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Face recognition has been a long standing problem in computer vision. Gen-

eral face recognition is challenging because of large appearance variability due to

factors including pose, ambient lighting, expression, size of the face, age, and dis-

tance from the camera, etc. There are very accurate techniques to perform face

recognition in controlled environments, especially when large numbers of samples

are available for each face (individual). However, face identification under uncon-

trolled(unconstrained) environments or with limited training data is still an unsolved

problem. There are two face recognition tasks: face identification (who is who in

a probe face set, given a gallery face set) and face verification (same or not, given

two faces). In this work, we study both face identification and verification in un-

constrained environments.

Firstly, we propose a face verification framework that combines Partial Least

Squares (PLS) and the One-Shot similarity model[1]. The idea is to describe a

face with a large feature set combining shape, texture and color information. PLS



regression is applied to perform multi-channel feature weighting on this large feature

set. Finally the PLS regression is used to compute the similarity score of an image

pair by One-Shot learning (using a fixed negative set).

Secondly, we study face identification with image sets, where the gallery and

probe are sets of face images of an individual. We model a face set by its covariance

matrix (COV) which is a natural 2nd-order statistic of a sample set.By exploring an

efficient metric for the SPD matrices, i.e., Log-Euclidean Distance (LED), we derive

a kernel function that explicitly maps the covariance matrix from the Riemannian

manifold to Euclidean space. Then, discriminative learning is performed on the

COV manifold: the learning aims to maximize the between-class COV distance and

minimize the within-class COV distance.

Sparse representation and dictionary learning have been widely used in face

recognition, especially when large numbers of samples are available for each face

(individual). Sparse coding is promising since it provides a more stable and dis-

criminative face representation. In the last part of our work, we explore sparse

coding and dictionary learning for face verification application. More specifically,

in one approach, we apply sparse representations to face verification in two ways

via a fix reference set as dictionary. In the other approach, we propose a dictionary

learning framework with explicit pairwise constraints, which unifies the discrimina-

tive dictionary learning for pair matching (face verification) and classification (face

recognition) problems.
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Chapter 1

Introduction

1.1 Face Recognition in Unconstrained Environments

During the past two decades, face recognition (FR) has received great attention

and tremendous progress has been made[5, 6]. Face recognition research [5, 6] is

driven by its variety of applications in areas such as public security, human computer

interaction, and financial security. Face recognition mainly involves the following

three tasks (see Figure 1.1): identification (1:N matching problem), verification (1:1

matching problem), Watch list. In the identification task, a probe image is matched

against a set of labeled faces in a gallery set, and is identified as the person presenting

the highest similarity score. In the verification task, given two face images, the goal

is to decide whether these two images are of the same person or not. In the watch

list task, the recognition system first determines if the identity of the query face

image is in the watch list and, if yes, then identifies the individual. Usually, face

recognition refers to the face identification task. We focus on the first two tasks.

There has been tremendous progress in face recognition. Under carefully or

well controlled conditions high recognition rates can be obtained even when a large

number of subjects is in the gallery [6, 5]. However, when this task is performed

under uncontrolled conditions (unconstrained environments), such as uncontrolled

(outdoor) lighting and changes in facial expressions, recognition rates decrease sig-

1



Figure 1.1: Three face recognition tasks: verification, identification, and watch list.

nificantly. Face appearances may change a lot when acquisition conditions are less

constrained, making the recognition problem harder. Unconstrained environments

include no restrictions over environmental conditions such as scale, pose, lighting, fo-

cus, resolution, facial expression, accessories, makeup, occlusions, background, and

photographic quality, etc.

Another challenge is that most current face recognition algorithms perform

well when several training images are available per subject; however they are not

adequate for scenarios where a single sample per subject is available. Single-sample-

size problem would make face recognition in unconstrained environments even more

challenging. In real world applications, one training sample per subject presents

advantages such as ease of collect galleries, low cost for storage and lower computa-

2



tional cost [7]. Thus, a robust face recognition (identification) system able to work

with both single or small numbers of samples per subject is desirable.

1.2 Face Verification in Unconstrained Environments

In real world, face verification is more widely applicable and is also the foun-

dation of the identification task. Since face verification is a binary classification

problem on an input face pair, there are two major components of a verification ap-

proach: face representation and face matching. The extracted feature (descriptor)

should be not only discriminative but also invariant to apparent changes and noise.

The matching should be robust to variations from pose, expression, and occlusion,

etc. These requirements make face verification a very challenging problem.

1.3 Face Recognition and Object Recognition with Image Sets

Face recognition based on image sets has recently attracted growing interest

in the computer vision and pattern recognition community. This problem naturally

arises in a wide range of applications including video surveillance, classification based

on images from multi-view cameras and photo albums, and classification based on

long term observations. In the task of face recognition from image sets, each set

generally contains a large number of images (faces) that belong to the same person

and cover large variations in the person’s appearance due to camera pose changes,

non-rigid deformations or different lighting conditions. While traditional recognition

methods based on single-shot images have achieved a certain level of success under

3



constrained conditions, more robust face recognition can be expected by using sets

as input rather than single images, especially in unconstrained environments. This

is mainly because the image sets incorporates useful data variability information,

which can be efficiently exploited under more realistic conditions with significantly

larger variations.

There are many aspects that can be improved in the recognition of faces in

unconstrained environments. In this work, we propose several methods for face

recognition (identification either from single image or image sets) and face verifica-

tion for unconstrained environments.
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Chapter 2

Face Verification using Partial Least Squares One-Shot Model

2.1 Background

Previous research has shown that face recognition under well controlled ac-

quisition conditions is relatively mature and provides high recognition rates even

when a large number of subjects is in the gallery [6, 5]. However, when this task

is performed under uncontrolled conditions (unconstrained environments), such as

uncontrolled lighting and changes in facial expressions, recognition rates decrease

significantly. Face appearances may change when acquisition conditions are uncon-

trolled, making the recognition problem harder. For example, there can be some

extreme illuminations, expressions and out of focus images.

Recently, the Labeled Faces in the Wild (LFW)[2] dataset was released as

a benchmark for the face verification (pair-matching) problem. The LFW images

include considerable visual variations caused by, for example, lighting, pose, facial

expression, partial occlusion, aging, scale, and misalignment. Figure 2.1 contains

some examples of pairs of images from the same person that differ in lighting, pose,

facial expression and partial occlusion. Face verification is a very challenging prob-

lem. Different from many classification problems where the specific class label of

each image is given during training, only binary information such as same/different

or relevant/irrlevant is provided for training data in applications such as face ver-

5



ification (given a target and a query image, determine whether they are from the

same person), pair matching, image retrieval, etc. Typically, a discriminative simi-

larity measure is learned through metric learning [8, 9, 10, 11] from pairs of training

images labeled as ‘same’ or ‘different’; this provides less specific information than

known classes - category labels.

Since face verification is a binary classification problem of an input face pair,

there are two major components of a verification approach: face representation and

face matching. The extracted feature (descriptor) should be not only discriminative

but also invariant to apparent changes and noise which are common in unconstrained

environments. In order to reduce the problems associated with data collected under

uncontrolled conditions, we consider a combination of low-level feature descriptors

based on different clues (such approaches have provided significant improvements

in object detection [12, 13] and recognition [14, 15]). Then, feature weighting is

performed by Partial Least Squares (PLS), which handles very high-dimensional

data presenting multicollinearity and works well very few samples are available [13,

16, 17, 18, 19].

Another important issue in face verification is learning an appropriate similar-

ity measure which is robust to variations from pose, expression and occlusion. Most

popular methods tailor the similarity measure to available training data by apply-

ing learning techniques [20]. In such methods, testing is performed using models (or

similarity measures) learned beforehand. The other trend is to learn from one or

very few training examples. Wolf et al. [21, 20] proposed the use of One-Shot Simi-

larity (OSS) to learn discriminative models exclusive to vectors being compared, by
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using a set of background samples. In our work, we use this One-Shot framework

to learn models for feature vectors representing face samples on-the-fly. The pre-

diction scores are computed from Partial Least Squares Regression. A down-side

of employing one-shot scheme is the imbalance of the class distributions. However,

studies have shown that data imbalance presents little influence on the performance

of PLS modeling [22, 23]. Barker et al. [22] pointed out that PLS involves eigen-

decomposition of the between-class scatter matrix solely, which only involves calcu-

lation of mean vectors of different classes. This does not depend on the number of

samples in each class. In addition, Qu et al. [23] showed that the weight estimation

performed by PLS helps it to extract favorable features for unbalanced classification.

There are several advantages of our method [24]: (1) It is unsupervised. No

labeled training set is needed, either pair labels or identity information. All we need

is a small unlabeled reference set. The discriminative models are learned online and

exclusively for the pair being compared. (2) PLS has been shown, experimentally,

to be robust to modest pose variations[25], expression, illumination, aging and other

uncontrolled variations[26]. (3) There is almost no parameter tuning with PLS. The

only parameter is the number of factors and it is not sensitive.

2.2 Related Work

There has been a significant amount of relevant works on face verification

[14, 27, 28, 20, 29, 30, 31, 21, 32, 33]. Here we briefly review those state-of-the-art

methods that have been evaluated on the LFW benchmark. At the end of this
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Figure 2.1: Examples of some images from the LFW dataset with variations in:

Top row:(left) partial occlusion, (right)lighting; bottom row: (left) pose, (right)

expression. Each corner shows a different subject. Note that each pair is from the

same person.
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section we also review some recent work using PLS in face identification[26, 25].

Some work focus principally on face descriptors [32, 31, 29]. Pinto[32] et al.

combined variants of intensity and V1-Like models. The classification of face im-

ages was performed using large-scale multi kernel learning (MKL) associated with

a support vector machine (SVM). In [31], an unsupervised learning-based encoding

(LE) method was proposed to encode the micro-structures of a face with a sin-

gle or a combination of multiple descriptors. In [29], Patterns of Oriented Edge

Magnitudes (POEM) was introduced. The POEM feature is built by applying a

self-similarity based structure on oriented magnitudes, calculated by accumulating

a local histogram of gradient orientations over all pixels of image cells, centered

on the pixel. Other works have employed metric learning[28, 34, 30] for learning

similarity functions for verification. Guillaumin et al.[28] presented two methods

for learning robust distance measures: (1) LDML: a logistic discriminant approach

which learns the metric from a set of labeled image pairs and (2) MkNN: a nearest

neighbour approach which computes the probability for two images belonging to the

same class. In [30], a part based face representation (densely sampled overlapping

image patches) is computed to enable elastic and partial matching. The distance

metric is defined as each descriptor in one face is matched against its spatial neigh-

borhood in the other face. [34] presented the Cosine Similarity Metric Learning

as an alternative to Euclidean distance. The idea was to learn a transformation

matrix by minimizing the cross-validation error with a gradient-based optimization

algorithm.

The use of low-level feature descriptors has been an effective approach in face
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recognition and face verification [14, 35, 36, 37, 38, 39]. SIFT and histogram of

oriented gradients (HOG), which can be viewed as a quantized code of the facial

gradients, are used in face recognition as effective descriptors [40, 41]. Local binary

patterns (LBP) and Gabor filters are descriptors most widely used in face recog-

nition. LBP is invariant to monotonic photometric change and can be efficiently

extracted. Gabor features are characterized by spatial frequency, spatial locality,

and orientational selectivity for coping with image variabilities such as illumination

variations. There are several combinations or variations based on these LBP and

Gabor descriptors [14, 35, 36, 37]. In addition, by varying a sampling radius, R, and

combining the LBP images, a multiresolution representation based on LBP, called

Multi-Scale Local Binary Patterns (MSLBP) [42] can be obtained. This represen-

tation has been suggested for texture classification and the results reported for this

application show a better accuracy than that of the single scale LBP method. Re-

cent research has focused on parameter learning with a HOG like template [43, 44].

Other LBP variants including Three-Patch based Local Binary Patterns (TPLBP),

Four-Patch based Local Binary Patterns (FPLBP) [45] have been introduced for

face recognition/verification.

Some of the best performing algorithms focus on the classifier design[27] and

learning more discriminative models[21, 20, 46]. Kumar et al. [27] designed two

methods: attribute classifiers, which are trained to recognize describable aspects of

visual appearance, and simile classifiers, trained to recognize the similarity of faces,

or regions of faces, with respect to specific reference people. Wolf et al.[21, 20, 46]

proposed One-Shot Similarity [20] to learn discriminative models exclusive to vectors
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being compared, by using a set of background samples. In [20], they used a random-

patch based image representation with OSS as the similarity score and a SVM to

classify. In [21], the OSS was extended to ’Two-Shot Similarity’(TSS). Also, the

authors used the ranking of images most similar to a query image and employed

these as a descriptor for that image. The best verification result was obtained by

adding SVM based OSS and TSS to LDA. Yin et al. [47] used extra generic identities

(‘memory’: containing multiple images with large intra-personal variation) as a

bridge and the ‘associate-predict’ model to handle intra-personal variation. Most of

the approaches mentioned above (especially the latter two categories) are supervised

methods requiring a training set, which is referred to as the image-restricted setting

in the LFW protocol. However, the training phase is burdensome and there are

situations in which not providing training data is more practical. Some approaches

design training-free face verification and are evaluated in the unsupervised setting on

LFW dataset [48, 49]. In [48], the authors randomly selected 100 images from LFW

as a reference set (without using label or pair-wise relationships of same or different)

for the Borda count ranking between the Gabor Jet Descriptors. In another training-

free approach, locally adaptive regression kernels (LARK)[49] were employed as

visual descriptors, in conjunction with the matrix cosine similarity (MCS) measure.

2.2.1 Partial Least Squares and Face Recognition

Tackling face verification task with Partial Least Squares is motivated by one

of our previous work [50] using Partial Least Squares regression to weight a combi-
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nation of a large number of feature descriptors (with more than 70,000 descriptors)

that capture different visual information in a one-against-all classification scheme

with highly unbalanced class distributions with a single or very few samples in the

positive class. The benefits are provided by combining an increasing number of fea-

ture descriptors weighted by Partial Least Squares to emphasize those that best dis-

criminate among different subjects. The method is evaluated on the FRGC/FRVT

dataset [51], and the FERET dataset [52]. Experiments show that the PLS [50, 53]

based method outperforms current state-of-theart results, especially for recognizing

faces acquired across varying conditions. In addition, it can also handle the problem

of insufficient training data – experimental results show high performance when only

a single sample per subject is available.

The partial least squares (PLS)-based approach outperforms state-of-art tech-

niques in most of the comparisons involving standard face recognition datasets,

particularly when the data is acquired under uncontrolled conditions, such as in

experiment 4 of the FRGC dataset. In addition, the PLS-based method can also

handle the problem of insufficient training data. Experiments on datasets with

only a single sample per subject have shown high performance when the PLS-based

algorithm is used.

More recently, in [25] the authors used PLS to linearly map images in differ-

ently modalities to a common linear subspace in which they are highly correlated.

The work showed, in theory, that there exist linear projections of images taken in

two modalities that map them to a space in which images of the same individual

are very similar. In that work, PLS was shown to work well across modalities: high
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resolution vs. low resolution, pose variation, and in comparing images to sketches.

2.3 Proposed Method

2.3.1 Overview of the Framework

The pipeline of our PLS One-Shot Model based face verification approach is

presented in Figure 4.1. Firstly, a randomly selected set of images A (approximately

500 images from LFW) is set aside as background samples [21]. The images in this

set is unlabeled and considered as ’negative’ examples. It should not contain any

images from individuals to be compared subsequently. All images in this set are

aligned, cropped and their feature vectors are extracted and stored.

When a new pair of face images is presented, their two feature vectors are

extracted and their similarity score is calculated by building PLS One-Shot Model

using each of the vectors versus the set A and projecting the other vector to the

other’s model. The two projections provide the responses of the PLS regression

models. The average of these two scores is used to measure the similarity of the

image pair.

Finally, if the similarity score is above threshold, a match is declared; a non-

match is declared, otherwise.

2.3.2 Feature Extraction

After cropping and resizing the faces, each sample is decomposed into over-

lapping blocks and then, a set of low-level feature descriptors is extracted from each
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Figure 2.2: Our processing pipeline for face verification using the PLS One-Shot

Model.

14



block. The feature extraction methods used capture information related to shape

(histogram of oriented gradients (HOG) [54]), texture (captured by local binary

patterns (LBP) [36] and multi-scale local binary patterns (MSLBP) [42]), color in-

formation (captured by averaging the intensities of pixels in a block, referred as to

mean feature), and salient visual properties (captured by Gabor filters [55]) .

HOG captures edge or gradient structures that are characteristic of local shape.

According to Dallal and Triggs [54], a consequence is a controllable degree of in-

variance to local geometric transformations, providing invariance, for example, to

translations and rotations smaller than the local spatial or orientation bin size.

LBP characterizes the spatial structure of the local image texture and is invari-

ant to monotonic transformations of the pixel gray values [36]. Its original version

labels the pixels of an image by thresholding the 3× 3 neighborhood with intensity

gp (p = 0, 1, 2, ..., 7) with respect to its intensity of the center pixel gc, then defines

S(gp − gc) =


1, gp ≥ gc

0, gp < gc

(2.1)

Then, the LBP pattern of the image neighborhood is obtained by summing the

corresponding thresholded values S(gp − gc) weighted by a binomial factor of 2p as

LBP =
7∑
p=0

S(gp − gc)2
p (2.2)

Finally, a 256-bin histogram of the resulting labels is used as a feature descriptor

for a patch of the image.

According to the size of the neighborhood employed, there are different ver-

sions of LBP. The 3x3 version described above is denoted LBP8, due to the use
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of 8 adjacent pixels spaced radially by 45◦. LBP can also be employed in a multi-

resolution framework by considering concentric circles of different radii, called MSLBP [42].

This method has not been widely used in face recognition.

In this work, in addition to the basic single scale LBP operator, we consider

the MSLBP with setup LBP8,2 (8 pixels on a circle whose radius is 2 pixels) and

LBP8,4 (8 pixels on a circle whose radius is 4 pixels). The two resulting histograms

are simply concatenated and used as descriptors.

Gabor filters are widely used in object recognition since they capture a number

of salient visual properties including spatial localization, orientation selectivity, and

spatial frequency selectivity quite well [55]. They are robust to illumination varia-

tions since they detect amplitude-invariant spatial frequencies of pixel gray values.

Gabor filters most commonly used in face recognition have the form:

ψµ,ν(z) =
∥kµ,ν∥2

σ2
e(−∥kµ,ν∥2∥z∥2/2σ2)[eikµνz − e−σ

2/2] (2.3)

where µ and ν define the orientation and scale of the Gabor kernels, z = (x, y), ∥ · ∥

denotes the norm operator, and the wave vector is kµ,ν = kν(cosϕµ, sinϕµ) where

kν = kmax/f
ν and ϕµ = πµ/8 with kmax being the maximum frequency and f being

the spacing factor between kernels in the frequency domain. In this work, we used

σ = 2π, kmax=
π
2
, and f =

√
2.

The Gabor representation of a face is derived from convolving the gray-scale

face image with the Gabor filters. Let I(x, y) be the face image, its convolution with

a Gabor filter is defined as follows

GψI(x, y, µ, ν) = I(x, y) ∗ ψµν(z) (2.4)
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where ∗ denotes the convolution operator. Five scales µ ∈ {0, ..., 4} and eight

orientations ν ∈ {0, ..., 7} are used here, which results in 40 Gabor filters. For each

Gabor filter, one magnitude is computed at each pixel position, resulting therefore in

40 descriptors per pixel. Then, the final feature vector is obtained by downsampling

the Gabor features by a factor 4 (one per four rows and columns) in order to reduce

the dimensionality of the feature vector to manageable sizes.

After the feature extraction process is performed for all blocks inside a cropped

face, descriptors are concatenated creating a high-dimensional feature vector v.

This vector is used to describe the face.

2.3.3 Partial Least Squares Regression

Partial least squares is a method for modeling relations between sets of ob-

served variables by means of latent variables. The basic idea of PLS is to construct

new predictor variables, latent variables, as linear combinations of the original vari-

ables summarized in a matrix X of descriptor variables (features) and a vector

y of response variables. Detailed description of the PLS method can be found

in [16, 56, 57].

Let X ⊂ Rm denote an m-dimensional feature space and let Y ⊂ R be a scalar

space representing the response variable. Let the number of samples be n. PLS

decomposes a mean-centered matrix Xn×m and mean-centered vector yn×1 into

X = TP T +E

y = UqT + f
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where T and U are n×p matrices containing p extracted latent vectors, the (m×p)

matrix P and the (1× p) vector q represent the loadings and the n×m matrix E

and the n× 1 vector f are the residuals. Using the nonlinear iterative partial least

squares (NIPALS) algorithm [16], a set of weight vectors is constructed, stored in

the matrix W = (w1,w2, . . . ,wp), such that

[cov(ti,ui)]
2 = max

|wi|=1
[cov(Xwi,y)]

2 (2.5)

where |wi| denotes the 2-norm of vector wi, ti is the i-th column of matrix T , ui

the i-th column of matrix U , and cov(ti,ui) is the sample covariance between latent

vectors ti and ui. After extracting the latent vectors ti and ui, the matrix X and

vector y are deflated by subtracting their rank-one approximations based on ti and

ui. This process is repeated until the desired number of latent vectors has been

extracted. Once the low dimensional representation of the data has been obtained

by NIPALS, the regression coefficients βm×1 can estimated by

β = W (P TW )−1T Ty. (2.6)

The regression response, yv, for a feature vector v is obtained by

yv = y + βTv (2.7)

where y is the sample mean of y.

It is important to point out that even though the number of weight vectors

used to create the low dimensional representation of the data matrix X is p, Equa-

tion 2.7 shows that only a single dot product of a feature vector with the regression

coefficients is needed to obtain the response of a PLS regression model – and it is

18



this response that is used to rank faces in a gallery. This characteristic makes the

use of PLS particularly fast for finding matches for probe samples, in contrast to

other methods where the number of dot product evaluations depends on the number

of eigenvectors considered, which is quite large in general [58].

2.3.4 Face Verification with PLS One-Shot Model

To decide whether the images of two faces I and J are of the same individual or

not, traditional methods for face verification use a large training set to learn models

(or similarity measures) beforehand, and then employ this model to calculate the

similarity of images I and J. In contrast, we learn the models for the images to

be matched on-the-fly using the PLS One-Shot Model (PLS + OSS). The key idea

behind the OSS[20] is to use a set A of negative training examples not containing

images belonging to the people being compared. The details of OSS are described

in [20]. (see Algorithm 1 ).

To perform face verification, we use the given training set as the fixed negative

set (or reference set) A, see Figure 4.1. When a new pair of face images I and J

is to be matched, they are cropped to the same size and the features are extracted.

Then, a discriminative PLS Regression model is learned by taking A as the negative

samples (with labels -1) and I to be the single positive sample (with label +1). Then,

J is evaluated by this model to obtain a response (similarity score). This score gives

a measure of how likely J shares the same label as I or belongs to the negative set

(which means J might be very different from I). Symmetrically, we switch the roles
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Algorithm 1: Computation of the symmetric One-Shot Similarity score for

two vectors, I and J, given a set A of negative examples.

function One-Shot-Similarity(I, J, A)

Model1 = train(I, A)

Score1 = classify(J,Model1)

Model2 = train(J, A)

Score2 = classify(I, Model2)

return 1
2
(Score1 + Score2)

of I and J and execute the same procedure. The final similarity score for this pair

is the average of the two scores.

2.4 Experimental on LFW Dataset

In this section, we evaluate our PLS One-Shot model based face verification

on the LFW.

2.4.1 LFW Dataset

The Labeled Faces in the Wild (LFW)[2] dataset contains 13,233 face images

labelled by the identity of the person. The faces show large variation in pose, expres-

sion, lighting, occlusion, and aging. There are three versions of the LFW dataset

available: original, funneled and aligned. Wolf et al.[21] showed that the aligned

version (lfw-a) is better than the funneled version in dealing with misalignment.
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Therefore, we use the lfw-a n in all of our experiments.

The dataset comes with a division into 10 fully independent splits (folds) that

can be used for cross validation [59]. Using only the given image pairs in the train-

ing set is referred to as the image-restricted paradigm; in this case, it is known

whether an image pair belongs to the same person or not, while identity information

is not used at all. The unrestricted paradigm refers to training methods that can

use all available data, including the identity of the people in the images. Addition-

ally, there is an unsupervised paradigm when there is no supervised information,

such as in the form of same/not-same labels used. As an example of the unsuper-

vised paradigm, in[48], the authors randomly selected 100 images from LFW for the

Borda-count method that was used together with the Gabor descriptor. The 100

images were used simply as a reference set; their pair or identity information was

not used.

In our evaluation, while performing each independent fold, we randomly choose

500 images from the training set (other 9 splits, 5400 image pairs) without using

their pair information. The number 500 is chosen because experiments with several

datasets show sufficiently good performance when the ’negative’ set contains 300 to

1000 images. Then, these images are fixed as the ’negative’ set (background samples)

for this fold. According to the protocol, the 10 splits are mutually exclusive with

respect to subject identities. Below, we present results using both the unsupervised

and the image restricted paradigms.
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Figure 2.3: Examples of face images with different croppings. Left to right: 80×148

(crop1), 80× 110 (crop2), 80× 64 (crop3).

2.4.2 Preprocessing

In our evaluation we consider three different crop regions: (1) centered face

region with hair (2) centered face region without mouth (3) centered face region

without mouth and hair. Figure 2.3 shows the three different croppings: 80 × 148

(crop1), 80×110 (crop2), 80×64 (crop3). There are pros and cons for each different

cropping: removing some parts like the mouth or hair region could help alleviate

effects due to expression and hat occlusion, while mouth/chin and hair style might

also include some informative features. We tried these croppings and fused the three

scores in a simple way (rely more on full region than the other two partial regions,

fusion gives about 1% improvement from ’crop1 only’, see Table 4.2):

finalscore = score(crop1) + 0.5 ∗ score(crop2) + 0.5 ∗ score(crop3) (2.8)

For illumination normalization, our experiment found that the un-normalized

images and images filtered by Difference of Gaussian give similar results with PLS

One-Shot model. We report the results with DoG, as in [30, 31]. Since there
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Figure 2.4: Examples of face image and its flipped image.

is significant pose variation within LFW, we additionally use the flipped (mirror)

image. Figure 2.4 gives an example of an image pair and their flipped images. When

comparing image pair I and J, we also compare I and the flipped image of J. Then

the average of the two scores is taken as the final similarity score. We will show this

simple flip step improves performance.

2.4.3 Experimental Setup

For HOG features, we use block sizes of 16×16 and 8×8 with strides of 4 and

4 pixels, respectively. For LBP features, we use block size of 16× 16 with strides of

8 pixels. The Gabor features have 5 scales and 8 orientations, down sampled by a

factor of 4. The PLS factor (number of latent vectors p) is set to 11.

For verification, given a pair of query image and target image, the goal is to

correctly determine whether these two belong to the same subject. The well-known

receiver operating characteristic (ROC) curve, which describes relations between

false acceptance rates (FARs) and true acceptance rates (TARs), is used to evaluate

the performance of verification algorithms. As the TAR increases, so does the FAR.
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Therefore, one would expect an ideal verification framework to have TARs all equal

to 1 for any FARs.

In prior work on the LFW benchmark, algorithms are typically evaluated by

ROC curves and the classification accuracy (true positive rate) at the Equal Error

Rate (EER). EER is the location on the ROC curve where the false positive rate

and false negative rate are equal. We report our results in the form of ROC curves

and the estimated mean classification accuracy and the standard error of the mean

for the 10 cross-validation folds in View 2 of the dataset.

2.4.4 Comparison with the State-of-the-art Methods

As stated previously, we only uses a very small number of images from the

training set as a reference set. No pair label or identity is used. Thus, we compare

our method using the unsupervised paradigm. PLS One-Shot method outperforms

other methods using the unsupervised paradigm by a large margin. At the same

time, its performance is comparable to the best results using the image-restricted

paradigm whose methods use pair information.

Comparison with Unsupervised paradigm. Table 4.2 shows the classifi-

cation accuracy (at EER) of our method in comparison with other methods using

the unsupervised paradigm. Figure 4.4 presents the ROC curve of our approach

(pink line), along with the ROC curves of previous methods. As can be seen, PLS

One-Shot outperforms the other methods by a very large margin. Similar to these

methods, only a very small set from the LFW is used as a reference set. No other
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Method Classification accuracy

SD-MATCHES, aligned [48] 0.6410±0.0042

H-XS-40, aligned [48] 0.6945±0.0048

GJD-BC-100, aligned [48] 0.6847±0.0065

Our method (PLS + OSS, crop1 only) 0.8418±0.0052

Our method (PLS + OSS) 0.8533±0.0038

Our method (PLS + OSS, flip) 0.8612±0.0047

Table 2.1: Mean (± standard error) classification accuracy on the LFW dataset,

Unsupervised Training benchmark using the PLS One-Shot Model, and the same

model except the addition of the flipped image idea. The ’crop1 only’ gives the

result of the main cropping.

supervised information is used. Our PLS One-Shot model based face verification

approach is simple and effective for this challenging real-world dataset.

Comparison with Image-Restricted paradigm. Since many state-of-the-

art methods use the pair information and report their results using the Image-

Restricted paradigm, we compare our results with them too. Table 5.2 shows

the classification accuracy of our method in comparison with those methods with

the Image-Restricted paradigm. Figure 5.4(b) contains the ROC curve of our ap-

proach (blue line), along with the ROC curves of previous methods with the Image-

Restricted paradigm.

The results show that our approach is comparable with the state-of-the-art

25



Figure 2.5: ROC curves for View 2 of the LFW dataset. Each point on the curve

represents the score over the 10 folds (of false positive rate, true positive rate) for a

fixed threshold. Unsupervised paradiam.
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Figure 2.6: ROC curves for View 2 of the LFW dataset. Image-Restricted

paradiam. The plots are gernerated from results reported on http://vis-

www.cs.umass.edu.lfw.results.html.
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Method Classification accuracy

Eigenfaces, original[60] 0.6002±0.0079

Nowak, funneled [11] 0.7393±0.0049

MERL+Nowak, funneled [61] 0.7618 ±0.0058

Hybrid Descriptor, funneled [62] 0.7847±0.0051

Multi-Region Histograms [63] 0.7295±0.0055

V1-like/MKL [32] 0.7935±0.0055

LDML, funneled [28] 0.7927±0.0060

SVM + OSS [20] 0.7637±0.0065

POEM, aligned [29] 0.7542 ±0.0071

Hybrid, aligned [46] 0.8398±0.0035

Combined b/g samples based [21] 0.8683±0.0034

Attribute and Simile classifiers [27] 0.8529± 0.0123

Single LE + holistic, aligned [31] 0.8122±0.0053

Multiple LE + comp, aligned [31] 0.8445±0.0046

CSML + SVM, aligned [34] 0.8800 ±0.0037

Our method (PLS + OSS) 0.8533±0.0038

Our method (PLS + OSS, flip) 0.8612±0.0047

Table 2.2: Mean (± standard error) classification accuracy on the LFW dataset,

compared to Image-Restricted Training benchmark using the PLS One-Shot Model.
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methods on the LFW benchmark (we achieved 86.12% classification accuracy). On

the LFW benchmark, Wolf’s work[21] and the recently published CSML[34] have

the best performance. Wolf’s model has several layers and requires a large amount

of training data. CSML uses the View 2 training data intensively to conduct their

cross-validation error minimization based metric learning. Kumar[27] shows excel-

lent result, marginally lower than ours. However, Kumar’s work requires training

high-level classifiers requiring a huge volume of images outside of the LFW dataset.

The LE [31] method in the component-level relies on facial feature point detectors

that have been trained with supervision. The method which is directly compara-

ble is SVM+OSS [20].Overall, our approach achieves competitive accuracy without

using any label information or local feature identification. Thus it could be easily

generalized to other datasets.

2.5 Evaluations on GBU and BDCP Datasets

We also evaluated our PLS One-Shot Model based face verification algorithm

on several other very challenging datasets collected under unconstrained environ-

ments.

For all the below experiments we use the same feature settings. For HOG

features, we use block sizes of 16 × 16 and 8 × 8 with strides of 4 and 4 pixels,

respectively. For LBP features, we use block size of 16× 16 with strides of 8 pixels.

The Gabor features have 5 scales and 8 orientations, down sampled by a factor of 4.

The PLS factor (number of latent vectors p) is set to 11. The reference set is similar
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to LFW, which contains around 500 images captured in the similar (not not too

different) as the test set. The faces in GBU [64], BDCP are cropped and re-scaled

to 128× 160, 60× 72respectively.

Sample faces from GBU dataset (ugly partition) are shown in Figure 2.9.

Figure 2.7: Sample face images from the ugly Partition from the GBU database.

Sample faces from BDCP dataset are shown in Figure 2.8.

Figure 2.8: Sample face images from the ugly Partition from the BDCP database.

2.5.1 Evaluations on GBU dataset

The Good, the Bad, and the Ugly Face Challenge Problem [64] was created

to encourage the development of algorithms that are robust to recognition across

changes that occur in still frontal faces. The Ugly partition contains pairs of im-

ages considered difficult to recognize: allowing greater variability in pose, ambient

lighting, expression, size of the face, and distance from the camera.
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Figure 2.9 shows the ROC curve for the LRPCA-ocular baseline algorithm

and PLS on the the very challenging Ugly partitions.
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Figure 2.9: ROC plot for UGLY

2.5.2 Evaluations on BDCP

BDCP refers to BEST Development Challenging Problems. The target and

query pairs are selected in the forms of (1) Frontal Near Field vs. Frontal; (2)

Frontal Near Field vs. Frontal Far Field; (3) Frontal Near Field vs. NonFrontal

Near Field; (4) Frontal Near Field vs. NonFrontal Far Field. Here, the near-field

and far-field images are 6’ and 15’ from the camera respectively.

Figure 2.10 and Figure 2.11 shows the ROCs for the LRPCA-ocular baseline

algorithm and PLS on the the four different masks. Again we can see that PLS

outperforms the baseline at a large margin.
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Figure 2.10: ROC plot comparison with baseline. (a) ROC plot for FNF VS. FNF.;

(b) ROC plot for FNF VS. FFF.

2.6 Evaluation on the Maritime Dataset

2.6.1 Maritime Database

In order to study and develop more robust algorithms for unconstrained face

recognition and verification, we have put together a remote face database in which a
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Figure 2.11: ROC plot comparison with baseline. (a) ROC plot for FNF VS. NFNF.;

(b) ROC plot for FNF VS. NFF.

significant number of images are taken from long distances and under unconstrained

outdoor environments [65]. The quality of the images differs in the following aspects:

the illumination is not controlled and is often pretty bad in extreme conditions; there

are pose variations and faces are also occluded as the subjects are not cooperative;

finally, the effects of scattering and high magnification resulting from long distance

contribute to the blurriness of face images. Figure 2.13 shows the sample scenarios
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in the maritime domain. We manually cropped and organized the face images

according to different illumination conditions, resolution, pose, blur or no-blur etc

in a systematic way so that users can conveniently select the desired images for their

experiments.

Due to uncontrolled data collection, there are numerous sources of variations

in the captured face images. Further, these variations are usually co-present. For

instance, a face image can have both blur and illumination variations, or pose vari-

ation and blur etc. To enable a systematic study of the effect of each variation,

as well as not to exhaust all possible combinations of variations, we organized all

the face images into several partitions based on the major variations we observe in

the dataset. We describe the details of the partitions as follows. First, we picked

about 90 images with very low resolution to form the low resolution folder. As

only few images are fully frontal, we divided the remaining images into two folders

near frontal (1166 images) and non-frontal (846 images). The near frontal folder

contains images less than 10o away from frontal, while non-frontal contains images

with large pose variation. We do the following partitions on the near frontal folder.

We first selected five clear, well illuminated images per subject to form the clear

folder (This folder is later used as gallery for identification tasks and target for ver-

ification tasks). Then we selected images mainly with blur effect, images mainly

with illumination variation, and images with both blur and illumination variations

to form the blur, illum and illum blur folders, respectively. The partitions result in

75 images in the blur folder, 561 images in the illum folder and 128 images in the

illum blur folder. Figure 2.12 shows the structure of partitions. Figure 2.14 shows
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some representative images from different partitions.

Figure 2.12: Structure of the database partitions with the number of images in each

partition.

As can be seen from Figure 2.14(a), the captured images can be of very low

resolution, with a typical resolution of 20 by 30 pixels. Moreover, low resolution

images are often coupled with blurring effects. Also, large out-of-plane pose varia-

tions are observed as shown in Figure 2.14. Since the distance between the camera

and subjects is large, high magnification blur can be seen from Figure 2.14(d). Fur-

thermore, due to the motion between camera and subjects, some of the images also

suffer from motion blur. Finally, in some of the images, we see the presence of both

blur and poor illumination condition.

2.6.2 Experimental Setup

For HOG features, we use block sizes of 16×16 and 8×8 with strides of 4 and

4 pixels, respectively. For LBP features, we use block size of 16× 16 with strides of
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Figure 2.13: Typical images illustrating the different scenarios in the maritime domain.
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(a) (b) (c)

(d) (e)

Figure 2.14: Sample cropped face images from different folders. (a) Sample images

from the low resolution folder. (b) Sample images from the non-frontal folder. (c)

Sample images from the illum folder. (d) Sample images from the blur folder. (e)

Sample images from the illum blur folder (best viewed in color).
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8 pixels. The Gabor features have 5 scales and 8 orientations, down sampled by a

factor of 4. The PLS factor (number of latent vectors p) is set to 11. The reference

set is similar to LFW, which contains around 500 images captured in the similar

(not not too different) as the test set. The faces in GBU, BDCP are cropped and

re-scaled to 128× 160, 60× 72respectively.

We use the images from the clear folder as the target, and the images from the

illum, blur, illum blur, low resolution and non-frontal folders as query, respectively.

Each algorithm is required to produce a similarity score of every two images in the

dataset, which results in a 2, 102× 2, 102 similarity matrix. We provide five binary

mask matrices of ground truth for target/query match pairs:

1. clear vs. illum

2. clear vs. blur

3. clear vs. illum blur

4. clear vs. low reso

5. clear vs. non-frontal.

These masks are used to extract corresponding subset of the similarity matrix to

compute the ROC curve in each scenario. In this way, the similarity score between

a target image and a query image does not depend on other images in the target

and query sets. Also redefining similarity which depends on the target or query set

is not allowed.
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We used 1000 images from FERET and LFW to form the training set. The

same training set is used for all the algorithms evaluated. Note the verification

procedure is a bit different from identification as follows:

Principal Component Analysis : We used 1000 training images to train a PCA

model. Then, for each pair of test images, we project them onto the PCA model

and the coefficients from the projection are used to compute the similarity.

Sparse representation: We use 1000 training images as a dictionary, and do

sparse coding of each pair of images using this dictionary. The cosine similarity

between the sparse codes is used to compare the two images.

Face Verification with PLS One-Shot Model: We used 1000 images from FERET

and LFW to form the fixed reference set.

2.6.3 Results Analysis

The ROC curves corresponding to different methods are shown in Figure 2.15(a)-

(e).

Again, we observe that, the sparse representation-based algorithm performs

the worst in all cases. Sparse representation is an intuitively appealing method for

rank-1 face recognition by containing multiple images per subject in the training

dictionary. However, it is not straightforward to apply sparse representation-based

algorithm for verification since verification is not a multiclass problem and one is

given only a single image. Moreover, the identities in the testing stage (our database

here) are always disjoint from the training set (FERET and LFW faces). Hence,
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Figure 2.15: ROC plots for (a) clear vs. illum (b) clear vs. blur (d) clear vs. illum

blur (d) clear vs. low reso (e) clear vs. non-frontal.
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Table 2.3: Verification rates of the baseline, PLS and sparse representation based

methods at FAR = 0.1.

Methods

Experiment Baseline Sparse representation PLS

clear vs. illum 0.5407 0.5285 0.7946

clear vs. illum blur 0.5664 0.5351 0.7541

clear vs. blur 0.5107 0.3699 0.6272

clear vs. low reso 0.3993 0.2755 0.3859

clear vs. nonfrontal 0.4320 0.2970 0.5820

there is no guarantee that an image from a training set can be well reconstructed

by the the atoms in the dictionary that is formed from the training images.

PLS One-Shot Model-based face verification achieves generally better results

than the other two algorithms. This model is versatile: it performs multi-channel

feature weighting on a rich feature set and the PLS regression response can be

used efficiently to construct a similarity measure. The One-Shot learning builds

discriminative models online exclusively to the pair being compared. The result

on the clear vs. low reso experiment is unsatisfactory since the feature extraction

does not contribute much in low resolution images. This was also observed in the

identification experiment as well.

A summary of performance of the baseline, PLS and sparse representation-

based algorithms at FAR = 0.1 is given in Table 2.15. The best rates for each
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experiment are shown in bold letters.

2.7 Summary

We proposed a robust face verification approach based on PLS One-Shot

model. This model is versatile - it performs multi-channel feature weighting on

a rich feature set and the PLS regression response can be used efficiently to con-

struct a similarity measure. The One-Shot learning builds discriminative models

online exclusively to the pair being compared. A small set of unlabeled images used

as the reference (negative) set is all that is needed. The approach was evaluated

on the LFW benchmark and showed very comparable results to the state-of-the-

art methods (image-restricted setting). When compared with other methods using

the unsupervised setting, the proposed method outperformed them by a large mar-

gin. The verification results on the other three very challenging real world datasets

(GBU, BDCP, Maritime) taken in unconstrained environments also demonstrate the

robustness of our algorithm.
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Chapter 3

Face Recognition from Sets of Images using Covariance

Discriminative Learning

3.1 Face Recognition Based on Image Sets

Face recognition has traditionally been posed as the problem of identifying

a face from a single image, and many methods assume that images are taken in

controlled environments. However facial appearance changes dramatically under

variations in pose, illumination, expression, etc., and images captured under con-

trolled conditions may not suffice for reliable recognition under the more varied

conditions that occur in real surveillance and video retrieval applications. In this

Chapter, we focus on recognition problems using sets (multiple images) as input

rather than single images.

Classification based on image sets has recently attracted growing interest in

the computer vision and pattern recognition community [66, 67, 68, 69, 70, 71, 72,

73, 74, 75, 76, 77]. This problem naturally arises in a wide range of applications

including video surveillance, classification based on images from multi-view cameras

and photo albums, and classification based on long term observations. In the task

of image set classification, each set generally contains a large number of images

(Figure 3.1) that belong to the same class and cover large variations in the objects
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appearance due to camera pose changes, non-rigid deformations or different lighting

conditions. While traditional recognition methods based on single-shot images have

achieved a certain level of success under restricted conditions, more robust object

recognition can be expected by using sets as input rather than single images. This

is mainly because the image set incorporates useful data variability information,

which can be efficiently exploited under more realistic conditions with significantly

larger variations [66, 67, 68, 69].

Figure 3.1: Image set classification for unconstrained face recognition.

Among the previous work, there is a category of video-based classification

methods [70, 71] which focus on utilizing the temporal dynamic information between

consecutive video frames. However, in the general scenario of image set classification,

the images in a set are collected not necessarily from video sequences but possibly

from multiple unordered observations - for example, in face recognition they could

be images of a subject from photo albums or from surveillance systems where the

subject might not face the camera all the time [68], so that images suitable for

recognition are widely spaced in time and location. As this study mainly addresses
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the general image set classification problem and does not explicitly exploit any

assumption on data semantics, we will not compare our technique against methods

using video dynamics.

3.2 Related Work on Image Set Classification

For image set classification, existing methods mainly focus on the key issues of

how to model the image sets and how to measure their similarity. In most cases, the

similarity function is defined specifically for certain image set modeling or represen-

tation methods. As far as set modeling is concerned, related approaches to image

set classification broadly fall into two categories: model-based parametric meth-

ods and model-free nonparametric methods. Representative parametric methods

include probabilistic models [72] and manifold density divergence [66]. They tend

to represent each image set by a parametric distribution function and then measure

the similarity between two distributions in terms of the Kullback-Leibler Divergence

(KLD). In [72], face pattern variations are modeled by a relatively simplistic single

Gaussian distribution in the face space. For more realistic and satisfactory mod-

eling, Gaussian mixture models (GMM) were used in [66] instead. While these

parametric methods have shown promising results in many applications, they typ-

ically need to solve a difficult parameter estimation problem and may have large

performance fluctuations in cases where the training and novel test data sets have

weak statistical correlations [68, 69].

In comparison, nonparametric methods typically relax the assumptions on
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distributions of the set data, and try to model the image set in a more flexible

manner. One class of prevalent methods is to use subspace learning techniques to

account for the set data variability globally, following the pioneering work of is to

use subspace learning techniques to account for the set data variability globally,

following the pioneering work of [75]. These methods attempt to represent the

image set either by a single linear subspace [68, 76, 77] or by a more sophisticated

manifold in the form of a mixture of linear subspaces [67, 69]. To measure the

subspace distance, the method of principal angle [78]is mainly exploited to capture

the common data variation modes of two subspaces. Since they impose a uniform

prior over data variations in different image sets, nonparametric methods have been

shown to have many favorable properties [68, 69]. However, for appropriate manifold

modeling, they typically require a large data set with dense sampling, while the

linear subspace modeling does not well accommodate the case when the set is of

small size but has large and complex data variations. As also indicated in [74], the

linear subspace-based modeling has the limitation that it incorporates only relatively

weak information (subspace angles) about the locations of the samples in the input

feature space.

More recently, a new type of nonparametric methods [74], [79] based on

matching the closest pair of points from two image sets has been introduced. In [73],

a straightforward strategy is adopted to find the nearest actual sample images from

the two sets without considering data variations across the set. In contrast, [74],

[79] approximate the image set with a more theoretically principled affine subspace

model and match the closest virtual points via a convex optimization. While intra-
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class variations can be effectively handled, such methods are still susceptible to the

presence of outliers and have relatively high computational cost [68, 73], due to their

inherent single sample-based matching mechanism.

3.3 Overview of our approach

We propose [80] a novel Covariance Discriminative Learning (CDL) approach

to image set classification. By representing each image set with its natural second-

order statistic - covariance matrix - we formulate the problem as classifying points

lying on a Riemannian manifold spanned by SPD matrices, i.e., nonsingular co-

variance matrices. Since classical learning algorithms cannot take points on the

manifold as their direct input, we explore an efficient metric for the SPD matrices,

i.e., Log-Euclidean distance (LED), and further derive a kernel function that ex-

plicitly maps the covariance matrix from the Riemannian manifold to a Euclidean

space. Benefiting from this explicit kernel feature mapping, any learning method

originally developed for vector spaces can be used, by taking either the Log-mapped

covariance matrices as input to its linear formulation or the derived kernel function

as input to its kernel formulation. A conceptual illustration of our approach is shown

in Figure 3.2.

Here we exploit two representative methods - Linear Discriminant Analysis

(LDA) and Partial Least Squares (PLS), for their feasibility for our specific case

where the number of samples (i.e., the number of image sets) is considerably smaller

than the number of feature dimensions (i.e., the number of covariance matrix en-
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Figure 3.2: Conceptual illustration of the proposed CDL method. We model the

image set S by its sample covariance matrix C, and formulate the problem as classi-

fying points on the Riemannian manifold M. With the log map, traditional learning

methods can be utilized in the tangent space TI (which is a vector space) at the

point of the identity matrix I on the manifold.

tries).

3.3.1 Set Modeling by Covariance Matrix

Let S = [x1,x2, ...,xN ] be the data matrix of an image set with N samples,

where xi ∈ RD×1 denotes the i-th sample with D -dimensional feature description.

Here, the image intensity is used as the raw feature. We represent the image set

with the D ×D sample covariance matrix:

C =
1

N − 1

N∑
i=1

(xi − x)(xi − x)T (3.1)
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where x is the mean of the image samples. The diagonal entries of the covari-

ance matrix represent the variance of each individual feature, and the non-diagonal

entries are their respective correlations.

While it is rather simple to derive and compute, there are several advantages

to model the image set with its covariance matrix. As the raw second order statis-

tic of a set of samples, the covariance matrix makes no assumption about the set

data distribution, thus providing a natural representation for an image set with

any number of samples and any type of features. The representation leads to an

effective way to discriminate image sets of different classes by encoding the feature

correlation information specific to each object class. Compared with previous single

or mixture of linear subspace based methods [67, 69, 75, 77], the covariance matrix

characterizes the structure of the set more realistically. In fact, the linear subspace

is usually obtained by principal component analysis (PCA) of the image set, which

reduces to eigen-decomposition of the covariance matrix. In this processing, the

leading eigenvectors are typically extracted to serve as the subspace basis while the

remaining eigenvalues are simply discarded. This makes the resulting subspace too

loose to reflect the set distribution boundary. Compared to previous closest sam-

ple pair based methods [73, 74], the covariance matrix representation shows strong

resistance to outliers, since it is a statistic of all samples and the noise corrupting

samples are largely filtered out with an average filter during covariance computation.

Prior to our study here, covariance matrices have been used to characterize

local regions within an image, named region covariance [81], and applied to several

visual processing tasks such as object detection/recognition, object tracking and
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texture classification [82, 83]. It should be noted that as a region descriptor, the

covariance matrix in these works has several differences from the image set descriptor

in this paper. For region covariance, each pixel of the image region is a sample, and

sample features include pixel coordinate, intensity, and the first-order and second-

order gradient. Since the number of pixels in the region is usually larger than the

feature dimension, the region covariance matrix can generally be guaranteed to be

nonsingular. However, in image set classification it is often the case that the number

of images is less than the feature dimension, i.e. N < D . To avoid the singularity

of the covariance matrix, a simple method is to add a small perturbation to the

original covariance matrix: C∗ = C + λI , where I is the identity matrix. In our

experiments, λ is set to 10−3 × trace(C) in case that a singular covariance is to be

used for computing distance. Furthermore, when the covariance matrix is utilized

as individual sample for learning algorithms, the number of samples (number of

covariance matrices) is considerably smaller than the number of feature dimensions

(number of covariance matrix entries) for our set covariance case, which is entirely

opposite to the case of region covariance learning [81]. This will be the topic of the

next section.

3.3.2 Covariance Discriminative Learning

It is well known in Riemannian geometry that the d × d SPD matrices (i.e.,

nonsingular covariance matrices) Sym+
D do not lie in a Euclidean space but on a Rie-

mannian manifold. We naturally formulate the problem of image set classification
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as classifying points lying on the Riemannian manifold spanned by SPD matrices.

However, it is not trivial to learn a classifier on the manifold since classical learn-

ing algorithms are devoted to operating in vector space associated with Euclidean

metrics and thus cannot take points on the manifold as their direct input. We next

explore Riemannian metrics for covariance matrix by emphasizing the Log-Euclidean

distance (LED) and then develop efficient learning algorithms associated with this

metric.

3.3.2.1 Riemannian Metrics for Covariance Matrix

Here we introduce two different formulations of distance metric for Sym+
D that

have been well established in the filed of Riemannian geometry. The first metric,

affine-invariant distance (AID) [84], is defined in terms of the generalized eigenvalues

of two covariance matrices C1 and C2:

dAID(C1,C2) =

√√√√ D∑
i=1

ln2λi(C1,C2) (3.2)

where the eigenvalues λi(C1,C2)are computed from |λC1 −C2| = 0. This metric is

invariant under affine transformations and inversion, and has been mainly used as

the distance measure for region covariance [81, 82, 83].

Another distance metric for Sym+
D is the Log-Euclidean distance (LED) [85]

that results in classical Euclidean computations in the domain of matrix logarithms

as follows:
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dAID(C1,C2) =∥ log(C−1/2
1 C2C

−1/2
1 )) ∥F (3.3)

where log is the ordinary matrix logarithm operator and ∥ · ∥F means the

matrix Frobenius norm. Let C = UΣUT be the eigen-decomposition of a SPD

matrix C, its logarithm is a symmetric matrix and can be computed easily by

log(C) = Ulog(Σ)UT (3.4)

where log(Σ) is the diagonal matrix of the eigenvalue logarithms. The LED

metric is particularly simple to use and avoids the computational limitations of the

AID metric, while conserving excellent theoretical properties. Please refer to [85] for

more detailed discussion on the similarities and differences between the two metrics.

The LED metric can be understood as projecting a pointC on the Riemannian

manifold M to a Euclidean space via the logarithm map:

Ψlog :M 7→ TI ,C → log(C) (3.5)

The image Ψlog(M) is the tangent space TI at the point of identity matrix I,

which is a vector space spanned by the d× d symmetric matrices. The LED metric

thus simply reduces to a Euclidean distance in Rd×d. By computing inner product

in the Euclidean space TI , we actually derive a Riemanniankernelfunction on the

manifold M :

klog(C1,C2) = tr[log(C1) · log(C2)]. (3.6)
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It is easy to check that klog is a symmetric real-valued function: klog(Ci,Cj) =

klog(Cj,Ci) for all Ci,Cj ∈ M . The positive definiteness of this function fol-

lows from the properties of Frobenius norm. For all C1, ...,Cn(Ci ∈ M) and

b1, ..., bn(bi) ∈ R for any n ∈ R, we have

∑
i,j

bibjklog(Ci,Cj) =
∑
i,j

tr[log(Ci) · log(Cj)]

= tr[(
∑
i

bilog(Ci))
2]

=∥
∑
i

bilog(Ci) ∥2F≥ 0

With these properties, the proposed Riemannian kernel in Eq 3.6 is proven to

satisfy the Mercer’s theorem [86]. It is interesting to note that traditional kernel

functions (e.g., Gaussian kernel, polynomial kernel) are usually defined on a Eu-

clidean space, and implicitly map the points from this Euclidean space to another

higher dimensional Euclidean space, i.e., the so-called RKHS (reproducing kernel

Hilbert space) feature space [86]. In contrast, our kernel function is defined on

an unconventional Riemannian manifold and explicitly maps the points from the

manifold to a Euclidean space through Eq. 3.5.

The explicit kernel feature mapping allows us to utilize any standard learning

algorithm in vector space. We can either apply the linear formulation of the method

to the Euclidean space TI by taking the Log-mapped covariance matrices log((C))

as input, or apply its kernel formulation to the manifoldM by taking the covariance

53



matrices (C) and the derived kernel function klog as input. Let D = d2, the d × d

matrices are represented as D-dimensional sample vectors in these algorithms. As

discussed in above section, for our set covariance learning, the number of samples

is rather smaller than the number of feature dimensions, thus making the kernel

formulation especially suited to this special case for the sake of efficiency. In the fol-

lowing, we explore two typical learning methods LDA and PLS for their feasibility,

by focusing on their kernel formulations. The former learns a discriminant subspace

and maps the samples to this subspace followed by Nearest Neighbor (NN) classi-

fication, while the latter directly learns a regression model between the observed

samples and their corresponding class labels.

3.3.2.2 Learning with LDA with its Kernel Variant

Linear Discriminant Analysis (LDA) has proven to be an effective method

for classification problems. Suppose we have a set of m samples x1, x2, ..., xm ∈

RD belonging to c classes in the input data space. The kernel variant of LDA

(KLDA) [87, 88] formulates the problem using the kernel trick as follows. Let

ϕ : RD 7→ F be the feature map, an inner product can be defined on the feature

space F with the kernel function as: < ϕ(xi), ϕ(xj) >= k(xi, xj). Let Sϕb , S
ϕ
w and

Sϕt denote the between-class, within-class and total scatter matrices in the feature

space respectively, we have

54



Sϕb =
c∑

k=1

mk(µ
(k)
ϕ − µϕ)(µ

(k)
ϕ − µϕ)

T ,

Sϕw =
c∑

k=1

mk∑
i=1

(ϕ(x
(k)
i )− µ

(k)
ϕ )(ϕ(x

(k)
i )− µ

(k)
ϕ )T ,

Sϕt = Sϕb + Sphiw =
m∑
i=1

(ϕ(xi)− µϕ)(ϕ(xi)− µϕ)
T

(3.7)

where µ
(k)
ϕ and µϕ are the centroid of the k-th class and the global centroid,

respectively in the feature space. mk is the number of samples in the k-th class.

KLDA seeks the optimal discriminant direction w by solving the following

optimization problem

wopt = argmax
wTSϕbw

wTSϕww
= argmax

wTSϕbw

wTSϕtw
(3.8)

By representer theorem, the optimal w in space F can be written as: wopt =∑m
i=1 aiϕ(xi). Let α = [a1, ...am]

T , it can be proven [87] that Eq. 3.3.2.2 is equivalent

to:

αopt = argmax
αTKWKα

αTKKα
(3.9)

The optimal α are given by the eigenvectors with respect to the largest eigen-

values of the following eigen-problem: KWKα=λKKα, whereK is the kernel Gram

matrix: Kij = k(xi, kj) and W is defined as:
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Wi,j =


1/mk, if xi,xj are both in the k-th class

0, otherwise.

(3.10)

Each eigenvector α gives a direction vector w in the feature space. Grouping

the maximum number (c − 1) of eigenvectors, we get A = [α1, ..., αc−1]. For a

data example x ∈ RD in the input space, its c − 1-dimensional projection in the

discriminant subspace can be obtained by

z = ATKt, whereKt = [k(x1,x), k(xm,x)]
T (3.11)

For our set covariance learning, suppose we are given m gallery image sets

Sgi (i = 1, ...,m) with known class labels for training, and t probe image sets Spj(i =

1, ..., t) for testing. We first compute their corresponding covariance matrices Cg
i ,

Cp
j , and represent them by D-dimensional sample vectors. The training samples

Cg
i and the proposed Riemannian kernel in Eq. 3.6 are then fed into KLDA to

solve the optimization in Eq. 3.3.2.2. In the testing phase, both Cg
i and Cp

j are

projected to the discriminant subspace through Eq. 3.3.2.2. NN classification in

this c-1-dimension subspace is then conducted based on Euclidean distance.

3.3.2.3 Learning with PLS and its Kernel Variant

PLS was explained in Chapter 2. In the kernel formulation of PLS (KPLS) [89],

we keep using the same notations as in KLDA for similicity. The basic idea of KPLS

is to map the original X -space data into a RKHS feature space F withRD 7→ F, and
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perform the kernel form of the NIPALS algorithm [16]. Let Φ = [ϕ(x1), ..., ϕ(xm)]
T

be the feature matrix of the training points, then the kernel Gram matrix is written

as K=ΦΦT . Then the regression coefficients B in the feature space will have the

form

B = ΦTU(TTKU)−1TTY (3.12)

For a testing data sample x ∈ RD in the X space, its KPLS prediction (class

label) in the Y space can be obtained by

ypredict = [ϕ(x)]TB = KT
t (T

TKU)−1TTY (3.13)

When applied to set covariance learning, we use the gallery image set Sgi (i =

1, ...,m) and their associated class labels to learn the KPLS latent model. Specifi-

cally, all training covariance matrices Cg
i , represented as D-dim sample vectors as

in KLDA, are gathered to build the predictor matrix Xm × D. For each Cg
i , we

define its class membership indicator vector: yi = [0, ..., 1, ..., 0]T ∈ Rc , where the

k-th entry being 1 and all other entries being 0 indicates that Cg
i belongs to the k-th

class. The response matrix Ym×c can then be easily constructed with yTi as its row

vector. Taking our Riemannian kernel, KPLS is used to learn the regression model

in Eq.(14). In the testing phase, given a probe image set Spj and the corresponding

covariance matrix Cp
j , its class membership indicator vector yt can be computed

from Eq.(15) by treating Cp
j as a testing example xt. The entry index with the
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largest response in yt then determines the class label of Spj .

While PLS operates in a very different manner from LDA for classification,

there in fact exists close theoretical connection between the two methods, as has

been well studied in [57, 22]. In comparison to LDA, PLS has proven to be useful

in situations where the number of observed variables (i.e., D ) is much larger than

the number of observations (i.e., m ). This is just the case for our set covariance

learning where D = 160, 000 and m < 150 . In addition, PLS is not limited by

the c − 1 discrimination dimensions and may be more suitable in the situation of

non-Gaussian class distributions in the feature space [57].

3.4 Experimental Results

3.4.1 Database

We test the proposed method on two visual classification tasks: face recog-

nition with image sets and object categorization, and consider four datasets with

different characteristics to ensure extensive evaluations. We give below a brief de-

scription of these databases.

Honda/UCSD [70]: This is the benchmark database for face recognition

with image sets. It consists of 59 video sequences involving 20 different persons.

Each video contains approximately 300-500 frames covering large variations in head

pose and facial expression. We used a cascaded face detector [90] to collect faces in

each video, and then resized each face to 20× 20 gray image as [69, 74]. Histogram

equalization was the only pre-processing used to eliminate lighting effects. Each
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video generated an image set of faces.

CMU MoBo [91]: The MoBo (Motion of Body) database was originally

collected for human identification from distance. There are 100 sequences of 25

different subjects. Each subject has 4 sequences captured in different walking situ-

ations: holding a ball, fast walking, slow walking, and walking on the incline. Each

sequence has about 300 frames. Face image sets were constructed in the same way

as above.

YouTube Celebrities [71]: This dataset was collected for face tracking and

recognition in real world applications. It contains 1910 video clips of 47 celebrities,

mostly actors/actresses and politicians, from YouTube. Each clip contains hundreds

of frames, which are mostly low resolution and highly compressed. Compared with

Honda and MoBo, this database is much more challenging as the videos exhibit very

large variations in pose, illumination, expression, and other conditions. Face image

sets were also constructed in the same way as above.

ETH-80 [92]: This is the benchmark database for object categorization. It

contains images of 8 categories (apples, cars, cows, cups, dogs, horses, pears and

tomatoes) with each category including 10 objects (e.g. 10 different dogs). Each

object has 41 images of different views which form an image set. Object categoriza-

tion is to classify an image set of an object into a known category (e.g. apple, car,

etc.). 20× 20 gray images were also used in our experiment.

Some examples of the the images for each dataset are shown in Figure. 3.3

(Honda), Figure. 3.4 (Mobo), Figure. 3.5 (Youtube), Figure. 3.6 (Eth-80), respec-

tively.
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Figure 3.3: Some detected face images from videos of two subjects from the

Honda/UCSD data set.

Figure 3.4: Some detected face images from videos of two subjects from the Mobo

data set.

To allow comparison with the literature we followed the same protocol of [69,

74]. On all of the four datasets, we conducted ten-fold cross validation experiments,

i.e., 10 randomly selected gallery/probe combinations, to report average identifica-
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Figure 3.5: Some detected face images from videos of one subject from the Youtube

data set.

Figure 3.6: Some sample sets of images (each column denotes one set) from the

ETH-80 data set.

tion rates and standard deviations of different methods. Specifically, for both Honda

and MoBo, each person had one image set as gallery and the rest sets for probe. For

YouTube, in each fold, one person had 3 randomly chosen image sets for gallery and

6 for probe. For ETH-80, each category had 5 objects randomly chosen for gallery
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and the other 5 objects for probe.

3.4.2 Comparative Methods and Settings

We compared the proposed approach with five representative image set classifi-

cation methods in the literature. They include: Mutual Subspace Method (MSM) [75]

and Discriminant Canonical Correlations (DCC) [68] which are based on linear sub-

space set modeling; Manifold-Manifold Distance (MMD) [69] and Manifold Dis-

criminant Analysis (MDA) [93] which are based on nonlinear manifold modeling;

Affine Hull based Image Set Distance (AHISD), Convex Hull Image Set Distance

(CHISD) [74] and Sparse Approximated Nearest Point (SANP) [79] which are based

on affine subspace modeling.

For fair comparison, the important parameters of each method were empirically

tuned according to the recommendations in the original references as well as the

source codes provided by the original authors. In MSM/ DCC/MMD, PCA was

performed to learn the single or mixture of linear subspaces by preserving 95%

of data energy. In MDA, the number of between-class NN local models and the

subspace dimension were specified as [69]. For both AHISD and CHISD, we used

their linear version and retained 95% energy by PCA. The error penalty in CHISD

was set to C = 100 as [74]. For SANP, we adopted the same weight parameters

as [79] for the convex optimization. Note that for the DCC learning on Honda and

MoBo, the single training image set from each class was randomly divided into two

subsets to construct the within-class sets, following the setting of [68, 74].
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For our proposed framework, we tested two different combinations that include

set modeling with covariance matrix (referred to as ‘COV‘), followed by discrimina-

tive learning with LDA or PLS (both using the kernel formulation). For covariance

modeling, as stated in previous section to avoid the matrix singularity, regulariza-

tion was applied to the original covariance matrix as: C∗ = C+ λI , where I is the

identity matrix. In our experiments, λ is set to 10−3× trace(C). LDA/PLS utilized

c-1 discriminant/latent dimensions. Since image sizes in all datasets are 20 × 20,

the intensity feature dimension is d = 400 , and thus D = 160,000 . The number of

gallery (training) image sets, m , is 20, 24, 141, 40 respectively for the four datasets.

For the single sample per class learning with LDA on Honda and MoBo, the same

strategy as that for DCC above was also adopted.

3.4.3 Results and Analysis

We summarize the recognition results of all methods on the four databases in

Table 5.1. Each reported rate is an average over the ten folds of cross validation.

Comparing the two COV based methods, we observe that PLS is better than LDA

learning. Compared with other methods, the proposed COV+PLS delivers the

highest rate on the benchmark databases (i.e. Honda/UCSD, YouTube, ETH-80)

for 3 out of 4 all tasks compared with state-of-the-art methods.

In real-world applications, it is often the case that the image sets contain noisy

data (i.e., images outside the category) and varying size. A desirable classification

method should to be resistant to these challenges. Consider the face datasets Honda
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Methods Honda/UCSD CMU MoBo YouTube ETH-80

MSM 0.925 0.852 0.611 0.878

MMD 0.971 0.902 0.629 0.863

DCC 0.980 0.881 0.648 0.905

MDA 1.000 0.943 0.653 0.890

AHISD 0.885 0.951 0.637 0.733

CHISD 0.905 0.940 0.663 0.735

SANP 0.936 0.963 0.684 0.755

COV+LDA (proposed) 0.980 0.867 0.675 0.945

COV+PLS (proposed) 1.000 0.941 0.701 0.965

Table 3.1: The mean recognition rates of different methods.
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and MoBo for example. We experimentally study these two problems and evaluate

the performance of different methods. Specifically, for the noisy set data problem,

we follow [74] and conducted three experiments in which the gallery and/or the

probe sets were systematically corrupted by adding one image from each of the

other classes. The three cases are referred to as NG (only gallery has noise), NP

(only probe has noise), and NG+P (both). For the varying set size problem, we

retained a certain number of samples from each image set (both gallery and probe)

by uniform down-sampling and used the obtained subsets for classification. We

tested four cases by extracting 200/100/50/25 samples, referred to as S200, S100,

S50, S25 respectively. In case a set contains fewer images than the specified number,

the original set was used.

From the comparison results in Table 3.2 3.3 3.5, it can be seen that our

proposed ’COV+PLS’ shows high robustness against both challenges, with some

slight performance drop. This can be mainly attributed to the advantages of us-

ing the covariance matrix as the set representation. For the noisy data case, the

MSM/DCC/MMD/MDA seem more stable than the AHISD/CHISD/SANP since

the former ones taking the set samples as a whole for subspace modeling and match-

ing can alleviate the influence of noise samples to some extent. In contrast, based on

matching the closest set points, the latter methods rely highly on the location of each

individual sample and their model fitting can be heavily deteriorated by outliers.

For the varying size case, we find that all other methods except AHISD/CHISD

encounter problems to appropriately fit their models with decreased set size as ex-

pected. The unpredictable rate rise of AHISD/CHISD may also be explained by the
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Honda/UCSD Dataset

Methods Clean NG NP NG+P S200 S100 S50 S25

MSM 0.925 0.950 0.906 0.927 0.924 0.922 0.919 0.865

MMD 0.971 0.965 0.926 0.953 0.975 0.931 0.887 0.836

DCC 0.980 0.974 0.944 0.980 0.990 0.980 0.969 0.939

MDA 1.000 0.988 0.934 0.965 0.995 0.967 0.934 0.917

AHISD 0.885 0.890 0.808 0.805 0.913 0.915 0.939 0.964

CHISD 0.905 0.908 0.828 0.849 0.918 0.923 0.939 0.956

SANP 0.936 0.931 0.869 0.846 0.939 0.939 0.926 0.933

COV+PLS 1.000 0.972 0.995 0.982 1.000 1.000 0.995 0.946

Table 3.2: The mean recognition rates of different methods for Honda/UCSD

Dataset.

fact that their model fitting is much sensitive to sample distribution.

Lastly, we compared the computational complexity of different methods with

the benchmark Honda/UCSD dataset ( m = 20 ) on a Pentium IV, 2.93 GHz PC.

The time cost for each method is tabulated in Table 2. Training time is only needed

by discriminant methods. Since kernel LDA/PLS learning in our method mainly

involves the eigen-decomposition of mm kernel Gram matrix, they are very efficient.

For testing, we report the classification time for matching one probe image set with

the 20 gallery image sets. The superiority of our method can be clearly observed,

especially over the three affine subspace based methods. As discussed in previous
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CMU MoBo Dataset

Methods Clean NG NP NG+P S200 S100 S50 S25

MSM 0.852 0.846 0.784 0.867 0.848 0.843 0.837 0.805

MMD 0.902 0.889 0.851 0.882 0.880 0.862 0.818 0.802

DCC 0.881 0.881 0.848 0.887 0.878 0.876 0.864 0.833

MDA 0.943 0.916 0.891 0.895 0.939 0.910 0.867 0.842

AHISD 0.951 0.927 0.835 0.748 0.956 0.967 0.954 0.941

CHISD 0.940 0.949 0.733 0.762 0.940 0.948 0.943 0.925

SANP 0.963 0.950 0.874 0.760 0.961 0.958 0.944 0.915

COV+PLS 0.941 0.921 0.925 0.910 0.937 0.933 0.922 0.902

Table 3.3: The mean recognition rates of different methods for CMU MoBo Dataset.
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YouTube Dataset

Methods Clean NG NP NG+P S200 S100 S50 S25

MSM 0.611 0.593 0.379 0.501 0.614 0.610 0.595 0.579

MMD 0.629 0.605 0.427 0.544 0.613 0.595 0.595 0.564

DCC 0.648 0.577 0.489 0.609 0.652 0.652 0.651 0.623

MDA 0.653 0.633 0.474 0.571 0.645 0.633 0.632 0.623

AHISD 0.637 0.609 0.418 0.327 0.645 0.669 0.683 0.679

CHISD 0.663 0.671 0.397 0.416 0.664 0.673 0.679 0.668

SANP 0.684 0.671 0.469 0.352 0.686 0.682 0.675 0.661

COV+PLS 0.701 0.617 0.645 0.629 0.699 0.693 0.675 0.640

Table 3.4: The mean recognition rates of different methods for YouTube Dataset.
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MSM DCC MMD MDA AHISD CHISD SANP COV+PLS

Training N/A 12.397 N/A 8.846 N/A N/A N/A 2.322

Testing 5.114 5.120 6.462 4.288 20.516 8.424 52.976 2.033

Table 3.5: Computation time (seconds) of different methods on Honda/UCSD for

training and testing (classification of one image set).

section, the single sample-based matching mechanism and complex optimization

procedure make these methods less appealing in terms of efficiency.

3.5 Summary

We have proposed an efficient image set classification method called Covari-

ance Discriminative Learning (CDL). The method represents each image set with

its covariance matrix and models the problem as classifying points on the Rieman-

nian manifold spanned by nonsingular covariance matrices. We derived a novel

Riemannian kernel function which successfully bridges the gap between traditional

learning methods operating in vector spaces and the learning task on an uncon-

ventional manifold. We explored two typical methods, LDA and PLS, for learning,

and demonstrated the advantages of PLS for our specific problem. The promising

experimental results show the superiority of our method over the state-of-the-art in

terms of accuracy and efficiency, as well as its robustness to the practical challenges

of noisy set data and varying set size. For future work, we are exploring the incorpo-

ration of set mean information into covariance matrix modeling. We will also study
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more robust estimator for the covariance matrix for more challenging problems with

heavy noise.

Our methods are not limited to face images. They can also be used in other

visual recognition problems where each example is represented by a set of images,

and more generally in machine learning problems where the classes and test examples

are represented by sets of feature vectors.
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Chapter 4

Face Verification Using Sparse Representations

4.1 Sparse Representations and Face Recognition

Wright et al. [94] used sparse representations for face recognition by relating

the problem of finding the most similar face to a noiseless signal reconstruction.

Since then, many other researchers have developed methods for face recognition

using sparse representations [95, 96, 97] and showed that such methods are robust to

occlusion, expressions and disguise. The face identification problem is a multi-class

problem naturally formulated by sparse coding since the goal of both problems is to

obtain a noiseless signal reconstruction. To leverage the robustness of sparse coding

for face verification, we formulate a sparse coding based face verification framework.

It is, however, not trivial to extend the method to a binary classification problem

of face verification.

In this Chapter, we propose [98] a sparse representation [94] based face verifi-

cation method that is simple yet achieves good performance on the LFW dataset [2]

without a training set (unsupervised) and in the image restricted training setting.

Sparse coding [94] approximates a signal y by a linear combination of a few atoms

from a dictionary D, i.e., y ≈ Dx, and leads to good performance in various vision

applications. Sparse coding can extract stable and discriminative face represen-

tations under challenging variations. Our method measures two models of image
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similarity via a dictionary (reference set). The intuition of the first model is very

straightforward. Since sparse representations account for most or all information

of a signal (a face) with a linear combination of a small number of elementary sig-

nals (reference set) called atoms, we would expect the sparse codes of two images

from the same person to be similar. So, the similarity of the sparse codes can be

a measure of similarity for the image pair. The other model measures the change

of the sparse code of one image from the pair to be verified when the dictionary is

expanded by adding the other image from the pair. Comparing the change of the

sparse codes before and after adding the extra face image also provides a measure

of similarity for the pair. We integrate these two models and the scores are fused

by averaging or training an SVM.

Figure 4.1: The proposed face verification framework based on sparse coding.
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4.2 Proposed Method

4.2.1 Overview of the Framework

The main idea to convert a multi-class classification problem into a binary one

is by utilizing a set of arbitrary face images as dummy classes. With the help of the

dummy classes, called reference set, we formulate a binary classification problem

using sparse representation.

Figure 4.1 illustrates the proposed method. Three steps are involved: feature

extraction, sparse coding and score fusion.

In feature extraction, a pair of images, A and B, are cropped and re-scaled to

a fixed size. Then, feature extraction is performed to obtain the intensity (INT),

HoG [41], LBP [99], and Gabor [55] features as image descriptors.

In the sparse coding step, we exploit two methods to obtain the sparse rep-

resentations for face A and B using the fixed reference set as a dictionary that

contains a number of, say N , faces (the reference set is chosen from the training set

in the LFW protocol, and the identities in the training set are disjoint from those

in the testing stage). The first method (top half of the figure) directly measures the

correlation of the generated sparse codes, which we refer to as the similarity score.

The second method (bottom half) measures the difference of the two sparse codes of

face A. One is obtained on the original dictionary and the other is on an augmented

dictionary by adding B to the original dictionary. Then we do the same for face B,

by adding A to the original dictionary. We refer to this as the dissimilarity score.

We compute both the similarity score and dissimilarity score for each type of feature
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descriptor. SimINT , SimHoG, SimLBP , and SimGabor denote the similarity scores

for each feature and DisINT , DisHoG, DisLBP , and DisGabor denote the dissimilarity

scores for each feature.

In the last stage, we fuse the eight scores obtained from different channels.

We can either simply compute the average (AVG) of these eight scores in an unsu-

pervised setting, or train an SVM to reduce the effect of overfitting to a particular

score in a supervised setting.

4.2.2 Feature Extraction

After cropping and resizing the faces, each sample is decomposed into blocks

and then a set of low-level feature descriptors is extracted from each block. The

feature extraction methods capture information related to shape (histogram of ori-

ented gradients (HOG)), texture (captured by local binary patterns (LBP)), color

information (intensity) and salient visual properties (captured by Gabor filters).

4.2.3 Sparse Representation

A sparse representation-based face recognition algorithm was proposed in [94]

and demonstrated to have high performance on the face identification task. Given a

dictionary D = {d1,d2, ...,dN} where di is the i-th dictionary atom (l2-normalized)

and a test sample y, the sparse code of y, x̂, can be obtained by solving the following

l1-minimization problem,

74



x̂ = argminx∥y −Dx∥2 + γ∥x∥1 (4.1)

Sparse representation is an intuitively appealing method for face identifica-

tion. The dictionary typically contains multiple face images for each person to be

subsequently recognized. However, it is not straightforward to be directly applied to

face verification since verification is not a multi-class problem that can be solved by

choosing a few atoms from the dictionary. In face verification, a similarity measure

is typically learned from pairs of training images labeled ‘same’ or ‘different’. This

provides less specific information than known identities - image labels.

We instead use sparse representation for face verification problem in two dif-

ferent ways via a reference set, which we use as a dictionary: similarity score of two

sparse codes and dissimilarity score of two sparse codes.

4.2.3.1 Similarity Score of Two Sparse Codes

A reference set is a set of images randomly selected from an image pool (e.g.

training images) whose identities never appear in the test stage. We use the reference

set as a dictionary D of size N to reconstruct the input image pairs (A,B). The

feature vectors from the same individual are usually similar and more likely to have

similar corresponding reconstructed signals by sparse coding, i.e. linear combination

of dictionary atoms. We are interested in measuring the similarity of the sparse codes

of A and B that approximates the similarity of the input images and let
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Figure 4.2: An example of sparse codes (intensity feature) for ‘similarity score’

denoted by SimScore. (a) Original faces of a ‘same’ pair. (b) Sparse codes for the

‘same’ pair. (c) Original faces of a ‘different’ pair. (d) Sparse codes for the ‘different’

pair.

x̂NA = argminx∥yA −Dx∥2 + γ∥x∥1

x̂NB = argminx∥yB −Dx∥2 + γ∥x∥1

(4.2)

be the sparse codes of A and B, respectively. Here, yA and yB are feature vectors

of input faces A and B respectively, D is the given dictionary, and γ is a penalty
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weight on sparsity. We define the ‘similarity score’ of yA and yB, SimScore, by

utilizing a similarity metric of x̂NA and x̂NB ,

SimScore(yA,yB) := Similarity(x̂NA , x̂
N
B ) (4.3)

We use the cosine similarity (CS) [34] as the similarity metric between two

sparse codes. The CS of two vectors is defined as:

CS(x,y) =
xTy

∥x∥∥y||
(4.4)

Given a pair of feature vectors (yA,yB), the ‘similarity scores’ (SimScore) of

their sparse codes with the reference set from different feature channels are computed

as:

SimINT = CS(x̂N,INTA , x̂N,INTB )

SimHoG = CS(x̂N,HoGA , x̂N,HoGB )

SimLBP = CS(x̂N,LBPA , x̂N,LBPB )

SimGabor = CS(x̂N,GaborA , x̂N,GaborB )

(4.5)

where x̂N,featk denotes the sparse code obtained from Eq. (4.2) using a dictionary

with N atoms and feat feature for face k, e.g., x̂N,INTA represents the N dimensional

sparse codes with respect to the N dictionary atoms computed from the intensity

features of face A.

Figure 4.2-(a) and (b) show an example of a pair of faces from the same indi-

vidual (with slight expression change) and their corresponding sparse codes gener-
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ated from a dictionary with N=200 atoms using intensity(INT). Figure 4.2-(c) and

(d) show a pair of faces from different individuals and their corresponding sparse

codes generated from the intensity. It can be seen that sparse codes from the same

individual (left) have much higher correlation (the responses to the 200 dictionary

atoms have similar trend) than the sparse codes of the pair from different individuals

(right).

4.2.3.2 Dissimilarity Score of Two Sparse Codes

Looking at only the similarity of the sparse codes is not making full use of the

power of sparse coding. In face identification via sparse representation [94], the test

face (probe) is represented as a sparse linear combination of the dictionary atoms.

The coefficient of the most similar face in the dictionary to the test face is high

while other coefficients are small or zero. We take advantage of this principle of the

sparse coding in the following way.

For notation consistency, yA and yB are feature vectors of input faces A and

B respectively, D is the given original dictionary. We first compute the sparse coef-

ficients of face A, x̂NA , using dictionary D. Next, we add the l2-normalized feature

vector of face B, yB, to the dictionary to construct a new augmented dictionary

D̃B = [D|yB], of size N + 1 and obtain another sparse code x̃N+1
A from the new

dictionary D̃B,
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x̂NA = argminx∥yA −Dx∥2 + γ∥x∥1

x̃N+1
A = argminx∥yA − D̃Bx∥2 + γ∥x∥1.

(4.6)

Similarly, we can construct the augmented dictionary for face B, D̃A = [D|yA],

by adding the l2-normalized feature vector of face A to the original dictionary. Two

sparse codes x̂NB and x̃N+1
B are computed using the original dictionary D and the

augmented dictionary D̃A, respectively.

The motivation is, if two images are from the same individual, the N + 1-

th coefficient in the augmented dictionary will have a significantly high value and

other coefficients will be diminished compared to the code obtained with the original

dictionary. In contrast, when the two images are not from the same individual, the

coefficients with respect to the original dictionary and the augmented dictionary

do not significantly differ from each other. Thus, a higher dissimilarity of the two

sparse codes obtained from the original dictionary and the augmented dictionary

indicates a higher similarity of the pair being compared.

We compute the dissimilarity of the two sparse codes of face A before and

after adding face B to the dictionary as follows,

Dy(yA) = 1− Similarity(x̂NA , x̃
N+1
A (1:N)) (4.7)

Note that Dy(·) is defined on a single image in a given pair, whereas Similarity(·, ·)

is defined with respect to two sparse codes. We can also obtain Dy(yB), exchanging

A and B. By averaging Dy(yA) and Dy(yB), we obtain the ‘dissimilarity score’ of
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yA and yB, DisScore,

DisScore(yA,yB) :=
Dy(yA) + Dy(yB)

2
(4.8)

The higher the score, the more similar the pair is.

Figure 4.3-(a) and (b) show a pair of faces from the same individual and their

corresponding sparse codes before (red) and after (blue) adding the other to the

dictionary. Figure 4.3-(c) and (d) show a pair of faces from different individuals

and their corresponding sparse codes before and after adding the other to the dic-

tionary. We can observe that the sparse codes from the same individual (left) shows

significant difference in the first N atoms than the pair from different individuals

(right).

As done for the similarity scores, we compute dissimilarity scores for four

feature channels of intensity, HoG, LBP and Gabor to obtain DisINT , DisHoG,

DisLBP and DisGabor, respectively.

4.2.4 Score Fusion

Each feature descriptor and scoring method contains different discriminative

power and should be aggregated in a reasonable way. According to [62, 46, 31, 21],

combining multiple similarities from different descriptors usually boosts perfor-

mance. We consider two simple approaches for fusing the eight scores (four feature

channels × two scoring methods).

In the unsupervised setting, we simply average the eight scores from different
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feature channels to obtain the final similarity score of the given pair. The averaging

weighs every score equally. For the image restricted setting, we can fuse the scores

by training a linear SVM to obtain more discriminative weights on each score using

the given training set.

4.3 Experimental Results

We evaluate the proposed algorithm on the LFW dataset and compare the re-

sults with the state-of-the-art approaches. The dataset comes with a division of 10

splits/folds (disjoint subject identities) for cross validation with three paradigms of

evaluation protocols: unsupervised, image-restricted, and image-unrestricted pro-

tocols [2]. In the unsupervised protocol, there is no training information of

same/not-same labels. It is the most challenging due to lack of training samples.

The image-restricted protocol refers to the setting of using only the restricted

number of given image pairs for training. In this setting, it is known whether an

image pair belongs to the same person or not, while identity information of each

image is not provided. The unrestricted protocol refers to the training setting that

can use all available data, including the identity of the people in the images that

allows one to generate as many training pairs as possible. The latter two settings

allow us to utilize available image pair information in the training set. In this paper,

we only focus on the first two protocols. The aligned version, lfw-a, was used in all

experiments.

In our evaluations, for each fold, we randomly choose N=200 images (one
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image per individual) to construct a compact dictionary (reference set) from the

training set without using their pair information. We have empirically tried varying

dictionary size N from 200 to 500, and found that the size has only slight impact

on the verification performance. For efficiency, we use a fixed size N=200 in the

following experiments to report our result.

4.3.1 Experimental setup

To obtain a sparse solution to the least squares problem, we can choose either

l0 regularization or l1 regularization in the least squares objective function ( Eq.4.1

). We choose the l1 regularizer since it is hard to specify the number of nonzero co-

efficients, i.e., the hyper-parameter of the l0 regularizer. We use the implementation

of Lee et al. [100] due to its computational efficiency.

For the feature extraction step, we do not apply any photometric pre-processing.

All the faces are cropped and rescaled to 80 × 148. For extracting HoG and LBP

features, we divide each face into blocks of 20× 20 size and extract 16-bin HoG fea-

ture and 59-bin uniform LBP feature for each block. For Gabor feature, we adopt

five scales and eight orientations of the Gabor filters. The final Gabor feature vector

is obtained by concatenating the responses at every five pixels in order to reduce

the dimensionality of the feature vector to a manageable size.
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4.3.2 Results from Different Feature Descriptors and Score Fusions

The performances of our method with individual feature and their fusion are

shown in Table 4.1 (on fold 1 only). The first column shows the verification accu-

racy obtained by using the Euclidean distance of the original feature vector pairs

as similarity measure. The second column shows the verification accuracy from

the SimScore ( Eq.4.3 ). The third column is from the DisScore ( Eq.4.8 ). Both

SimScore and DisScore for individual feature descriptors achieve significant improve-

ments over the Euclidean distance. The ‘Combined’ scores are the results obtained

by fusing the scores from all the four features by averaging (no training) or creating

a vector of four scores and running an SVM on this vector. The HybridSparse

scores are obtained by fusing the eight scores from both SimScore and DisScore.

We can see that the HybridSparse (Avg), obtained by simply averaging the eight

scores with equal weight, achieves good verification accuracy (83.00%) and the Hy-

bridSparse (SVM) boosts the performance further to 84.67%. Generally, as we

expect, score fusion can always achieve better result (as in [62, 46, 31, 21, 27, 47])

since there could be complimentary information across different scores.

4.3.3 Comparison with the State-of-the-art Methods

Comparison on the Unsupervised protocol Our method can be compared

with other methods using the unsupervised protocol, since we simply sample a very

small number of images from the training set for the reference set without using any

pair labels of same/different or identity information. Table 4.2 shows the comparison
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Table 4.1: Verification accuracy at Equal Error Rate on LFW dataset (fold 1 only)

under different similarity measures.

Descriptor Euclidean SimScore DisScore

Intensity 0.7133 0.7533 0.7633

HoG 0.6767 0.7733 0.7467

LBP 0.6700 0.7633 0.7667

Gabor 0.6933 0.7700 0.7533

Combined (Avg) 0.7067 0.8167 0.8033

Combined (SVM) 0.7267 0.8333 0.7967

HybridSparse (Avg) N/A 0.8300

HybridSparse (SVM) N/A 0.8467

84



Table 4.2: Mean (± standard error) verification accuracy on the LFW dataset (Un-

supervised protocol).

Method Accuracy

H-XS-40 [48] 0.6945±0.0048

GJD-BC-100 [48] 0.6847±0.0065

SD-MATCHES [48] 0.6410±0.0042

LARK [49] 0.7223±0.0049

HybridSparse (Avg) 0.8377±0.0053

HybridSparse (Avg, flip) 0.8470±0.0047

result at equal error rate. The ‘flip’ means that when comparing image pair A and

B, we also compare A and the horizontally flipped image of B to reduce the effect

of pose variation. Then the average of the two scores is taken as the final similarity

score. Figure 4.4 presents the ROC curve of our approach (dotted red line), along

with the ROC curves of previous methods. As shown, our approach significantly

outperforms the other methods by a very large margin.

Comparison on the Image-Restricted protocol Table 5.2 shows the face

verification accuracy of our method in comparison with state-of-the-art methods

under the Image-Restricted protocol that allows using the training set with labels of

same/different. Figure 5.4 shows the ROC curve of our approach (dotted red line),

along with the ROC curves of selected recent state-of-the-art methods.
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Table 4.3: Mean (± standard error) verification accuracy on the LFW dataset

(Image-Restricted protocol). ‘∗’ denotes methods using outside training data.

Method Accuracy

LDML, funneled [28] 0.7927±0.0060

POEM [29] 0.7542 ±0.0071

Hybrid [46] 0.8398±0.0035

Combined b/g samples based [21] 0.8683±0.0034

*Attribute and Simile classifiers [27] 0.8529± 0.0123

Single LE + holistic [31] 0.8122±0.0053

*Multiple LE + comp [31] 0.8445±0.0046

*Associate Predict [47] 0.9057 ±0.0056

LARK+OSS [49] 0.8512 ±0.0037

HybridSparse (SVM) 0.8530 ±0.0040

HybridSparse (SVM, flip) 0.8624 ±0.0031
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The results show that the verification accuracy of our approach is compet-

itive to the state-of-the-art methods on the LFW benchmark in the challenging

image-restricted protocol. It is worth noting that, methods marked by ‘∗’ (such

as [27, 31, 47]) use training data outside of the LFW for facial point detection or

pose/illumination classification and so on, which can have a significant impact on

the verification accuracy, thus are not directly comparable to other methods includ-

ing ours. Kumar et al. [27] achieves excellent results (however still marginally lower

than ours) at the expense of an expensive training of high-level classifiers by incor-

porating a huge volume of images outside of the LFW dataset. The LE method [31]

relies on facial feature point detectors. Predict-Associate [47] not only relies on

facial feature point detectors, but also uses the Multi-PIE dataset with identities

covering 7 poses and 4 illumination conditions. For other methods that we are in

the same category with, [21] is the most comparable. Wolf et al. [21] also combines

multiple descriptors, however, their method has complicated layers and leverages

metric learning [47]. An additional disadvantage of this method is that it requires

background samples (a fixed set of ‘negative’ examples) that have similar properties

as the faces being compared. The background samples should not contain faces from

any person who might subsequently appear in a pair to be compared. Overall, our

simple approach achieves competitive accuracy without local feature detection or

other additional information.

87



4.4 Conclusions and Future Work

We have proposed a novel approach for face verification using sparse coding in

two different yet complimentary ways with a fixed reference set as a dictionary. The

evaluation on the very challenging LFW dataset both under the unsupervised setting

and image restricted training setting shows competitive results. We demonstrated

that sparse coding can be a promising direction for face verification since it extracts

more stable and discriminative face representation under challenging variations. In

the next Chapter, we would explore pairwise dictionary learning for face verification

applications.
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Figure 4.3: An example of sparse codes (intensity feature) for ‘dissimilarity score’

denoted by DisScore. (a) Original faces of a ‘same’ pair. (b) Sparse codes with

and without adding the other face to dictionary for the ‘same’ pair. (c) Original

faces of a ‘different’ pair. (d) Sparse codes with and without adding the other

face to dictionary for the ‘different’ pair. Note that the range of horizontal

axes of blue plots is [1,201] while that of red plots is [1,200] and the

scales of vertical axes of two sparse codes for an image are consistent for

comparison. In the blue plots, one can observe the peak at 201 in (b) but not in

(d). Also note that SimScore of pair (a) is 0.8551 and SimScore of pair (c) is 0.0471.
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Figure 4.4: ROC curves on the LFW dataset (unsupervised protocol).
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Figure 4.5: ROC curves on the LFW dataset (Image-Restricted protocol). Only

shown with the selected best results that were recently reported for clarity.
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Chapter 5

Discriminative Dictionary Learning with Pairwise Constraints

In the previous chapter, we apply sparse representations to face verification in

two ways via a fix reference set as dictionary. As an extension work, in this Chapter,

we propose a dictionary learning framework with explicit pairwise constraints, which

unifies the discriminative dictionary learning for pair matching (face verification)

and classification (face recognition) problems.

5.1 Introduction

Different from many classification problems where the specific class label of

each image is given during training, only binary information such as same/different

or relevant/irrlevant is provided for training data in applications such as face ver-

ification (given a target and a query image, determine whether they are from the

same person), pair matching, image retrieval, etc. Typically, a discriminative simi-

larity measure is learned through metric learning [8, 9, 10, 11] from pairs of training

images labeled as ‘same’ or ‘different’; this provides less specific information than

known classes - category labels. In this paper, we propose a framework to learn a

discriminative dictionary satisfying pairwise constraints. The learned dictionary is

suitable for pair matching problems with the pairwise constraints from the binary

similarity or dissimilarity information; in addition, it is also suitable for classification
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problems given pairwise constraints about category information.

Sparse coding [101] approximates a signal y as a linear combination of a few

atoms from a learned dictionary A, i.e., y = Ax, and leads to good performance

in numerous applications. The learned dictionary A is critical to performance. K-

SVD [102] minimizes a reconstruction error to learn an over-complete dictionary.

However, despite its many successful applications, K-SVD is not suitable for classi-

fication, where the dictionary should be not only representative, but also discrimi-

native. Hence, some supervised dictionary learning approaches incorporate classifi-

cation error into the objective function to construct a dictionary with discriminative

power. However, such frameworks consider only discriminativeness in the classifier

construction, but do not guarantee the discriminativeness in the sparse representa-

tions of input signals. The discriminative capability of a dictionary usually comes

from category label information. We will show that considering the pair similar-

ity/dissimilarity constraints without category labels during dictionary learning can

also improve the discriminative power of a dictionary; no existing dictionary learning

approach has fully explored this property. Our dictionary learning approach explic-

itly integrates pairwise constraints for sparse codes of input signals and a linear

predictive classifier into one objective function. The learned dictionary encourages

signals from the same class (or a similar pair) to have similar sparse codes, and

signals from different classes (or a dissimilar pair) to have dissimilar sparse codes,

illustrated in Figures 5.1 and 5.2. The similarity can be thresholded to yield a bi-

nary decision of same/different (face verification), or it can be used to find the most

similar face in a gallery (face recognition). The main contributions of this Chapter
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are:

• We present a dictionary learning framework with explicit pairwise constraints,

which unifies the discriminative dictionary learning for pair matching and

classification problems.

• Our framework furthermore integrates the pairwise constraints for sparse codes

of input signals and a linear predictive classifier into the objective function for

dictionary learning, which addresses the desirable properties of discrimina-

tiveness in the sparse representations of signals, and the discriminativeness in

classifier construction.

• The objective function can be optimized via the efficient feature-sign search

algorithm [103].

• Our approach is validated on various public face verification and recognition

benchmarks.

5.1.1 Related Work on Face Verification and Dictionary Learning

As reviewed in previous Chapters, metric learning (ML) aims at learning a

discriminative similarity measure between different images [8, 9, 10, 11]. An appro-

priate distance metric plays a very important role in many learning problems. Most

work in metric learning, including LDML [8], MkNN [8], ITML [9], CSML [10], etc,

relies on learning a Mahalanobis distance to map the feature space into a target

space [11]. Less work, however, has been done for face verification using dictionary
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learning with pairwise similarity and dissimilarity constraints on input training ex-

amples.

[101] used sparse representations for face recognition (1:N matching problem

which finds a nearest neighbor of a given probe in a gallery face set) by relating the

problem of finding the most similar face to noiseless signal reconstruction. Since

then, many other researchers have developed methods for face recognition using

sparse representations or dictionary learning [101, 104, 105, 106, 107, 97, 108]. Al-

though many of these existing algorithms have been shown to perform well in clas-

sification (e.g. face recognition) applications, most of them do not explicitly deal

with dictionary learning with pairwise constraints - when only binary information

such as same/different or relevant/irrelevant is given in the training stage (e.g. face

verification). Our dictionary learning framework is more general since it deals with

face verification and face recognition problems simultaneously.

To enhance discrimination power, our dictionary learning framework explic-

itly integrates pairwise constraints for sparse codes of input signals and a linear

predictive classifier into the objective function during training. Most previous ap-

proaches treat dictionary learning and classifier training as two separate processes,

such as [109, 110, 111, 112, 113, 114]. In these approaches, a dictionary is typically

learned first and then a classifier is trained based on it. There are also sophisticated

approaches [115, 116, 117, 97] combining dictionary learning and classifier training

in a mixed reconstructive and discriminative formulation. Our approach falls into

this category. We learn a single dictionary and an optimal classifier jointly.

Laplacian Sparse Coding [118] explicitly introduces a locality preserving con-
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straint among similar local features in the sparse coding step to preserve the consis-

tence of the sparse codes. This is different since our approach is to learn a dictionary

which encourages signals from a similar pair (or the same class) to have similar sparse

codes. Furthermore, our approach integrates a linear predictive classifier into the ob-

jective function to learn the dictionary and the classifier simultaneously while [118]

learns the dictionary and the classifier separately.

5.2 Sparse Coding and Dictionary Learning

In this section, we provide a brief review of sparse coding and dictionary

learning.

5.2.1 Sparse Coding

Let Y = [y1,y2, ...yN ] ∈ Rn×N be the data matrix of N input signals, where

yi ∈ Rn denotes the i-th input signal with n-dimensional feature description. Given

a dictionary A = [a1,a2, ...,aK ] ∈ Rn×K , where ai is the i-th dictionary atom

(l2-normalized), sparse coding [101] with l1 regularization computes the sparse rep-

resentations X = [x1,x2, ...,xN ] ∈ RK×N of the input signals Y , through solving

the following l1-minimization problem,

X∗ = argminX

N∑
i=1

(∥yi − Axi∥22 + γ∥xi∥1) (5.1)

where constant γ is a sparsity constraint factor and the term ∥yi − Axi∥22

denotes the reconstruction error. Each input signal yi can be represented as a

sparse linear combination of a few dictionary atoms. The feature-sign search algo-

rithm [103] is an efficient algorithm that can be used to solve (1).
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5.2.2 Dictionary Learning

The goal of dictionary learning is to find optimized dictionaries that provides

a succinct representation for most statistically representative input signals. The

learning procedure can be formulated as solving the following problem [103],

< A∗, X∗ >= argminA,X

N∑
i=1

(∥yi − Axi∥22 + γ∥xi∥1) (5.2)

The optimization problem is convex in A (while holding X fixed) and convex

in X (while holding A fixed), but not convex in both simultaneously. Usually, the

above objective is iteratively optimized in a two stage manner, by alternatively

optimizing with respect to A (bases) and X (coefficients) while holding the other

fixed. The formulation (2) only focuses on minimizing the reconstruction error and

does not consider the discriminative power of a dictionary for classification tasks.

Hence, some supervised approaches [115, 116, 117, 97, 107] have been proposed to

improve the discriminative power of dictionary, by integrating the category label

information into the objective function of dictionary learning. However, most of

them do not explicitly deal with dictionary learning with pairwise constraints.

5.3 Discriminative Dictionary Learning with Pairwise Constraints

(DDL-PC)

In this section, we present our Discriminative Dictionary Learning with Pair-

wise Constraints algorithm which takes into account the relationships of each pair

of learned sparse codes (xi,xj). Here, the intuition is to encourage signals from

a similar pair to have similar sparse codes. We subsequently focus on the effects
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of adding a discriminative term, and a classification error term into the objective

function in (5.2). We refer to them as DDL-PC1 and DDL-PC2, respectively.

5.3.1 DDL-PC1

To obtain discriminative sparse codes x with the pairwise constrained dictio-

nary A, the objective function for dictionary construction is defined as:

< A∗, X∗ > = argminA,X

N∑
i=1

(∥yi − Axi∥22 + γ∥xi∥1) +
β

2

N∑
i,j=1

(∥xi − xj∥22Mij)

= argminA,X

N∑
i=1

(∥yi − Axi∥22 + γ∥xi∥1) + β(Tr(XTXD)− Tr(XTXM))

= argminA,X

N∑
i=1

(∥yi − Axi∥22 + γ∥xi∥1) + β(Tr(XTXL)) (5.3)

where the constants γ and β control the relative contribution of the corre-

sponding terms. The first term ∥yi−Axi∥22 is the reconstruction error term, which

evaluates the reconstruction error of the approximation to the input signals. The

second term ∥xi∥1 is the regularization term for sparsity. The last term, which is

new and proposed here, is the discrimination term called ‘pairwise sparse code error’

based on pairwise constraints which are encoded in matrix M . D = diag{d1, ...dN}

is a diagonal matrix whose diagonal elements are the sums of the row elements of

M (see below), di =
∑N

j=1Mij. L = D −M is the Laplacian matrix. Matrix M

has different forms depending on the problems being considered. For example, in

face verification, the relationship of a pair (yi, yj) is given as same/different. Thus,

given the sets of ‘same’ and ‘different’ pairs S and D, we define matrixM to encode

the (dis)similarity information as
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Mij =


+1, if (yi,yj) ∈ S

−1, if (yi,yj) ∈ D

0, otherwise

(5.4)

5.3.2 DDL-PC2

Although (5.3) can already be used for classification by defining M based on

the pairwise similarity constraints with category labels (see Sec. 3.4), the classifi-

cation error can be further included as an additional term in the objective function

in (5.3). Here we use a linear predictive classifier f(x;W ) = Wx. The objective

function for learning a pairwise constrained dictionary A with both reconstructive

and discriminative power can then be defined as follows:

< A∗, X∗,W ∗ >= argminA,X,W

N∑
i=1

(∥yi − Axi∥22 + γ∥xi∥1)

+
β

2

N∑
i,j=1

(∥xi − xj∥22Mij) + α

N∑
i=1

(∥hi −Wxi∥22 + λ∥W∥22) (5.5)

The new term ∥hi − Wxi∥22 + λ∥W∥22, where ∥hi − Wxi∥22 represents the

classification error and ∥W∥22 is the regularization penalty term, supports learning

an optimal linear predictive classifier. hi = [0, 0, ...1...0, 0]T ∈ Rm (m: number of

classes) is a label vector corresponding to an input signal yi, where the non-zero

position indicates the class label of yi.
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5.3.3 Optimization Procedure

In this section, we only describe the optimization procedure for DDL-PC2

since DDL-PC1 utilizes the same procedure except that α = 0 in (5.6)(5.7)(5.8) and

the classifier W update step is not considered during dictionary learning. Solving

(5.5) is a challenging task because the objective function is not convex for A, X

and W simultaneously; but fortunately, it is convex in one variable when the other

two variables are fixed. In [103], (5.2) was solved by an efficient feature-sign search

algorithm. Motivated by [103], we optimize A, X and W alternatively. Algorithm

1 presents the pseudocode of algorithm DDL-PC2.

5.3.3.1 Computing Sparse Codes X with Fixed A and W .

When A and W are fixed, we optimize xi alternately and fix other xj(j ̸= i)

for other signals. Optimizing (5.5) is equivalent to:

min
xi

L(xi) + γ∥xi∥1 (5.6)

where L(xi) = ∥yi−Axi∥22+β(2xTi (XLi)−xTi xiLii)+α(x
T
i W

TWxi−2xTi W
Thi),

Li is the i
th column of L and Lii is the (i, i) element of L. (6) is exactly the prob-

lem that the feature-sign search algorithm in [103] solves. [103] iteratively searches

for the coefficient sign vector θ for xi, then (5.6) reduces to a standard, uncon-

strained quadratic optimization problem (QP). To compute the analytical solution,

we calculate the gradient of L(xi) with respect to xi:

∂L(xi)
∂xi

= 2AT (Axi − yi) + 2β(XLi) + 2α(W TWxi −W Thi) + γθ (5.7)
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Finally the analytic solution of xi can be obtained when we have ∂L(xi)
∂xi

= 0:

x∗
i = (ATA+ 2βLiiI + 2αW TW )−1(ATyi + 2αW Thi − 2β

∑
k ̸=i

xkLki − γθ) (5.8)

In practice, a very small β is chosen to guarantee the Hessian matrix (ATA+

2βLiiI) to be positive semidefinite, hence (3) is convex.

5.3.3.2 Updating Dictionary A with Fixed X and W .

Given X and W , we use the Lagrange dual in [103] to optimize the following

objective function:

min
A

N∑
i=1

∥yi − Axi∥22 s.t.∥aj∥22 ≤ c, ∀j = 1...K. (5.9)

The analytical solution of A can be computed as: A∗ = Y XT (XXT + Λ)−1,

where Λ is a diagonal matrix constructed from all the dual variables.

5.3.3.3 Updating Classifier W with Fixed X and A.

Given X and A, we employ the multivariate ridge regression model [116] to

update W , with the quadratic loss and l2 norm regularization:

min
W

N∑
i=1

∥hi −Wxi∥22 + λ∥W∥22, (5.10)

which yields the following solution: W ∗ = HXT (XX t + λI)−1.
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Algorithm 2: Discriminative Dictionary Learning with Pairwise Constraints-2

(DDL-PC2).

Input: input signals Y , Laplacian matrix L, label matrix H, regularization

constant γ, β and α, iteration number T̂

Output: learned dictionary A, classifier W and sparse code X.

Initialization: Compute initial A0 via K-SVD, initial X0, W0 using (5.1),

(5.10)

for t = 1, 2, ...., T̂ do

Sparse Coding: compute sparse code X using (5.6);

Dictionary Update: update dictionary A using (5.9);

Classifier Update: update classifier W using (5.10).

end for

5.3.4 Matching Approach

5.3.4.1 Face Verification

In face verification or pair matching problems, a similarity measure is typically

learned from pairs of training images labeled as ‘same’ or ‘different’; this provides

less specific information than known identities - image labels. Given a training set

of pairs, we first construct matrixM with their pairwise relationships. For example,

suppose three pairs of feature vectors are given - (y1,y2) are features vectors from

the same person, (y3,y4) are also features vectors from the same person and (y5,y6)
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are features vectors from different persons. Matrix M would then be:

M =



y1 y2 y3 y4 y5 y6

y1 0 1 0 0 0 0

y2 1 0 0 0 0 0

y3 0 0 0 1 0 0

y4 0 0 1 0 0 0

y5 0 0 0 0 0 −1

y6 0 0 0 0 −1 0


With the given training set of pairs and the corresponding matrix M , an

optimized discriminative dictionary A (initialized by K-SVD algorithm [102]) can

be learned using DDL-PC1. Then, when a new test pair yi and yj comes in, we

can compute the optimized sparse codes xi and xj with dictionary A by solving

(5.1). Finally, the cosine similarity [10, 119] of the two sparse codes is used as the

similarity metric between the image pair. This similarity is thresholded to yield a

binary decision of same/different.

5.3.4.2 Face Recognition

In face recognition, class labels are given for each image in the training set.

The pair relationships are derived from the category labels. If yi and yj belong to

the same class, we define Mij as 1; otherwise we set it to 0. Matrix M encoding the

(dis)similarity information can be defined as
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Mij =


1, if (yi,yj) ∈ ck, k = 1...m

0, otherwise

(5.11)

There are two ways to construct the classifier W here. For DDL-PC1, we

obtain A and X first and then the matrix W is trained separately using (5.10). For

DDL-PC2, we obtain A and W jointly using Algorithm 1.

Then, when a new test sample yi comes in, we compute its sparse code xi

with respect to A by solving (5.1). Finally we simply use W to estimate a class

label vector for yi: l = Wxi, where l ∈ Rm. The label of yi is assigned as the index

j where lj is the largest element of l.

5.4 Experimental Results

We evaluate the proposed algorithm on the LFW dataset [2] for face verifica-

tion task, and the Extended YaleB database [3] and AR face database [4] for face

recognition task.

5.4.1 Face Verification Experiments

5.4.1.1 LFW Database

Again, we evaluated our approach on the the Labeled Faces in the Wild (LFW)

dataset. In our evaluations, for each independent fold, we randomly choose 500 pairs

of ‘same’ and 500 pairs of ‘different’ from the training set (other 9 splits, 5400 image

pairs) to learn an optimal dictionary through DDL-PC1. The learned dictionary
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consists of 510 atoms. γ is set to be 30 and β is set to be 0.1.

5.4.1.2 Experimental Setup

All the faces are cropped and rescaled to 80 × 148. According to [62, 46,

31, 21], combining multiple similarities from different descriptors usually boosts

performance. In our experiments, the intensity, HoG, LBP, and Gabor features

are used. Finally, the four scores for different features are fused by averaging (no

training) or training SVM. For extracting HoG and LBP features, we divide the

faces into blocks of 20 × 20 and extract the 16-bin HoG feature and the 59-bin

uniform LBP feature for each block. For Gabor features, we adopt five scales and

eight orientations of the Gabor filters. The final Gabor feature vector is obtained by

concatenating the responses at every 10 pixels in order to reduce the dimensionality

of the feature vector to manageable size.

Fig.5.3 shows some examples (5 ‘same’ and 5 ‘different’) of testing image pairs

from the LFW dataset. The similarity scores obtained from KSVD dictionary learn-

ing and our DDL-PC1 are listed under each pair. As it shows, compared to KSVD,

higher similarity scores for the ‘same pairs’ and lower similarity scores for ‘different’

pairs are obtained by our discriminative dictionary learning.

Table 5.1 summarizes the performances of our method with individual feature

and their fusion. The first column shows the face verification accuracy (at equal error

rate) obtained from using the Euclidean distance of the original feature vector pairs

as similarity measure. The second column shows the accuracy from the dictionary
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Table 5.1: Mean (± standard error) verification accuracy at equal error rate of

different feature descriptors and their fused scores on LFW dataset. Euclidean,

dictionaries learned by K-SVD and the proposed DDL-PC1 are compared.

Descriptor Euclidean K-SVD DDL-PC1

Intensity 0.7140±0.0056 0.7424±0.0051 0.7870±0.0048

HoG 0.6803±0.0046 0.7524±0.0049 0.8030±0.0037

LBP 0.6763±0.0054 0.7433±0.0052 0.7876±0.0032

Gabor 0.6920±0.0041 0.7646±0.0047 0.7996±0.0052

Combined (Avg) 0.7013±0.0045 0.8056±0.0045 0.8410±0.0041

Combined (SVM) 0.7216±0.0047 0.8196±0.0036 0.8603±0.0033

learned by K-SVD (followed by the l1 based sparse coding) and the third column

shows those from the proposed DDL-PC1. The combined scores are the results

from fusing the four scores for all features by averaging (no training) or training

SVM. Clearly, DDL-PC1 works best in all situations comparing to ‘Euclidean’ and

‘K-SVD’.

5.4.1.3 Comparison with the State-of-the-art Methods

Table 5.2 shows the face verification accuracy of our method compared with

recent methods with the Image-Restricted protocol. The ‘flip’ means that when

comparing image pair I and J , we also compare I and the horizontally flipped

image of J to reduce the effects of pose variation. Then, the average of the two

scores is taken as the final similarity score. Figure 5.4 contains the ROC curve of
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Table 5.2: Mean (± standard error) verification accuracy on the LFW dataset,

image-restricted protocol using the proposed DDL-PC1, and the same model except

the addition of the ‘flipped’ image idea. ‘∗’ denotes methods using outside training

data.

Method Accuracy

LDML [8] 0.7927±0.0060

Hybrid [46] 0.8398±0.0035

Combined b/g samples based [21] 0.8683±0.0034

*Attribute and Simile classifiers [27] 0.8529±0.0123

Single LE + holistic [31] 0.8122±0.0053

*Multiple LE + comp [31] 0.8445±0.0046

*Predict-Associate [47] 0.9057 ±0.0056

LARK + OSS [49] 0.8512 ±0.0037

DDL-PC1 0.8603 ±0.0033

DDL-PC1 (flip) 0.8710 ±0.0035

our approach (dotted red line), along with the ROC curves of selected recent state-

of-the-art methods with the Image-Restricted protocol for presentation clarity.

The results show that the verification accuracy of our approach is compara-

ble with the state-of-the-art methods on the LFW benchmark in the challenging

image-restricted protocol. Moreover, the methods marked by ‘∗’ use training data

outside of LFW for facial point detection or pose/illumination classification and

so on. Those can have a significant impact on verification accuracy, thus not di-
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rectly comparable. Kumar [27] achieved excellent results, marginally lower than

ours. However, the work of Kumar requires expensive training of high-level classi-

fiers incorporating a huge volume of images outside of the LFW dataset. The LE

method [31] relies on facial feature point detectors. Predict-Associate [47] not only

relies on facial feature point detectors, but also uses the Multi-PIE dataset with iden-

tities covering 7 poses and 4 illumination conditions as prior knowledge. For other

methods we are in the same category with, [21] is most comparable. Wolf [21] also

combines multiple descriptors; their method adds up several layers of information

and leverages metric learning [47]. Moreover, one disadvantage of Wolf’s method is

that it requires background samples (a fixed set of ‘negative’ examples) that have

similar properties as the faces being compared and do not contain faces from any

person who might subsequently appear in a pair to be compared. It learns models

for each pair being compared on-the-fly, which might not be desirable in practical

applications. Overall, our DDL-PC1 achieves competitive accuracy without local

feature identification or any other additional information.

5.4.2 Face Recognition Experiments

5.4.2.1 Extended YaleB Database

The Extended YaleB database [3] contains 38 persons under 64 illumination

conditions, 2, 414 frontal-face images. The original images are cropped to 192 ×

168. We used the random face features [97, 101] to represent the face images.

Following [97, 107], we project each face image into a 504-dimensional feature vector
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using a random matrix of zero-mean normal distribution. Each row of the random

matrix is l2 normalized. We randomly sample 32 images per person for training and

taking the rest as testing. We repeated 10 times such this sampling process and

report their average as the recognition accuracy. The parameter γ is set to 20; β

and α are set to 2.0 and λ is 1.0 here.

We fix the dictionary size of 570 atoms as in [97, 107] and evaluate our ap-

proach. We compare the recognition accuracy with K-SVD [102], D-KSVD [97],

SRC [101], LLC [120] and recently proposed LC-KSVD [107]. We obtain the original

implementations of LC-KSVD 1 from the authors [107]. A D-KSVD is implemented

by eliminating the label consistent term in LC-KSVD. For SRC, we randomly se-

lect the average of dictionary size per person from each person and report the best

result we achieved. For LLC, we perform the experiment with 30 local bases, which

determines the sparsity of the LLC codes. The results are summarized in Table 5.3.

Our approaches achieve better results than K-SVD, D-KSVD, SRC and LLC and

are comparable to LC-KSVD.

We also evaluate our approach using random-face features and dictionary sizes

190, 380, 570 and 760. Then we compare the classification accuracy with state-of-art

approaches including LC-KSVD, D-KSVD, K-SVD, SRC and LLC which use the

same features and dictionary sizes. As shown in Figure 5.5, our approach has higher

accuracy than K-SVD, D-KSVD, SRC and LLC, and is comparable to LC-KSVD.

1LC-KSVD here is the approach LC-KSVD2 in [107].
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Table 5.3: Recognition results using random-face features on the Extended YaleB.

Method K-SVD[102] D-KSVD[97] SRC[101]

Acc. (%) 90.5 94.1 88.6

LLC[120] LC-KSVD[107] DDL-PC1 DDL-PC2

82.3 95.0 94.5 95.3

5.4.2.2 AR Face Database

The AR face database [4] contains over 4, 000 color face images of 126 persons

taken during two sessions, with 26 images per person. The main characteristic

of the AR database is that it includes frontal views of faces with different facial

expressions, lighting conditions and occlusion conditions. All the faces are cropped

to 165 × 120. Following the standard evaluation protocol, we use a subset of the

database consisting of 2, 600 images from 50 males and 50 females. For each person,

we randomly select 20 images for training and the other six for testing. We report the

results from the average of ten such random splits. Each face image is projected into

the 540-dimensional feature vector with a randomly generated matrix as in [97, 107].

The feature descriptors used here are random face features. The parameter γ is set

to be 30, β is 0.5, α and λ are 1.0.

We evaluate our approach with a dictionary of size 500 and compare with

state-of-art approaches [102, 97, 101, 120, 107]. As shown in Table 5.4, both DDL-

PC1 and DDL-PC2 obtain better results than K-SVD, D-KSVD, SRC, LLC and
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Table 5.4: Recognition results using random face features on the AR face database.

Method K-SVD[102] D-KSVD[97] SRC[101]

Acc. (%) 87.2 88.8 74.5

LLC[120] LC-KSVD[107] DDL-PC1 DDL-PC2

88.7 93.7 94.0 96.0

LC-KSVD. DDL-PC2 obtains a 2% improvement over DDL-PC1.

5.5 Conclusions

We presented a novel dictionary learning approach that tackles the pair match-

ing and classification problem in a unified framework. We introduced a discrimi-

native term called ‘pairwise sparse code error’ based on pairwise constraints and

combined it with the classification error term to form the objective function of dic-

tionary learning for better discriminating power. The objective function can be

optimized by employing the efficient feature-sign search algorithm. The effective-

ness of our approach was evaluated on both face verification and face recognition

tasks. Experimental results on face verification demonstrated that our approach is

competitive with existing techniques without using facial feature point detectors or

other additional information. We also compared our approach with several recently

proposed dictionary learning methods on two well-known face databases. Our ap-

proach can obtain comparable face recognition performance to state-of-art on both

databases.
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(a) (b)

(c) (d)

Figure 5.1: An example of sparse codes (HoG feature) and similarity scores obtained

by K-SVD dictionary learning and our proposed discriminative dictionary learning

with pairwise constraints. Image pairs are from test set 1 of the LFW [2] dataset.

(a) Original faces of the ‘same’ pair and their similarity scores obtained by ‘K-SVD’

and ‘DDL’. (b) Sparse codes for the ‘same’ pair obtained from ‘K-SVD’(blue) and

‘DDL’(red), respectively. (c) Original faces of a ‘different’ pair. (d) Sparse codes

for the ‘different’ pair. It can be seen that our dictionary encourages a pair from

‘same’ person to have similar sparse codes while a pair from ‘different’ persons to

have dissimilar sparse codes.
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Figure 5.2: Examples of sparse codes using dictionaries learned by K-SVD and our

approaches on the Extended YaleB [3] and AR [4] databases. X axis indicates the

dimensions of sparse codes. Y axis indicates the average of absolute sparse codes for

different testing images from the same class. The first and second row correspond

to class 9 in Extended YaleB (32 images) and class 30 in AR database (6 images),

respectively. The consistency of sparse codes of signals from the same class should

have low entropy (i.e., less high values) of these average sparse codes.
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KSVD: 0.004 KSVD: 0.087 KSVD: 0.002 KSVD: 0.263 KSVD: 0.091

DDL: 0.500 DDL: 0.620 DDL: 0.464 DDL: 0.372 DDL: 0.205

KSVD: 0.232 KSVD: 0.217 KSVD: 0.102 KSVD: 0.141 KSVD: 0.133

DDL: 0.066 DDL: 0.101 DDL: -0.010 DDL: 0.057 DDL: 0.013

Figure 5.3: Examples of some image pairs from the LFW dataset and the similarity

scores obtained from KSVD dictionary learning and proposed DDL-PC1 respec-

tively. Top row: Five examples of ‘same’ pairs; Bottom row: Five examples of

‘different’ pairs.
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Figure 5.4: ROC curves for View 2 of the LFW dataset (Image-Restricted protocol).

Only shown with the selected best results that recently reported for clarity.
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Figure 5.5: Recognition performance on the Extended YaleB with varying number

of dictionary sizes.
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Chapter 6

Conclusions

Face recognition has wide range of practical applications in access control,

identification systems, surveillance, pervasive computing and social networks. Mak-

ing it more realistic, such as our work presented here: face recognition and verifica-

tion in unconstrained environments, is a very interesting yet challenging topic.

In this work, we only explored a few directions to address this problem:

(1) We propose a face verification framework that combines Partial Least

Squares (PLS) and the One-Shot similarity model. The idea is to describe a face

with a large feature set and use PLS regression is applied to perform multi-channel

feature weighting. The verification results on the other three very challenging real

world datasets (GBU, BDCP, Maritime) taken in unconstrained environments also

demonstrate the robustness of our algorithm.

(2) We have proposed an efficient method for face recognition from image

set called Covariance Discriminative Learning (CDL). The method represents each

image set with its covariance matrix and models the problem as classifying points

through kernel mapping on the Riemannian manifold. With superior accuracy, it is

also very robust to the practical challenges of noisy set data and varying set size.

(3) We propose a face verification framework using sparse representations that

integrates two ways of employing sparsity. The two ways of sparse coding are dif-
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ferent yet complimentary. We exploit multiple scores using these two measures and

fuse them by simple averaging for the situation where no training set is available

(unsupervised) or by an SVM when a training set is given.

(4) We present a dictionary learning framework with explicit pairwise con-

straints, which unifies the discriminative dictionary learning for pair matching and

classification problems. Our approach is validated on various public face verification

and recognition benchmarks.

Potential directions and future works extending this dissertation has been

discussed in the last section of each chapter.
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