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INTRODUCTION: Chronic hypertryglyceridemia is thought to be atherogenic and 

is associated with an elevated thrombotic potential.  Aerobic exercise training is 

known to reduce plasma triglyceride (TG) levels and the purpose of this study was to 

determine the effect of a single, high-fat meal on markers of inflammation, 

coagulation, and fibrinolysis before and after exercise training.   

MATERIALS and METHODS: Eight subjects were tested for aerobic capacity, 

body composition, and postprandial lipemia (PPL), followed by 6-months of exercise 

training and final testing.  Blood samples were obtained every 30-minutes following 

the lipemic challenge for measurement of free fatty acid (FFA), TG, insulin (Ins), and 

glucose (Glu).  Hemostatic variables including  factor VII activity (FVIIa), tissue 

factor pathway inhibitor-factor Xa complex (TFPI/Xa), and plasminogen activator 

inhibitor-1 (PAI-1) antigen / activity were assessed at 0, 2, and 4 hours postprandial, 

as well as leukocyte interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and PAI-1 

gene expression among 4 subjects during the lipemic challenge.   

RESULTS: The exercise training was of sufficient intensity to increase aerobic 

capacity (p < 0.0001) and improve body composition (p = 0.04).  There were no 



differences between tests among PPL responses of FFA, TG, Ins, or Glu, however the 

main effect mean TG response averaged across all time-points was lower at final 

testing (139 ± 19 mg•dl-1) versus baseline (154 ± 24 mg•dl-1) (p = 0.02).  

Furthermore, the 4-hour averages for total fat oxidation rate increased by 68% (p = 

0.01) and total carbohydrate oxidation rate decreased by 29% (p = 0.009) from 

baseline to final testing.  IL-6 and PAI-1 gene expression were undetectable in the 

Paxgene® blood samples, however PAI-1 antigen / activity, FVIIa, TFPI/Xa, and 

TNF-α gene expression were all improved following exercise training after adjusting 

for confounders. 

CONCLUSION: Aerobic exercise training reduces the potential for coagulation, 

improves fibrinolytic potential, and reduces leukocyte TNF-α gene expression 

following the ingestion of a high fat meal. 
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Chapter 1: Introduction 

Atherosclerosis is now considered to be a low-grade inflammatory disease that 

results in endothelial cell dysfunction.  Recent evidence has shown that 

hypertriglyceridemia, whether chronic or postprandial, is associated with leukocyte 

activation and an elevated potential for thrombosis, thereby promoting endothelial 

cell dysfunction and vascular damage (1;2).  Although the underlying mechanisms are 

not completely understood, it has been shown in leukocyte and endothelial cell 

cultures incubated with triglyceride (TG) rich chylomicrons and very low-density 

lipoprotein (VLDL), that free fatty acid (FFA) and TG uptake activates factor VII 

(FVII), tissue factor (TF) (3;4) and plasminogen activator inhibitor-1 (PAI-1) (3;5;6).  

Furthermore, a VLDL response element in the promoter region of the PAI-1 gene has 

been identified and shown to increase PAI-1 gene transcription following VLDL 

binding in vitro (7).  Thus, elevated TG and FFA appear to promote atherosclerosis, 

at least partially, by increasing thrombotic activity and decreasing fibrinolytic activity 

in leukocytes and endothelial cells.   

Although exercise training improves a wide range of cardiovascular disease 

(CVD) risk factors, the results of studies examining the effects of exercise training on 

inflammation, coagulation, and fibrinolysis have been inconsistent (8-12).  This may 

be due to the fact that the majority of previous studies measured the various 

hemostatic markers during resting or fasting conditions.  This would not give a 

complete picture of the capacity of either system because the hemostatic mechanisms 

are designed to activate in response to a stimulus.  Our group and others have found 

that following a high fat meal, FFA and TG clearance are improved after exercise 
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training (13;14), and these results lead to the hypothesis that the reduction in FFA and 

TG levels after exercise training will reduce inflammation and coagulation and 

increase fibrinolysis following a high-fat meal.  We hypothesize that measurements 

before and after a high fat meal will serve to provide a more valid description of the 

effect of exercise training on the chronic status of the coagulation and fibrinolytic 

systems. 

Studies examining the acute effects of a high-fat meal on coagulation and 

fibrinolysis have shown that TF and FVII activation increases (15) with an 

unexplained paradoxical decrease in plasma PAI-1 levels following the meal (16;17).  

This may be explained by two factors: first, following the meal, hepatic blood flow 

increases, which increases the clearance rate for PAI-1; and second, PAI-1 

concentrations are highest in the morning, but due to diurnal variations, they decrease 

throughout the day.  Taken at face value, these results suggest that, although a high-

fat meal increases the potential for thrombosis, there is an inherent cardio-protective 

effect because of the increased fibrinolytic potential.  The discrepancy between these 

results and the results of in vitro studies, in which PAI-1 gene expression was 

increased following TG-laden VLDL binding to leukocytes, illustrates the need to 

resolve the local (i.e. leukocyte) versus systemic fibrinolytic response (i.e. plasma 

concentrations) following a high fat meal.  Therefore, the purpose of this study was to 

measure in addition to plasma protein concentrations, PAI-1, interleukin-6 (IL-6), and 

tumor necrosis factor-α (TNF-α) gene transcription in leukocytes following the high-

fat meal.   
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Purpose of the study

The purpose of this study was to determine the effect of a single, high-fat 

meal on the potential for coagulation and leukocyte gene expression before and after 

exercise training.   

 
Significance of the study

This in vivo model could partially explain the discrepancy between the in 

vitro and in vivo results of previous studies on systemic fibrinolytic changes 

following a fat meal. Similarly, it provides a more relevant model through which to 

study the effects of exercise training on a variety of hemostatic measures.  Since 

vascular thrombosis is responsible for a large portion of CVD and stroke related 

events, this investigation will lead to a better understanding of the methods by which 

exercise training reduces CVD and stroke related morbidity and mortality.  

Hypotheses

Hypothesis #1: A single high-fat meal will increase plasma factor VII 

activation (FVIIa) and tissue factor pathway inhibitor-activated factor X (TFPI/Xa) 

levels, decrease PAI-1:ag and activity levels, and increase leukocyte IL-6, TNF-α,

and PAI-1 gene expression.   

Hypothesis #2: Post-Prandial FVIIa and TFPI/Xa levels and leukocyte IL-6, 

TNF-α, and PAI-1 gene expression will increase and PAI-1 activity and antigen will 
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decrease to a lesser extent after exercise training compared to the sedentary state due 

to an increase in FFA and/or TG clearance. 
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Chapter 2: Methods and Procedures 
 

Study Overview:  Healthy sedentary middle- to older-aged men and women 

classified as pre-hypertensive to stage 1 hypertensive with systolic blood pressure of 

120-159mmHg, and/or a diastolic blood pressure of 80-99mmHg were screened into 

the study. Subjects completed a 6-week Dietary Stabilization Period to ensure that all 

subjects followed the AHA Dietary Guidelines for the General Population. Following 

the DSP, they underwent baseline testing for aerobic capacity (VO2max), body 

composition, and postprandial lipemic measurement of inflammation, coagulation, 

and fibrinolysis, followed by 6-months of exercise training and final testing.  

Unique Aspects of this Trial: Important and unique aspects of this study are 

(a) a more complete assessment of the change in PAI-1 levels during postprandial 

lipemia by measuring gene expression, (b) careful control of diet and disease, (c) 

implementation of a highly standardized exercise training intervention, (d) 

measurement of inflammation, coagulation, and fibrinolysis following a high-fat 

meal, and (e) specific, testable, directional hypotheses concerning the effects of 

exercise training without substantial weight reduction on inflammation, coagulation, 

and fibrinolysis.    

Subjects

Fifty to 75 year old men and women responding to advertisements were 

contacted by telephone to determine their eligibility and interest.  With the exception 

of age, the subjects sampled represented the general population and included men and 

women of all races.  Pre-hypertensive to stage 1 hypertensive subjects were studied 
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because they have been shown to be at risk for an impaired hemostatic profile (18-20) 

and because this project is part of a larger ongoing study assessing the effects of 

exercise training on hypertension.  Subjects were: sedentary (regular aerobic exercise 

<2 times/wk and <20 min/session, sedentary occupation); nonsmokers; non-diabetic; 

and not on lipid-, glucose-, or blood pressure-lowering medications, and not receiving 

anti-coagulant therapies.  Subjects also did not have any other medical conditions that 

prevented engagement in vigorous exercise. Subjects had a body mass index <37 

kg/m2 so that the physical limitations of excessive obesity would not impede their 

ability to exercise vigorously.  Women were postmenopausal (absence of menses for 

>2 yrs) with a serum FSH level >30 IU/ml and agreed to maintain their hormone 

replacement regimen (HRT), either on or not on HRT, constant for the duration of the 

study.  Subjects were screened to exclude those with gastrointestinal disorders, 

lactose intolerance, or gall bladder dysfunction.  Suitable subjects were mailed a 

medical history questionnaire and scheduled for Screening Visit #1.  

 
Subject Screening

All potential subjects underwent two screening visits prior to entry into the 

study.   

Screening visit #1 

The study protocol and informed consent was approved by the University of 

Maryland College Park Institutional Review Board and each subject reported to the 

laboratory and their informed consent was obtained.  Subjects had their medical 

history questionnaire reviewed and BMI measured to verify it is <37 kg/m2. Subjects 
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were excluded from the study if they had a hematocrit <35, evidence of renal or liver 

disease, or if they had fasting plasma glucose >126 mg/dL.  Lastly, subjects were 

required to have a fasting plasma glucose value <126 mg•dL-1 and a 2-Hr  75 gram 

OGTT glucose value of <200 mg•dL-1 to officially enter the study, given that  

diabetes can affect responses to exercise training. 

Screening visit #2 

Subjects qualified to this point had a physical and cardiovascular (CV) 

examination by a physician to detect CV, pulmonary, or other chronic diseases that 

would preclude exercise testing or training (21). They underwent a Bruce maximal 

treadmill exercise test (22) to ensure they had no evidence of overt CV disease. Blood 

pressure, heart rate, and ECG were recorded before the test, at the end of every 

exercise stage, and every other minute for 6 minutes after exercise. The test was 

terminated when the subject could no longer continue or CVD signs or symptoms 

occurred (21). Subjects had <2 mm ST-segment depression and no CVD signs or 

symptoms (21) during this test to be included in the study.  

Dietary Stabilization

Subjects qualified based on the results of the 2 Screening Visits detailed above 

then entered the dietary stabilization phase of the protocol. Our goal was to examine 

the effects of exercise training on inflammation, coagulation, and fibrinolysis 

independent of dietary changes and differential dietary interactions with exercise 

training. Therefore, we only recruited subjects who agreed to be instructed on and 

maintain the AHA Dietary Guidelines for the General Population (23) throughout the 

study in order to minimize the confounding effects of diet between individuals. 
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Subjects received instruction at 2 sessions/wk for 6 wks by a Registered Dietician in 

the principles, application, and maintenance of the AHA Dietary Guidelines for the 

General Population (23-25).  They later completed food records after 3 and 6 wks of 

the dietary stabilization period to assess compliance.  

Baseline Testing

After Dietary Stabilization, subjects underwent baseline testing to measure 

postprandial lipemic challenge measures of inflammation, coagulation, and 

fibrinolysis. Additionally they were tested for, body composition, VO2max, and 

fasting lipoproteins. Further details of these tests are presented below.    

 

Plasma lipoproteins

Following the dietary stabilization period, baseline measurements of plasma 

total cholesterol, TG, low density lipoprotein (LDL), total high density lipoprotein 

(HDL), and HDL subfractions (HDL2 and HDL3) were analyzed in a Center for 

Disease Control (CDC)-certified lab using a Hitachi 717 auto-analyzer.  The values 

were averaged from blood samples obtained on two separate days and if the 

difference between measures was greater than 10%, a third sample was used.  LDL 

was estimated using a previously developed method (26) and total HDL was 

measured after precipitation with dextran sulfate.  HDL3 was separated using a 

second high-molecular-weight dextran sulfate precipitation and the HDL2 fraction 

was obtained be the difference between total HDL and HDL3.
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Postprandial lipemia test

Subjects were free from infection, fever, cold, or any other illness for at least 

one week and abstained from taking any medications (including aspirin or other 

NSAID’s), vitamins, herbal supplements, and/or alcohol for two days prior to the 

postprandial lipemia test (PPLT).  For the baseline PPLT, subjects did not engage in 

physical activity for at least five days prior to testing, as acute exercise has been 

shown to affect FFA and TG clearance (27-29).  For final PPLT testing, subjects 

performed their last bout of exercise 24-36 hours before the PPLT as the inclusion of 

acute exercise more accurately represents their current daily condition during exercise 

training.     

The standard liquid fat meal was developed by Patsch et al. (30), and it 

consists of 386 gm per 2 m2 of body surface area (BSA), where BSA in m2 = 0.00949 

× [(weight in kg) 0.441] × [(height in cm) 0.655].  Of the 386 gm, 325 gm are from heavy 

whipping cream, 14 gm from granulated sugar, 39 gm from chocolate syrup, and 8 

gm from non-fat powdered milk.  The total energy content of the 386 gm per 2 m2

meal is 1362 kilocalories, of which 84% are from fat, 2.8% are from protein, and 14% 

are from carbohydrate.  Subjects reported to our laboratory for testing and consumed 

the meal within 3 minutes between 0700 and 0900 to minimize the effect of diurnal 

variation on the markers of inflammation, coagulation, and fibrinolysis. 

Expired gases 

 Expired gases were collected into Douglas bags in 5-min intervals for a total 

of 20-min prior to meal ingestion, and at 2- and 4-hours after meal ingestion.  Each 5-

min bag was analyzed for gas content (O2, CO2, and N2) using a medical gas analyzer 
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(Perkin Elmer, Danbury, CT.) and volume.  Respiratory exchange ratio, carbohydrate 

(CHO), lipid oxidation rate, and total energy expenditure (TEE) were estimated using 

previously established criteria (31). 

Blood sampling 

An intravenous catheter was placed in an antecubital vein and blood samples 

were obtained before ingestion of the fat meal, and every 30-minutes for 4-hours after 

the meal for the determination of plasma metabolic factors (insulin, glucose, FFA, 

and TG).  Plasma samples for the determination of markers of coagulation and 

fibrinolysis were collected from the indwelling catheter immediately after placement 

into the antecubital vein and at 2-, and 4-hours after ingestion of the meal.  Whole 

blood was collected from the indwelling catheter into PAXgene® blood collection 

tubes (Qiagen Inc., Valencia, CA) immediately following placement of the indwelling 

catheter before ingestion of the meal and 2-, and 4-hours after ingestion for the 

purpose of measuring leukocyte PAI-1 and inflammatory gene expression.   

Whole blood was collected into 3-ml serum tubes and allowed to coagulate for 

30-minutes at room temperature for FFA and 5-ml EDTA tubes for TG 

measurements.  Serum and EDTA whole blood used for plasma metabolic factors was 

centrifuged at 1,800 x g for 20-minutes, and the serum/plasma was separated and 

stored in aliquots at -80ºC until assayed.  Whole blood for the measurement of FVIIa, 

TFPI/Xa, and PAI-1:ag and activity concentrations were centrifuged at 3,000 x g for 

20-minutes and plasma was separated and re-spun for 5-minutes at 3,000 x g to obtain 

platelet poor plasma that was stored at -80ºC in separate aliquots until assayed.  No 
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more that one freeze-thaw cycle was allowed for plasma samples of hemostatic 

variables.       

Serum and EDTA plasma were analyzed for changes in FFA (NEFA C, Wako 

Chemicals, Richmond, VA), TG (Sigma Diagnostics, St. Louis, MO), insulin (Ins) 

(Linco Research, St. Charles, MO), and glucose (Glu) (YSI 2300 Stat Plus, Yellow 

Springs, Ohio) concentrations.  High sensitivity C-reactive protein (hsCRP) (Alpha 

Diagnostic International, San Antonio, TX), FVIIa and TFPI/Xa (Imubind, American 

Diagnostica, Greenwich, CT), and PAI-1:ag (Zymutest, Diapharma, West Chester, 

Ohio) were measured by enzyme linked immunosorbent assay (ELISA) and PAI-1 

activity (Spectrolyze pL, American Diagnostica, Greenwich, CT) was measured by an 

amydolytic activity assay.  All samples were measured in duplicate within the same 

run in order to minimize variation among subjects (Table 2).   

Body composition assessment 

Each subject’s percent total body fat and lean body mass was measured by 

dual energy x-ray absorptiometry.  Each subject’s intra-abdominal visceral and 

subcutaneous adipose tissue areas were quantified midway between the 4th and 5th 

lumbar vertebrae using a standardized computed tomography (CT) scan protocol used 

previously in our laboratories (32). Percent total body fat and visceral fat were used 

as potential covariates in our analyses to determine the independent effect of exercise 

training on changes in inflammation, coagulation, and fibrinolysis, as differential 

changes in total and regional body composition could independently affect thrombotic 

and fibrinolytic changes with exercise training (33).  
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Aerobic capacity measurement 

All subjects underwent a second maximal treadmill exercise test to assess 

VO2max as an index of CV fitness. The test started at 70% of the peak heart rate 

achieved on the subject’s screening exercise test and treadmill grade increased by 2% 

every 2 minutes (34). Blood pressure, heart rate, and ECG were monitored and the 

test was terminated when the subject could no longer continue. VO2 was measured 

continuously throughout the test and standard criteria were used to determine if a true 

VO2max had been achieved (21). VO2max was measured to derive valid exercise 

prescriptions for the exercise training intervention and to quantify generalized CV 

training adaptations. 

Whole blood gene expression

Blood samples were obtained from four subjects during the postprandial 

lipemia test prior to meal ingestion, and at 2- and 4-hours postprandial.  However, 

one subject’s 4-hour sample was lost due to centrifugation prior to incubation, thus 

data for 3 subjects was available for the 4-hour time-point.  RNA was extracted 

according to the manufacturer’s recommendation (Paxgene Blood RNA Kit, Qiagen 

Inc., Valencia, CA) and using the optional on-column DNase treatment (RNase free 

DNase set, Qiagen Inc., Valencia, CA).  Total RNA was collected and prepared in 

80µL aliquots, quantified by absorbance at 260 nm (1 absorbance unit = 40µg/ml) 

and the purity was estimated using the A260/A280 ratio in triplicate.  200 ng of total 

RNA was used for the reverse transcription reaction using random oligonucleotide 

primers into a final reaction volume of 20µL.  Samples were then diluted 1:1 with 

20µL of PCR grade H2O into a final volume of 40µL. 
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Real time PCR (rt-PCR) was carried out using a Roche Lightcycler (Roche, 

Mannheim, Germany) with primer/probe sets obtained from TIB (TIB Molbiol, 

Adelphia, NJ) for PAI-1, IL-6, TNF-α, and RNA polymerase II (RNA pol II) mRNA 

(Table 1).  The master mix for the PCR reactions was obtained from Roche 

Diagnostics and all reactions were carried out according to the manufacturer’s 

recommendations in triplicate. No template controls (NTC) and no amplification 

controls (NAC) were included in each run to verify evidence of genomic DNA 

contamination within master mix (NTC) or samples (NAC).  Post PCR products were 

run on a 3% agarose gel and compared to a standard 50 bp ladder to qualitatively 

assess product presence and length.  Relative expression, using a calibrator (pooled 

subject sample) normalized to a house keeping gene (RNA pol II) was carried out 

using the ∆∆CT method (2-∆∆CT), [where ∆∆CT = ∆CT(sample) - ∆CT(calibrator) and ∆CT =

CT(target gene) – CT(HS gene)] (35) using the manufacturer’s software (Roche Lightcycler, 

Mannheim, Germany).  

 

Exercise Training Intervention

All subjects underwent 3 exercise training sessions/wk supervised by study 

personnel. The training program lasted 6 months to ensure adequate time for training-

induced improvements in the cardiovascular and metabolic systems.  Initial training 

sessions consisted of 20 min of exercise at 50% VO2max and increased by 5 min 

every wk until 40 min of exercise at 50% VO2max are completed each session. 

Training intensity then increased by 5% VO2max every wk until an intensity of 70% 

VO2max is achieved.  Subjects added a lower intensity unsupervised 45-60 min walk 
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on the weekend after 10 wks of training and recorded in printed logs their exercise 

heart rate, duration, and mode information for all supervised and unsupervised 

training sessions. Adherence to the training prescription was assessed for every 

exercise training session by inspecting training log exercise intensity, duration, and 

frequency data. 

Dietary monitoring

Our goal was to examine the effects of exercise training on the markers of 

inflammation, coagulation, and fibrinolysis following an oral fat load independent of 

changes in diet composition and diet-induced weight loss. We did not recruit subjects 

seeking to lose substantial amounts of weight and therefore, subjects were instructed 

to maintain their habitual caloric intake during the study while following the AHA 

Dietary Guidelines for the General Population (23). Subjects were weighed weekly 

and those losing more weight than expected from their exercise energy expenditure 

were counseled to increase their caloric intake back to initial levels. Subjects also 

completed 7 day food records every 2 months during the intervention to assess 

compliance with the AHA Dietary Guidelines for the General Population. If dietary 

changes occurred, subjects were counseled by the RD on how to resume the AHA 

Dietary Guidelines.  In addition to counseling and diet records, subjects were 

provided low-fat, low-sodium snacks after each exercise training intervention to 

replace the calories expended during physical activity.  Body weight was measured 

each week and monitored by study personnel to ensure that subjects remained within 

the required weight range.  If subjects gained or lost more than 5% of their initial 

body weight, they were dropped from the study.   
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Final Testing

At the completion of the exercise training intervention, subjects completed 7 

day food records to insure dietary compliance prior to reassessment of postprandial 

lipemic measures of inflammation, coagulation, fibrinolysis, body composition, 

VO2max, and fasting plasma lipoproteins.  Subjects continued their exercise training 

until all final testing was completed.   Each subject underwent the final postprandial 

lipemia test 24-36 hours after their last exercise session.  

Statistics

A two-factor (test x time) repeated measures ANOVA using a heterogeneous 

compound symmetry matrix was used to analyze the interaction effects for changes in 

plasma coagulation and fibrinolytic variables, as well as leukocyte TNF-α gene 

expression.  Statistical analyses were performed using SAS software (SAS version 

8.2, SAS institute Inc., Cary, NC).  The a priori alpha level was set at p<0.05 for all 

planned comparisons.  Analysis of the residual variance was conducted to ensure a 

normal distribution was present.  Fasting plasma levels of cholesterol fractions, body 

composition, and lipemic measures were included as potential covariates (where 

physiologically appropriate, see below) in the analyses.  All data were normally 

distributed, with the exception of PAI-1:ag (non-normal residual variance 

distribution) which was log10 transformed prior to statistical analyses.  All data are 

represented as mean ± SE including those for PAI-1:ag, although the probability 

values for the latter are from the log10 transformed data.   
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Potential covariates for the selected variables measured in this study include 

body composition measures (total fat and intra-abdominal fat), fasting lipoproteins 

(LDL, HDL3), and postprandial lipemic measures (hsCRP, FFA, Ins, and lipid 

oxidation rate).  A maximum of four potential covariates were included for each 

variable, thus only the most biologically reasonable variables were used.  Non-

significant (α = 0.05) covariates were removed from the model one at a time, starting 

with the least significant and ending when all remaining were significant. 

Chapter 3: Results 

Exercise training intervention

A total of 8 subjects completed all aspects of the exercise training intervention 

and PPLT testing. Although the intervention was of sufficient frequency, intensity, 

and duration to elicit improvements in VO2 max, body composition, and total 

cholesterol, there were no improvements in fasting hsCRP, TG, LDL, HDL, or HDL 

sub-fractions (Table 3) with six months of training.  All subjects maintained initial 

total body weight throughout the intervention, despite a slight, but not significant 

decrease in the mean body mass at final testing (-1.3 kg).       

Postprandial lipemia test

There were no differences between fasting measures of FFA, TG, Ins, or Glu 

at baseline versus final testing.  There was a significant increase in plasma FFA, TG, 

and Ins levels during the PPLT at 2- and 4-hours after meal consumption before and 

after exercise training (Table 4).  There were no significant differences in the 

postprandial levels at each time point between the two tests, although the time 
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averaged mean postprandial TG levels were lower at final testing (139 ± 19 mg•dl-1)

versus baseline (154 ± 24 mg•dl-1) (p = 0.02).  There was no significant difference 

between time averaged FFA (p = 0.27) or Ins (p = 0.17) levels between the two tests.  

Plasma glucose levels remained unchanged throughout each test; however the average 

CHO and lipid oxidation rates over the 4-hr period were altered following exercise 

training (Figure 1).  The average CHO oxidation rate across the entire 4-hr 

postprandial lipemia test significantly decreased from 282 ± 48 to 201 ± 26 mg•min-1 

(p = 0.009) and total lipid oxidation during the same period increased from 10.5 ± 

13.1 to 32.8 ± 9.3 mg•min-1 (p = 0.01), while average total energy expenditure 

remained unchanged (1.14 ± 0.05 vs. 1.07 ± 0.09 kcal•min-1 p = 0.29) between the 

two tests. 

Plasma coagulation and fibrinolytic measures

Before exercise training, log10 PAI-1:ag levels significantly decreased from 

fasting to 2-hrs postprandial (p = 0.001) with a non-significant trend toward a further 

reduction from 2- to 4-hrs (p = 0.07), and at 4-hrs post-prandial, log10 PAI-1:ag levels 

were significantly lower than fasting (p < 0.0001) (Table 5).  After exercise training, 

log10 PAI-1:ag levels did not significantly change from fasting to 2-hr (p = 0.10) but 

decreased from 2- to 4-hr (p = 0.0007) and 4-hrs was lower than fasting (p < 0.0001).  

At final testing, log10 PAI-1:ag levels were lower in the fasted state, not significantly 

different at 2-hrs, and significantly lower at 4-hrs postprandial versus baseline (Figure 

2). 

There was no change in PAI-1 activity from fasting to 2-hours postprandial 

before or after exercise training after adjusting for intra-abdominal fat and lipid 
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oxidation rate, however during both tests there was a significant decrease from 2- to 

4-hours (p = 0.003 baseline; p < 0.0001 final).  There was no difference in the fasting 

measures of PAI-1 activity between tests, however after exercise training the 2-hr and 

4-hr postprandial PAI-1 activity levels were significantly lower than baseline (2-hr p 

= 0.03; 4-hr p = 0.001) (Figure 3).  

 After adjusting for LDL and lipid oxidation rate, before exercise training 

FVIIa levels increased from fasting to 2-hrs postprandial (p < 0.02) and decreased 

significantly from 2- to 4-hrs (p = 0.03) where it was no longer elevated compared to 

fasting levels (p = 0.39).  At final testing, FVIIa levels significantly decreased from 

fasting to 2-hrs (p = 0.008), increased significantly from 2- to 4-hrs (p = 0.004), and 

was not different from fasting at 4-hrs postprandial (p = 0.06).  FVIIa was not 

different between tests prior to meal ingestion, however at 2- and 4-hrs, FVIIa was 

significantly lower at final testing compared to baseline (Figure 4). 

 TFPI/Xa levels at baseline testing did not change during the 4-hr postprandial 

lipemia test after adjusting for LDL and FVIIa levels (0- vs 2-hr p = 0.37; 0- vs 4-hr p 

= 0.29; 2- vs 4-hr p = 0.07).  However, at final testing, there was a significant 

increase in TFPI/Xa levels from fasting to 2-hrs (p = 0.001) and from fasting to 4-hrs 

(p = 0.01), with no change from 2- to 4-hrs (p = 0.24).  There was no difference 

between tests in fasting levels of TFPI/Xa, however at 2- and 4-hrs, TFPI/Xa levels 

were significantly higher at final versus baseline testing (Figure 5).   

Whole blood gene expression

Neither fluorescence nor post-PCR product was detectable for IL-6 or PAI-1 

mRNA in the subject samples however, TNF-α and RNA pol II gene expression were 
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robust and detectable in all subject samples and the data for all four subjects are 

presented in Figure 6.  After adjusting for hsCRP and total body fat mass, TNF-α

gene expression increased from fasting to 2-hours postprandial (p = 0.04) and 

significantly decreased from 2- to 4-hours (p = 0.007) such that the 4-hr postprandial 

value was significantly lower than fasting before exercise training (p = 0.02).  At final 

testing, TNF-α gene expression increased from fasting to 2-hours (p = 0.02) and 

remained significantly elevated at 4-hours versus the fasting level (p = 0.04).  

Between tests, fasting TNF-α gene expression was lower at final testing (p = 0.0007), 

lower at 2-hours postprandial (p = 0.006), and not different at 4-hours (p = 0.17) 

versus baseline. 
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Chapter 4:  Discussion 

Exercise training intervention

The present study was designed to assess the changes in the hemostatic 

response to a postprandial lipemia test before and after 6-months of aerobic exercise 

training.  We also sought to minimize the amount of weight lost during the study 

intervention, as weight loss has been shown to affect hemostasis and inflammation 

independent of metabolic and cardiovascular adaptations (36;37).  Despite the fact 

that there were no improvements in lipoprotein subfractions or fasting insulin levels, 

the exercise training intervention was of sufficient intensity to elicit significant 

improvements in aerobic capacity and body composition.     

Postprandial lipemia test

The standard fat meal employed in the current study design sufficiently 

induced a lipemic response; however there were no differences between tests 

(baseline vs. final) among postprandial values  for FFA, TG, Ins, or Glu at any single 

time-point (0-, 2-, or 4 hours).  There was a significant reduction in the average TG 

response across all time-points from baseline to final testing which is in agreement 

with previous studies (27;28).  Others have reported significant improvements in the 

postprandial lipemic response following acute bouts of physical activity, with the 

majority of the improvements observed within 12-24 hours after exercise.  Our study 

assessed the response at 24-36 hours following the last bout of exercise which may 

explain the fact that no differences were observed in these variables and confirms a 
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previous 12-week exercise training study in which there was no reported reduction in 

postprandial lipemia 48-hours after a single bout of acute exercise (38).   

The major factor influencing the improved lipemic response following 

exercise training is believed to be an increase in lipoprotein lipase (LPL) activity that 

has been shown to be transient, with the largest increase in activity occurring around 

18-hours after exercise (39;40).  Another and less transient factor that is associated 

with aerobic exercise training is an improved skeletal muscle β-oxidative capacity 

and we observed a significant decrease in the average rate of CHO oxidation with a 

concomitant increase in lipid oxidation during the postprandial lipemia test following 

exercise training.   

Unlike the transient nature of skeletal muscle LPL activity, the increase in β-

oxidative capacity remains elevated for days or weeks with chronic aerobic exercise 

training.  We hypothesized that the exercise training-mediated improvements in 

inflammation and hemostasis would be due to improvements in FFA and TG 

clearance; however the results of this study imply that the improvements may be due 

to increased FFA oxidation.  It is known that the tissue type involved in the uptake 

and clearance of FFA, TG, and Glu from plasma may contribute to the inflammatory 

and hemostatic response to an oral fat load (41).  In the sedentary state, more of the 

ingested TG is directed to adipocyte storage which has been shown to increase the 

expression of inflammatory cytokines and PAI-1 levels (42).  Thus, with a larger 

amount of the ingested fat being directed toward β-oxidation in the trained state, 

adipocyte-directed storage cytokine/PAI-1 expression would be decreased. 
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Finally, it is not unreasonable to assume that with such a large amount of 

ingested fat in a single meal, enterocyte chylomicron synthesis and secretion may be 

occurring at near maximal capacity.  In this case, the postprandial levels of plasma 

FFA, TG, and Ins would not change over a 4-hour time period before versus after 

exercise training due to the continued enterocyte FFA uptake, chylomicron secretion, 

and plasma appearance of TG.  Thus, the ability to determine changes in plasma FFA 

and/or TG clearance may be delayed until complete intestinal clearance of the 

ingested meal has occurred.  Many previous studies have assessed the postprandial 

lipemic response for 8+ hours and have shown that the peak lipemic response tends to 

be at 4-hours.  It is therefore possible that differences between time-points may exist 

beyond the peak response although the usefulness of measurements beyond 4-hours is 

in question as people seldom go more than 4-hours between meals.   

Plasma coagulation and fibrinolytic measures

One of the purposes of this investigation was to more accurately define the 

effect of aerobic exercise training on hemostasis by measuring the response of the 

system under stress.  The majority of previous studies that have attempted to show a 

reduction in coagulation potential following long-term engagement in physical 

activity or exercise training have done so using an assessment of coagulation factors 

in the fasted state and have consistently failed to show a clear reduction (8-12;43).  

This is likely due to the fact that the hemostatic response functions over a wide range 

and many of the individual factors are capable of increasing their activity to more 

than 100% over resting levels (44).  It would be unreasonable to assume that a clear 

reduction could be apparent when assessing the system within the lowest range of its 
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activity.  This is confirmed by the results of the present study in which the levels of 

FVIIa and TFPI/Xa showed no differences in the fasted state between tests (baseline 

vs. final), yet there was a clear difference between tests after the fat meal. 

There is very little known about the effect of exercise training on anti-

coagulant activity, with only one study published in which TFPI levels were 

measured before and after exercise training.  The authors reported no change in 

fasting levels of circulating TFPI among diabetic subjects (45), although circulating 

TFPI is not believed to be a good predictor of functional or total TFPI, which is why 

we chose to measure the TFPI/Xa complex.  The majority of functional TFPI is 

believed to be bound to the endothelium where it is capable of binding to the TF-

FVIIa-FXa ternary complex and rapidly terminating the activation of coagulation.  

Very little is known about the effect of exercise training on plasma TFPI levels, and 

nothing is known about changes in endothelial cell expression of TFPI with training.  

Here we show an increase in TFPI-mediated inactivation of the extrinsic pathway 

after training, and although it is beyond the scope of this investigation, it is tempting 

to speculate that a higher quantity of TFPI may have been expressed on the 

endothelial cell surface after training. 

As with coagulation potential, previous studies on the effect of exercise 

training on fibrinolytic potential have either reported decreases or no change in PAI-1 

antigen or activity levels (46;47).  The two most logical reasons for the disagreement 

between these previous results are: 1) variation in exercise training frequency, 

intensity, and/or duration, and 2) measurement of fasting PAI-1 levels.  In the present 

study, we employed a long-term relatively high intensity exercise training program 
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and we measured the response of PAI-1 following a meal challenge.  As a result, we 

were able to illustrate a clear reduction in postprandial levels of PAI-1:ag and activity 

despite the fact that there was no difference in fasting PAI-1 activity levels between 

tests.  

 Another main outcome of this project was to address the previously noted 

paradoxical decrease in PAI-1 levels during the postprandial lipemia test.  No study to 

date has attempted to address this discrepancy, which taken at face value suggests that 

fibrinolytic activity is increased following a high fat meal.  The most logical 

explanation for the resulting decrease in PAI-1:ag is that the rate of hepatic blood 

flow is higher after ingestion of the meal.  In addition to this, PAI-1 activity levels 

may be decreasing, at least in part, due to diurnal variations with the highest levels of 

activity in the morning.  In light of these facts, it is possible that endothelial, hepatic, 

or adipocyte PAI-1 release may in fact increase while plasma levels are decreasing.  

Despite the fact that this paradoxical PAI-1 decrease exists following a fat meal, the 

fact that postprandial PAI-1:ag and activity were lower after exercise training 

illustrates a clear benefit of aerobic exercise training on reducing the risk for CVD-

related outcomes. 

Whole blood gene expression

We sought to examine the effect of exercise training on the postprandial 

response of leukocyte gene expression following a high fat meal.  Our aim was to 

determine if PAI-1 and inflammatory gene expression were increased despite the 

paradoxical decrease in circulating PAI-1 protein levels.  Unfortunately, the blood 

collection tubes that were used for the stabilization of mRNA prevented the 
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measurement of both IL-6 and PAI-1 gene expression and we were unable to address 

this aspect of the investigation.  This was because monocytes comprise a small 

fraction of the whole blood leukocyte population (0-9%) and without separation of 

cell types prior to RNA isolation, they provide an equally low contribution of mRNA 

to the total mRNA obtained.  It was understood at the onset of the investigation that 

monocytes would be the only cells expressing IL-6 and PAI-1 (48), however we 

believed that their mRNA would still be detectable even in the presence of whole 

blood leukocyte mRNA.  Based on the results of this study, and others (49-52), it is 

apparent that an investigation of monocyte-derived mRNA should be conducted only 

after separation of mononuclear cells and whole blood gene expression should be 

avoided. 

 In addition to monocytes, TNF-α is expressed in multiple mononuclear blood 

cell types including B cells, T cells (53), and neutrophils (53;54).  Consequently, its 

expression was robust in the RNA samples obtained and we were able to show an 

improvement in inflammation at rest and following a meal challenge due to aerobic 

exercise training.  While the high fat meal increased leukocyte TNF-α gene 

expression from fasting to 2-hours postprandial during both tests, the degree to which 

gene expression increased in the trained state was lower than baseline.  We are unable 

to determine whether the observed changes in TNF-α gene expression resulted in 

comparable changes in plasma TNF-α levels, nevertheless it is reasonable to conclude 

that the leukocyte TNF-α response to the high fat meal was lower after training versus 

baseline. 
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Summary

Given that the majority of life is spent in the postprandial state and because 

the inflammatory and hemostatic systems function over a wide range of values in 

response to stimuli, assessment of their function in the fasted state does not provide 

an accurate description of the effect of exercise training.  However, the results of this 

investigation provide clear evidence that inflammation and the coagulation and 

fibrinolytic potentials are improved with aerobic exercise training.  In addition, by 

reducing or eliminating the increase in coagulation potential and inflammation and 

increasing fibrinolysis, aerobic exercise training may reduce the risk for CVD- and 

stroke-related morbidity and mortality.  Finally, this is the first investigation into the 

effect of exercise training on anti-coagulant potential among healthy subjects and the 

mechanisms responsible for the paradoxical decrease in plasma PAI-1 levels remain 

to be determined.  Future studies into the area of exercise and hemostasis should 

focus on assessment of the systems under a controlled stress while determining the 

change in TFPI, antithrombin III, and protein C activities in addition to procoagulant 

changes. 
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Appendix A: Limitations 
 

The following limitations apply to the present study: 

1. With the exception of evidence of CVD and diabetes, all other personal and 

medical history was self-reported.  

2. Subjects were not screened for other chronic inflammatory diseases, such as 

hepatitis, that are known to influence hemostasis and leukocyte gene 

expression.  

3. Dietary compliance, although assessed by diet records, was self-reported. 

4. No control group was used in the present study and it is possible that seasonal 

variation could have contributed to the change in hemostatic and 

inflammatory profiles of the subjects. 

5. The blood collection tubes used for the determination of whole blood gene 

expression do not allow for the separation of mononuclear cell types from 

blood and therefore, we are not able to determine the cell type(s) from which 

mRNA was obtained. 

6. Circulating leukocytes are obtained from whole blood and it is possible that 

endothelial cell-bound leukocytes may exhibit a different phenotype than that 

which was obtained from the circulation. 
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Appendix B: Delimitations 
 

This project has been delimited in the following areas: 

1. This project is designed to provide a more valid assessment of the change in 

coagulation potential following aerobic exercise training.  

2. There is a careful control of diet and disease to eliminate known confounding 

factors.  

3. The project uses the implementation of a highly standardized exercise training 

intervention to eliminate the potential of differential responses to varying 

degrees of exercise dosage. 

4. Through the measurement of inflammation, coagulation, and fibrinolysis 

following a high-fat meal, a more valid description of the change in 

hemostasis and inflammation following exercise training is possible by 

assessing the system under stress.  

5. The effects of exercise training without substantial weight reduction was used 

to determine the independent effect of aerobic exercise training on 

inflammation, coagulation, and fibrinolysis. 
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Appendix C: Human Subject Approval Forms 
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Appendix D: Definition of Terms* 
 
Atherosclerosis: The progressive narrowing and hardening of the arteries over time. 

β-oxidation: The oxidative breakdown of fatty acids into acetyl-coenzyme A by 

repeated oxidation  at the beta-carbon atom. 

Emulsification: The process of preparing one liquid distributed in small globules 

throughout the body of a second liquid. 

Esterification: The process of converting an acid into an alkyl or aryl derivative. 

Most frequently the process consists of the reaction of an acid with an alcohol in the 

presence of a trace of mineral acid as catalyst or the reaction of an acyl chloride with 

an alcohol. Esterification can also be accomplished by enzymatic processes.  

Fibrinolysis: Solubilisation of fibrin in blood clots, chiefly by the proteolytic action 

of plasmin. 

Gene expression: The full use of the information in a gene via transcription and 

translation leading to production of a protein and hence the appearance of the 

phenotype determined by that gene. Gene expression is assumed to be controlled at 

various points in the sequence leading to protein synthesis and this control is thought 

to be the major determinant of cellular differentiation in eukaryotes. 

Hemostasis: The arrest of bleeding, either by the physiological properties of 

vasoconstriction and coagulation or by surgical means. 

Hypertriglyceridemia: Condition of elevated triglyceride concentration in the 

blood; an inherited form occurs in familial hyperlipoproteinemia IIb and 
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hyperlipoproteinemia type IV. It has been linked to higher risk of heart disease and 

arteriosclerosis.  

Inflammation: A localized protective response elicited by injury or destruction of 

tissues, which serves to destroy, dilute or wall off (sequester) both the injurious agent 

and the injured tissue.  It is characterized in the acute form by the classical signs of 

pain (dolor), heat (calor), redness (rubor), swelling (tumour) and loss of function 

(functio laesa).  Histologically, it involves a complex series of events, including 

dilatation of arterioles, capillaries and venules, with increased permeability and blood 

flow, exudation of fluids, including plasma proteins and leukocyte migration into the 

focus.  

Knock out: Informal term for the generation of a mutant organism in which the 

function of a particular gene has been completely eliminated (a null allele). 

Lipolysis: The breakdown of fat. 

Oral fat load: Ingestion of a fatty meal by means of the alimentary canal (mouth). 

Postprandial: Occurring after dinner or after a meal (postcibal). 

Thrombosis: The formation, development or presence of a thrombus. 

Thrombus: An aggregation of blood factors, primarily platelets and fibrin with 

entrapment of cellular elements, frequently causing vascular obstruction at the point 

of its formation. Some authorities thus differentiate thrombus formation from simple 

coagulation or clot formation. 

*From Dorland’s Illustrated Medical Dictionary, 28th Ed.  W.B. Saunders Company, 
Philadelphia, PA,  ©1994 , and medical-dictionary.com.   
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Appendix E: Tables 
 
Table 1.  Primers and probes used in quantitative RT-PCR. 
 

RT-PCR: Real time polymerase chain reaction; EGI: Entrez gene 

identification number; PAI-1: Plasminogen activator inhibitor-1; IL-6: Iterleukin-6; 

TNF-α: Tumor necrosis factor-α; RNA pol II: RNA polymerase II.  F: Forward 

(sense) primer; R- Reverse (antisense) primer; FL: Fluorescein labeled FRET 

hybridization probe; LC: Red 640 labeled FRET hybridization probe. 

 

Gene 
(EGI) 

Primers (5’-3’) Probes (5’-3’) 
PAI-1 
(5054) 

F-ATGGGATTCAAGATTGATGACA 
R-CAAGTTGCTGATCATACCTTTTG 

FL-TGGTGCTGATCTCATCCTTGTTCC 
LC-GGCCCCATGAGCTCCTTGTACA 
 

IL-6 
(3569) 

F-CTTTTGGAGTTTGAGGTATACCTAG 
R-CGCAGAATGAGATGAGTTGTC 

FL-AGATGCAATAACCACCCCTGACCCAA 
LC-CACAAATGCCAGCCTGCTGACGAA 
 

TNF-α
(7124) 

F-GGCAGTCAGATCATCTTCTCGAA 
R-CCTTGGTCTGGTAGGAGACG 

FL-GCCCCTCCACCCATGTGCTCC 
LC- CACCCACACCATCAGCCGCATC 
 

RNA pol II 
(5430) 

F-GGCATGTTCTTTGGTTCAGCA 
R- GGTCATTCCACTCCCAACACT 

FL- CTGGTTCCAAGGTGTCATGGCA 
LC- GAGAGATTCCACCCATGGGACTG 
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Table 2:  Intra-assay coefficients of variation among measures.   
 

PAI-1ag: Plasminogen activator inhibitor-1 antigen; PAI-1 act: Plasminogen 
activator inhibitor-1 activity; FVIIa: Activated factor VII; TFPI/Xa: Tissue factor 
pathway inhibitor- activated factor X complex; TNF-α: Tumor necrosis factor alpha; 
RNA pol II: RNA polymerase II.  
 

Variable Intra-assay CV 
PAI-1 ag 4.6% 
PAI-1 act 5.7% 
FVIIa 6.2% 
TFPI/Xa 6.9% 
TNF-α 0.5%
RNA pol II 0.4% 
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Table 3.  Subject characteristics before and after exercise training. 
 

Data are means ± SE (n=8); Baseline: Before aerobic exercise training; Final: 

After 6-months of aerobic exercise training; VO2 max: Maximal oxygen 

consumption; Total fat: Total body fat mass; TW: Total body weight; hsCRP: High 

sensitivity C-reactive protein; TC: Total plasma cholesterol; LDL: Low density 

lipoprotein; TG: Triglyceride; HDL: high density lipoprotein; HDL2 and HDL3: HDL 

sub-fractions.  

 

Baseline Final 
P

(btw  tests) 
Age (years) 58.9 ± 4.7 --- --- 
VO2 max (L•min-1) 2.2 ± 0.2 2.6 ± 0.2 0.007 
Total fat (Kg) 30.0 ± 3.6 28.8 ± 3.7 0.04 
TW (Kg) 80.4 ± 3.6 79.1 ± 3.6 0.80 
hsCRP (mg•L-1) 0.87 ± 0.6 0.96 ± 0.6 0.51 
TC (mg•dl-1) 194 ± 13 169 ± 10 0.004 
LDL (mg•dl-1) 109 ± 13 99 ± 12 0.56 
TG (mg•dl-1) 129 ± 23 104 ± 25 0.49 
HDL (mg•dl-1) 49 ± 6 45 ± 5 0.64 
HDL2 (mg•dl-1) 8.9 ± 3.1 8.1 ± 2.8 0.85 
HDL3 (mg•dl-1) 40.2 ± 4.1 37.3 ± 2.5 0.53 
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Table 4.  Fasting and postprandial values of TG, FFA, Insulin, and glucose before and 

after exercise training. 

Test
Fasting  

Time
2-Hr  4-Hr  

Mean differences 
within test 

TG (mg•dl-1)
Baseline 

 
102 ± 20 155 ± 27 222 ± 33 0-Hr < 2-Hr< 4-Hr 

Final 
 P

93 ± 17 

0.48 
135 ± 18 

0.25 
196 ± 28 

0.19 
0-Hr < 2-Hr< 4-Hr 

FFA (mmol•L-1)
Baseline 

 Final 
 P

0.36 ± 0.05 

0.40 ± 0.07 

0.55 

0.30 ± 0.04 

0.31 ± 0.05 

0.90 

0.53 ± 0.05 

0.54 ± 0.04 

0.82 

0-& 2-Hr < 4-Hr 
0-& 2-Hr < 4-Hr 
 

Insulin (pmol•L-1)
Baseline 

 Final 
 P

67 ± 10 

69 ± 12 

0.86 

180 ± 38 

162 ± 39 

0.63 

136 ± 26 

118 ± 18 

0.42 

0-& 4-Hr < 2-Hr 
0-& 4-Hr < 2-Hr 
 

Glucose (mg•dl-1)
Baseline 

 Final 
 P

98 ± 3 

98 ± 3 

0.90 

106 ± 6 

105 ± 5 

0.88 

98 ± 4 

105 ± 5 

0.15 

No sig. dif. 
No sig. dif. 

CHO ox (mg•min-1)
Baseline 

 Final 
 P

298 ± 66 

198 ± 34 

0.047 

301 ± 55 

203 ± 21 

0.03 

248 ± 40 

203 ± 31 

0.13 

No sig. dif. 
No sig. dif. 

Lipid ox (mg•min-1)
Baseline 

 Final 
 P

2 ± 20
26 ± 8 

0.16 

-2 ± 17 

33 ± 12 

0.02 

31 ± 9 

39 ± 13 

0.50 

2-Hr < 4-Hr  
No sig. dif. 

Data are means ± SE (n=8); Test conditions: Baseline (before aerobic exercise 

training), Final (after 6-months of aerobic exercise training); TG: Triglyceride; FFA: 

Free fatty acid; CHO ox: Carbohydrate oxidation rate.  P represents mean 

comparisons between tests at each level of time (i.e. fasting baseline vs. fasting final).  

Mean differences within test represents a significant difference between time points 

within a single test (i.e. fasting baseline vs. 2-hr baseline vs. 4-hr baseline).   



38 
 

Table 5.  Fasting and postprandial values of hemostatic variables before and after 

exercise training. 

Test
Fasting  

Time
2-Hr  4-Hr  

Mean differences 
within test 

PAI-1 ag (ng•ml-1)
Baseline 

 
19.1 ± 5.1 12.0 ± 3.1 8.8 ± 2.4 0-Hr > 2- & 4-Hr 

Final 
 P

12.9 ± 2.8 

0.006 
 9.8 ± 2.3 

0.28 
5.1 ± 1.4 

0.003 
0-Hr > 4-Hr 

PAI-1 act (AU•ml-1)
Baseline 

 Final 
 P

19.9 ± 2.8 

15.3 ± 2.0 

0.09 

19.2 ± 1.0 

15.6 ± 1.5 

0.03 

14.3 ± 1.6 

8.8 ± 0.6 

0.001 

0- & 2-Hr > 4-Hr 
0- & 2-Hr > 4-Hr 
 

FVIIa (ng•ml-1)
Baseline 

 Final 
 P

3.64 ± 0.13 

3.40 ± 0.18 

0.18 

4.23 ± 0.28 

2.88 ± 0.03 

0.0002 

3.80 ± 0.23 

3.10 ± 0.07 

0.004 

0- & 4-Hr < 2-Hr 
0- & 4-Hr > 2-Hr 

TFPI/Xa (nmol•L-1)
Baseline 

 Final 
 P

0.35 ± 0.05 

0.37 ± 0.04 

0.17 

0.36 ± 0.05 

0.41 ± 0.04 

0.02 

0.34 ± 0.05 

0.40 ± 0.04 

0.002 

No sig. dif. 
0-Hr < 2- & 4-Hr 

Data are means ± SE (n=8); Test conditions: Baseline (before aerobic exercise 

training), Final (after 6-months of aerobic exercise training); PAI-1: plasminogen 

activator inhibitor-1; FVIIa: plasma activated factor VII; TFPI/Xa:  Tissue factor 

pathway inhibitor-activated factor X complex.  P represents mean comparisons 

between tests at each level of time (i.e. fasting baseline vs. fasting final).  Mean 

differences within test represents a significant difference between time points within a 

single test (i.e. fasting baseline vs. 2-hr baseline vs. 4-hr baseline).   
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Appendix F: Figures 
 
Figure 1.  Average CHO and Fat oxidation during the entire 4-hour lipemia test 

before and after exercise training. 

0

100

200

300

400

CHO Fat 

Ox
ida

tio
nr

ate
(m

g/m
in)

Baseline
Final

 
Data are means ± SE (n=6); Baseline (before aerobic exercise training), Final 

(after 6-months of aerobic exercise training); CHO: Estimated total carbohydrate 

oxidation rate; Fat: Estimated total fat oxidation rate. 

*Means are significantly different between tests within a specific timepoint.  Please 

refer to table 4 for the differences between time-points. 
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Figure 2:  Fasting and 4-hour postprandial PAI-1 antigen before and after exercise 

training. 
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Data are means ± SE (n=8); Baseline (before aerobic exercise training), Final 

(after 6-months of aerobic exercise training); Time: Minutes; PAI-1 antigen: 

plasminogen activator inhibitor-1 antigen.   

*Means are significantly different between tests within a specific timepoint.  Please 

refer to table 4 for the differences between time-points. 

*

*
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Figure 3:  Fasting and 4-hour postprandial PAI-1 activity before and after exercise 

training. 
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Data are means ± SE (n=8); Baseline (before aerobic exercise training), Final 

(after 6-months of aerobic exercise training); Time: Minutes; PAI-1 activity: 

plasminogen activator inhibitor-1 activity.   

*Means are significantly different between tests within a specific timepoint.  Please 

refer to table 4 for the differences between time-points. 
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Figure 4:  Fasting and 4-hour postprandial FVII activity before and after exercise 

training. 
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Data are means ± SE (n=8); Baseline (before aerobic exercise training), Final 

(after 6-months of aerobic exercise training); Time: Minutes; FVII: plasma factor VII. 

*Means are significantly different between tests within a specific timepoint.  Please 

refer to table 4 for the differences between time-points. 
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Figure 5:  Fasting and 4-hour postprandial Tissue factor pathway inhibitor/factor Xa 

complex concentrations before and after exercise training. 
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Data are means ± SE (n=8); Baseline (before aerobic exercise training), Final 

(after 6-months of aerobic exercise training); Time: Minutes; TFPI/Xa: Tissue factor 

pathway inhibitor- Activated plasma factor X complex:. 

*Means are significantly different between tests within a specific timepoint.  Please 

refer to table 4 for the differences between time-points. 
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Figure 6:  Fasting and 4-hour postprandial relative TNF-α gene expression before and 

after exercise training. 
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Data are means ± SE (n=4 at 0- and 2-hr and n=3 at 4-hr); Baseline (before 

aerobic exercise training), Final (after 6-months of aerobic exercise training); Time: 

Minutes; TNF-α: Tumor necrosis factor alpha; mRNA: messenger RNA; RNA pol II: 

RNA polymerase II. 

*Means are significantly different between tests within a specific timepoint.  Please 

refer to table 4 for the differences between time-points. 
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Appendix G: Review of Literature 
 
Ingestion of a high fat meal

Following the ingestion of a high-fat meal, the food enters the alimentary 

canal, where it is then deposited in the stomach.  Very little fat digestion occurs in the 

stomach; however gastric lipase hydrolyzes one out of every four triglyceride 

molecules in the stomach (55).  The majority of fat digestion occurs in the upper two-

thirds on the intestine (duodenum and jejenum) and this process is mediated by 

several hormones as well as nervous system innervation.  The linguinal and gastric 

glands have very little impact on the digestion process of fats, with the exception of 

altering pH.  When a bolus of food enters the stomach, the proteins are digested by 

enzymes that function in a low pH optimum.  The acidic contents of the gastric 

chamber will damage the enterocytes lining the small intestine, and therefore must be 

neutralized prior to entering the duodenum (55).  

 The chemoreceptors within the intestine are sensitive to fat which signals the 

release of CCK into the blood.  This hormone slows gastric emptying, as fat digestion 

is a much slower process than that of carbohydrate and protein digestion.  This also 

allows more time to neutralize the contents of the stomach as it enters the duodenum 

(56).  The bolus of gastric content that is released into the intestine is known as 

chyme.  Chyme is a hyper-osmotic and acidic solution that requires bicarbonate 

(HCO3-) in order to be neutralized.  In addition to slowing gastric emptying, CCK 

also induces the release of HCO3- from the pancreas.  Osmoreceptors in the intestinal 

wall are sensitive to the osmolarity of the chyme, and when the osmolarity is high, 
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they further inhibit gastric emptying.  As the HCO3- neutralizes the intestinal 

contents, gastric emptying increases and the chyme is then able to undergo duodenal 

digestion (56). 

 Fats are insoluble in aqueous solutions, and therefore the triglycerides (TG) in 

the high-fat meal must undergo emulsification prior to enzymatic degradation (57).  

Short (C:2 – C:4) and medium (C:6 – C:12) chain TG are much less hydrophobic than 

long (> C:14) chain TG, and are able to bypass the processes of emulsification, 

degradation, re-esterification, and chylomicron formation that are outlined below 

(57).   Instead, short and medium chain TG are able to be rapidly absorbed in the 

luminal surface and enter directly into the portal circulation bound to plasma albumin.  

Long chain TG are much more hydrophobic and are transported in plasma within 

chylomicrons (57).  Chylomicrons are too large to enter the capillaries, therefore they 

enter the intracellular space via exocytosis, collect in the lacteals, and travel toward 

the thoracic venous system via the lymphatic vasculature.  The chylomicrons finally 

enter the circulation in the upper vena cava.   

 The first step in the digestion of ingested fats is the emulsification process, 

mediated by bile acids that are stored and released from the gall bladder and liver 

(58).  The stimulus for the release of bile is mediated by CCK, which induces the 

relaxation of the sphincter of Oddi and contraction of the gall bladder (56).  This 

allows bile to enter the common bile duct and subsequently flow into the duodenum.   

 Large micelles are formed by the ingested TG and free fatty acids hydrolyzed 

by gastric lipase.  Once in the intestine, bile salts bind to the surface of the large 

micelles, due to its amphipathic structure.  Bile is synthesized from cholesterol and 



47 
 

contains lecithin and bilirubin.  The polar head of the bile salt is exposed to the 

aqueous solution while the hydrophobic section interacts with the lipids in the large 

micelle.  In this process, the hydrophobic TG molecules are separated from water in 

the intestine and the polar surface allows it to remain in solution (57).   

 Following emulsification by bile salts, the ingested fat is now able to undergo 

digestion.  This process is mediated by pancreatic lipase and colipase, both of which 

are secreted from the pancreas.  Pancreatic lipase is structurally and functionally 

similar to other lipases, such as lipoprotein, endothelial, and hepatic lipases, but not 

gastric or hormone-sensitive lipase (59).  A key element to the function of the former 

group of lipases is the fact that they are anchored to the cell surface, and this function 

is achieved via colipase on the surface of the emulsified lipids.  Additionally, 

pancreatic lipase is secreted from the pancreas in a folded, inactive state.  This 

prevents the enzyme from premature activation and subsequent degradation of 

pancreatic cell membrane acyl-glycerols.  When pancreatic lipase binds to the surface 

of the emulsified lipid in the intestine, the presence of colipase anchors it to the 

surface and unfolds the enzyme, thus exposing the active site (59). 

 Pancreatic lipase has specific activity toward the sn1 and sn3 ester bonds of 

the TG.  The typical pattern of FFA hydrolysis begins at the sn1 position, which 

increases the activity of pancreatic lipase for the sn3 position (59).  This process 

results in the formation of 1 R2 monoacylglycerol (MAG) and two FFA for every one 

TG.  The amount of pancreatic lipase secreted is 100-1000 times in excess of that 

which is needed for complete hydrolysis of the ingested fat.  Thus, nearly complete 
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intestinal absorption of TG is achieved, with less than 5% of the total content being 

lost to fecal material (59). 

 The liberation of FFA and the formation of MAG allows the size of the 

emulsified micelles to be reduced.  The smaller micelles are able to migrate to the 

brush border of the proximal jejenum where they encounter a thin layer of water 

covering the luminal surface of the enterocytes, known as the unstirred water layer 

(57).  This serves as a barrier to the lipids, and this is overcome by the bile salts 

through disruption of hydrogen bonds of the water.  Within this process, the low pH 

of the unstirred water layer serves to disperse and disrupt the micellar-bile bonds and 

liberate the FFA and MAG.  Through passive diffusion, the ingested lipids are then 

able to enter the enterocyte for re-esterification and packaging into chylomicrons 

(57).  The liberated bile salts are then reabsorbed in the ileum, enter the portal 

circulation, are recycled by hepatocytes and stored in the gall bladder for later release. 

 Once taken up by the enterocytes, the FFA bind to cytosolic fatty acid 

binding protein (FABP) in order to prevent the cytotoxic effect and diffuse through 

the cytosol to the luminal surface of the smooth endoplasmic reticulum (SER) (60).  

Once inside the SER, the re-synthesis of TG occurs, primarily by the sn2-MAG 

pathway (80%), and the remaining 20% of FFA are synthesized into phospholipids 

(60).  For the purpose of this outline, only the former will be discussed, as the latter 

pathway has little relevance to cardiovascular disease. 

 The enzymes of TG synthesis in the enterocyte SER are bound to the inner 

membrane.  The first enzymatic activity in the re-esterification process within the 

SER is that of acyl-CoA synthetase, which activates the fatty acyl via ATP and 



49 
 

coenzyme A (60).  The products are a free fatty acyl-CoA that is now activated for 

esterification, and AMP + 2PPi. There are specific acyl-CoA synthetases for fatty 

acids of different chain lengths, although the reaction mechanisms are the same for all 

isozymes.  The next step in TG synthesis is mediated by monoacylglycerol 

acyltransferase, and it has preferential activity toward sn2 MAG.  It transfers a free 

fatty acyl-CoA to the sn1 position of a MAG, with sn1-sn2 diacylglycerol (DAG) as 

the product of the reaction.  The initial acyl-CoA synthetase reaction must occur 

twice during the formation of a TG from a MAG, and the product of the second 

reaction is transferred to the DAG via DAG-acyltrasferase in a mechanism similar to 

that of MAG trasnferase, with the exception that it esterifies the activated fatty acyl-

CoA in the sn3 position.  The net of the three reactions outlined above is the 

formation of one TG at the cost of 4 ATP (60). 

 The formation of TG within the SER results in the accumulation of fat 

droplets inside the lumina, which are collected into membrane vesicles.  The 

accumulated TG can not leave the SER independently, as they are extremely 

hydrophobic and can not enter the cytosol or the plasma.  Thus, TG are packaged in 

chylomicrons (CM) inside the SER.  CM are large particles containing lipoproteins, 

cholesterol, TG, and minor amounts of FFA.  The majority of lipoproteins are 

apolipoprotein B-48 (ApoB-48), A-I (ApoA-I), A-II (ApoA-II), and A-IV (ApoA-

IV), with lower amounts of ApoC and ApoE.  ApoB-48 is the major structural protein 

of the CM and serves as the TG binding portion of the pseudo-micelle (61;62).  

ApoA-I and ApoA-II enter the circulation bound to CM, however they are rapidly 

transferred to nascent high density lipoproteins (HDL), in a reverse cholesterol 
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transport (RCT) mediated process.  ApoA-IV is only synthesized in the intestine 

unlike most other apolipoproteins that are of both hepatic and enterocyte origin, and 

its role in CM biology is unknown (61;62).  ApoC-II, ApoC-III, and ApoE are known 

to be incorporated within the CM structure; however they are not found on CM within 

the enterocytes.  It is likely that these apolipoproteins are transferred to the CM in 

plasma during RCT mediated processes.  Their role in CM metabolism, which will be 

discussed in detail below, is to regulate the rate of lipoprotein lipase activity.   

 The first step in the synthesis of CM is the secretion of ApoB-48 in the 

enterocyte (61;62).  While the complete mechanisms underlying this process have not 

been fully elucidated, several of the steps have been shown to be similar between 

hepatocytes and enterocytes.  The main difference between the pathways in these two 

tissues is that the ApoB protein is truncated in the intestine, such that only 48% of the 

original peptide is synthesized.  The ApoB-48 protein is translated on the surface of 

the rough endoplasmic reticulum (RER) by ribosomes, after which it is translocated 

into the lumen of the SER and resides in the membrane (61;62).  There is direct 

competition between the rate of degradation and the rate of translocation, which is 

dependent on the supply of TG.  Thus, in the fasted state, it appears that ApoB-48 

degradation would exceed that of translocation.  However, following a high-fat meal, 

ApoB-48 translocation to the SER membrane would occur much faster and exceed its 

rate of degradation. 

 It has been proposed that during ApoB-48 translation, small amounts of lipid 

particles interact with and bind to the hydrophobic residues of the emerging protein.  

This process ensures that proper folding of the tertiary structure occurs by preventing 
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the lipophilic domains from achieving non-specific interactions with themselves, 

other proteins, or membrane phospholipids (61;62).  The result of this process is the 

formation of a small, dense emulsion particle that is capable of undergoing further 

lipidation post-translationally in a two-step process of CM synthesis (61;62).   

 After formation of the emulsion particle, the total lipid content of the nascent 

ApoB molecule in this phase is insufficient to overcome the rate of pre-secretory 

degradation.  In order to rapidly and efficiently promote lipid accumulation of ApoB 

during CM synthesis, the dedicated, SER-localized, cofactor microsomal triglyceride 

transfer protein (MTP) is required (63-65).  During translocation from the RER to the 

SER, ApoB-48 acquires lipids and cholesterol from membrane vesicles in the lumen 

of the SER, and the secretory route enables the nascent ApoB molecule to interact 

with MTP, which mediates the transfer of TG, phospholipids, and cholesterol from 

membrane vesicles and the ER lumen to the core of the folded ApoB-48 molecule 

(63-65).  This process ensures complete lipidation and core expansion of the nascent 

CM particle. 

 The next step in the synthesis of CM is transport to the golgi apparatus for 

pre-secretory modification through increased phosphatidylcholine (PC) content and 

apolipoprotein glycosylation (66).  There appears to be a sufficient amount of 

phospholipid (PL) in the pre-secretory form of CM, however the golgi apparatus 

increases the relative amount of PC from 50 to 80% of the total PL content (66).  It is 

unknown how the golgi modifications affect the function of CM in peripheral tissues, 

as very little data exists on the functional aspects of pre-golgi versus post-golgi 

modified CM.  It is known that the unmodified form is capable of exiting the cytosol, 
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although this form has not been observed in lymph or plasma under normal 

conditions.   

 Glycosylation is the process of adding a glycosyl group, derived from the 

cyclic form of glucose, after removal of the hemiacetal hydroxyl group via formation 

of a Schiff’s base intermediate, to a functional protein.  This process alters the 

quaternary structure of a protein, and it has been shown to enhance cellular 

recognition of the ApoA-I and ApoB-48 particles (67).  The amount of glycated end-

products in lipoproteins has been shown to mediate the atherogenic nature of remnant 

lipoproteins following delipidation in peripheral tissues (67).  Furthermore, advanced 

glycosylation end-products (AGE) are known to exist in diabetic states and trap 

lipoproteins within the intimal layer, prevent the release of nitric oxide with 

concomitant expression of reactive oxygen species, and promote inflammation and 

monocyte recruitment (67). 

 Following glycosylation in the golgi apparatus, the CM is now capable of 

being released from the enterocyte via exocytosis into the intracellular space.  This 

process occurs when the golgi vesicles containing the CM migrate toward the lateral 

plasma membrane and fuse to the inner membrane (66).  It is not known how the 

golgi vesicles open following attachment to the plasma membrane, or what the fate of 

the golgi complex is following exocytosis, although ample data is available in support 

of  this process.   

 The CM are released into the basolateral space between the enterocytes, and 

travels to the lamina propria (LP) (68).  CM are too large to enter the plasma 

circulation through the leaky junctions of capillary endothelial cells, thus transport 
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must begin within the lymphatic circulation.  The LP contains vessels that collect in 

the lacteals which transport the lymph from the mesenteric vessels to the thoracic 

duct.  The transport distance from the intracellular space to the lacteals is 

approximately 50µm, and there are two possible mechanisms responsible for CM 

movement (68).  One is through diffusion, and another is through fluid movement 

caused by connective tissue electrolyte exchange.  In either case, the rate of lymph 

flow directly affects the rate of appearance of CM in the lacteal collecting ducts. 

 Following CM entry into the lymphatic vessels, it appears in the plasma 

circulation within the superior vena cava.  The TG contained within lipid rich CM are 

not metabolized by hepatocytes, rather they are delivered to peripheral tissues where 

the activity of lipoprotein lipase (LPL) hydrolyzes the ester bonds between the acyl 

groups and the glycerol backbone.  The mechanisms and exercise training adaptations 

of TG and FFA metabolism are described in detail in section 3, although it is 

necessary to describe the mechanisms for transport and delivery to the peripheral 

tissues prior to any discussion of metabolism.  Thus, for the remainder of this 

discussion, the focus will remain on hepatic clearance of remnant CM particles 

(RCMP).    

Chylomicron metabolism

Fatty acids are typically carried in plasma in the form of triacylglycerols (TG) 

in complex with chylomicrons and/or very low density lipoproteins (VLDL).  Some 

free fatty acids (FFA) are carried in plasma bound to albumin, however the majority 

is in the form of TG in complex with chylomicrons and/or VLDL (69).  The rate of 

TG uptake is due in large part on the plasma concentration (69); however there are 
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several components that contribute to clearance in addition to this.  These additional 

factors can be divided into two main categories:  One is the lipolytic capacity of the 

tissue, and the second is the storage capacity of the tissue. 

 There are several metabolic enzymes that contribute to the lipolytic capacity 

of the tissue of interest, in which all contribute to the clearance rate of plasma TG.  

The first to be discussed is lipoprotein lipase (LPL).  LPL is a proteoglycan linked 

enzyme that resides on the luminal surface of endothelial cells.  It is the enzyme 

responsible for the majority of TG hydrolysis from cholesterol (chylomicrons and 

VLDL), and it is expressed in skeletal and cardiac muscle, adipose tissue, and 

monocytes (70-72).  There are two main pools of LPL, one is the heparin releasable 

portion that is bound to the endothelial cell surface, and the other is the inducible 

fraction that is stored within sarcoplasmic reticulum in skeletal and cardiac muscle 

(71;72). 

 The apolipoprotein content of cholesterol is widely held to be the determinant 

of specificity for substrate recognition, and it is believed that LPL has specific 

activity toward ApoB-100 and ApoB-48 containing lipoproteins (71;72). ApoB-100 

is expressed predominantly in hepatic-derived cholesterol fractions (VLDL) and 

ApoB-48 is expressed in intestinal-derived cholesterol fractions (chylomicrons), both 

of which are responsible for the amount of TG contained in the cholesterol particle by 

serving as the TG emulsifying portion.  Chylomicrons also contain ApoC-II and 

ApoC-III, of which the former activates and the latter inhibits LPL activity. ApoC-II 

is the apolipoprotein that activates TG hydrolysis into free fatty acids within the 
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capillary endothelium.  The released FFA is now able to enter the tissue were it can 

be esterified and enter into the mitochondrial β-oxidation pathway. 

 Following ingestion of a high fat meal, the intestinal epithelium increases the 

rate of ApoB-48 expression, which increases the size as well as the total 

concentration of chylomicrons secreted into the lymphatic system (65;69).  

Chylomicrons then enter the plasma circulation by way of the superior vena cava, 

after which LPL is then capable of initiating TG hydrolysis (69).  When the plasma 

chylomicron concentration increases, LPL activity increases in muscle, liver and 

adipose tissue.  However, the rate at which LPL hydrolysis occurs is dependent, in 

part, on the tissue’s energy stores and metabolic demands (70).  

 Following LPL-mediated TG hydrolysis, FFA are released from chylomicrons 

and/or VLDL and diffuse to the cellular membrane.  Initially, it was believed that 

FFA were able to passively diffuse through the cellular membrane of peripheral 

tissues, however it has been noted that this effect reaches a saturation point in vivo 

(55;57;58;73).  Thus, it was determined that membrane transport and carrier proteins 

are responsible for the majority of FFA uptake into the tissues.   

There are three main proteins that contribute to FFA flux across the cellular 

membrane.  The first is the plasma membrane fatty acid binding protein (FABP(PM)), 

and it is expressed in cardiac and skeletal muscle (74).  It can be activated via 

contraction-mediated translocation, and its sarcolemmal translocation pattern is 

similar to that of GLUT4.  This protein is responsible for the carrier-mediated 

transport of long-chain fatty acids (fatty acids > 14- to 18-carbons), while fatty acid 
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transport protein-1 (FATP-1) is responsible for the transport of very-long chain fatty 

acids (>18-carbons) across the plasma membrane (75). 

The third protein involved in FFA transport across the sarcolemmal is fatty 

acid translocase (FAT/CD36).  Similar to FABP(PM), FAT/CD36 expression is 

increased following muscular contraction and insulin mediated 2nd messenger 

signaling pathways (76).  However, the exact second messengers have not been 

elucidated.  It appears that peroxisome proliferator activated receptors-alpha and 

gamma (PPAR-α PPAR-γ) are capable of increasing FAT/CD36 expression in hepatic 

tissues but not in skeletal or cardiac muscle (76).  In addition to its expression on the 

sarcolemma, it is also expressed on the mitochondrial membrane and a novel function 

in the regulation of β-oxidation has been suggested (76). 

 It is now thought that fatty acid translocase is capable of regulating the 

activity of carnitine acyl transferase-1 (CAT1) (77).  CAT1 is the enzyme responsible 

for transporting activated fatty acids (fatty acyl-CoA) from the cytosol into the 

mitochondria, and it is a major site of regulation in the β-oxidation pathway (78).  

Thus, increasing the activity of CAT1 will increase the flux of FFA through 

metabolism and increasing the clearance of plasma TG levels (77;78).  CAT1 

catalyzes the transfer of the thiol-ester (CO-S) bond of the acyl-coenzyme-A (CoA-

SH) to carnitine, which allows the fatty acyl-carnitine to cross the inner-

mitochondrial membrane.  Once inside the mitochondria, carnitine acyl transferase-2 

catalyzes the transfer of the thiol-ester bond of the fatty acyl-carnitine to CoA-SH, 

thereby reforming the activated acyl-CoA inside the mitochondrial matrix (78). 
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Several factors are responsible for the regulation of CAT1, all of which have a 

direct influence on the flux of cytosolic FFA; however the main regulators of CAT1 

activity are malonyl-CoA and citrate (77).  Malonyl-CoA is formed by the addition of 

bicarbonate (HCO3-) to acetyl-CoA via the enzyme acetyl-CoA carboxylase in an 

ATP dependent manner.  In the presence of increased malonyl-CoA concentrations, 

CAT1 activity decreases (77;78).   

Acetyl-CoA carboxylase is inhibited by phosphorylation via protein kinase A 

(PKA) or increased cytosolic FFA concentrations (79).  Inhibition is mediated by 

promoting the precipitation of the phosphorylated form of the enzyme out of active 

polymers.  Activation of acetyl-CoA carboxylase is mediated by increased cytosolic 

citrate concentrations (79).  Citrate is a potent allosteric activator, and after binding to 

the acetyl-CoA carboxylase regulatory sites, it promotes polymerization of the 

enzyme into its active form, in spite of phosphorylation of the inhibitory sites.  

Finally, the effect of citrate is easily diminished in the presence of low concentrations 

of acyl-CoA, although this effect is negated when PKA phosphorylation of acetyl-

CoA carboxylase is not present (79). 

Following CAT2-mediated reformation of acyl-CoA in the mitochondrial 

matrix, the substrate enters into the β-oxidation pathway.  Large amounts of ATP and 

reduced coenzymes are produced from a single fatty acyl-CoA, of which there are 

three for every TG molecule.  At rest, the energy released rapidly exceeds demand, 

and the majority of ingested FFA is channeled toward storage as intramuscular TG 

droplets or as TG in adipose tissue.        
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As stated above, there are two factors that contribute to the reduction in 

plasma TG following a high fat meal.  The first, which was discussed above, is 

lipolytic capacity, and the second is the storage capacity of the tissue.  Storage 

capacity refers to the tissue’s ability to uptake TG, and with the exception of adipose 

tissue, it is determined in large part by cellular energy demands.  Skeletal and cardiac 

muscle have the capacity to store TG within the intracellular vacuoles; however the 

relative amount of intramuscular TG is much lower than adipose tissue (80;81). 

In addition to the fact that myocellular storage capacity is low, the energy 

demand of skeletal muscle during rest is low.  During physical activity, energy 

demand increases over 10-fold from resting conditions and the rate of TG uptake 

increases to meet this demand.  However, at rest, a high fat meal combined with 

glucose will cause the majority of plasma TG to be directed to white adipose tissue 

for storage (82).  The low-level energy demands at rest are met by glycolytic 

metabolism due to the rise in insulin concentrations that occur concomitantly with the 

ingested glucose. 

The effect of increased β-oxidation approximately two-hours postprandially is 

mediated in the same manner as that during fasting conditions.  The inhibition of 

skeletal and cardiac muscle LPL is removed, which allows for increased chylomicron 

TG hydrolysis (72).  In the absence of physical activity, energy demands are low, and 

the majority of plasma TG continues to be directed toward adipose tissue storage, in 

spite of the fact that glucose levels have decreased.  This illustrates the necessity for 

greater caloric expenditure following the consumption of a high fat meal.  If energy 
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demands are increased, more TG will be consumed via β-oxidation and the amount of 

TG stored will be reduced. 

Triglyceride and glucose metabolism

In the fasted state, prior to meal ingestion, insulin concentrations are low and 

glucagon levels are high, compared to the postprandial state.  The effect of these 

hormones on lipid metabolism causes an increase in fat oxidation and 

glucose/glycogen sparing (83).  This effect is mediated through covalent and 

allosteric regulation of several metabolic enzymes, one of which is hormone sensitive 

lipase (HSL).  HSL is expressed in adipose tissue, skeletal muscle, and it is believed 

to be active in cardiac muscle, although in lower quantities.  HSL is activated by 

glucagon and other cyclic-AMP activating agents and it is inhibited by insulin (84).  

LPL in adipose tissue functions in a reciprocal manner counteracting the 

effect of HSL.  LPL serves to promote TG storage within the adipocyte and HSL 

serves to promote the release of FFA and glycerol into the circulation.  In skeletal and 

cardiac muscle, these two enzymes work in concert to promote FFA esterification and 

lipid oxidation (84).  LPL releases FFA from chylomicrons and VLDL, and HSL 

promotes the esterification of stored lipid droplets within the vacuoles, releasing 

intracellular FFA into the cytosol.  In adipose tissue, these two enzymes regulate the 

rate of storage and release, and in skeletal and cardiac muscle, they regulate the flux 

of FFA into β-oxidation (84).       

The ingestion of a high fat meal combined with glucose will cause an increase 

in insulin and a decrease in glucagon, compared to the fasting state.  The effect of this 

on lipid metabolism will be to decrease the rate of lipid oxidation in muscle and 
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increase the rate of storage in adipose tissue (83), plasma TG will decrease, and there 

will be a shift in tissue sensitivity.  Insulin will inhibit HSL and increase the activity 

of LPL in muscle and adipose tissue.  Substrate utilization will begin to favor glucose 

metabolism and TG will be stored predominantly in adipose tissue until insulin levels 

return to normal. 

This process is achieved via reciprocal regulation of several metabolic 

enzymes, the first of which is the activation of insulin receptor substrate-1 (IRS-1).  

The tyrosine kinase activity of the insulin receptor activates IRS-1 which then 

phosphorylates and activates phosphatidylinositol-3-kinase (PI3K).  PI3K then 

converts phosphatidylinositol-3,4-bisphosphate into phosphatidylinositol-3,4,5-

triphosphate (PIP3).  PIP3 activates phosphatidylinositol-dependent kinase-1 (PDK1) 

which then initiates a wave of phosphorylations which results in an increase in the 

rate of glycogen synthesis (85).  

In addition to activating glycogen synthesis in muscle and liver, insulin-

stimulated PDK1 activation phosphorylates phosphoprotein phosphatase-1 which 

dephosphorylates and deactivates HSL.  The result is a decrease in TG release and an 

increase in TG uptake in adipose tissue.  This process continues in the presence of 

increased plasma insulin levels and following the return of glucose to normal levels, 

skeletal muscle TG uptake and β-oxidation will again increase.  

The rise in plasma insulin levels following a single meal is transient, and is 

expected to disappear within one- to two-hours.  After this time, it is reasonable to 

assume that the body has achieved homeostasis with respect to plasma glucose levels.  

It is at this point that the inhibition of lipolysis mediated by insulin is diminished to 
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the point that cellular energy demands are once again met by plasma TG.  This has 

been observed in our laboratory, as the respiratory exchange ratio consistently 

increases from baseline (0-hour) to 2-hours postprandial, and then decreases from 2-

hours to 4-hours postprandial (unpublished data).  These results confirm the fact that 

β-oxidation decreases following the ingestion of a fat meal during the time that 

insulin levels are elevated, and then increases following glucose homeostasis. 

We have also found that the RER is altered in individuals following a high fat 

meal after exercise training (unpublished data).  The estimated rate of β-oxidation is 

higher 2-hours after a meal (lower VCO2/VO2), which suggests that the rate of lipid 

metabolism is higher following training.  There are several reports that either directly 

or indirectly confirm this observation, which is likely due to the fact that physical 

activity increases the metabolic and storage capacity of skeletal muscle (86-90).  

Furthermore, it is well known that insulin sensitivity and the rate of glucose disposal 

is increased with training (83;89). 

The metabolic capacity of skeletal muscle increases due to an increase in LPL 

expression, FFA transport protein density, mitochondrial density, and oxidative 

enzyme content.  LPL expression increases due to an increase in muscle capillary 

density, which provides for a greater capacity for chylomicron and VLDL TG 

hydrolysis.  Second, there is an increase in fatty acid translocase (FAT/CD36) and 

plasma membrane fatty acid binding protein expression (76).  This effect is mediated 

in two ways,  the first of which is an increase in gene expression and the second is an 

increase in contraction-mediated translocation of FAT/CD36 to the sarcolemmal 

membrane, similar to that of GLUT4 (76).  When the effect of increased LPL 
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expression is combined with an increase in FFA transport proteins, the overall effect 

is to significantly enhance the capacity for FFA delivery to the muscle. 

In addition to the transport capacity, the lipolytic activity of skeletal muscle is 

greater following exercise training (71;72).  This allows for a greater capacity of FFA 

flux through β-oxidation at rest.  Several of the regulatory oxidative enzymes in 

skeletal muscle have been shown to have higher concentrations after exercise 

training.  The elevated metabolic demand of physical activity causes CAT1, pyruvate 

dehydrogenase complex, and citrate synthase (as well as many others) gene 

expression to increase, all of which increase oxidative metabolism capacity.  It is 

likely that energy demand during exercise depletes myocellular glycogen and lipid 

stores, and a greater capacity for substrate entry into the tissue is needed in order to 

replenish energy stores.   

In addition to gene expression, the lipolytic capacity is increased after exercise 

training due to an increase in insulin sensitivity.  GLUT4 concentration and density is 

higher after training (91;92), and this effect is mediated in two ways.  The first is 

through contraction-induced migration to the sarcolemma, where it can become 

functional at a lower activation threshold.  Second, GLUT4 gene expression 

increases, which increases both the sarcolemmal density and the concentration of the 

inducible pools within the cytoplasm (91;92).  Thus, the capacity to uptake and clear 

circulating plasma glucose is much greater in the trained state relative to the 

sedentary state. 

If the ability to clear plasma glucose is higher after exercise training, then it is 

logical to assume that insulin-stimulated glucose disposal will increase, and the 
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concentration of insulin will decrease.  This is what is meant by an increase in insulin 

sensitivity.  Less insulin is needed in the trained state compared to the sedentary state 

to have the same rate of glucose disposal.  Increased insulin sensitivity will decrease 

postprandial insulin concentrations, and the inhibition of lipolysis will be diminished 

or even abolished after exercise training. 

The effect of increased lipolytic capacity after training due to decreased 

postprandial insulin concentrations would occur independently of the intensity of 

training.  Prolonged physical activity will deplete glycogen stores at higher intensities 

(>60% VO2max), and metabolic demand will be met through stored and plasma TG at 

lower intensities.  In either case, contraction-mediated GLUT4 activity will be higher 

following exercise training, independent of intensity, and dependent on total energy 

expenditure.   

It has been consistently shown that β-oxidation increases in the recovery 

period after an acute bout of exercise, and this is believed to be due to 

glucose/glycogen sparing in hepatic tissue and skeletal muscle (87;88;90).  In order to 

explain this observation in light of the fact that GLUT4 expression and sensitivity is 

higher after an acute bout of exercise, it was determined that glucose-6-phospahte is 

directed toward glycogen synthase through a decrease in hexokinase activity (89).  If 

glycogen synthesis increases, then β-oxidation is the most likely method for meeting 

the energy demand of basal metabolism following exercise. 

In summary, the addition of insulin to a single high fat meal will decrease the 

rate of TG uptake due to insulin-mediated inhibition of lipolytic enzymes.  This effect 

is transient, and it is believed to disappear within two hours postprandially, at which 
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point TG clearance increases.  Following exercise training, metabolic capacity and 

insulin sensitivity is higher, and the inhibition of lipolysis is expected to be lower.  

This would allow for a greater flux of FFA through β-oxidation, and the clearance of 

plasma TG would occur much sooner after training.  

Chylomicron remnant clearance

The clearance of remnant chylomicron particles (RCMP) from circulation is 

believed to occur in three steps, the first of which is uptake into the space of Disse 

through the fenestrated endothelium (93).  The openings in this space are too small to 

allow large CM to pass, which prevents hepatic clearance of TG-rich CM.  However, 

the smaller RCMP are able to enter the space of Disse where large amounts of 

heparin sulfate proteoglycans (HSPG) and ApoE are present (93).  The HSPG serve 

as receptors that bind and localize ApoE within the space, as well as to trap RCMP 

that have entered.   

 Receptor-mediated hepatic endocytosis of RCMP may occur in any of three 

fashions:  1) either through HSPG independent endocytosis, 2) low density 

lipoprotein related receptor (LRP) bound HSPG, or 3) low density lipoprotein 

receptor (LDLR) independent of HSPG (93;94).  In each of the three mechanisms 

listed above, there is a common factor in which RCMP bind to the receptor(s) which 

are then internalized via endocytosis, subjected to ubiquination, channeled to clathrin-

coated pits, and subsequently degraded in lysosomes or recycled.  The detailed 

mechanisms of this process will be discussed below. 

 ApoE and ApoB-48 each have heparin binding domains within the protein 

sequence and are known to be sequestered in vivo by HSPG (93).  This may serve as 



65 
 

the initial step in removing RCMP from the circulation, after which further lipolytic 

degradation via HL and LPL reduces the size and TG content of the CM.  In addition 

to this process, the relative cholesterol content of the remnant increases, and the 

ApoE expressed on the surface can interact with the LDLR or LRP (93;94).  In the 

absence of LDLR or LRP, HSPG are capable of internalizing following ligand 

binding, however this process is much slower than that of LDLR and LRP 

internalization. 

 The LDLR shares over 50% sequence homology with the LRP and each 

receptor has HSPG and ApoE binding domains (94).  It has been proposed that 

fractions of circulating CM are complexed with LPL in plasma, which further 

facilitates HSPG/LDLR or HSPG/LRP binding to the RCMP (94).  The functionality 

of this process has been questioned due to an underwhelming amount of knowledge 

as to the contribution of plasma LPL to CM metabolism.  Studies in which human 

LPL was over-expressed in hyperlipidemic and hypercholesterolemic rabbits reduced 

the levels of circulating remnant particles, however the amount of infused LPL 

greatly exceeded that which is seen under physiological conditions (95;96).   

 The most compelling evidence for the contribution of LRP and LDLR in the 

clearance of RCMP comes from knock out (KO) animal models.  LDLR KO models 

have consistently shown that absence of the receptor induces severe hyperlipidemia 

and hypercholesterolemia (97-99).  Complete removal of the LRP gene causes 

embryos to die in utero, however this aspect was overcome by co-expression of the 

α2-Macroglobulin receptor associated protein (RAP) gene.  RAP binds to the LRP and 

inhibits its activity, thus rendering it ineffective; RAP also binds to the LDLR 
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although with a much lower affinity (94;100).  The level of hypercholesterolemia in 

the RAP expression animal models was the same as that which was observed in the 

LDLR KO animal models (94).  In each of the models listed above, the cause of the 

increased plasma lipoprotein levels was attributed to deficiencies in hepatic remnant 

particle endocytosis. 

 Following ligand binding to the respective receptor (i.e. HSPG, LDLR, or 

LRP), it is internalized and targeted for lysosomal degradation (101).  A drop in the 

pH within the lysosome causes the cholesterol to dissociate from the lipoproteins of 

the CM, and the cholesterol is either recycled or degraded.  If it is recycled, it can be 

used in either very low density lipoprotein biosynthesis, integrated into the 

membrane, or used for hormone synthesis in other tissues.  The TG and protein 

components of the RCMP are degraded in the lysosome and targeted for catabolic or 

biosynthetic pathways (102).  Thus, receptor-mediated endocytosis efficiently 

removes remnant lipoproteins from the plasma, with the majority of this activity 

occurring in the hepatic tissue. 

Hemostasis

Historically, the process of coagulation has been referred to as a cascade of 

enzymatic reactions that includes intrinsic and extrinsic pathways.  However, the 

terms can be misleading. A cascade implies a step-wise process leading from one 

reaction to another, and the process of coagulation involves many positive and 

negative feedback mechanisms through activation of plasma proteins.  It is therefore, 

more accurate to refer to coagulation as a pathway than a cascade.   
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As mentioned above, coagulation involves the intrinsic and extrinsic 

pathways.  The proteins involved in the activation of the intrinsic and extrinsic 

pathways differ, but they both lead to the same result: factor X activation and 

subsequent thrombin and fibrin formation. The intrinsic pathway is activated when 

elements of the coagulation pathway come into contact with a negatively charged 

surface.  The extrinsic pathway is activated when factor VII is exposed to tissue 

factor expressed on disrupted, nucleated cell membranes.  The intrinsic pathway 

includes all of the coagulation proteins present in plasma that are required for the 

formation of thrombin as well as an anionic (negatively charged) surface that is not 

present in plasma, which initiates contact activation (103).   

 Five factors are required to initiate contact activation within the intrinsic 

pathway of coagulation.  The first is factor XII, and it is a plasma glycoprotein that 

circulates in an inactive form.  In its active form it is a serine protease, and normal 

human plasma contains about 40 µg/ml of factor XII (104).  The protein structure 

includes a binding site that attaches to negatively charged surfaces (105), and in vivo 

this surface is usually the phospholipid bilayer of an endothelial cell.  In vitro, factor 

XII will bind to glass or other artificial surfaces with an anionic charge (103), which 

has given it the common name of ‘glass activation factor’. 

 Another protein that is required for contact activation is plasma prekallikrein.  

Normal human plasma contains about 40 µg/ml of plasma prekallikrein, which 

circulates in an inactive form and is another serine protease in its active state.  Plasma 

kallikrein then converts factor XII into factor XIIa that in turn activates more plasma 

kallikrein and amplifies factor XII activation.  This is a form of positive feedback 
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within the coagulation process that increases the rate of contact activation via 

amplification of factor XIIa formation. 

 A third protein required for contact activation is factor XI.  The inactive form 

of factor XI is composed of two homodimers, each containing a serine protease 

domain.  Factor XIIa activates each monomer of the factor XI protein, which results 

in a 2:1 formation of catalytically active domains per factor XIa/XIIa molecule (106).  

This process, combined with the amplification step achieved through XIIa-mediated 

activation of plasma kallikrein, rapidly amplifies the rate of contact ativation.      

The fourth protein that is required for contact activation is high molecular 

weight kininogen (HMWK).  HMWK is a cofactor that binds plasma prekallikrein, 

factor XI, and bradykinin.  Bradykinin is bound to plasma kallikrein, and the binding 

of HMWK to the bradykinin/plasma kallikrein complex promotes the conformational 

change of the bradykinin structure to form a heavy and light chain (107;108).  Normal 

human plasma contains about 70-90 µg/ml (109;110), with the majority of plasma 

prekallikrein and factor XI bound to the light chain (111). 

The final element required for contact activation is a negatively charged 

surface.  As stated above, the phospholipid layer of a damaged endothelial cell can 

serve as the surface on which factor XII and the light chain of HMW kininogen bind.  

Because these proteins are circulating in plasma, it is necessary for them to bind in 

close proximity to one another (103).  This allows factor XII and HMW kininogen 

(with plasma prekallikrein and factor XI bound to its light chain) to efficiently initiate 

the coagulation process in a localized region.  In light of the many advances in the 
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understanding of the coagulation processes, it is still not fully understood how the 

process of contact activation is initiated in vivo. 

Investigators have hypothesized that the binding of factor XII to the negative 

surface produces a conformational change in the structure of the protein that results in 

its activation (112).  Another theory is that trace amounts of factor XIIa activate the 

process, either by binding to the cell membrane and converting enough plasma 

prekallikrein into plasma kallikrein, or binding in close enough proximity to the 

HMW kininogen complex to efficiently activate the coagulation process (113). 

When factor XII is activated, it is able to exert its proteolytic properties on 

plasma prekallikrein to produce plasma kallikrein.  This amplifies the amount of 

factor XIIa that is generated, which then converts factor XI into factor XIa, which is 

the end product of contact activation (103).  Factor XIa then begins the intermediate 

phase of the intrinsic pathway with the activation of factor IX.  Normal human 

plasma contains between 3-5 µg/ml of factor IX, which in its active form, is a serine 

protease (114;115).  Factor IX is vitamin K dependent and requires the presence of 

calcium ions (Ca2+) as a cofactor for activation.  When the membrane-bound factor 

XIa that is complexed with HMW kininogen combines with Ca2+ and factor IX in the 

presence of vitamin K, it is able to convert factor IX into factor IXa (116). 

 The next step in the intrinsic pathway is the activation of factor X.  It is a two-

chained glycoprotein, which in its active form is a serine protease (103).  Activation 

of this protein requires the “Xase” complex that is formed by the interaction of factor 

IXa and the cofactors of factor VIIIa, Ca2+, and a negatively charged phospholipid 

surface (103).  Ca2+ circulates freely in human plasma and the negatively charged 
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phospholipid surface is likely to be the same as that on which contact activation was 

initiated.  

Factors IX and X can also be activated through the extrinsic pathway.  A 

variety of cells in the human body, including endothelial cells, express surface tissue 

factor (TF).  The natural arrangement of the phospholipid membrane of cells that 

express TF is asymmetrical, and following disturbance, the membrane protein, 

scramblase, intiates the rearrangement of phosphatidylcholine (PC) from the inner to 

the outer membrane.  Undisturbed endothelial cells do not express PC on their outer 

membrane, however, the scramblase-mediated re-arrangement of PC allows the 

encrypted (inactive) form of TF to be activated.   

TF is a glycoprotein receptor that binds circulating factor VII, and this process 

can occur with either active or inactive TF.  Furthermore, the action of PC re-

arrangement can activate TF/factor VII complex, or unbound TF.  The de-

encryption/activation of TF causes a conformational change in factor VII that exposes 

the catalytically active domain of factor VII, thus forming active factor VII.  The 

resulting TF/factor VIIa complex then activates circulation factors IX and X, which 

then bind to the TF/factor VII complex, creating the catalytically active Xase 

complex.  At this point, the intrinsic and extrinsic pathways converge.  The Xase 

complex leads to thrombin activation and subsequent fibrin formation.  

Between the steps of Xase and fibrin activation, there are several regulatory 

and amplification steps that occur.  Factor VIII, which circulates in plasma in an 

inactive complex with a carrier protein called von Willebrand factor, is a cofactor in 

the amplification of Xase-mediated thrombin activation.  Free plasma factor VIII is 
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vulnerable to premature degradation in plasma and it appears that von Willebrand 

factor serves to prevent its degradation.  When the factor VIII/von Willebrand factor 

complex comes into contact with the Xase complex, factor VIII undergoes a 

conformational change that promotes its activation by thrombin. Following factor 

VIII activation, the von Willebrand carrier protein is capable of promoting 

coagulation by activating platelets and promoting platelet aggregation.  Thus, 

activation of factor VIII can be viewed as a potent amplification step in the 

coagulation mechanism.  Factor VIII activates thrombin, which in turn activates 

fibrin, factor V, and factor VIII and promotes platelet aggregation.     

Fibrin circulates in its inactive form as fibrinogen and normal human plasma 

contains between 2 and 4.5 mg/ml of the zymogen, which greatly exceeds the 

coagulation proteins previously mentioned (103).  Fibrin monomers serve as the 

structural component of a blood clot by cross-linking and forming the framework of 

fibers in which platelets bind.  Stabilization of fibrin cross-linking requires factor XIII 

and Ca2+ as cofactors.  Factor XIIIa is activated by thrombin, binds to the fibrin 

monomers in a calcium dependent manner, and stabilizes the cross-linked fibrin 

polymers resulting in a fibrin clot.   

The formation of a blood clot is necessary to prevent infection and the loss of 

blood following vascular injury.  When this occurs, fibrin is formed and stabilized 

through the mechanisms discussed above and it is the role of the fibrinolytic system 

to degrade, or lyse, the fibrin clot.  The main protein involved in fibrin degradation is 

plasmin.  It circulates in plasma in the inactive form called plasminogen, which binds 
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to the Aα chain of fibrin.  Since the clot is bound to the membrane surface, the 

process of fibrinolysis is restricted to the site of fibrin formation.   

 The Aα chain of fibrin also contains a binding site for tissue plasminogen 

activator (tPA), which is the main plasma activator of plasminogen.  When single-

chained tPA binds to fibrin, it undergoes a conformational change that increases its 

proteolytic activity toward plasminogen.  This serves to activate plasmin, which in 

turn degrades the fibrin proteins and converts the single-chained tPA to a more highly 

active double-chained tPA.  The increased activity of double-chained tPA results in a 

greater amount of plasmin activation and increases the rate of fibrin degradation.  The 

end product is the release of fibrin dimer proteins (FDP).  

 tPA is produced, stored and released from vascular endothelial cells.  Normal 

human plasma contains about 3 µg/ml of tPA at rest (117).  Studies have reported 

plasma levels to increase five-fold during exercise (118;119); the most probable 

mechanism for this elevation is an increase in vascular blood flow (120) and/or an 

increase in catecholamines (119).  In the absence of injury, the increase in tPA release 

is matched by an increase in plasminogen activator inhibitor-1 (PAI-1) release. 

 Endothelial cells and blood platelets release PAI-1, which can circulate bound 

to fibrin or in a complex with vitronectin.  Normal human plasma contains about 25-

30 ng/ml of PAI-1, however it has been shown to increase with age (117;121).  PAI-1 

inhibits tPA by binding to it and blocking its proteolytic activity.  This tPA-PAI-1 

complex formation occurs quickly in plasma, which can result in a rapidly reduced 

fibrinolytic capacity.   
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As stated above, normal human plasma contains about of 3 µg/ml tPA, and 

about 13.5 AU/ml of PAI-1 at rest (122).  As age increases, and/or with the onset of 

certain diseases like hypertension, diabetes, and hyperlipidemia, or nicotine usage, the 

PAI-1 concentration has been shown to be elevated at rest, and exhibit a less 

pronounced reduction during exercise compared to healthy controls (123).  As with 

PAI-1 in the subject population above, tPA has been shown to be either decreased 

(123), or unchanged (121;124) at rest, with a concomitant decreased response during 

and after physical exertion compared to healthy controls.   

 In healthy individuals, a balance between thrombotic and fibrinolytic 

potentials maintains hemostasis. However, changes in coagulative and fibrinolytic 

potentials during and after exercise may cause an imbalance that favors thrombosis.  

tPA activity increases and PAI-1 activity decreases during exercise and returns to 

baseline within one hour (125).  Factor VIII increases with exercise (126), and has 

been shown to remain elevated for more than one hour after exercise (44).  An 

increased potential for coagulation without a concomitant elevation in the fibrinolytic 

potential increases the possibility of clot formation, and in CVD patients this may 

lead to stenosis, angina, myocardial infarction, or stroke.    

Some of the hemostatic markers, or variables, that are typically measured in 

response to exercise are changes in the plasma concentrations of factor VIII, 

thrombin-antithrombin III complex (TAT), tissue plasminogen activator (tPA), and 

plasminogen activator inhibitor-1 (PAI-1).  Several studies have reported elevated 

FVIII levels immediately after exercise (126-128) and one hour after exercise (125).  
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These increases have been observed in both high intensity, short duration, and lower 

intensity, long duration exercises.   

The exact mechanisms responsible for the reported increases in FVIII 

following acute exercise are not completely understood, but appear to be related to 

catecholamines (129) and/or vascular endothelial cell damage (130).  Cohen et. al. 

(129) reported a decreased FVIII response after propranolol infusion when compared 

to a placebo trial during a maximal treadmill exercise test.  These investigators also 

found no significant difference in the fibrinolytic response in the placebo and 

propranolol infusion trials.  This suggests that the stimulus for FVIII activation may 

be mediated by the β-adrenergic system, while the stimulus for fibrinolytic system 

activation may be dependent on other factors. 

Factor VIII assists in the conversion of prothrombin into thrombin, which 

results in an enhanced state of hypercoaguability.  Antithrombin III (AT III) is a 

protein that regulates thrombin formation, thus regulating coagulation.  It circulates in 

plasma and binds to thrombin, creating the inactive thrombin-antithrombin III (TAT) 

complex.  AT III is also effective in inhibiting the proteolytic activity of factors IXa, 

Xa, and XIIa.  The formation of the TAT complex is a slow process that is enhanced 

when heparin, that is present on the surface of endothelial cells, binds to AT III, 

which increases its affinity for thrombin.  Fibrin formation from fibrinogen via 

thrombin remains possible in the presence of AT III because the speed at which 

thrombin exerts it enzymatic cleavage of fibrinogen exceeds that of the TAT complex 

formation. 
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Several studies have reported elevations in the TAT complex following 

exercise (120;130;131).  Bartsch et. al. (131) reported in an investigation of Swiss 

long distance runners, that an increase in thrombin generation occurred in vivo, 

following a 100 km race, as reflected by increased TAT levels following the race.  

Other studies have shown that increases in TAT, which indicates thrombin 

generation, can be observed in exercise of a shorter duration and coincides with 

increases in prothrombin fragments 1+2 (PTF 1+2) (130;132).   

Thrombin can act as a potent stimulator of coagulation by activating proteins 

within the coagulation pathway, enhancing platelet stimulation and aggregation, and 

converting fibrinogen into fibrin.  However, in the presence of thrombomodulin, 

thrombin can become an effective anti-coagulant.  Thrombomodulin is a high affinity 

protein receptor for thrombin on the surface membrane of endothelial cells.   When 

thrombin binds to thrombomodulin, it results in a conformational change in the 

thrombin molecule (103).  In the presence of Vitamin K, this conformational change 

allows activation of protein C (133).  

 In healthy individuals, exercise results in an increased potential for 

coagulation that rarely leads to fibrin formation (43;131).  The increased potential for 

coagulation is the result of an increased activity of the intermediate enzymes within 

the pathway and an increase in platelet adhesiveness (134).  The increased activity is 

well regulated and prevented from producing excessive or inappropriate thrombi 

through the activity of the regulatory proteins within the coagulation pathway.  This 

allows activation of the intermediate coagulation enzymes without the activation of 

fibrin. 
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Atherosclerosis is now considered to be a low-grade inflammatory disease that 

results in endothelial cell dysfunction.  Recent evidence has shown that several 

factors, including hyperinsulinemia and hypertriglyceridemia, whether chronic or 

postprandial, is associated with leukocyte activation and an elevated potential for 

thrombosis which promotes endothelial cell dysfunction and vascular damage.  

Although the underlying mechanisms are not completely understood, it has been 

shown in monocyte and endothelial cell cultures incubated with triglyceride (TG) rich 

chylomicrons and VLDL, that FFA and TG uptake activates FVII, TF and PAI-1. 

It is logical to assume that not all sections of the vascular endothelium 

respond to an oral fat load in the same manner.  In an older, sedentary population, 

there is likely to be moderate levels of atherosclerosis present in coronary and/or 

cerebral arteries, where the risk of thrombus formation is much higher than in other, 

non-atherosclerotic arteries.  The underlying, low-level inflammatory state in 

diseased arteries is capable of attracting monocytes, which can be a potent stimulus 

for increased coagulation and decreased fibrinolysis.  Furthermore, the majority of 

life is spent in the postprandial state, and for these reasons, the necessity of an 

investigation into the local fibrinolytic response in conjunction with the systemic 

response is apparent.    

Recent studies have shown that a positive feedback mechanism within the 

hemostatic system is able to paradoxically contribute to the progression of plaque 

formation via platelet activation.  The thrombogenic surface of the fibrous cap and the 

intimal layers of atherosclerotic regions within the arteries are capable of activating 

platelets.  Activated platelets release pro-atherogenic factors, which creates a 
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deleterious positive feedback mechanism that destabilizes the fibrous cap.  Therefore, 

mechanisms for reducing or inhibiting platelet activation would be highly effective in 

reducing the progression of atherosclerosis.  

Atherosclerosis is a long-term, complex disease that involves many factors 

and has been shown to begin very early in life (135).  Although complications of the 

disease typically do not manifest until the fourth or fifth decade of life, foam cell 

formation and fatty streaks have been shown in autopsies of healthy adolescents (136-

138).  Foam cells are lipid-laden macrophages that have migrated into the 

subendothelial matrix of the vascular bed in order to scavenge lipids and lipoproteins 

that have undergone oxidative modification by the endothelium (139).  The 

accumulation of foam cells and the resulting inflammatory response within the 

intimal layer of the subendothelial space eventually creates a fatty streak, which is 

characterized by endothelial cell dysfunction, smooth muscle cell migration and 

proliferation, and collagen formation (140;141).  Atherosclerotic lesions begin to 

appear when the underlying area of the fatty streak becomes raised as foam cells and 

smooth muscle cells are deposited, which begins to partially occlude the vessel.  

Finally, the fibrous cap of the atherosclerotic lesion weakens due to the apoptotic 

regression of smooth muscle cells via tumor necrosis factor-α (TNF-α) and chymase 

which are released from macrophages (142). 

Total plasma high density lipoprotein (HDL) has been associated with a 

reduction in the relative risk for CVD, and it can be reduced into two main sub-

classes: HDL2 and HDL3. The former is the lipid-rich form that transports scavenged 

lipids and lipoproteins from the circulation to various tissues within the body 
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(143;144).  The lipids and lipoproteins carried by HDL2 are transferred to other cells 

through various surface receptor enzymes such as lipoprotein lipase (LPL), hepatic 

lipase (HL), and endothelial lipase (EL).  Following the removal of lipids, HDL2

becomes denser due to a higher relative apolipoprotein content and lower lipid 

content, and is thus classified as HDL3 (143).  The lipid-free HDL3 is able to further 

scavenge deposited lipids and cholesterol, and as the relative lipid content increases, 

the HDL3 again becomes HDL2. This cyclic process, termed reverse cholesterol 

transport (RCT), is the most widely accepted mechanism for HDL mediated CVD 

protection (145-147).   However, it also appears that the lipid-free form of HDL is the 

sub-fraction that has the greatest platelet inhibitory effect as well.  HDL3 has been 

shown to directly supply arachadonate to endothelial cells in vitro (147).  It is 

unknown if this functions in vivo, although HDL has been correlated with plasma 

levels of stable PGI2 metabolites (147) and in conjunction with its effects in RCT, 

providing the substrate for PGI2 synthesis is another proposed mechanism for HDL-

mediated CVD protection. 

 Diets high in fat have also been associated with the development of CVD, 

and RCT is activated following ingestion of a high fat meal (145).  Intestinally 

absorbed free fatty acids are carried within chylomicrons and very-low density 

lipoproteins (VLDL) as triglycerides (TG) and delivered to tissues throughout the 

body.  After the removal of TG, the remnant TG and lipoproteins of chylomicrons 

and VLDL are scavenged by HDL3 through reverse cholesterol transport.  It would be 

expected that following a high fat meal, plasma HDL3 concentrations would be lower 

due to their increased conversion into HDL2, which has been confirmed by Lassel and 
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coworkers (148).  The reduction in HDL3 is most likely due to the increased activity 

of LPL, HL, and/or EL during RCT.  These three enzymes are the major RCT 

mechanisms for TG and HDL, although compared to LPL and HL, EL has lower TG 

activity and higher Apo A-I phospholipid activity. 

Platelets are vital to the progression of atherosclerosis because they are 

responsible for mediating the smooth muscle cell migration into the intimal layer.  

Platelets are anucleated blood cells derived from megakaryocytes that participate in 

hemostasis and wound repair by binding to integrins expressed on damaged or 

dysfunctional endothelial cells which mediate their activation.  Platelet derived 

growth factor (PDGF) is released from activated platelets in order to facilitate tissue 

repair and wound healing.  Platelets also provide a negatively charged phospholipid 

surface for Factor X and prothrombin activation reactions.  Furthermore, they release 

substances such as serotonin that mediate blood vessel contraction and synthesize and 

release thromboxane A2 (TxA2).  Thrombin and TxA2 are the most potent platelet 

agonists acting at the site of injury on their respective platelet receptors (140;141;149-

151); thrombin activates platelets and TxA2 causes platelets to aggregate, thus 

providing a positive feedback mechanism for continued platelet activation.  The 

aggregated platelets continue to synthesize and release these factors until platelet 

retracting factors such as prostaglandin I2 (PGI2) are synthesized (149).  

PGI2, or prostacyclin, is a metabolite of arachadonic acid which is formed in 

platelets and endothelial cells as well as several other cell types.  Arachidonate is 

derived from phospholipids of cellular membranes or from exogenous sources such as 

HDL (147).  The conversion of arachadonate to PGI2 is mediated by the rate limiting 
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enzyme cyclooxygenase (COX) (146;147;150).  COX is expressed in two different 

isoforms, COX1 and COX2, the former being expressed in most tissues, and the latter 

is typically absent, but its expression is induced following stimulation by cytokines 

and other mediators (146).  Animal studies have shown that increases in aortic 

smooth muscle cell release of PGI2 is dependent on HDL mediated increases in 

COX2 transcription and translation (149;150).  PGI2 is the most potent inhibitor of 

platelet aggregation known and it also serves to disperse existing aggregates (151).  It 

acts by increasing adenylate cyclase and other second messengers within the platelet, 

although it has relatively short half-life of 30 minutes (151).  Due to the inherent 

instability of PGI2 in plasma, the capacity for prolonging its effect is as important in 

the development of atherosclerosis as its formation.  

HDL3 has been shown to enhance PGI2 activation and stabilization by 

endothelial cells (152), and Apo A-I serves as the PGI2 stabilizing factor. Chronic 

aerobic exercise training has been shown to increase Apo A-I levels (153), which are 

generally carried in plasma in the form of total HDL or its sub-fractions.  Therefore, 

having a larger amount of Apo A-I due to exercise training would provide for a larger 

pool of arachadonate from increased plasma HDL levels, as well as a prolonged half-

life of PGI2 due to an increased concentration of PGI2 stabilizing factor.    

Summary

Chronic hypertryglyceridemia is thought to be atherogenic and is associated 

with an elevated thrombotic potential (154-156).  Research has shown that individuals 

with elevated TG have higher levels of FVIIa (157-159), TF (160) and PAI-1 

activity/antigen (161;162), with lower tissue plasminogen activator (tPA) activity 
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than healthy controls (162).  The mechanisms responsible for the activation of 

coagulation and the reduced fibrinolytic capacity are believed to be due to the 

negative charge of fatty acids (7;163) and the constituent lipoproteins of low density 

lipoproteins, VLDL, and chylomicrons (164;165).  Additionally, it has been shown 

that VLDL binding to its endothelial cell receptor results in increased transcription 

and translation of the PAI-1 gene (7). 

It would be expected that an acute oral fat load would increase the thrombotic 

potential due to a higher fatty acid content of LDL, VLDL, and chylomicrons 

circulating in the blood.  This has been confirmed by postprandial lipemia studies in 

which FVII levels were elevated for up to 8 hours following the ingestion of a high 

fat meal (166-168).  Furthermore, the standard liquid fat meal (30) is composed of a 

large amount of fat, with moderate amounts of sugar and protein, which have been 

shown to cause a concomitant increase in insulin.  When insulin binds to its receptor, 

it causes the release of stored PAI-1 in cultured human umbilical vein endothelial 

cells (169) and activates transcription and translation to increase PAI-1 synthesis 

(161).  Therefore, it is apparent that the combined effect of elevated TG and insulin 

following postprandial lipemia should increase PAI-1 levels following a high fat 

meal.  However, in vivo studies have shown a paradoxical decrease in the circulating 

levels of PAI-1 following a high-fat meal (162;167), and it is the purpose of this study 

to determine if local PAI-1 production, as evidenced through leukocyte gene 

transcription, is increased during postprandial lipemia, despite the fact that systemic 

levels are decreased. 



82 
 

The postprandial decrease in systemic PAI-1 activity suggests that there is an 

acute cardio-protective effect following ingestion of an oral fat load, however it is 

extremely unlikely that this would occur within the areas of the endothelium that are 

atherosclerotic.  It is probable that within the local areas of the endothelium that are 

predisposed to atherosclerosis, coagulation and PAI-1 activity would be higher than 

the total systemic activity, which would negate the possibility of a cardio-protective 

effect from lower systemic PAI-1 activity. The most likely explanation for the 

decrease in PAI-1 activity is the increase in hepatic blood flow after the meal.  PAI-1 

is cleared from plasma through an interaction with the hepatic LDL receptor, and in 

response to an alimentary meal, a concomitant increase in PAI-1 clearance rate would 

occur when the rate of hepatic blood flow increases.  Kemme and colleagues (170) 

found that when FFA was injected intravenously, there was no change in tPA or PAI-

1 concentration because the postprandial increase in hepatic blood flow was absent.  

Although this illustrates the point that systemic fibrinolysis is related to hepatic blood 

flow, it fails to show how local fibrinolysis (i.e. at the endothelial cell surface) is 

affected by FFA uptake, because the intravenous injection of TG and/or FFA 

circumvents the natural intestinal absorption of lipids and prevents their incorporation 

into chylomicrons and VLDL (73;171).  Therefore, when measuring fibrinolysis, the 

complex nature of the postprandial state requires a more thorough evaluation of the in 

vivo fibrinolytic response than has been conducted to date.      

When looking at systemic fibrinolysis, it is difficult to determine the separate 

effects of the increased lipid content of cholesterol versus increased hepatic blood 

flow.  However, if a measure of local fibrinolytic response is incorporated, a more 
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thorough description of the postprandial events may be achieved.  This can be 

accomplished by measuring IL-6, TNF-α, and PAI-1 gene expression in leukocytes 

because they are recruited by activated endothelial cells.  VLDL has been shown to 

bind to and activate endothelial cells, which causes an increase in the expression of 

vascular and intracellular adhesion molecules (VCAM) (ICAM-1).  These proteins 

bind circulating leukocytes and arrest them on the endothelial cell surface where they 

become activated.   

Chylomicrons enter the circulation through the lymphatic system (73;171) 

where they are capable of interacting with a large number of leukocytes, and TG-rich 

lipoproteins binding to leukocytes have been shown to increase PAI-1 and TF gene 

expression in vitro.  In light of these results, it is possible that local fibrinolysis, as 

evidenced by PAI-1 gene expression in leukocytes, could be decreased even though 

there is a concomitant increase in systemic fibrinolysis.  This is because prior to the 

VCAM/ICAM-mediated binding of leukocytes to the endothelial cell surface, 

circulating leukocytes become activated, and it is at this point where we believe that 

changes in PAI-1 gene transcription will be evident.  A major limitation to the current 

study design is our attempt to measure activated leukocytes within the plasma 

circulation, and while it is logical to assume that a large portion of activated 

leukocytes are tethered to the endothelium, there is strong evidence to suggest that 

activation products (i.e. IL-6 and TNF-α) contribute to further leukocyte activation 

and coagulation (172;173).  Furthermore, while we are limited in our ability to 

determine the contributions and extent to which endothelial bound leukocytes affect 

hemostasis, we can determine the contribution of circulating leukocytes on the 
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fibrinolytic response by measuring PAI-1 gene expression.  In order to verify that 

activated leukocytes are present in our samples, we intend to measure the changes in 

IL-6 and TNF-α gene expression in conjunction with PAI-1, with the belief that any 

change in activation observed in our samples would most likely be higher within the 

endothelial bound pool.   

We believe that the extent to which leukocyte activation occurs following 

aerobic exercise training will be lower than that which can be seen prior to training.  

It has been shown that following an acute bout of exercise, plasma IL-6 levels were 

significantly lower 4-hours after ingestion of a high fat meal, compared to a non-

exercise control (174).  Additionally, while Gill et. al. (175) reported that after a 

period following the cessation of exercise training, there were no significant 

postprandial changes in TNF-α levels, but the average TNF-α levels were 35% higher 

after the cessation of exercise training compared to the trained state.  Based on these 

results, it is logical to assume that ingestion of a high fat meal will increase leukocyte 

activation, and that aerobic exercise training will reduce the extent to which leukocyte 

activation occurs.   

Based on the information outlined above, it is logical to assume that not all 

sections of the vascular endothelium respond to an oral fat load in the same manner.  

In an older, sedentary population, there is likely to be some degree of atherosclerosis 

present in coronary and/or cerebral arteries (176), where the risk of thrombus 

formation is much higher than in other, non-atherosclerotic arteries (177).  The 

underlying, low-level inflammatory state in diseased arteries is capable of activating 

leukocytes, which can be a potent stimulus for increased coagulation and decreased 
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fibrinolysis.  There is no information on the effect of exercise training on coagulation 

potential of fibrinolytic activity during the postprandial state, as all studies have 

tested subjects while fasting.  However, the majority of life is spent in the 

postprandial state, and for this reason, the necessity of an investigation into the local 

fibrinolytic response, in conjunction with the systemic response, is apparent.     

Aerobic exercise training has been shown to reduce the overall risk for CVD-

related outcomes through several distinct mechanisms, one of which is an 

improvement in lipoprotein lipase (LPL) activity.  Physical activity has been 

associated with an increased clearance of FFA and TG following ingestion of an oral 

fat load (13;14), and in a cross-sectional study Merril and colleagues (178) found that 

peak TG and total lipemic response were lower in young, endurance trained men 

compared to sedentary controls independent of fasting TG levels.  A well documented 

effect of aerobic exercise training is an increase in muscle capillary density, which is 

believed to be responsible for a large portion of the increase in LPL activity.  In an 8-

week single leg training model, capillary density increased in the trained leg by 20%, 

and LPL activity was 70% higher than in the non-trained control leg (179).  One 

result of increased LPL activity following exercise training is an increase in the 

clearance rate of circulating TG which provides a mechanism for an increased 

tolerance to fat consumed in the diet. 

Not all studies have shown an increase in the rate of TG clearance with 

exercise training.  This is probably due to the fact that the intensity of exercise and/or 

quantity of energy expenditure during exercise is responsible for the magnitude of 

change in TG clearance.  This factor is best illustrated by comparing the results of 
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postprandial lipemia tests following acute exercise versus a long-term training study.  

In one acute exercise study, subjects exercised for 2-hours at 31% VO2max and 

experienced a 31% reduction in lipemic response the following day (29).  In a 12-

week training study, women engaged in unsupervised brisk walking for 21 min/day 

and the lipemic response was measured before and after training, and there was no 

difference in peak TG concentration or in the total lipemic response (38).  The 

difference between these two studies is likely do to the lower caloric expenditure in 

the latter study.  In our laboratory however, we have found that in subjects the same 

as those to be enrolled in this proposed trial, a 6-month supervised aerobic exercise 

training program at 70% VO2max reduced TG area under the curve (AUC) by 40% 

and FFA AUC by 33% following a high-fat meal (unpublished data).  These results 

illustrate the need for a well-structured and controlled intervention to optimize the 

training effect on increased FFA and TG clearance. 

 As stated above, the potential for coagulation increases during postprandial 

lipemia, which is believed to be due to the increased TG content of chylomicrons and 

VLDL.  FVII and TF were shown to increase in response to a high fat meal, due to an 

activation of the intrinsic coagulation pathway without an increase in thrombin-

antithrombin III (TAT) levels (15).  The increase in the potential for coagulation 

rarely leads to thrombus formation, which suggests that coagulation is being 

inhibited, probably by tissue factor pathway inhibitor (TFPI).  Thus, if a change in 

FVIIa is to be measured during a postprandial lipemia test, then the change in TFPI 

activity should be included as well in order to provide a complete picture of the 

response of the coagulation profile.    
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If exercise training reduces the peak and total lipemic response after a high fat 

meal, then it is logical to assume that it would decrease the potential for coagulation 

and leukocyte PAI-1 gene expression.  An evaluation of these hypotheses would help 

explain the disparity in the results of exercise training on hemostasis, where currently 

there is no consensus as to whether exercise training improves hemostatic profiles.  

Many studies have reported lower fibrinogen fragments or thrombin levels in 

physically active individuals, but the results of longitudinal exercise training studies 

have not been as clear.  Some have reported small increases in tPA antigen, or lower 

FVIIa, and thrombin activation, while others have shown no change at all.  

Furthermore, the magnitude of change with exercise training is likely to be dependent 

on the volume and/or intensity of exercise.   

In studies conducted previously in our laboratory, we have found that the 

exercise training-induced changes in PAI-1 activity (15.6 ±1.4 to 12.9 ±1.4 AU/ml) 

(p=0.03) and tPA activity (0.54 ±0.10 to 0.92 ±0.10 IU/ml) (p=0.007) in 58.3 ±1.3 

year old men were significant.  Additionally, we have found that FVIIa decreased 

from 106.7 ±1.4 to 104.2 ±1.4 % normal (p=0.005) in men and women at rest.  Thus, 

we have demonstrated an 18% decrease in PAI-1 activity, a 70% increase in tPA 

activity (unpublished data), and a 2.5% decrease in FVII:ag (180) using a supervised, 

6-month exercise training intervention at 70% VO2max, which provides further 

support for the necessity of a well-structured, prolonged, and controlled intervention, 

such as the program that we currently employ, to optimize the training effect on 

inflammation, coagulation, and fibrinolysis. 
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While we have demonstrated an improvement in coagulation and fibrinolysis 

at rest, few cardiovascular and cerebrovascular thrombotic events occur in the fasted 

or resting state.  Because of this, there is a critical need to assess hemostasis 

following a challenge such as the postprandial lipemia test.  Such a test provides an 

accurate and reproducible method of challenging a system that is designed to respond 

to a stimulus, and when incorporating exercise training, the ability to determine if 

training improves the hemostatic profile would be enhanced. Furthermore, this in 

vivo model could partially explain the discrepancy between the in vitro and in vivo 

results of previous studies on changes in PAI-1 concentrations following a high fat 

meal.  Since vascular thrombosis is responsible for the majority of CVD- and stroke-

related events, the investigation of these hypotheses will lead to a better 

understanding of the methods by which exercise training reduces CVD- and stroke-

related morbidity and mortality.       
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Appendix H: List of Abbreviations 
 

1) AGE- Advanced glycosylation end products 
 

2) AT III- Antithrombin III 
 

3) AUC- Area under the curve 
 

4) BSA- Body surface area 
 

5) CAT- Carnitine acyl transferase 
 

6) CCK- Cholecystokinin 
 

7) CHO- Carbohydrate 
 

8) CM- Chylomicron 
 

9) CoA-SH- Coenzyme A 
 

10) COX- Cyclooxygenase 
 

11) CT- Computed tomography 
 

12) CVD- Cardiovascular disease 
 

13) DAG- Diacylglycerol 
 

14) EL- Endothelial lipase 
 

15) FABP- Fatty acid binding protein 
 

16) FABP(PM)- Plasma membrane fatty acid binding protein 
 

17) FAT/CD-36- Fatty acid translocase 
 

18) FATP-1- Fatty acid transport protein-1 
 

19) FDP- Fibrin dimmer proteins 
 

20) FFA- Free fatty acid 
 

21) FVIIa- Activated factor VII 
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22) Glu- Glucose 
 

23) HCO3- - Bicarbonate 
 

24) HDL- High density lipoprotein 
 

25) HMWK- High molecular weight kininogen 
 

26) HRT- Hormone replacement therapy 
 

27) hsCRP- High sensitivity C-reactive protein 
 

28) HSL- Hormone sensitive lipase 
 

29) HSPG- Heparin sulfate proteoglycans  
 

30) ICAM-1- Intracellular adhesion molecule-1 
 

31) IL-6- Interleukin-6 
 

32) Ins- Insulin 
 

33) IRS-1- Insulin receptor substrate-1 
 

34) KO- Knock out 
 

35) LDL- Low density lipoprotein 
 

36) LDLR- Low density lipoprotein receptor 
 

37) LP-lamina propria 
 

38) LPL- Lipoprotein lipase 
 

39) LRP- Low density lipoprotein related receptor 
 

40) MAG- Monoacylglycerol 
 

41) MTP- Microsomal triglyceride transfer protein 
 

42) NAC- No amplification control 
 

43) NTC- No template control 
 

44) PAI-1- Plasminogen activator inhibitor-1 
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45) PC- Phosphatidyl choline 
 

46) PDGF- Platelet derived growth factor 
 

47) PDK1- Phosphatidylinositol-dependent kinase-1 
 

48) PGI2- Prostaglandin I2

49) PI3K- Phosphatidyl inositol3 kinase 
 

50) PIP3- Phosphatidylinositol-3,4,5-triphosphate 
 

51) PKA- Protein kinase A 
 

52) PL- Phospholipid 
 

53) PPAR- Peroxisome proliferator activated receptor  
 

54) PPL-Post prandial lipemia 
 

55) PPLT- Post prandial lipemia test 
 

56) PTF 1+2- Prothrombin fragments 1 and 2 
 

57) RAP- α2-Macroglobulin receptor associated protein 
 

58) RCMP- Remnant chylomicron particle 
 

59) RCT- Reverse cholesterol transport 
 

60) RER- Rough endoplasmic reticulum 
 

61) RNA pol II- Ribonucleic acid polymerase II 
 

62) rt-PCR- Reverse transcription polymerase chain reaction 
 

63) SER- Smooth endoplasmic reticulum 
 

64) TAT- Thrombin-Antithrombin III complex 
 

65) TEE- Total energy expenditure 
 

66) TF- Tissue Factor 
 

67) TFPI- Tissue factor pathway inhibitor 
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68) TG-Triglyceride 
 

69) TNF-α- Tumor necrosis factor alpha 
 

70) tPA- Tissue plasminogen activator 
 

71) TxA2- Thromboxane A2

72) VCAM-1- Vascular cell adhesion molecule-1 
 

73) VLDL- Very low density lipoprotein 
 

74) Xa- Activated factor X 
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