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(1). In this study, we improved the hatchability (!90%) of egg embryos after 

vaccination with live attenuate influenza vaccines using modified H7 and H9 

hemagglutinin (HA) proteins with amino acid substitutions at the cleavage site for 

those found in the H6 HA subtype. A single dose in ovo vaccination of 19-day old 

eggs provided complete protection against homologous challenge with low 

pathogenic H7 and H9 virus in !70% of chickens at 2 or 6 weeks post-hatching. 

(2). The HA titer of a recombinant live-attenuated influenza vaccine (2 

mouse-adapted(ma) Ca/04 H1N1:6WF10att) against pandemic H1N1 was improved 

through egg adaptation.  By whole viral genome sequencing and with viral knetics 

study of reverse genetics viruses, I found an aminno acid substitution in PA 

polymerase subunit, at position 59, from glutamic acid to valine, which is responsible 

for the enhancement of HA and viral titer. This mutation did not impair the 



  

temperature sensitive phenotype of prototypic live attenuated backbone, WF10att. 

The PA E59V mutation moderately enhanced the HA and viral titer of wt WF10 and 

ty/04att backbones. However, it had no effect on two commercially licensed 

influenza vaccine internal backbones PR/8- or ca Ann Arbor/60. Interestingly, 

although the E59V had no significant effect on increasing HA/NP ratio of the wt 

WF10 or WF10att system; both backbones resulted in higher antigenic content on 

viral particles than PR/8- or ca Ann Arbor/60-based virus particles. 

(3). Our laboratory previously generated an adapted virus from wildtype duck 

H9N2, A/duck/Hong Kong/702/79 virus, through 23 serial passages in lung of quail 

(QA23). QA23 gained the new phenotype of replicating and transmitting efficiently 

in chickens and quail.  NS1 protein localization studies demonstrated that QA23 NS1 

was mainly distributed in the cytoplasm; while WT702 NS1 predominantly 

accumulated in the nucleus; and nuclear localization sequence 2 is important for the 

nuclear import of NS1. QA23 NS1 up-regulated the viral protein synthesis in DF1 

cells; did not affect the inhibition of IFN- "; and greatly reduced the apoptotic activity 

level during infection. However, there is no evidence showing that QA23 NS1 is 

associated with the enhanced replication and transmission of the virus in quail.  
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Chapter 1: Influenza A virus 

Introduction 

Influenza viruses are enveloped single-stranded negative-sense RNA viruses, 

belonging to the family Orthomyxoviridae. There are 6 genera in this family, including 

Influenza A, B, C, Isavirus, Thogotovirus and an unnamed, novel and uncharacterized 

genus [1]. Influenza A, B and C viruses are classified according to the differences in 

matrix protein (M1) and nucleoprotein (NP). Influenza A viruses can infect humans and a 

broad range of animal species, including birds, pigs, horses, dogs and sea mammals; 

whereas Influenza B viruses infect only humans [2], seals [3] and ferrets [4]; and 

Influenza C viruses infect only humans, dogs and pigs [5]. Amongst them, Influenza A is 

the major pathogen causing the seasonal flu and sporadic pandemics. Pandemic flu in the 

20th century (1918 H1N1 Spanish flu, 1957 H2N2 Asian flu and 1968 H3N2 Hong Kong 

flu) caused millions of deaths [6]. The 2009 swine-origin pandemic H1N1 (pH1N1) 

influenza virus (“swine flu”) rapidly spread around the world. By July 2010, this 

pandemic resulted in more than 18,000 deaths worldwide [7]. Currently, highly 

pathogenic avian influenza (HPAI) H5N1 virus (“bird flu”) is circulating in many 

counties, occasionally infecting humans with mortality as high as 60% [8].  

Influenza A virus contains a genome with 8 RNA segments, which encode at least 

12 identified proteins. RNA segments 1, 2 and 3 encode polymerase basic proteins PB2 

and PB1 and polymerase acid protein PA, respectively. Segments 4, 5, and 6 encode 

hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), respectively.  Segment 7 

encodes the matrix protein 1 (M1) and M2 protein. Segment 8 encodes non-structural 



 

 2 
 

protein 1 (NS1) and the nuclear export protein (NEP; also known as NS2). In addition, 

PB1-F2 and N40 are translated from PB1 mRNA by leaky scanning [9,10], and PA-X is 

translated by ribosomal frameshifting of the PA gene [11]. PB1, PB2 and PA are subunits 

of RNA-dependent RNA polymerase (RdRP). NP packages the segmented viral RNA and 

binds to RdRP to form the ribonucleoprotein (RNP) in the viral particles (Table 1.1 and 

Figure 1.1).  

Influenza A virus possesses a lipid bilayer envelope derived from the host 

membrane. HA and NA are surface glycoproteins on the viral envelope, and both proteins 

recognize sialic acid (SA) [12,13]. Influenza A viruses can be classified into 17 HA 

subtypes (H1–H17) and 10 NA subtypes (N1–N10) based on the antigenic differences of 

the proteins [14,15]. The virus strains from all HA and NA subtypes except H17 and N10 

were isolated from birds, and the novel strain H17N10 has only been found in bats.  

The influenza A virus RdRP lacks of proofreading activity, which leads to the 

sequence variations in the different strains and within the same strain. The accumulation 

of the mutations on the proteins possessing the neutralizing antibody-binding sites may 

result in the generation of escape-mutants, a process called antigenic drift [16,17]. Two 

subtypes of the influenza A viruses are currently co-circulating in humans: pH1N1 and 

H3N2. The influenza vaccine against seasonal flu needs to be designed according to the 

antigenic drift of the current year and updated annually.  

The most deadly pandemic in last century occurred in 1918-1920 and was caused 

by the H1N1 influenza virus (“Spanish flu”) of unknown origin. The disease was first 

observed in January 1918 in the US, and then the outbreaks began in several places of the 

US in March 1918 [18]. The transportation of the soldiers in World War I caused the 
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rapid spread of the virus to Europe and Africa, and later, to Asia and Oceania by June 

1918. The second wave of the infection occurred in August 1918 from Europe across the 

world with much higher virulence than the first wave [19]. It is estimated that half of the 

population of the world at that time was infected with the pandemic 1918 influenza virus, 

which caused at least 20 million deaths [18]. Unlike other influenza pandemics, with a 

mortality rate less than 0.1%, the 1918 pandemic had an unusually high mortality rate 

among infected humans at 2.5% [20]. 

The infection of one single cell with two or more different influenza virus strains 

simultaneously can lead to gene mixing, or reassortment. The reassortment of the viral 

genomes may result in the generation of new subtype, which causes the generation of 

new influenza virus strains associated with the occurrence of human pandemics. This 

process is called antigenic shift. Pandemic 1957 Asian H2N2, 1968 Hong Kong H3N2 

and 2009 swine-origin H1N1 influenza are all reassorted viruses [21,22].  

The pandemic H2N2 (“Asian flu”) was first discovered in Guizhou province of 

China in February 1957 [23]. It rapidly spread to Hong Kong, Singapore and Japan, and 

then to the Southern Hemisphere, Europe and North America by August 1957. It is 

calculated that one fourth of the world’s population was infected with the virus, and the 

total deaths included more than one million people [19].  The 1957 pandemic H2N2 

influenza is an avian/human reassortant virus carrying the surface glycoproteins H2 HA 

and N2 NA and PB1 originated from avian [21]. 

Another avian/human reassortant H3N2 virus caused the pandemic “Hong Kong” 

flu in 1968. The outbreak first appeared in Hong Kong in July 1968; and then spread to 

South Asia, Australia, Europe, North America, Africa and South America by 1969 [24]. 
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This reassortant virus was generated from the pandemic 1957 H2N2 virus by replacing 

the HA and PB1 segments from an avian-origin virus [21]. It is estimated that this H3N2 

pandemic virus killed approximately one million people worldwide [25]. 

A novel swine-origin H1N1 emerged from Mexico in March-April 2009, and 

caused the first influenza pandemic of the 21st century. By June 2009, more than 29,000 

cases were confirmed from 74 counties. Up until July 2010, confirmed cases of the 2009 

pandemic H1N1 were reported from 214 countries, causing more than 18,000 deaths 

worldwide [26]. This pandemic influenza formed by a swine triple-reassortant virus 

(originated from classical swine H1N1, North American avian and human H3N2 viruses) 

reassorted with a Eurasian avian-like swine virus. The HA, NP and NS segments are from 

the classical swine virus; the PB2 and PA segments are from the North American avian 

virus; and PB1 is from the human H3N2 virus. The NA and M segments originated from 

Eurasian avian-like swine H1N1 virus [27,28]. After 2010, this pandemic H1N1 has 

moved into the post-pandemic period, but continues to circulate as a seasonal flu by 

replacing the former H1N1 strain.  

Aquatic birds are believed to be the natural reservoir of influenza A viruses, and 

the HA subtypes H1-H16 and NA subtypes N1-N9 have been isolated from them. Some 

of the avian viruses have sporadically crossed the species barrier and caused severe 

diseases in land-based birds and mammals, including humans.  

In May 1997, the first HPAI H5N1 virus infecting humans was found in Hong 

Kong, leading to 6 deaths in 18 infected patients [29,30].  This H5N1 virus disappeared 

after the poultry depopulation in Hong Kong [31]. The precursor of the H5N1 influenza 

virus causing the human illness and death in 1997 was first isolated from geese in 
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Guangdong Province of China in 1996 [31]. The internal gene segments of the virus 

originated from a quail H9N2 virus, and the NA segment was from a duck H6N1 virus 

[29]. In February 2003, two people from Hong Kong who had travelled to southern China 

were confirmed to be infected with HPAI H5N1 [32]. Since 2003, at least 633 human 

cases of H5N1 infection were reported from 15 counties, including Vietnam, Indonesia, 

Japan, China and Egypt, and 377 of them died [33]. Meanwhile, the HPAI H5N1 virus 

spread throughout the counties in East and Southeast Asia, the Middle East, Africa and 

Europe since 1997, and caused the outbreaks in poultry farms. It is estimated that more 

than 400 million of the domestic birds were killed by the virus or depopulated to prevent 

the spread of the virus [34].   

From the 1996 precursor strain, the HPAI H5N1 virus has evolved into at least 10 

clades based on the genetic and antigenic differences in the strains infecting wild birds 

and domestic poultry species. Amongst them, clade 0, 1, 2 and 7 have infected humans, 

and clade 2 can be further divided into 3 subclades. For example, the virus strain that 

caused severe poultry loss and human illness in Indonesia belongs to subclade 2.1 [8]. 

Fortunately, no sustained human-to-human transmission of HPAI H5N1 has been 

observed since 1997 [35]. The potential of HPAI H5N1 acquiring the capability to 

transmit between humans and resulting in a human pandemic either by antigenic drift or 

antigenic shift, has been a hot spot for research during recent years. Adaptation studies 

with whole or reassortment of HPAI H5N1 virus were independently carried out in a 

ferret model by two different research groups, and the results emphasized the potential of 

this virus to acquire transmissibility in mammals and cause pandemic. Five amino acid 

substitutions (N224K, Q226L, T318I, N158D and T160A (H3 numbering)), or four 
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amino acid substitutions (N224K, Q226L, T318I and N158D (H3numbering) with 

reassortment, might be sufficient to confer a virus with H5 HA (from HPAI H5N1) 

aerosol transmission capability in ferrets [36,37]. Amongst them, N224K and Q226L are 

receptor-binding substitutions, N158D and T160A are HA glycosylation sequon 

substitutions, and T318I is located at the stalk region. 

In March 2013, a novel reassortant avian-origin influenza A (H7N9) virus was 

identified to infect humans in eastern China [38]. Up to July 4, 2013, a total of 133 

people were infected, including 43 cases ending in death [39]. The phylogenetic analysis 

revealed that the genome of the novel H7N9 resulted from reassortment: the H7 gene 

most likely originated from the HA of the H7N3 virus isolated from Zhejiang Province of 

China; the N9 gene may come from the NA of the H7N9 virus of wild birds or ducks 

from Korea; and all six internal genes most likely originated from the avian influenza 

virus H9N2 circulating in chickens [40,41]. The virus strains isolated from human cases 

displayed several molecular virulence makers and pathogenic determinants related to 

human adaptation [38,42,43,44]. Although a recent epidemiological investigation report 

showed that the novel H7N9 may be capable of limited human to human transmission 

[45], no evidence has shown that this novel H7N9 virus sustained the transmission 

between humans by respiratory droplets. 

Low pathogenic avian influenza (LPAI) H9N2 virus has adapted to land-based 

poultry since the middle of 1990s, and mainly infected chickens. From then on, this virus 

has overcome the barrier of the host range and caused infections in different hosts, such 

as quail, turkeys, pheasants, ostriches, mallards and pigs, in many countries across Asia, 

the Middle East, Europe and Africa [46,47,48]. LPAI H9N2 was also reported to be 
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sporadically isolated from humans with mild symptoms [49]. Despite the efforts to 

control the disease, the virus continued to cause the economic loss and public health 

concern in some of those countries. 

Viral proteins 

HA 

The influenza HA protein is the most important protein in influenza viruses, as it 

is a critical determinant of host range and virulence [50,51], and the main antigenic 

determinant of the virus [52]. Based on the sequences and antigenic properties, 17 HA 

subtypes can be classified into two groups: group 1(H1, H2, H5, H6, H8, H9, H11, H12, 

H13, H16 and H17) and group 2 (H3, H4, H7, H10, H14 and H15) [53,54]. 

HA is a homotrimer of three identical subunits [17]. The two main functions of 

HA during viral entry are receptor binding and viral-host membrane fusion. The 

precursor HA0 must be post-translationally cleaved into HA1 and HA2 by host 

extracellular proteases, and thus, the potential of the membrane fusion function of HA2 is 

activated [55]. HA1 (328 amino acids) and HA2 (221 amino acids) are connected by a 

disulfide bond linker [56]. The extracellular trypsin-like proteases are responsible for the 

cleavage of the HAs in LPAI viruses and mammalian influenza viruses [57]. These 

proteases recognize the HA cleavage sites with a single arginine, such as Q/E-X-R in the 

amino acid sequence [58]. Whereas, the HA of HPAI viruses (H5 and H7 subtypes) 

contain the polybasic amino acid cleavage sites, such as R-X-R/K-R, can be recognized 

by the intracellular ubiquitous proteases, such as furin-like protease [22,57]. The spread 

of LPAI viruses and mammalian influenza viruses are limited as their HAs are cleaved 
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extracellularly on the host intestinal and respiratory mucus surfaces where the trypsin-

like proteases are found. Whereas the HPAI viruses cause systemic and virulent 

infections, because their HAs are cleaved intracellularly by the furin-like proteases which 

are distributed in multiple organs of the host [22].  

The terminal sialic acids (SA) of the glycoproteins and glycolipids on the cell 

surface are the receptors of influenza A viruses [52]. The receptor-binding site (RBS) of 

HA1 is located on the global head region, including four conserved secondary structures: 

the 130-, 150- and 220-loops, and the 190-helix [17,59,60,61], which contain several 

residues highly conserved in most subtypes of influenza [17,62].  Ser-136 and Tyr-98 

form hydrogen bonds with the carboxylate and the 8-hydroxyl group of the sialic acid, 

respectively. His-183 and Glu-190 form a hydrogen bond with the 9-hydroxyl group, and 

Trp-153 contacts with the methyl group of sialic acid through van der Waals force. Leu-

194 and Tyr-195 are also important residues for receptor binding [62,63,64].  

Avian-like influenza viruses preferentially bind to !-2,3-linked sialic acid (!-2,3-

SA), which are distributed on the epithelial cells of the intestine of birds and lower 

respiratory tract (LRT) of humans [65]. Human-like viruses preferentially bind to !-2,6-

linked sialic acids (!-2,6-SA), which are distributed on the bronchial epithelial cells of 

the human upper respiratory tract (URT) [65,66]. Interestingly, swine viruses may bind to 

both !-2,3-SA and !-2,6-SA receptors [67,68,69]; however, the 2009 H1N1 swine-origin 

pandemic influenza virus is reported to bind to !-2,6-SA, as well as limited !-2,3-SA 

[70,71]. Six residues in HA RBS, Ala-138, Glu-190, Leu-194, Gly-225, Gln-226 and 

Gly-228, are important determinants for the host range. They are highly conserved among 

avian-like influenza viruses, and generally require the mutations in HA RBS to increase 
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the binding affinity to !-2,6-SA when adapted to humans [72]. The newly identified 

influenza A virus H17N10 has only been found in bats. The crystal structure and glycan 

microarray studies of H17 HA revealed that although the H17 has a protein folding 

similar to other HA subtypes, it does not bind to either human !-2,6-SA or avian !-2,3-

SA receptors; and no H17 binding was detected either using a glycan microarray with 

more than 600 known glycans [73,74]. The analysis of the H17 putative RBS showed that 

some key residues, such as Trp-153, His-183, Leu-194 and Tyr-195 are conserved as the 

typical influenza A HA, but substitutions Y98F, T136D, and G228D and the truncated 

150-loop due to a 157 and 158 aa deletion may account for the failure of H17 binding to 

canonical human or avian receptors [73]. The results suggested that H17N10 may utilize 

different receptor-binding and cell-entry mechanisms from other subtypes of the 

influenza A virus. 

Asp-190 and Asp-225 in the HA of 1918 pandemic and 2009 pandemic H1N1 are 

critical for the !-2,6-SA affinity in humans [66,75]. The studies have shown that HPAIV 

H5N1 HA preferentially binds to terminal !-2,3-SA moieties, but the H5N1 mutants 

discovered in recent years contained the substitutions G143R and N186K, or Q226Land 

G228S, or T160A, or Q196R in HA, which changed the receptor-binding specificity of 

the virus from !-2,3-SA to !-2,6-SA [76]. The amino acid substitution Q226L on the HA 

RBS of avian H9N2 viruses has been showed to increase !-2,6-SA binding affinity and 

enhance virus replication in human respiratory epithelial cells and in ferrets [77,78]. 

Q226L has also been found in the HA of two strains (A/Anhui/1/2013/and 

A/Shanghai/2/2013) from the novel avian-origin H7N9 virus, which indicate that the 

virus acquired the increased affinity for the !-2,6-SA receptor of UTR in humans 



 

 10 
 

[38,42]. However, one of the latest structural analysis and glycan studies has shown that 

the binding of H7N9 HA to human receptors was limited; and further introduction of a 

single substitution G228S in HA would greatly increase the receptor binding affinity of 

H7N9, and result in a better fitness of the virus in humans [79]. 

HA is the main antigenic determinant of the influenza A virus. The antibodies 

against HA can be classified into two groups: the first group recognizes and binds the 

epitopes on HA1, blocking the attachment of HA on the receptors; whereas the second 

group prevents membrane fusion by binding to the stalk region of HA [80,81]. The 

antigenic sites of the first group, termed Sa, Sb, Ca, and Cb, are located on the globular 

head of HA surrounding the RBS [17].  In contrast, the antigenic binding sites of stalk 

antibodies are generally distant from the RBS [80]. Influenza viruses overcome the host 

antibodies through antigenic drift and antigenic shift. 

NA 

The influenza NA protein, an exosialidase (EC 3.2.1.18), catalyzes the cleavage 

between the terminal sialic acid and the adjacent sugar of the viral receptor. This 

receptor-destroying activity facilitates the release of the progeny virions from the surface 

of the infected cells [82], and it can be directly inhibited by the NA antibodies [83]. NA 

also plays important role in the early stages of viral infection by the removal of the 

glycan structure of mucus and promoting the binding of HA to the receptors in the 

respiratory tract [84]. The functional balance between HA receptor-binding and the 

receptor-destroying activity of NA is important for the efficient replication of the 

influenza virus. For example, the 1957 pandemic H2N2 virus strain possessed an HA 

preferentially binding to !-2,6-SA and an NA preferentially binding to !-2,3-SA. Since 
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1957, N2 gradually adapted with the HA sialic acid binding affinity and evolved to 

cleave both !-2,3 and !-2,6-SA receptors [85]. By now, ten subtypes of NAs have been 

identified in influenza A viruses. Influenza A NA can be phylogenetically classified into 

2 groups: the N1, N4, N5 and N8 subtypes belong to group 1, and the second group is 

composed of the N2, N3, N6 N7 and N9 subtypes [86]. Recent studies have demonstrated 

that the crystal structure of newly identified N10 (from influenza A virus H17N10, 

discovered in little yellow-shouldered bats) is similar to that of the other NA subtypes, 

but N10 exhibits extremely low NA activity [87,88]. 

NA forms a tetramer on the surface of influenza virus, and is also a glycoprotein 

(with a 60 kDa molecular mass for the monomer, and 240 kDa for the tetramer) [82]. The 

3D structures of N1, N2, N4, N8 and N9 have been resolved, showing that the protein 

contains cytoplasmic, transmembrane, “head” and “stem” domains [89].  The catalytic 

site and metal-ion binding domain are located in the head of the NA [90], and the amino 

acid residues 74-390 (N2 numbering) are highly conserved in this region in all subtypes 

of NA. The residues Arg-118, Asp-151, Arg-152, Arg-224, Glu-276, Arg-292, Arg-371, 

and Tyr-406 are critical to the function of the active site; and the residues Glu-119, Arg-

156, Trp-178, Ser-179, Asp (or Asn in N7 and N9) -198, Ile-222, Glu-227, Glu-277, Asp-

293 and Glu-425 stabilize the structure of the domain [89].  

N-Acetylneuraminic acid (Neu5Ac) is the predominant sialic acid existing on the 

surface of mammalian cells, and the binding of Neu5Ac to the active site of NA triggers a 

conformational change. Neu5Ac interacts with the residues Arg-118, Arg- 292 and Arg- 

371 of NA, and subsequently drives the cleavage of the sialic acid [91]. The NA 

inhibitors oseltamivir (Tamiflu®) (containing the Neu5Ac group) and zanamivir 
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(Relenza®) (containing the Neu5Ac2en group) are both sialic acid-mimicking drugs, 

which block the sialidase activity of NA by binding to the active sites [92,93].  

In the recent years, H274Y in group 1 NAs and R292K in group 2 NAs have been 

identified as the oseltamivir-resistant mutations [94]. The NA R292K mutation has also 

been found in two patients with novel H7N9 in China who received corticosteroid 

treatments [95]. Both the H274Y and R292K mutations in NA reposition the side chain 

of Glu-276, which developed oseltamivir resistance by distinguishing the L-ethylpropoxy 

group from the glycerol part of the sialic acid. Therefore, the mutant NA with H274Y or 

R292K lost the function of binding to the L-ethylpropoxy group of oseltamivir, but still 

retained the interactions with the glycerol part of the sialic acid receptors [93]. 

Deletions on the NA stalk region occur in the interspecies transmission of 

influenza viruses from aquatic birds to gallinaceous poultry (chickens or turkeys) 

[96,97,98,99], and during the transmission of influenza viruses in poultry [100,101]. In 

2000, the HPAI H5N1 strain with a 20-amino acid deletion (49-68 aa) in the NA stalk has 

been first discovered from human isolates. From 2000 to 2007, the percentage of human 

H5N1 isolates possessing this deletion dramatically increased from 15.8% to 100%. The 

NA with different stalk deletions has been demonstrated to be associated with the high 

virulence of HPAI H5N1 in chickens and mice [99]. The interspecies transmission 

studies of H2N2 and H9N2 avian influenza viruses from wild aquatic birds to quail and 

chickens led to a 27- and 21- amino acid deletions in the NA stalk, respectively, and 

enhanced virus replication in chickens and mice [96,98]. A 5-amino acid deletion (69-73 

aa) has also been detected from the NA stalk region of the 2013 novel avian-origin H7N9 

virus insolates, which may be associated with the adaptation in poultry and increased 
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virulence in humans [102]. The mechanism of the deletion in the NA stalk region is still 

unclear, but the deletion generally appears following the increased glycosylation sites in 

HA, which may result in the immune escape from the neutralizing antibody recognition 

[103,104]. 

M1 

M1, the most abundant protein in the virion, is under the lipid bilayer membrane, 

and binds to the viral RNPs. M1 plays important roles in the life cycle of influenza virus, 

including uncoating, viral mRNA transcription, vRNA export, assembly and budding. 

The interactions among M1, vRNP and NEP trigger the export of vRNPs from the 

nucleus and the budding of the progeny virions from the cell surface [105,106]. 

The crystal structural study revealed that M1 is composed of an N-terminal 

domain and a C-terminal domain, which are connected by a linker. Both domains have a 

!-helical structure, and the N-terminal domain contains two subdomains. A binding 

domain is located on residues 89–164, which are responsible for the NEP binding [107]. 

This domain also consists of a well-characterized basic amino acid-rich nuclear 

localization signal (NLS) (101-RKLKR-105), which is critical for the transport of M1 

into the nucleus [108,109]. The newly synthesized M1 protein is imported into the 

nucleus by importin-!1 via the NLS [110]. In the nucleus, M1 interacts with the histones 

and involves in the release of vRNPs from the nuclear matrix [111]. The binding of M1 

to vRNP subsequently inhibits the viral mRNA transcription. M1 also binds to NEP to 

form the NEP–M1–vRNP complex, which is exported from the nucleus by a nuclear 

export signal (NES) on the NEP (amino acid residues 12 to 21) [112]. Recently a leucine-
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rich NES was also identified in the M1, and Leu-66 and Val-68 are critical residues for 

the export of the M1 into the cytoplasm [113]. In the cytoplasm, the binding of M1 to 

vRNP prevents the reentry of vRNP into the nucleus [114]. 

Three consecutive arginine residues 76 to 78 (76-RRR-78) in the M1 gene are 

highly conserved among the influenza A viruses. This basic amino acid stretch affects the 

M1 transportation, virus assembly and budding, and plays a critical role in the viral 

replication [115].  

Phosphorylated tyrosine is important to the nuclear import of M1 by binding the 

protein to the nuclear import factor importin-!1. The amino acid residue Tyrosine 132 in 

the M1 of the influenza virus A/WSN/1933(H1N1) has been identified as a 

phosphorylation site which is crucial to the nuclear import of M1 and virus replication 

[110]. 

M2 

M2 monomer is a polypeptide with 97 amino acids. The homotetramer of the M2 

protein forms a proton ion channel, which is regulated by pH. The N-terminal 

transmembrane (TM) domain of M2 extends outside the viral membrane, and the C-

terminal connects the viral interior [116]. The highly conserved residue His-37 is a “pH 

sensor” of the channel to enhance the H+ flow at low pH; and Trp-41 forms a “gate” to 

block the ion channel at high pH [117,118]. During viral entry, M2 pumps protons from 

the endosome and reduces the pH of the viral interior, subsequently dissociating M1 

protein from vRNP, and initiating the uncoating process [56]. In the trans-Golgi network 
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(TGN), M2 prevent HA from premature conformational rearrangement by connecting the 

TGN with the cytoplasm and equilibrating the pH [119]. 

The anti-influenza drugs amantadine and rimantadine bind to the channel pore of 

the M2 as targets, and block the ion channel, so that they stop the acidification of the 

viral interior [120,121,122,123]. The X-ray and NMR structural studies of the M2 TM 

domain revealed that amantadine has two different binding sites on M2: at pH 5.3, it 

binds to M2 near Ser-31 and directly stops the proton flow [124]; and at pH 7.5, it binds 

to the TM helix near Trp-41 and allosterically blocks proton conductance [119].  

However, the use of M2 inhibitor drugs amantadine and rimantadine has caused 

the occurrence of resistant mutation strains in nature under selection stress [125,126]. In 

recent years, a typically resistant mutation N31S has also been discovered in numerous of 

virus strains from the M2 of different subtypes, such as the seasonal H3N2, 2009 swine-

origin pandemic H1N1, HPAI H5N1 infecting humans as well as the novel avian-origin 

reassortant H7N9 viruses [22,44,127]. The structural study demonstrated that the 

substitution N31S does not change the ion channel pore structure, but greatly reduces the 

affinity of anti-influenza drug binding to the allosteric site [128]. Therefore, N31S does 

not impair the M2 function on protons pumping, but blocks the binding of the M2 

inhibitors to the ion channel.  

NP 

NP encapsidates the segmented RNA and binds to the RdRP to form 

ribonucleoprotein particles (RNPs) [112]. The NP protein monomer contains a head and a 
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body domain, and folds into a crescent-shape. The exterior surface of the head and body 

domain has a single strand RNA binding groove. The tail loop (residue 408-419) of the 

NP protein inserts into the loop-binding cavity of a neighboring NP monomer, and self-

associates into the oligomeric structure. The loop-binding cavity is considered to be a 

potential target for anti-influenza drugs [93,129]. A salt bridge between Arg-416 in the 

tail loop and Glu-339 in the neighboring NP monomer plays an important role in the NP-

NP interaction and viral replication [130].  

The nuclear localization sequence (NLS) on the NP mediates the import of the 

vRNP complex into the nucleus in the influenza life cycle. The NP monomer contains 

three NLS: NLS1 is located at residues 3-13 at the N-terminus, NLS2 is located at 

residues 90-121, and NLS3 is located at residues 198-216 [131,132,133].  

NP is a major component of the influenza vRNP, which is responsible for the 

transcription and replication of viral RNA. A recent report revealed that NP is not 

necessary for the initiation or termination of viral transcription and replication, but a 

cofactor of RdRP for elongation during the replication of the full-length viral genome. 

The recruitment of NP to newly produced vRNA is mediated unidirectionally through NP 

oligomerization, and this processing is independent of RNA binding [129]. 

RNA-dependent RNA polymerase 

The influenza virus RNA-depedent RNA polymerase (RdRP), a heterotrimer of 

three subunits (PB1, PB2 and PA), with a combined mass of around 250 kDa, is 

resposible for viral RNA transcription and replication. The PA subunit, a 80 kDa subunit,  

contains an N-terminal endonuclease  and protease activities domain and a C-terminal 
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domain interacts with the PB1 subunit. The crystal structure of both the N-terminal 

endonuclease activity domain (PAN: residual 1-197 aa) and C-terminal PB1 binding 

domain (PAC residual 237-716 aa) have been solved [134,135,136,137]. Recent strucural 

studies of PA have indicated that the N-terminal 209 amino acids are resposible for an 

endonuclease activity of the virus polymerase [134]. Manganese (Mn) ions play 

important roles in stabilizing the active site [134].  The crystal structure study 

demonstrated PA is a type II restriction endonuclease [134]. The active sites of PA bind 

to two manganese ions, following two-metal-dependent endonulease pattern. Two active 

sites involved in Mn++ binding were identified: Glu-80 and Asp-108 are critical for Mn1 

binding and His 40, Asp 108 and Glu 109 important for Mn2 binding [134,136] (Figure 

1.2). 

The synthesis of viral mRNA utilizes the short capped primers derived from the 

host cells using a ‘cap-snatching’ mechanism: PB2 binds to the cap of the cellular pre-

mRNA, the endonuclease activity of PA cleaves onto the 10-13 nt downstream the cap 

and then PB1 takes the short capped mRNA as the primer to synthesize the viral mRNA. 

The “cap” prevents the viral mRNA from degradation by exonuclease and promotes the 

viral mRNA translation [134,138,139,140]. The negative-sense vRNA is the template for 

both mRNA and cRNA, but cRNA does not consist of 5’-cap or 3’- poly(A) tail. 

Meanwhile, unlike mRNA transcription,  the replications of cRNA and vRNA are primer-

independent [141].  

C-terminal PA binds to the N-termial PB1 (PB1N) in the RdRP complex. The 

structure of PAC-PB1N demonstrated that the PA residues 257-716 contain a motif to 

interact with the first 14 amino acid residues of PB1 [135,137]. An earlier report even 
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showed that the first 12 amino acids of the N-terminal PB1 form the interaction interface, 

and could be enough for PA binding [142]. 

Some important residues on the PA have been identified for their biological 

functions. The mutation T157E dramatically decreases the RNP replication activity [143]. 

Ser-186 of the N-terminal PA plays an important role in the polymerase activity of the 

2009 swine-origin pandemic H1N1. While residual G186 is more common for most of 

the influenza virus PAs, PAs possessing S186 is more fit for PB1 and PB2 in the 2009 

swine-origin pandemic H1N1 strain, resulting in a high RdRP activity [144]. The PA 

subunit is also involved in the regulation of the RdRP activity in some temperature 

sensitive strains, and residue 114 is critical for stability under the thermal stress [145]. 

PB1 is another subunit of RdRP, which is responsible for the polymerase 

activities of viral mRNA transcription and cRNA and vRNA replication. Four conserved 

motifs have been identified in PB1, which are responsible for the RNA-dependent RNA 

polymerase activity and RNA-dependent DNA polymerase activity: A (residues 298-

311), B (residues 399-412), C (residues 438-453) and D (residues 474-484) [146,147]. In 

addition, motifs pre-A and E are also responsible for the RNA-dependent RNA 

polymerase activity [148]. However, the structure of the catalytic sites have not yet been 

resolved yet, and detailed information about the motifs is unclear [56]. The C-terminal 

region (residues 678-757) of PB1 binds to the N-terminal region (residue 1-37) of PB2 

(Figure 1.2).  

A small helix containing the residues PTLLFLK of PB1 N interacts with a cleft 

flanked by four !-helices and a "-hairpin of the PAC. This interaction stabilizes the 
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complex between the domains of PB1 and PA. The amino acid residues on the PAC and 

PB1N interface are highly conserved among all subtypes of influenza A viruses [135,137]. 

PB2 has been featured in binding the “cap” of host pre-mature mRNA to its 

binding domain (residue 318-483), and facilitating the cleavage of the downstream 

mRNA by PA following the “cap-snatching” mechanism [134,138,139,140]. A RNA-

binding domain is located at residues 535-684. The PB2 contains at least one NLS at C-

terminus, which binds to the cargo adaptor importin-! and mediates the import of the 

vRNP into the nucleus [149]. The crystal structure of the PB2-human importin-!5 

complex displayed the presence of NSL: 736-KRKR (X)12K-752 [150,151]. Another 

putative binding domain of PB2 is located on residues 535-684, which is next to the 

NLS-containing domain, and has been identified as an RNA binding domain [152,153] 

(Figure 1.2).  

Position 627 in PB2 has been recognized as a key host range determinant: 

glutamic acid is generally found at residue 627 in the avian virus isolates, whereas almost 

all human isolates present a lysine at this position. The PB2 627K has been identified 

from most human H1N1 and H3N2 virus strains. HPAI H5N1 carrying 627K showed 

enhanced virulence in humans, and caused a systemic and lethal infection in mice 

[154,155].  The virus bearing the PB2 K627 residue can replicate efficiently in the URT 

of humans at 33°C. In contrast, the avian-like viruses containing E627 in the PB2 

preferentially replicate in the intestinal tract at the temperature of 41°C [155]. Therefore, 

position 627 in the PB2 is a temperature sensitive determinant for viral replication in 

avian and mammal hosts [21]. 
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Another important mutation D701N in the PB2, has been identified from HPAI 

H5N1 isolates from infected humans, and is believed to be associated with the enhanced 

virulence when the avian viruses adapted in mammal hosts [156]. D701N modulates the 

transmissibility of the influenza virus in mammal hosts for the lack of E627K. D701N 

may enhance the viral replication by facilitating the import of PB2 into the nucleus of 

human cells, but not avian cells [157]. Interestingly, both E627K and D701D mutations 

have been discovered from the PB2 protein of the novel avian-origin H7N9 isolates, 

which suggest that these two mutations are critical for the adaptation of the avian virus to 

replicate in human cells [38]. The 2009 pandemic H1N1 strain does not contain K627 or 

N701 in the PB2 gene, but is replicated and transmitted efficiently in humans. It has 

recently been reported that the residue R591 in the PB2 protein is responsible for the 

enhanced replication of pandemic 2009 H1N1 in mammals in the absence of K627 and 

N701 [158]. 

NS1 

The non-structural protein 1 (NS1) of the influenza A virus has been identified to 

be the protein with multiple accessory functions during viral infection, and virulence 

determinant. Phylogenetic analysis of the influenza A virus NS1 amino acid sequences 

showed that they can be divided into two groups: allele A and allele B [97,159]. The NS1 

in all human, swine, equine, and most of the avian influenza viruses are allele A, while 

the NS1 in other avian influenza virus belongs to allele B [159].  

NS1 protein contains 230-237 amino acids, depending on the strains, and has a 

molecular weight around 26 kDa. According to the biological function, NS1 can be 

divided into the N-terminal (residues 1-73) RNA-binding domain (RBD) and C-terminal 
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(residues 84-207) effector domain (ED), which are connected by a linker. The structure 

of the 20 amino acids on the C-terminal domain may be naturally disordered [160]. The 

RBD domain is reported to be a homo-dimer made up of two monomers with three !-

helices [161]. Dimerization is critical for dsRNA binding, and several residuals 

contribute to this RNA-protein interaction [162], amongst them, two basic residues Arg-

38 and Lys-41 are critical to the RNA-binding activity [160]. Structural studies indicated 

that the ED domain may homodimerize independently, and that the monomer contains 

three !-helices and seven "-stands [163]. However, the latest NS1 protein x-ray 

structural study of HPAI H5N1 virus suggested that the NS1 formed multimers instead of 

separated homodimers, and that three NS1 chains can interact together to form a “tubular 

organization” [164]. It seems that this model may explain why NS1 can interact with 

dsRNA and imprtin-! by its RNA-binding domain, simultaneously [164]. 

There are generally two nuclear localization sequences (NLS1 and NLS2) and one 

nuclear export sequence (NES) on NS1: 35-41 are highly conserved amino acids for 

NLS1 (R38 and K41 are critical amino acids for importin-# binding and translocation), 

and NLS2 (with basic amino acids at position 219, 220, 224, 229, 231 and 232) is 

deficient in some of the strains [165]. A newly identified nucleolar localization signal 

(NoLS) overlaps with NLS2, and residue Lys-221 was identified as the critical residue 

for NoLS [166]. Newly synthesized NS1 is imported into the nucleus by binding to 

cellular importin-! [165], while it has been reported that NS1 also has a potential nuclear 

export signal (NES) responsible for the nucleo-cytoplasmic transportation. Leu-144 and 

Leu-146 are critical for the function of NES [167]. 
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 NS1 interacts with multiple host factors through its binding sites on the protein 

during viral infection [160] (Figure 1.3). One of the major functions of NS1 is to 

antagonize the innate immune response of the host during influenza infection, especially 

to limit the production of interferon beta (IFN-") induction by both pre-transcription and 

post-transcription. In the pre-transcription process, NS1 can inhibit the activation of 

transcription factors on the IFN-" signaling pathway, such as IRF-3, c-Jun/ATF-2 and 

NF-#B, by binding to dsRNA [168,169]. In the post-transcription process, NS1 can block 

cellular mRNA maturation by binding to the 30 KD cleavage and polyadenylation 

specific factor (CPSF30) and poly(A)-binding protein II (PABPII) [170,171].  

The study of the mechanism found that NS1 also directly binds to the cytosolic 

sensor RIG-I, forming a complex, and inhibiting its functions of inducing the expression 

of IFN-" [172,173,174]. The mechanism revealed that TRIM25 activates RIG-I by 

ubiquitinating RIG-I N-terminal CARD domain; while NS1 inhibits the ubiquitination of 

the CARD domain and blocks type I IFN production [175]. Residues 200 and 205 of the 

NS1 have been identified as being critical for the antagonistic activity of type I IFN in the 

ferret model [176]. 

A recent study has shown that avian H5N1 NS1 disrupts the IFN-" signaling by 

decreasing STAT1, STAT2 and STAT3 and limiting the phospho-STAT2 nuclear 

translocation [177]. Additionally, ISG15, a type I IFN induced, ubiquitin-like molecule, 

has been demonstrated to target influenza NS1 and protect the cells from viral infection; 

and the ISGylation of NS1 can prevent the nuclear import of the NS1 protein. Lys-41 has 

been identified to be an important residue on NS1, responsible for the acceptor site of 
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ISG15 [178]. Herc5, an ISG15 E3 ligase, could catalyze the conjugation of ISG15 onto 

the NS1 protein [179].     

NS1 can also regulate some other important host cell signaling pathways during 

influenza virus infection, such as the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, 

which plays the central role in a number of functions in the host cells, such as anti-

apoptosis, cell proliferation and cytokine production [180,181,182,183]. PI3K is a 

dimeric lipid kinase consisting of a regulatory subunit p85" and a catalytic subunit p110 

[184]. Akt, a serine/threonine protein kinase, is a downstream PIP3-binding effector of 

PI3K. In the early phase, the attachment of the virus to the cell surface transiently induces 

PI3K signaling [185]. In the later phase, PI3K is activated by NS1 and the influenza viral 

RNA through the stimulation of the cytosolic receptor, RIG-I, promoting the production 

of type I IFN [186,187]. NS1 activates PI3K signaling by directly binding to inter-HS2 

(iSH2) domain of the regulatory subunit p85 of PI3K, and prevents the premature 

apoptosis of the infected cells, facilitating the viral replication [188,189]. It has been 

reported that NS1 can preferentially interact with phosphorylated Akt in the nucleus, 

altercating Akt anti-apoptotic activity [190].  

 NS1 can also interact with a number of host proteins to overcome the innate 

protection of the host, and facilitates viral replication during infection. NS1 enhances the 

viral protein synthesis by binding the eukaryotic translation initiation factor eIF4GI to the 

viral mRNA 5’ untranslated region [191]; meanwhile, it limits the expression of the host 

antiviral gene [137]. It has been also reported that NS1 can suppress the host antiviral 

function by blocking 2’-5’-oligoadenylate synthetase (OAS) [192] and serine/ threonine 

protein kinase R (PKR) [193]. 
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Some species-specific and strain-specific studies were carried out to understand 

the different effects of NS1 on multiple viral and host functions. NS1 from the human 

influenza virus has the typical C-terminal RSKV motif, while the motif of avian influenza 

virus is ESEV at the C-terminus. This four-amino acid domain is a species-specific 

virulence domain [194]. The typical avian influenza NS1 ESEV is also a PDZ-binding 

motif (PBM), which has an anti-apoptosis function during viral infection through NS1-

PDZ interaction to inhibit the proapoptotic function of Scribble [195]. However, the NS1 

ESEV motif doesn’t have a significant effect on the virulence of the highly pathogenic 

avian influenza virus A/Vietnam/1203/04 (H5N1) in the host [196]. Glycine 184 in the 

NS1 of A/PR/8/34 is reported to dramatically affect the virulence through an unclear 

mechanism other than through IFN signaling [197]. Different HP H5 and H7 NS 

segments were placed into the background of HP H7N1 (A/FPV/Rostock/34) to generate 

reassortant influenza viruses, which showed that the host range, viral replication, host 

type I IFN response and apoptosis were affected by the origin of the NS segment [198]. 

Comparing NS1 of the highly pathogenic H7N1 (A/ostrich/Italy/984/00) to its low 

pathogenic precursor H7N1 (A/chicken/Italy/1082/99) showed that the difference is only 

two mutations in NES, and a 6-amino acid truncation at the C-terminus resulted from the 

third mutation by introducing a new stop codon. The cytoplasmic accumulation of NS1 is 

responsible for the enhanced pathogenicity of HP H7N1 [199]. The 2009 pandemic 

H1N1 NS1 encodes only 219 amino acids with 11 amino acids truncation at the C-

terminal domain, resulting in the loss of the NoLS and PABP II binding domain. The 

restoration of those 11-amino acid did not enhance the viral replication, but did increase 

the virulence in mice [200]. Those strain-specific functions of NS1 are listed in Table 1.2. 
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NEP 

NEP, a 121 amino acid polypeptide, is produced from a spliced form of segment 8 

mRNA [201]. NEP was considered to be non-structural protein, and named as NS2. 

However, NEP was later found to interact with the M1 protein and exists in the viral 

particles, and thus, NS2 was renamed nuclear export protein (NEP) [202,203]. NEP 

consists of an N-terminal domain (residues 1-53) that is sensitive to protease, and a C-

terminal domain (residues 54-121) that is resistant to protease [204]. The C-terminal 

domain contains two !-helices, C1 (residues 64-85) and C2 (residues 94-115) [205]. 

The functional study of NEP revealed that it is an adaptor protein, binding to both 

RNPs and the cellular protein Crm1, and mediates the nuclear export of newly produced 

RNP. NEP interacts with Crm1 via the nuclear export signal (NES), which is located at 

the N-terminal domain at residues 12-21 [204,205]. W78 was demonstrated to be critical 

for the binding of the M1 protein [206]. The recent studies demonstrated that NEP is 

important in modulating the accumulation of viral vRNA, cRNA and mRNA during 

infection. The function of NEP on the regulation of viral RNA transcription and 

replication plays an important role in the adaptation of the HPAI H5N1 influenza virus to 

mammals [207]. In addition, NEP contains the motifs for phosphorylation and 

SUMOylation, but the functional importance is still unclear [202,208,209]. 

Influenza A life cycle  



 

 26 
 

Entry into the host cell and uncoating 

In the first stage of viral entry, influenza A virus surface glycoprotein HA 

recognizes and binds to the sialic acid (SA) receptors on the cell surface with its receptor-

binding sites (RBS). Another surface glycoprotein NA facilitates HA in accessing the 

receptors in the respiratory tract, by cleavage of the glycans of the mucus [84]. The HA-

receptor binding, in turn, initiates receptor-mediated endocytosis, and the virus enters the 

endosome of the host. Influenza viruses utilize clathrin-mediated endocytosis and other 

mechanisms, such as caveolae,  nonclatherin/noncaveolae pathway and 

macropinocytosis, in this step [210]. The low pH of the endosome triggers a 

conformational change in the HA, and the HA2 fusion peptide is exposed. This fusion 

peptide inserts itself into the endosomal membrane, bringing the viral lipid-bilayer 

membrane and endosomal membrane close to each other, and fusing the membranes 

[141]. However, the details about this membrane fusion process are unclear.  

In the endosome, the protons flow into the interior of the virions through the M2 

ion channel, creating a low pH environment, and dissociating the vRNPs from the M1 

protein [141]. This process is called uncoating [211]. In the cytoplasm, the vRNPs are 

imported into the nucleus through the host importins, which recognize and bind the NLS 

of the NP protein. A recent study revealed that the interactions between the 

unconventional NLS1 (residues 3-13) in the NP, and the cellular import cofactors 

importin-!1, !3 and !5, are critical to the nuclear localization of vRNP. NLS1 may 

further regulate viral RNA transcription and replication through the interaction with 

importin-!3 [212]. 
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mRNA transcription and genome RNA replication 

Host RNA polymerase II activity is important to viral mRNA synthesis. The 

cellular mRNAs acquire the 3’ end poly(A) tails by cleavage at the polyadenylation 

signal (AAUAAA). However, influenza viral genomic RNA does not have this sequence, 

but viral mRNA generates a poly(A) tail following a “stuttering” mechanism: RdRP 

polyadenylates the viral mRNAs by moving back and forth at a stretch of five to seven 

uridine residues on the 5' ends of the viral RNA templates [213]. The viral mRNAs are 

exported into the cytoplasm and translated into viral proteins by ribosomes.  

The polymerase activity of PB1 is responsible for both transcription and 

replication. vRNA replicates with steps of (-)vRNA!(+)cRNA!(-)vRNA in a primer-

independent manner [141]. However, the mechanism of vRNA replication is still unclear. 

A internal initiation model has been proposed for vRNA repliaction recently [214]. In the 

(-)vRNA!(+)cRNA step, the host RNA-specific rinonucleotidyltransferases add one 

nucleotide to the 3’-end of cRNA and initates the full-length copy of (-)vRNA. In the 

(+)cRNA!(-)vRNA step, the nucleotides AG were synthsized using the nucleotides UC 

on the 3’-end of cRNA by RdRP, and AG is taken as the primer for the full-length copy 

of (+)cRNA. The RdRP cannot form the stable intiation complex until it reads through 

the UUU of cRNA and UUUU of vRNA at their 3’-ends [214]. 

In the vRNP complex, NP directly binds to the PB1 and PB2 subunits; NP also 

binds to the RNA in a sequence-independent manner; and NP is essential for the full-

length genome replication of the influenza A virus. However, the role of NP in 

transcription and replication has long remained unclear. One latest study has revealed that 

NP is a cofactor of RdRP for the elongation during the replication of the full-length viral 
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genome, but has no effect on the initiation or termination of transcription and replication. 

The recruitment of NP to newly produced vRNA is mediated through NP oligomerization 

in a “tail loop first” direction in an RNA binding independent manner [129]. 

The recent study demonstrated that the differences in the importin-! isoform 

specificity affect the efficiency of viral RNA transcription and replication in different 

hosts: PB2 and NP of the human-like viruses prefer importin-!7, whereas PB2 and NP of 

the avian-like viruses perfer importin-!3. Interstingly, the 2009 pandmic H1N1 showed 

both importin-!7 and importin-!3 specificities [215]. Another study showed that the 

substitutions D701N in PB2 and N319K in NP increased the binding affinity of these two 

proteins to importin-!1 in the mammalian cells, but had no effect in avian cells [157]. 

The negative-sense small viral RNAs (svRNAs) have been identified as an 

important regulatory enhancer of viral polymerase activity. svRNAs are produced from 

the viral positive-sense genomic RNA, and bind to the PA subunit. In the nucleus, 

svRNAs promote the viral genome replication and maintain the RNA segment balance 

[216]. 

The M2 and NEP proteins are produced from the spliced forms of segment 7 and 

8 mRNA, respectively; and utilize the host splicing machinery in the nucleus. NS1 is 

translated and transported into the nucleus, and facilitates the splicing of viral mRNA by 

binding to and re-localizing the splicing components [217]. NS1 also blocks the export of 

cellular mRNAs by binding to CPSF 30 and PABPII, and preventing the maturation of 

cellular mRNAs [170]. 

Recent studies have shown that NEP plays a critical role in regulating the 

accumulation of the viral mRNA, cRNA and vRNA produced by RdRP [218]. 
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Furthermore, M16I and other mutations in the NEP of human H5N1 isolates can enhance 

the polymerase activity of the avian H5N1 virus carrying 627E in PB2. The result suggest 

that adaptive mutations on NEP can compensate for the lack of 627K in PB2, and 

increase the viral replication of avian viruses in human cells [219]. 

The export of vRNP 

Newly produced vRNP, M1 and NEP proteins are transported to the nucleus. The 

C-terminus of M1 binds to the vRNP through NP, and the N-terminus of M1 binds to the 

C-terminus of NEP with its NLS. The N-terminus of NEP binds to Crm1 through its 

NES, along with GTP-bound Ran (RanGTP), a cofactor of Crm1 [220]. (Crm1–

RanGTP)–NEP–M1–vRNP (also been called the “daisy-chain” complex) mediates the 

export of vRNP to the cytoplasm [204]. However, a study has shown that without M1 and 

NEP, NP can directly interact with Crm1 and mediate the export vRNP from the nucleus 

[221].  

The M1 protein plays important roles in the export of vRNP, in addition to 

forming the complex with vRNP and NEP. In the nucleus, the binding of M1 to the 

histones may be associated with releasing vRNP from the nuclear matrix [111]. After 

transportion into the cytoplasm, the binding of M1 to vRNP prevents the reentry of vRNP 

into the nucleus [114].   

Recent studies identified several other host factors that aid or inhibit the export of 

the vRNP complex from the nucleus. Serum- and glucocorticoid-regulated kinase 1 

(SGK1) has been identified as a host factor playing an important role on the nuclear 

export of vRNP. However, the mechanism of SGK1 interacting with vRNP remains to be 
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elucidated [222].The SUMOylation of M1 at K242 by the SUMO-conjugating enzyme 

Ubc9 is critical to the interaction between M1 and vRNP to form the M1-vRNA complex. 

Without SUMOylated M1, vRNP export is inhibited, and the viral protein and vRNP are 

accumulated in the cells [223]. The heat shock protein 70 (HSP70) has been identified as 

a host factor inhibiting the nuclear export of vRNP at both 37°C and 41°C. HSP70 

interacts with the vRNP complex, and disassociates M1, but not NEP from vRNP, so that 

it blocks the export of vRNP [224].  

Multiple approaches have been used to search for the host factors associated with 

influenza A virus life cycles. Several novel host factors that may be involved in the 

transport of vRNP from the nucleus to the cytoplasm, such as AKT1, mouse double 

minute 2 homolog (MDM2) and I-kappa- B kinase epsilon (IKBKE), have been 

identified by an RNAi-based genome-wide screen. However, the functions of those 

factors in the influenza life cycle need to be further elucidated [225].   

Assembly and budding 

The surface proteins HA, NA and M2 are translated by ribosomes associated with 

the rough endoplasmic reticulum (ER), and processed by post-translational modifications, 

such as glycosylation at the Golgi apparatus, and then transported to the plasma 

membrane via the cellular secretory pathway [141]. The study of mutated and truncated 

M2 suggests that the location of M2 in this process is crucial to the formation of viral 

particles in that M2 may control the budding process [226]. The NEP–M1–vRNP 

complex exports into the cytoplasm, mediated by host Crm1 [160]. The M1 protein alone 

may direct the complex to the plasma membrane [141]. A recent study demonstrated that 
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the HA and NA concentrate on the plasma membrane with higher cholesterol 

components, and form a lipid raft microdomain, or bud [226]. A bud neck emerges at the 

boundary of the lipid raft and the plasma membrane by a line tension. M1 recruits small 

quantities of the proton ion channel M2 molecule for “membrane scission”, where 

transmembrane M2 molecules accumulate at the bud neck, and cleave the viral particles 

from the cell membrane [226]. Therefore, unlike some other enveloped viruses, the 

influenza A virus evolved the strategy to utilize its own molecule M2 ion channel for 

budding, instead of the classic endosomal sorting complex required for the transport 

(ESCRT) pathway [226].  

Packing all 8 genomic segments with each into the virions is important for 

producing an infectious particle [226]. However, the packaging mechanism is still in 

being debate, though there are two main models: the incorporation of a full genomic 

complement; and a model which the segments are randomly selected but packaged in 

sufficient numbers to ensure the newly produced virions are properly formed [227]. In a 

recent study, the copy number of each RNA segment within a single virus particle was 

counted using the method based on multicolor single-molecule fluorescent in situ 

hybridization (FISH) [228]. The result demonstrated that, for the majority of these 

detected wild type viruses, one virus particle only possessed one copy of each RNA 

segment, which supports the first RNA packaging model [228]. The packaging signals of 

the influenza virus located in the coding and non-coding regions have been well mapped 

[229,230,231]. The sorting of the influenza virus RNA segment occurs, more likely, after 

the nuclear export of vRNP [228]. 
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After the NEP–M1–vRNP complex associates with the plasma membrane, the 

membrane fuse and release the progeny virions [227]. However, the mechanism of this 

step is not fully understood. In the budding process, the cleavage of the sialic acid and the 

adjacent sugar by NA is critical, as HA and NA are both glycoproteins binding to the 

sialic acid of the host surface membrane. The lipid bilayer envelope of the influenza virus 

is derived from the host plasma membrane in the budding process [141]. A recent study 

showed, after the vRNP export, that the binding of NEP to the cellular ATPase F1Fo 

localizes in the cytoplasm, and is crucial to the efficient budding of the influenza virus 

[232]. NEP recruits ATPase to the cell membrane and facilitates the release of the new 

virions [232]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 33 
 

 

Table 1.1. Influenza A virus genome segments and genes. 
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Table 1.2. The strain-specific functions of NS1. 

Host factors  

The motif  or 

critical residues 

on NS1 

The details  about the strain-specific 

PDZ domain 

PDZ domain-binding 

motif (residues 227-

230) 

PDZ domain-NS1 interaction is associated with the virulence. 

Human-like viruses generally carry a “RSKV/KSEV” motif, 

whereas avian-like viruses carry a “ESEV” motif, the 2009 

pandemic H1N1 virus has a truncation of the motif on NS1 

[22,195,233]. 

CPSF30 
Residues 103, 106, 

and 144-188 

NS1 blocks CPSF30-mediated cellular pre-mRNA processing. 

However, the 2009 pandemic H1N1 NS1 cannot bind to CPSF30 

[160,234]. An HPAI H5N1 and a LPAI H5N2 NS1 have different 

effect on pre-mRNA processing and mRNA translation [235].  

PABP II Residues 223-230 

NS1 blocks PABPII-mediated cellular pre-mRNA processing. 

The 2009 pandemic H1N1 NS1 is lack of this function as it has an 

11-amino acid truncation at the C-terminus [160,236].  

Host factors 

involved in IFN- 

! induction 

RNA-binding domain 

and other residues 

NS1 from different H1N1 and H3N2 strains inhibit IFN response 

with different efficiencies and mechanisms [237].  

PI3K (p85!) 
Residues 89,164 and 

167 

The NS1 of a mouse-adapted rPR8 strain stimulated the activation 

of PI3K, but the NS1 of a mouse-adapted rWSN strain could not 

[238]. 

Cytokine related 

factors 
Residue 92 

Residue 92 has been identified as a virulence marker in HPAI 

H5N1. The presence of glutamic acid at this position is associated 

with the resistance of the virus to anti-viral cytokines [160,239]. 
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Figure 1.1. The structure of the influenza A virus. The influenza A virus is an enveloped 

single-stranded negative-sense RNA virus, belonging to the family Orthomyxoviridae. The 

influenza A virus contains a genome with 8 RNA segments, which encode at least 12 identified 

proteins. RNA segment 1, 2 and 3 encode three RNA-dependent RNA polymerase (RdRP) 

subunits: polymerase basic proteins PB2 and PB1 and polymerase acid protein PA, respectively. 

Segment 4, 5, and 6 encode hemagglutinin (HA), nucleoprotein (NP) and neuraminidase (NA), 

respectively.  Segment 7 encodes matrix protein 1 (M1) and M2 protein. Segment 8 encodes the 

non-structural protein 1 (NS1) and nuclear export protein (NEP; also known as NS2). In addition, 

PB1-F2 and N40 are translated from PB1 mRNA by leaky scanning, and PA-X is translated by 

the ribosomal frameshift of the PA gene. PB1, PB2 and PA are subunits of RdRP. NP packages 

the segmented viral RNA and binds to RdRP to form the ribonucleoprotein (RNP) in the viral 

particles. 

Adapted from (Medina, Garcia-Sastre, 2011). 
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Figure 1.2. The structure of the domains of influenza A virus polymerase complex. The 

heterotimeric polymerase composes of PA, PB1 and PB2 subunits. The PA subunit contains an 

endonuclease activity domain (residues 1-197) at the N-terminus, which is responsible for the 

cleavage of the “cap” from the cellular pre-mRNA and a PB1 binding domain (residues 257-716). 

PA binds to two manganese ions to its active sites, following two-metal-dependent endonulease 

pattern. Two active sites involved in Mn++ binding were identified: Glu-80 and Asp-108 are 

critical for Mn1 binding, and His 40, Asp 108 and Glu 109 are important for Mn2 binding. The 

PB1 subunit binds with PA subunit via first 15 N-terminal amino acids, and interacts the PB1 N-

terminal binding domain (residues 1-35) through its PB2 binding domain (residues 685-757). 

Four conserved motifs have been identified in PB1, which are responsible for the RNA-dependent 

RNA polymerase activity and the RNA-dependent DNA polymerase activity: A (residues 298-

311), B (residues 399-412), C (residues 438-453) and D (residues 474-484). In addition, motifs 

pre-A and E are also responsible for the RNA-dependent RNA polymerase activity. The PB2 

subunit contains a cap-binding domain (residues 318-483) and a RNA-binding domain (residues 

535-684). Two nuclear localization sequences (NLS) are located on the nuclear import domain at 

the C-terminus of the PB2. 

Adapted from (Ruigrok, Hart et al., 2010 and Das, Mramini et al., 2010). 
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Figure 1.3. The interactions of NS1 with host factors. NS1 (blue) is a nonstructural protein 

possessing 230-237 amino acids depending upon the strain. NS1 can be divided into an N-

terminal RNA-binding domain (RBD), effector domain and C-terminal disordered “tail”. NS1 

consists of two nuclear localization sequences (NLS1 and NLS2) which are located at RBD and 

C-terminus, and a nuclear export sequence (NES). A nucleolar localization sequence (NoLS), 

which is overlaps with NLS2 at the C-terminus, has been found in some strains. Arg-38 and Lys-

41 are important residues for RNA-binding, as well as inhibiting the RIG-I-mediated induction of 

IFN- ß by directly binding to it. NS1 is a multifunctional protein which contains several motifs to 

interact with host factors, including the poly(A)-binding protein I (PABPI), p85!, CPSF30, 

eIF4GI, hStaufen, PKR, poly(A)-binding protein II (PABPII), p15, Crk/CrkL and PDZ domain-

containing proteins. 

Adapted from (Hale, Randall et al., 2008). 
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Figure 1.4. The life cycle of the influenza A virus. The surface glycoprotein HA binds to the sialic acid 

receptors on the cell surface, which initiates the receptor-mediated endocytosis, and then the virus enters 

the endosome. The low pH of the endosome triggers a conformational change in HA2, and exposes the 

fusion peptide, which triggers the viral envelope and endosomal membrane fusion. The proton flows into 

the virus through the M2 ion channel, resulting in the dissociation of vRNP from M1. In the nucleus, the 

synthesized viral mRNA utilizes the short capped primers derived from the host cells following a ‘cap-

snatching’ mechanism, and the vRNA replicates with steps (-) vRNA!(+) cRNA!(-) vRNA. Newly 

syntheszed viral proteins needed for replication and transcription are imported into the nucleus. The vRNPs 

are exported to the cytoplasm for packaging by binding with M1 and NEP. HA, NA and M2 are post-

translationally modified and transported to the plasma membrane by the trans-Golgi secretory pathway. 

Budding occurs by the cleavage of the M2 on the lipid raft neck, and then the receptor-destorying activity 

of the NA releases the new virions from the host cells.  

Adapted from (Medina, Garcia-Sastre, 2011). 
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Chapter 2: Influenza Vaccines 

Introduction 

Vaccination is the main strategy for prevention and control of influenza in 

humans. The human influenza virus was first isolated in 1933, which led to the 

characterization of the virus and development of vaccines against influenza [240]. In 

1945, the first whole-inactivated influenza virus vaccine was licensed in the US [241]. 

The amino acid mutations occur at relatively high frequencies in influenza viruses 

due to the error-prone property of the viral RdRP. The accumulation of small changes in 

the HA and NA antigenic sites, known as antigenic drift, may result in a new strain that 

circumvents the pre-existing immunity in humans, and causes seasonal influenza 

epidemics [16,17,242]. Current trivalent influenza vaccines consist of influenza A 

(pH1N1), influenza A (H3N2), and influenza B viruses. The World Health Organization 

(WHO) and the US Public Health Service (PHS) are responsible for the reference strains 

recommendations. The reference strains for vaccines are determined according to the 

surveillance data from epidemics around the world, and those with the highest likelihood 

of circulating in the coming winter season [243].  

The egg-based inactivated trivalent vaccines against seasonal flu have long been 

used for seasonal flu from 1945 in the US. The egg-based live-attenuated trivalent 

vaccines were licensed in 2003 in the US, although the development started in the 1960s 

[243]. In November 2012, the first cell-culture based vaccine against seasonal flu was 

licensed by the US Food and Drug Administration (FDA) [244]. The latest vaccine, 

FluBlok, is a trivalent recombinant vaccine produced from insect cells using the 

baculovirus expression system, and it was approved at the beginning of 2013 [245]. The 
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effectiveness of the vaccines depends on the age and immune competence of the person 

being vaccinated, and the antigenic relatedness of the vaccine strains to the circulating 

ones. The effectiveness may reach 70-90%, if the relatedness is high. However, the 

vaccine is generally poorly effective among aged and immunocompromised persons 

[243].  

For the seasonal epidemics, a predicted vaccine strain may occasionally not match 

with the circulating strain, leading to suboptimal protection [246]. However, seasonal 

vaccines cannot induce protection against a pandemic influenza outbreak. Therefore, 

developing a strategy for the quick generation and distribution of pandemic vaccines is a 

huge challenge for pandemic outbreaks [246,247]. Compared with antigenic drift, 

antigenic shift may cause the dramatic changes in HA, and generate the new influenza 

virus strains.  If the new strain infects humans with completely new antigens, and no one 

has the pre-existing immunity against it, the strain may cause a new human pandemic 

[248].  

The outbreaks of HPAI and LPAI have resulted in the depopulation of flocks and 

major economic losses in the poultry industry worldwide. The increasing number of 

reports on the direct transmission of the avian influenza viruses (such as H5N1 [249,250] 

and H7N9 [251,252]) to human highlights the threat of HPAI and LPAI to public health. 

In recent years, vaccination has become a key strategy to provide protection to high-risk 

birds and reduce the possibility of transmission among birds and/or to mammals 

[253,254]. Currently, there are three types of avian influenza vaccines (AIVs) licensed 

worldwide: inactivated whole AIV vaccine, recombinant fowlpox virus-vectored vaccine 

expressing the H5 HA gene, and recombinant Newcastle disease virus (NDV)-vector with 
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an H5 HA gene insert [255].  

However, the limitations of the currently licensed vaccines call for the more 

effective and efficient vaccines. Several novel vaccines, or called “next generation 

vaccines”, have been developed on the basis of new technology, and some of them are 

being tested in clinical trials [256].    

Inactivated vaccines 

The licensed inactivated trivalent influenza vaccines have been applied in the US 

since 1945 [243]. These vaccines are amplified in eggs and purified, and then chemically 

inactivated with formalin. Generally, detergent, such as Triton X-100 is further added to 

make the viral surface antigens soluble. Furthermore, the detergent mediated disruption 

(‘splitting’) of influenza viruses reduces the reactogenicity, while retaining the 

immunogenicity of the viral proteins. Since the 1970s, the detergent has been applied to 

‘split’ the vaccines in most of the manufacturing, although the whole-virus vaccines are 

highly effective [257,258]. 

In adults, a single dose of 15 µg of HA of the egg-based inactivated trivalent 

vaccines is sufficient to elicit an acceptable level of antibodies. Whereas children 

generally need two doses of the inactivated vaccine to produce a protective level of 

antibody as they are naïve to the viral antigen [257]. In April 2007, the first vaccine 

against the H5N1 avian influenza in humans was licensed in the US by FDA [259]. Two 

doses of 90 µg of HA of this vaccine with intramuscular injections provided the patients 

enough protection against H5N1 in the clinical trial [260].  However, it is difficult to 

produce such high dose level of the influenza vaccines in the manufacturing plants [261].  
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A/Puerto Rico/8/34 (PR8) (H1N1) virus is the “master” donor of inactivated 

influenza vaccines. The vaccine generated is typically a “6+2” reasortant virus, in which 

6 internal genes (PB1, PB2, PA, NP, M and NS) are from PR8, and two glycoprotein 

genes are from the circulating strains. Co-infecting the eggs with the wild type strain and 

the high yielding virus strain PR8 is a classical approach to generating the reassortant 

virus. The viruses are collected and propagated in eggs with the addition of anti-PR8 

antiserum that can eliminate the virus with PR8 HA or NA [262].  

The reverse genetics technology is well developed to realize the fast generation of 

the recombinant virus without co-infection and screening. Transfection of the cells with 

plasmids containing RNA polymerase I/II transcription cassettes and influenza genome 

cDNA fragments, leads to the viral RNA synthesis by cellular RNA polymerase I, and 

viral mRNA synthesis by cellular RNA polymerase II. In this way, the reassortant 

influenza virus can be generated completely from cloned cDNA [263]. 

The trivalent inactivated influenza vaccine (TIV) is administered intramuscularly 

or intradermally by injection. It is approved for use among persons 6 months and older. 

The administration of TIV, although inducing serum antibodies IgG, does not elicit the 

nasal mucosal neutralizing antibody IgA, which is critical to the protecting of the upper 

respiratory tract in humans [264,265]. 

Flucelvax® is the first cell-culture based influenza vaccine licensed in the US. 

Flucelvax® is produced from the MDCK cell-culture, and then purified, chemically 

inactivated and disrupted by detergent. The trivalent vaccine contains three influenza 

strains for seasonal flu as an egg based TIV, and is administered intramuscularly or 

intradermally by injection for adults 18 years of age or older [266].  Flucelvax® utilizes 
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mammalian cell lines for large-scale vaccine production, and may greatly decrease the 

requirement for the embryonated eggs in TIV manufacturing [267]. The human influenza 

virus strains generally produce mutations when adapting in eggs, which may affect the 

antigenicity of the egg based vaccine; whereas Flucelvax® remains the amino acids 

unchanged in the cell culture. Furthermore, Flucelvax® is egg-free, and can be safely used 

by the people allergic to egg proteins [259,266].  

Inactivated whole-virus vaccines are also made up the majority of currently 

licensed influenza vaccines in poultry farms. The seed strains for inactivated vaccines are 

generally LPAI isolates from outbreaks in poultry, or from the surveillance of wild birds 

[268,269]. Similar to human vaccines, the wild-type donor avian vaccine is used to co-

infect the egg embryos with an egg-adapted stain, and serially propagated in eggs to 

generate a reassorted seed strain with the appropriate antigens and high virus yield 

[268,269].  

In the US, inactivated vaccines were mainly applied to protect turkey breeders 

against different subtypes of the swine influenza viruses. For example, approximately 2.6 

million doses of inactivated vaccine were used to immunize turkeys against swine H1 

influenza during 2006 in the US [270]. 

Although inactivated vaccines (“killed virus”) are safe to the host, and stimulate 

immune responses in different species of poultry, the usage of inactivated vaccines in 

poultry still has several limitations. Differentiating infected from vaccinated animals 

(DIVA) is difficult with inactivated whole-virus vaccines, as the strategy requires a 

vaccine lack of one or more antigens present in the circulating avian influenza strain. 
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Furthermore, the vaccination of poultry is heavily time-consuming, requiring each bird to 

be vaccinated individually with a high labor cost for parenteral inoculation [271,272].  

Live attenuated vaccines 

Currently, FluMist® is the only licensed LAIV in humans in the US. Different 

from TIV, FluMist® is administered by using a nasal spray. LAIV stimulates the 

production of both mucosal IgA and serum IgG antibodies [273], therefore it could 

protect both the upper and lower respiratory tracts from invasion by the influenza virus. 

Meanwhile, LAIV may elicit cell-mediated immunity with limited replication in the 

upper respiratory tract [274].  

The LAIV strain is featured with cold-adapted (ca), temperature-sensitive (ts) and 

attenuated (att) characteristics. These characteristics lead the LAIV to replicate 

efficiently at low temperatures, restrict at 37°C and 39°C, and cause no disease 

(attenuated).  The master donor virus of LAIV, A/Ann Arbor/6/60 (H2N2) and B/Ann 

Arbor/1/66 were developed by Maassab and his collaborators following the strategy of 

serially propagating the virus in primary chicken kidney cells at low temperature (25°C) 

[275]. 

The sequence analysis demonstrated that the multiple mutations on the internal 

genes are responsible for the ca, ts and att phenotypes of the cold-adapted virus. Eleven 

amino acid mutations were found in the attenuated AA/60 (A/A/60 att) strain, and the 

study demonstrated that introducing five ts loci, including K391E, E581G, and A661T on 

the PB1gene, N265S on PB2 gene, and D34G on the NP gene, is necessary to confer the 

wt-PR8 strain ts and att phenotypes [276]. 
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LAIV generates “6+2” reassortant vaccines against the circulating influenza with 

6 internal genes (PB1, PB2, PA, NP, M and NS) from a “master donor” A/A/60 att, and 

two glycoprotein genes from the circulating strain [275]. FluMist® is approved for use in 

the population in ages from 2 to 49, except in the pregnant women. LAIV achieved a 

higher protection efficiency than TIV in children, but is less effective in adults 

[277,278,279].  

To generate attenuate influenza against avian viruses in poultry, several different 

strategies have been developed [280,281,282,283,284]. An avian influenza 

(A/FPV/Rostock/34 (H7N1)) was genetically attenuated by replacing the M2 cleavage 

site with that of the NP’s. Vaccination with a single dose of this attenuated virus was 

sufficient to completely protect the chickens from lethal FPV infections [281]. A live-

attenuated recombinant H5N1 influenza virus was generated by removing the polybasic 

cleavage site from the HA, substituting residue 627 from lysine to glutamic acid in the 

PB2, and generating a C-terminal truncation of the NS1. This live-attenuated vaccine 

provided chickens with full protection against the homologous virus and a high level of 

protection against the heterologous HPAI H5N1 challenge [284].  

In our previous reports we demonstrated the potential of a genetically modified 

LAIV with the internal gene backbone of A/guinea fowl/Hong Kong/WF10/99 (H9N2) 

(WF10att) as a vaccine backbone for H5N1 influenza viruses [254]. The WF10att 

backbone carries mutations in the PB1 (K391E, E581G and A661T) and PB2 (N265S) 

genes. In addition an HA tag was cloned in the frame at the C-terminus of PB1, and 

enhanced the att phenotype. We also showed that an H5N1 virus carrying the backbone 

$H5N1WF10att was amenable for in ovo vaccination and provided optimal protection 
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against H5 HPAI virus in chickens [254,285]. 

However, field application of these vaccines is difficult due to the inherent 

segmented nature of the influenza genome and the fear that LAIVs could expand the 

plethora of influenza viruses through reassortment. Despite recent reports of the potential 

genomic manipulation of influenza to prevent undesired reassortments, it is unclear how 

these viruses will behave under more natural conditions; either by providing adequate 

protection or reverting to wild type-like viruses. 

Vaccines expressed by viral vectors 

The genetically modified viruses causing no disease have been used as the viral 

vectors for foreign antigen delivery. Multiple viral vectors, such as Newcastle disease 

virus, adenoviruses, and vesicular stomatitis virus were used to carry the influenza HA 

gene from seasonal or H5N1 viruses, or both, and expressed the antigen in animals. The 

results showed the viral vector-based vaccine elicited protective humoral and CTL 

responses [286,287,288]. In the early phase of the clinical trial, adenovirus-based HA 

vaccines yielded encouraging results [289]. 

For poultry, several viral vectors, such as fowl poxvirus [290], Newcastle disease 

virus (NDV) [280,291], vaccinia virus[292], and adenoviruses [293] have been used for 

vaccine development against avian influenza. Currently, the recombinant fowl poxvirus-

AI-H5 (rFP-AIV-H5, or Trovac AI-H5) and recombinant NDV-AI expressing H5 HA 

gene are licensed against avian influenza virus infection. Both of the vaccines are safe, 

and elicit host humoral and cellular immune responses. DIVA strategies are easy to 

develop because the viral vector-based vaccines only express HA (or HA and NA). 
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However, pre-existing maternal and neutralizing antibodies against fowl poxvirus or 

NDV may limit the replication of the vaccine, and reduce the host immune responses 

[271,294].  

Virus-like particle vaccines 

In the assembly step of influenza virus life cycle, the structural proteins HA, NA, 

and M1 are transported into the plasma membrane and embed onto it, and bud out of the 

host cells after the vRNP complex interacts with the M1 protein. The baculovirus 

expression vector (BEVS)/insect cell (IC) system mimics this self-assembly process and 

produces non-infectious virus-like particles (VLP) via the recombinant baculovirus 

vector containing the HA, NA and M1 proteins. VLP influenza vaccines are in highly 

safe, as the particles do not contain the genome of the virus [295]. Other influenza or 

non-influenza proteins can be introduced into the VLP to enhance the immune responses 

to vaccines [256]. A VLP containing the HA and M1 proteins from the canine influenza 

virus H3N2 subtype provided the dogs protection against the wild type virus challenge 

[296]. Interestingly, the triple-subtype VLPs co-expressing influenza HAs were derived 

from H5N1, H7N2 and H9N2, respectively, and the NA and M1 genes were from PR8 

that were produced in the insect cells. The intranasal vaccination with the triple-subtype 

VLPs induced efficient protection against wild-type H5N1, H7N2 and H9N2 infections in 

ferrets by neutralizing antibody responses [297]. 

FluBlok® is the first LVP vaccine licensed in the US that is produced from insect 

cells using the baculovirus expression system [245]. FluBlok® contains recombinant 

trivalent HA derived from the same seasonal influenza strains as TIV, but its HA content 

is three times higher than that of TIV. FluBlok® is administered intramuscularly by 
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injection, and it is approved to use in persons 18 through 49 years of age. In the clinical 

development, vaccination with FluBlok® resulted in a long-term immune response and a 

cross-protection against viral mutants [298,299]. 

Universal vaccines 

Recombinant M2 vaccine 

M2 is a membrane protein with proton channel activity [119]. During infection, 

M2 triggers the uncoating of vRNP by introducing H+ from the low pH endosome. The 

extracellular domain of M2 (M2e) is highly conserved in the different subtypes of 

influenza virus, which renders M2e a good candidate for universal vaccine development. 

Recombinant vaccines based on the full length or M2e with different carrier, such as VLP 

and GST, have been evaluated in animal models. It was reported that the M2 vaccine 

induced cross-protection [300]; however, the protection efficiency of M2 universal 

vaccines is lower than that of inactivated vaccines. This may be because the M2 antibody 

is involved in the opsonophagocytosis of macrophages, and cannot neutralize the virus. A 

clinical trial is needed to further evaluate whether M2 universal vaccine candidates can 

elicit efficient protection in humans [257]. 

HA stalk vaccine 

The fusion peptide region of the HA2 is highly conserved among all HA proteins 

[301], and is responsible for the viral and host endosome membrane fusion of influenza 

virus in the uncoating process. The HA2 subunit is also relatively conserved with a 

higher than 85% sequence homology in different subtypes. Universal vaccines based on 

the conserved fusion peptide or HA2 stalk has been developed. A broadly cross-reactive 
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neutralizing antibody was produced in the HA2 stalk study in mice [302,303]. The 

antibodies are likely to block the virus-cell membrane fusion in the endosome [81,304], 

and inhibit virus uncoating. 

DNA-based vaccines 

DNA-based influenza vaccines have been studied for more than 2 decades. The 

plasmids containing the HA or NA genes were intramuscularly injected into different 

animals, inducing protective responses [305,306]. However, recent clinical trials did not 

show promising results in humans [307,308].  Thus, the potential of DNA-based vaccines 

becoming commercial products is uncertain. 

DNA vaccines against avian influenza virus have been reported in recent years. 

An influenza gene (generally HA) is cloned and inserted into to the eukaryotic expression 

vectors, and delivered to the host by intramuscular or intradermal injection. 

Subsequently, the viral proteins are synthesized via the host transcription or translation 

mechanism, then taken and processed by antigen-presenting cells (APCs) or myocytes. 

The viral antigens are presented on the MHC class I and II molecules, eliciting both 

humoral and cell-mediate immune responses [309]. However, more efforts are needed to 

improve these promoters for poultry [310]. The prohibitive costs of the vaccine 

preparation may limit the commercialization of DNA vaccines in poultry [309,311]. 
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Chapter 3: Host immune responses and evasion 
strategies of influenza A virus  

 

Innate immune response 

The innate immune response is the first line of defense against the attack of 

influenza virus. The innate immune system recognizes pathogen-associated molecular 

patterns (PAMPs) by endogenous pattern recognition receptors (PRRs), and broadly 

establishes an antiviral state to the infected tissues. The following responses include the 

induction of type I and type III interferons (IFNs), recruitment of antigen-presenting cells 

(APCs), and programmed cell death of the infected cells [312]. 

The TLR pathway 

Toll-like receptors (TLRs) are one of the main families of PRRs. They play a 

critical role in the innate immune system. Amongst them, TLR3 recognizes double-

stranded RNA (dsRNA) and TLR7/8 recognizes single stranded RNA (ssRNA), and both 

of them may be involved in the immune responses to influenza virus [313]. The binding 

of dsRNA with TLR3 triggers the activation of transcription factors, such as IFN 

regulatory factor (IRF) 3, p50/p65 (NF"B) and activator protein 1 (AP1) [314]. IRF3, 

NF%B and AP1 are all the components of IFN-ß enhanceosome (a protein complex which 

binds to the “enhancer” region of a gene [315]), which may relocate into the nucleus and 

activate the transcription of IFN-ß [316]. 
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The plasmacytoid dendritic cells (pDC), which mainly circulate in the blood, are 

the major source of type I IFN production during the influenza infection. pDCs recognize 

influenza virus through TLR7 [317]. The mechanism of influenza virus antagonizing 

TLR signaling during infection remains unknown [312].  

RIG-I 

Retinoic acid-inducible gene I (RIG-I) is a well-featured member of this PRR 

family, along with the melanoma differentiation-associated protein (MDA) 5. RIG-I, a 

cytosolic sensor, contains a repressor domain (RD) and two caspase-recruitment domains 

(CARD). The binding of RD to 5&-triphosphate dsRNA of influenza virus can cause 

conformational changes of RD, and activate RIG-I [318]. Activated RIG-I interacts with 

mitochondrial antiviral-signaling protein (MAVS), which is located on the mitochondria, 

through its CARD, and MAVS, in turn, activates the components of IFN-" 

enhanceosome including IRF3, IRF7 and NF%B, relocating them into the nucleus to 

activate the transcription of IFN- " and inflammatory cytokines [312]. 

Type I IFN signaling 

The cytoplasmic sensors, such as TLR-3 and RIG-I, recognize influenza virus by 

binding to the dsRNA or 5&-triphosphate dsRNA, and triggering the cascade of the 

signaling pathway. The re-location of the enhanceosome into the nucleus subsequently 

activates the transcription of type I IFN (IFN-# and "). INF-# and " express and bind to 

the type I IFN receptor IFN-#/"R on the same infected cell (autocrine signaling) or the 

neighboring cells (paracrine signaling) [318] . The IFN-#/"R is a heterodimer containing 

IFN-#/"R1 and IFN-#/"R2 subunits. IFN-#/"R cross-links using IFN, the cytoplasmic 
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tails of the receptors trigger the signaling cascade and activate the nuclear IFN-stimulated 

gene factor-3 (ISGF3), which subsequently stimulates the transcription of IFN-sensitive 

regulatory element (ISRE) [318]. By now, more than 300 interferon-stimulated genes 

(ISGs) have been identified, including dsRNA-activated protein kinase R (PKR; 

translational repression) [319]; 2&-5& oligoadenylate synthetase (OAS; activator of 

RNaseL for mRNA decay) [320]; and INF-stimulated gene (ISG)15 (a modifier to 

regulate a number of IFN-stimulated genes) [321]. The main functions of the ISGs 

include recognizing of the PAMP molecules, regulating the transcription and translation 

of the host cell, and initiating programmed cell death.  

The interaction of innate and adaptive immune responses  

The communication between innate and adaptive immune systems is important 

for the successful defense against the invasion of the influenza virus.  During infection, 

the innate immune components initiate the response against the influenza virus, and then 

stimulate the adaptive immune system to participate in the battle. Antigen presenting 

cells (APCs), especially dendritic cells (DCs) are pivotal to the communication between 

innate and adaptive responses [312]. 

The macrophages and dendritic cells in the upper respiratory system are generally 

infected and activated at first by the influenza virus. The activated macrophages secrete 

many inflammatory cytokines, such as IL-6 and TNF-#, to stimulate the synthesis of 

acute phase proteins and regulate the immune cells [322]. 
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DCs undergo maturation with the up-regulated expression of receptors CD80 and 

CD86, and present the specific peptides derived from the influenza virus to the TCR of 

the naïve T cells via the MHC class II molecule in the draining lymph nodes of the lung; 

and in turn activate T cells into effector cells. However, the presentation of viral antigens 

may be affected by the virus and cause the down-regulation of the MHC class II and co-

stimulatory receptors on the DCs [323]. NS1, the antagonist of type I IFN, may inhibit 

and postpone the innate immune response by different mechanisms of blocking the 

cascade of type I IFN signaling.  

Adaptive immune response 

The major function of the humoral, or neutralization antibody response against the 

influenza virus, is blocking the entry to the host cells. Whereas the cellular response is 

important for clearing the infected cells [312]. 

Humoral response 

Neutralizing antibodies inhibit the viral infection via two different mechanisms: 

binding the epitopes on the globular head of the HA1, and blocking the attachment of the 

HA on the receptors; or preventing the viral envelope and cell membrane fusion by 

binding to the stalk region of the HA [80,81]. 

Humoral immunity may last from several months to a lifetime [324]. The surface 

proteins of influenza HA, NA and M2 are targets for the neutralizing antibodies. 

However, HA is the most important, as the binding of the neutralizing antibodies may 

directly inhibit the entry of the virus; while NA and M2 are less efficient [325]. Both NA-
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specific and M2-specific antibodies may contribute to the elimination of the virus 

infected cell by antibody-dependent cell-mediated cytotoxicity (ADCC) [326,327]. 

IgM is the first antibody isotype produced after the primary infection of influenza. 

It can mediate the neutralization of the virus and activate the complements. IgG 

antibodies are produced by plasma B cells, and provide the host with long-term 

protection [322]. More importantly, mucosal secretory IgA antibodies may protect airway 

epithelial cells from infection by inhibiting membrane fusion, or preventing the 

attachment of the influenza viruses [328]. 

Cell-mediated immune response  

The APC cells activate naïve CD4+ T cells by presenting the influenza virus-

derived peptide on MHC II molecules together with the second signal [322]. The 

activated CD4+ T cells differentiate into T helper (Th1) or Th2 cells. Th2 cells secrete IL-

4, IL-5 and IL-13, and activate the humoral response against the influenza virus. Th1 

cells produce IL-2 and IFN- #, and promote the cytotoxic (CD8+) T lymphocyte (CTL) 

response [322].  

Naïve CD8+ T cells are activated by APC cells via recognition of the viral 

peptides on the TCR-class I MHC molecules in the presence of the second signal, and 

then differentiated into CTLs. The infected host cells present the processed peptides 

derived from the influenza virus with class I MHC molecules. The activated CTLs 

recognize the “foreign” peptides on the class I MHCs and clear the infected cells by 

programmed cell death [312,322].  Interestingly, human influenza virus-specific CTLs 

preferentially battle with the epitopes’ highly conserved internal proteins, such as NP, M1 
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and PB2, which result in CTLs creating the cross-protection among different subtypes of 

influenza A viruses [322]. 

Evasion of innate immune response by influenza virus 

Influenza virus has evolved multiple strategies to inhibit the innate immune 

response. Several viral genes, including NS1, PB1-F2, RdRP and NP are involved in 

antagonizing antiviral activity for successful evasion [322].  

In particular, NS1 is a potent antagonist of type I IFN, and has evolved various 

mechanisms to block the host innate immune response during infection. First, NS1 can 

inhibit the activation of transcription factors on the IFN-" signaling pathway, such as 

IRF-3, c-Jun/ATF-2 and NF-#B, by directly binding dsRNA to its RNA binding domain 

(RBD), and preventing the recognition by TLR-3 [168,169]. Second, the intracellular 

sensor RIG-I binds to the viral genome 5’-triplephosphate dsRNA, and initiates type I 

IFN production by interacting with mitochondrial antiviral signaling protein MAVS. NS1 

inhibits the activation of RIG-I by directly binding to the RIG-I and forming the NS1-

RIG I complex [172,173,174]. TRIM25 activates RIG-I by ubiquitinating the RIG-I N-

terminal CARD domain. NS1 inhibits the ubiquitination of the CARD domain and blocks 

RIG-I signaling [175]. Third, in the nucleus, NS1 can block the processing and nuclear 

export of all cellular mRNAs by binding to CPSF30 and PABPII [170,171].  

Additionally, NS1 can interfere with the function of multiple ISGs. NS1 

competitively binds dsRNA with its RBD, and inhibits the activation of two antiviral 

proteins PKR [329] and OAS [192] in the cytoplasm. ISG15, an IFN-#/"–induced, 

ubiquitin-like protein, inhibits the nuclear import of the influenza NS1 protein by the 

ISGylation of residue Lys-41 in the NS1 RBD domain, and blocking the NS1- importin-# 
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interaction. Interestingly, NS1 binds to Herc5, the major E3 ligase for ISG15 conjugation, 

and limits the function of ISG15 [178].  

NS1 was reported to play both pro- and anti-apoptotic functions during influenza 

infection in different studies [330,331,332], and NS1 was demonstrated to play important 

roles in regulating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway 

[180,181,182,183]. PI3K is a dimeric lipid kinase consisting of a regulatory subunit p85" 

and a catalytic subunit p110 [184]. Akt, a serine/threonine protein kinase, is a 

downstream PIP3-binding effector of PI3K. In the early phase, the attachment of the virus 

to the cell surface transiently induces PI3K signaling [186]. In the later phase, PI3K is 

activated by NS1 and the influenza viral RNA through the stimulation of the cytosolic 

receptor RIG-I, promoting the production of type I IFN [186,187]. NS1 activates PI3K 

signaling by directly binding to the inter-HS2 (iSH2) domain of the regulatory subunit 

p85" of PI3K to prevent the premature apoptosis of the infected cell and facilitate the 

viral replication [188,189]. It’s reported that NS1 can preferentially interact with 

phosphorylated Akt in the nucleus and changes the Akt anti-apoptotic activity[190]. 

Infection with the influenza A virus activates the NF-!B pathway, and leads to the 

antiviral response of the host cells. However, NS1 directly interacts with IKK-" and 

IKK-# and impairs their phosporylation in both the cytoplasm and nucleus, and 

subsequently inhibits the NF-!B-mediated innate immune response [333].  

NS1 from the 2009 swine-origin pandemic H1N1 virus cannot inhibit the host 

gene expression as in other human-adapted influenza A viruses. This feature could be 

restored in 2009/NS1 by introducing the substitutions R108K, E125D and G189D. The 

recombinant pandemic 2009 H1H1 virus carrying the NS1 with those substitutions was 



 

 57 
 

more efficiently blocked the innate immune response than the wild-type virus. However, 

this mutant virus caused less morbidity in mice, and showed a decreased titer in the URT 

of ferrets when compared to the wild-type virus. The data showed that the NS1 from the 

2009 pandemic H1N1 virus seems lack the potential to function more efficiently in 

human cells [334]. 

Escaping adaptive immune response by influenza virus 

Antigenic drift and antigenic shift are the two main mechanisms causing the 

antigenic variability of influenza viruses, allowing pathogens to overcome the host 

adaptive immune responses. Antigenic drift occurs frequently, which enables the virus to 

cause influenza epidemics by evading the pre-existing immunity in humans. Antigenic 

shift occurs as gene mixing, or reassortment from different influenza A virus subtypes, 

such as the 2009 triple-reassortant swine-origin H1N1 [312]. Antigenic shift may cause a 

human pandemic if the population is immunologically naïve to the new reassortant strains 

at large [248]. 

The selective pressure of neutralizing antibodies, mainly against influenza HA, is 

critical for antigenic shift [322]. For example, a recent study found that the glycosylation 

residues on HA increased (ranging from 5 to 11 glycosylations) in the past 30 years from 

the H3N2 isolates [103]. Both HA and NA process post-transcriptional modifications of 

glycosylation and gain the proper functions in their life cycles. The glycosylation of the 

globular head region of HA may result in the immune escape from the neutralizing 

antibody recognition [103]. 
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In the cell-mediated immune response, influenza viruses avoided the recognition 

by virus specific T cells with mutations inside the CTL epitope regions, or at the TCR 

contact residues [322]. For example, the variations in the CTL epitopes were analyzed in 

the seasonal H3N2 isolates. The substitution R384G in the NP (383-391) epitope is an 

anchor residue which greatly reduces the peptide-MHC I affinity, resulting in the loss of 

peptide binding [335,336]. 
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Chapter 4: Improved hatchability and efficient 
protection after in ovo vaccination with live-
attenuated H7N2 and H9N2 avian influenza viruses 
 
Adapted from: Cai Y, Song H, Ye J, Shao H, Padmanabhan R, Sutton TC, Perez DR. 
Improved hatchability and efficient protection after in ovo vaccination with live-
attenuated H7N2 and H9N2 avian influenza viruses. Virol J. 2011 Jan 21;8:31. 

Abstract 

Mass in ovo vaccination with live attenuated viruses is widely used in the poultry 

industry to protect against various infectious diseases. The worldwide outbreaks of low 

pathogenic and highly pathogenic avian influenza highlight the pressing need for the 

development of similar mass vaccination strategies against avian influenza viruses. We 

have previously shown that a genetically modified live attenuated avian influenza virus 

(LAIV) was amenable for in ovo vaccination and provided optimal protection against H5 

HPAI viruses. However, in ovo vaccination against other subtypes resulted in poor 

hatchability and, therefore, seemed impractical. In this study, we modified the H7 and H9 

hemagglutinin (HA) proteins by substituting the amino acids at the cleavage site for those 

found in the H6 HA subtype. We found that with this modification, a single dose in ovo 

vaccination of 18-day old eggs provided complete protection against homologous 

challenge with low pathogenic virus in !70% of chickens at 2 or 6 weeks post-hatching. 

Further, inoculation of 19-day old egg embryos with 106 EID50 of LAIVs improved 

hatchability to !90% (equivalent to unvaccinated controls) with similar levels of 

protection. Our findings indicate that the strategy of modifying the HA cleavage site 

combined with the LAIV backbone could be used for in ovo vaccination against avian 

influenza. Importantly, with protection conferred as early as 2 weeks post-hatching, with 
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this strategy birds would be protected prior to or at the time of delivery to a farm or 

commercial operation. 

Introduction 

Although depopulation of infected flocks is the method of choice to control the 

spread of avian Influenza virus (AIV) in poultry, vaccination has become an alternative 

strategy in order to provide protection to high-risk birds and reduce the possibility of 

transmission among birds and/or to mammals [253,254]. Thus, in many countries in 

which avian influenza outbreaks particularly of low pathogenicity have occurred 

recurrently, selective culling followed by vaccination is used as a measure to control the 

disease without major economic disruptions. There are only two types of avian influenza 

vaccines (AIVs) licensed worldwide: inactivated whole AIV vaccine and recombinant 

fowlpox virus-vectored vaccine expressing the HA gene of AIV. However, both types of 

vaccines have major limitations: inactivated vaccines cannot elicit strong mucosal and 

cellular immunity; and previous exposure to fowlpox virus inhibits the host response to 

the fowl-pox vectored vaccine inhibiting anti-influenza immunity [254,271,272]. In 

addition, both strategies are heavily time-consuming, requiring each bird to be vaccinated 

individually by parenteral inoculation. 

With the advent of reverse genetics, LAIVs have emerged as a potential 

alternative to control avian influenza [284]. Several different strategies have been 

developed to attenuate influenza viruses based on mutations in one or more of the viral 

internal or surface genes [280,281,282,283]. Several studies have shown that LAIV 

vaccines protect against influenza viruses of low or high pathogenicity in poultry and 
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mammals. However, field application of these vaccines is difficult due to the inherent 

segmented nature of the influenza genome and the fear that LAIVs could expand the 

plethora of influenza viruses through reassortment. Despite recent reports of the potential 

genomic manipulation of influenza to prevent undesired reassortments, it is unclear how 

these viruses will behave under more natural conditions; either by providing adequate 

protection or reverting to wild type-like viruses. Instead, in ovo vaccination using LAIV 

is an attractive alternative to provide fast and effective protection against influenza while 

avoiding the potential for reassortment (in ovo vaccination is unlikely to produce 

reassortants as other influenza viruses are not present in the egg). 

Several strategies have been developed to generate LAIVs for in ovo vaccination. 

A recombinant LAIV was recently developed that provided immunity against HPAI 

H5N1 influenza and Newcastle Disease Virus (NDV) [280,337]. This recombinant 

influenza virus expressed the HA of H5 with a deleted polybasic cleavage site, and the 

ectodomain of the hemagglutinin-neuraminidase (HN) genes NDV instead of NA gene of 

HPAI H5N1. With this bivalent virus, a single dose in ovo vaccination of 18-day-old eggs 

provided 90% and 80% protection as early as 3 weeks post-hatching, against NDV and 

HPAI, respectively. A second strategy employed a non-replicating human adenovirus 

serotype 5 (Ad5)- vectored vaccine that expressed the HA of a LPAI H5N9 virus. 

Similarly, this vaccine was delivered in ovo and conferred protection in chickens after 

challenge with either HPAI H5N1 (89% HA homology; 68% protection) or HPAI H5N2 

(94% HA homology; 100% protection) viruses. Unfortunately, in both these studies, the 

hatchability efficiency was not addressed in detail [179]. 

In our previous reports we demonstrated the potential of a genetically modified 
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LAIV with the internal gene backbone of A/guinea fowl/Hong Kong/WF10/99 (H9N2) 

(WF10att) as a vaccine backbone for H5N1 influenza viruses [254]. The WF10att 

backbone carries mutations in the PB1 (K391E, E581G and A661T) and PB2 (N265S) 

genes. In addition an HA tag was cloned in frame at the C-terminus of PB1, and 

enhanced the att phenotype. This backbone results in virus attenuation in vitro while 

attaining high viral growth properties at the permissive temperatures of 33 and 35°C. We 

also showed that an H5N1 virus carrying the backbone 'H5N1WF10att was amenable 

for in ovo vaccination and provided optimal protection against H5 HPAI virus. More 

specifically, a single low (104 EID50) or high (106 EID50) dose of LAIV resulted in greater 

than 60% protection at 4-week post-hatching and 100% protection at 9 to 12-week post-

hatching. Incorporation of a boost regime with either the low or high virus dose at 2-

weeks post-hatching increased the protection efficiency to 100% in 4-week old chickens. 

The hatchability efficiency of the high-dose (106 EID50) in ovo vaccination was 85%, 

compared with 90% in low-dose (104 EID50) and mock groups [254,285]. 

In ovo vaccination with live attenuated viruses is widely used in commercial 

poultry against various infectious diseases. In ovo vaccination was initially introduced 

into the poultry market to protect against Marek's disease virus (MD) [338,339]. 

Currently, over 80% of US broilers are immunized in ovo with MD vaccine. In ovo 

vaccination is also effective and used commercially to protect poultry from infectious 

bursal disease virus (IBDV) [340]. Compared with field vaccination, in ovo vaccination 

provides uniform and fast delivery (50,000 egg/h), reduced labor costs, decreased stress 

to the birds; and most importantly, elicits early immune responses, as soon as 2-week 

post hatching [341]. From practical and commercial perspectives, in ovo vaccination not 
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only has to be effective in providing protection but also has to maintain high hatchability 

levels (!90%). In this report, we investigated the effects of changing the H7 and H9 

cleavage site to that of the LPAI H6 subtype and the timing of vaccination on levels of 

protection and hatchability after in ovo vaccination with LAIV against H7 and H9 LPAI 

viruses. Our results indicate that in ovo vaccination can result in significant protection 

against the H7 and H9 virus subtypes while maintaining high hatchability (>90%) when 

the vaccine is administered in 19-day old chicken embryos. 

Materials and methods 

Virus, cells and Animals 

The influenza virus A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10) was 

kindly provided by Robert Webster from the repository at St. Jude's Children's Research 

Hospital, Memphis, Tennessee; influenza virus A/Chicken/Delaware/VIVA/04 (H7N2) 

(CK/04) was kindly obtained from Dennis Senne at the National Veterinary Laboratory 

Services, USDA, Ames, Iowa. The viruses were propagated in 10-day-old embryonated 

specific-pathogen-free chicken eggs at 35°C and stored at -70°C. The viruses were 

titrated by the Reed and Muench method to determine the 50% egg infectious dose 

(EID50). 293T human embryonic kidney and Madin-Darby canine kidney (MDCK) cells 

were maintained as described previously [254]. White leghorn chickens (Charles River 

Laboratories, MA) and Japanese quail (Murray McMurray Hatchery, Webster, IA) were 

hatched at 100°F in a circulating air incubator (G.Q.F. Manufacturing co. Savannah, GA) 

and maintained under BSL2 conditions. 

Generation of recombinant virus by reverse genetics 
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The 6 internal genes of WF10att were described previously and were used to 

recover viruses carrying the surface genes of Ck/04 or WF10 [254]. The cloning of the 

Ck/04 surface genes has been previously described [254]. The H7 HA cleavage site, 

PEKPKPRG, was substituted with an alternative cleavage site sequence, PQIETRG, from 

the H6 HA subtype using a two-step PCR reaction and the plasmid pDP2002-H7 (Ck/04) 

as the template (Figure 4.1A). In brief, two PCR fragments were produced by using 

primers EcoR I 550-F (5'-CTGTCGAATTCAGATAATTCAGC-3') and H7-H6 CVS-R 

(5'-GGTCTCCCGCTGTGGAACATTTCTC-3'), and primers H7-H6 CVS-F (5'-

CACAGCGGGAGACCAGAGGCCTTTTTG-3') and Pst I 1150-R (5'-

GTCAGCTGCAGTTCCCTCCCCTTGT-3'). These two fragments were then used as 

templates for a new PCR product using primers EcoR I 550-F and Pst I 1150-R. The 

fragment was digested with EcoR I and Pst I, and cloned into pDP-2002-H7 (VIVA/04), 

to obtain pDP2002-mH7. 

The H9 HA cleavage site, PARSSRG, was substituted with the alternative 

cleavage site sequence PQIETRG (Figure 4.1B) using pDPH9WF10 as the template. Two 

PCR fragments were produced by using primers: Xbal I 285-F (5'-

CCTCATTCTAGACACATGCAC-3') and H9-H6 CVS-R (5'-

CCAAATAGTCCTCTAGTTTCGATCTGAGGCACGTTC-3'), and primers H9-H6 

CVS-F (5'-GAACGTGCCTCAGATCGAAACTAGAGGACTATTTGG-3') and EcoN I 

1297-R (5'-CCTCATTCTAGACACATGCAC-3'). These two fragments were then used 

as templates to generate a new PCR fragment using primers Xbal I 285-F and EcoN I 

1297-R. The fragment was digested with Xbal I and EcoN I, and cloned into 

pDPH9WF10, resulting in the formation of pDP-2002-mH9. 
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Recombinant viruses were generated using the 8-plasmid system in co-cultured 

293T and MDCK cells as described previously [254]. The recombinant viruses (Table 

4.1) were propagated in 10-day-old embryonated eggs, titrated by EID50, and stored at -

70°C until use. 2mH7N2:6WF10att and 2mH9N2:6WF10att viruses were sequenced 

using specific primers, the Big Dye Terminator v3.1 Cycle Sequencing kit (Applied 

Biosystems, Foster City, CA), and a 3100 Genetic Analyzer (Applied Biosystems, Foster 

City, CA), according to the manufacturer's instructions. The genetic stability of mutations 

on HA, PB1 and PB2 were evaluated by serial passage of virus stocks at a 1:10,000 

dilution for 10 passages in triplicate samples in 10-day-old embryonated eggs. Viruses 

obtained after ten passages were sequenced as described above. 

Hatchability in embryonated chicken eggs 

18 or 19-day-old embryonated specific-pathogen-free chicken eggs were 

inoculated with either 106 or 107 EID50 of virus in 0.1 ml inoculum according to the 

scheme presented in Table 2. Eggs in the mock group were inoculated with 0.1 ml of 

PBS. The egg inoculation was performed as described previously [254]. Briefly, eggs 

were candled, and a small hole was made through the air cell with an electric drill. Next, 

0.1 ml of virus dilution or PBS was injected into the allantoic cavity using a 21-gauge 

needle at a depth of 2.5 cm. The percent hatchability was calculated using the total 

number of inoculated eggs versus the number of 21-day old eggs that hatched in each 

group. This experiment was performed under BSL-2 conditions according to protocols 

approved by the Animal Care and Use Committee of the University of Maryland.  
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Plaque assay in chicken embryonic kidney (CEK) cells and 

immunostaining 

To investigate if the replacement of amino acids at the HA cleavage site affected 

the temperature sensitive phenotype of the new live-attenuated viruses, plaque assays 

were performed in CEK cells at 37°C, 39°C, and 41°C. Confluent CEK cell monolayers 

in six-well plates were infected with 0.5 ml of 10-fold dilutions of virus 

2mH7N2:6WF10att or 2H7N2:6WF10att in M199 medium. The cells were incubated 

with the virus dilutions for 1 h at 37°C, washed, and overlaid with M199 medium 

containing 0.9% agar and 0.1 µg/ml TPCK-trypsin. The plates were then incubated at 

37°C, 39°C, and 41°C with 5% CO2. At 4 days post-inoculation (dpi) the overlay was 

removed and immunostaining was performed as described previously [254]. In brief, the 

cells were fixed, permeabilized, and blocked with bovine serum albumin (BSA) in PBS. 

The cells were then incubated with mouse anti-WF10 monoclonal NP antibody prepared 

in our laboratory, followed by incubation with peroxidase-conjugated goat anti-mouse 

IgG (Jackson Immuno Research, West Grove, PA). The presence of viral antigen was 

revealed by adding several drops of aminoethylcarbazol (BD Biosciences, San Diego, 

CA). The size and number of plaques at each temperature were compared to determine 

the temperature sensitive phenotype of the new recombinant virus. 

Viral replication in MDCK cells 

Viral replication was studied to examine the temperature sensitive phenotype of 

the new recombinant viruses in MDCK cells. Confluent monolayers of MDCK cells in 6-

well plates were infected with 2m2H7N2:6WF10att or 2H7N2:6WF10att at a MOI = 

0.001 and cultured at 35°C and 39°C, respectively. Supernatant samples were collected at 
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12, 24, 48, 72, 96 and 120 h post-inoculation, and the viral titer of these samples was 

determined by TCID50 in MDCK cells[254]. 

Virus replication and transmission in quail 

To evaluate the vaccine's attenuated phenotype in vivo, 2mH7N2:6WF10att was 

compared to the recombinant virus 2H7N2:6WF10att. Six 4-week-old Japanese quail 

were inoculated by the ocular, intranasal, and intratracheal routes with 106 EID50/0.5 ml 

of either 2mH7N2:6WF10att or 2H7N2:6WF10att vaccine viruses. Two control quail 

were inoculated with 0.5 ml of PBS. At 1 dpi, 3 naïve quail were introduced into the 

same isolators, and placed in direct contact with the inoculated quail to assess virus 

transmission. At 3 dpi, 3 inoculated quail per group were sacrificed, lungs were 

homogenized and virus titers were determined by EID50. For the remaining quail, tracheal 

and cloacal swabs were collected from both the inoculated and direct contact birds at 1, 3, 

5, 7, and 9 dpi. The swab samples were stored in glass vials in 1.0 ml freezing Brain 

Heart Infusion (BHI) medium (BD, Sparks, MD) and titrated for infectivity in 10-day-old 

embryonated chicken eggs and MDCK cells. Sera were collected 2 weeks post-infection 

and HA inhibition tests (HI) were performed to quantify antibodies against HA [254]. 

Challenge studies 

Chickens that hatched after in ovo vaccination were randomly divided into two 

groups with the same number of individuals. Early protection was assessed in the first 

group of chickens by challenge at 2-weeks post-hatching. Challenge virus consisted of 5 

( 105 EID50 of virus (equal to 500 chicken infectious dose 50 (CID50)) and was delivered 

via intranasal inoculation. Late protection was assessed in the second group of chickens 



 

 68 
 

following the strategy described above, but in chickens that were 6 weeks old. Tracheal 

and cloacal swab samples were collected at 3, 5, and 7 days post-challenge (dpc). Virus 

shedding was titrated in MDCK cells by TCID50. Sera samples were collected at 2-weeks 

post-hatching pre-challenge, and 2 weeks post-challenge. HI titers were determined as 

previously described. Animal studies were conducted under BSL-2 conditions, and 

performed according to protocols approved by the Animal Care and Use Committee of 

the University of Maryland. 

Results 

Chicken hatchability is impaired after in ovo  vaccination with 

H7N2 and H9N2 WF10att viruses 

Our previous studies showed that in ovo vaccination with 106 EID50 of the 

'H5N1:6WF10att virus resulted in effective protection against HPAI H5N1 virus [254]. 

We wanted to determine whether similar levels of protection could be obtained against 

other HA subtypes following the same strategy. We were particularly interested in the H7 

and the H9 subtypes because they have been responsible for recurrent outbreaks, 

particularly in Eurasia (although in our studies a H7 virus of the North American lineage 

was used). Thus, 18-day-old egg embryos were inoculated with 106 EID50 of either 

2H7N2:6WF10att or 2H9N2:6WF10att vaccine viruses (Tables 4.1 and 4.2). 

Unfortunately, the hatchability of vaccinated eggs was poor, 30% and 37% in eggs 

vaccinated with 2H7N2:6WF10att and 2H9N2:6WF10att, respectively (Table 4.2) 

compared to 85% in eggs vaccinated with the 2'H5N1:6WF10att virus (not shown and 

[254]). 
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Chicken hatchability after modification of the HA cleavage site 

in H7N2 and H9N2 WF10att viruses 

The 2'H5N1:6WF10att virus carries the H5 HA protein from 

A/Vietnam/1203/04 (H5N1) but its polybasic cleavage site, characteristic of HPAI 

viruses, has been replaced with that from the LPAI H6 HA virus subtype, as described in 

previous reports [342]. In order to determine if incorporation of the H6 HA cleavage site 

in the H7 and H9 subtypes would result in more attenuated vaccine viruses and improved 

hatchability, we generated the recombinant viruses 2mH7N2:6WF10att and 

2mH9N2:6WF10att. Modifications at the cleavage site in these viruses did not have 

major effects on the in vitro properties of these viruses. Both recombinant viruses reached 

titers of 106 TCID50/ml at 120 h post-infection in MDCK cells inoculated at an MOI = 

0.001 and cultured at 35°C (Figure 4.2 and data not shown). In contrast, viral replication 

at 39°C was severely restricted, with viral titers reduced more than 1000-fold relative to 

those at 35°C (Figure 4.2 and data not shown). This indicates that modifications in the 

HA cleavage site did not change the temperature sensitive phenotype of these viruses in 

MDCK cells. Likewise, plaque assays, performed using CEK cells (Figure 4.3), showed 

that 2mH7N2:6WF10att formed significantly smaller plaques than 2H7N2:6WF10att at 

37° and 39°C. As expected, these viruses were highly restricted at 41°C (yields of <103 

PFU/ml) consistent with their att phenotype. Interestingly, the lower virus titers and 

smaller plaque sizes of 2mH7N2:6WF10att compared to 2H7N2:6WF10att indicate an 

additive effect on attenuation provided by the modified HA cleavage site. Similar results 

were obtained when we compared the 2mH9N2:6WF10att to 2H9N2:6WF10att (not 

shown). However, despite the additional attenuation, only a slight improvement in 



 

 70 
 

hatchability (50% and 63%) was observed when 18-day-old egg embryos were inoculated 

with 106 EID50 of the 2mH7N2:6WF10att and 2mH9N2:6WF10att vaccine viruses, 

respectively (Table 4.2). 

Stability of new recombinant viruses 

The genetic stability of the mutations on HA, PB1, and PB2, was verified by 

serial passage of the 2mH7N2:6WF10att and 2mH9N2:6WF10att viruses in 10-day-old 

embryonated eggs. Amino acids 391E, 581G, 661T and the HA tag on PB1, and 265S on 

PB2 remained unchanged after serial propagation in eggs. More importantly, the amino 

acids at the HA cleavage site remained unchanged and corresponded to the H6 HA 

cleavage sequence (PQIETRG). 

Modification of the HA cleavage site reduces replication of 

2mH7N2:6WF10att virus in quail 

We have previously shown that quail are more susceptible than chickens to avian 

influenza viruses. Thus quail represent a better host to test whether modifications in our 

vaccine viruses would have any effect on replication and transmissibility. To investigate 

if modification of the HA cleavage site altered the degree of attenuation and 

transmissibility in quail, 2 groups of quail (n = 6) were inoculated with either the 

2mH7N2:6WF10att virus or the 2H7N2: 6WF10att virus. At 24 h after infection, 3-naïve 

quail/group were brought in direct contact with inoculated quail to monitor for 

transmission (Table 4.3). At 3 dpi, 3 inoculated quail from each group were sacrificed to 

determine virus load in the lungs. No virus was detected in the lungs of inoculated quail 

regardless of the virus used. This finding is consistent with our previous study showing 
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that the WF10att backbone prevents the virus from replicating in the lower respiratory 

tract (not shown and [254,285]). In addition, no virus was detected in cloacal swabs for 

any of the quail in the study (not shown). In contrast, tracheal swabs showed the presence 

of virus in the 2H7N2:6WF10att group, with peak virus titers of 102.9 (at 1 dpi) and 101.6 

TCID50/ml (at 3 dpi) in the inoculated and direct contact quail, respectively. Inoculated 

quail remained positive until 5 dpi but were negative by 7 dpi. Only 2 out of the 3 direct 

contact quail showed trace amounts of 2H7N2:6WF10att and were negative by 9 dpi. 

With respect to the 2mH7N2: 6WF10att inoculated group, only trace amounts of virus 

were observed, and just 1 of 3 quail remained positive by 7 dpi and it became negative by 

9 dpi. Direct contacts in the 2mH7N2: 6WF10att virus group were negative except for 

trace amounts of virus on a single day, 7 dpi, in 2 of the 3 quail. The levels of virus 

replication in the different groups corresponded with the levels of seroconversion 

observed. Thus, inoculated quail in the 2H7N2:6WF10att group had the highest 

neutralizing antibody response, followed by inoculated quail in the 2mH7N2: 6WF10att 

group, whereas the direct contacts in the 2H7N2:6WF10att showed low, but significant 

seroconversion. Also consistent with the transient presence of the 2mH7N2: 6WF10att 

virus in the direct contact group, very low seroconversion was observed. These studies 

suggest that alterations in the HA cleavage site have an effect on replication in vivo 

further attenuating these viruses and limiting the ability to replicate after transmission 

(Table 4.3). We did not perform similar studies in quail with the H9N2 vaccine viruses. 

However, we must note that similar studies in white leghorn chickens did not result in 

detectable transmission, when the viruses carry the att backbone in the context of H7N2 

or H9N2 surface genes (not shown). 
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Single dose in ovo vaccination provides protection in chickens 

from homologous challenge with H7 and H9 LPAI viruses at 2 

and 6 weeks post-hatching 

To further evaluate whether in ovo immunization would result in protection 

against H7 or H9 viruses, vaccinated chickens were divided into two groups, and 

subsequently challenged with homologous virus at either 2 or 6 weeks post-hatching 

(Tables 4.4 and 4.5). 

Pre-challenge sera collected at 2 weeks post-hatching showed limited 

seroconversion in chickens that received the 2mH7N2:6WF10att (Table 4.4), both in 

terms of the number of seropositive chickens as well as the level of HI responses. 

However, sera collected at 6 weeks post-hatching showed increased numbers of 

seropositive chickens and increased HI titers (Table 4.4). Relative to 2mH7N2:6WF10att, 

improved and more consistent antibody responses were obtained in chickens that were 

vaccinated with 2mH9N2:6WF10att (Table 4.5). In terms of protection, significant 

protection was observed in chickens challenged with 500 CID50 of Ck/04 (H7N2) at 2 or 

6 weeks post-hatching but only in the 19-day old embryo vaccinated groups. Tracheal 

virus shedding was detected in only 2 out 8 and 1 out of 5 chickens in the 19-day old 

embryo groups that received 106 or 107 EID50, respectively, of 2mH7N2:6WF10att. There 

was also a sharp decrease in cloacal virus shedding in these groups, with just 1 out 8 (106 

EID50 group) and 1 out 5 (107 EID50 group) virus positive chickens and only at 7 dpc 

(Table 4.4). In contrast, in the 18-day old embryo vaccinated group only 1 out 4 and 2 out 

4, at 2 and 6 weeks post-hatching, respectively, showed protection and no detectable 

virus replication. Similar protective responses were observed in the WF10 (H9N2) 
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challenged chickens. Chickens in the 19-day old embryo vaccinated groups showing the 

best protection, and those in the 18-day old embryo vaccinated groups showed the 

decreased protection (Table 4.5). Significant seroconversion in all the groups at 14 dpc 

indicated that lack of virus shedding in protected chickens was not due to a failure in our 

challenge approach. Considering the 106 EID50 vaccine dose in the 19-day old embryo 

vaccinated groups for both att vaccines, there was between 70 and 80% protection 

efficiency in chickens challenge at 2 or 6 weeks post-hatching, respectively. Slightly 

better protection efficiency (82%) was observed in the 107 EID50 vaccine dose groups; 

however, it was achieved at the expense of lower hatchability rates (~91% for the 106 

EID50 versus ~80% for the 107 EID50 groups). In contrast, an average of only 55% 

protection efficiency was observed in the groups vaccinated with a dose 106 EID50 in 18-

day old embryos. 

Discussion 

The HA is perhaps the most important protein in influenza viruses, as it is a 

critical determinant of host range and virulence [50,51]. The HA protein, encoded in 

segment 4, is expressed on the virus surface as homotrimers. It is initially produced as a 

precursor, HA0, that requires post-translational modifications, including cleavage and 

glycosylation in order to become fully active [57]. Cleavage of the HA0 precursor leads 

to two subunits, HA1 - N-proximal - and HA2 - C-proximal -, which are maintained 

covalently linked via disulfide bonds. Trypsin-like host proteases found in the lumen of 

the respiratory and intestinal tracts are involved in the cleavage of the HA of low 

pathogenic avian influenza viruses - LPAIV - (and mammalian influenza viruses) [57]. 

Intracellular furin-like proteases have been implicated in the cleavage of the HA of 
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highly pathogenic avian influenza viruses - HPAIV [57]. The number of basic amino acid 

residues preceding the cleavage site determines recognition by either trypsin-like or 

furin-like proteases, with a string of basic amino acids allowing the latter to cause 

intracellular maturation of the HA at the level of the endoplasmic reticulum [343]. Furin-

like protease cleavage produces mature virions that can spread cell to cell without having 

to reach the lumen of the respiratory or intestinal tracts. This permits the development of 

a fatal systemic infection, hence the so-called highly pathogenic influenza. Therefore, the 

cleavability of HA is one of the critical factors for viral tissue tropism and pathogenicity 

[344,345]. In this study, we modified the cleavage site of the influenza virus H7 and H9 

HA protein genes to encode sequences corresponding to the H6 HA cleavage site (mH7 

and mH9) in order to improve hatchability after in ovo vaccination. It has been previously 

shown that the H6 HA cleavage site can transform a HPAIV of the H5N1 subtype into a 

LPAIV [342]. We have previously shown that a LPAI H5N1 virus carrying att mutations 

is amenable for in ovo vaccination resulting in !60% protection while maintaining at 

least 85% hatchability [254]. In this study we sought to examine whether the mH7 and 

mH9 att viruses showed similar replication yields as unmodified H7 and H9 att viruses, 

and if these modified viruses were more amenable for in ovo vaccination without 

decreased immunogenicity. Growth kinetic studies in tissue culture cells showed similar 

yields for the mH7 compared to the unmodified H7 viruses (Figure 4.2) and similar 

results were obtained comparing the mH9 with the unmodified H9 pairs (not shown). As 

the safe "window" for in ovo vaccination of chicken embryos is between day 17 at 12-14 

hours to day 19 at 2-4 hours [341], we chose days 18 and 19 for vaccination to test the 

effects on hatchability of the att vaccines. Hatchability studies clearly demonstrated that 



 

 75 
 

the mH7 and mH9 att viruses allowed for hatchability (90-93%, 19-day old embryos) 

similar to the PBS inoculated controls (93-96%), which were much higher than those 

obtained with the unmodified H7 or H9 att viruses (43-60%, 19-day old embryos). We 

found that the combination of the modified HA cleavage site, vaccine dose, and time of 

vaccine delivery, had a significant impact on hatchability rates. Thus, 18-day old chicken 

embryos vaccinated with the mH7 or the mH9 att viruses showed improved hatchability 

rates compared to the unmodified HA att counterparts, but they were significantly lower 

than the rates obtained after vaccinating 19-day old embryos (Table 4.2). Likewise, 

increasing the dose to 107 EID50 of either mH7 or mH9 att viruses resulted in 10% 

hatchability loss compared to the same age embryos inoculated with 106 EID50 of the 

same viruses. 

We speculate that the introduction of the alternative H6 HA cleavage site in the 

mH7 and mH9 att viruses (and perhaps in the 'H5 att virus) leads to reduced HA 

cleavage efficiency and, thus, these viruses exhibit growth restrictions at higher 

temperatures in vitro (Figure 4.3) and in vivo in 18-19-day old chicken embryos (Table 

4.2). However, these viruses showed no defects in terms of virus yield at the permissive 

temperatures of 33 and 35°C in tissue culture (Figure 4.2) or in 10-day old chicken 

embryos. These characteristics are important because efficient immunogenicity was 

maintained without sacrificing virus yield. In fact, 2mH7N2:6WF10att and 

2mH9N2:6WF10att viruses can easily achieve titers on the order of 108 EID50/ml when 

grown in 10-day old embryonated chicken eggs (data not show), thus making them ideal 

for mass production. 
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In ovo vaccination is an attractive approach for vaccination of chickens, 

particularly broilers [341,346]. It helps to 'close the window' of susceptibility between 

vaccination and early exposure to infectious agents compared with post-hatch vaccination 

[346]. Because chickens already develop certain immunologic functions before hatching, 

in ovo vaccination stimulates both the innate and adaptive immune responses. Thus, in 

ovo vaccinated chicks develop an appreciable degree of protection by the time of 

hatching [346]. This indeed appears to be the case since in our approach chickens showed 

significant protection (! 70%) when challenged as early as 2 weeks post-hatching. It is 

tempting to speculate that under industrial settings higher protection efficiencies could be 

obtained since automated systems would result in more accurate, controlled and efficient 

administration of the vaccine compared to our manual approach. In addition, because the 

mH7 and mH9 att viruses are more attenuated in vivo than the unmodified att 

counterparts, we further speculate that these HA genes are not likely to outcompete wild 

type influenza viruses through reassortment, and thus, should be safe to use in the field. 

The unprecedented spread of low pathogenic H7 and H9 influenza viruses in commercial 

settings, calls for the implementation of alternative prevention and control strategies. Our 

report provides for a viable alternative to the classical vaccination approaches against 

avian influenza. 
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Table 4.1. The gene constellations of the recombinant viruses. 

Virus HA NA Internal genes (PB1, PB2, PA, NP, M and NS) 

2m2H7N2:6WF10att mH7 (VIVA/04) N2 (VIVA/04) WF10att 

2H7N2:6WF10att H7 (VIVA/04) N2 (VIVA/04) WF10att 

2mH9N2:6WF10att mH9 (WF10) N2 (WF10) WF10att 

2H9N2:6WF10att H9 (WF10) N2 (WF10) WF10att 
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Table 4.2. Comparison of the hatchability of new recombinant viruses in embryonated 

chicken eggs vs. the viruses with wild type HAs and the optimization of the dose and 

timing for in-ovo vaccination.  

Vaccine 
Dose 

(EID50) 

Embryo 

age (Day) 

% Hatchability 

(# hatched/total #) 

H7N2 

(VIVA/04) 

Vaccine 

2mH7N2:6WF10att 

106 18 
50% 

(15/30)  
(P=0.016) 

106 19 
93% 

(42/45)  
(P=0.061) 

107 19 
80%  

(24/30)  
(P=0.066) 

2H7N2:6WF10att 

106 18 30%  
(9/30) 

106 19 43%  
(13/30) 

107 19 37%  
(11/30) 

H9N2 (WF10) 

Vaccine 

2mH9N2:6WF10att 

106 18 
63%  

(19/30)  
(P=0.0161) 

106 19 
90%  

(27/30)  
(P=0.260) 

107 19 
83%  

(25/30)  
(P=0.154) 

2H9N2:6WF10att 

106 18 37%  
(11/30) 

106 19 60%  
(18/30) 

107 19 37%  
(11/30) 

PBS (Mock) 
0 18 93%  

(28/30) 

0 19 96%  
(43/45) 

* 3 chickens dead at 2-5 days post-hatching 
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Table 4.3.  Replication and transmission study of recombinant virus 2H7N2:6WF10att 

and 2mH7N2:6WF10att in quail 

 

 

* 3 quail from each inoculated group were sacrificed at 3 dpi to determine virus load in the lungs.   

 

 

 

 

 

 

 

 

 

 

 

Virus Quail group 

# of positive tracheal swab/total # post-inoculation 

(log
10

TCID
50

/ml± SD) at peak viral shedding 
# of seroconverted/total # 

(Average HI titer at 14 dpi) 
1 dpi 3 dpi 5dpi 7 dpi 9 dpi 

2H7N2:6WF10att 

Inoculated 
6/6 

(2.9±0.4) 
6/6* 3/3 0/3 0/3 3/3 (133) 

Contact NA 
3/3 

(1.6±1.4) 
3/3 2/3 0/3 3/3 (47) 

2mH7N2:6WF10att 
Inoculated 6/6 (<0.7) 6/6* 1/3 1/3 0/3 3/3 (87) 

Contact NA 0/3 0/3 2/3 (<0.7) 0/3 2/3 (10) 
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Table 4.4.  Single-dose 2mH7N2:6WF10att in ovo vaccination study in chickens 

challenged with low-pathogenic H7N2 (Ck/04) at 2 and 6-week post-hatching  

 

Vaccine 

dose 

embryo 

age 

# positive 

HI/total # 

pre-

challenge 

Age in 

weeks at 

time of 

challenge 

# Shedding virus/total # in swabs (log
10

TCID
50

/ml±SD) 
# positive 

HI/total # 

at 14 dpi 

Tracheal Cloacal 

3 dpc 5 dpc 7 dpc 3 dpc 5 dpc 7 dpc 

0 (Mock) 0/8 2 
8/8 

(3.4±0.8) 

8/8 

(2.9±0.6) 
0/8 

2/8 

(3.7) 

5/8 

(3.4±0.2) 

5/8 

(3.2±0.5) 
8/8 (170) 

10
6
 EID

50
 

18-Day 
1/4 (3) 2 

3/4 

(3.3±1.0) 

3/4 

(2.9±0.9) 
0/4 

2/4 

(4.5±0.7) 

3/4 

(3.7±1.0) 

3/4 

(3.7±0.7) 
4/4 (320) 

10
6
 EID

50
 

19-Day 
6/8 (13) 2 

2/8 

(3.5±0.7) 

1/8 

(2.3) 
0/8 0/8 0/8 

1/8 

(2.0) 
8/8 (240) 

10
7
 EID

50
, 

19-Day 
3/5 (5) 2 

1/5 

(2.7) 
0/5 0/5 0/5 0/5 

1/5 

(2.3) 
5/5 (272) 

0 (Mock) 0/7 6 
7/7 

(3.5±0.7) 

7/7 

(3.4±0.7) 
0/7 

3/7 

(3.9±0.5) 

5/7 

(3.7±1.0) 

5/7 

(3.3±0.8) 
7/7 (525) 

10
6
 EID

50
, 

18-Day 
2/4 (50) 6 

2/4 

(4.1±0.6) 

2/4 

(3.9±0.6) 
0/4 

1/4 

(3.5) 

2/4 

(4.3±0.4) 

2/4 

(3.6±0.1) 
4/4 (360) 

10
6
 EID

50
, 

19-Day 
5/7 (51) 6 

2/7 

(3.4±0.2) 
0/7 0/7 

1/7 

(3.7) 

1/7 

(3.5) 

1/7 

(3.3) 
7/7 (525) 

10
7
EID

50
, 

19-Day 
4/5 (64) 6 

1/5 

(3.7) 

1/5 

(3.7) 
0/5 0/5 0/5 0/5 5/5 (640) 



 

 81 
 

Table 4.5.  Single-dose 2mH9N2:6WF10att in ovo vaccination study in chickens 

challenged with low-pathogenic H9N2 (WF10) at 2 and 6-week post-hatching 

Vaccine 

dose and 

inoculation 

time 

# positive 

HI/total # 

before 

challenge 

Age in 

weeks at 

time of 

challenge 

# Shedding virus/total # in swabs 

(log
10

TCID
50

/ml±SD) 

Tracheal # positive 

HI/total # at 14 

dpi 3 dpc 5 dpc 7 dpc 

0 (Mock) 0/7 2 
7/7 

(2.7±0.6) 

7/7 

(2.5±0.3) 
0/7 7/7 (217) 

10
6
 EID

50
, 

18-Day 
3/5 (14) 2 

2/5 

(2.2±0.2) 

2/5 

(2.3±0.4) 
0/5 5/5 (192) 

10
6
 EID

50
, 

19-Day 
6/7 (32) 2 

1/7 

(2.5) 
0/7 0/7 7/7 (286) 

10
7
 EID

50
, 

19-Day 
3/4 (32) 2 

1/4 

(2.3) 
0/4 0/4 4/4 (260) 

0 (Mock) 0/7 6 
7/7 

(2.5±0.3) 

7/7 

(2.5±0.2) 
0/7 7/7 (320) 

10
6
 EID

50
, 

18-Day 
2/5 (30) 6 

3/5 

(2.6±0.7) 

3/5 

(2.2±0.9) 
0/5 5/5 (224) 

10
6
 EID

50
, 

19-Day 
5/7 (71) 6 

2/7 

(2.4±0.5) 
0/7 0/7 7/7 (446) 

10
7
 EID

50
, 

19-Day 
3/3 (67) 6 0/3 0/3 0/3 3/3 (227) 
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Figure 4.1.  Strategy of modifying the HA cleavage site. (A). The substitution of 

H7N2 (VIVA/04) HA amino acid cleavage site with alternative cleavage site sequences 

of H6's. (B). The substitution of H9N2 (WF10) HA amino acid cleavage site with 

alternative cleavage site. 
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Figure 4.2. Viral replication kinetics of the live-attenuated viruses in MDCK cells at 

(A) 35°C and (B) 39°C using MOI of 0.001. Viral titers at different time points were 

determined by TCID50. 
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Figure 4.3. Plaque morphology of the live-attenuated viruses in CEK cell at different 

temperatures. Confluent CEK cells in six-well plates were infected with 

2mH7N2:6WF10att or 2H7N2:6WF10att. The numbers 10-6, 10-5, and 10-3 on the plaque 

pictures indicate the virus dilution used to infect cells at the indicated temperature. The 

cells incubated at 37°C, 39°C, or 41°C, respectively, for 4 days post infection and then 

fixed and the viral antigen was visualized by immunostaining as described in Materials 

and Methods. The plaques sizes were observed and the plaque numbers were counted and 

calculated as the log10 PFU/ml, as indicated below the individual plaque picture. A titer of 

<3.0 log10 PFU/ml indicates that no virus was detected at 10-3 dilution.
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Chapter 5: Glutamic acid to valine substitution at 
position 59 in PA enhances growth of live-
attenuated influenza vaccines in eggs and 
mammalian cells 

Abstract 

During the emergence of the 2009 pandemic H1N1 (pH1N1) influenza virus, a live 

attenuated vaccine candidate was produced by reverse genetics in the background of 

an experimental alternative live attenuated influenza strain, WF10att.  However, the 

recombiant virus 2ma-Ca/04:6WF10att yielded low hemagglutination (HA) titer after 

amplification in 10-day-old egg embryos.  In order to improve virus yield, the first 

passage virus (P1) was serially propagated in eggs for eight total passages (P8).  The 

P8 virus showed significant increased in HA titer (>30-fold) compared to the P1 

virus.  Sequence analysis of the entire 2ma-Ca/04:6WF10att viral genome revealed a 

single amino acid mutation in the PA gene, at position 59, in which glutamic acid was 

substituted to valine (PA E59V). Inoculation of this virus into eggs resulted in 20-fold 

increase in HA titer and a 4.6-fold increase in viral titer relative to the wild-type (wt) 

PA virus.  Upon culture in MDCK cells, the PA E59V virus had an HA and viral titer 

that increased 16 and 3.9-fold, respectively, compared to wt. Western blot analysis 

and quantitative analysis of viral mRNA showed that the PA E59V virus led to earlier 

and higher production of viral protein and viral mRNAs compared to the wt virus. 

The PA E59V mutation did not impair the temperature sensitive phenotype of 

WF10att. The PA E59V mutation moderately enhanced the HA and viral titer of wt 

WF10 and another alternative live-attenuated backbone, Ty/04att. However, it had no 

effect on two commercially licensed influenza vaccine internal backbones, PR/8 and 
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cold-adapted (ca) Ann Arbor/60. Interestingly, although the E59V had no significant 

effect on increasing HA/NP ratio of the wt WF10 or WF10att based live-attenuate 

vaccine; both of these backbones resulted in higher antigenic content (higher HA/NP 

ratio) on viral particles than PR/8- or ca Ann Arbor/60-based virus particles. 

Introduction 

In April 2009, a novel swine-origin pandemic influenza virus (pH1N1) rapidly 

spread around the world. By August 2010, human cases of pH1N1 had been reported 

from more than 214 countries, and caused more than 18,000 deaths worldwide [7]. 

  The available seasonal H1N1 vaccines provided little to no protection against 

the novel pH1N1 virus [26]. Both classical reassortment and reverse genetics methods 

were applied to readily generate the vaccine candidates against the pH1N1 virus, such 

as: X-179A (New York Medical School (NYMC)(US)), IVR-153 (Commonwealth 

Serum Laboratories (CSL) Ltd (AU)), NIBRG-121 (National Institute for Biological 

Standards and Control (NIBSC)(UK)) and IDCDC-RG15 (Centers for Disease 

Control and Prevention (CDC)(US)) [262]. Due to the low viral protein yield of those 

vaccine strains in chicken egg embryos, more efforts were carried out to achieve 

higher protein yield and functional HA yield resulting in strains NIBRG-121 xp and 

X-181[262].  

In order to generate live attenuated influenza vaccine (LAIV) against pH1N1, 

Chen et al. generated several reassortants with 6:2 gene constellation (2 surface genes 

from A/California/4/09 or A/ California /7/09, and 6 internal genes from cold-adapted 

(ca) A/Ann Arbor/6/60 (H2N2) strain) using reverse genetics. To improve the viral 
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replication in egg embryos and MDCK cells, those reassortant vaccines were 

propagated two times in MDCK cells and the large plaques were isolated for the 

sequence analysis. The mutations in the HA gene contributed to the improved viral 

replication in eggs were identified. The reassortant variants carrying those mutations 

were further detected in receptor binding assay and animal study. And the results 

demonstrated that the mutations on residue 119 and 186 may largely improve the 

viral growth in eggs without affecting the antigenicity and immunogenic of the 

vaccines [347]. 

 Other strategies were also applied to develop LAIV to protect against pH1N1. 

Additional experimental vaccines were developed, such as a mutant pH1N1 virus 

with the M2 protein lacking 11 amino acids at the cytoplasmic tail could protect mice 

from infection [348]; an engineering temperature sensitive LAIV was successfully 

developed by directly introducing point mutations into PB1 and PB2 genes of a 

pH1N1 like-virus [349]. 

Previsouly, we reported the development of alternative LAIVs based on 

introduction of amino acid mutations on the PB1 (K391E, E581G, and A661T) and 

PB2 (N265S) genes and an additional HA-tag at the C-terminus of the PB1 gene in 

the background of  influenza viruses A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) 

and A/turkey/Ohio/313035/2004 (H3N2), herein referred to as WF10att and Ty/04att, 

respectively. Using the WF10att background we generated a LAIV for the pH1N1 

virus based on the surface HA and NA genes from A/California/04/2009 (H1N1) 

(Ca/04). The new virus, 2Ca/04:6WF10att, produced low HA titers (4.4 ±0.4) when 

amplified in eggs. Serial propagation of this virus in eggs, however, significantly 
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improved the HA titer (10.0 ±0.38). Sequencing results revealed no changes on the 

surface genes but instead a single amino acid mutation in the PA gene: the codon 

encoding residue 59 changed from glutamic acid to valine. 

PA, a subunit of the influenza virus RNA-dependent RNA polymerase 

(RdRP), contains an N-terminal domian with endonuclease and protease activities and 

a C-terminal domain that interacts with the RdRP’s PB1 subunit. The N-terminal 209 

amino acids of PA posses a type II restriction endonuclease activity, with active site 

that coordinated with two manganese ions (Mn+), similar to other two-metal-

dependent endonuleases. Chelation of Mn2+ by PA involves participation of two sites: 

Mn2+ site 1 involves amino acids Glu80 and Asp108; whereas Mn2+ site 2 binding 

involves His40, Asp108 and Glu109 [134,135,136,137]. The endonuclease activity of 

PA complements the process of binding and snatching of host-derived capped mRNA 

10-13 nt long primers used for the synthesis of viral mRNAs [134,138,139,140].  

In this study, the animo acid substitution E59V in PA is demonstrated to be 

responsible for the enhanced HA titer and viral yeild in eggs and MDCK cell on the 

live attenuated vaccine WF10att background. PA E59V virus resulted in earlier and 

higher production of viral protein and viral mRNAs compared to the wt virus. 

Introduction of this substitution could also moderately enhance the HA and viral titer 

of the wild-type WF10 backbone and another alternative LAIV backbone, Ty/04att; 

however, it had no significant effect on two licensed influenza vaccine internal 

backbones PR/8 and ca Ann Arbor/60. Interestingly, although the PA E59V mutation 

had no significant effect on increasing HA/NP ratio of WF10 or WF10att based live-
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attenuated background; both of these backbones led to more antigenic content on the 

viral particles (higher HA/NP) than PR/8 or ca Ann Arbor/60 backgrounds. 

Materials and methods 

Virus, plasmid and cells 

The pH1N1 virus (Ca/04), wt-WF10, WF10att, wt-ty/04, and Ty/04att viruses 

have been previously described [254,350,351]. Virus stocks were prepared in specific 

pathogen free 9-day old embryonated chickens eggs following standard techniques 

for growth of influenza viruses. Madin-Darby canine kidney (MDCK) cells were 

maintained in Modified Eagle's medium (MEM) (Sigma-Aldrich, St. Louis, MO) 

containing 5% fetal bovine serum (FBS) (Sigma-Aldrich). Human embryonic kidney 

293T cells were cultured in Opti-MEM I (GIBCO, Grand Island, NY) containing 5% 

FBS. The reverse genetics 8-plasmid system for influenza A/Puerto Rico/8/1934 

(H1N1) (PR8) virus was a gift from Peter Palese, Mount Sinai School of Medicine, 

New York, NY. The RG system for the ca A/Ann Arbor/6/60 (H2N2) virus was 

produced from the homologous strain provided by Ruben Donis, CDC, Atlanta, GA, 

and cloned into the pDP2002 vector (Sutton et al, unpublished). The E59V mutation 

in PA genes from various virus backgrounds was introduced using the QuickChange 

II site-directed mutagenesis kit (Stratagene, Inc., La Jolla, CA) according to 

manufacturer's protocols. The presence of each mutation was confirmed by 

sequencing.  
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Generation of recombinant virus by reverse genetics 

The recombinant viruses were generated using the 8-plasmid system in co-

cultured 293T and MDCK cells as described previously [254]. 10 )l of pDP-2002 

plasmids (100 ng/ml) carrying the cDNA from each of 8 RNA segments were 

incubate with 18 )l TransIT LT-1 (Mirus, Madison, WI)  at room temperature for 45 

min, and then the mixture was transfected into co-cultured 293T and MDCK cells. 8 h 

later, the DNA-transfection mixture was replaced by Opti-MEM I. 24 h after 

transfection, 1 ml of Opti-MEM I containing TPCK-trypsin of 1.0 )g /ml was added 

to the cells. All recombinant viruses were propagated in 10-day-old embryonated 

eggs, titrated by TCID50, and stored at -70°C until use. All viruses were sequenced 

using specific primers. 

Sequence analysis 

The cDNA of the virus was prepared as previously described [254]. The total 

RNA of each sample was extracted using RNeasy Mini Kit (Qiagen, Gaithersburg, 

MD), and RNAs were eluted in 40 )l RNase-free water. The reverse trancription (RT) 

was peformed with the 4 )l of RNA sample and 1 )l Uni12 priemer using AMV 

Reverse Transcriptase (Promega, Madison, WI) at 42°C for 2 h and then 70°C for 10 

min. The specific fragment was amplified and sequenced using a combination of 

universal and custom made primers (available upon request, see Appendices). 

Sequencing was performed using the Big Dye Terminator v3.1 Cycle Sequencing kit 

(Applied Biosystems, Foster City, CA) on a 3100 Genetic Analyzer (Applied 

Biosystems, Foster City, CA) according to the manufacturer's instructions. The 

sequencing reaction system contains 2.0 )l of the cDNA, 1.5 )l of the sequencing 
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primer, 2.0 )l of RR-100 (Life technologies, Grand Island, NY) and 3.0 )l of 5x 

Sequencing buffer  (Life technologies, Grand Island, NY). The cycle conditions of 

sequencing were 96 °C 4 min, followed by 60 cycles of 96 °C 30 s, 56 °C 10s, and 60 

°C for 4 min. The reaction products were precipitated with 5)l EDTA (0.125 mM) 

and 60 )l 100% ethanol, and spin down at 3000xg for 15 min, following a wash with 

80 )l of 70% ethanol, and spin down at 3000xg for 15 min. The pellet was dried and 

dissolved in 10 )l of Hi Diformamide (HiDi, Fisher Scientific, Waltham, MA) for 

sequencing. 

Viral replication study in eggs and mammalian cells 

10-day-old embryonated eggs were inoculated with 100 or 1000 TCID50 virus 

in 0.1 ml PBS. The allantoic fluids were collected at 24, 48, 72 and 96 h post 

inoculation from 3 egg embryos. For the MDCK cells infection. The cells were 

washed with PBS for 3 times.  Confluent monolayers of MDCK cells (106 cell/well) 

in 6-well plates were infected with 1000 TCID50 of the viruses in 1.0 ml of Opti-

MEM I (MOI = 0.001). The plate was put in 4 °C for 15 min, and then transferred to 

37°C incubator for 45 min. The cells were washed with PBS for 3 times, and then 1.0 

ml of Opti-MEM I containing TPCK-trypsin of 1.0 )g /ml was added to each well. 

The viral supernatants were collected at 12, 24, 48, 72, 96 and 120 h post-inoculation. 

TCID50 from egg embryos and MDCK cells were detected as described previously 

[254].  

The inoculation of the egg embryos was carried out in triplicate; the infection 

of MDCK cells was performed in duplicate. All experiment results were confirmed 

with at least one more experiment. 
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Western blot 

MDCK cells were seeded in 6-well plate overnight, and then infected with 

viruses at MOI=0.1. The cells were harvested every 4 h after infection up to 24 h with 

250 )l of 2x Laemmli Sample Buffer (Bio-Rad, Hercules, CA) containing 50 )l "-

mercaptoethanol (Fisher Scientific, Waltham, MA)/ml. The samples were heated at 

100°C for 5 min and sonicated for 20 seconds, and then 20 )l  of the samples were 

loaded into a Mini-PROTEAN TGX Precast Gel (Bio-Rad, Hercules, CA). The gel 

was run for 60 min at 150 V using PowerPac basic power supply (Bio-Rad, Hercules, 

CA). Then the protein samples were transferred into supported nitrocellulose 

membrane (Bio-Rad, Hercules, CA) at 18 V for 45 min using Trans-Blot SD System 

and PowerPac HC Power Supply System (Bio-Rad, Hercules, CA). The viral protein 

HA and NS1 were detected with the monoclonal antibodies S-OIV-3B2 (prepared in 

the lab (1:500)) and Clone NS1-1A7 (from NIH (1:500)) as the primary antibody, 

rspectively; and then with HRP-conjugated goat anti-mouse IgG (SouthernBiotech, 

Birmingham, Alabama (1:5000)) as the secondary antibody. The image was 

developed using SuperSignal West Pico chemiluminescent substrate (Fisher 

Scientific, Waltham, MA). The image was scanned and the optical density of each 

sample was quatitatived using densitometry software Quantity One version 4.6.5 

(Bio-Rad, Hercules, CA), and then the relative amount of the proteins were further 

calculated. GAPDH was taken as the cellular internal control.  

This experiment has been repeated 2 times. However, quantitative 

densitometry has been permormed only once. 
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Reverse transcription and real-time PCR 

MDCK cells were seeded in 6-well plate overnight, and then infected with 

viruses at MOI=0.1. The cells were collected at the early phase of infection at 1, 5, 9 

and 13 h.p.i. using Trypsin-EDTA solution (Sigma-Aldrich, St. Louis, MO). The total 

RNA of each sample was extracted using RNeasy Mini Kit (Qiagen, Gaithersburg, 

MD), and RNAs were eluted in 40 )l RNase-free water. The reverse trancription (RT) 

was peformed with the 4 )l of RNA sample and 1 )l specific tagged RT priemers as 

listed in Table 5.3 using AMV Reverse Transcriptase (Promega, Madison, WI) at 

42°C for 2 h and 70°C for 10 min. The reverse transcription of the internal control 

MDCK 18s rRNA was performed with a random 15- oligomer (Sigma-Aldrich, St. 

Louis, MO). 

Quantitative real-time PCR (qPCR) was performed with Lightcycler 480 

SYBR Green I Master (Roche Applied Science, Indianapolis, IN), on a CFX96 Real-

time System (Bio-Rad, Hercules, CA). 2 )l of 10-fold dilution of the cDNA was 

added to the qPCR reaction mixture (10 )l Lightcycler 480 SYBR Green I Master 

(2(), 1.5 )l forward primer (10 )M), 1.5 )l reverse primer (10 )M), and 5 )l 

millipore water). The cycle conditions of qPCR were 95 °C 10 min, followed by 40 

cycles of 95 °C 15 s and 63 °C for 1 min. The internal control MDCK 18s rRNA was 

used for normalization, the real-time PCR of the virus samples was performed with 

specific primers as listed in Table 5.3. Data were analyzed using the Bio-Rad iQ5 

software version 2.1 (Bio-Rad, Hercules, CA). The relative level of mRNA, vRNA 

and cRNA were calculated via the 2*''CT method [352].  
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This experiment has been performed once in triplicate. “Relative Quantity 

(mean)” and “Relative Quantity SD (standard deviation) ” produced by Bio-Rad iQ5 

software version 2.1(Bio-Rad, Hercules, CA).  “2-sample t-test” was performed for 

the t-statistic of the RNA samples:  

 

Here: SD1=(3/2) + * S1; SD2=(3/2) + * S2. n1= n2=3. Therefore, t= (MeanmPA-

MeanPA)/(( SDmPA
2/2)+ ( SDPA

2/2))1/2. Df=n1+n2-2=4. 

I calculated the t-statistic for each RNA sample at different time points with t= 

(MeanmPA-MeanPA)/(( SDmPA
2/2)+ ( SDPA

2/2))1/2 using Microsoft EXCEL (All Means 

and SDs have been already determined by Bio-Rad iQ5 software version 2.1).  With 

degrees of freedom =4, I compared the t-value of mRNA, vRNA and cRNA at 1, 5, 9 

and 13 h.p.i. I calculated from above to the “t distribution table” at the chosen 

confidence level and decide whether to accept or reject the null hypothesis. 

The comparison of HA/NP ratio of the purified viruses using 

ELISA 

1000 TCID50 virus was inoculated into thirty 10-day-old embryonated eggs. 

200 ml of the allontoic fluid of each virus was harvested at 3 d.p.i., and then purified 

using sucrose cushion centrifugation with Ultra-Clear centrifuge tubes (Beckman 

Coulter, Sykesville, Maryland) and L-90K Ultracentrifuge (Beckman Coulter, 

Sykesville, Maryland) at 25,000(g for 2h. The concentrated pellet was dissolved in 8 

ml of PBS for ELISA. 
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In the ELISA, the purified virus was lysed with lysis buffer (0.5% Tween-20 

in PBS). The lysed virus was used as coating antigen, the mouse monoclonal antibody 

against HA: S-OIV-3B2 (prepared in the lab, specific to HA of A/California/04/2009 

(H1N1)) or NP: 2F4 (prepared in the lab, specific to NP of influenza virus) was used 

as first antibody, and the HRP-conjugated goat anti-mouse IgG (Southern biotech, 

Birmingham, AL) was used as detection antibody. The virus (diluted in 

carbonate/bicarbonate buffer, pH 9.6) was coated to 96-well plates for 12h at 4°C. 

After one wash with PBST (0.05%Tween-20 in PBS), the plate was blocked with 5% 

(w/v) non-fat milk in PBS for 1h at 37°C. After one wash with PBST, the first 

antibody was diluted (1:5000) in dilution buffer (0.5%BSA in PBS) and added to the 

wells (100)l/well). The mixture was incubated at 37°C for 1 h. After wash three 

times with PBST, 100)l HRP-conjugated goat anti-mouse IgG (1:10000) diluted in 

dilution buffer was added to well and the mixture was incubated for 1 h at 37°C. 

After five washes with PBST, the development was performed using the TMB 

substrate system (KPL, Gaithersburg, Maryland) for 15 min. The ratio of the OD650 

value of the sample wells (S) to that of the negative control wells (N) was determined, 

and the ratio of HA to NP from the same sample was calculated. However, this 

experiment was performed only once. 

Statistical analysis 

All figures were generated and all statistical analyses were performed with 

GraphPad Prism software version 5.0c (GraphPad Software Inc., San Diego, CA).  

Comparison between the means of two groups was carried out with a paired two-

tailed Student’s t-test, the multiple comparisons were performed by analysis of 
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variance (ANOVA) with Tukey’s multiple comparison test, unless otherwise 

specified. P values of <0.05 were considered significant difference. The statistical 

analysis of the “real-time PCR” was performed with “2-sample t-test” using 

Microsoft EXCEL, and compared with “t distribution table”. 

Results 

Preparation of an alternative pH1N1 live attenuated 

influenza virus (LAIV) based on the WF10att background 

(pH1N1 WF10att) 

During the emergence of pH1N1, a LAIV was produced carrying the two 

surface genes from A/California/04/2009 (pH1N1) (Ca/04) in the WF10att 

background (2 Ca/04:6 WF10att) (Table 5.1). The amplification of virus in 10-day-

old eggs, however, resulted in low HA titer (4.4 ±0.4). To enhance the viral growth, 

the first passage virus (P1) was further serially propagated in eggs for a total of eight 

passages (P8). The results showed the viral HA titer of the P8 (10 ±0.38) virus 

increased at least 30 fold compared to P1 (Table 5.2). 

Cooperated with Hongjun Chen, I finished the whole genome sequecing of P1 

and P8 viruses at 3x coverage. Five nucleotide substitutions were found in the PA and 

PB2 segments in P8 virus. However, only one nucleotide substitution in PA is non-

synonymous, and rest four nucleotide substitutions caused no amino acid change 

(Table 5.3). Generally during egg adapation of influenza viruses amino acid 

substitutions on the surface of HA and NA proteins are expected,  which can enhance 

virus growth, sometimes in detriment of the antigenic profile of the virus. 
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Interestingly, full-length genome sequencing of the P8 virus revealed no mutations 

resulting in amino acid changes on HA and NA. Instead, a single amino acid mutation 

was detected in the PA gene: amino acid 59 changed from glutamic acid to valine 

(E59V).  

The enhanced HA and viral titer of live-attenuated virus was 

confirmed in egg embryos and MDCK cells using reverse 

genetics 

To investigate if PA E59V is responsible for the enhanced HA titer, we 

generated the viruses containing either mutated PA (E59V) or wild-type (wt) PA 

using reverse genetics (Table 5.1). The viruses were inoculated into 10-day-old egg 

embryos, and HA and viral titer were detected at 3 d.p.i. The HA  titer of virus 2ma 

Ca/04:mPA(E59V):5WF10att increased at least 20-fold compared with that of the 

recombinant virus with the wt PA (Figure 5.1A and E); and the viral titer increased 

4.6-fold than that of the recombinant virus with the wild-type PA at HA peak (Figure 

5.1B and F). Similarly, when infected MDCK cells, the HA titer and the viral titer of 

2 ma Ca/04:mPA(E59V):5WF10att increased 16 and 3.9-fold, respectively, compared 

with those of the virus with the wild-type PA (Figures 5.1C and G, and Figures5.1 D 

and H). 

We further confirmed the role of PA E59V on viral HA synthesis using 

western blot. MDCK cells were infected with either E59V or wt PA virus at 

MOI=0.1; the viral supernatants were collected every 4 h after infection up to 24 h. 

The expression level of HA (CA/04) and NS1 (WF10) were detected using western 

blot (Figure 5.2A-C). Densitometry results showed that NS1 could be detected as 
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early as 8 h.p.i. in E59V samples; while no signals could be detected from the wt PA 

samples at the same time point (Figure 5.2D and E). The strong HA signal could be 

detected in the E59V infected cell lysate from 12 h.p.i. (Figures 5.2C and D). The 

results suggested HA expression level was greatly up-regulated by PA E59V during 

the infection with live-attenuated virus. 

The substitution of PA E59V increased mRNA, cRNA and 

vRNA level during early phase of infection in MDCK cells 

using strand-specific real-time RT-PCR 

To investigate the role of PA E59V on viral RNA transcription and 

replication, we applied strand-specific real-time RT-PCR to evaluate the mRNA, 

cRNA and vRNA levels during early phase of infection; and selected HA and NP as 

the target genes for detection. The reverse trancription of HA (ma Ca/04) and NP 

(WF10) genes were peformed with specific tagged priemers “RT mRNAtag”, “RT 

vRNAtag” or “RT cRNAtag” (Table 5.4). The quantitative real-time PCR performed 

with specific primers “mRNAtag”, “vRNAtag” or “cRNAtag” which was reverse 

complement to the partial sequence of the tagged primer in the RT process, and the 

internal primers as listed (Table 5.4). The result showed: for HA gene, 2ma 

Ca/04:mPA(E59V):5WF10att increased the mRNA level 8- and 2.5-fold, and 

increased the vRNA level 9- and 4.3-fold at 9 and 13 h.p.i., respectively, compared to 

those of wt-PA virus at 9 and 13 h.p.i. (Figures 5.3A and B). Similarly, for the NP 

gene, at 9 and 13 h.p.i., 2ma Ca/04:mPA(E59V):5WF10att increased the mRNA level 

6.5- and 2.5-fold and increased vRNA level 7.9 and 7.1-fold, respectively, compared 

to those of wt-PA virus (Figures 5.3D and E). 
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The substitution of PA E59V did not impair the temperature 

sensitive phonotype of the live-attenuated backbone 

To study if PA E59V affects the temperature sensitive phenotype of WF10att, 

MDCK cells were infected with PA E59V or wt PA virus, and cultured at 35°C and 

39°C. The kinetic curve of the viral replication suggested that the viral replication at 

39°C was severely restricted, with viral titers reduced more than 1000-fold relative to 

those at 35°C (Figure 5.4), which indicated that the substitution E59V did not impair 

the temperature sensitive phenotype of the backbone. 

The substitution of PA E59A had no effect on the viral 

replication of live-attenuated virus in egg embryos and 

MDCK cells 

To investigate if position 59 on PA gene is critical to the viral replication in 

the live-attenuated viruses, we substituted this amino acid to alanine, and generated 

2ma Ca/04:mPA(E59A):5WF10att (Table 5.1) using reverse genetics. The viral 

kinetics of live-attenuated viruses carrying PA 59V, 59E and 59A were compared in 

egg embryos and MDCK cells. However, no significant difference in HA or viral titer 

has been detected between the viruses with PA 59E and 59A during infection (Figure 

5.5), which indicated that PA position 59 may not be the critical amino acid 

responsible for the viral RNA-dependent polymerase activity in the live-attenuated 

influenza viruses. Take together, PA 59V may contribute to a regulation mechanism 

which confers the attenuated backbone enhanced HA yield under the temperature 

sensitive phenotype. 
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The substitution of PA E59V moderate enhanced the HA titer 

of vaccines with WF10 and Ty/04att backbones; but had no 

effect in PR/8 and Ann Arbor backbones 

To investigate if PA E59V has the effect of enhancing the HA and viral titers 

in other live-attenuated and inactivated influenza vaccine systems, we introduced this 

substitution into PA of wild-type WF10, PR8, ca Ann Arbor/60 and Ty/04att 

backbones (Table 5.1); and inoculated egg embryos and MDCK cells with the 

recombinant viruses. However, amongst those four systems, only wild-type WF10 

and Ty/04att backbones with PA E59V displayed moderately enhanced HA and viral 

titers in egg embryos and MDCK cells (Figures 5.6A-D, and Figures 5.6E-H); while 

introducing of this substitution did not affect the HA titer of virus with PR8 or ca Ann 

Arbor/60 backbone in egg embryos (Figures 5.6I and K, and Figures 5.6J and L). 

WF10att  and wild-type WF10 backbones have higher HA/NP 

ratio than that of PR8 and Ann Arbor/60 

To investigate if substitution PA E59V can cause the particles to incorporate 

more HA proteins into the live-attenuated virus, and to compare which vaccine 

backbone may include more HA content, we detected the HA and NP level of 

purified live-attenuated and inactivated viruses, and compared the HA/NP ratio of 

each virus. However, in the WF10att and wt-WF10 system, the result revealed that 

the introduction of E59V did not significantly increase the HA/NP ratio (Table 5.5). 

As the amount of NP is generally taken as a constant in a viral particle, the result 

indicated that E59V could not increase the number of HA molecules on the surface of 

the viral particle.  
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Interestingly, compared with HA/NP ratio of PR8 (3.27) and ca Ann Arbor/60 

(3.86) system, WF10att and wt-WF10 has the HA/NP ratio more than 5.0 (Table 5.5), 

which suggested that these two system may incorporate more HA content than other 

two systems when produce recombinant vaccines. However, this experiment has been 

performed only once, and repeating is needed to confirm the result. 

Discussion 

The embryonated chicken eggs have been widely used for influenza vaccines 

production. However, the amplification of the human-like virus isolates, especially 

H1N1 and H3N2 subtype, generally showed low viral protein yield in eggs 

[262,353,354,355]. Several approaches are employed to improve the virus growth in 

eggs. To further serially pass in eggs is the most straightforward method to improve 

the viral growth [262,353,356,357].  For example, a live-attenuated vaccine strain 

against seasonal influenza H3N2 A/Fujian/411/02 was generated by reassorting the 

HA and NA segments of H3N2 virus with the internal segments of ca A/Ann 

Arbor/6/60. Inoculation of reassortant vaccine in chicken eggs resulted in poor 

replication. Three more passages in eggs dramatically increased the virus titer from 

1.5 log10 PFU/ml to 8.2 log10 PFU/ml. Two amino acid substitutions in the HA 

(H183L and V226A) contribute to the improved virus replication in eggs, as well as 

the enhanced receptor-binding activity [357]. The first available candidate vaccine 

viruses against an A/California/7/2009-like virus, such as NIBRG-121 showed 

disappointingly low virus protein yield in eggs. The protein yield was greatly 

improved by serial passage of NIBRG-121 for ten more times. The substitution 

K119N in HA was indentified to be responsible for the enhanced HA and total protein 
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yield observed in the egg-adapted vaccine [353]. Propagating the virus in mammalian 

cells, isolating the large-morphology for the test of viral replication in eggs is also 

been applied to improve the vaccine virus replication in eggs. A live attenuated 

influenza virus A/California/7/9 (H1N1) vaccine strain carrying the HA and NA gene 

segments of the 2009 pandemic virus and the six internal gene segments of ca A/Ann 

Arbor/6/60 (H2N2) replicated poorly in chicken eggs. The reassortant viruses were 

propagated twice in MDCK cells with different MOI, and the supernatants were 

detected by plaque assay. The HA segments from the MDCK-passaged viruses with 

much larger size of the plaques were further sequenced. The results revealed that 

several amino acid substitutions were responsible for the enhanced viral replication in 

MDCK cells and eggs. However, only the substitutions at residues 119 and 186 did 

not change the antigenicity or immunogenicity of the virus [347].  

The previously identified amino acid substitutions in HA which are 

responsible for the improved the viral growth in eggs can also be a good reference for 

the novel vaccine strain with the same subtype [347,356]. For example, the 

substitutions G186V and V226I or H183L and V226A in the HA have been 

discovered to contribute to the improved virus replication of live attenuated vaccine 

against seasonal influenza H3N2 A/Fujian/411/02 in eggs. Those substitutions were 

introduced into the HA of another H3N2 virus A/Singapore/21/04 by reverse 

genetics. The results showed that G186V also has the effect on enhancing the virus 

replication of this strain in eggs [356]. However, the vaccine strains needs to be 

further evaluated as the amino acid mutation(s) in HA after adaptation may appear on 
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the HA antigenic site or/and receptor binding site, affect the antigenicity and 

immunogenic of the vaccine, and protection efficacy [358,359]. 

In order to evaluate the live attenuated Influenza virus as a candidate to 

protect human and animals from the infection of newly emergent pH1N1 2009, our 

lab selected ma Ca/04 strain as an alternative to A/California//04/2009. This strain 

contains two mutations D131E and S186P on HA, which are responsible for the 

increased virulence for mice; and these two mutations were also found in increased 

human cases after 2009 ([350] and Ye et al, unpublished).  

Our lab generated live attenuated influenza virus 2ma-Ca/04:6WF10att 

against pH1N1 2009 replicated poorly in eggs firstly. After passed the virus 7 more 

times in eggs, the virus had dramatic increased in HA titer. Interestingly, the whole 

genome sequencing result of the egg-adapted virus showed that the amino acid 

substitution did not appearred on the surface glycoprotein HA or NA, but on the 

internal gene PA: residue 59 mutated from glutamic acid to valine. We obtained the 

live attenuated WF10att virus contained this amino acid substitution using reverse 

genetics, and confirmed the effect of E59V on incraesing the HA yeild and viral 

growth.  

PA is the subunit of influenza virus RdRP heterotrimer, and characterized to 

be a type II restriction endonulease in the crystal structure study. The function of PA 

residue 59 is unclear, but according to the crystal structure of PAN, E59 is also 

coordinated with Mn1 and Mn2 from close molecule, which suggest that amino acid 

residue 59 may also ralated to the endonuclease activity.  
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The kinetic study in 35 and 39°C showed that PA E59V did not impair the 

temperature sensitive phenotype of live attenuated WF10att backbone. As the single 

mutation is on the internal gene, this mutation is not likely to affect the antigenicity 

and immunogenic. 

The conventional real-time RT-PCR approach performed with the strand-

specific primers, and generally showed low specificity. In contrast, the novel strand-

specific reverse transcription method developed recently greatly improved the 

product specificity using tagged primers to add a 18-20 nucleotides “tag” on the 5’-

end which is not related to influenza sequences [360]. We selected canine18S rRNA 

as the reference gene (internal control) for the normalization of real-time RT PCR 

data, as compared with other tested housekeeping genes, 18S rRNA was the most 

stable in the influenza virus infected cells [361]. To generate the viral RNA synthesis 

profiles during infection, we applied this tagged primer strand-specific real-time PCR 

method. The results showed, both viral mRNA transcription level and vRNA 

replication level were significantly up-regulated in HA and NP genes by the 

substitution of PA E59V at the early phase of infection; which indicated that this 

mutation enhanced RdRP activity of the live attenuate WF10att vaccine when 

carrying the pH1N1 2009 surface glycoprotein.  

However, the alignment of PA genes from different subtypes of Influenza 

viruses displayed that glutamic acid at residue 59 is highly conserved in most of the 

virus strains, and PA E59V substitution did not enhance the HA and viral titers in 

PR8 and ca Ann Arbor/60 backbones. In another experimet, the replacement of PA 

residue 59 into alanine did not affect the viral replication of the WF10att virus in eggs 
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and MDCK cells. All together, the amino acid substitution of E59V on PA gene is the 

result of viral adaptation under the selestion stress of embryonated chicken eggs; this 

substitution could be backbone-specific, not critical to the RdRP activity, but confer 

the live attenuated system enhanced HA yeild and better viral growth without 

imparing the temperature sensitive phenotype of WF10att. The substitution PA E59V 

also confer WF10att backbone higher capbility to replicate better in eggs with the 

glycoprotein derived from human-like influenza virus. 

To compare the HA yield and viral growth of pH1N1 2009 vaccines with 

different backbone systems, as well as to investigate if the substitution of PA E59V 

could cause the viral particle to incorporate more HA molecules on the surface, we 

purified and concentrated the viruses in this study and then determined the HA titer, 

viral titer and HA/NP ratio of each virus. In the live attenuated vaccine group, 

WF10att backbone with PA E59V mutation achieved the best HA titer (4096) and 

viral titer (5.6x109); while in the inactivated vaccine group, PR8 system obtained the 

highest HA titer (4096) and viral titer (1.8x1010) (Table 5.5). Unlike our hypothesis, 

PA E59V did not provide higher HA/NP ratio in either WF10att or wt WF10 systems, 

which indicated E59V could not increase the number of HA molecules on the surface 

since the amount of NP is generally unchanged in a viral particle. Interestingly, we 

found the HA/NP ratios of WF10att wt WF10 are more than 5.0, which are much 

higher than that of PR8 or ca Ann Arbor/60 systems (Table 5.5). HA is the most 

important antigen to elicit the neutralization antibody in the host immune response. 

The live attenuated vaccine system WF10att which was developed by our lab may be 
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proved to be valuable to contain more antigen content from embryonated chicken 

eggs and mammalian cells.  

I also planned to study the mechanism of PA E59V on HA and viral titer 

promotion using the endonuclease activity assay. I cloned N-terminal 210 amino 

acids of WF10 mPA (E59V) and wt-PA into pET-15b vector. However, the 

expression of PA-Nter in BL-21 E.coli was not successful.  After pre-culture, the 

bacteria strains were inoculated 1:50 into 5 ml of LB media. I tried culture at 37°C for 

5-8 h or at room temperature (around 25°C) for overnight until the OD600 was 

0.4~0.7. The induction of protein express was carried out by the addition of 0.2, 0.5 

or 1.0 mM Isopropyl !-D-1-thiogalactopyranoside (IPTG) into the media. The 

bacteria were harvested at 6 and 12 h after induction, and the expression of the 

protein was detected using SDS-PAGE gel. However, compared with blank plasmid, 

no extra band has been found around the molecular weight 33 kDa (PA-Nter). Other 

conditions, such as culturing at 16°C or inducing with 2.0 mM IPTG should be try to 

optimize the protein expression. 
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Table 5.1. Gene constellations of recombinant viruses used in this study. 

 

 

 

 

 

 

 

 

 

Virus HA and NA Internal Genes (PB1, 

PB2, NP, M and NS) 

PA 

2ma Ca/04: 6WF10att mouse-adapted Ca/04 H1and N1 WF10att PA ( WF10att) 

2ma Ca/04:mPA(E59V):5WF10att mouse-adapted Ca/04 H1and N1 WF10att PA E59V ( WF10att) 

2ma Ca/04: 6WF10 mouse-adapted Ca/04 H1and N1 WF10 PA (WF10) 

2ma Ca/04:mPA(E59V):5WF10 mouse-adapted Ca/04 H1and N1 WF10 PA E59V (WF10) 

2ma Ca/04: 6PR8 mouse-adapted Ca/04 H1and N1 PR8 PA (PR8) 

2ma Ca/04:mPA(E59V):5PR8 mouse-adapted Ca/04 H1and N1 PR8 PA E59V (PR8) 

2ma Ca/04: 6ca Ann Arbor mouse-adapted Ca/04 H1and N1 ca Ann Arbor PA ( ca Ann Arbor) 

2ma Ca/04:mPA(E59V):5ca Ann 

Arbor 

mouse-adapted Ca/04 H1and N1 ca Ann Arbor PA E59V ( ca Ann Arbor) 

2ma Ca/04: 6Ty/04att mouse-adapted Ca/04 H1and N1 Ty/04att PA (Ty/04att) 

2ma Ca/04:mPA(E59V):5Ty/04att   mouse-adapted Ca/04 H1and N1 Ty/04att PA E59V (Ty/04att) 

2ma Ca/04:mPA(E59A):5WF10att mouse-adapted Ca/04 H1and N1 WF10att PA E59A (WF10att) 
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Table 5.2. Enhanced HA titers after serially propagated recombinant influenza virus ma-CA/04 

H1N1:6WF10att in egg embryos. 

 

Passage HA Titer (log2) Mean±standard error of 

the mean 

1 5, 4, 3, 5, 5  4.40 ±0.40 

2 5, 5, 5, 5, 6 5.20±0.20 

3 6, 3, 7, 8, 7, 7 6.33±0.72 

4 9, 6, 7, 7, 6 7.00±0.55 

5 8, 9, 9, 9, 8 8.60±0.25 

6 9, 9, 8, 11, 9, 6, 8 8.57±0.57 

7 11, 9, 11, 9 10.00±0.58 

8 10, 11, 8, 11, 10, 10, 10 10.00±0.38 
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Table 5.3. The nucleotide changes in the genes of P8 virus. 
 
 

Gene Nucleotide 
position 

Nucleotide 
change Amino acid Synonymous or non-

synonymous mutations  

PA 
215 A ! T/A Glu ! Val/Glu Non-synonymous 
495 A ! A/T/C Gly ! Gly Synonymous 
2061 A!A/T Leu ! Leu Synonymous 

PB2 1162 C ! C/T Leu ! Leu Synonymous 
1302 C ! T/C Phe ! Phe Synonymous 
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Table 5.5. The comparison of HA to NP ratios of the pH1N1 vaccines with 

different internal backbones 

 

Category of 

the viruses 
Virus HA titer of TCID50 EID50 

HA/NP ratio 

(ELISA) 

Live-

attenuated 

vaccine 

ma-Ca/04 H1N1: 

mPA:5WF10att 
4096 5.0x107 5.6x109 5.29 

ma-Ca/04 H1N1: 

6WF10att 
256 2.3x106 3.2x108 5.15 

ma-Ca/04 H1N1: 

6ca Ann Arbor 
128 5.6x105 3.2x107 3.86 

Inactivated 

vaccine 

ma-Ca/04 H1N1: 

mPA:5WF10 
4096 5.0x107 5.6x109 5.22 

ma-Ca/04 H1N1: 

6WF10 
2048 2.3x107 3.2x109 5.18 

ma-Ca/04 H1N1: 

6PR/8 
4096 1.6x108 1.8x1010 3.27 
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Figure 5.1. Comparison of the HA and viral titers of mPA (E59V) and wt-PA viruses in 

10-day-old embryonated eggs and MDCK cells. 100 TCID50 of the viruses were inoculated 

in 10-day-old embryonated eggs and the HA titers of the allantoic fluid were detected every 

24 hpi (A), or (E) at 4 d.p.i., and the viral titers of the samples were detected using TCID50 

method in MDCK cells (B and F). MDCK cells were infected with the viruses at MOI=0.005. 

T he HA titers of the supernatants were detected at 24, 48, 72, 96 and 120 hpi (C) or at 96 

h.p.i (G), and the viral titers of the samples were detected using TCID50 method in MDCK 

cells (D and H).  
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Figure 5.2. Comparison of the viral protein: HA and NS1 synthesis level in 

MDCK cells during infection. MDCK cell were infected with 2ma-Ca/04 

H1N1:mPA (E59V):5WF10att (m) or 2ma-Ca/04 H1N1:6WF10att (wt) at 

MOI=0.1.  The protein synthesis levels of HA and NS1 were detected (A) at 4, 8, 

24 and 48 h.p.i; (B) at 9, 11, 13, and 24 h.p.i; and (C) at 4,8,12,16,20 and 24 h.p.i. 

using western blot. Cells were mock (M) infected with PBS. The protein synthesis 

levels of the HA (D) and NS1 (E) in (C) were quantitative by densitometry, and 

the relative expression levels were showed. 
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* indicates a P-value<0.05, ** indicates a P-value<0.005. 

 

Figure 5.3. Evaluation of HA and NP viral mRNA, cRNA and vRNA level at 

early phase of infection in MDCK cells at different time points using RT real-

time PCR. MDCK cells were infected with 2ma-Ca/04 H1N1:mPA 

(E59V):5WF10att and 2ma-Ca/04 H1N1:6WF10att. The cell samples were 

harvested at 1, 5, 9 and 13 h.p.i. The viral RNA expression levels of HA and NP 

were detected by using influenza virus segment specific tagged primers. The relative 

mRNA (A), vRNA (B) and cRNA (C) levels of the HA, and the relative mRNA (D), 

vRNA (E) and cRNA (F) levels of the NP were calculated by comparing the 

expression level of mPA samples to that of wt-PA samples at the same time point.  
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Figure 5.4. Viral replication kinetics of the live-attenuated viruses in MDCK 

cells at 35°C and 39°C using MOI of 0.001. Viral titers at different time points 

were determined by TCID50. 
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Figure 5.5. The comparison of live-attenuated viruses of PA 59A with 59E and 

59V in egg embryos and MDCK cells. 100 TCID50 of the viruses were inoculated in 

10-day-old eggs and the HA titers of the allantoic fluid were detected at 3 d.p.i. (A), 

and the viral titers were detected using TCID50 method in MDCK cells (B). MDCK 

cells were infected with the viruses at MOI=0.01. The HA titers of the supernatants 

were detected at 24, 48, 72, 96 and 120 h.p.i. (C), and the viral titers were detected 

using TCID50 method in MDCK cells (D). The virus replications of PA 59E and 59A 

were also compared (E) in eggs by inoculated with 100 TCID50 of the virus and (F) in 

MDCK cells by infected with the virus at MOI=0.01. The peak HA titers of the viruses 

in eggs and MDCK cells were showed. 
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Figure 5.6. Evaluation of the effect of PA amino acid 59 substitution on WF10, Ty/04att , 

PR8 and ca Ann Arbor/60 internal backbones. (A) and (C) 100 TCID50 of the viruse 2ma 

Ca/04 H1N1:mPA(E59V):5WF10 or 2ma Ca/04 H1N1: 6WF10, or (E) and (G) 2ma Ca/04 

H1N1: 6Ty/04att or 2ma Ca/04 H1N1:mPA(E59V):5Ty/04att were inoculated in 10-day-old eggs 

and the HA titers of the allantoic fluid were detected every 24 h.p.i. MDCK cells were infected 

with the viruses of (B) and (D) WF10 or (F) and (H) Ty/04att backbones at MOI=0.005 and the 

HA titers of the supernatants were detected at 24, 48, 72, 96 and 120 h.p.i. (I) and (K) 100 

TCID50 of the virus 2ma Ca/04 H1N1:mPA(E59V):5PR8 or 2ma Ca/04 H1N1: 6PR8, and (J) 

and (L) 2maCa/04 H1N1:mPA(E59V):5ca Ann Arbor/60 or 2maCa/04 H1N1: 6ca Ann Arbor/60 

were inoculated in 10-day-old eggs and the HA titers of the allantoic fluid were detected every 24 

h.p.i. 
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Chapter 6: Cytoplasmic Accumulation of NS1 

Enhances the Viral Replication and Anti-apoptotic 

activity of an Avian Influenza Virus (H9N2)  

 

Abstract 

To better understand the molecular mechanism of the adaptation and interspecies 

transmission of influenza viruses, our lab previously generated two adapted 

viruses from wildtype duck H9N2, A/duck/Hong Kong/702/79 (WT702) virus, 

through 23 serial passages in lung of quail, and followed by 10 serial passages in 

the chickens. The quail-adapted virus is named as QA23, and the virus further 

adapted in chickens is named as QA23CkA10.  QA23CkA10 gained the new 

phenotype of replicating and transmitting efficiently in both chickens and quail. 

And more importantly, both QA23 and QA23Ck10, unlike WT702, were able to 

infect mice without any further adaptation. We were particularly interested in the 

mutated NS1 gene of QA23, as NS1 has multiple functions, such as antagonizing 

host immune responses during viral infection. Three amino acid substitutions 

M106T, K217E and K219E were identified in QA23 NS1 as well as QA23Ck10 

NS1. The localization study and the nuclear and cytoplasmic protein distribution 

assay demonstrated that QA23 NS1 mainly accumulated in the cytoplasm; in 

contrast, WT702 NS1 predominantly accumulated in the nucleus. In this H9N2 

influenza virus strain, residue 219 played the critical role on the nucleus 

importing of NS1, and nuclear localization sequence 2 (NLS2) is the major import 
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signal instead of NLS1. Minigenome assay in DF1 cells demonstrated that QA23 

NS1 up-regulated the viral protein synthesis. The enhanced cytoplasmic 

accumulation of QA23 NS1 did not affect the inhibition of IFN- !, while the 

apoptotic activity level of the cell was greatly reduced during the infection. 

However, the mutated NS1 did not affect the virus replication and transmission in 

Japanese quail. Take together, the increased cytoplasmic accumulation of NS1 

may enhance the viral replication and reduce apoptotic activity in the host cells. 

Introduction 

NS1 protein contains 230-237 amino acids, depending on the strains, and 

has a molecular weight around 26 kDa. According to the biological function, NS1 

can be divided into the N-terminal (residues 1-73) RNA-binding domain (RBD) 

and C-terminal (residues 84-207) effector domain (ED), which are connected by a 

linker. The structure of the 20 amino acids on the C-terminal domain may be 

naturally disordered.  

The structures of RBD domain and ED domain, and the locations and key 

residues of NLS1, NLS2, NES and NoLS have been discussed in Chapter 1 and 3.  

 One of the major functions of NS1 is to antagonize the innate immune response 

of the host during influenza infection, especially to limit the production of 

interferon beta (IFN-!) induction by interacting with multiple host factors, such as 

CPSF30, PABPII, RIG I, TRAM25, OSA and PKR (discussed in Chapter 1 and 

3).  

To our notice, several important functions of NS1, such as the PDZ 

domain-binding and the activation of PI3K pathway, appear to be strain-specific. 
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Some of those functions are associated with the virulence of the influenza virus. I 

summarized the strain-specific functions of NS1 from the references, and listed in 

Table 1.2. 

The nucleus/cytoplasm accumulation pattern of NS1 may affect its 

interaction with the host factors, because some host factors distribute only in the 

nuclear or cytoplasm. For example, compared to the NS1 of its low pathogenic 

precursor H7N1 (A/chicken/Italy/1082/99), the NS1 of the highly pathogenic 

H7N1 (A/ostrich/Italy/984/00) carried two mutations in NES, and a 6-amino acid 

truncation at the C-terminus resulted from the third mutation. The cytoplasmic 

accumulation of NS1 is responsible for the enhanced pathogenicity of this HP 

H7N1 strain [199]. 

Our lab previously generated two adapted viruses QA23 and QA23CkA10 

from a wildtype duck H9N2 (WT702) virus. Both viruses gained the new 

phenotype of replicating and transmitting efficiently in both chickens and quail, 

and directly infecting mice. These two viruses also showed faster growth kinetics 

in MDCK and CEK cells [98]. The comparison of the deduced amino acid 

sequences from the ORF of QA23, QA23Ck10 and WT702 revealed that 14 and 

17 amino acid substitutions and throughout the viral genome and a 21-amino acid 

deletion in NA in the adapted viruses QA23 and QA23Ck10 compared with 

WT702 [98]. Of particular interest, however, were the amino acid mutations on 

NS1, as NS1 is one of the most important pathogenesis factors and has multiple 

functions during viral infection. Three amino acid substitutions were identified in 

QA23 NS1 as well as QA23Ck10 NS1: M106T, K217E and K219E. NS1 protein 
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localization study using Immunofluorescence assay and dissociation of nuclear 

and cytoplasmic fractions displayed that QA23 NS1 predominantly accumulated 

in the cytoplasm; in contrast, WT702 NS1 predominantly distributed in the 

nucleus. Residue 219 played the critical role on the nucleus importing of NS1, 

and nuclear localization sequence 2 (NLS2) is the major signal instead of NLS1. 

Minigenome assay in DF1 cells demonstrated that QA23 NS1 up-regulated the 

viral protein synthesis. The enhanced cytoplasmic accumulation of QA23 NS1 did 

not affect the inhibition of IFN- !, while the apoptotic activity level was greatly 

reduced during the early phase of the infection. However, there is no evidence 

showing that QA23 NS1 is associated with the enhanced replication and 

transmission of the virus in quail. Take together, the increased cytoplasmic 

accumulation of NS1 may enhance the viral replication and reduce apoptotic 

activity in the host cells. 

Materials and methods 

Virus, plasmid and cells 

The A/Duck/Hong Kong/702/79 (H9N2) virus (WT702) was kindly 

provided by Dr. Robert G. Webster, St. Jude Children's Research Hospital, 

Memphis, TN. The quail-adapted (QA23) virus was generated and isolated as 

previously described [98]. The virus stocks were prepared in specific pathogen 

free 9-day old embryonated chickens eggs following standard techniques for 

growth of influenza viruses. The RG 8-plasmid system for the WT702 and QA23 

virus were cloned into the pDP2002 vector (Hickman et al, unpublished). MDCK, 



 

 123 
 

A549 and HeLa cells, as well as DF1 cells, MDCK cells were maintained in 

Modified Eagle's medium (MEM) (Sigma-Aldrich, St. Louis, MO) containing 

10% fetal bovine serum (FBS) (Sigma-Aldrich). Human embryonic kidney cell-

line 293T (HEK293T) were cultured in Opti-MEM I (GIBCO, Grand Island, NY) 

containing 5% FBS.  

The green fluorescence protein eGFP-NS1 fusion plasmids were 

constructed as following: the amplified full-length of WT702 and QA23 NS1 

gene were digested with PstI and BamHI, and cloned into pEGFP-C1 expression 

vector (Clontech, Mountain View, CA) digested with identical enzymes. The C-

terminus of the eGFP protein is connected with the N-terminus of the NS1. 

All mutations were introduced using the QuickChange II site-directed 

mutagenesis kit (Stratagene, Inc., La Jolla, CA) according to manufacturer's 

protocols with the specific primers. The presence of each mutation was confirmed 

by sequencing.  

Generation of recombinant virus by reverse genetics  

The recombinant viruses were generated using the 8-plasmid system in co-

cultured 293T and MDCK cells as described previously [254]. All recombinant 

viruses were propagated in 10-day-old embryonated eggs, titrated by TCID50, and 

stored at -70°C until use. All viruses were sequenced using specific primers. 

Sequence analysis 

The cDNA of the virus was prepared as previously described [254]; the 

specific fragment was amplified and sequenced using a combination of universal 

and custom made primers (available upon request, see Appendices). Sequencing 
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was performed using the Big Dye Terminator v3.1 Cycle Sequencing kit (Applied 

Biosystems, Foster City, CA) on a 3100 Genetic Analyzer (Applied Biosystems, 

Foster City, CA) according to the manufacturer's instructions. 

Immunofluorescence assay 

For the eGFP-NS1 fusion protein localization, 293T, MDCK, A549 and 

DF1 cells were seeded on glass coverslips overnight. 200ng of eGFP-NS1 

plasmid was incubate with 3.6 !l TransIT LT-1 (Mirus, Madison, WI) at room 

temperature for 45 min, and then the mixture was transfected into the cells. 8 h 

later, the DNA-transfection mixture was replaced by Opti-MEM I. At 24 h post 

transfection, the cells were fixed with 4% paraformaldehyde solution, washed 

with PBS, incubated with 0.2% Triton X-100 in PBS. After further washes with 

PBS, cells were incubated with 4",6-diamidino-2-phenylindole (DAPI ; 1 mg /ml; 

Thermo Scientific, West Palm Beach, FL), and processed for 

immunofluorescence microscopy using a Zeiss SM510 confocal microscope (Carl 

Zeiss Microscopy, Thornwood, NY).  

For the immunostaining assay, DF1 cells were seeded in Nunc Lab-Tek II 

chamber slides (Thermo Scientific, West Palm Beach, FL) overnight, and infected 

with virus WT702 or QA23 NS:7WT702 at MOI=1. At 9 h.p.i., cells were fixed 

with 4% paraformaldehyde solution, washed with PBS, incubated with 0.2% 

Triton X-100 in PBS, and blocked with 5% bovine serum albumin (BSA). 

Incubation with primary mouse NS1 monoclonal antibodies (Clone NS1-1A7 

(from NIH (1:250)) was followed by incubation with goat anti-mouse-fluorescein 
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isothiocyanate (FITC) -labeled secondary antibody (Southern Biotech, 

Birmingham, AL (1:5000)). Cells were visualized using a Zeiss SM510 confocal 

microscope (Carl Zeiss Microscopy, Thornwood, NY).  

Dissociation of nuclear and cytoplasmic fractions 

MDCK cells were seeded in 6-well plate to 80% confluence and infected 

with recombinant virus WT702 or QA23 NS:7WT702 at MOI=1, and harvested 

the cell at 8 and 24 h.p.i. using Trypsin-EDTA solution (Sigma-Aldrich, St. Louis, 

MO). The nuclear and cytoplasmic fractions were separated using the NE-PER 

Nuclear and Cytoplasmic Extraction kit (Thermo Scientific, West Palm Beach, 

FL) according to the manufacturer's protocol. Added 200 !l of ice-cold CER I to 

the cell pellet, and resuspended. Incubated the tube on ice for 10 min. 11 !l of ice-

cold CER II was added to the tube. Vortexed and incubated the tube on ice for 1 

min. The tube was spin down at 16,000xg for 5 min and transferred the 

supernatant (cytoplasmic extract) fraction to a new tube. The insoluble (pellet) 

fraction was resuspended in 100 !l of ice-cold NER. The sample was kept on ice 

and continue vortexed for 15 s every 10 min, for a total of 40 min. Spin down the 

tube at 16,000xg for 10 min, and immediately transfer the supernatant (nuclear 

extract) fraction to a new tube.  

The samples were added 50 !l of 2x Laemmli Sample Buffer (Bio-Rad, 

Hercules, CA) containing 50 !l !-mercaptoethanol (Fisher Scientific, Waltham, 

MA)/ml, heated at 100°C for 5 min, and then loaded into a Mini-PROTEAN TGX 

Precast Gel (Bio-Rad, Hercules, CA). The gel was run for 60 min at 150 V using 

PowerPac basic power supply (Bio-Rad, Hercules, CA). Then the protein samples 
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were transferred into supported nitrocellulose membrane (Bio-Rad, Hercules, CA) 

at 18 V for 45 min using Trans-Blot SD System and PowerPac HC Power Supply 

System (Bio-Rad, Hercules, CA). The NS1 expression were detected with the 

Clone NS1-1A7 (from NIH (1:500)) as the primary antibody, and then with HRP-

conjugated goat anti-mouse IgG (SouthernBiotech, Birmingham, Alabama 

(1:5000)) as the secondary antibody. The image was developed using SuperSignal 

West Pico chemiluminescent substrate (Fisher Scientific, Waltham, MA). The 

image was scanned and the optical density of each sample was quatitatived using 

densitometry software Quantity One version 4.6.5 (Bio-Rad, Hercules, CA), and 

then the relative amount of the proteins were further calculated. GAPDH was 

taken as the cellular internal control.  

Minigenome assay 

The minigenome assay was performed as described previously [351]. 200 

ng of the plasmid pMACK-GLuc encoding the influenza virus-like NS vRNA 

carrying the GaussiaLuciferase (GLuc) reporter gene and chicken polymerase I 

promoter (PolI) was transfected in DF1 cells along with 200 ng of plasmids 

encoding WT702 PB1, PB2, PA, NP and QA23 or WT702 NS or NS1 (only) 

using the TransIT-LT1 (Mirus,Madison, WI) reagent. The SEAP plasmid, which 

expresses the secretedalkaline phosphatase, was co-transfected into cells to 

normalize the transfection efficiency. The supernatants were collected at 24, 48 

and 72 h post transfection, and luciferase and secreted alkaline phosphatase 

activities were detected from 25 !l of the samples using the BioLux Gaussia 

Luciferase Assay Kit (NEB, Ipswich, MA) and the Phospha-Light Secreted 
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Alkaline Phosphatase Reporter Gene Assay System (A&D, FosterCity, CA) 

according to the manufacturers’ instructions. Relative polymerase activity was 

calculated as the ratio of luciferase to SEAP luminescence. Two independent 

experiments were performed in duplicate. The statistical analyses were performed 

with GraphPad Prism software version 5.0c (GraphPad Software Inc., San Diego, 

CA).  The multiple comparisons were performed by analysis of variance 

(ANOVA) with Tukey’s multiple comparison test. 

IFN-!  ELISA 

Beta interferon (IFN-!) expression level in mammalian and avian cells 

were detected using Dog/Canine Interferon Beta INF-Beta ELISA Kit 

(Novateinbio, Woburn, MA), and Chicken Interferon !, IFN-!/IFNB ELISA Kit 

(Novateinbio, Woburn, MA ), respectively, according to the manufacturer's 

protocol. Confluent MDCK and DF1 cells in 12-well plates were infected with the 

recombinant viruses at MOI=0.1, and at 12, 24 and 48 h.p.i., 10 µl of supernatant 

diluted in 40 µl of Sample Diluent or 50 µl standards were added to 96-well 

plates, and then add 50 µl horseradish peroxidase (HRP)-labeled IFN-! antibody 

and incubated for at 37°C 30 min. After 5 washes, the 50 µl chromogenic 

Substrate A and 50 µl chromogenic Substrate B solution were added to develop 

the color, and incubated at 37°C for 15 min. 50 µl of Stop Solution was added 

immediately to each well to stop the reaction. The optical density was measured at 

450 nm (OD450). Cells transfected with Poly(I:C) (InvivoGen, San Diego, 

California) or infected with inactivated virus were taken as the positive control in 

these  two assays, respectively. 
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Apoptosis Assay 

The terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-

end-labeling (TUNEL) staining for apoptotic nuclei was carried out using the 

DeadEnd colorimetric TUNEL kit (Promega, Madison, WI) according to the 

instructions of the manufacturer. A549 and HeLa cells were infected with 

recombinant virus WT702 or QA23 NS:7WT702 at MOI=1. At 16 h.p.i., the cells 

were fixed in 4% paraformaldehyde and incubated with 0.2% Triton X-100 in 

PBS. Labeling reactions were performed with 100 µl of TdT reaction mix for 1h 

at 37°C in a humidified chamber. After washed with PBS, cells were incubated 

with100 µl Streptavidin HRP at room temperature for 30 min. The Color 

development was accomplished with diaminobenzidine (DAB) for 7 min. The 

image of stained positively apoptotic nuclei was captured using a Zeiss Axiovert 

200M (Carl Zeiss Microscopy, Thornwood, NY, USA). Apoptosis was evaluated 

as the average number of positively stained cells per field at high-power 

magnification (!400). The cells added Staurosporine reagent (0.2 µM; Sigma-

Aldrich, St. Louis, MO) was taken as the positive control. 

To determine the role of QA23 NS1 on regulation the cellular apoptotic 

activity, the Akt and phosphorylated Akt levels were detected in HeLa cells 

infected with the viruses carrying either QA23 or WT702 NS1. HeLa cells were 

seeded in 6-well plate overnight, and then starved the cells by culturing with non-

serum media for 24 h. The cells were infected with viruses QA23 NS:7WT702 or 

WT702 at MOI=0.1. The cells were harvested at 12, 24 and 36 h.p.i by adding 

250 "l of 2x Laemmli Sample Buffer (Bio-Rad, Hercules, CA) containing 50 "l 
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!-mercaptoethanol (Fisher Scientific, Waltham, MA) and 10 !l sodium fluoride 

(BioLabs, Ipswich, MA) /ml. The samples were heated at 100°C for 5 min and 

sonicated for 20 sec, and then 20 !l  of the samples were loaded into a Mini-

PROTEAN TGX Precast Gel (Bio-Rad, Hercules, CA). The gel was run for 60 

min at 150 V using PowerPac basic power supply (Bio-Rad, Hercules, CA). Then 

the protein samples were transferred into supported nitrocellulose membrane 

(Bio-Rad, Hercules, CA) at 18 V for 45 min using Trans-Blot SD System and 

PowerPac HC Power Supply System (Bio-Rad, Hercules, CA). The total Akt, 

phosphorylated Akt (Pho-Akt) and viral NS1 were detected with the Akt antibody 

(Cell Signaling, Boston, MA (1:500)), Phospho-Akt antibody (Ser473) (Cell 

Signaling, Boston, MA (1:500)), and Clone NS1-1A7 (from NIH (1:500)) as the 

primary antibody, rspectively. Then added HRP-conjugated goat anti-rabbit IgG 

(SouthernBiotech, Birmingham, Alabama (1:5000)) as the secondary antibody for 

Akt and Pho-Akt, and added HRP-conjugated goat anti-rabbit IgG 

(SouthernBiotech, Birmingham, Alabama (1:5000)) as the secondary antibody for 

NS1. The image was developed using SuperSignal West Pico chemiluminescent 

substrate (Fisher Scientific, Waltham, MA). GAPDH was taken as the cellular 

internal control. This experiment has been repeated 2 times.  

Quail study 

Twelve 4-week-old Japanese quail were inoculated by the ocular, 

intranasal, intratracheal and cloacal routes with 106 EID50 viruses in 1.0 ml. At 1 

dpi, 6 naïve quail were introduced into the same isolators, and placed in direct 

contact with the inoculated quail to assess virus transmission. At 3 and 5 dpi, 3 
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inoculated quail per group were sacrificed, lungs were homogenized and virus 

titers were determined by EID50. The tracheal and cloacal swabs were collected 

from both the inoculated and direct contact birds at 1, 3, 5, 7, 9 and 11 dpi. The 

swab samples were stored in glass vials in 1.0 ml freezing Brain Heart Infusion 

(BHI) medium (BD, Sparks, MD) and titrated for infectivity in 10-day-old 

embryonated chicken eggs and MDCK cells. Sera were collected 2 weeks post-

infection and HA inhibition tests (HI) were performed to quantify antibodies 

against HA [254]. 

Statistical analysis 

All figures were generated and all statistical analyses were performed with 

GraphPad Prism software version 5.0c (GraphPad Software Inc., San Diego, CA).  

Comparison between the means of two groups was carried out with a paired two-

tailed Student’s t-test, the multiple comparisons were performed by two-way 

analysis of variance (ANOVA) with Tukey’s multiple comparison test, unless 

otherwise specified. P values of <0.05 were considered significant difference. 

Results 

The mutation K219E enhanced cytoplasmic accumulation 

of NS1 in mammalian and avian cell lines 

After the wildtype duck H9N2 (WT702) virus was serially propagated in 

lung of quail for 23 times, the quail adapted virus QA23 obtained new phenotype 

of replicating and transmitting efficiently in both chickens and quail [98]. Three 

amino acid substitutions were found in NS1: M106T, K217E and K219E [98]. 
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The residue 217 and 219 are located at C-terminal of NS1, and 219 is known as a 

key amino acid in NLS2 [165]. To find out if these two mutations will affect the 

distribution of NS1, we firstly analyzed the intracellular location of NS1 using 

eGFP-NS1 fusion protein, which consisted of full-length NS1 gene. To avoid the 

interference of NS2, two additional stop codons were introduced after the original 

stop codon of NS1 (eGFP-QA23 NS1 and eGFP-WT702 NS1) to abolish the NS2 

expression. The results demonstrated that QA23 NS1 predominantly distributed in 

the cytoplasm, while WT702 NS1 predominantly accumulated in the nucleus in 

293T cells (Figure 6.1A, E, G, H and I), as well as MDCK (Figure 6.1B), A549 

(Figure 6.1C) and DF1 cells (Figure 6.1D). The distributions of NS1 in the 

nucleus, cytoplasm or both in those cells were analyzed by counting more than 

100 single cells in at least 5 different eyesights. The results of NS1 distribution 

pattern were consistent with the results of eGFP-NS1 localization study (Figure 

6.1F). We further introduced three single mutations into pEGFP-C1 vector 

(eGFP-WT702 NS1-M106T, eGFP-WT702 NS1-K217E and eGFP-WT702 NS1-

K219E), and the localization study displayed that 219K is the critical amino acid 

responsible for NS1 localization change from nucleus to cytoplasm (Figure 6.1E 

and I).  

We alternatively confirmed the enhanced accumulation of QA23 NS1 in 

the cytoplasm using immunostaining analysis with directly infected cells. We 

generated the viruses QA23 NS:7WT702 and WT702 using reverse genetics, and 

infected DF1 and MDCK cells with the virus at MOI=1 for 9h.  The 

immunostaining result showed the change of NS1 distribution pattern from 
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nucleus (WT702) to cytoplasm (QA23:7WT702) (Figure 6.1J and K), which is 

consistent with the result of eGFP-NS1 fusion protein localization study (Figure 

6.1B and D). 

To directly analyze the accumulation of QA23 NS1 in the cytoplasm, we 

separated the nuclear and cytoplasmic fractions of the infected MDCK cells and 

detected the distribution of the NS1 in both fractions. MDCK cells were infected 

with virus QA23NS:7WT702 or WT702, and harvested at 8 and 24 h.p.i. Then the 

amount of NS1 in nuclear and cytoplasmic fractions was directly compared using 

Western blot. The result was confirmed the QA23 NS1 accumulated in the 

cytoplasm of the MDCK cells, while WT702 NS1 predominately distributed in 

the nucleus (Figure 6.1L and M).  

NLS2 is the major functional signal for the nuclear 

accumulation of NS1 in WT702 strain 

Amino acid residue 219 is located on the theoretical NLS 2, which is 

responsible for importing WT702 NS1 into the nucleus. There is another typical 

NLS 1 locates on 35 to 41, and conserved in all subtype of influenza viruses. 

Based on our observation, the single mutation of K219E in NS1 gene of WT702 

can change the NS1 accumulation pattern from nuclear to cytoplasmic (Figure 

6.1I). To find out whether the theoretical NLS1 plays the role for nuclear 

transportation of NS1, we substituted two critical amino acids of NLS1, Argnine-

38 and Lysine-41, into alanine. pEGFP-WT702 NS1-R38A and /or K41A, and 

pEGFP-QA23 NS1-R38A and/or K41A were transfected into 293T cells, and the 

results from Confocal proved the abolishing of theoretical NLS1 did not affect the 
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NS1 distribution pattern of either QA23 or WT702 (Figure 6.2). Take together, 

the results indicated NLS2, but not NLS1 is the major functional signal for the 

accumulation of WT702 NS1 in the nucleus.  

QA23 NS1 leads to up-regulated viral protein synthesis in 

DF1 cells 

To investigate if the mutations of QA23 NS1 will affect the viral protein 

synthesis in the avian cells, we performed the minigenome assay with different 

NS1. WT702 PB1, PB2, PA and NP genes, the reporter (luciferase) and internal 

control (SEAP) genes were co-transfected into DF1 cells, as well as WT702 or 

QA23 NS1 gene. The results showed that at 24 and 48 h post transfection, QA23 

NS1 largely increase the viral protein synthesis compared with WT702 NS1 

(Figure 6.3A and B), which may related to the enhanced cytoplasmic 

accumulation of NS1. However, when infected DF1 cells with WT702 and QA23 

NS1: WT702 viruses at MOI=0.1, both viruses yield very low viral titer (HA titer 

of WT702 infected cells was 2, and HA titer of QA23 NS1: WT702 infected cells 

was 8 at 72 h.p.i.).  

This experiment has been performed two times. The statistics analysis was 

performed using ANOVA with Bonferroni's posttest, and t-test at 24, 48 and 72 h 

post-transfection was performed to compare the relative activity of QA23 NS1 

and WT702 groups. P values of <0.05 were considered significant difference. 
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The predominant cytoplasmic distribution of NS1 does not 

affect its inhibition of host IFN-!  

NS1 may inhibit the production of interferon beta (IFN -!) induction by 

both pre-transcription (nucleus) and post-transcription (cytoplasm). The 

distribution pattern change of QA23 NS1 may affect the host immune response, 

and therefore, we detected the IFN-! expression level of mammalian and avian 

cells after infect with WT702 and different mutants. MDCK and DF1 cells were 

infected with virus QA23 NS: 7WT702, WT702, single mutants 217E or 219E at 

MOI=1.0. The IFN -! activities were detected at 12, 24 and 48 h.p.i. using ELISA 

kits. The results showed all viruses strongly decrease the induction of IFN-! in 

both MDCK cells (Figure 6.4A) and DF1 cells (Figure 6.4B), but there was no 

significant difference in IFN-! level amongst the different viruses (Figure 6.4A 

and B). Take together, the enhanced cytoplasmic and decrease nuclear distribution 

of NS1 did not affect the inhibition the induction of host IFN-!. However, both of 

the experiments have been performed only once. 

The predominant cytoplasmic distribution of NS1 

enhanced the anti-apoptotic activity level 

During the course of experiment we observed that A549 cells infected 

with WT702 rounded up and detached much earlier than the cells infected with 

virus QA23 NS:7WT702. To investigate the role of QA23 NS1 on regulating the 

apoptotic activity of the infected cell, a TUNEL assay was carried out in A549 

and HeLa cells. TUNEL, or Terminal deoxynucleotidyl transferase dUTP nick 
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end labeling is an approach for detecting DNA fragmentation by labeling the 

terminal end of nucleic acids. During the infection of influenza viruses, 

endogenous endonuclease activities cleave the DNA of apoptotic cells into a 

population of 180- to 200-bp fragments, resulting in the morphological changes of 

the host cells; TUNEL could label those degraded DNA fragments in situ. Here 

we applied a DeadEnd colorimetric TUNEL kit to display the apoptotic level of 

infected A549 (Figure 6.5A) and HeLa cells (Figure 6.5B). The apoptotic DNA 

fragments were stained into dark brown. Compared with the cells infected with 

the virus carrying QA23 NS1, the cells infected with the virus carrying WT702 

NS1 showed much higher apoptotic level (more dark brown dots) at 16 h.p.i. in 

both A549 and HeLa cells (Figure 6.5A and B). In contrast, the uninfected 

(Mock) cells were negative for TUNEL staining, and the cells treated with the 

apoptosis-inducing agent staurosporine showed severe apoptotic changes (Figure 

6.5A and B). The results indicated that the cytoplasmic accumulation of QA23 

NS1 may enhance the anti-apoptosis function of the NS1 protein and lead to a 

reduced apoptotic activity of the host cells.  

The analysis of the apoptotic activity levels in DF1 and MDCK cells 

during infection is more relevant to this study. However, no dark brown dots were 

observed using the TUNEL staining after I infected DF1 and MDCK cells for 16 

h. The optimization of the infection condition is required to obtain the better 

images from these two cell lines.  

PI3K/Akt signaling pathway plays important role in host anti-apoptosis. 

The activation of PI3K can be detected by phosphorylation of Akt, the 
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downstream effector of PI3K [185]. To analysis the anti-apoptosis function of 

QA23 NS1 during infection, I performed the preliminary experiments on 

detecting phosphorylated Akt (Pho-Akt) level in infected HeLa and A549 cells. 

However, no Akt and Pho-Akt signal has been detected from infected A549 cell. 

Whereas, infected HeLa cells showed strong signals for both molecules in the 

western blot. The results showed Pho-Akt level up-regulated in QA23 

NS:7WT702 infected HeLa cells at 12 and 24 h.p.i compared with WT702 

infected cells (Figures 6.6 A and B). However, compared with QA23 NS1, the 

signal of WT702 NS1 during infection was very low, which indicated the Pho-

Akt level difference might be caused by the different expression levels between 

QA23 and WT702 NS1. The kinetics study showed virus QA23 NS:7WT702 

replicated more efficiently in Hela cells than WT702 (Figure 6.6C). In contrast, 

no significant difference on viral replication has been observed in A549 cell 

(Figure 6.6D).  

QA23 NS1 has no significant effect on the viral replication 

and transmission in Japanese quail 

Because the three amino acid substitutions M106T, K217E and K219E 

were generated through the wildtype duck H9N2 (WT702) virus serially 

prorogated 23 times in lung of quail, and obtained the capability to effectively 

infect and transmit in quail and chicken, we wanted to determine whether these 

three mutations also contribute to the replication and transmission of the adapted 

virus (QA23) in quail. Twelve 4-week-old Japanese quail were inoculated with 

virus WT702 or mutants; and the next day, 6 naïve quail were introduced into the 
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same isolators to directly contact with the inoculated quail. The results showed 

the all quail inoculated WT702 or mutants and all direct contact quail were 

positive at 1 and 3 d.p.i and 3 d.p.i. , respectively (showed in Table 6.1.). The 

viral shedding was detected mainly from the upper respiratory tract (trachea), 

while only trace amount of virus (below the limit of detection in MDCK cells) 

was isolated from cloaca of some birds (showed in Table 6.1.). However, no 

significant difference of viral shedding had been detected from the inoculated 

birds (Figures 6.7A), or from the direct contact birds (Figures 6.7B), which 

suggested that QA23 NS1 has no significant effect on viral replication and 

transmission in quail compared with WT702 NS1. 

Discussion 

To better understand the molecular mechanism of the adaptation and 

interspecis transmission of influenza virus from wild aquaic birds to land-based 

poultry in nature, our lab established a model for virus adaptation by serially 

passing a wildtype duck H9N2, A/duck/Hong Kong/702/79 (WT702) virus, in the 

lung of Japanese quail for 23 times followed by 10 more passages in the lung of 

chicken, and generated adapted virus QA23 and QA23CkA10, respectively [98]. 

Quail carries both !-2,3 SA (avian-like) and !-2,6SA (human-like) receptors in 

the respiratory tract and thought to be the potential mix vessel to generate reassort 

influenza virus and an ideal environment for the adaptation of influenza virus 

from wild birds to land-based poultry and mammals [362,363,364]. Both QA23 

and QA23CkA10 gained the new phenotype of replicating and transmitting 

efficiently in chickens and quail [98]. And more importantly, both QA23 and 
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QA23Ck10, unlike WT702, were able to infect mice without any further 

adaptation, and showed faster growth kinetics in MDCK and CEK cells [98]. 

Amongst all of the amino acid substitutions on virus QA23, we particularly 

noticed three amino acid substitutions M106T, K217E and K219E on NS1 gene, 

which generated after the adaptation in quail.  

Firstly, we constructed eGFP-QA23 NS and eGFP-WT702 NS and 

analysis the distribution of NS1 in 4 mammalian or avian cell lines (293T, MDCK 

A549, and DF1). The result of localization study on Confocal displayed that, in all 

cell lines, WT702 NS1 predominantly distributed in the nucleus, while QA23 

NS1 mainly accumulated in the cytoplasm (Figure 6.1A-M). Three single 

mutations were introduced into GFP vector, and the result demonstrated 219K is 

the critical amino acid responsible for NS1 distribution pattern change of QA23 

from nucleus to cytoplasm (Figure 6.1E and I). We also infected DF1 and MDCK 

cells with viruses QA23 NS:7WT702 and WT702, respectively; and confirmed 

the enhanced cytoplasmic accumulation of NS1 by performed immunostaining 

assay (Figure 6.1J and K) and dissociation of nuclear and cytoplasmic fractions 

(Figure 6.1L and M). WT702 NS1 contains both theoretical NLS1 and NLS2. 

NLS1, containing 3 critical residues: Arg-35, Arg-38 and Lys-41, is highly 

conserved in most of the influenza strains; while NLS2 is deficient from a large 

number of the virus strains. However, based on our observation, seems NLS2 

plays the important role on nuclear importing of NS1 in this H9N2 strain, because 

a single mutation K219E could dramatically reduce the accumulation of NS1 in 

nucleus. Using the eGFP-NS1 fusion protein, we confirmed that to abolish the 
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function of NLS 1 by substituting residue 38R and/ or 41K into alanine did not 

affect the predominantly distribution of WT702 NS1 in nucleus (Figure 6.2). The 

observation is similar to a recent NS1 localization study of a human H3N2 

influenza virus (A/Udorn/72), which showed, unlike H1N1 subtype, its C-

terminal NLS2/NoLS was the major signal for the transportation of the NS1 

protein into the nucleus [365]. Take together, the data indicated that the primary 

function of NLS1 and NLS2 could be strain-specific.  

NS1 can interact with a number of host proteins to overcome the innate 

protection of host and facilitates the viral replication during infection. The 

increased accumulation of NS1 in the cytoplasm may promote the interaction 

between NS1 and cytoplasmic factors. It’s reported that NS1 can suppress the 

host antiviral function by blocking 2’-5’-oligoadenylate synthetase (OAS) [192] 

and serine/threonine protein kinase R (PKR) [193]. More important, NS1 could 

inhibit RIG-I function on inducing of IFN-! by directly form the RIG-I-

NS1complex, and binding to TRIM25, which activates RIG-I by ubiquitinating 

RIG-I N-terminal CARD domain [172,173,174,175]. To determine if the 

enhanced cytopIasmic distribution affect NS1 function on antagonizing the host 

type I interferon, we infected MDCK and DF1 cells with WT702 and different 

mutants, and detected the IFN-! production in the supernatant. However, 

compared with virus WT702, those mutants did not show significant changes on 

the interferon expression level (Figure 6.4). 

To analyze the effect of cytoplasmic accumulation of NS1 on the viral 

replication, we first infected DF1 cells with viruses WT702 and QA23 
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NS:7WT702. However, both viruses replicated poorly in DF1 cells. We 

alternatively investigate the effect of NS1 on viral protein synthesis using 

minigenome assay. The results showed that QA23 NS1 up-regulated the viral 

protein synthesis at 24 and 48 h post transfection (Figure 6.3). In the cytoplasm, 

NS1 may enhance the viral protein synthesis by binding to Staufen [366] and 

binding eukaryotic translation initiation factor eIF4GI to viral mRNA 5’ 

untranslated region[191]; meanwhile, limits the expression of the host antiviral 

gene[137].  The cytoplasmic accumulation of NS1 may enhance the viral protein 

synthesis by increasing the interaction with those host factors located in the 

cytoplasm.  

NS1 may activate PI3K in the cytoplasm, and limit the programmed cells 

death. However, the role of NS1 in apoptosis is still unclear as both pro-apoptosis 

and anti-apoptosis were reported, and the function could be strain-specific or host-

specific [160,330,332,367]. In this study, we applied TUNEL assay to investigate 

whether QA23 NS1 enhance the function of pro-apoptosis or anti-apoptosis 

during infection. The results showed that, at 16 h.p.i., QA23 NS1 reduced the 

apoptotic activity level of A549 and HeLa cells (Figure 6.5), and suggested the 

cytoplasmic accumulation of NS1 may enhance the anti-apoptosis function of the 

protein during infection. DF1 and MDCK should be more relevant to this 

apoptosis assay in this study. However, TUNEL assay in these two cells resulted 

in poor staining. Optimization of the infection and TUNEL condition are needed 

to improve the signal in DF1 and MDCK cells. 
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PI3K/Akt is an important intracellular signaling pathway in apoptosis. 

During influenza infection, NS1 interacts with PI3K by direct binding to the 

subunit of p85!, and phosphorylate Akt consequently inhibits the apoptosis of the 

infected cells. However, when we detected the phosphorylated Akt (Pho-Akt) 

level in different cell-lines (including A549, MDCK, DF1 and HeLa cells) 

infected with WT702 or QA23 NS: 7WT702, the difference was only found in 

HeLa cells. It may be because the commercialized antibodies against Pho-Akt and 

Akt could only react with human, mouse, and rat; or because the Akt and Pho-Akt 

expression level are relative low in other cell-lines. More efforts need to be 

carried out on prove the role of QA23 NS1 on up-regulating the Pho-Akt in HeLa 

cells, as well as in DF1 and MDCK cells. 

To determine the contribution of QA23 NS1 gene to the adaptation of 

WT702 in chicken and quail, we performed the viral replication and transmission 

study in Japanese quail. The results showed: no significant difference in the viral 

shedding has been detected from the trachea (upper respiratory tract) or lung 

(lower respiratory tract) of the inoculated birds, or from the trachea of the direct 

contact birds (Figures 6.6A and B). The results suggested that the accumulation of 

NS1 in the cytoplasm does not affect the virus replication and transmission in 

quail.  

In this study, we demonstrated, for this H9N2 strain, the increased 

cytoplasmic accumulation of NS1 may enhance the viral replication and anti-

apoptosis activity level in the host cells. As the amino acid mutations on NS1 

were the selection result under the certain stress of adapting to a new host, the 



 

 142 
 

cytoplasmic accumulation of NS1 may facilitate influenza virus to produce more 

mutants as the candidates for better fitness during this processing by utilize the 

host cell longer and more efficiently. This could be a strategy for the interspecies 

transmission of influenza virus. However, some of the experiments in this study 

were carried out only once, and more evidence needs to be provided before we 

draw the conclusions.  
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Table 6.1. Replication and transmission of H9N2 viruses in Japanese quail. 

Virus/Group Days post-infection 

 1 3 5 7 9 11 

#  of positive 
HI/total # at 

14 dpi 
 T C T C T C T C T C T C  

WT702              
Infected 12/12 4/12 12/12 6/12 4/9 1/9 0/6 0/6 0/6 0/6 0/6 0/6 6/6 (26.7) 
Contacts NA NA 6/6 0/6 4/6 0/6 2/6 1/6 0/6 0/6 0/6 0/6 6/6 (18) 

QA23NS: 7WT702              
Infected 12/12 3/12 12/12 5/12 5/9 1/9 0/6 0/6 0/6 0/6 0/6 0/6 6/6 (41.3) 
Contacts NA NA 6/6 1/6 5/6 2/6 2/6 3/6 0/6 0/6 0/6 0/6 6/6 (4.3) 

WT702 NS1 217E              
Infected 12/12 4/12 12/12 5/12 5/9 1/9 0/6 0/6 0/6 0/6 0/6 0/6 6/6 (30.7) 
Contacts NA NA 6/6 0/6 5/6 1/6 2/6 2/6 1/6 0/6 0/6 0/6 6/6 (9.3) 

WT702 NS1 219E              
Infected 12/12 4/12 12/12 6/12 6/9 1/9 0/6 0/6 0/6 0/6 0/6 0/6 6/6 (44.0) 
Contacts NA NA 6/6 1/6 5/6 2/6 2/6 3/6 1/6 1/6 0/6 0/6 6/6 (4.7) 

WT702 NS1 106T              
Infected 12/12 3/12 12/12 5/12 4/9 0/9 0/6 0/6 0/6 0/6 0/6 0/6 6/6 (24.0) 
Contacts NA NA 6/6 0/6 5/6 0/6 1/6 2/6 0/6 0/6 0/6 0/6 6/6 (14.7) 
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Figure 6.1. Immunofluorescence of NS1 protein localization and cytoplasmic 
and nuclear and fractions of NS1. (A) 293T, (B) MDCK, (C) A549, and (D) 
DF1 cells were transfected with plasmids expressing the different GFP-NS1 
proteins and fixed at 24 h post-transfection for immunofluorescence analysis 
using a Zeiss Axiovert 200M (400x). (E) 293T were transfected with plasmids 
expressing the different GFP-NS1 proteins and fixed at 24 h post-transfection for 
immunofluorescence analysis using a Zeiss SM510 confocal microscope. (F) The 
distribution of NS1 in the cytoplasm, nucleus, and in both were analyzed in 293T, 
MDCK, A549 and DF1 cells by counting more than 100 single cells in at least 5 
different eyesights. 293T cells were transfected with plasmids expressing the 
different GFP-NS1 proteins and fixed at (G) 6 h, (H) 12h, and (I) 24 h post-
transfection for immunofluorescence analysis. (J) DF1 cells were infected with 
recombinant viruses QA23NS:7WT702 or WT702 cells at an MOI=1. At 9 h p.i., 
the cells were fixed for immunofluorescence analysis. GFP-NS1 fusion protein 
showed in green and DAPI (the nucleus) showed in blue. (K) MDCK cells were 
infected with recombinant viruses QA23NS:7WT702 or WT702 cells at an 
MOI=0.1. At 24 h.p.i., the cells were fixed for immunofluorescence analysis. 
MDCK cells were infected with the recombinant viruses QA23NS:7WT702 or 
WT702 at MOI=1.0. The cells were harvested (L) at 8 h.p.i. and (M) at 8 and 24 
h.p.i., and then fractionated for detection. Amounts of NS1 in cytoplasmic (C) and 
nuclear (N) fractions were analyzed by western blot analysis. GAPDH was used 
as a control.  
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Figure 6.2. Immunofluorescence of NS1 mutants localization.  293T 
cells were transfected with QA23 and WT702 NS1 plasmids containing 41A and/or 
38A mutation(s) and fixed at 24 h post-transfection for immunofluorescence analysis. 
GFP-NS1 fusion protein showed in green and DAPI (the nucleus) showed in blue. 
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Figure 6.3. Minigenome assay.  DF1 cells were transfected with each of the 
influenza virus driven-luciferase reporter plasmids (GLuc) and PB2, PB1, PA, 
and NP plasmids, and (A). QA23 or WT702 NS and QA23 or WT702 NS1, and 
(B). QA23 or WT702 NS1, and pCMV/SEAP, which carries the secreted alkaline 
phosphatase gene was cotransfected into the cells to normalize transfection 
efficiency. (The experiments were carried out 2 times.) 
 
 
 
 
 



 

 150 
 

 
 
 
 
Figure 6.4. IFN-!  level induced by recombinant viruses.  (A) 
MDCK cells and (B) DF1 cells were infected with the recombinant viruses at 
MOI= 1. Supernatants were harvested at 12, 24, and 48 h p.i., and measurements 
were carried out using an IFN-! ELISA kits were performed. (These 2 
experiments were performed only once. The results showed significant difference 
between positive control and viruses.) 
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Figure 6.5. Apoptosis assay using TUNEL assay. (A) A549 and (B) HeLa cells were 
infected with the recombinant viruses QA23NS:5WT702:2PR8 H1N1 or 6WT702:2PR8 
H1N1, and fixed the cells at 16 h.p.i. The apoptotic activity level of the cells was detected 
using TUNEL assay kit. The apoptotic nucleus with the small DNA fragments was 
stained into dark brown dots. However, this is only one-time experiment. 
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Figure 6.6. Influenza virus infection activates Akt 
phosphorylation. HeLa cells were infected by virus QA23NS:7WT702 or 
WT702. Cell lysates were collected at (A) 12, 24, and 48 h.p.i. ; or (B) 12, 24, and 
36 h.p.i. The amounts of phosphorylated Akt (pho-Akt) and total Akt evaluated 
by western blot using Akt and Pho-Akt antibodies. (C) HeLa and (D) A549 cells 
were infected with QA23 NS:7WT702 or WT702 at MOI=0.1. The supernatants 
were collected at 24, 48, 72, 96 and 120 h.p.i., and TCID50 was detected the in 
MDCK cells. 
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Figure 6.7. Viral shedding from the trachea of quail.  The swabs 
from (A) infected and (B) contacted birds were collected at 1,3,5,7,9 and 11 dpi. 
The viral titers were detected using TCID50 method in MDCK cells. 
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Chapter 7: Perspective 

Influenza A viruses constantly circulate in a broad range of animal 

species, such as humans, birds, pigs, horses and dogs. In humans, the seasonal 

influenza virus infections cause epidemics every year, resulting in millions of 

cases with severe illness worldwide [368]; whereas the influenza pandemics occur 

sporadically, generally resulting in millions of death globally [18,19]. Meanwhile, 

the outbreaks of HPAI and LPAI cause the depopulation of flocks and major 

economic losses worldwide. Occasionally, the avian influenza viruses overcome 

the host barrier and directly cause the morbidity and mortality in humans, which 

highlight the threat of avian influenza viruses to public health. 

Vaccination is the main strategy to control and prevent influenza virus 

infections. Currently, inactivated vaccine, live attenuated vaccine and 

recombinant virus-like-particles (VLPs) vaccine are licensed in the US against 

human seasonal influenza epidemics [243,245]. In poultry manufactory, 

inactivated vaccine, recombinant fowlpox virus-vectored vaccine expressing the 

H5 HA gene, and recombinant Newcastle disease virus (NDV)-vector with the H5 

HA gene insert are approved to use for preventing avian influenza virus infection 

[255]. However, both licensed human seasonal influenza and avian influenza 

vaccines have some limitations, which stimulate the development of novel 

vaccines with other strategies. 

Our lab previously demonstrated the potential of an avian live attenuated 

master backbone WF10att for use in epidemic and pandemic influenza vaccines 

in poultry and mammals [254,285,369]. In this study, I further tested if modifying 
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the HA gene combined with WF10att backbone could be used for in ovo 

vaccination against avian influenza in chickens. In “Chapter 4: Improved 

hatchability and efficient protection after in ovo vaccination with live-attenuated 

H7N2 and H9N2avian influenza viruses”, I investigated the strategy of replacing 

the HA cleavage site of H7 and H9 subtypes with that of H6’s to improve 

hatchability and protection efficiency. The results showed that the hatchabilities 

were greatly improved to more than 90% when in ovo vaccinated with those 

genetically modified live-attenuated viruses. More importantly, a single dose in 

ovo vaccination of 19-day-old egg embryos provided the high protectivity (>70%) 

against low pathogenic H7 and H9 challenge in the chickens at 2- or 6- week 

post-hatching. However, we conducted the in ovo vaccination manually in this 

study.  An automated egg vaccination machine system currently used in poultry 

industry would deliver the vaccines in a more efficient, accurate and uniform way 

compared to manual approach. Therefore, further investigation is needed to 

determine if the automated system would provide a higher protection efficiency 

for in ovo vaccination with our live-attenuated vaccines in a large number of the 

chicken egg embryos.  

Different methods were applied to generate the vaccine candidates in the 

emergence of the 2009 swine-origin pandemic H1N1 virus [262]. And more 

efforts were carried out to improve the functional HA yield of those vaccine 

strains in embryonated chicken eggs [262,347,353]. The amino acid substitutions 

generally present on the surface HA and NA proteins during egg adapation of 

influenza viruses. Interestingly, I identified that the amino acid substitution, at 
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residue 59 in PA, from glutamic acid to valine (PA E59V) is responsible for the 

enhanced HA and viral titers in egg embryos and MDCK cells on the live-

attenuated vaccine WF10att backbone (Chapter 5: Glutamic acid to valine 

substitution at position 59 in PA enhances growth of live-attenuated influenza 

vaccines in eggs and mammalian cells). The substitution PA E59V confers this 

backbone higher capability to replicate better in eggs with HA and NA derived 

from human-like influenza virus under the temperature sensitive phonotype; and 

PA 59V is not likely to be the critical amino acid responsible for the RNA-

dependent RNA polymerase activity of live-attenuated influenza virus. PA 59V 

may contribute to a regulation mechanism which confers the attenuated backbone 

enhanced HA yield under the temperature sensitive phenotype. However, the 

mechanism of PA E59V on enhancing the HA titer and viral replication of 

WF10att backbone in egg embryos needs to be further elucidated. Future study 

can be carried out to investigate whether the function of PA E59V is related to the 

amino acid mutations on PB1 and PB2, or HA tag on the c-terminus of PB1 on 

WF10att backbone. Meanwhile, the endonuclease assay with full-length PA or 

PA Nter (N-terminal 210 amino acid residues) may help us to further figure out 

the function of PA 59V on viral polymerase activity. 

NS1 of Influenza A virus has been identified as a multifunctional protein, 

which is responsible for the increased pathogenicity and virulence of the viruses. 

NS1 generally possesses two nuclear localization sequences (NLS1 and NLS2) 

and one nuclear export sequence (NES), which are responsible for the shuttling of 

the protein between cytoplasm and nucleus of the host cells [370,371]. 
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Antagonizing the host innate immune response is one of the major functions of 

NS1: NS1 blocks the cellular mRNA maturation by binding to CPSF30 and 

PABII [170,171], and inhibits the activation of transcription factors in the IFN-! 

signaling pathway by binding to dsRNA [169,282]. NS1 could also directly bind 

to the cytosolic sensor RIG-I, form a complex, resulting in the inhibition of the 

IFN-! induction [172,173,174]. Meanwhile, NS1 has other important functions 

during infection, such as regulating PI3K/Akt pathway, which is involved in the 

host apoptotic activity [180,181,182,183].  

In “Chapter 6: Cytoplasmic accumulation of NS1 enhances the viral 

replication and anti-apoptosis of an avian influenza virus (H9N2)”, I had a 

particular interest in the NS1 from a quail-adapted H9N2 virus QA23.  Compared 

with the wild-type virus WT702, the NS1 accumulation pattern of the quail-

adapted virus QA23 (containing three identified mutations: M106T, K217E and 

K219E in the NS1 gene) changed from nucleus to cytoplasm in the infected cells. 

The theoretical nuclear localization sequence 2 (NLS2) and 219K in NS1 are 

critical to the accumulation of the protein in the nucleus. 

Both QA23 and WT702 NS1 have the effect on reducing the IFN-! 

induction level in DF1 cell and MDCK cells. However, no significant difference 

in the IFN-! expression level between QA23 and WT702 NS1 has been found. 

The results indicated that the cytoplasmic accumulation of NS1 does not affect 

NS1 function on blocking the induction of host IFN-!.  We also observed that 

different cell-lines, such as A549 and MDCK cells, infected with recombinant 

WT702 rounded up, detached and suffered morphological changes much earlier 
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than the cells infected with recombinant QA23 NS: 7WT702. The results 

indicated that cytoplasmic accumulation of QA23 NS1 might relate to the reduced 

apoptotic activity of the host cells. PI3K/Akt is an important intracellular 

signaling pathway in apoptosis. During influenza infection, NS1 interacts with 

PI3K by direct binding to the subunit of p85!, and phosphorylate Akt 

consequently inhibits the apoptosis of the infected cells. However, when we 

detected the phosphorylated Akt (Pho-Akt) level in different cell-lines (including 

A549, MDCK, DF1 and HeLa cells) infected with WT702 or QA23 NS: 

7WT702, the difference was only found in HeLa cells. It may be because the 

commercialized antibodies against Pho-Akt and Akt could only react with human, 

mouse, and rat; or because the Akt and Pho-Akt expression level are relative low 

in other cell-lines. 

Investigating the role of QA23 NS1 on pro- or anti-apoptosis may help us 

to better understand how this protein contributes to the pathogenesis by 

modulating the host-cell signalings during infection. We may also alternatively 

detect expression level of other important host factors, which involve in either 

pro-apoptotic or anti-apoptotic function in the life cycle of the cells. For example, 

p53 and cytochrome c play the pro-apoptotic role, while Bcl-2, Bcl-XL, Bcl-W 

function as anti-apoptosis factors. 
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Appendices 

 
The primers used for sequencing and reverse genetics 
 
Primer name Primer sequence Function 
Ba-PB2 1F TATTGGTCTCAGGGAGCGAAAGCAGGTC Universal primer 
Ba-PB2 2341R ATATGGTCTCGTATTAGTAGAAACAAGGTCGTTT Universal primer 
Bm-PB1 1F TATTCGTCTCAGGGAGCGAAAGCAGGCA Universal primer 
Bm-PB1 2341R ATATCGTCTCGTATTAGTAGAAACAAGGCATTT Universal primer 
BmPA-1F TATTCGTCTCAGGGAGCGAAAGCAGGTAC Universal primer 
BmPA-2233R ATATCGTCTCGTATTAGTAGAAACAAGGTACTT Universal primer 
Bm-NP-1F TATTCGTCTCAGGGAGCAAAAGCAGGGTA Universal primer 
BmNP-1565R ATATCGTCTCGTATTAGTAGAAACAAGGGTATTTTT Universal primer 
Bm-NS-1F TATTCGTCTCAGGGAGCAAAAGCAGGGTG Universal primer 
Bm-NS-890R ATATCGTCTCGTATTAGTAGAAACAAGGGTGTTTT Universal primer 
Bm-M-1F TATTCGTCTCAGGGAGCAAAAGCAGGTAG Universal primer 
Bm-M-1027R ATATCGTCTCGTATTAGTAGAAACAAGGTAGTTTTT Universal primer 
PB2  412R CCATGTTTCAACCTTTCAACC Internal primers 
PB2 1774R CAAACTCCATCTTATTGTA Internal primers 
WFPB2-1454BseR GCTAACTCTCACTCCTCTTAGTGAC Internal primers 
WF10 PB2 1381F GAACCCATCGACAATGTCATG Internal primers 
Ba-PB2-1768F TATTGGTCTCAGGGACAATCCTTGGTACCTA Internal primers 
WF10PB1-1195WTF CGAGAAAGAAAATTGAGAAAATAAGACCTC Internal primers 
WF10PB1-1766WTR CTTTGAGCGGGTCTGCTCCCACAGCTTCTTCAA Internal primers 
PB1 419R GTCCAATCATAAGTCTGGC Internal primers 
Bm-PB1-1473F TATTCGTCTCAGGGACATAAATAGGACAGG Internal primers 
BmPB1-620F TATTCGTCTCTGGTCACACAAAGAACAATAG Internal primers 
PA735F AACCGAACGGCTGCATTGAGGGC Internal primers 
PA1769R ATCATGCTCTCAATCTGTTG Internal primers 
PA336R CTTGGGCTTCTCAACCCCCG Internal primers 
PA-1807F AGCATGATTGAGGCCGAGTC Internal primers 
PA-930-953F CCACTATACGATGCAATCAAATGC Internal primers 
Sw HA 752F TAGAGCCGGGAGACAAAATAACAT Internal primers 
Sw HA 1213F ACACAGTTCACAGCAGTAGGTAAA Internal primers 
Sw HA 931R TCTGAAATGGGAGGCTGGTGTT Internal primers 
Sw HA 521R GGATTTGCTGAGCTTTGGGTATG Internal primers 
NP-700F GCACAAAGAGCAATGATGGA Internal primers 
NP-446R GTGAGACCAGCAGTTGCGTCTTCTCCATTGTTCGC Internal primers 
NP529F AGAATGTGCTCTCTGATGCAAGG Internal primers 
NP669R CTCCAGAAGTTCCGGTCATT Internal primers 
Sw NA 949F ATATGCAGTGGGATTTTCGGAGAC Internal primers 
Sw NA 1022R ACCCTTTTACTCCATTTGCTCCAT Internal primers 
Sw NA 451R GGGTTCGATATGGGCTCCTGTC Internal primers 
M-772F GCGATTCAAGTGATCCTCTCGTTA Internal primers 
M-915R CTCCTTCCGTAGAAGGCCCTC  Internal primers 
NS1_294-313F GTCAAGGGATTGGTTAATGC Internal primers 
pCAG_2066-2085R GGTCCACTCTAATGCAAAGG Internal primers 
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