li3

{
∓e

µ
kBT

}
(A.9)

In the case of a non-degenerate Fermi or Bose gas, µ � kBT and the fugacity

Z = eµ/kBT is much smaller than 1. In the limit of a small argument Lin(x) ∼ x

and the momentum distributions reduce to the gaussian Boltzmann distributions. Near

degeneracy, Z ≥ 1 and the momentum distributions begin to deviate from a Gaussian.

The polylogaritm Lin(x) is real in the range −∞ < x < 1 allowing the Fermi-Dirac

momentum distribution, which scales as Lin(−Z), to be evaluated at all momenta.

Hence all images of degenerate Fermi gases are fit to a two-dimensional Fermi-Dirac

distribution, using a fast MATLAB algorithm for evaluating Li2(x).

However the Bose-Einstein distribution, which instead scales with Lin(Z), becomes

complex at Z = 1, which corresponds to the critical point for Bose-Einstein condensa-

tion. For a polarized Bose gas, the relation between critical number and temperature

for condensation in a harmonic trap can be found using Eqn. A.9,

Nc =

(
kBTc
h̄ω̄

)3

Li3 {1} (A.10)

Above the critical temperature Tc, a fit to a two-dimensional Bose-Einstein distribution

with Z as a free fit parameter yields accurate results. Below the critical point, the

bimodal distribution described in Chapter 2 is used with a Thomas-Fermi distribution

to describe the BEC and the Bose-Einstein momentum distribution from Eqn. A.8, with

Z held fixed at 1 to describe the uncondensed cloud.
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Chapter B: Scalar light shifts of rubidium and ytterbium

The interaction between the induced dipole moment d of a two-level atom (states

|g〉 and |e〉 seperated by ω0) and the oscillating electric field E of a laser beam can be

described by,

ĤI = −d · E(r, t) (B.1)

with k and ω being the wavector and frequency of the laser. In the dipole approximation,

we may assume that the electric field is uniform over the size of the atom and E(r, t) ≈

E(t). Furthermore, since we are using a laser beam with a single wavevector k and

frequency ω(k) = ck, we may consider only a single mode of the electromagnetic field,

E(t) = εk

(
âke

iω(k)t + â†ke
−iω(k)t

)
(B.2)

where εk is the electric field of a single photon. We can use perturbation theory to

calculate the energy shifts of the atomic states in the presence of HI . The first-order

correction vanishes since 〈g|d |g〉 is always 0. Using the notation |g, n1〉 to represent an

atom in the ground state with n1 photons at frequency ω, we can calculate the light

shift ∆Ul of |g, n1〉 in second order perturbation theory,

∆Ul =
∑
n2

〈g, n1| ĤI |e, n2〉 〈e, n2| ĤI |g, n1〉
Eg,n1 − Ee,n2

(B.3)

In general for an N -level atom with many excited states |ei〉 the sum in Eqn. B.3 runs

over all intermediate states |ei〉 as well. In what follows we will assume assume the laser

beam is linearly polarized along ẑ, allowing us to make the simplification d · E = dzEz.

With the application of the operator in Eqn. B.2 to Eqn. B.3, the expression for the

light shift reduces to,

∆Ul = |〈g|d |e〉|2
(

(n1 − 1)ε2k
ω − ω0

+
(n1 + 1)ε2k
ω + ω0

)
(B.4)
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where n1ε
2
k is the electric field amplitude E2

z of laser beam with a mean number of

photons n1 � 1. Consequently, the light shift may be written in terms of the electric

field,

∆Ul = |〈g| dz |e〉|2 E2

(
1

ω − ω0

+
1

ω + ω0

)
(B.5)

For a multi-level atom with excited states |ei〉 at energies ω0,i, one may define a decay

rate Γi→gfor the |ei〉 → |g〉 transition,

Γi→g =
ω3

0,i

3πε0h̄c3
|〈g| dz |ei〉|2 (B.6)

and a saturation intensity,

Ii→g =
πhcΓi→g

3λ3
i→g

(B.7)

This allows Eqn. B.5 to be written as,

∆Ul = h̄I
∑
i

Γ2
i→g

8Ii→g

(
1

ω − ω0,i

+
1

ω + ω0,i

)
(B.8)

which is the convention used in Chapter 2. Alternatively one may write the light shift

in terms of the atomic polarizibility α,

∆Ul =
1

2
αE2 =

∑
i

|〈g| dz |ei〉|2
(

1

ω − ω0,1

+
1

ω + ω0,i

)
E2 (B.9)

which is the convention used to describe the polarizibility in Chapter 4. The decay rates

Γi→g and wavelengths λi of transitions used to calculate light shifts in rubidium and

ytterbium are listed in Table B.1.
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Transitions
λi

(nm)

Γi→g

(×106 s−1)

|〈ei|d |g〉|

(ea0)

Yb

6s2 1S0 → 6s6p 1P1 398.9114 192 4.244(44)

6s2 1S0 → 6s6p 3P1 555.8036 1.15 0.5394(6)

6s2 1S0 → 6s7p 1P1 246.450 100 1.491(91)

Core excitation 1 346.437 68.3 2.052(125)

Core excitation 2 269.169 14.3 0.636(82)

Rb

5s1/2 → 5p1/2 794.9789 36.1 4.231(5)

5s1/2 → 5p3/2 780.2412 38.0 5.978(5)

5s1/2 → 6p1/2 421.6726 0.3235(9)

5s1/2 → 6p3/2 420.2989 0.5230(8)

Table B.1: Transitions out of the ground states of rubidium (5s1/2) and ytterbium (6s2

1S0). For the fits performed in Chapter 4, transitions upto 8pj were included and higher
lying levels (n > 8) were also taken into account through the addition of a frequency
independent offset on α.
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