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Real-time systems are an active area of research currently, motivated by
the potential of widespread applicability in areas like stock trading, network
management, air traffic control, robotics and factory automation. Since these
systems deal with large quantities of information, real-time systems are being
coupled with database systems to aid in the efficient storage, processing and

retrieval of data. Such database systems are called Real-Time Database Systems

(RTDBS).



The problem of concurrency control and scheduling of transactions in real
time database systems is studied in the framework of discrete event dynamical
systems (DEDS) modeled by deterministic finite automata (DFAs). Concur-
rency control and scheduling are separated into two different modules (a logical
DEDS model for the CC module and a heuristic implementation of a scheduler)
to allow modular analysis of various combinations of concurrency control and
scheduling algorithms. The model is developed analytically using the theory
of discrete event dynamical systems. Subsequently the design of a simulation
software is reported that uses this model to simulate transaction execution for
a (concurrency controller, scheduler) pair. Finally, we show that our approach
can also be viewed as a special case of a supervisory control theory (SCT) syn-
thesis technique. The goal of this thesis is to demonstrate the applicability of
DEDS theory as a powerful tool in modeling and analyzing transaction models

in real time database systems and to show potential applications of modern SCT

techniques in this area.
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Chapter 1

Introduction

1.1 Real-Time Database Systems

Real-time systems are an active area of research currently [68], motivated by
the potential of widespread applicability in areas like stock trading, network
management, air traffic control, robotics and factory automation. Since these
systems deal with large quantities of information, real time systems are being
coupled with database systems to aid in the efficient storage, processing and
retrieval of data. Such database systems are called Real-Time Database Systems
(RTDBS) (60, 69].

Conventional databases deal with persistent data. Transactions access this
data while maintaining its consistency. Serializability [15] is the usual correct-
ness criterion associated with such transactions. In contrast, a RTDBS deals
with temporal data, i.e., data that becomes outdated after a certain time. The
temporal nature of the data and the response time requirements imposed by the

environment cause timing constraints such as periods or deadlines to be associ-



ated with the transactions. The resulting important difference is that the goal of
a RTDBS is not only to maintain data consistency, as in conventional databases,

but also to process transactions such that they satisfy their timing constraints.

1.1.1 Characteristics of a RTDBS

Typically, a real-time system consists of a controlling system and a controlled
system. For example, in an automated chemical plant, the controlled system is
the plant floor with its boilers, reactors, generators and piping; while the control-
ling system is the computer and human interfaces that manage and coordinate
the activities on the plant floor. One can view the controlled system as the

environment with which the controller interacts.

Data characteristics

The controlling system interacts with its environment based on the data avail-
able about the environment, say from various sensors, e.g., temperature and
pressure sensors. It is extremely important that the state of the environment, as
observed by the controller, be consistent with the actual state of the environ-
ment. Otherwise, the controller’s actions might have disastrous consequences
on the environment. Therefore, the timely monitoring and processing of sensed
data is necessary.

The raw data obtained from the sensors is usually processed to derive further
data. For example, the temperature and pressure data may be used to derive
the rate of a particular chemical reaction. This processing is done within the
controller. The raw sensor data often undergoes multiple levels of processing to

generate control information which is used to directly activate the controller’s



actuators. All data obtained by processing of raw data are called derived data.
This is where another type of timing constraint comes into play. Note that if a
process controller does not activate a pressure valve in a chemical boiler in time,
the boiler might explode. Thus, the controller also has to comply with certain
response time constraints.

The RTDBS has to maintain two types of temporal consistency in its data :

e Absolute Consistency : This requires consistency between the state of
the environment and the state of the same as perceived by the controller

in its database.

e Relative Consistency : This requires consistency in the derived data.
This arises from the need to ensure that the derived data obtained from

raw sensor data all correspond to the same (the latest) of the sensor data.

Transaction characteristics

Transactions in real-time database systems can be classified in three different
ways : the manner in which they access data, the nature of the timing constraints
and the importance given to finishing a transaction by its deadline [60].

Transactions can be classified as:

e Write-only transactions, which write into each data item they access,

i.e., they consist of only write operations;
e Read-only transactions, which consist only of read operations; and

o Update transactions, which consist of both read and write operations.
These typically read some data, perform calculations based on the data

read and store results using write operations.



The above classification can be used to choose the appropriate concurrency
control scheme for the RTDBS.

Transactions can also be classified as those with periodic time constraints
and those with aperiodic time constraints. An example of a periodic timing
constraint would be as follows :

Sample boiler temperature every 20 seconds.

Here, 20 seconds is the periodic time constraint. Note that if the RTDBS fails to
sample and store a particular temperature reading within 20 seconds, the data
becomes useless, since a new temperature reading has now arrived. The RTDBS
aborts the old transaction and tries to store the newly arrived data within the
next 20 seconds. An example of an aperiodic timing constraint is as follows :

If pressure in boiler > MAX PRESSURE, open valve within 5 seconds.

In this case the system’s reaction to the pressure increase must be completed
within 5 seconds.

Transactions can also be distinguished based on the consequences of missing

a transaction’s deadline.

e Hard deadline transactions are those which may result in a catastro-
phe if the transaction deadline is missed. These typically correspond to
safety-critical activities such as emergency shutdowns and weapon systems.
Another way of characterizing hard deadline transactions is by saying that
a large negative value is imparted to the objective function of the system

if such a deadline is missed.

e Soft deadline transactions are those which do not result in a catas-
trophe if the deadline is missed. Therefore, no negative value or cost is

imparted to the objective function if a soft deadline transaction misses its



deadline. Instead, if the transaction completes execution within a certain
time interval past its deadline, there is some positive value added to the
objective function. Examples of soft deadlines are deadlines associated
with components of a transaction. Note that if a transaction component
fails to meet its deadline, the transaction, as a whole, may still be able to

complete before the overall deadline.

¢ Firm deadline transactions are a special case of soft deadline transac-
tions. Like soft deadline transactions, these do not result in a catastrophe
and no negative value is imparted to the objective function in the event
of a firm deadline miss. However, there is no positive value added if the
transaction commits after its deadline has expired. For example, a trans-
action which brings in data periodically from a sensor has a firm deadline
because if it does not complete before the next sensor report, the data

becomes useless.

Thus, the three types of transactions all impart a positive value to the ob-
jective function of the system if they commit within their deadlines. However,
they differ in the values they impart to the objective function if they miss their
deadlines. A hard deadline transaction miss imparts a negative value to the
objective function, a firm deadline transaction miss does not impart any value
and, lastly, a soft deadline transaction miss may still result in a small positive
value if it commits within a specific time interval past its deadline. The RTDBS
scheduling algorithms therefore try to maximize the objective function by trying
to complete as many transactions as possible and trying to minimize transaction
misses, especially hard deadline transaction misses. The reader should also note

that schedulers usually abort firm deadline transactions if they miss their dead-



lines. This is because their is no point in allocating resources to a transaction
which will not impart any value (either negative or positive) to the objective

function.

1.1.2 Transaction processing in a RTDBS

In this section we will discuss various aspects of transaction processing where

the transactions have the characteristics described in the previous section.

Predictability

In a database system, it is almost never possible to compute exactly how long a
transaction will take to complete its execution. This is because of a number of

sources of unpredictability in a database system, some of which are listed below.
e Data and resource (CPU, disk etc.) conflicts
e Dynamic paging and I/O
e Transaction aborts and the resulting rollbacks and restarts

Since the consequences are catastrophic when a hard real-time transaction
misses its deadline, one would like to be able to predict beforehand that such
transactions will or will not be able to complete execution in time. The inherent
sources of unpredictability just mentioned make this prediction very difficult.
This problem is often overcome by computing the worst-case execution times for
such transactions. The worst-case execution time, say W, is then compared with
the transaction’s deadline when it enters the RTDBS. If W is greater than the
deadline, the transaction is immediately aborted and the system initiates emer-

gency procedures. On the other hand, if W is less than the deadline, the system



can make use of the difference between the two times (called the slack) while

scheduling the transaction operations along with those of other transactions.

Transactions with hard deadlines

Any transaction which has a hard deadline must meet its time constraints. To
be able to ensure apriori that such a transaction will complete its execution
in time, we need to guarantee the availability of resources and data whenever
necessary. This in turn requires that we know the resource requirements and
worst-case execution time of the transaction. This places many restrictions on
the structure and characteristics of hard real-time transactions. However, since
real-time systems are often developed as dedicated systems for highly customized
applications, obtaining semantic knowledge about transactions beforehand is not
uncommon. This knowledge often enables us to characterize transactions in the
manner described above.

Once the transactions have been characterized based on resource require-
ments and worst-case execution times, it is possible to schedule them by using
static table-driven or pre-emptive priority-driven scheduling schemes. In a static
table-driven scheduling scheme, specific time slots are reserved for each transac-
tion. If a transaction does not use all of the time reserved in its slot, the residual
time may be used by the scheduler to start another hard-deadline transaction
earlier than planned [67]. Other ways of dealing with the residual time are to
schedule a soft-deadline transaction or simply remain idle. This approach is
not very flexible. A priority-driven scheduler assigns priorities to transactions
based on some priority assignment scheme. One example of a priority-driven

approach is the rate-monotonic priority assignment scheme. In this scheme a



transaction’s priority increases monotonically as it nears completion. This ap-
proach is discussed in [64], where periodic transactions accessing a main mem-
ory resident database are scheduled using rate monotonic priority assignment.
Schedulability analysis tools [75, 76, 17, 2] have been suggested for such priority
assignment schemes to check whether a set of transactions are schedulable given
their deadlines and resource requirements. The schedulability analysis on a set
of transactions is done with respect to the worst-case computational needs of
the transactions.

If the variance between worst-case needs and the actual needs of the trans-
actions is large, the scheduler will yield overly conservative schedules. Trans-
actions whose average computation time requirements are much smaller than
their worst-case computation time requirements will be pronounced infeasible
by the scheduler since it considers their worst-case needs. Thus, we see that
scheduling hard-deadline transactions is quite complicated. First, it requires
placing many restrictions on the transactions themselves so that their character-
istics are known apriori. Even if these restrictions are met, a system could still
produce schedules with poor resource utilization if the worst-case assumptions
about the transactions stray considerably from the average computation time

requirements.

Transactions with soft deadlines

While scheduling soft-deadline transactions, the scheduler is not required to
ensure that all transactions meet their deadlines. However, this does not mean
that the scheduler simply lets a transaction run and aborts it if the deadline

expires before it commits. Instead, the scheduler actively pursues the goal of



maximizing the percentage of transactions which complete their execution before
their deadline expires. To achieve this goal, a scheduler uses various priority-
assignment policies and conflict resolution mechanisms that explicitly take time
into account. Priorities are used in scheduling transaction operations for the
use of resources such as CPUs and disks. Conflict resolution schemes are used
to resolve data contention among transactions. These schemes often use the
transaction priorities to resolve these conflicts.

Many priority assignment policies have been proposed and extensively ana-
lyzed in the real-time database literature [55, 30, 65, 11]. Priority assignment
is based on transaction deadlines and their importance or value to the system.

Possible scheduling policies include :
e Earliest-deadline-first
e Least-slack-first
e Longest-executed-transaction-first

e Highest-value-first

1.1.3 Concurrency Control

Conflict resolution policies include various time-cognizant extensions of tradi-
tional concurrency control schemes such as two-phase locking, optimistic and
time-stamp based protocols [2, 1, 19, 28, 27]. Some of these are discussed below.

Protocols based on two phase locking resolve lock conflicts using the timing
information about the transactions. For example, [29] investigated the following

protocols :



e If a transaction A requests a data item already locked by another trans-
action B with lower priority, then B is aborted. If A has lower priority, it

waits for B to release the lock on the data item.

e If alock-holding transaction is close to its deadline, then the lock-requesting

transaction is forced to wait regardless of its priority.

e When a high priority transaction is forced to wait for a low priority lock-
holding transaction, the low priority transaction is in fact taking prece-
dence over the high priority transaction. Hence, this situation is called
priority inversion. This is obviously an undesirable situation. One of the
approaches'to solving this problem involves priority inheritance where the
lock-holding transaction ¢nherits the priority of the lock-requesting trans-
action. In this way the lock-holder is made to finish sooner than with
its own priority, which in turn allows the lock-requesting transaction to

proceed more quickly.

In the priority inheritance scheme, the blocking time of the high priority
transaction is reduced since the lock-holding transaction finishes sooner by exe-
cuting at a higher priority. However, in the worst case, the high priority trans-
action still has to wait for the duration of a whole transaction. Therefore, the
priority inheritance protocol typically performs worse than a protocol that al-
ways makes a lock-requesting transaction wait, irrespective of whether it has a
higher or lower priority than the lock-holding transaction.

If a high priority transaction always causes a low priority transaction to
be aborted, the low priority transaction may never complete execution due to

countless aborts and restarts. This is especially true when there is high data

10



contention among the transactions. One solution to avoid this problem is the
following. If the low priority transaction is close to completion, then it inherits
the higher priority of the lock-requesting transaction. This considerably im-
proves the performance under high data contention conditions. This protocol is
essentially a combination of abort-based protocols used in traditional database
systems [70] and the priority inheritance protocol proposed for real-time sys-
tems. Thus, even though techniques used in traditional database systems and
those used in real-time systems are not applicable directly, they can often be
tailored and combined to suit the needs of RTDBS.

Let us now consider optimistic protocols. Backward validating protocols al-
low a transaction to run freely until it reaches the commit stage. At this point
the transaction enters the validation phase. In the validation phase, the transac-
tion commits if it does not have any conflicts with other transactions which have
already committed. If conflicts do exist, the validating transaction is aborted.
This protocol has a disadvantage in that it does not take into consideration the
transaction characteristics. Forward validating protocols do not have this disad-
vantage. Here, a committing transaction usually aborts any ongoing transaction
which conflicts with the validating transaction. However, we do have the flexi-
bility here to decide not to commit the validating transaction depending on its
characteristics and those of the conflicting transactions. Several such policies
have been studied in the literature [19, 18, 28].

In timestamp-based protocols, when data are accessed out of timestamp or-
der, the conflicts are resolved based on the transaction priorities. In addition
to the protocols discussed above, several combinations of lock-based, optimistic

and timestamp-based protocols have been proposed [42].

11



Multi-versioning of data for enhanced performance has been investigated in
[30]. Multiple versions of data reduce conflicts over data. However, they also
introduce complications. Since data in RTDBS are required to have tempo-
ral validity, old versions have to discarded. Also, relative consistency must be
maintained while accessing versions of related data.

This concludes the broad overview of some of the main research issues in
RTDBS. One should, however, keep in mind the fact that RTDBS are a relatively
recent concept and the research concerning issues pertaining to these systems
is still far from mature. The main focus of RTDBS research so far has been
the development and performance evaluation of scheduling algorithms. Once
an algorithm is developed, it is evaluated primarily by simulation [74]. Future
research may indeed include providing analytical frameworks for the study of
such algorithms. These frameworks can be drawn from other areas which can
effectively model RTDBS transactions, data and resources. It is with this line
of thought we proceed to present a brief overview of discrete event dynamic
systems (DEDS, or simply, DES). We will show that this theory provides a nice

framework for studying various RTDBS transaction management systems.

1.2 Discrete Event Systems

A discrete event system (DES) evolves dynamically in time depending on the
occurrence of various discrete events. For example, consider a manufacturing
plant. Such a system evolves with the occurrence of discrete events such as
arrival of a batch of jobs, completion of machining, breakdown of a machine etc.

If we examine the state trajectory of a DES, we see that it is piece-wise constant

12



and changes only at discrete instants of time at which the events occur. Let us
draw the state trajectory for our DES example, the manufacturing plant. For
simplicity, let us assume that this plant consists of only one machine which can
be in one of three states - idle, busy and failed. The events which cause the
state changes are arrival of a job to be processed, departure of a machined part

and breakdown of the machine. Figure 1.1 shows the state trajectory this system.

A State
BUSY | —  —— — — — — -
IDLE | ——AF" "—— — — S
FAILED - ——FH————|——— — — ——
Events
>
arrival departure arrival  breakdown

~Figure 1.1: A DES state trajectory example

1.2.1 Modeling of DESs

A number of models have been suggested for DESs. Broadly speaking, these can

be classified as follows :

e Logical models : These models are only concerned with the state-event

sequences. The time spent at each state or the state holding times are

13



ignored. Examples of these models are finite state automata [26] and Petri

nets [53].

e Timed Models : These models incorporate state holding times into the

state specification. Examples are temporal logic models [14, 44, 54, 33]

and timed Petri nets.

e Performance Models : These are stochastic models’ used to evaluate
various performance parameters of the system, e.g., throughput and delay
in a communication network. These models are markov chains, queu-
ing networks, GSMPs (generalized semi-markov processes) and simulation

models.

We will concentrate mainly on logical models since that is what we have
used in our modeling of the RTDBS. More specifically, logical untimed models
such as Petri nets and finite automata are the most common models. These
models make automated analysis of DESs relatively easy. The DES model for a
RTDBS developed here involves the use of deterministic finite automata?. The
timing information such as transaction deadlines is handled outside of the DES
model. However, it is possible to extend this work by incorporating the timing
information also into the DES model. This would require using timed DES
models such as the one proposed in [5] which incorporate ticks of the clock in

the event alphabet3.

INote that some of the logical models such as non-deterministic finite automata and Petri
nets can also represent stochastic behavior.
2Given a current state and transition, one can uniquely determine the resulting state.

3The event alphabet is the set of events defined for the DES.
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1.2.2 Applications of DES Theory

Most modern man-made systems are discrete, asynchronous and event-driven in
nature. This has brought into prominence the study of DESs in recent years.
The efficient operation of these increasingly sophisticated and complex systems
has prompted the use of various DES analysis, modeling and control tools in
diverse application areas such as flexible manufacturing systems [37, 16, 41,
6, 25|, telecommunication systems [61, 51], semiconductor chip manufacturing
[22, 3], parallel processing [24] and database management systems [34, 32, 63].
Real-time systems such as weapon systems and avionics, air traffic control
systems etc., where the issue of timing is critical, has become one of the most
active areas of research in DES control theory. [47, 48, 8, 46, 49] initiated the

work in this area and further developments were proposed in [7, 23, 50, 51].

1.3 Motivation, Objectives and Contribution

Broadly stated, this research is an attempt at synthesizing ideas between two
disciplines that appear not to have gained much from each other in the past,
namely database systems and DES. The motivation is the belief that they have
much to gain from this synthesis. More specifically, real time database systems
appears to be an excellent area to apply ideas in DES, particularly in the context
of scheduling and concurrency control. We make such a claim based on the
natural fashion in which databases systems in general, and RTDBSs in particular,
fit the DES framework. Our DES model is presented in section 2.2.

Another motivation for using DES models to study RTDBS is the consid-

erable amount of work done by the computer science community in develop-
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ing frameworks for modeling, specification, verification and synthesis of discrete
event processes such as computer operating systems, concurrent programs, dis-
tributed processes and database management. Various approaches developed in
this area are Petri net theory [53], linear-time and branching-time temporal log-
ics [14, 44, 54, 33], concurrent process algebras such as Hoare’s communicating
sequential processes [21] and Milner’s calculus of communicating systems [45].
The last two inspired the development of a number of algebras of concurrent
processes which became widely known as the theory of concurrency [10, 9, 20].
An important aspect of this theory deals with the interaction between DESs and
their environment. Such interaction is modeled by parallel composition with a
specified degree of event synchronization. Various forms of parallel compositions
have been defined and investigated in the literature of concurrency theory. Such
compositions appear (and prove to be) very useful in modeling transaction exe-
cution in RTDBSs. More specifically, we perceive transaction execution as trans-
actions accessing data items (resources), where the transactions and resources
(data items) are modeled as discrete event systems (DESs) and the composition
methods mentioned above are used to model the interaction between the events
in the transaction and resource DESs. In this thesis, we use automata theory
[26] to model transaction and resource DESs as deterministic finite automata or
DFAs. This is because of the fact that finite automata models make automated
analysis relatively easy?.

Another important goal of this work is to motivate research in the synthesis

of supervisory control theory and RTDBSs. Note that the main body of work

4This is despite the fact that state space explosions make some problems formulated as

automata interactions intractable.
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presented in this thesis mainly deals with finite automata theory to represent
and manipulate DESs. However, the objective of this research is to eventually
apply supervisory control theory to the RTDBS area. As we show in Chapter 4,
our approach can be viewed as a special case of the supervisory control approach

in which all events are controllable.

Supervisory Control

In the framework of automata and formal languages proposed in [58], the super-
visory control theory of discrete event systems has very successfully treated a
variety of abstract synchronization problems defined by specifications of a qual-
itative or “logic based” type. These include “safety” specifications (e.g., service
priorities, exclusion from prohibited states) and “liveness” properties (e.g., guar-
anteed eventual entrance into a goal state). An excellent review of the ideas be-
hind supervisory control of DES is available in [59]. Real time database systems
fit very naturally in this framework. Intuitively, it may be seen that in real time
scheduling the basic objective is the control of transaction execution in order
to satisfy certain constraints or specifications. Formally it has been shown that
transaction execution can be modeled and analyzed as a discrete event dynamical
system [34]. Such analysis may allow researchers to prove new results about the
performance of existing concurrency control (CC) techniques such as locking [15]
or timestamp ordering [4] as well as new ones that may be developed. A similar
case may be made for scheduling algorithms. In particular, an example of such
analysis is offered in [34] where the author shows that schedulers corresponding
to the CC schemes mentioned above may be embedded into an ideal “complete

information” scheduler whose state space is a set of graphs. This embedding is
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then used for analytical comparison of the performance of such schedulers.

The objectives of this work may therefore be summarized as follows :

e To make a convincing case for the integration of real-time databases and

discrete event dynamical systems theory.

¢ To motivate the application of supervisory control theory of discrete event

systems in the analysis of RTDBS.

The domain of concurrency control and scheduling [74, 31, 43, 17, 36, 52]
is one of the most active areas of research in RTDBS. The common theme of
research in this context is the stipulation and subsequent performance evaluation
of CC and scheduling policies. Thus after a new model has been postulated, a
large effort is consumed in analyzing and validating it. It is in such analysis
and validation that we wish to contribute in this work. However, the purpose of
this research is not to postulate new scheduling or CC mechanisms. Rather, we
propose an alternative but elegant way to model and evaluate such mechanisms
using notions from the theory of DEDS represented as finite state automata.

The contributions of this thesis are summarized as follows :

e We have developed a discrete event dynamical system model of transaction

processing in a RTDBS using deterministic finite automata (DFA).

e An algorithm for on-line concurrency control and scheduling has been de-

veloped using this DES model.

e We have developed a simulator, RT'SIM, to simulate CC and scheduling in

RTDBS using various CC and scheduling policies.
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1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 describes our framework
for the analysis and evaluation of RT'DBS in detail. In Chapter 3, we describe
the simulation software RTSIM and the simulation of a particular RTDBS con-
figuration using RT'SIM. In Chapter 4, we introduce supervisory control theory
of DES and argue why this theory promises to be a powerful tool in RTDBS
research. Conclusions are provided in Chapter 5. Appendices A and B illustrate

a “toy” example of the application of the theory developed in section 2.2.
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Chapter 2

The RTDBS Model

2.1 Architecture of a RTDBS

We consider an RTDBS architecture as shown in Figure 2.1. This RTDBS is
a centralized database system and is similar to the database system model in
[4] and [63]. It consists of one or more CPUs, some main memory, secondary
storage devices (disks) and I/O devices.

The system shown consists of five modules :

e a transaction manager (TM), which processes incoming transactions

and prepares them for scheduling;

e a data manager (DM), which processes the individual operations of
the various active! transactions and operates directly on the database to

implement the transaction commits and aborts;

e the database itself, which is a set of data items (files/records/fields/pages);

INote that we use active in the sense of transactions that are being currently processed and

not in the sense of triggered transactions.
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Figure 2.1: Real-time Database System Architecture

e aconcurrency controller (CCR) which maintains database consistency,

and;

e a scheduler that schedules transactions to meet deadlines.

Our basic approach is as follows: The CCR employs a particular concur-
rency control algorithm to generate all possible legal interleavings? (which we
call traces) of transaction operations; these traces are then forwarded to the
scheduler, which selects one particular sequence of interleavings or trace from

the set of traces generated by the CCR based on a particular scheduling policy.

2Legal interleavings are those interleavings which meet the requirements of the CC algo-

rithm being employed.
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Transactions arrive for processing with deadlines. When a transaction enters
the system, it first passes through a buffer called the Ready Queue which is used
to store arriving transactions when the system is already full (i.e., number of
transactions in the system is equal to the multiprogramming level (mpl)). When
the system is ready to process a new transaction, the TM assigns it a unique
transaction id. and forwards it to the CCR.

The CCR models the database and transactions as a discrete event system
and performs computations to generate legal interleavings or traces using the
DES model of the database. Most RTDBS scheduling formulations integrate
concurrency control within the scheduler [63]. In our model, we have chosen to
create separate modules for concurrency control (CC) and scheduling. There
are two reasons for this separation. First, the CCR module is implemented as
a composition of the transaction and resource DES automata (which we call
DFAs) which is synthesized on-line as a solution to a discrete event system
(DES) problem. It does not deal with any timing information such as trans-
action deadlines and hence represents the consistency maintenance part of the
RTDBS. Thus, the CCR module allows us to clearly distinguish between the con-
sistency maintenance part of the scheduling problem and the scheduling policy
implementation itself which utilizes all the timing information. The second, and
more important reason is that this framework provides the flexibility of exper-
imenting with different combinations of concurrency algorithms and scheduling
policies in a modular fashion. For example, we could model systems with con-
currency control-scheduling policy combinations such as (2pl, earliest deadline),
(2pl, least slack) etc. and compare their performance through simulation.

After the CCR generates legal traces, the scheduler is invoked. The scheduler
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now processes this set of traces and picks one based on some scheduling policy
(e.g., earliest-deadline-first). More precisely, the scheduler computes priorities
of active transactions based on the scheduling policy chosen. Then it picks
the trace which most closely fits its priority order. Therefore, in the selected
trace, the operations of high priority transactions occur at the beginning and the
operations of low priority transactions appear at the end. The trace selection
process is described in detail in section 2.3. Sometimes, it may happen that none
of the traces passed to the scheduler fit its priority order. For example, none of
the traces may execute an operation of the highest priority transaction at the
beginning (e.g., the first five operations in that trace). This signifies a scenario
when the scheduler cannot find a feasible schedule without preemption. In such
a situation, the scheduler can abort (i.e., preempt) a particular transaction. This
abort is communicated to the CCR, which recomputes a supervisor based on the
modified transaction set and then sends a fresh set of legal traces to the scheduler.
The trace chosen by the scheduler is passed to the DM which then proceeds to
execute the operations in the trace one by one. The DM also communicates to
the CCR so that the latter can dynamically update its DES model of the data
items and transactions. If a transaction misses its deadline, it is aborted by the

scheduler.

2.2 A DES model of the RTDBS

As mentioned in section 2.1, the CCR module operates on a DES model of the
RTDBS to generate legal traces. In this section, we describe this DES model in

detail. The resources (data items) in the database and the transactions accessing
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them are modeled as deterministic finite automata (DFAs)3.

2.2.1 DES operators

Before describing the DES models for the transactions and the resources let us
first look at two commonly used DES operators. These operators are used to
model the interaction between two DESs. We will use these operators to model

the interaction between transactions and resources.

Shuffle product

Consider two DESs, T and R, operating independently and asynchronously.
Figure 2.2 shows the discrete finite automata (DFA) representations of T and
R. The circles represent states, the arrow labels represent events and the arrows
themselves represent state transitions corresponding to these events. The states

represented with two concentric circles represent marked (goal) states. We model

T R
(0] o)
a a
1 1
b c
2 2

Figure 2.2: DFA representation of two DESs

the joint operation of these two DESs by the shuffle product, T'||R, where ||

SDFAs are a convenient way of representing Discrete Event Systems.
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denotes the shuffle operator. The states of T'||R are ordered pairs (X,Y’) where
X is a state of T and Y is a state of R. The transitions of T||R are either of
the form (X,Y) — (X', Y) where X — X’ is a transition in 7', or of the form
(X,Y) = (X,Y") where Y — Y" is a transition in R. The DFA for T||R is shown
in Figure 2.3. Informally, we say that the operations of T and R are interleaved
in an arbitrary manner since their actions are asynchronous and independent of

each other. Note that the marked states in the shuffle product are simply the

TIIR

Figure 2.3: Shuffle product of 7" and R

cartesian product of the marked states in T and R, i.e., a state (X,Y) in T||R is
marked only if both X and Y are marked in T and R respectively. In this case,

we have only one marked state labeled as 22 in Figure 2.3.

Synchronous composition

Now assume that 7' and R are no longer operating indepently of each other.
Instead, they have to synchronize on some common activities and events. In our

example, this common event is a. This kind of interaction is modeled by another
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operator called synchronous composition* (SC) denoted by 0. The states of TOR
are also orderd pairs (X,Y) where X and Y are states in T and R respectively.
The transitions in TOR consist of those described in the shuffle product, i.e.,
(X,Y) - (X,Y) and (X,Y) — (X,Y’) when the corresponding transition
event label is present in only one of 7" and R and not in both. However, there is
an additional type of transition of the form (X,Y) — (X', Y’) where X — X' is
a transition in T, Y — Y’ is a transition in R and both these transitions have
the same event label. See Figure 2.4 for the synchronous composition of T" and
R. The marked states in TOR are simply the cartesian product of the marked

states in T and R.

T R

Figure 2.4: Synchronous composition of 7' and R

Informally, an event o present in the alphabets of two DFAs, D; and Dy, can
occur in D10D; only if both D; and D, allow o in their current states. Thus, if
some common event is not allowed in either D; or D,, it will not be allowed in

their SC. All other events (i.e., those which are not common) can be executed

4[21] refers to SC as Full Synchronous Composition or FSC.
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in an unrestricted fashion by the DFA in whose alphabet they appear.

2.2.2 Transaction Model

In this section we show the discrete event system (DES) model of a transaction.
We first provide an intuitive description followed by a formal treatment. Con-

sider a transaction T = read(1l), write(2), where 1 and 2 represent data item

rl - . - ‘

Figure 2.5: Transaction Model

(resource) ids.

g [1]
1

Figure 2.5 shows the discrete finite automaton (DFA) corresponding to trans-
action 77. This DFA is a representation of a DES model for transaction 77. The
transition labels contain transaction identifiers as subscripts and resource iden-
tifiers in square brackets. For example, G1[2] denotes the exclusive grab (e.g.,
write operation on a data item) of resource 2 by transaction 1, ‘c;’ stands for
commit operation of transaction 1 and ‘r{[2]’ means release of resource 2 by
transaction 1. The release events need special mention as they do not usually
appear in database literature as operations of a transactions. However, we need
to explicitly model release events as they form the basis of resource sharing,.

After a transaction finishes execution (i.e., the grabbed resources are pro-
cessed) it performs a commit operation to make its updates (if any) permanent

and subsequently relinquishes its resources. Note that this model represents the
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2-phase locking protocol since the resources grabbed by the transaction are held

until commit time.

We formally model a transaction 7; as a 5-tuple:
T; = (Xi, X4, 63, Toiy Xomi)
where
e X, is the state space of T;. For example, in Figure 2.5,
X1 = {zo1, T11, T21, T31, Ta1, Ts1 }

e 3; is the event alphabet. In Figure 2.5,
%y = {q[1], G1[2], &1, m1[1], 1 [2]}

e 1; is the initial state. In Figure 2.5 this corresponds to the state xg;.

e X, is the set of marked (goal) states (i.e., states signifying the completion
of T1). In our case, transactions will typically have just one marked state

as shown in Figure 2.5.

Xm1 = {$51}

e §;: X; x X; — X, is the (partial) state transition function. In Figure 2.5,

the state transition function of 7 is defined as follows: &; : ¥; x X7 — X;

51(91[1]75301) = Tu
51(G1[2],-’L‘11) = T

01 (61, $21) Z31
6i(ri[l],za1) = za

01 (7"1[2], $41) = Tsl
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01 is undefined for all other (o, z) pairs where 0 € £1, z € X

Each active transaction T, in the RTDBS is modeled as a 5-tuple just like
the one described above. However, the reader should note that the various com-
ponents of the 5-tuple (i.e., event alphabet, state space, transition function etc.)
will vary from transaction to transaction depending on the transaction id., and
the number and types of operations (shared/exclusive grab) in the transaction.
However, all transactions have the same basic structure, i.e., each transaction is
a linear order of grab, commit and release events.

The event alphabets of the transactions will clearly be disjoint because the
event labels use transaction ids as subscripts and each active transaction is as-
signed a unique identification number. Hence, we can model the concurrent
operation of these transactions by simply interleaving the transitions of all the
transaction DFAs. Therefore, we compute the shuffle product of the transaction
DFAs. The resultant DFA, T, is thus computed as follows :

T=T|... 1T~
where N is the number of active transactions and || denotes the shuffle operator.

We will represent T also as a 5-tuple :
T = (X7 27 6, Zo, Xm)

where

X=X1X...XXN

Z=21U...UEN

® Ig—= (.’E[)l, e ,.'L'()N)

b sz{(xl,“-,xN) I I eXm17"'axN€XmN}
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e §:X x X — X is the transition function,

5(0k, (33111, Y TR -,xiNN)) = (%‘11, .- -,5k(0k,$ikk),$iNN)

where o, € Ey, 0k(0, z4,x)! and 1 < k < N and the symbol ! is read as “is

defined”.

2.2.3 Resource Model

G[l]( r(1]}

Figure 2.6: Resource Model

Figure 2.6 shows a resource DFA for a resource R;. The transition labels g[1],
G[1] and r[1] correspond to the shared grab (read), exclusive grab (write) and
release of the resource where the index 1 indicates resource id. Thus, Figure 2.6
expresses the facts that the resource may be exclusively grabbed by one trans-
action, but may be grabbed in a shared fashion by a maximum of three transac-

tions. Typically this number would be equal to the mpl of the system. Also, note
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the absence of any transaction identifiers in the labels. There are two reasons

for this :

e To make the resource model independent of the number and type of trans-

actions - both of which vary with time; and

e Dropping the transaction identifiers from the resource DFA transition la-
bels also reduces the state space of the resources considerably. If we had
chosen to keep the transaction identifiers we would have had to add states
for all possible combinations of transactions grabbing the various resources
(e.g., with two transactions in the system, there would be 16 possible

states).

The second reason alleviates, to a certain degree, the problem of state space ex-
plosion in automata composition. Note however, that this makes the transaction
and resource DFA alphabets disjoint (as there are no common event labels) which
leads to complications in synchronizing them. The solution to this problem is
offered in section 2.2.5.

Similar to the transaction DFA, a resource DFA like the one shown in Fig-
ure 2.6 represents a resource DES which may be formally represented as (for the
resource R;) :

R, = (Ylazlpahym:yml)

where the symbols have their usual meaning as shown in the transaction example.
The composite resource model is given by the shuffle product of DFAs like
the one shown in Figure 2.6, one for each resource. The resultant DFA, R, is

thus given by :
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R=R;|[...[|Ry
where J is the number of resources in the database. For an example of resource
shuffle product computation, see appendix A, particularly Figures A.1B, A.1C
and A.3B.

Again, we represent R also as another 5-tuple :
R= (Yv, E’, @, Yo, Ym)

where each component of the tuple is obtained by applying the shuffle product

definition (as shown for T').

2.2.4 Transaction Aborts

The reader may have noticed the absence of any abort event label in the trans-
action DFA model. This is because the abort event transitions need not be
explicitly modeled, but are issued by the scheduler. However, aborts do form an
important component of our system. Basically, there are two ways in which an

abort may be handled in our model:

e Preemptive aborts : If an aborted transaction is to be restarted (i.e, a
case of preemption), the CCR can simply reset the current state pointer
of the transaction DFA to the initial state of the DFA (thus simulating an
arrival of the same transaction) and fire release events in the resource DFAs
which correspond to the resources locked by the particular transaction at

abort time (thus freeing up the resources); and

e Non-preemptive aborts : If the aborted transaction is to be discarded,
as is the case when a transaction misses its deadline, the CCR simply

destroys the transaction DFA after firing release events in the relevant
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resource DFAs. We will return to the handling of aborts by the scheduler

in section 2.3.

2.2.5 Transaction and Resource Synchronization: The

CCR Model

Transactions operating concurrently in an unrestricted manner (as modeled by
T) do not yield legal schedules or traces - there has to be some agent which can
enforce concurrency constraints (e.g., serializability) based on a knowledge of
conflict resolution strategies (e.g., lock compatibilities in lock based protocols).
The lock compatibilities are indeed represented in our resource model. If we make
the resource model R interact with our transaction model T, we can force the
transaction to obey the locking constraints. This kind of interaction is modeled
by synchronous composition (SC).

The basic idea behind our approach towards concurrency control is to restrict
the sequence of operations (or traces) to one that satisfies the CC policy being
considered. Considering T as a spontaneous generator of events, we can achieve
the above goal through synchronizing T" with another DFA, say V', thereby yield-
ing a resultant DFA, say C. V should be such that it will prevent illegal traces
from occurring in C by not providing common event(s) required for synchro-
nization at those points in the trace where the execution of such event(s) would
result in an illegal schedule. One would be tempted to choose R itself as a can-
didate (i.e., as the DFA, V) for synchronization with T" to obtain a DFA, C,
which consists of only legal traces. However, TOR will not yield the desired
result. This is because the two DFAs have disjoint alphabets (since we dropped

the transaction identifiers from the transaction DFA event labels to get the cor-
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responding resource DFA event labels). This means that T could still execute
all operations in an arbitrary fashion without any locking constraints (since SC
places the constraint of event synchronization only on common events). This
motivated the creation of a new operator called the masked synchronous compo-
sition (MSC) which is used to modify R so that its event alphabet becomes the
same as T. It is this modified R then, which interacts with 7" via SC to obtain

the desired DFA with legal traces only.

Modifying Specification R using Masked Synchronous Composition

We will first explain the intuition behind MSC (as applied here). This is best
done through an example. Consider a resource ¢ which has been locked by a
transaction j for a write operation. This corresponds to the transitions G,[i] in
the transaction j DFA and G[i] in the resource i DFA occurring synchronously.
Similarly, when the transaction j releases the lock on resource i, the transitions
r;]¢] and r[i], in the transaction and the resource DFAs respectively, synchronize
to model this activity. Thus, we see that although we need to synchronize events
with different labels in the transaction and resource DFAs, there is a well-defined
relation between the two labels. In this case, the relation between the transaction
and resource DFA event labels can be expressed as a simple projection function
which projects out the transaction identifiers from the transaction event labels to
yield the corresponding resource event labels. We call this function, the masking
function, M. So, instead of synchronizing events with the same labels (like in
SC), we now synchronize events related by the masking function M.

The MSC of T and R, denoted by TOMR, can now be formally defined as
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follows:

TOMR = (Z,%z, 8, %0, Zm)
where the symbols have their usual meaning and are defined as follows®:
e Z=XxY
o Y, =2%7
® 29 = (%o, %)

¢ Zn={(z,y)€Z|2z€Xn Ny €Yy}

The partial state transition function 3 is defined as follows. Let o € ¥

and (z,y) € X xY = Z. Then

(0(0,2), (M (0),y)) if 6(c,z)! and a(M(0),y)!
Blo, (z,y)) = (0(0,2),y) if §(o, z)! but M (o) is not defined

undefined otherwise

The masking function M is defined as follows®:

M :¥r — Xpg,

M(oi[j]) = o[j], where o € {g,G,}

The reader will note that M(c;) is not defined. This means that T can
execute commits without being constrained by R in their MSC. This makes sense
intuitively, since R models only the grabbing and relinquishing of resources and

therefore, need not be concerned with the commits of the transactions.

5The reader should refer back to the 5-tuple DES representations of T and R in order to

understand this definition.

M is defined as a simple projection function here. Clearly, in a different context, an MSC

could be based on a more complex function.
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We use the MSC of T' and R to generate a modified specification which will
have the same alphabet as T'. In this manner, we modify our original specification
R to obtain TOM R whose marked language’, say K, now corresponds to the set

of legal traces. In other words,
Ln,(TOMR) =K

We now use this modified specification, TOM R, to synchronize with T using
SC. Thus, TO(TOMR) yields the DFA which represents all the valid schedules.
This is the same as TOM R itself because :

L, (TOMR) C L,,(T) and
L,(TO(TOMR)) = L,,(T) N L,,,(TOMR).
So we can compute the legal traces by simply computing the marked language

of TOMR.

The Synthesis Algorithm

To summarize then, the Synthesis Algorithm, which is implemented by the CCR
module to generate legal traces of transaction operations, consists of the following
steps :

Whenever, a new transaction arrives,
e Create a DFA for the new transaction.

e Compute the shuffle product T, of all Transaction DFAs. This means

shuffling the new DFA with the DFAs of already active transactions. The

TMarked language of a DFA is the set of all traces which lead to marked states from the

initial state. See [26, 59] for a formal definition .
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DFAs for the latter are modified so that their current states become their

new initial states, before the shuffle is computed.

e Compute the shuffle product R, of all Resource DFAs in their current

states.
e Obtain the MSC of T and R, i.e., TOMR.

e Obtain a list of all traces of the resultant DFA to get the list of valid

concurrent schedules.

See Appendix A for a detailed example of the above computation procedure

for synthesizing legal traces.

2.3 The Scheduler

The scheduler is the RTDBS module which is responsible for scheduling trans-
actions in a manner such that they meet their deadlines. The information the
scheduler has at its disposal are the deadlines of the active transactions. When-
ever a new transaction arrives in the system, the CCR executes the Synthesis
Algorithm outlined above and forwards the scheduler a set of legal traces. The
scheduler then computes priorities of the various transactions based on some
scheduling policy such as the earliest-deadline-first (EDF), to select a trace whose
operations best fit this priority order. We have simulated an earliest-deadline-
first scheduling policy using RTSIM, a simulator developed specifically for im-
plementing the methodology developed in this work. A description of RTSIM

and simulation results for the EDF scheduler are presented later in Chapter 3.
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To understand exactly how the scheduler works we provide the following
example. Suppose two transactions enter an initially empty RTDBS. Let them
be assigned transaction ids 1 and 2. Also assume that 77 and T5 consist of the

following sequences of operations:

i = @[l cr; and
T2 = Gg[].] Co

Further assume that the deadline for 7} is d;, and that for T, is dy, where
dy < dy . The scheduler then assigns 77 a priority of 1 and T3, a priority of 2
(using EDF). It also obtains a list of legal schedules from the CCR module. In
our example, this set would consist of the following traces: (a.) g1[1] c; Ga[1] ¢3;
and (b.) Gz[1] ¢z g1[1] 1.

Since 77 has higher priority, the first trace fits the priority order of trans-
a(;tions better. This is because T; operations are scheduled first in this trace.
Therefore, the scheduler picks the 1st trace and starts scheduling the operations
one by one, i.e., first g;[1], then ¢; and so on. It also keeps updating the cur-
rent transaction deadlines as time passes. The database manager, DM, processes
these individual operations and communicates with the CCR. The CCR updates
its DES model accordingly. For example, after ¢;[1] is processed by the DM, the
CCR fires the transitions ¢;[1] in the 77 DFA and also g[1] in the resource I
DFA. This process is repeated for each operation scheduled.

If a new transaction t; arrives meanwhile, the CCR reruns the Synthesis
Algorithm on-line. It computes the new transaction model T (T" consists of the
shuffle including an additional ¢; now) and modified resource model R (note that

the resources have changed states too). It then computes the MSC of the new T
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and R and extracts all legal traces from the resultant DFA and passes them to
the scheduler. The scheduler uses the new transaction’s deadline along with the
updated deadlines of the already active transactions to recalculate priorities and
chooses a trace again based on the priority order calculated. This procedure is
repeated for every transaction arrival.

Whenever a transaction ¢; commits, the corresponding deadline information
is discarded by the scheduler. The CCR destroys the corresponding transaction
DFA and fires the release resource r;[j] for all resources j locked by ¢;. If a
transaction’s deadline expires before it completes, the scheduler and CCR per-
form the same operations as in the commit event. However, the transaction is
discarded by the system.

As mentioned in section 2.2.5, the scheduler sometimes might be faced with
the situation that none of the traces passed to it by the CCR fit the priority
order which it has computed for the active transactions. In this situation, the
scheduler has to abort at least one transaction and communicate this to the
CCR. The CCR then recomputes a new set of legal traces and passes them back
to the scheduler. The scheduler now picks one trace from this set. If an abort
is required again, the same process is repeated. The criterion for deciding to
abort a transaction is based on the scheduling policy being implemented. In
our simulation of the earliest-deadline-first policy, this decision would be taken
when none of the traces have their first operation (to be scheduled) as a member
of the priority one transaction. The scheduler then aborts one of the active
transactions ( the choice of which can be based on a number of criteria such
as number of conflicts, number of remaining operations, transaction priority,

random choice, etc.) and communicates this abort to the CCR. The CCR then
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updates its DES model of the transactions T (removes the aborted transaction
from the plant) and also the resource R (fires release events in relevant resources).
It then recomputes the synchronization with the modified DFAs for R and T,
extracts a new set of traces from the synchronization, and passes them to the
scheduler. Meanwhile, the aborted transaction is restarted by the Transaction
Manager after a small random time interval®.

See appendix B for an example of scheduler operation.

8This is because immediate restarting would cause repeated aborts. The restart interval is

a parameter which can be tuned.
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Chapter 3

RTDBS Simulation and Results

To demonstrate the potential of the framework developed in the previous chapter
as an evaluation tool of concurrency control-scheduler pairs, we implemented RT-
SIM (real-time simulator), a simulation software which can be used to simulate
transaction execution in a RTDBS with any CCR-scheduler combination. Note
that RTSIM is a “software package”, as opposed to a simple simulation program,
i.e., our software may be used to implement a variety of CC-Scheduling protocol
combinations simply by changing the CCR and Scheduler modules, while leaving
the remaining modules intact. In this chapter, we discuss the implementation
of RTSIM and the results obtained from the simulation runs carried out for a

particular CCR~scheduler pair, namely, 2pl-EDF.

3.1 Simulation Tools

The simulation software RTSIM was implemented using the SIMSCRIPT II1.5
programming language [35] and ANSI C. SIMSCRIPT is a simulation modeling

language with powerful Discrete-Event Simulation capabilities. It supports the
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modeling concepts of entities and processes and is suitable for event-based and
process-based simulation of discrete systems.

RTSIM is composed of a group of SIMSCRIPT routines which interact with a
group of C programs. The SIMSCRIPT programs handle the actual dynamics of
the RTDBS such as the arrival of transactions, assigning transaction ids, queuing
operations of transactions in the CPU and DISK resource queues, etc. The DES
model of the CCR and the various update procedures were implemented as a,
collection of C routines built on top of a finite state machine (FSM) library,
also written in C. This library was originally developed in the University of
Texas, Austin [62]. We have modified and extended it to incorporate several new
functions required for this framework. The CCR programs create and update
the DES models of the transactions and resources. The CCR also has C routines
to compute the legal traces as illustrated in Appendix A.

RTSIM was designed in a highly modular fashion. The interfaces between
the modules were made as simple and as general as possible. This enables us to
simulate various CCR-scheduler combinations by simply replacing the CCR, and
scheduler modules with alternate modules. This way minimal additional coding

and modification is required to test different RTDBS configurations.

3.2 The Simulator

Figure 3.1 shows a schematic of RTSIM identifying the various program mod-
ules. The following is a detailed description of the various modules and their
functions. Pseudo-code for the various routines used by the different modules is

also included. The reader should be aware that the modules shown in Figure 3.1
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do not have a one-to-one correspondence with the SIMSCRIPT and C routines.
Some of the modules consist of multiple routines while some routines are shared
by more than one module. However, the CCR and Scheduler modules have been
designed in a manner so as to make them independent of the rest of the module

implementations.

-3
Library

Ready Queue
Concurrency
Arrival Transaction) s
Generator Ill Manager Controller cheduler
(ccr)
Disk Queue
Dats
Manager

Report
Generator

Q SIMSCRIPT MODULE

C ROUTINE

~ 1T} e

Figure 3.1: Simulation Software Block Diagram

3.2.1 Arrival Generator

The arrival generator module is a SIMSCRIPT process which generates new

transactions with exponentially distributed interarrival times. Transactions en-
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tering the RTDBS typically have different grab operations. The arrival generator
models the arrival of different types of transactions by randomly generating a
transaction type. Each transaction type corresponds to a specific sequence of
grab, commit and release operations. The transaction type can take values from
1 to N, where N is the number of different types of transactions specified in the
simulation. Since this is an RTDBS, each transaction enters the system with
a deadline d. d is a function of the transaction type' and a parameter called
the slack ratio. The slack ratio may be informally considered a “difficulty of
schedulability” parameter. The deadline d assigned to a transaction is simply
the product of the slack ratio and the computation time estimate. The following

gives the pseudo-code for the Arrival.Generator process.

Process Arrival.Generator [SIMSCRIPT routine]
while(number of transaction arrivals < simulation run length)
do
{
wait exponential time with parameter INTERARRIVAL.TIME.
generate new transaction.
assign to transaction :
arrival time, transaction type, deadline.
check the Ready Queue.
if ( Ready Queue is empty AND at least 1 MPL token free)
{

grab free MPL token.

lour experiments associated a worst-case computation time estimate associated with each

transaction type.
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/*make new transaction active immediatelyx/
activate Process Active.Transaction now.
}
else
place this new transaction in Ready Queue.
}loop

end of Arrival.Generator

3.2.2 Transaction Manager

All arriving transactions are not immediately accepted for processing by the sys-
tem. If the system has reached its processing capacity, the arriving transactions
have to wait in a queue in an inactive state. Once, the system is ready to pro-
cess a transaction, it removes the transaction from the queue and activates it,
creating what we call an active transaction. This is the role of the Transaction
Manager (TM).

The Transaction Manager module assigns a unique transaction id to a new
arrival. If the system is already full, i.e., mpl transactions are already active,
the new transaction is placed in a Ready Queue. This is modeled in our TM
module by a set of mpl tokens and a token queue. A newly arrived transaction
grabs a mpl token if one is available, otherwise it waits in the token queue.
Once the transaction has grabbed a token, it is in the active state and ready
for processing. At this point an Active.Transaction process is created. If the
deadline of the transaction has already expired (i.e., while waiting in the Ready

Queue) the transaction is aborted immediately and the transaction miss counters

are incremented by one.
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In the Active.Transaction process, all incomplete operations at the CPU
and DISK resources are dropped. These operations have to be rescheduled along
with those of the new transaction. The process then passes information such
as transaction type and transaction id. to the CCR module. At this point,
the process will wait for the CCR and Scheduler to do their computations. It
then receives the selected schedule of operations. These operations are released
to the DM module in a sequential manner. The process now suspends itself
until it is reactivated again either by the commit or abort event of the same
transaction. When a transaction is finished processing (i.e., it commits or misses
its deadline), its token is released and made available for incoming transactions.

(See Arrival.Generator and Active.Transaction processes.)

Process Active.Transaction [SIMSCRIPT routinel
Note the activation time of arrived transaction

If (deadline already expired)

{
reject transaction.
increment transaction miss counter by 1.
jump to A.

}

/* if deadline has not expired... */

discard all operations waiting in CPU and DISK queues as well

those currently being processed./*these will be rescheduledx*/

pass new transaction information

to CCR module (C routine: newtrans).

46



get schedule of operations from
Scheduler(C routine: scheduler).

activate processes corresponding to each
operation in the schedule.

SUSPEND PROCESS.

/*Reenter here when process is reactivated */
REACTIVATE when this transaction is
either committed or aborted.
increment NUM.TRANSACTIONS.PROCESSED by one.
A: relinquish MPL token.
if (Ready Queue is not empty)
{
remove first transaction in queue by activating another
Active.Transaction.
}

end Active Transaction

3.2.3 Concurrency Controller (CCR)

The CCR is composed of a group of C routines. Some of the main routines
are discussed in this section. The routine initialize creates the DES model
based on simulation input parameters such as the number of resources in the
RTDBS, mpl of the system, etc. It creates DFAs for each resource and reads in
the masking function, M, for the MSC operation. It also creates templates for

mpl transactions, the maximum possible number of transactions which can be
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active at any given time. destroy_fsms destroys the DES model of the CCR at
the end of simulation. This essentially involves deallocating memory reserved for
the various transaction and resource DFAs and other book-keeping information.

Whenever a new transaction is activated (see process Active.Transaction),
the C routine newtrans is called. This routine creates a DFA for the newly
arrived transaction and shuffles this DFA with the other active transaction DFAs
to obtain the plant T'; it then shuffles the resource DFAs to obtain R, computes
TOMR to obtain the specifications, and finally extracts the set of legal traces
from the result. See Appendix A for an example run of the CCR. The following

is the pseudo-code for newtrans.

newtrans [C routine]

create a FSM for the new tramnsaction with information
obtained from the TM.

shuffle this FSM with other active transaction FSMs in their
current state to get T.

shuffle all resource FSMs to get R.

compute the MSC of T and R.

compute legal traces of the resultant FSM.

pass these legal traces and the deadline information to the
scheduler (C routine).

end newtrans

The CCR also contains several C routines which update the transaction and
resource DFAs so that the DES model represents the physical state of the system
at any given time. grab_update is a routine which fires the grab events in the

relevant transaction and resource DFAs whenever a grab process is finished by the
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DM module. Similarly, commit_dead update is used to update the DES model
whenever a transaction commits or is aborted (due to deadline expiration). This
routine destroys the FSM for the particular transaction. It then fires release
events in all those resource FSMs which were requested by the transaction while

executing. (See the pseudo-code for grab_update and commit_dead update).

grab_update [C routine]
get details of grab operation:
type(read/write) ,transaction id.(say i)

and resource id.(say j).

fire grab event in transaction i DFA.

fire grab event in resource j DFA.

add resource j to the transaction i resource list.

end grab_update’

commit_dead_update [C routine]
get transaction id. (say i).
delete transaction i DFA.

delete transaction i deadline information.

/* release all resources held by transaction i*/
for (each resource j in transaction i resource list)
fire release event in resource j DFA.

end commit_dead_update
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3.2.4 Scheduler

The Scheduler is also composed of a group of C routines. The scheduler mod-
ule calculates priorities of the various active transactions based on a scheduling
policy. We have presented results for an earliest deadline first policy in this chap-
ter. In this policy, the scheduler keeps an array of transaction deadlines which
it updates regularly. This array is maintained by the update_trans_deadlines
routine. Every time a new transaction becomes active, this routine stores the
new deadline and updates the deadlines of the already active transactions. Based
on this deadline information, another routine, calculate_priorities calculates
a priority order of transactions. The scheduler now makes two selection passes
over the list of legal traces it received from the CCR module. In the first pass
(this is performed by the routine pass_one), it examines the first operation of
each trace. If the operation does not belong to the transaction with the highest
priority, the trace is discarded. This greatly reduces the number of traces to be
examined in the second pass.

The routine pass_two examines the second operation of each remaining trace.
If it finds a trace whose second operation also belongs to the highest priority
transaction, that trace is immediately selected for execution and returned to the
Active. Transaction process in the TM module. It is possible that none of the
traces have their second operation belonging to the highest priority transaction.
In this case, the scheduler chooses the trace, ¢, whose second operation belongs
to a transaction with higher priority than all such transactions. In other words,
there is no other trace, r, whose second operation belongs to a transaction which

has a higher priority than the one corresponding to the second operation in #2.

2We do not examine the whole trace, in order to reduce computational complexity.
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The following is the pseudo-code for the Scheduler.

scheduler [C routine]
get deadline information about new transaction.
call update_trans_deadlines.
call calculate_priorities.
call pass_one.
call pass_two.
return selected trace to Active.Transaction.

end scheduler

3.2.5 Data Manager

This module takes the list of scheduled operations and processes them. (See
pseudo-code for Grab, Commit and Deadline.Expired SIMSCRIPT processes.) It
is assumed that each operation consumes some specified amount of CPU time and
DISK time. Therefore each operation passes through a CPU resource and DISK
resource. The simulator can vary the number of each of these resources, i.e.,
multiple CPU and DISK systems can be simulated. Note that whenever a Com-
mit or Deadline.Expired process finishes, the corresponding Active.Transaction

is reactivated.

Process Grab [SIMSCRIPT routine]
request CPU and wait.
once CPU is granted, expire time = CPUtime.

relinquish CPU.
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request DISK and wait.
once DISK is granted, expire time = DISKtime.

relinquish DISK.

/*xupdate relevant transaction and resource DFAs*/
call grab_update (C routine).

end Grab

Process Commit [SIMSCRIPT routinel
request CPU .
expire CPUtime.
relinquish CPU.
request DISK.
expire DISKtime.

relinquish DISK.

cancel Deadline.Expired process for same transaction.
/*update the DES model of CCR*/

call commit_dead_update (C routine).

reactivate the Active.Transaction process.

end Commit

Process Deadline.Expired [SIMSCRIPT routine]

abort the transaction :

destroy all operations(grabs and commit).
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increment the miss counters by onme.
/*update the CCR’s DES modelx*/

call commit_dead_update (C routine).
reactivate the Active.Transaction process.

end Deadline.Expired

3.2.6 Report Generator

This module prints out the input parameters for each simulation followed by a
formatted display of all the output parameters. The output mainly consists of
transaction misses, which include misses in the Ready Queue as well as those
transactions which could not finish execution inside the system. Other infor-
mation recorded includes CPU and DISK utilization, average queue lengths of
Ready Queue, DISK and CPU queues and average number of active transactions.

RTSIM also produces output which traces the execution of each transaction
as it enters and leaves the system. The user can dump this output in a file
and trace all the steps in the Synthesis Algorithm (see section 2.2.4) right from
the creation of a transaction DFA to the scheduling of operations and their

subsequent execution by the DM module.

3.3 Simulation Results

As described in the previous section, the simulator RTSIM collects statistics
for various input parameters such as transaction inter-arrival times, slack ratio,
number of CPUs, number of DISKS and mpl of the TM in the RTDBS. To

show how RTSIM works we present the results for a (2pl, earliest-deadline-first)
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CCR-scheduler pair simulation run on RTSIM.
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Figure 3.2: Completion Rates for Transactions (1 CPU, 2 Disks)

The transaction and resource DFAs used by the CCR were similar to those
described in sections 2.2.2 and 2.2.3. A number of different DFAs were created,
each of which represented a different transaction type. For the simulation results
presented we used 5 different types of transactions. We ran simulations for two
configurations - 1 CPU, 1 DISK; and 1 CPU, 2 DISKs. For each transaction
type we had a worst-case computation time estimate. The slack ratio has a
very similar meaning to that used in [52] and basically denotes the “difficulty”
of schedulability of transactions. It is a multiplication factor used to compute
actual deadlines for each transaction type. We varied inter-arrival times and
slack ratios to study the impact of those parameters on the system’s performance.

The performance was measured using the percentage of transactions which
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completed in time. In Figures 3.2 and 3.3, we show the results for (2pl,earliest-
deadline-first) CCR, scheduler pair simulation runs on RTSIM for the two dif-
ferent system configurations.

The results were as expected. As transaction inter-arrival times increase, a
larger fraction of transactions are completed in time. Also, a larger fraction of
transactions are completed (given the same inter-arrival time) for higher slack
ratios than lower ones. This is because with higher slack, more sequences of
interleaved transaction operations (i.e., traces) satisfy the timing constraints, and
therefore, the transactions are “easier” to schedule. To compare the performance
of multiple CC-scheduler pairs, one would only have to construct the required

CCRs and schedulers in RTSIM and feed identical workloads to these pairs.
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Chapter 4

Supervisory Control Theory: A
Promising Tool for RTDBS

Analysis

In this chapter, we present a control theory of discrete-event systems called su-
pervisory control theory (SCT). SCT was initiated by Ramadge and Wonham
[67] in the early 1980’s and has been the subject of extensive research since then.
SCT been used in diverse application areas including manufacturing, communi-
cation networks, database management and transportation systems.

Our goal here is to present convincing arguments to show why supervisory
control theory is a promising tool for the analysis and evaluation of transaction
execution in RTDBS. We first provide an introduction to SCT. Then we show
how the CCR module in our RTDBS can be implemented by reformulating the
Synthesis Algorithm as a solution of a SCT superuvisor synthesis problem. Then

we discuss the application of SCT in more complex situations arising in RTDBS
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such as the presence of user-initiated transaction aborts and the integration of

the CCR and scheduler modules.

4.1 Basics of SCT

The essence of control theory research may be stated through the following
problem statement: Given a plant model (description of the system to be con-
trolled) and specifications (constraints) that need to be satisfied, the goal is to
synthesize (design) a supervisor or controller that observes the plant and applies
commands such that the behavior generated by the plant fulfills the given spec-
ifications. The branch of control theory that deals with discrete systems (i.e.,
systems where distinguished signals (discrete events) are observed at countable
asynchronous times in the time domain) is known as supervisory control theory
(SCT) of Discrete Event Systems.

A DES, by itself, is simply a spontaneous generator of event strings with
no means of external control. Let us assume that some of these events can be
disabled, i.e., prevented from occurring, when desired. This would permit us to
influence the evolution of the DES by preventing the occurrence of some specific
events at certain points in time. To model such control we partition the event
set (also called the alphabet), X, into uncontrollable and controllable events,
ie., ¥ =%,UX,. The events in ¥, can be disabled by the DES controller at any
time while those in 3, can never be disabled. Uncontrollable events correspond
to physically inevitable events such as machine breakdown, link failure in a
communication network etc.

Consider a DES G which generates events spontaneously from an event set &
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where X = ¥,UX,,. To control GG we could have a controller S track the evolution
of G by observing the event string of previously generated events output by G.
Based on its information about the state of G, S would generate a set of disabled
events, say 7. -y serves as the control input to G. All events not present in 7 (but
which can be executed by G itself in its current state) are considered enabled
and G is allowed to execute any one of these events. Obviously, none of the
uncontrollable events possible at the current state of G would be contained in
~ since they cannot be disabled by the controller. The controller S would thus
perform a restrictive control function by prohibiting certain events at certain
times as G evolves. The control action would therefore be a sequence of 7’s
generated by the controller in response to the observed event strings generated
by G. In this way we have a closed-loop system with the event strings output
by G serving as input to S. S, in turn, sends y as a control input to G based on

the observed event string. (See Figure 4.1 .)

event string

Plant Supervisor

disablement set

Figure 4.1: Supervisory control of a DES
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Here, G, the object to be controlled, is called the plant and S is called the
controller or supervisor (in SCT terminology). Notice that we clearly distin-
guish between the controlled and controlling components of the system. This is
a standard practice in control theory in general. The supervisor can be imple-
mented either as a mapping v : X* — 2% (where I* is the set of all strings of
events in X) as another DES which restricts the plant DES by requiring syn-
chronization on common events (e.g., synchronous composition as explained in
section 2.2.1). The latter approach is usually used when DESs are modeled as
DFAs.

We now formalize the basic ideas discussed above. Since we modeled DESs
as DFAs in Chapter 2 we will continue to discuss SCT in the framework of
automata theory. However, the reader should be aware that SCT has been
developed for other DES modeling frameworks such as Petri nets [53], temporal

logic [14, 44, 54, 33|, process algebra and trajectory models.

4.2 Notation and terminology

The plant, the DES to be controlled, is represented as a deterministic finite

automaton(DFA). Letting P denote the plant, it is represented as a 5-tuple:

P = (Q, ZP) 61 qo, Qm)

where (@ is the state space of P (Q is finite, if P is a DFA); Xp is the finite
alphabet or event set; § : Xp X QQ — @ is the partial state transition function;
go € @ is the initial state of P; and @,, C @ is the set of marked or final states
which correspond to the completion of some significant activities in the plant P.

The behavior of the plant is described by the strings of events or language it
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can generate. Formally, the languages generated and recognized by P, denoted

by L(P) and L,,(P) respectively, are defined as :

L(P) = {seXp|d(s,q)'}

L,(P) = {s€Xp|d(s,q) € Qnm}

where Y} is the set of all strings of events defined over Xp, § has been extended
naturally to map a string of events to a resultant state, i.e., § : ¥p x Q — @,
and ‘P’ is read as ‘is defined’.

The set of prefixes of a language L C ¥* is given by
pref(L)={ve X | I € ¥ ' e L}

where X* denotes the set of all words over ¥ and the concatenation of the words
v and v’ is denoted by vv'. If pref(L) = L, the language L is called prefiz closed.
The language L(P) is prefix-closed by its definition.

In the database scenario, we consider the shuffle product of the transaction
DFAs as the plant. We model various transaction operations such as acquisition
or ‘grab’ of a resource, release of a resource, commit operation etc. as discrete
events. It so happens that, in the RTDBS problems considered above, there are

no uncontrollable events because the supervisor (CCR) can reject (i.e., disable)

all these operations.

We want to restrict the plant behavior so that certain specifications are met.
A specification is also expressed as a language, usually denoted by K. A super-
visor or controller for P (in our case, the CCR) is defined as the pair S = (P, ),
where v : L(P) — P(X,) is a feedback mapping, such that for all v € L(P),

v(v) is the set of events which are disabled after the supervisor has observed v.
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The supervisor controls the behavior of P such that Vv € L(P),
y(v) ={o € X, | vo € L(P) Avo ¢ K}

i.e., 7(v) gives the set of disabled events at the state reached by the execution of
string v. Note that this set can never contain any uncontrollable event. L(P,~)
is the closed-loop language or the language of the plant P under supervision by
S. (See Figure 4.1.)

One of the basic problems addressed in SCT is the existence of a supervisor
given the specification, K. This problem is addressed through the controllability
of languages. A language K C L is controllable with respect to L if pref(K)2,N
L C pref(K).

Based on the above, one of the most fundamental results of SCT may be

stated thus:

Existence Theorem: Let K C L be a language. There exists a supervisor
S = (P,v) such that L(P,v) = K if and only if the language K is nonempty,
prefiz-closed and controllable w.r.t. P.

See [58] for proof.

Note that the above result treats S as a feedback map. As mentioned earlier,
S is often implemented as another DFA which restricts plant behavior to a
specified language K through synchronous composition.

Finally, consider the languages L,, (marked language), E (legal language) and

A (minimally accepted language), such that:

0£AACECL,CL
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Then the supervisory control problem may be phrased as: Find a prefiz closed
language K which 1s controllable with respect to L and satisfies the following two

requirements:

1. ACKNL,CE

2. pref(KNL,) =K

Requirement (1) imposes certain bounds on the marked words contained in
the closed loop language. The second requirement, referred to as the nonblocking
condition says that given any string s in the language, it is always possible to
extend s to another string v which is a marked string (i.e., v takes us from the
initial state to a marked state).

The are several approaches to solving the above problem. Discussion of
these is outside the scope of this section. The reader is referred to [59] for a
comprehensive survey.

To summarize, the ideas presented in the above discussion are the following:

e The plant behavior is modeled as a language over an alphabet of event

labels;

e Based on the characteristics of the language (e.g., emptiness, prefix clo-
sure etc.) certain controllability properties can be proved regarding the

specification language, K;

e The supervisor controls the plant by disabling controllable events, thereby
restricting the behavior of the plant (i.e., the language) such that certain

specifications are satisfied. The supervisor is usually implemented as a
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DFA which is composed with the plant DFA using synchronous composi-

tion.

The SCT framework discussed thus far corresponds to the original setup
of the supervisory control problem of centralized control under full observation.
This means that in the systems modeled using the above approach, the supervisor
could observe the entire plant behavior (i.e., all events in the plant alphabet)
and could disable all controllable events of the entire plant. Related work can be
found in [58, 72, 38]. The basic model was then extended to situations where the
supervisor could only observe part of the plant event alphabet [37, 40, 12, 71]
and where the supervisor had only partial state information available [56].

To make the control of the increasingly complex man-made (discrete-event)
systems more manageable, various architectural methods have been proposed.
One approach is that of modular design. [73, 37] discuss modular design under
full observation which leads to modular design under partial observation (i.e.,
decentralized control) as discussed in [37, 39, 41]. Another approach is that
of hierarchical control, where [77] explores distributing system complexity over
vertical layers as opposed to horizontal layering in decentralized control [61, 40,
13].

Research on the control of real-time systems such as computers, robots, air
traffic controllers etc. is another extension of SCT. See the references in sec-
tion 1.2.2. More recently, a new framework, which can model time-driven open-
loop control and non-deterministic controllers, has been developed in [66]. This
framework also promotes reusability of various controllers using object-oriented

design principles.
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4.3 An SCT Formulation of the CCR Synthe-
sis Algorithm

In this section we show that our approach is a special case of the supervisory
control approach by demonstrating that our model fits the SCT framework.
Consider T, the unrestricted operation of several transactions, as the plant; and
R, the composite resource model, as the specification (see section 2.2.2 and sec-
tion 2.2.3). The specification, K, may be phrased as follows: “the executing
transaction cannot lock resources in a mode which conflicts with the lock mode
of another transaction grabbing the same resource”. Examples of conflict include
shared-exclusive or exclusive-exclusive lock conflict. As mentioned in the previ-
ous section, it is often convenient to implement the supervisor as another DFA
(just like the plant) and have the supervisor restrict the plant behavior within
the desired limits through synchronous composition (SC) [59]. One may now
proceed to obtain the specifications in exactly the same as way we did in the
Synthesis Algorithm presented earlier. The MSC of T" and R provides us the
DFA representation of the specification language, K. Now, since all the events
in the DES model of T are controllable (i.e., they can be disabled by the super-
visor), the language K is trivially controllable. Hence, TOM R itself yields the
supervisor and also gives the set of legal traces as its marked language. Thus,
we have that our approach of modeling transactions and resources as DFAs and

synchronizing them can be viewed as a simple application of SCT.
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4.4 Possible Application of SCT in More Com-

plex RTDBS Analysis

Our DES model of the RTDBS consisted of only controllable events and hence
made the SCT formulation of the supervisor synthesis problem trivial. We did not
have to use a supervisor synthesis algorithm to construct a supervisor. Instead,
the DFA representation of the specification K itself served as the supervisor S.

However, there exist more complex situations in an RTDBS which would re-
quire the DES model to have uncontrollable events in its event alphabet. For
example, if we model user-initiated transaction aborts in our DES model, the
events corresponding to such aborts would be considered uncontrollable. This
is because the supervisor would not be able to disable such aborts. In such for-
mulations, one way to arrive at a correct implementation of the CCR module
using the synchronization techniques discussed earlier would be to perform a
trial-and-error procedure and verify the correctness of the synchronized (com-
posite of T'and R) DFA for various models of T' and R. It would be much better,
however, to have a methodology which establishes the existence of the solution
and provides a systematic procedure for arriving at the solution.

In such cases, SCT can contribute substantively. Although it is no longer
possible to use K’s DFA representation itself as the supervisor, several supervisor
synthesis algorithms have been proposed in the literature to generate solutions
for these non-trivial SCT problems. Using these algorithms, it is possible not
only to establish the existence of a supervisor for the DES control problem but
also to synthesize supervisors which are correct by construction. The closed

loop behavior obtained through the coupling of these supervisors with the plant,
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however, is not the same as K, the specification language. Instead, it is the
largest controllable subset of K or the supremal controllable sublanguage of K.
See [32] for an example of transaction models with uncontrollable events.

Another possible application of SCT techniques is using the timed-discrete
event systems SCT framework [5] to integrate the timing information (i.e., dead-
lines) associated with the transactions in the DES model. In our approach, we
separated the CC and scheduling functions and therefore our DES model of the
RTDBS contained only non-temporal information. However, one could argue
that better performance could be achieved by integrating the two modules and
solving the composite as a solution of a timed-discrete event (TDES) system con-
trol problem. In [5], a TDES models the passage of time through ticks of a clock
where the tick event is treated as a separate event label in the automaton rep-
resentation of the DES model of the transactions. The existence conditions and
construction techniques of supervisors for TDES is shown in [5]. Also, the use of
a controlled timed-petri net framework in the analysis of transaction scheduling
in RTDBS is demonstrated in [63]. Thus, SCT seems to be a promising tool for
the analysis of RTDBS in the future.
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Chapter 5

Conclusion

The focus of this work has been to describe a novel approach to model and
analyze concurrency control and scheduling policies in RTDBSs. The approach
is based on the theory of discrete event dynamical systems (DEDSs), automata
theory and formal languages. This approach has been successfully used in several
other DES control domains such as manufacturing plants and communication
protocol verification.

We have modeled transaction execution in a RTDBS using DFAs and ex-
tracted the effect of concurrency by composing these DFAs through SC and
MSC. From this composition we extract legal traces and forward them to the
scheduler. The scheduler chooses one particular trace that best fits the priority
order as determined by the scheduling policy used. We also show how the above
approach can be viewed as a SCT problem and solved (albeit trivially). Towards
this end, we also show the potential of the application of SCT in various RTDBS
settings.

Aside from the modeling of an RTDBS as a DEDS, this work makes the case
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for separation of the CC and scheduling modules. This allows the evaluation of
multiple CC-scheduling combinations without having to change the basic simu-
lation model. Also, the DES formulation provides a uniform framework to the
hitherto empirical studies of performance evaluation.

An additional goal of this research is to motivate the use of the several new
DES models which have been proposed in the recent literature such as the timed-
DES models [5] and DES model interconnection using masked composition [66]

in RTDBS analysis.
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Appendix A

Example Run of Synthesis

Algorithm

We illustrate the synthesis algorithm with the aid of a “toy” example.

Consider a transaction T; in a database with two resources (say data items)
R; and R,. The DFAs corresponding to 77, R; and R, are shown in figures A.1A,
A.1B and A.1C respectively. In particular, these figures reflect the state of the
DFAs just following the execution of the event g;[1] by 73. These states are
labelled “current state” in figure A.1.

Assume at this point a new transaction 75 enters the system. Assume T5 just
wants to write the value (i.e., exclusive grab) of R;. The steps of the synthesis

algorithm, as given in section 2.2.5 are as follows:
1. Create DFA for T;: The DFA of T5 is shown in figure A.2.

2. Compute the composition for the transactions: In this step we com-

pute the shuffle of 77 and T3, taking into consideration that 73 is in its current
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Figure A.1: DFAs for T}, R; and R,

state. This composition T' = T} ||T5. T is shown in figure A.3A.

3. Compute the composition of the resources: Here we compute the
composition R = R;||R;. Note that R is computed taking into consideration

that the two resources are in their current states. R is shown in figure A.3B.

4. Compute MSC of T and R: We compute C = TOMR, where M is
defined as:

o M(ri[1]) =r[1]

o M(G:[2]) = G[2]
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Figure A.2: DFA for Tp
o M(rsf2]) = r[2]

C is shown in figure A.3C.

5. Extract legal traces from C: Legal traces correspond to those which
follow the strict 2-phase locking protocol (as imposed by our resource and trans-
action models). The following legal traces are obtained from C:

(a.) ¢1,G2[2], co;

(b) G2[2], Ci, Co; and

(c.) G2[2),¢9,¢1.
Note that the release (i.e., the r;[j]) operations have been projected out of the
traces as they are not explicitly scheduled by the scheduler. The above trace list

is now forwarded to the scheduler which then chooses one based on the priority

order it computes from the deadlines of T and T5.
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Figure A.3: Transaction and Resource Compositions
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Appendix B

Scheduler Example

In this section we will take the list of traces computed by the CCR, as shown
in Appendix A, and select one for scheduling based on the earliest-deadline-
first scheduling policy. Let us assume that the transaction 73, described in
the previous section, had a deadline d; = 100ms when it entered the RTDBS.
The scheduler immediately stores d; in its deadline information array for active
transactions. Since there was only one transaction, a serial execution of the
operations of T} was ordered by the scheduler. Let us assume that 50ms expired
by the time the first operation, g;[1], was finished by the DM. At this point,
transaction T3, also described in the previous section, entered the RTDBS with a
deadline d; = 100ms. The scheduler immediately noted down d;. The CCR then
executed the synthesis algorithm again and extracted the three traces described
as (a.),(b.) and (c.) in Appendix A. The scheduler now calculates priorities for
the two transactions. As 50ms have expired since 77 began, d; is updated to
100 — 50 = 50ms. Since d; < dy = 100ms, T is assigned a priority of 1 and 715,

a priority value 2. Based on this priority order, the scheduler examines traces
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(a.), (b.) and (c.). Since (a.) fits the priority order best (because it executes a

T} operation first), the scheduler picks this trace to schedule operations.
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