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ABSTRACT

Time-scale separation and stability of linear time-varying and time-invariant multiparame-
ter singular perturbation problems are analyzed. The first problem considered in the paper is that
of deriving upper bounds on the small ‘parasitic’ parameters ensuring the existence of an inverti-
ble, bounded transformation exactly separating fast and slow dynamics. This problem is most
interesting for the time-varying case. The analysis of this problem in the time-varying case
requires the two time-scale setting introduced by H.K. Khalil and P.V. Kokotovic (SIAM J. Con-
trol Optim., 17, 56-65, 1979). This entails that the mutual ratios of the small parameters are
bounded by known positive constants. The second problem considered is to derive parameter
bounds ensuring that the system in question is uniformly asymptotically stable. The results on
decomposition are used to facilitate the derivation of these latter bounds. Fortunately, the
analysis of decomposition and stability questions for time-invariant multiparameter singular per-
turbation problems requires no restriction on the relative magnitudes of the small parameters. A
concept of ‘strong D-stability’ is introduced and shown to greatly simplify the stability analysis of
time-invariant multiparameter problems.
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I. INTRODUCTION

Singular perturbation problems involving several small parameters have in the past
attracted considerable attention, both from the engineering and the applied mathematics com-
munities. This is due in part to the difficulty of these problems and in part to their wide applica-
bility in power system dynamics, control of large scale systems, multi-modeling, differential
games, and similar settings. The small singular perturbation parameters typically represent
unmodeled ‘parasitic’ capacitances, inductances, time constants, inertia constants, inverses of high
feedback gains, etc. It has long been recognized that the analysis of many problems in singular
perturbations is considerably simplified if a decomposition of ‘fast’ and ‘slow’ dynamics can be
achieved. Such a decomposition of time scales is realized through a transformation of variables
whose existence must of course be proved.

This paper has three main goals. The first is to derive explicit upper bounds on the singular
perturbation parameters ensuring the existence of an invertible, bounded transformation decou-
pling fast and slow dynamics. To the author’s knowledge, this type of result has not previously
been reported for the case of time-varying singularly perturbed systems (with one small parameter
or several). Second, the decoupled equations are employed in the derivation of further upper
bounds on the small parameters guaranteeing asymptotic stability. The third goal is to obtain
unified stability results for general multiparameter singular perturbation problems which apply
regardless of the relative magnitudes of the small parameters. The paper achieves this last goal
for the case of time-tnvariant multiparameter singular perturbation problems, though in the gen-
eral time-varying case this remains an open problem.

Linear dynamical equations of the form

z =A(t)r + B(t)y (1.1a)

- .
ey, = Ci(t)e + D;(t)y, i =1,....M. (1.1b)
are the subject of this work. The case in which (1.1) is a time-invariant equation will be con-
sidered separately from the general time-varying case. In Eq. (1.1), zER™,
v = ¥,...ym) ER™, ER™, e = (€4, ..., €xy) with each ¢ a small real parameter,
A B ,C;,D; are real matrices of conformable dimensions, and the dot signifies differentiation with
respect to time ¢ . The asymptotic analysis of (1.1) in the limit ¢; —0, ¢ = 1,....M is an example
of a stngular perturbation problem. This means that the order of the system (1.1) differs for
€ = 0 and ¢; 74 0. For a discussion of control-theoretic results in singular perturbation theory,

see the excellent review articles [1]-[3].

Parameter bounds ensuring the existence of a decoupling transformation for time-invariant
problems with a single small parameter have previously been reported in [4]-[7]. Considerably
greater effort has been devoted to obtaining parameter bounds ensuring the stability of singularly
perturbed systems [6]-{15]. The upper bound of Khalil [11] is of the latter type, and is derived for
(nonlinear) time-invariant multiparameter problems (c¢f. also Khorasani and Pai {15] ). This paper
also gives parameter bounds for stable time-invariant multiparameter singular perturbation prob-
lems which do not suffer from a certain conservativeness problem which is present in [11], and
which occurs also in the results of this paper for the time-varying case.

Most previous studies of singularly perturbed systems containing several small parameters
begin by hypothesizing some type of relationship among the small parameters €¢;. The simplest of
these results in a standard single parameter singular perturbation problem. This is achieved by
assuming that the parameters €; are known multiples of a single, auxiliary small parameter §, so
that €; == a; 0, 1 ==1,...,M . Khalil and Kokotovic have pointed out In {16] that this assumption is
not justifiable in many cases of practical interest, if only because of the lack of knowledge of the
coeflicients a; . As a more realistic assumption, [16] allows the parameters ¢; to be arbitrary sub-
ject to the requirement that the mutual ratios €; /e;, 7,7 =1,....M are bounded by known posi-
tive constants. This is equivalent to constraining € to lie in a (linear) cone in the positive orthant
RAf The authors of [16] refer to this as the “multiparameter assumption.”” This assumption is
also invoked in [11], [15], {17)-[20] and, for timne-varying systems, in the present paper. A perhaps



more common hypothesis is that of multiple time scales [20]-[26]. This requires that the small
parameters €; are of different orders of magnitude, say €; ,,/€; —0 as ¢; —0. The multiparameter
setting of [16] clearly differs drastically from this case; indeed only two time scales are present in
the setting of [16], just as for single parameter singular perturbation problems.

Although the results on time-varying systems in this paper require Khalil and Kokotovic’s
assumption that the mutual ratios €; /e ; are bounded, the results on time-invariant systems apply
without any such restriction. The latter results yield each of the foregoing multiparameter singu-
lar perturbation hypotheses as special cases. Similar results have previously been obtained by the
author in [27]-{30], which contain various stability and bifurcation results for time-invariant mul-
tiparameter problems without limiting a priori the way in which € — 0. This author is of the
opinion that use of the term multiparameter singular perturbation should be expanded to include
all possible assumptions on the manner in which the small parameters €¢; are constrained, includ-
ing even the multiple time-scale setting discussed above.

The development of the paper is as follows. Section Il introduces the problem and provides
relevant background material. Several hypotheses used at various stages in the development are
also given in Section II. Parameter bounds for decomposition and stability of time-varying mul-
tiparameter problems are derived in Section III. Section IIl.1 is devoted to a constructive proof of
the existence of a decoupling transformation which separates the fast and slow dynamics of (1.1).
Two upper bounds on the small parameters are obtained there. These ensure the existence of a
bounded decoupling transformation as well as the uniform asymptotic stability of an associated
fast subsystem. In Section III.2 a further upper bound is obtained ensuring the uniform asymp-
totic stability of the slow subsystem. These three upper bounds are collected to yield an upper
bound ensuring uniform asymptotic stability of the original multiparameter singularly perturbed
system (1.1). This appears in Section IIL.3. Section 1II.4 contains an example illustrating the
computation of the parameter bounds for the time-varying case. Section IV develops results
parallel to those of Section III for time-invariant multiparameter singular perturbation problems.
Conclusions and some open questions are given in Section V.

Notation. Throughout the paper the Euclidean norm is used for vectors and the Frobenius norm

for matrices. This is only for simplicity of the development, and does not represent a limitation

of the method. The Euclidean and Frobenius norms are compatible. Recall that the Frobenius

norm of a real matrix A is the square root of the sum of the squares of all the elements of A . Tt

will be denoted by lA l If A depends continuously on time ¢t and is bounded, its norm is MA |[

= Esgp |A (£)]. With the hope that there will be no confusion, this is denoted simply by A
0

The transpose of A is indicated by A" If A is a square matrix, o(A ) denotes the spectrum or
set of eigenvalues of A .

1I. PRELIMINARY CONSIDERATIONS

It is useful to express Eq. (1.1) in the more compact form

x = A(t)x + B(t)y (2.1a)

E(e)yy = C(t)x + D(t)v. (2.1b)
Here O (t) = block col (C (¢ ),....Cu (t)), D (1) := block col (D (t).....Dy (1)), and E (¢) :==
block diag (€1, , . - -, €y L,), where I, denotes the k Xk identity matrix. With (2.1) one asso-

ciates the reduced system

r = A({)r + B(t)y (2.2a)

0==C(t)x + D)y (2.2b)
obtained by formally substituting € == 0 in (2.1).

The following assumptions are now made about the matrices A ,B,C,D .



(H1) The matrices A (t),B(t),C(t),D(t) are bounded and depend
continuously on ¢ for t > 0.

(H2) There is a d > 0 such that the eigenvalues of D (¢) all have
magnitude > d forallt > 0.

Hypothesis (H2) implies (2.2) is equivalent to the system
g =[A(t) - B{t)D(t)C(t)] z =: A(t)a. (2.3)
It also implies that D 7*(¢) (and hence also A 4(¢) ) is bounded on 0 < ¢ < oo. To see this, note
that (H2) implies |det D (¢)] > d™, so that Lemma 1 of Coppel [31, p. 47] implies
D=l < @™ -pd™ D (&)" (2.4)
and the conclusion follows from (H1).

Recall [32, p. 276] that a matrix F' is said to be D -stable if the eigenvalues of DF have
strictly negative real parts for any diagonal matrix D with strictly positive diagonal elements.
The following generalization is due essentially to Khalil and Kokotovic [16].

Definition 1. The matrix D (t) is said to be block D -stable relative to the multi-index
(my, - ,my)ifforall §; > 0, i==1,..M,

Reao(©()D(t)) <o (2.5)
for all ¢ > 0, where ©(0) := block diag (0,1, . . -, Op L)

If D(t) is not block D-stable, it may still be possible to find a set H C Rff to which the
next definition applies. The relevance of this definition was a main hypothesis in [16}.

Definition 2. The matrix D (t) possesses Property D relative to the set H C R™ if there is a
o, > 0 such that

Reo(|e |E7 (D (L)) < -0 (2.8)
forall t > 0,¢e€ H.

Remark 1. It is easy to verify that D (¢) cannot possess Property D relative to the positive
orthant Rﬂf, even if D (t) is block D-stable according to Deflnition 1. Property D can only hold
on subsets of le for which | € [ E7(¢) is bounded, i.e. when the ratios €; /€; are bounded.

The results on time-varying systems in this paper will apply as €é—0 in any subset H of R If
for which all the mutual ratios ¢; /ej are bounded. These sets are cones of the form specified by
Eaq. (2.11) of hypothesis (E4) below. This generality is achieved based on hypothesis (H3) below,
which was discussed but not enforced in [16].

(F3) There exists a concinu.ously differentiable block diagonal positive
definite matrix £ (¢t} with P (t) bounded,

P (t) == block diag [P,(t),....Py ()] (2.7
satisfying
cillyP <y P(t)y Scolyf forally € R™, ¢t >0, (2.8)
such that @ (¢) given by
P)D(t)y + D ()P (t) = - Q(t) (2.9)

is positive definite, and rmoreover satisfies



v Q(t)y > cylyP, forally e R™,t > o. (2.10)

In(27), P;(t)ER™, i =1,..M.

This hypothesis implies that D (t) is a block D-stable matrix (c¢f. Johnson [33], Khalil and
Kokotovic [16] ). It has been noted to yield an interesting class of D-stable matrices [33]. It has
also been employed by Khalil [11] to derive upper bounds on the small parameters for asymptotic
stability of a class of nonlinear aufonomous multiparameter singularly perturbed systems.
Hypothesis (H3) is useful since it implies that v (¢ ,y ) = y' P (t)E (¢)y is a Liapunov function for
an associated boundary layer system (Eq. (2.12) below). The next hypothesis has been introduced
in [16].

(H4) The parameters ¢; have bounded mutual ratios. That is,
there exist positive numbers k;;, K;;, ¢,5 = 1,...M
such that ¢ € H where the cone H C R™ is given by

€
H::{CERy:kI.J'STSI{'.J. : (2.11)

7

It will become apparent in the sequel that a natural boundary layer system associated with
(r.1) is

4y EY(e)D (t)y. (2.12)
dt

Note that, contrary to the situation in single parameter singular perturbations, the boundary
Jayer system depends on €. This is the essence of the difficulties encountered in multiparameter
perturbations. One can also define the boundary layer system in a suitable sped-up time scale,
such as 7 ;= t/|e].

Motivated by the single parameter theory, it is natural to seek conditions under which the
behavior of (1.1) can be linked with that of the reduced system (2.3) and the boundary layer sys-
tem (2.12). Results of this character (though not necessarily pertaining to stability) are the main
goal of Khalil and Kokotovic [18] and of this paper. The proof of this paper results, for instance,
in a computable upper bound £, on |[E(e)] = (m,e® + -+ + myey?)"? ensuring uniform
asymptotic stability of (1.1). This is of course equivalent to obtaining an upper bound on a
weighted norm of €. An (in general more conservative) upper bound on I_E f is easily obtained
from these results (for any norm). An examination of the proof of [16] shows that it does not
yield such an upper bound. This is mainly because [16] employs certain results of Coppel [34]
which are based on compactness arguments. Note, however, that the results of [16] apply in case
hypothesis (H3) above is not in force, if D (¢) possesses Property D (cf. Definition 2 above) rela-
tive to a conic set H of the form specified by Eq. (2.11). Hypothesis (H3) implies Property D, bus
the reverse implication does not hold [16].



1II. TIME-VARYING PROBLEMS
I11.1. Decoupling of Fast and Slow Dynamics

It is well known [1]-[4], [35] that for (nondegenerate) single parameter singularly perturbed
systems it is possible to exhibit a nonsingular similarity transformation which exactly separates
fast and slow dynamics. This transformation was presented by Chang [35] in the context of a
general linear singularly perturbed boundary value problem. <Chang’s transformation is best
understood as the composition of two simpler transformations. The first, derived by Chang in
[36], results in block-triangularization of the system dynamics. The second transformation
applied to the block-triangular system produces the desired block-diagonal (i.e., separated) form.
A direct generalization of Chang’s transformation to the multiparameter setting was applied to
the stability analysis of multiparameter singularly perturbed systems by Khalil and Kokotovic
[16]. A related transformation was used by this author to study multiparameter singularly per-
turbed Hopf bifurcation in [28] as well as to obtain general results on stability of time-invariant
multiparameter singularly perturbed systems in [27, 29, 30]. In [27, 29, 30] it was necessary to
employ only the first step of Chang’s transformation, yielding a block-triangular system. Also,
the results of [27, 29, 30] apply regardless of the relative magnitudes of the small parameters. In
[16] the full transformation was employed to completely separate the fast and slow dynamics of a
linear time-varying multiparameter singularly perturbed system of the form (1.1). This is neces-
sary because of the time-varying nature of (1.1). Thus a complete separation of fast and slow
dynamics will also be used in the present section, which is concerned with time-varying mul-
tiparameter singular perturbation problems. For an example illustrating the possible adverse
effect of a (small) off-diagonal term on the stability of an otherwise stable linear time-varying sys-
tem, see [37, pp. 151-153].

The results of Chang [35] (c¢f. also {16, 36] ) imply that the transformation

Y _ (I - ME(e)L -ME(e)) (=
(f] - [ L I ] (y) (3.1)
applied to (1.1) will result in the (decoupled) system
n=[A(t) = B()L(t,0)n (3.22)
E(@©&=[D(t) + E(L(t.0B(t) & (3.2b)
provided L (t,€) and M (t ,¢) are solutions of the respective matrix differential equations
E@L =DL - C - E(LA + E(eLBL, (3.3)
ME(e)=(A -~ BL)ME(¢) - M(D + E(e)LB) + B ‘ (3.4)

defined for 0 < << o0.

The transformation (3.1) is easily verified to be a nonsingular similarity transformation for
any value of ¢, for any matrices L and M. See Eq. (3.47) of Section III.2 for the inverse transfor-
mation. Conditions will now be given for the equations (3.3) and (3.4) to have uniformly bounded
solutions for all € € H (cf. (H4)) with { € ] sufficiently small.

Theorems 1 and 2 below show that under (H1)-(H4), uniformly bounded solutions of (3.3)
and (3.4) exist on 0 < t < oo for all ¢ € H with | € | sufficiently small. This fact follows from
Lemmas 1 and 2 of [16]. Invoking hypothesis (H3), however, facilitates the constructive proofs
presented below which, in addition, yield explicit upper bounds on [E(e)l ensuring the existence of
these bounded solutions.

Theorem 1. Under hypotheses (H1)-(H4), there is a scalar £, > 0 such that Eq. (3.3) has a solu-
tion L (t, €) which s uniformly bounded for E@| < E,, e H, t >0. Moreover, the solution
with initial condition L (0, €) == =D "1(0)C (0) is uniformly bounded for E@©| < E, ee H.



Theorem 2. Let hypotheses (H1)-(H4) hold, and suppose there exists a uniformly bounded solution
L (t,e) of (83.8). Then there is a scalar E5 > 0 such that Eq. (3.4) has a solution M (t, €) which s
uniformly bounded for |[E(e) < E, ¢ € H, t > 0. Moreover, E, may be chosen so that

IE ()] < E, also implies the uniform asymptotic stability of the null solution of the fast subsystem
(3.2b).

The proof of Theorem 1 will make use of the following elementary stability result, which is
Lemma 1 in LaSalle and Lefschetz [38, pp. 116-117]. First some notation. Given a closed set
M C R" and a positive scalar r, let M, denote the set of all points whose distance from M is
less than r. Also, let M, respectively MS denote the set of points outside M (i.e., the comple-
ment of M), respectively M, .

Proposition 1. Consider a system z = f,z),t 20,2 €ER". Let v(t,z) be a scalar func-
tion continuously differentiable in t and z for t > 0,z € R™, and let M be a closed set in R™.
Ifo(t,z)<oforalle € M® and if v(t,,2,) < v(tox) forallt, 2 ¢, >0, allz, € M and all
T, € MS, then each solution of x == [ (t,z) which at some time t, is in M can never thereafter
leave M, .

Remark ,? From the proof of Proposition 1 in [38] it is clear that the conclusion of Proposition 1
holds if v (¢,7) < 0 is assumed to hold on M, —~ M rather than on all of M°.

Proof of Theorem 1: Tt is straightforward to verify that the matrix differential equation (3.3) is
equivalent to the vector differential equation

E@Xt)=D(tt) - T(t) — E@L(t)A(t) + E©L (t)B(t)\t), (3.5)
where the vector A € R™ is obtained from the m Xn matrix L = (LY, ..., L™) by con-
catenating the columns L*, ¢ =1,..,n of L : X = ((L') ,..(L™) ). Denote the columns of

A (t), respectively C(t), by A't),..,A"(t), respectively C*(t),..,C"(t). The matrices

A ,B,C,D ,E,L appearing in Eq. (3.5) are defined as follows (here, block diag (X ,...,X) implies
n occurrences of X in the parentheses, for any matrix X ):

A (t) := block col (AXt),..,LA"(t)) € R"", (3.6a)
B(t) := block diag (B(t)...,B(t)) € R**xm (3.6b)
C (¢) := block col (C*(t),...,.C"(t)) € R™, : (3.6¢)
D (t) := block diag (D (t),...D(t)) € R™X™ (3.6d)
E (¢) := block diag (F (¢),....E (¢)) € R™*xmn (3.6¢)
I (t) := block diag (L (¢),....L (t)) € R™ X" (3.61)

Note that L (¢ ) in (3.5) depends linearly on A(t), by (3.6f) and the definition of \.
Define the Liapunov function candidate v (¢ ,\) by
vt N) =X P(t)E (N (3.7)

where f_’(t) :== block diag (P (¢)....,P(¢)). By (H3) P(f) is block diagonal with the same struc-
ture as £ (¢). Therefore P(t) and I (¢) commute, implying that P (¢) and £ (¢) also commute.



Using this fact, v (¢ ,\) may be computed along trajectories of (3.5) as

vt N =N {D (t)P(t) + P()D(t)In + )\'{%ﬁ(t)ﬁ(e) Ix
+ N A{B ()L ()P(t)E(e) + P(t)E(e)L (¢)B(¢) Ix
-{ P + NP@)T(t)}

- {A (WOL (P W)E@N + N P()E@©L(t)A(t) }. (3.8)

Now using Egs. (2.9), (2.10) and the fact that lEI = n1/2 |)\] = [E' | (since lZ:| is the Frobenius
norm of L ), (3.8) implies

TN < - s+ FOIHPINE + 202 [0l B] 1P| P

+ 2 |PIICIN + 202 B (@l A1 PIINF . (3.9)

Define u := |E (€)] and the parametrized cubic polynomial p J(@) by

= d = R
pule) == {2unABlIP|} o® + {ul=-P| + 2un'?A||P| - ¢4} o?
dt

+ {2/P]|C|} e (3.10)

Note that for p ==0, p,(a) reduces to a quadratic which takes negative values for all
o > (2lP||C|/c,). For small 4 > 0 the cubic term dominates for large o and p (@) is positive
for all sufficiently large «.

Recalling  that f’(t) and _E(e) commute, it follows from (3.7) that
v (t \) =N EY2)P () EVHN = { EVHeN ¥ P(t){ EY¥e)\ }. Ea. (2.8) of hypothesis (H3)
now implies that

oy [N S w(t ) < ey [EVHONP. (3.11)
Schwarz’s inequality implies that IE_I/Q(G)M < [EI/Q(G)‘ I\ and that .
A= [E73E VX < B BN (3.12)
Therefore
B > <R
LEY2(e)N] > B0 (3.13)

Hence v (¢ ,\) satisfies

[E_f/—;(e)lglxrz < v (tN) < ¢ JEVAOR NE. (3.14)

A further inequality which will be employed below is

[E~ %) [EV*eF < n°K, (3.15)
where K is given by
_ M
K = Ym? + 3Im m; (K + Kj) (3.16)
=1 $ <y

and the K; have been defined in Bq. (2.11) of (H4). The inequality (3.15) may be easily obtained
from (2.11) if one recalls thav |E*Y% = n /2 |E+/% since the matrix norm is the Frobenius norm.



One now applies Proposition 1. Define the set M (§) by
M@ :={ eR™ :N<[8 + max (ID©)}IC0) 2PICl/cs)] = (B} (B17)
where 8 > 0 is arbitrary. Let the set M, () be defined as
_ c
M, (B) = {X€R™ : N < K2 (—2)2 an(B) =t e(B) }- (3.18)
1
Using inequalities (3.14), (3.15) above it is not difficult to show that X\, € M (8) and X\, € M. (B)

implies that v (£ ,A;) << v (tgo,X,) forall t, > ¢, > 0, for anye € H.

Next an upper bound p(f) on p will be obtained such that p,(a) < 0 for all
a € [a,(f), ay(f)] whenever 0 < p < u,(8). The existence of such an upper bound, along with
the preceding conclusions, implies that Proposition 1 applies so that any solution of Eq. (3.5) with
initial condition in M (8) will remain in M, () for all ¢ > 0 if |E (e)] < u,(f). This will in turn
imply the existence of solutions L (¢ ,€) to Eq. (3.3) bounded by a,(f) (since |L | = ]A]).

Proceeding, it is easy to see that (3.10) implies that for any o > 2|ﬁ| |5|/c3, P 4(a) < O for
all u € [0, u” (@) where

¢ — 2/P|C]

20 B|Pla? + (Pl + 22 K |IP]}

ue) = (3.19)

From (3.17) and (3.18) it is clear that for any # > 0 and any o € [o,(f), @x(B)], one has
u‘(a) > 0. Define

. *
= min
p(B) a,(ﬂ)SaSaQ(ﬂ)“ (o) (3.20)

which is clearly positive for any 8 > 0.

An application of Proposition 1 and Remark 2 now implies that for any £ > 0, all solutions
of Eq. (3.5) with initial condition in M (#) will remain in M, (8) for all ¢ > 0, if lE(el! < pi(P).

Noting that M, (4) is bounded and contains (by construction) the point X\ = — D™ (0)C (0)
(corresponding in Eq. (3.3) to L == -D(0)C (0) ) completes the proof of Theorem 1.
Q.E.D.
The preceding proof is constructive in that it also provides an explicit upper bound on IE(G)l
{actually on the related quantity IE(6)| ) ensuring the existence of bounded solutions to (3.3).
Even more, it provides a family of upper bounds, one for each @ > 0. The next corollary sum-
marizes these observations to give an ‘optimal’ upper bound on {E (e)l.

Corollary 1. Let (H1)-(H4) above hold, and moreover, suppose that both B(t) and C(t) have
nonzero norms, as functions on [0, 00). Define B, as the largest real value of f for which

1 (0 (o) = 1" (@a(Bo)) (3.21a)
and define 8° as
8" = max (G, 0) (3.21b)
Define o" as
a = an(8). (3.21¢)
Then the upper bound E | on |E (¢)| in Theorem L may be taken as
E, == V2 sup { 11:(9) } (3.22a)
= n V% (@), (3.22b)

Before proving this corollary, it seems appropriate to make some remarks.



Remark 8. In case 8’ = Bo, one can clearly choose " = o,(8") rather than ax(8") in Eq.
(3.21¢), since by (3.21a) u~ will be independent of the choice.

Remark 4. 1t is easily verified that solving Eq. (3.21a) amounts to solving a cubic equation in the
unknown f,.

Remark 5. The cases |B]=0 and |C|= 0 can be handled separately. If ICl= o0, Eaq. (3.3)
clearly has the solution L == 0 for any €, so that the upper bound E, may be set to co. If IBI =0
but |G| % 0, then Eq. (3.21a) does not have a solution. Instead, using Eq. (3.19) in Eq. (3.22a),

one finds E, = n "¢, { |EFI + 2nV2 |A||P]}™ for this case.

The expressions (3.21b), (3.21c) above needed to compute £, can be made simpler if one is
satisfied with finding an £, > 0 such that lE(e)l < E, implies the existence of some family of
uniformly bounded solutions of the Riccati differential equation (3.3). The expressions above
imply more: namely, the solution of (3.3) with initial condition L (0,¢) = —D(0)C (0) is uni-
formly bounded for [E (e)| < E |, as required in Theorem 1. Since this requirement is unnecessary
for many questions of decomposition and stability of (1.1), and indeed can lead to needlessly con-
servative bounds, the simplified results corresponding to Eqgs. (3.21), (8.22) will now also be given.

Corollary 2. Let (H1}-(H4) above hold, and moreover, suppose that both B(t) end C(t) have
nonzero norms, as functions on [0, 0o). Define B, as the posttive solution of

p(Bo) = p"(az (Bs)) (3.23a)
where
R — . C
ay () = nKW(TQ—)I/zﬂ (3.23b)
1
Let a"" denote the quantity
o' = either By or ay(B,) . (8.23¢)
Let E | denote the quantity
E; = n‘l/Q sup { /Jl(,B) } (3.24&)
f>0
= V2" (™). (3.24b)

Then Eq. (3.3) has a solution L (t ,€) which is uniformly bounded for |E (e)| < ;E; ,eE€EH, t >o.

Proof of Corollary 1: Under the stated assumptions, a quick sketch of the graph of u* and some
reflection shows that Eq. (3.21a) has a unique positive solution g, and that the corresponding
value of o in Eq. (3.21c) achieves the equality of the right sides of (3.22a) and (3.22b). The con-
clusion now follows from the proof of Theorem 1.

Proof of Corollary 2: 'The proof of Corollary 1 applies with only minor changes.

Next a proof will be given for Theorem 2. This proof relies on first ensuring the uniform
asymptotic stability of the fast subsystem (3.2b) and then using an explicit representation for M
to prove uniform boundedness. Rather than assuming |E (¢)] < E ., the proof begins by assuming
|E ()] < E{. This is sufficient, by Corollary 2, for the existence of uniformly bounded solutions
L (t ,¢) of the Riccati differential equation (3.3).

FProof of Theorem 2: Let Y (t.s ,€), respectively Z (¢ .s ,€), denote the state transition matrices of
systems (3.2a) and (3.2b). Consider the variation of the Liapunov function candidate w (t,€)
defined by

w(t,€) == &' P()E () (3.25)

along trajectories of £q. (3.2b), the fast subsystem. Let

E ()] < E}, so that the foregoing proof
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of Theorem 1 and Corollary 2 imply |L | < a3 (8, ), where 8, is the solution of Eq. (3.23a).
One has

w(t,&=¢ {D' (t)P(t) + P(t)D(t)}¢
+ &' { B (t)L' (P (t)E(e) + P()E(L(t.0B(t) + P(t)E(e) }¢
<{-cs + E@I2BILIIP] + [P])}leP
<{-cs + v(2a;8;) BIIP| + IP)} leP
=: — T ) [P (3.26)

where the additional constraint

€3 *
E(e) < v < — = .
=S BT P (o1

has been imposed on |E (¢), and v is an auxiliary parameter. Eq. (3.27) ensures that ¢4(v) of
(3.26) above will be positive implying the null solution of Eq. (3.2b) is uniformly asymptotically
stable.

Note that, by Eq. (2.8),
w(t,€) = (EY%()€) P (t)EY*€)€)

< e, [EVAe)E P

< e, [EVAP EP. (3.28)

Therefore, along trajectories of (3.2b),

w(¢,8)
P> — 3.20
Co lEl/Q(f)P ( )
Eq. (3.26) now implies the differential inequality
. cs(v)w (t,§)
w(t,f) < - ———, (3.30)
co [EV¥HP
so that w (¢ ,£) satisfies
5—3(1’)
_ (t —~
T (3.31)

w(t,g(t)) < e w (s £(s))
for any ¢ > s > 0. Recalling the definition (3.25) of w, this implies (by the Schwarz inequality)

S
ARG (3.32)

w(t,8) < B (] IP (s)] |&s e
forany t > s > O.
Eq. (2.8) of (H3) is now applied once more (the dependence of E on € is now suppressed):

w(t.8) == (E%€) P(¢t)(E2)
> ¢, BV

€1

S EF

fnequalities (3.32) and (3.33) together imply

¢ P (3.33)
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<5

- ——(t—t)
¢ 1/2
6t < Pl P IEIE 2P e <EF

(3.34)

forallt > s 2 0. -

Next consider the implication of (3.34) for the state transition matrix Z (¢,s ,e) of Eq. (3.2b).
Since (8.34) is satisfied for each of the columns Z' of Z and since |[Z[f = EIZ‘F (Frobenius
norm), and noting that Z (s ,s ,¢) = I, one obtains the inequality

- ‘;;(:’/)2 F"-(t_‘) (3.35)
[4 .
1Z(t,s.ef < c?PGIEIE2Fe 2
However, note that by the Schwarz inequality and (3.15)
[El 'E—I/Z F — |E1/2 E'I/Q l IE—1/2 F
< |E1/2 |2 |E~1/2 Ie
< K? (3.36)
where K was defined in (3.16). Egs. (3.35) and (3.36) now imply
€ av)
-—(t -8 )
— 12 (3.37
20l < Ree P e #F :
forallt > s > 0.
Note that the state transition matrix Y (¢,s ,¢) of Eq. (3.2a) satisfies
Y (t,s,e) < ?(f)ea‘;twal (3.38)

for some Y, o, > O, since the coefficient matrix is bounded. Indeed, a specific o, is given as
* *
oo = A] + |Bl ez (8)) (3.39)

where the function oy (f) is defined in Eq. (3.23b) and £, has been defined above as the solution
to Eq. (3.23a).

It can be verified by differentiation that

M(t,e) ==~ [Y(t.s,6)B(s)Z(s,t,e)ds E7\(e) (3.40)
¢

is a solution of Eq. (3.4) (¢f. Chang [35] ). Using Egs. (3.37) and (3.38), one now has

<gv)

oo e — (g -1 )
— oqle - 2¢ JE /2
Mol < o RT (@BIIP 12 B o) [or e 2T
t

— - o{v,e)t
< c]‘/ZKY(e)|BHP /2 IE-!(G)]C oo Tum {ea(u,z)T _ oW } (3.41)
o\v, —00

where o(v,¢) is defined as

o(v,e) =0 calv) (3.42)
> S [ P 2N .
2¢, !E I/Q(G)F
Therefore M (t,¢) is bounded for all ¢ for which o(v,e) < 0, which is equivalent to the inequality
ca(v ’
[E‘/Q(c)r“’ < 3(v) (3.43)

204C 5
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Eq. (3.43) can be used to yield an upper bound on |E (¢)| as follows. Suppose € were con-
strained so that |E () = m €,>+...4+my ep? < k where kM> 0 is arbitrary. This would clearly

M
imply ¢; < (k/m;)/% i = 1,..,M, so that [EY*e)f = (XIm;¢;)* < k(3)m; /%2 Equating
=1 i =1
the right side of this last inequality with the right side of (3.43) and solving for k shows that
(8.43) is implied by the following upper bound on IE (E)F:

ra M
¢ 5(v) ( 2 m; 1/2)—2_ (3.44)

=1

IE (e)f <

204¢ o

Note that the auxiliary parameter v is still arbitrary subject to 0 < v < v’ (Eq. (3.27)).
To optimize the upper bound, one maximizes the lesser of the two upper bounds imposed by Egs.
(3.27) and (3.44). Thus it is required that

E (o) < E, (3.45)
where the upper bound F, is given by
T4(v) M
E;:= max min { v, (——)2 (I m; /27 }. (3.46)
o<p<y® 204C 4 P

Finally, the uniform boundedness of M (¢ ,e) can be shown by applying the inequality (3.15)
to obtain an upper bound on (3.41). Such an upper bound will not be derived here. This is
because the uniform boundedness of M (¢ ,¢) will not be needed for the stability considerations of
this paper, and since ensuring uniform boundedness of M (¢,e) would require a further constraint

on |E (e)l.
Q.E.D.

111.2. Uniform Asymptotic Stability

The decoupling transformation (3.1) is invertible for any €. Indeed, it is easy to check that
the inverse transformation is given by

(Zl) - (—]L I —MEME] (Z) (3.47)

From (3.1) and {3.47) it is clear that for bounded L (¢ ,¢), M (t ,¢), the uniform asymptotic stabil-
ity of (1.1) is equivalent to the uniform asymptotic stability of (3.2a) and (3.2b).

An upper bound on Ie | ensuring uniform asymptotic stability of the fast subsystem (3.2b)
has been derived in the foregoing analysis. It remains to find an upper bound ensuring the uni-
form asymptotic stability of the slow subsystem (3.2a).

It is useful to state the following basic proposition, whose proof (essentially) may be found
in Brockett [39, p. 205].

Proposition 2. Let the null solution of :r.(t) = A (t)x (t) be uniformly esymptotically stable, and
let v(z) =212 R(t)r be a Liapunov function with S(t) =
- (R-(t) + A (YR (t) + R(t)A(t)) positive definite. Then the null solution of the equation
o [A(t) + B(t)lzx s also uniformly asymptotically stable for any B (t) with |B| < 6 where &
s given by
I
0= —— .
2 !R—‘l' (3.48)

a necessarily positive quantily.

To apply this proposition to Eq. (8.2a), it is necessary to find an estimate for the difference
between the coefficient matrix in {3.2a2) and the reduced system matrix A (i) of Eq. (2.3). This
estirnate should depend on €, and moreover vanish in the limit € — 0, ¢ € . The following mild
hypothiesis will be used in the derivation.
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(H5) The matrix D7'(¢)C(t) is continuously differentiable on [0,00).

Defining the vector I € R™" as
[ ==X - DY ()T (¢), (3.49)

Eq. (3.5) can be rewritten as

E@l) = - E@-3{ D)8} + Do) t(t) - E@LOA ()

+ E(e)L (£)B(t)\(t). (3.50)
As in the proof of Theorem 1, the Liapunov function candidate
v(t,0)y=1 P)E (e)! (3.51)

is introduced. Evaluating v (¢,!) along trajectories of (3.50) and proceeding as in the proof of
Theorem 1, one obtains

S(td) S —egiF + LEPIEINE + oAT|PIIE]IE| K]

i d = == = —
+ AP DOV EIN] + 2PIIBIILINIETI] (3.52)
From (3.49) it follows that I\ < || + [D7'C} so that [L| < a2 (|I| + |D*C)). Using
these facts, inequality (3.52) may be strengthened to
o (t,1) < —Am IR + posll + pamliP (3.53)
for |E (¢)] < &, where

AWK) =1c¢c3 — p K (3.54)
where

po = 20V PI BTN + 20 IP||BID TP + 2n A[IPIDT) (3.55)

pri= 2P|+ on Z1IP| + an BIIPID T, | (3.56)

ps = 2n [P||B| (3.57)

and k is an auxiliary parameter.

Application of Proposition 1 in a fashion similar to that in the proof of Theorem 1 now
vields the following result, which is stated for Eq. (3.3) for convenience.

Theorem 8. Let (H1)-(H5) above hold. Then for any 6§ > O there exists a bounded solution L (t €)
to Fq. (3.3) with |L(t,e) -~ DHt)C(t)| < 6, t > 0 whenever IE () < £ (8) where k(8 is
given by

. _ n %
K (6) ;= min Z (3.58a)
a0Sasd py + po + pox
in which
- ¢
Qg == n"lK"‘/Q(Tl—)‘/Q, (3.58b)

Proof: The theorem follows by applying Proposition 1 to Eq. (83.50) using the Liapunov fuicwou
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v of (3.51) and the estimate (3.53) on ». Define M, of Proposition 1 as {teRr™ :I|< 6}
Inequalities (3.14), (3.15) imply that the set M defilned by M :={[ €R™ .
I < n'KY2%c,/c )2 } and M, fit the mold of Proposition 1. Eq. (3.53) is now used to show
that if [E(e)] (= n"2|E(e) ) < &°(6), then v(t A) <0 on M - M,. Proposition 1 and
Remark 2 now assert the existence of a solution ! (t ,e) of (3.50) with ||| < 6. Recalling the one-
to-one correspondence of solutions [ of (3.50) and solutions L of (3.3) (see Eq. (3.49) and the
definition of A following (3.5)) completes the proof.

The reduced system (2.3) is now assumed uniformly asymptotically stable.

(H6) The null solution of the reduced system (2.3) is uniformly asymptotically
stable.

To apply Proposition 2, not,e that (H4) 1mplles the reduced system (2.3) has a quadratic
Liapunov function v(z) =12 R oft)r with v(:c) =z 8 Jt)r < 0 along trajectories of
z = Ay(t) (Eq. (2.3)). For a proof of this standard result and an explicit formula for R ,(t)
given any positive definite S (¢ ), see for instance Brockett [39, Theorem 6, p. 203]. Choosing a
bounded S,(t), Proposition 2 and Theorem 3 now imply that the slow subsystem (3.2a) will be
uniformly asymptotically stable if

|E (¢)] < & (60) (3.59)
where
15|
= —[R—[ (3.60)
Define F'; as

Ey =" (6) (3.61)

A parameter bound for the stability of time-varying multiparameter singular perturbation prob-
lems may now be stated.

Theorem 4. Let hypotheses (H1)-(H6) hold. Then the null solution of the multiparameter singu-

larly perturbed system (1.1) ¢s uniformly asymptotically stable for all e € H with |E (¢)] < E, where
E, is the positive scalar given by

Ey:— min (F],E.Ey) (3.62)
and B, B, E 5 are given in Egs. (3.24b), (3.46) and (3.61), respectively.

111.4. An Example

It is instructive to consider an example illustrating the various computations involved in
arriving at the bounds E |, £, F, and the stability bound E,. It is also of interest to compare
the bound for stability F, with previously obtained upper bounds for time-varying singularly per-
turbed systems. In his dissertation [13], Saberi has obtained an upper bound on the small param-
eter for stability of a time-varying singularly perturbed system. (The corresponding results for
time-invariant singularly perturbed systems appeared in Saberi and Khalil [14]. ) Saberi [13]
presents argumentation supporting the conclusion that his upper bound is usually less conserva-
tive than previously obtained estimates. For the example considered below, the parameter bound
for stability F, of this paper will be compared with that implied by the results of Saberi.! Since
the derivation of Saberi’s bound does not involve separation of time scales, one might suspect that
the stability bound for time-varying systems derived here will often be more conservative than
that of {13]. This happens to be the case for the particular example presented below.

‘A reviewer suggested that such a comparison with Saberl’s bound be lancluded. Tt should be noted, however, that
the relatlve tightness of any two bounds can not be judged on the basis of an example,
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Consider a singular perturbation problem (1.1) with n =1, M =1, m =2, and with matrices
A, B, C,D given by

A(t)=(0.4¢7"), B(t)=(0 1),
(1 _Jo 5(1+2¢ )
ciw)=(3) D(t)— [_1 e )(1+ze—t)—1]' (3.63)

One computes

1 . -3-¢* -5 -1 _ —3-¢7t
D7t) = 0.2[1+2c4 o ] , DO (t) = 0.2[1+26_¢ ] ,

-t
%D“(t)O(t) - [—%.2;-‘ ] (3.64)

Hence the reduced system is
g = At)r = —o0.2z. (3.65)
Choosing @ (t) = 2[ in Eq. (2.9) of hypothesis (H3), one computes P (t) as

1+et
P(t):[ N ;] (3.66)

which is easily seen to be positive definite. Also,

Cg =2 (3.67)
since y' Qy =2 [y [2 and one can easily check that
3 - 51/2
1= = ==03820, ¢y =3 (3.68)

by taking limits as { —co and O respectively in y' P(t)y and completing the squares. The fol-
lowing quantities are now readily computed.

Al=o0.4 Bl|=1|C|=1, |D|= (35)"/2 = 5.0161,

|P| = 10"2 = 3.1623, K = 4, [D(0)] = 2"/% — 1.4142,

d o o
IDC|=1, [WD*C'] = 0.2(5)"/% = 0.4472, [P | = 1. (3.69)
Now ,u‘(a) is approximately
. 20 - 6.324
po(a) = - 3.70
6.3240° + 3.5208¢y (3.70)
and (), ay(f) are
o) (f) = B + max(1.4142, 3.1623) == 3 -+ 3.1623, (3.71a)
ao(8) == 5.6050,(0) = 5.6058 + 17.7248. (3.71b)
Equating g” (@,(8)) to 1" (a,(8)) and solving for 0 gives
B = 0.6467 (3.72)
Hence
o' — a.8090 (8.75)

S0 that
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E,=p" (") = 00123 (3.74)

It is easy to check that solving Eq. (8.238a) and proceeding as in Corollary 2 to evaluate E; pro-

duces the same upper bound for this phase, in this particular example. That is, E; = FE, for
this example.

Now o, of Eq. (3.39) is

0y = 21.7494. (8.75)
Also, one has
cs(v) =2 - 136.0257v (3.76)
and
¥
v = 0.0147. (3.77)

Now F, is merely the positive value of v for which the two quantities in braces in Eq. (3.46) are
equal. (It is easily verifled that exactly one such solution always exists, and that it is guaranteed
less than v° .) Solving the associated quadratic equation gives

E, == 0.0143. (3.78)
In the computation of F, one finds that 6, = 0.2 (since the reduced matrix 4, is simply
—0.2). Finally, /c'(é) is given by
2«

K (6) = min - (3.79)
oo03s7<a<02 3.1623 + 16.0734a + 6.3246«

Graphing the ratio in (3.79) shows that the minimum must occur either at the left or right end-
point. In this case it occurs at the left endpoint, o == 0.0357, with the value

E, = k" (6,) = 0.0191. (3.80)

Since E{ is smaller than both E, (Eq. (3.78)) and E, (Eq. (3.80)), the parameter bound for
stability F, based on the foregoing results is £ ; = E,, i.e.

E, = 0.0123. (3.81)

Saberi [13] has obtained an upper bound on the small parameter € of linear time-varying singu-
larly perturbed systems using composite Liapunov functions. The specialization of that result to
the time-invariant case has appeared in Saberi and Khalil [14]. Applying the upper bound compu-
tation of [13] to this example gives an upper bound of

€y == 0.1953 (3.82)
which is less conservative than the bound £, {(Eq. (3.81)) obtained by the methods of this paper.
(Note: In arriving at the bound ¢, of (3.82), the solution P (¢) of the Liapunov matrix equation
(2.9) given in Eq. (3.66) was employed.)

IV. TIME-INVARIANT PROBLEMS
IV.1. Motivation and Background
A. Motivation

The remainder of the paper will be concerned with obtaining specialized results for the
time-invariant version of Eq. (2.1):

7 = Az + By (4.12)

E(f)yo = Cz + Dy (4.1b)

The notation here is the same as vthat used for the time-varying case, except that now A B ,C,D
are constant matrices. The main reason for considering this special case separately is to show
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that hypothesis (H4) can be lifted for time-invariant problems. Another fortunate outcome of this
separate analysis is that hypothesis (H3) can be replaced by a more natural assumption, namely
the ‘strong block D-stability’ of an associated boundary layer system, a concept introduced below.
It is interesting to note that the assumption (H4) of bounded mutual ratios for the small parame-
ters was crucial in the derivation of the upper bounds in the time-varying case, as was hypothesis
(H3) on the matrix D (¢). Indeed, it is easily verified that the upper bound for stability of Eq.
(1.1) obtained above vanishes in the limit that the constraint (2.11) on the mutual ratios disap-
pears. This can be checked by taking the limit as K — oo in (3.18), (3.20) to get E; — 0,
implying £, — 0 by Eq. (3.62). The upper bound for stability obtained by Khalil [11] in the
(nonlinear) time-invariant case suffers from this same type of conservativeness.

Three problems are dealt with in the remainder of the paper. The first problem is that of
finding sufficient conditions ensuring asymptotic stability of the null solution of (4.1) for all
sufficiently small | € e e RY. (Recall that R M is the positive orthant of R* .) The second con-
cerns finding upper bounds on the small parameters ensuring the existence of a transformation
separating fast and slow dynamics of (4.1). For brevity, such an upper bound will be derived only
to ensure that the system equations can be made block upper triangular, this being all that is
needed to ensure stability in the time-invariant case. Ensuring the existence of an actual decou-
pling transformation can be achieved using the same methods. The third problem is, given that a
set, of sufficient conditions for asymptotic stability are indeed satisfied, to exhibit a specific upper
bound E, on |E (¢)| such that |E(e) < Eq €€ R™ implies the asymptotic stability of (4.1). Note
that the small parameters are not constrained to lie in a proper subset of le; all that is assumed
ise; > 0,1 = 1,...,M. Thus the results will apply uniformly as ¢—0 along any path in Ri‘f.

B. Asymptotic Fast-Slow Decomposition and Stabiity Analysis
The next lemma was introduced in {27]. It gives an algebraic matrix Riccati equation whose
solution is useful in exhibiting a transformation which decouples the fast and slow modes of (4.1).
Lemma 1 [27]. Suppose det D # 0 and denote E = E (¢). Then the Riccati equation
Dr + EMD7'C -MA, - ETBr + ED'CBT =0 (4.2)

or the m Xn matriz D has a locally unique solution D'(¢) near 0ER™ ™™ for | € | sufficiently small.
Y Y

The Riccati equation (4.2) is related to the steady-state version of the differential matrix
Riccati equation (3.3) for L used in the decoupling of time-varying systems. Here it is convenient
to deal with ' ;= D'C ~ L rather than L as the unknown, as T = O (| € )).

The eigenvalues of (4.1) are of course the eigenvalues of the Jacobian matrix

A B
J(ﬁ) = [E—I(G)O Eﬁl(G)D] (‘1.3)

of (4.1).

The next theorem gives an exact expression for the eigenvalues of J(¢) in terms of the eigen-
values of matrices associated with appropriate fast and slow subsystems of (4.1). This theorem
was derived in [27] by using Lemma 1 above to exhibit a similarity transformation rendering J ()
in block upper triangular form.

Theorem 5. Let det D 54 0 and let| € | be sufficiently small so that Lemma 1 applies. Then
o(J(e)) = o(A — BD'C + BT(e)) U o(E"()D + D'CB - I'(e)B) (4.4)
ife, 50,0 = 1,...M. )

This result motivates the following definition of fast and slow subsystems associated with
{4.1).
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Definition 8. If D is nonsingular and a solution I'(¢) of Eq. (4.2) exists, then the corresponding
slow subsystem of (4.1) is

= (A - BD'C + BT(e)z, (4.5)
and the fast subsystem is
y = (Ee)D + D'CB - I'(e)B)y. (4.6)

Several results on the stability of Eq. (4.1) can be obtained from the foregoing discussion.
The first follows from a time-varying version proved by Khalil and Kokotovic [16]. It applies
under the bounded mutual ratios assumption, and can be proved readily using Theorem 5 [29].

Theorem 6. Let hypotheszs (H4) apply, so that ¢ € H and H is a cone of the form (2.11). Then
the null solution of (4.1) ts asymptotically stable for all e € H with k| sufficiently small if: (i) the
reduced system obtained by formally setting € == 0 is asymptotically stable, i.c.

Reoc (A -BD'C) < o, (4.7)
and (17 )
Reo (FYe)D) <0 (4.8)
foralle € H.

Condition (¢7) of Theorem 6 holds if D is block D-stable relative to the multi-index
(my,...,my ). Before stating the next theorem it is useful to introduce the following terminology
(29].

Definition 4. The matrix F € R™*™ is strongly D-stable if there is a # > 0 such that F +G is
D-stable for each G € R™*™ with |G ] < p.

Definition 4 is a special case of the following more general notion of ‘strong block D-
stability.” In [29] it has been shown that matrices satisfying hypothesis (H3) with constant posi-
tive definite matrices P, ¢ are strongly block D-stable.

Deﬁmtzon 5. The matrix F' € R™*™ is strongly block D -stable (relative to the multi-index

m == (m,,...,my)) if there is a ¢ > 0 such that F +G is block D-stable (relative to m ) for each
e} ER"‘X"‘ w1th|G| < U

The next theorem states that if the reduced system is stable and if D is strongly block D-
stable, stability of the multiparameter singular perturbation problem (4.1) is guaranteed for all
sufficiently small |e| €€ Rf{’. Note the removal of the constraint (2.11) on the relative magnitudes
of the singular perturbation parameters which was needed in Theorem 6. Thus, assuming strong
block D-stability, a significant generalization is realized. Both the two time-scale setting and the
multiple time-scale case are treated in the same framework. Strong block D-stability is also very
natural in that it forms part of a necessary and sufficient condition for the robust stability of Eq.
(4.1) [30].

Theorem 7. Suppose that all eigenvalues of Ag = A -BD7'C have strictly negative real parts, and
let D be strongly block D -stable, relative to the multi-index (m,....my ). Then there is a p > 0
such that the null solution of system (4.1) is asymptotically stable for all € = (e, . . ., €3) with
el < pande; > 0,0 = 1., M.

Proof: The slow subsystem (4.5) will clearly be asymptotically stable for sufficiently small e,
Also, since D is strongly block D-stable, the matrix

D + E()D7CB - E(e)I'(¢)B (4.9)

will also be D-stable for sufficiently small H Premultiplying by E 7'(¢), a block diagonal matrix of
the appropriate structure, necessarily yields a stable matrix. This stable matrix is precisely the
Jacobian of the right side of the fast subsystem equation (4.6).

Theorem 7 is a special case of the following result, whose proof is analogous to the preceding
proof.
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Theorem 8. Suppose A, is a stable matriz, and let the set H C R™ be such that
Re o(Ee)D) < 0 (4.10)

for all e € H. Moreover, assume that (4.10) also holds if D s replaced by any sufficiently small
perturbation of D, for all e € H. Then the null solution of (4.1) s asymptotically stable for all
e € H with || sufficiently small.

C. Strategy

The strategy which will be followed in the remainder of the paper may now be briefly sum-
marized. The derivation consists of two main steps. First, the Brouwer fixed point theorem is
used to obtain an initial upper bound £, on |E(6)l which ensures the existence of a solution to the
algebraic matrix Riccati equation (4.2). This initial upper bound is parametrized by the magni-
tude of a norm constraint imposed on a solution to the Riccati equation. Satisfaction of this
upper bound then ensures that the fast and slow subsystems introduced above are meaningful,
and moreover that asymptotic stability of (4.1) is equivalent to that of the fast and slow subsys-
tems. Next, hypothesis (H3) is invoked. This facilitates application of Liapunov’s direct method
to obtain a bound on the norm of the solution to the Riccati equation which ensures asymptotic
stability of the fast and slow subsystems. An explicit upper bound on the weighted norm IE (6)| of
the vector of singular perturbation parameters ¢ readily follows. Note that a similar approach
was used by this author in {7] to obtain a parameter bound ensuring the stability of time-
invariant singularly perturbed systems containing a single parameter.

IV.2. Fixed-Point Analysis of the Riccati Equation
Rewrite Eq. (4.2) in the fixed point form

Fl)y=r (4.11)
where the parametrized mapping F', : R™ X" 5 R™ X" js defined for any ¢ € R¥ by
F():=D7'E(){(r-D'CYA, + TBT ~ D'CBT }. (4.12)

A parametrized upper bound £ («) on [E (e)| will now be derived such that for any o>0 and
it |[E(e)l < E(a), Ir| < « implies |F (T)] < a. Proceeding, let a>0 be given and let T € R ™ *"
satisty [[| < . From (4.12) one has

Pl < E@UD{ ] + D7 eh Aol + IBIE + DBl }

<IE@IDY{ (e +ID*C)As] + o*|B| + «|DCB|}. (4.13)

From (4.13) follows immediately that for [F (T')] < « to hold it suffices that |E (¢)] < E (o) where
E (@) is given by

«

E (o) = - = . . (4.14)
D= { DO, ] + a(IDCBl+1A,]) + o B}

Thus for any a >0, F', is a continuous map of the closed ball B, := { " € R™*" . |r| < «} into
itself whenever 0 < ¢ < F,(«). Note that B, is homeomorphic to the closed unit ball in K ™" .
The Brouwer fixed point theorem {40, p. 54], [41, p. 10] may now be invoked to establish the
existence of a solution I'(¢) to (4.11) in B, for any € with |E (¢)] < E (c).

Theorem 9. For any a > 0 and for all ¢ € RM™ with |[E (¢)] < E (o), the Riccati equation (4.2)
has at least one solution T'(e) with [M(e)] < a.

Remark 6. Note that for any system (1.1) with B £ 0 (the generic and nontrivial case), the
upper bound F («) approaches 0 as a — oo. It is clear, however, that a solution of (4.2) in the
ball B, for a given @ == &, will also belong to any ball B, with o > «, Therefore the upper
bound of Theorem 2 can be made less conservative by using instead of E («) the revised estimate
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E (o) = Og;gaEl(ﬂ) : (4.15)

Remark 7. It is natural to attempt to factorize the quadratic appearing in the denominator of the
expression (4.14) for E,(a). In this regard, note that replacing |D *CB| in (4.14) by |[D'C||B|
results in the new (in general more conservative) upper bound E;' given by

E{' (a) =

o
DDl + «) (Ao] + alB]) (4.16)

Remark 8 Note that in the derivation of Theorem 9 only ezistence of a solution " to (4.2)
needed to be ensured. A further upper bound on lE'(e)I to ensure uniqueness could easily be
derived by a contraction mapping argument as in [5, pp. 16-18]. However, this could only result
in a more conservative final estimate and would thus be counterproductive.

IV.3. An Upper Bound for Stability

A. A Robustness of Stability Estimate

In the stability analysis of the slow subsystem (4.5) the specialization of Proposition 2 to the
time-invariant case will prove useful. It is restated below in a form suitable for time-invariant
systems.

Proposition 2 (Time-Invariant Case). Let A be a stable matriz. Assume given a positive definite
matriz T ond the (unique) positive definite solution R of the Liapunov matriz equation
A'R + RA = -T. Then A + B will be a stable matriz for any B with |B| < 6, where § is
given by

T

6 = —2—|—R—|— . (4.17)

It is worth noting that the matrix K has the explicit representation
o ?
R ={[e*t T et (4.18)
Q
even though this in general does not indicate an efficient means of computing R (cf. Laub [42] ).

B. Stability of the Slow Subsystem

From (4.5), the eigenvalues of the separated slow subsystem are precisely the eigenvalues of
the matrix (the superscript ‘s’ indicates slow variables)

Ag + B =: A? (4.19)

if a solution I' of (4.2) exists. Since by (H2) A, is a stable matrix, there exist positive definite
matrices 7%, F£° such that

AYR® + R°A, = -T°. (4.20)
Proposition 2 now implies that A° is a stability matrix {(i.e. the slow modes are stable) if there is a
T3 I .
solution I' of (4.2) with ]B r < )l |RIS{ . This will be true if

I
2Bl IRY (20

is satisfied, where I' is some solution to Eq. (4.2).

Ir| <
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C. Stability of the Fast Subsystem
Recall from Eq. (4.6) that the fast subsystem is given by
y =(ENe)D + D'CB - T()B)y = A'y, (4.22)

assuming of course that a solution I of (4.2) exists. Rather than attempt to apply Proposition 2
to the fast subsystem (4.6), one invokes hypothesis (H3) to study the stability. Proceeding, define
the Liapunov function candidate v (y ) for (4.22) as

v(y): =y PE(e)y (4.23)

where P (now constant) is from Eq. (2.7) of (H3). Evaluating v along trajectories of (4.22), one
obtains '

v(y) =1y { D' ENePE(e) + PD }y
+ y {B ' C' (DY PE(¢) + PE(e)D'CB }y

-y {B'I'" PE(¢) + PE(c)I'B }y. (4.24)

Since by (H3) P is block diagonal with the same structure as F (e), it follows that P and E (e)
commute, so that the expression D' E~%e)PE(¢) + PD in (4.24) can be rewritten as
D'P + PD = -Q by Eq. (2.9). Now Eq. (2.10) of (H3) and the Schwarz inequality are used to
obtain an upper bound on the right side of (4.24). Thus

v(y) < -c P + 2|E@lIP|IDCB|lyP

+ 2 E(IBII]IP]ly P. (4.25)

Therefore to ensure that v.(y) < 0 it is sufficient to require that I.E(G)I be bounded from above as
follows:

€3
(&) < , 4.26
POl SRTTeET + BT (120
where I' is any solution of (4.2).
Define (@) by
E (@) = Cs (4.27)

2|Pl(ID*CB| + «|B|)

D. An Upper Bound for Stability

The foregoing results may now be combined to yield an upper bound F, on lE (e)| such that
for |E (¢)] < B, €€ RAf, the asymptotic stability of the multiparameter singularly perturbed sys-
tem (4.1) is certain. By the results of Section IV.2-B, the slow subsystem is well defined and its
stability is ensured if there is a solution I’ of Eq. (4.2) satisfying the inequality (4.21). By
Theorem 9, this will be the case if |F (e)l < E | (o) where o is any positive number satisfying
a < Ts[ = (4.28)

2 Bl IR '

Similarly, the fast subsystem will be well defined and stable if the last remark holds and if
£ ()] < Eq(a) where E (a) is given by Eq. (4.27), and where, again, « is any positive scalar
satisfying (4.28). By Edq. (4.4) stability of the fast and slow subsystems implies that of the singu-
larly perturbed system (4.1).

For any given « > 0 satisfying (4.28), clearly an upper bound on |E ()] ensuring stability of
(4.1) is min ( £ {(a). £4a) ). To optimize the upper bound, one takes the maximum of this
quantity over all o satisfying Eq. (4.28). These remarks are summarized in the following theorem,
in which the upper bound £, of this paper for time-invariant systems is stated explicitly.
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Theorem 10. Let hypotheses (H1)-(H3) hold, with P, @ constant matrices. Then the null solution
of (4.1) is asymptotically stable for all e € R™ with |[E (¢)| < E, where E is given by
E,:= max min{E;(a), Exa)}, (4.29)

o<a<la

and where E | (), Eo() and @ are given by Egs. (4.15), (4.27) and (4.28) respectively.

V. CONCLUSIONS

The paper has presented a derivation of explicit upper bounds on a weighted norm of the
vector of singular perturbation parameters ensuring that the multiparameter singularly perturbed
system (1.1) can be decoupled into separate fast and slow subsystems (3.2a,b), and that (1.1) is
uniformly asymptotically stable. The results for time-invariant systems apply uniformly as the
small parameters approach zero independently, regardless of their relative magnitudes. Thus both
the multiple time scales setting [21, 23] and the bounded mutual ratios setting {16] are addressed
as special cases for time-invariant systems. The upper bound obtained for stability in the time-
invariant case is uniform and so does not display the conservativeness which occurred in Khalil
[11] and in the results of the present paper on time-varying systems.

Although the hypothesis (H4) of bounded mutual ratios of the small parameters is valid for
a large class of physical systems, it remains an interesting and open question as to the extent to
which it can be relaxed for time-varying systems. It is also interesting to consider whether a
‘strong D-stability’ type assumption can replace hypothesis (H3) in the time-varying case.
Finally, the relationship between strong D-stability and the conditions for stability of multiple
time-scale systems derived by Khalil and Kokotovic {43} should be studied.
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