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We describe a novel High Bandwidth Arbitrary Lattice Generator (HiBAL) we’ve

created to skirt limits imposed on monochromatic standing waves of light. With its

current iteration we can phase and amplitude modulate optical lattices over a broad range

of wavevectors simultaneously at MHz frequencies. We characterize the HiBAL with

a multi-Mach-Zehnder interferometer and a 0.5 NA diffraction limited imaging system,

both designed and built in-house. We report lattice phase control to within a few parts in

a thousand.

Disorder plays an important role in the phase diagrams of many materials. Crystal

defects can cause exotic phases to coexist with the mundane in real world systems, and

some phase diagrams are even dominated by the effects of disorder. We report the

trapping and characterization of a Bose gas in an optical field isotropic in two dimensions

and disordered in a third. We evaluate the phase diagram of our system as a function

of temperature and disorder depth, and find favorable comparisons with indications of

an intermediate Griffiths phase predicted by previous Monte Carlo and Renormalization
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Chapter 1: Introduction

Since the first realizations of Bose-Einstein condensation in 87Rb [2] and 23Na

[3], the ability of the atomic physics community to precisely engineer Hamiltonians

in ultracold systems has enabled an explosion in the experimental study of correlated

quantum-degenerate states of matter. Bosons, Fermions [4] [5], and Bose-Fermi mixtures

[6] have been cooled to quantum degeneracy. Interatomic scattering has been controlled

through Feshbach resonances [7], which have been used to explore a range of phenomena

from collapsing BECs [8] to the phase diagrams of strongly interacting states of matter

out to the unitary limit. [9] Optical lattices have been used to explore the phase diagrams

of toy models of matter such as the Bose-Hubbard [10] [11] and Fermi-Hubbard [12]

models. Deep optical lattices allow the exploration of quantum and classical phase

transitions in reduced dimension [13] [14]. Spin mixtures have been cooled into spinor

condensates [15] and exposed rich phase diagrams [16]. Dynamic, driven, and Raman-

coupled atomic clouds have opened up the exploration of quantum states of matter with

nontrivial topologies [17], artificial magnetism [18], and dynamic localization [19].

These experiments engineer the systems they study on a microscopic level by con-

trolling the form of the interactions, the geometry and the internal states of their atoms.

They reproduce the macroscopic behavior of many novel materials whose microscopic

behaviors are not well understood. Particularly interesting are models proposed as the

mechanism for measured macroscopic behavior that, in their time, are not computation-

ally tractable. Quantum simulations with engineered systems in cold atomic gases provide

a path to computing the macroscopic behavior of those intractable microscopic mod-
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els [20] [21]. Most real world materials are not perfectly ordered, and have disordered

crystal structures and contaminants, so macroscopic behavior can often include a mix-

ture of several states of matter, or even properties dominated by disorder [22] [23]. The

careful engineering and characterizability of Hamiltonians in cold gas quantum simula-

tion experiments allow the measurement of clean systems, and the reintroduction of well

characterized controllable disorder has been used to probe its effects . Dimensionality is

critical in determining the physics of materials, and cold atom systems have been realized

in one, two, and three dimensions [13] [14]. It is also possible to study systems in the

crossover between two and three dimensions.

It is in this spirit we have explored the phase diagram of a three dimensional system

composed of coupled two dimensional systems in a regime where inter-plane coupling

and the bulk properties of the individual planes are subject to disorder. We have realized

this system in a time-averaged potential created with a novel multichromatic shallow

angle optical lattice, the first realization in cold atoms of a potential isotropic in two

directions but disordered in the third. It sits in a regime somewhere between two and three

dimensions, where 2D superfluidity develops in individual pancakes, and communication

between pancakes allows 3D superfluidity to emerge at lower temperatures. It relates to

superconduction in layered type II superconductors, which are planar, and where in-layer

disorder may give each layer its own Tc, as well as the emergence of bulk magnetization in

stacked planarmagnets. We compare our results to theoretical studies that have usedMonte

Carlo [24], renormalization group [25] and scaling arguments [26] to probe the properties

of similar systems. The predicted phase diagrams are not in complete agreement. We

observe in-plane condensation and the emergence of order in the third dimension, and

discuss the scaling of this behavior in terms of the phases theory predicts should emerge.
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1.1 Phase Transitions [1]

By measuring the specific heat of a material and matching the scaling with ther-

modynamic models the rotational, vibrational, and translation symmetries of materials

have been determined. Every degree of freedom gets 1
2 kBT , where kB is Boltzmann’s

constant and T is the temperature of the system. Ehrenfest classified phase transitions

according to the first order in which the derivative of the free energy of a system is dis-

continuous. The free energy of a system can be written in several ways. The Gibbs free

energy G = U + pV − TS is the internal energy of a system U, plus the pressure p of

the system times the volume V the system occupies, minus the temperature T times the

entropy S of the system, where the entropy is the log of the degeneracy of the system.

The enthalpy of evaporation is a jump in the first derivative of the energy of a system

as a function of temperature, and so Ehrenfest would classify any such transition a first

order transition. The technique finds its limits when derivatives of the free energy and the

physical quantities they represent diverge, as is the case with Bose-Einstein condensation.

Landau created his own formulation of free energy L. For some ordered phase of

matter with order parameter ψ, Landau postulated L =
∑

n=0 an([K],T)ψn, and that the

thermodynamic properties of the transition would be determined by a finite number of

derivatives of L in ψ. The order parameter ψ is the average value of a field, and the mean

field approximation is the assumption that Landau’s postulate applies. The set [K] are

coupling constants that parameterize the energy scales in the Hamiltonian, such as the

ratio of the kinetic energy to the interaction energy. As a rule, mean field theory breaks

down near phase transitions, and is especially poor in describing systems that require the

Landau energy to be analytic to all orders, such as the XY phase transition.

Renormalization group theory moved physics to our current understanding of phase

transitions. It was inspired by the observation that as a phase transition crosses the critical

region, correlations tend to grow on a length scale that is defined by the coupling constants
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[K] from Landau theory. The idea follows that an operator will only be definable on that

length-scale, and so operators are redefined for each length scale and coupled to each other

through a unitary projection operator. The way those operators are defined and connect to

each other are referred to as flows, and they reflect the underlying symmetries of the system.

A given set of symmetries will thus lead to the construction of a particular renormalization

group. The renormalization group that reflects the symmetries of a 2D Bose gas is the XY

renormalization group, and it is necessary to describe the transition from a normal gas to

a superfluid in 2D, called the Berezinskii-Kosterlitz-Thouless transition, distinct from the

3D BEC transtion

challenging and relevant problem for correlated quantum sys-

e�ects of quantum fluctuations are enhanced, is most dra-

experimental and theoretical, concentrated on the superfluid-

weak layers
decimate

strong layers
merge

{Km, m}

Jm

LJ

optic lattice potential

SF

Gri th
Normal

physical con gurations hot

cold

c=0
c≠0

Figure 1.1: Here we see a microscopic model very similar to our system, reprinted with permission from
David Pekker [25]. Each pancake has its own superfluid stiffness Km, coupling Jm, and vortex fugacity ζm,
a measure of the number of vortices per coherence length. In our system these quantities derive from the
temperature, the local effective quasi-2D scattering length g̃, and the local density.

Our system, a set of 2D systems with randomized interplane hopping rates, is

expected to undergo a number of phase transitions as a function of temperature, and the

nature of those transitions derive from the 2D symmetry in our system and the broken

translation symmetry along the disordered lattice direction. Pekker et al have used the XY

renormalization group to describe the transition from a normal gas to sliding phase, where

the systemhas become a bulk 2D superfluid. A sliding phase exhibits superflow in some 2D

layers of the bulk 3D system. When initially observed in copper cuperate superconductors

this phase was named the sliding phase. At lower temperatures correlations build in the

system until 3D superfluidity emerges. It is thus important to understand what the BKT
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transition is, what a superfluid is, how it might apply to our system, and its signatures.

1.2 The BKT Transition

In an infinite plane occupied by a Bose gas there exists an infinite order phase

transition from a normal gas to a superfluid at finite temperature. Unlike a 3D BEC, a

BKT superfluid exhibits no long range order. Bose condensation is impossible in 2D. The

superfluid can support persistent frictionless flow and be described by an order parameter

ψ. The superfluid is composed of interacting particles of mass m with an interaction

energy ng̃, where n is the phase space density, the number of particles per box defined by

the deBroglie wavelength λ =
√

2π~/
√

mkBT , and g̃ is the effective in-plane interaction

strength. In response to a perturbuation, such as a strong delta function potential, a BKT

superfluid will smoothly return to the bulk properties of the rest of the gas over a healing

length χ = ~/√mgn = 1/
√
g̃n, where g = 4π~a/m is 3D interaction strength of the

gas, and a is the atom-atom scattering cross section of the gas . The gas gains a phase

stiffness ρs, which is defined as the energy cost of applying a phase gradient across the

cloud in some given direction ρxi
s (L,T) = 1

L
d2E(φxi )

dφ2
xi

. In this expression E(φxi ) is the total

energy added to the gas by applying a phase difference φ across the gas along the direction

direction xi. This is true of all quantum-degenerate Bose gases. In a uniform system the

gradient will be applied smoothly over the system, and because E(φxi ) derives from d2

dx2
i

,

one can relate phase stiffness to the idea of an effective mass, E(®k) = E0+~2k2/2me f f (®k),

where k = φxi/L. Phase stiffness can also be related to a definition of the superfluid

density, Fe f f = ρs f /2
∫

dV(∇φ)2 [27]. ρs varies linearly with ρs f , but they are not the

same number.

The actual particles in the system are the Bosonic atoms, but the transition is best

described in terms of quasiparticles called vorticies. A vortex is a quantized localization

of angular momentum, so that a path integral enclosing its center
∮ 2π

0 ∇φ = 2πn. The

phase is undefined at its center, making the vortex a phase defect. The order parameter
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vanishes at the phase defect, and the depleted region returns to the average n of the gas

over the healing length χ. Because of conservation of angular momentum, and because

there exist no forces that can exert a torque orthogonal to the vortex’s angular momentum,

the only way a vortex of charge n may disappear is by annihilating with a vortex of charge

−n, marking vortices of opposite angular momentum each other’s antiparticle. This stands

in contrast to 3D BECs and superfluid Helium, where vortices exist as line defects, and

can be continuously deformed until the angular momentum is thermalized and expunged

into a thermal gas. In this context they are often referred to as vortex anti-vortex pairs.

The energy cost of inserting a vortex into the system derives from the kinetic energy of

the vortex, both in the extinction at the core and in the angular momentum it spreads

throughout the system. In an infinite system the energy of a lone vortex is infinite. A

vortex anti-vortex pair, however will have a flow that cancels out at long distance. When

the temperature is on the order of the energy required for a vortex anti-vortex pair, unbound

pairs will emerge in the fluid. The phase fluctuations due to the density of unbound vortex

pairs are so great that, once unbound, the statistics are identical to those of a thermal gas.

This is the mechanism by which the BKT transition goes from a BKT superfluid to a

thermal gas.

1.3 The BKT Transition in Finite Systems

To create systems with reduced dimensions the atomic physics community relies on

deep optical lattices to freeze out transverse motion. An optical lattice is a standing wave

of light created by at least two beams with nonzero ®k1 − ®k2. The intensity of a standing

wave induces in AC stark shift in atoms. This shift in the ground state energy of the

atoms acts as a conservative potential. When sufficiently deep the minima of a lattice will

confine an atomic wavefunction so tightly the system will act as a set of harmonic traps

with excitation energies En = ~ω(n + 1
2 ). When ~ω >> kBT + µ, where the chemical

potential µ is the energy cost of introducing an atom into the system, the atoms remain
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in the ground state of that potential, confining their motion to two or one dimensions,

depending on whether the optical lattice is one dimensional or two. These are called

quasi-1D and quasi-2D states because scattering processes are still three-dimensional.

Their confinement would need to be significantly smaller than the scattering length of the

atoms involved to be truly one or two dimensional.

Some of the first probes of BKT physics in experimental Bose gas systems used

scale invariance, a fundamental property of the 2D system. Scale invariant systems can be

described by a set of unitless parameters, called scaled parameters, which can be related

by simple power-scaling laws across a variety of microscopically distinct systems. Scaled

parameters are constructed out of ratios of physical quantities, and so by understanding

one such system, one can construct a picture of the behavior of other systems under

a wide parameter regime about the BKT phase transition. These composite quantities

in aggregate need to hold all the length scale, energy scale, and microstate degeneracy

information in the problem in order to be an effective macroscopic map to microscopic

behavior.

The phase space density n(®x, ®p) of an ultracold quantum system is the probability

density of finding a particle at some particular position and momentum evaluated for all

possible positions and momenta. When one attempts to evaluate the various thermody-

namic potentials of some arbitrary system, it is necessary to introduce an effective grain

size below which distinctions are meaningless. For any generic quantum system this is set

by Planck’s constant. When the in-situ density of an ultracold cloud is actually measured,

the order parameter is projected through a resonant photon scattering process on the posi-

tion eigenbasis, and the momentum distribution cannot be measured simultaneously. The

width in momentum space may be taken as a constant function of temperature, giving the

conjugate scale in position space, the de Broglie wavelength λdB =
√

2π~2/mKBT . Using

this one can construct an effective scaled phase space density for a quasi-two dimensional
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system,

ñ(x, y) =
⨌

n(x, y, z, px, py, pz)dzdpxdpydpzλ
2
dB (1.1)

This quantity is a measure of the local degeneracy, and so is a good place to start in the

construction of ourmap from one particular BKT superfluid to another. It alsomakes sense

to keep track of the ratio of the thermal energy of the cloud to the chemical potential,

µ, two macroscopic energy scales which are in principle measurable and independent.

Reformulating this ratio in terms of the de Broglie wavelength reveals the same λ2 scaling.

µ̃ = µ/KBT = µmλ2
dB/2π~

2 (1.2)

Hidden inside µ is another parameter, the interaction energy. The Gross-Pitaevskii equa-

tion for the quasi-two-dimensional regime, eq 1.3, can be derived by integrating the third

dimension, assuming that the atoms are all in a single eigenstate in that dimension. Using

the harmonic oscillator ground state wavefunction, an interaction term coefficient that

scales inversely with the confinement length emerges in the Hamiltonian, where lz is the

HO length, and a3D is the scattering length.

Ĥψ = µψ = (−
~2

2m
d

d ®x
+

1
2

mω2 ®x · ®x +
~2

2m
N g̃ψ∗ψ(®x))ψ (1.3)

~2

2m
g̃ = g2D =

~2√8π
m

a3D

lz
(1.4)

The dependence of µ on g2D and thus on lz provides a way to tune µ̃ relative to ñ,

which has an explicit mass and density dependence, and realize the same physics across

atomic species. Likewise lz and the atomic density n can be scaled to reproduce the same

physics over a large temperature range, limited only by higher order scattering terms like

three-body loss. By looking at density fluctuations, and comparing density fluctuations

in microscopically distinct systems across the BKT phase transition Zhang et. al. ex-

perimentally confirmed this scaling, showing the physics of finite quasi-two-dimensional
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disorderless systems to be scale invariant in correspondence with the thermodynamic

limit. [28]

1.4 Equations of State

To relate experimental realizations of 2D Bose gas systems to the BKT transition

we employ the Local Density Approximation (LDA). To zeroth order the LDA takes the

chemical potential of the gas as µ = µhom(n(r))+Vext(r), where µhom(n(r)) is the chemical

potential of a uniform system with a phase space density n(r). To higher order the LDA is

valid when the energy of the system is expressable as an integral of a polynomial function

of the local density. This sounds like a restatement of Landau’s postulate, but rather than

derive the function µ = f (n) + V from his formalism, we take can f (n) as a map directly

to the results of the RNG near the critical region. Far from the critical region one can

employ a number of other approximations.

An equation of state is a relationship between several thermodynamic quantities in

a generalized system, and is derived from a measurable thermodynamic quantity, such

as the Gibbs free energy or the Helmholtz free energy. The Gibbs-Duham equation,

dP = ndµ + sdT , is one such equation. With a developed set of meaningful effective

local scaled thermodynamic quantities (the local density approximation regime), one can

employ the system’s equation of state to use a measurable function, such as an atomic

cloud’s density distribution, to calculate other meaningful quantities. [29] A trapped bose

gas is generally in thermal equilibrium with itself, so a measurement of the density

distribution of such a gas can be plugged into the Gibbs-Duham equation to construct

the pressure of the gas as a function of position. Ho et. al. provide a path through a

set of thermodynamic relations for a trapped quasi-2D gas from a set of in situ density

measurements to the chemical potential, temperature, pressure, and entropy density of the

gas. The high resolution imaging experiment [30] facilitated a study of the behavior of

these thermodynamic quantities across the BKT transition and confirmed the mapping.
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Yesfah et. al. compared the experimental results to several approximation regimes and

determined where, in what direction, and to what degree these schemes break down. On

the cold dense end of the phase diagram the Thomas-Fermi approximation is commonly

used to find the ground state in smoothly varying systems. In a very cold, smoothly varying

system, the kinetic energy term in the Gross-Pitaevskii equation 1.3 can be considered

insignificant 〈p2〉/2m � µ. But it consistently overestimates the phase space density,

underestimates the pressure and describes none of the behavior in the transition region.

Being a zero temperature approximation the Thomas-Fermi approximation assumes zero

entropy. Likewise Hartree-Fock mean field methods, which assume an absence of long

range correlations, break down near the transition, and overestimate the entropy per particle

by a large factor beyond the transition point.

1.5 The Quasi-2D Approxmation, 3D Dynamics and Band Structure

In our derivation of the effective interaction parameter in a quasi-2D system we

assumed an isolated system whose out-of-plane wavefunction can be well represented by

a harmonic oscillator. In real systems these harmonic traps are generated with optical

lattices.

Ĥ = p̂2/2m − V0cos(®k · ®x) + gψ̂†ψ̂ (1.5)

If we drop the interaction term and evaluate 〈ψ |Ĥ |ψ〉 in the position basis we return a

differential equation identical to the Mathieu Equation, and so our single particle solutions

are Mathieu functions. These constitute the Bloch solutions ψ®k(®r) to the periodic potential

V(®r) = V(®r − ®R) for the special case of a sinusoidal potential. In contrast to the plane-

wave solution there does not exist a solution for every energy E . The solutions with a

real-valued eigenenergy are confined to bands, and the regions with imaginary solutions

are referred to as band gaps. At low lattice depths ν = V0/ER, where ER is the recoil

energy (~k)2/2m, the dispersion relation diverges from a free particle’s spectrum, p2/2m.
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The solutions are the elliptic sine and cosine functions. They are analytic but have no

simple closed form solution, and have to be evaluated numerically. The band width and

band gap can be approximated in series expansions about ν = 0 in ν. In the limit where

V0 is less than or on the order of µ, the chemical potential of the cloud, or the temperature,

the phase space density is barely modulated by the presence of the lattice, and one cannot

relate the system to the quasi-2D regime. At ν >> 1 the bands flatten out into discrete

energy levels. If we compare those gaps to the eigenspectrum we get when we expand the

sinusoidal potenial about its minima, and solve for one minimum, we get something that

looks like a harmonic oscillator with an offset, out to second order.

V = −V0cos(x) = mω2x2/2 − V0 (1.6)

What we find is ω =
√

V0
m k, and eventually we will have a gap size that scales with

√
V0. In

the region where V0 >> ER, the deviation from the harmonic oscillator can be calculated

5 10 15 20 25 30

5

6

7

8

9

10
q=0, n=0->1 

Band Gap

Lattice Depth in Recoil Energy

Band 
Gap in 
Recoil 
Energy

Figure 1.2: Here we consider the energy gap between the ground state and the first exited band at
quasimomentum p = 0 in the Bloch solution to an atom in a single sinusoidal lattice. The lattice depth and
the band gap are both given in terms of recoil energies. This depicts the intermediate region where our data
is taken for Rb87 in a 1.3 µm lattice. At a vanishing lattice depth, the lowest energy gap is 4ER, which in
our system corresponds to a temperature of 200 nK. The energy scaling begins to approach

√
V0 scaling at

high V0.
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in an expansion in 1/ν. The energy scale against which we judge if our temperatures and

our chemical potentials put us in the quasi-2D regime becomes those discrete gaps.

The crossover region between a 3D and a set of quasi-2D systems is complicated.

The first and second excited bands parallel the first and second excited states of the

harmonic oscillator. In the lowest band the wavefunction can oscillate at most once per

site, much like the ground state of a harmonic oscillator will have one maximum in the

center of the potential. The first excited state of a harmonic oscillator has twomaxima, just

as the first excited bloch band allows two oscillations per site. But in the regime of strong

coupling macroscopic occupations of specific quasimomenta will change the shape and

center of mass within a well of the atomic distribution. This stands in contrast to the true

quasi-2D regime where the phase relationship between pancakes from one well to the next

has no effect on the in-well distribution. It always looks like a harmonic oscillator state.

When we consider a quasi-2D system we can make corrections to the two-dimensional

LDA by considering localized, fractional occupations of vibrational states perpendicular

to our pancakes. In the case of well isolated pancakes those localized vibrations are just

from the occupation of harmonic oscillator states above n= 0. In contrast in the case of

strongly coupled pancakes occupation through the entire first band modifies the rescaled

interaction parameter g̃, so out-of-plane physics will strongly couple to in-plane physics.

In the strongly coupled regime the only gap available to define how quasi-quasi-2D we are

is the band gap.

Because our system is predicted to become a 2D superfluid in anXY renormalization

group phase transition, and because we expect many-body dynamics to drive our phase

transitions from a localized insulating state to one with a small but finite superfluid fraction

in three dimensions, we will want to be able to describe these planes as distinct, local

objects. In order to talk about our clouds as distinct local objects in the strong coupling

regimewemake a unitary transformation from theBloch solutions to theWannier solutions

φ ®R(®r), where the sum over quasimomentum ®k is taken over a single brillion zone in band
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n.

ψn,®k(®r) = ei®k ·®ruk(®r) (1.7)

φn, ®R(®r) =
1
√

N

∑
k

e−®k · ®Rψn,®k(®r) (1.8)

This isWannier’s original transformation, providing a generalizedway to provide localized

solutions for any band structure [31]. These provide us with a localized wave function

to evaluate g̃ through direct integration, and to calculate hopping rates by evaluating the

overlap of the localized atomic density with neighboring wells.

1.6 Emerging 3D Superfluidity, Phase Stiffness and the Sliding Phase

Figure 1.3: Taken from Mohan et al’s paper [26], this figure depicts both their model, a random stacking of
two different types of planar magnet, and the phase diagram they expect to see as a function of temperature
in arbitrary units for their two magnetic stiffnesses and their bulk magnetization m. Using scaling arguments
they identify four phases of matter in a disordered stacked system. SO is the strongly ordered phase, G is
the non-anomalous Griffiths phase with finite phase stiffness, AG is the anomalous Griffiths phase, so called
because it varies with system size, and SD is the strongly disordered phase, a thermal gas.

At sufficiently low temperatures our system is predicted to become a 3D superfluid.

Like a 2D superfluid it supports frictionless flow, and this frictionless flow has a superfluid
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O. Mentré, E. Janod, P. Rabu, M. Hennion, F. Leclercq-Hugeux, J. Kang, C. Lee, M. Whangbo, S. Petit, Phys. Rev. B 80 ,

Lo
n
g
it
u
d
in
al

an
d
tr
an

sv
e
rs
e
st
i
�
n
e
ss
e
s

[1
]
J.
B
o
b
ro

�
,
N
.
La
fl
o
re
n
ci
e
,
L.

A
le
xa
n
d
e
r,
A
.
M
ah

a
ja
n
,
B
.
K
o
te
sw

ar
ar
ao

,
P.
M
e
n
d
e
ls
,
P
h
ys
.
R
e
v.

Le
tt
.

[2
]
L.

A
le
xa
n
d
e
r,
J.
B
o
b
ro

�
,
A
.
M
ah

a
ja
n
,
B
.
K
o
te
sw

ar
ar
ao

,
N
.
La
fl
o
re
n
ci
e
,
F.

A
le
t,
P
h
ys
.
R
e
v.

B

[3
]
O
.
M
e
n
tré
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Figure 1.4: Taken from Nicolas Laflorencie’s Monte Carlo paper, this demonstrates the difference between
a disordered system and a clean system in a stacked XY two-material system of finite and varying size. Here
L corresponds to L⊥. The in plane and perpendicular phase stiffnesses ρs scale differently at the transition
and have different transition temperatures.

fraction, ρs f . But in our finite anisotropic system superflow along the length of the lattice

is a dubious concept. Instead the phase stiffness ρs has been used in [24], [25], and [26] to

characterize superfluid transition in disordered stacked superfluids. Mohan et al identify

four phases of matter in Figure 1.3. At high and low temperature they identify strongly

disordered and strongly ordered phases in their stacked magnets, which through U(1)

symmetry map onto our 3D superfluid and thermal gas phases. Between those two

extremes are a pair of Griffiths phases, which are phases of matter in disordered systems

dominated by the largest deviation from the statistical ensemble in the system. This can

be the weakest link in a set of pancakes with disordered hopping potentials, or the longest

distance over which each pancake lacks any superfluid fraction. This can be the thickest

layer of some particular magnetic material in a disordered stacked planar magnet system.

The anomalous Griffiths phase (AG) identified just below Tc for the 2D system is identifed

as having no phase stiffness, but an anomalous scaling of the free energy F as a function

of system length L⊥ when a twist is applied across the system, ∆F Φ2L−z
⊥ , where z is an

exponent that varies from ∞ at Tc for 2D order/superfluidity continuously down to 1 at

the transitoin to the non-anomalous Griffiths phase (G), with finite phase stiffness whose

properties are dominated once again by rare regions.

In contrast, in a similar system, Nicolas Laflorencie’s Monte Carlo analysis shows
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three phases in Figure 4.2: one ordered phase at low temperature, one anomalous Griffiths

phase he identifies as the sliding regime, and the thermal phase. This can be explained if

his Monte Carlo simulations were unable to identify Griffiths physics in the temperature

range where order begins to grow in the disordered direction. The systems he studied

were approximately the size of our own system, so the difference could be due to finite

size effects.

Pekker et al and Mohan et al agree on the number and variety of phases, but type

of disordered system studied by Pekker et al and depicted in Figure 1.1 is closer to our

system. It’s not a binary system as in the other two works. Each pancake is free to have its

own transition temperature, and so every layer is free to be a different material than every

other layer. They differ from Nicolas Laflorencie in the size of the phase stiffness seen in

the low temperature ordered phase, as can be seen in Figure 1.5. These subtle differences
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Figure 1.5: The phase stiffness in the ordered phase is predicted to be 1
500 that of the in-plane phase stiffness,

a quantity unlikely to be measurable in our system. Here ρab corresponds to ρ‖ , the in-plane phase stiffness,
and ρc is the out-of-plane phase stiffness, ρ⊥. The temperature scale is set so that T = 4 is the BKT
transition temperature.

and the models’ relation to a real Bose gas of pancakes with disordered statistics are worth
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consideration.

In this thesis, we begin with a description of some of the changes we made in our

reconstruction of our BEC production line in chapter 2. In chapter 3 we describe our new

optical cross trap, our HiBAL, our new microscope and the microwave and magnetic field

control schemes we use to control the atomic state of our 87Rb gas. Chapter 4 compares

our experimental realization of disordered stacked quasi-2D Bose gases, from the thermal

regime down to the deeply degenerate, to some of the predictions of [24], [25], [26].

Chapter 5 concludes with a description of a novel scheme to realize a BKT superfluid in a

Mobius strip, and explores the consequences for vortex physics in a nonorientable space.
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Chapter 2: The Chamber

We inherited an apparatus that was designed to conduct a number of different

experiments in a number of different physical locations [32] [33] [34]. It was designed

to collect 87Rb atoms in a chip trap, and perform some retroreflected lattice experiments

in BEC at the trap. It was also designed to move our atoms out to a science cell, where

improved optical accessibility enabled both superior microscopy and more flexbility in

our optical controls. Finally, it was designed to both perform Rydberg experiments at

the chip trap, as well as transport atoms to an arm with a multichannel plate detector for

Rydberg physics. Each experiment had their own technological requirements which in

turn constrained the performance of the others. The original MOT and magnetic trap were

generated on a macroscopic chip trap. It was screwed into a water-cooled block, and a

gold mirror was mounted on top of the chip trap. The gold mirror provided for stable

retroreflected optical lattices and an effective lamda/4 double pass plus retro for our MOT

beams. The chip assembly also had a set of electrodes to provide a DC electric field near

the MOT for the use of the Rydberg team.

The optical speckle experiments have all been in our science cell where our optical

access gives us opportunities for both quantum control and measurement. Our only

purpose for the chip trap was to regularly load sufficient atoms into our 1550 nm tweezer

beam for transport to the science cell. The chip trap turned out to have a number of

disadvantages. The first was electromechanical. The copper posts which carried current

and voltage biases to the chip trap assembly would bend slowly over time, and so much

so that they would partially short to the water cooling block. Breaking vacuum in the
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main chamber resulted in a significant delay, of at least a month. This also entailed the

complete realignment of the optics and recalibration of the electronics. The only dynamic

control we had over our magnetic bias fields was a digital switch, and as a rule MOT bias

requirements are not the same as molasses bias requirements. Optimization was a mix of

timing, bias strength, and MOT beam decollimation to correct for power loss. The chip

trap also blocked about half of the field of view of our Zeeman slower, reducing both the

load rate and the maximum number in the MOT. Over time there was a degradation of

atom number that led to our decision to rebuild the experiment. We replaced the atom chip

with a combined magnetic and optical dipole trap that had become more routine in the

field since the construction of the chip trap. The final decision to progress to a full rebuild

came with the end of the Rydberg experiment and the accidental ablation of Kapton by

the 1550 nm dipole beam.

2.1 Redesign and Rebuild

In redesigning the experiment our goal was to develop a more robust experimental

apparatus to maximize the time to do physics and minimize the time we spent on daily

optimization. Each component had to be robust, stable, and easily servicable. For the most

part we followed that philosophy and succeeded in making a much more robust apparatus.

On a regular day we now get more than 2 · 107 atoms in our dipole trap before moving out

to our science cell, which is over a three-fold increase from the top performance of the old

apparatus. We go weeks without needing to touch up the atom collection side of things.

With careful optimization the numbe can be as high as 6 · 107, which is an increase of an

order of magnitude over the performance of the old setup when it was working its best.

We reconstructed our MOT and magnetic trap by copying a design used by several

BEC experiments at the JQI [35]. We repurposed the vacuum equipment we already had,

and bought a pair of custom bucket windows for our 6" Kimball Physics spherical octagon

from the Special Techniques division at the Culham Center for Fusion Energy, UKAEA.
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These reentrant viewports allow our twenty turn quadrupole coils to sit 0.69" below the

2.75" wide flange, bringing their minimum separation to 1.4", which allows us gradients

at the center of our magnetic trap of 230 Gauss/cm. We drive it with an Agilent power

supply, and servo it with a NewFocus lock box and a hall sensor.

We kept the same oven and Zeeman slower, a set of 7 coils with independently

controllable currents. The cold plate on the oven would cause vacuum problems during

power outages, but it is now running on a UPS. The old current controls used darlington

pairs, which have to be both heatsunk well and electrically isolated from ground. They

had long warm-up times, and so the coil fields would drift over the day. I replaced these

with MOSFETS on a watercooled block. The slower coils are attached to the rail of a

linear supply, and from there to the individual MOSFET’s drains. Each MOSFET’s gate

is controlled by a current set with its own high impedance trim pot, each of which spans

the rail of the same linear supply as the slower coils. The source of each MOSFET is then

attached to its own .050Ω sense resistor, which are attached to the samewater cooling block

as the MOSFETs. The last sense resistor then attaches to the supply’s ground. Varying

the current through one MOSFET changes its source voltage, and thus the drain-source

voltage that controls it. Significant changes to the coils require a few passes because they

are all slightly coupled, through their sense resistors, in series. This is an electronic design

flaw we accept to minimize the number of solder joints connecting to the sense resistors.

Once set the currents are stable. Each component can be swapped out in minutes; they

come to equilibrium within a minute after being turned on.

The chamber used to have a 6" CF cross. One arm went to the chamber, another

held the feed-throughs which supplied water to the water cooled block, current to the

chip trap, and electric field biases for the Rydberg experiment, the third went to the ion

pump+Titanium sublimation pump, and the fourth went to the ion gauge and torque valve.

Fig. 2.2 depicts the current vacuum chamber setup. The ion pump, ion gauge, and all-

metal valve all connect to the chamber through the same 2.75" flange. The torque valve
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Figure 2.1: This is a rough depiction of our new robust, stable, and easily repairable slower controlMOSFET
bank. The row of arrows depicts the direction of the Zeeman slower coils relative to one another. The
second row of numbers maps the coils to the channels on the electronic breakout which then connects to our
control scheme. The third row is the voltage measured across the .050 Ohm sense resistors that correspond
to each coil. And the numbers on the diagram of the sheet of plastic used to mount the various electronics
represent each channel. This will be most useful for anyone who needs to make our Zeeman slower work
should it break.

and ion gauge sit above the chamber, connected by a pair of 2.75" Ts. The TiSub pump

sits above the chamber connected by a 2.75" T, as does the new NEG on a third 2.75"

T. The ion gauge reads 2 · 10−11 Torr with the gate valve to the ovens closed, and about

5.5 · 10−11 Torr with them open. We have not had to break vacuum since reconstruction,

and the last firing of the TiSub was in June of 2015.

20



Figure 2.2: The current arrangement of the vacuum hardware, at the elevation of the top quadrupole coil.
I’ve drawn shadows that indicate where the Non-Evaporative Getter, Titanium Sublimation Pump, Ion Gauge
and Torque Valve assemblies stand above the rest of the chamber.

2.2 Collecting Atoms

Figure 2.3 depicts the chamber. Our new MOT is a three beam retro-reflected

MOT, each beam an inch wide. Each of the MOT beam axes, the x̂, ŷ, and ẑ axes, has a

Hemholtz coil set wrapped around their respective CF flanges to control the bias field in

the chamber. These are controlled with bipolar current supplies designed and constructed
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Figure 2.3: Our MOT, imaging, slower and dipole beams in the chamber. Also depicted are our bias coils
and our quadrupole coil.

by Zach Smith. Imaging in the chamber is done with a σ− probe on the x axis, separable

from the σ+ MOT beam. Rotated 45° on the ẑ axis are the beam paths for the slower and

for the dipole beam.

The cycle starts with all of our laser shutters open and our laser beams on full. The

magnetic field biases are set so that the center of the MOT, right before we switch to our

optical molasses, sits over the center of the magnetic trap. The biases compensate for both

the ambient magntic field in the chamber and for MOT beam imbalance, which occurs

quite naturally in a retroreflected MOT setup. Measured over the first 50 ms, our load

rate is 109 atoms per second, but saturation effects take over quite quickly, and after an 8

second load we actually have atom clouds > 109. At this point we use shutters to switch off

the slower and slower repumper beams, and allow the MOT two hundred milliseconds to
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Figure 2.4: Our amplitude control capabilities in the chamber. The bipolar bias controls have the capacity
to power down the MOSFETS to eliminate any near-field gradients that might affect transport to the cell.

center itself over the magnetic trap. We then drop our repump beam amplitude by a couple

orders of magnitude so our atoms spend much more time in F = 1 than in F = 2. This

occurs over 25ms, and lowers the photon rescattering pressure in theMOT and compresses

it. Then we turn off the quadrupole trap entirely, switch our magnetic biases into their

molasses configuration, and detune our MOT beams from resonance by 100 MHz to cool

the cloud. This molasses step lasts 8 milliseconds. We then use our shutters to turn off

the MOT repumper entirely, and allow a millisecond of optical pumping into F = 1 from

our MOT beams. Then we shutter the MOT beams as well, shift our biases to zero out the

magnetic field in the chamber, and snap on our quadrupole field to compression of about

twice gravity for atoms in the F = 1, m f = −1 state. This leaves us with about a third of

the atoms we had in the MOT. After a 90 ms hold, we ramp the field up to about 12g over

200 ms, and commence RF evaporation.

2.3 RF Evaporation

After the rebuild we had to rework our RF evaporation. The old setup had a two

Watt amplifier and a crude antenna. There was a 6" window to project the RF through,

so there was little metal to impede the RF. In contrast our bucket window design has no

location without a lot of nearby metal. This was initially quite confusing, and before we
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installed our fast bipolar bias field controllers our RF evaporation had to be both slow

and unreasonably efficient. This slow evaporation meant sources of heating were very

important, and one of the larger sources of heating was the RF source itself. The analog

RF amplitude control was picking up high frequency signals floating around the room and

acting as a mixer, making our tone impure and producing enough signal in the 100s of

kHz region to provide a source of loss at the bottom of the trap. One can see how this

works when the amplitude A of a frequency sweep f (t) has its own oscillation spectrum,

E =
∑
ν A(ν, t)d−i2πνt · e−i2π f (t) =

∑
ν A(ν, t)e−i2π(ν+ f (t))

We attacked the problem from three angles. We added a mF capacitor at the

amplitude control for our RF generator as a blocker. I reshaped the antenna to create

an RF field orthogonal to the magnetic field at the bottom fo the trap. We also bought

a 10 Watt amplifier. With these three things we run an RF knife from 17 MHz to 2

MHz over three seconds. To see why an orthogonal RF field maximizes the RF coupling

Coil Shape

1550

RF

1550

B

Figure 2.5: We shaped our RF coil so that the magnetic field of the quadrupole coil would be orthogonal
to the RF drive field both at the bottom of the trap and all along the 1550, maximizing the efficiency and
uniformity of evaporation.

between magnetic sublevels we will take a look at the physics. A stationary neutral
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particle in a magnetic field can be described by the Hamiltonian Ĥ = −®µ · ®B, where ®µ is

the magnetic moment of our particle and ®B is our magnetic field. If we choose to make

our quantization axes local, we can call the direction of the quadrupole field we use to

trap our atoms ẑ. Decomposing this into the static field Bs and the drive field ®Bd , we can

rewrite ®B = Bs ẑ + ®Bdsin(ωt). Projecting the magnetic moment of the particle onto the x,

y, and z axes is then a matter of applying the appropriate Pauli operators to the particle’s

wavefunction. We can see immediately that σ̂z is diagonal in the quantization axis, so

while a small oscillating field Bd,z may dress the energies of the individual sublevels, it

does not couple them to one another. By minimizing this component along the bottom of

the trap in a line that follows the dipole trap we thus maximize our evaporation efficiency

and uniformity where the atoms coalesce during evaporation.

2.4 Transportation

Towards the end of our RF evaporation we decompress the trap, and we give it a full

second to transition from gravity cancellation to off. When the trap becomes too loose

to cancel gravity about half the atoms fall out. The other half are trapped by our 1550

nm dipole beam. The atoms are sufficiently hot and the trap sufficiently loose that the

trap cannot be properly written as a harmonic oscillator. If one were to attempt to assign

an oscillation frequency along the beam one would say, perhaps, 5 Hz. The time-scale

over which the atoms return back to the center of the trap after a sudden movement of the

dipole beam is 100 ms, and they do not complete an oscillation in a meaningful way. The

optical aperture available to our dipole beam is 12.5 mm wide, and it is 300 mm away

from the center of our magnetic trap. To avoid diffraction off the edge of the aperture

we have to keep our beam small, and so the smallest waist we can achieve at the focus

of the beam is 60 µm. The resulting Rayleigh range for a 1550 nm beam is 8 mm. So

to adiabatically decompress along that direction we must move slowly with the magnetic

trap decompression at the end of the sequence.
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As described inMatthew Beeler’s thesis we use an air-bearing Aerotech ABL20040-

10 to smoothly and reliably move the single 2” lens which focuses our 1550 nm beam.

As before we relay-image that beam with a set of achromats. But we now pass that beam

through a 1” polarizing beam-splitter cube. We use the cube to inject our optical cross

trap on an orthogonal polarization. The reject port is used for alignment, and this tool has

sped up our cross alignment to hours instead of days. Care must be taken that scattered

light does not impede transport by putting fringes in the dipole beam.

We also now have the capacity to distinguish between different magnetic states in

the cell, to be described in detail in the Science Cell chapter. That measurement has

changed the way we transport atoms. Atoms trapped in the F = 1, m f = −1 state are

the only magnetically trappable state in the F=1 manifold. There are also two trappable

states in the F=2 manifold, but we work hard to ensure we optically pump into the

F=1 manifold before we turn on the magnetic trap. We assumed in our slow, seconds

long transportation that our atoms adiabatically followed the magnetic field, typical earth

fields, putting that splitting at around 100 kHz. What we found was atoms unevenly but

consistently distributed throughout the F=1 manifold. This can happen in the presence of

light, but atoms scattered into the first excited F=2 manifold will populate into the F=2

ground state manifold as well as F=1. We discovered this problem after we had built up

all of our optics and platforms around our science cell, and did not want to disassemble

and redesign the closely packed optomechanics to accommodate bias controls running the

length of our optical cell and its glass mount. As a partial solution I used a set of fairly

large Ne2Fe14B magnets to lay a track from the center of the chamber out to the cell

to increase the magnetic sublevel splitting and to give the area the atoms pass through a

large, consistent magnetic field. We find it likely the atoms were passing through a set of

weakly coupled avoided crossings as they moved out to the cell. The static field where the

atoms sit is now 3.54 Gauss, and we weakly populate the F=0 state when the atoms have

arrived in the cell. We clear out the F=0 atoms with a microwave process described at the
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end of chapter 3.
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Chapter 3: The Cell

Our control and measurement systems in the science cell are the result of three years

of work. We have added a new dipole cross trap, a new high resolution microscope, a

magnetic dipole for levitation and spin discrimination, a microwave system, and our high

bandwidth arbitrary lattice (HiBAL). I will discuss each in order of its development.

3.1 The 1550 nm Cross Dipole Trap

The arrangement we inherited used our 1550 nm transport beam and a second beam

which traversed meters of free-space as a cross trap in the cell. The free-space beam was

split off from the transport beam with an AOM. Our optics were designed to relay-image

the body of that AOM along both the zeroth and first order beams through two different

optical paths to the location of the cross trap. There are limits as to what one can do

in a real lab environment over several meters of free-space. Over the course of the day

the cross would move by about 100 µm down the length of the stage beam. It is almost

miraculous that they stayed crossed during this period, but our optical speckle potential

and our optical lattice were about 100 um wide.

I redesigned the cross for stability, and one can view a diagram in Fig. 3.1 The cross

trap now launches from a fused silica band gap fiber less than a meter from the location of

the final trap. Every optic the cross trap travels through is attached to the same one inch

aluminium breadboard by one inch stainless steel posts. Where I could, those posts were

also attached to each others through Thorlabs cage cube optic mounts for greater stability.

Where this wasn’t possible we used Thorlabs Polaris mounts. We purchased the PM fiber

28



from NKT Photonics. 90% of the mode area is trapped in air, and the comparatively low

coefficient of thermal expansion of fused silicia minimizes any thermal lensing that occurs

on the surface of the fiber. We split off the light for this trap from the stage beam using an

AOM (IntraAction) that has a maximum diffraction efficiency of about 80%. It’s driven

by a very stable IntraAction driver for a -80 MHz shift, and we do not observe deflection

due to RF drift reducing the coupling efficiency into the fiber. This AOM is particularly

destructive to the mode of the zeroth order beam that passes through when it’s driven at

high power, but we have not noticed any negative effects on the transfer of our atoms from

the stage beam to the cross due to this effect. To ensure a pure polarization the beam

passes through a very carefully aligned calcite Glan-Thompson (Glan) polarizer after it

exits the fiber, which has an extinction ratio of 100,000:1. It then passes through a fused

silica λ/2 which rotates the polarization to align with the TeO2 AOM. The zeroth order

mode is not observably disturbed when the AOM is driven at spec. At this moment we

split the beams using a positive 81.6 MHz shift, but the experimental requirement is only

that the frequency must be at least 500 kHz away from 80MHz, at which point we observe

catastrophic heating due to beating between the stage beam and the near-detuned beam.

Both the first and second order beams then pass through a telescope. One lens is a

-35mm achromat, and it is the only optic that is not fused silica that the cross trap traverses.

Fused silica has a much lower coefficient of expansion with respect to temperature than

regular glass, so this optic can produce laser-power dependent lensing and deflection. It’s

challenging to find appropriate fused silica optics at 1550 nm. We did play with some 1550

coated singlets that were available at the time, but could not produce circularly symmetric

beams. The second is a 75 mm lens. This both appropriately sizes the beam waists and

separates them physically. They then reflect off a backside polished mirror. At this point

the light is carefully set as p-polarized, and is thus maximally transmissive through the

dielectric coating of the reflecting mirror. This pass-through signal is used to intensity

lock the trap. The transmission of the light as a function of angle, regarding p-polarized
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Figure 3.1: This is the main optical breadboard used to mount our high resolution imaging and dipole trap
optomechanics. Gravity points into the page. The science cell is shaded a light blue. When viewed in a
landscape the optical cross trap starts in the upper right. The translation beam is labelled the stage beam,
and comes from off-screen. The HiBAL comes from the upper left and the high res imaging system is to
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light as θ = 0, is tp ∗ cos(θ) + ts ∗ sin(θ). The orthogonal polarization is suppressed to a

part in 100,000 by the Glan polarizer, setting a maximum deviation angle as arcsin(10−5),

producing deviations in power transmitted from polarization problems of around five parts

in 1011. We are thus limited by dust, surface imperfections in our optics, and the amplified

photodiode’s electronic properties. We find no reason to stabilize high power beams with

pick-offs.

The largest source of vibrational instability, which can lead to both heating and the

coherent excitation of vibrational and translational modes in a BEC, comes from the next

set of optics in the beam path. They are the only optics that act on only one of the two

beams. The first-order beam reflects off of a vertical periscope, which is used to set the

separation and co-propagation of the two orders. The 1/2" mirrors are set on quarter inch

tall, inch wide steel posts, which are in turn attached to a breadboard bolted at a 90◦ angle

to the breadboard that holds all the cross optics. They both then pass through a λ/4 and

a λ/2 to control the splitting between the reject port and the trap port of the PBS used

to combine the cross and stage traps. They then bounce off of their last two walking

mirrors, and then a 79 mm focal length fused silica asphere that overlaps the two beams

at their foci. Finally they pass through the fused silica PBS and the quartz face of the cell.

The science cell separating our vacuum from the rest of our lab is cantilevered off of our

atom-collection chamber, and so unlike the rest of our optics it doesn’t have micron-level

stability, but the angle of the beams mean etaloning is not an issue, and the high quality

glass surface doesn’t introduce travelling scatterers to our optical trap beams.

This trap is relatively easy to align from scratch. The reject port of the polarizing

beam cube can be used for rough alignment. By allowing a small amount of light from

both the stage and cross beam to leave through the reject port one can use a florescent

card to both confirm the focal points of all three beams and to overlap them. This tool is

important in dipole traps whose detuning cannot be brought close to resonance, where the

signature in the atom cloud is only present with relatively good overlap and confined to

31



overlap of all three beams within sixty micrometers of each other in the horizontal.
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Figure 3.2: Two clouds are captured and cooled
using two RF sources and a high speed switch.
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Figure 3.3: The two clouds in profile. In this
TOF image one can see that one cloud has con-
densed while the other has not.

To measure the stability of our trap we applied gaussian fits to images taken with our

1 µmdiffraction limited imaging system, and wemeasured sub-µm standard deviations for

the position of the cloud. When we measured the velocity distribution of a set of BECs in

free-fall TOF we measured net energy contributions to the velocity of the cloud from both

in-situ motion and imperfection in our trap turn-off to be sub-Hz. This type of stability

is overkill in many experiments, but the study of disorder in particular demands stability.

Diverging timescales and vanishing gaps are characteristic of disordered systems, and so

extra care must be taken to minimize heating and coherent excitation of low lying states.

Transport does not define, but is a signature of many phases of matter. Our cross

was designed with that in mind. Though there have been ballistic measurements of many

body localization [36], to my knowledge no one has ever measured atoms in a disordered

potential as a circuit element between two imbalanced reservoirs of atoms which can

simulate a voltage difference. By varying the RF frequency fed into the AOM that splits

the trap we can vary the position of the cross. Fig. 3.2 features a demonstration of two

different clouds evaporated in two different traps generated with stroboscopic switching

of the cross RF drive frequency. With an AWG or DDS our quasi-imaged AOM cross

trap enables dynamic arbitrary tailoring of the longitudinal shape of our trap, and is thus
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circuit-element measurement capable.

3.2 Absorption Imaging

In order to understand our images we will have to talk about photon scattering,

heating in the imaging process and how that limits our ability to measure our clouds in

a fundamental way. If we want to claim we are imaging our clouds at a resolution of

a micrometer, we must claim that the atoms in the cloud move less than a micrometer

over the whole period of our exposure, which makes high resolution in-situ imaging much

different from time of flight imaging.

In a typical time of flight image we are resolving momentum distributions of clouds

distributed over millimeters of space. The actual information available about our quantum

gases before their release does not exist on diffraction limited lengthscales. Rather it exists

on length scales that derive from the time of flight and the equivalent de-Brogliewavelength

of the smallest possible momentum in our confined systems. So, for a 50µm wide cloud of
87Rb, the lowest definable momentum will exist on a lengthscale of 50µm. The velocity of

a 87Rb atomwith a deBroglie wavelength of 50µm is 2π~/(87amu ·50µm) = .09µm/ms To

separate out this momentum from the zero momentum term we would want 25 microns of

separation to resolve the two 50-µm-wide clouds. The granularized information available,

the information thats’s meaningful from a quantum information perspective, will thus

be either TOF limited or cloud size limited. So during a TOF imaging sequence our

only concern is that atoms not, on average, move out of the 50µm wide spot that is the

convolution of our original cloud size with the momentum distribution to produce our

actual TOF image. So from a photon absorption and cloud heating perspective, even

though our optical resolution is 2µm, the actual information resolution for a 50ms TOF is

about 5µm but our resolvable spot size is 50µm. In such a case we are cloud size limited,

and we do not want our atoms to move further than that in the imaging time.

In a misguided effort to get the best SNR possible we shaped our probe pulse to,
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on average, be just below total filling for our CCD wells. Our camera is a Point Grey

Flea2g running a Sony ICX445. For its price point it sits at a sweet spot in its noise and

high quantum efficiency at 780 nm. It has a well depth of 5200 electrons, and a quantum

efficiency of about .36, according to the FLIR FL3-GE-03S1M tech specs. So to fill up a

ccd pixel, we need about 17300 photons per pixel, each of which, at a magnification of 2,

counts for (3.75/2)2 = 3.515µm2. Our TOF images are taken over 150µs, which results

in a probe power just over 800µW/cm2, which is about .5Isat on the cycling transition.

Using 3.1 and the D2 line’s linewidth of 2π · 6.065 MHz, we expect to scatter a photon

every 150 nanoseconds for a total of 1000 photons per atom per probe exposure.

Rsc =
Γ

2
I/Isat

1 + 4(∆/Γ)2 + I/Isat
(3.1)

Photons in probe beams have a fairly well defined momentum ~®k, and each absorbed

photon has two effects. The absorption changes the average velocity of the cloud, and the

spontaneous emission takes each atom on a random walk through momentumspace that

causes heating. When one is anywhere near Isat the doppler effect dominates distortions

in imaging, and anyone using absorption imaging should read a paper of which I was only

recently made aware. [37] The latter effect occurs in three dimensions and in integer units

of the photon’s momentum. We can approximate this as a Wiener process in the limit

of many scattering events and use the diffusion equation and the resulting variance of its

distribution, Eq. 3.2, to calculate heating as a function of time and thus the degredation

of our measurement as a function of scattering rate and interrogation time. We can see

that the average momentum thus grows as
√

t and displacement grows as t3/2 in eq. 3.3.

That comes out to only 3.58 microns of resolution degredation due to heating during

a 150-microsecond TOF imaging sequence. This compares well with our 2µm optical

resolution, our approximately 5µm momentum grain size, and our 50µm coherent fraction

in-situ spot size.
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3
2

KT = σ2
p/2m = dp2Rsct/4πm (3.2)

σx =

∫ √
dp2Rsct/2πm2dt =

2
√

Rscdp · t3/2

6
√
πm

(3.3)

In-situ pictures place more stringent limits on scattering. If we were to use the

same imaging sequence to try to capture our in-situ density distribution in the absence of

a lattice we would have convolved the actual distribution with a 3.58 µm wide gaussian.

In the presence of a lattice perpendicular to the probe, spontaneous emission is reduced

in dimensionality by the restricted momentum eigenspace the lattice imposes at low

momenta, which enhances the coefficient in the diffusion equation by a factor of 3/2,

bringing our two-dimensional thermal kernel to 5.37 µm. In addition we have to worry

about depth of field effects on our imaging at our high numerical aperture. Themomentum

added along the imaging axis due to the absorption of photons grows linearly in time as

dpRsct/m, and the displacement quadratically. This along-the-beam displacement for our

TOF imaging pulse is 415 micrometers. This means our in-situ imaging pulses have to

occur quickly. The maximum scattering rate per atoms in a laser beam is given by Γ/2. At

this rate a 4 µs imaging sequencewill cause π nanometers of displacement, which is already

several times our depth of field. A 1 µs imaging pulse results in acceptable displacement.

Many modern quantum gas microscope experiments get around this by implementing

active sideband cooling in deep three dimensional lattice during the imaging process, but

photon assisted collisions reduce this to a local number parity measurement.

In order to maximize our SNR we want to scatter as many photons as possible in

our in-situ images, and our TOF images are taken at intensities very near to saturation.

We must therefore consider how the scattering cross section in an image varies with the

probe’s field. Direct integration of Eq. 3.4, a differential equation of the intensity using

the scattering rate as an absorption coefficient along probe beam direction ẑ, gives us Eq.
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3.5.

dI(x, y, z)
dz

= −n(x, y, z)σ
1

1 + I(x, y, z)/Isat
(3.4)

ncolumn(x, y) =
1
σ

(
ln(Iprobe(x, y)/Ishadow(x, y)) +

Iprobe(x, y) − Ishadow(x, y)
Isat

)
(3.5)

The column density we get from eq. 3.5 is noisier at high I/Isat than at low intensity,

when we can use the standard form of Beer’s Law. It becomes mostly linear in intensity,

which means we must more closely consider our CCDs’ response. In the absence of light

the CCD has thermal noise which causes a distribution of dark counts with a total span of

40 counts and an average contribution of 20. The edges of the distribution of dark counts

are down by 10−5, which sets the gaussian width at 5.89 and a variance of 17.34 counts.

In addition we have to deal with the Poissonian statistics of light. For our coherent probe

beams the variance is identical to the average number of counts. At first glance this is

disasterous. In a very high saturation regime we will have a variance in our atom number

identical to the average photon count over the saturation intensity and the scattering cross

section, which is identical to our maximum possible signal. The effect is easy to see in

Figure 3.5, which has not been subject to any filters. The granularity is not because we

are imaging individual atoms. There are eighty thousand atoms in that picture, most of

them slightly out of the depth of field. The apparent clumpiness is the result of Poissonian

statistics in a short exposure. The solution is straightforward. To accurately gauge what

the average of a distribution is we must simply sample it several times. In a practical sense

this requires a high enough magnification of the imaging system that each diffraction

limited spot size occupies many pixels.
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3.3 Imaging and Phase Transitions

In recent years enormous leaps in both thermometry and quantum measurement

have been made in the neutral gas community through the use of high resolution in-situ

imaging. Citing all the work done along this direction would be redundant, as there are

review articles in the literature, so I will briefly discuss the work that was most influential

on me personally and some I consider to be the most remarkable.

Cheng Chin’s group in Chicago used the fluctuation dissipation theorem to perform

in-situ thermometry on in-situ images. [38] The fluctuation dissipation theorem connects

the bulk properties of PT reversible materials, which are materials whose Hamiltonians

are identical when one mirrors all three spatial dimensions and reverses the flow of time, to

microscopic fluctuations that occur in those materials. My favorite mundane example led

directly to the theorem’s discovery: Johnson-Nyquist noise. Resistors, when unperturbed,

will have a time-averaged voltage 〈V〉 = 0 across the resistor, but will have a non-zero

time averaged magnitude 〈V2〉 = 4RkBT∆ν, where ∆ν is some bandwidth over which

the square of the voltage is measured. This is generally referred to as thermal noise, and

different relations for thermal noise exist for different electrical elements. In the case of

a resistor with resistivity r and resistance R = rl, we know that 〈V2〉 will scale linearly

with the length of the object and linearly with the temperature of the room. In regular

resistive materials the conduction band is partially filled at room temperature, and the

number of carriers is roughly constant. The temperature dependence thus comes from the

thermal velocity acquired by the electroncs. Carrier concentration in semiconductors, in

contrast, has an exponential dependence on temperature, governed roughly by e−EB/KT , so

the scaling of 〈V2〉 in a semiconductor is not linear in temperature. One can distinguish

between different phases of matter just by studying how fluctuations scale with parameters

like temperature and system size.

One expects the timescales in disordered systems to be long because they tend to
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have a proliferation of small gaps in their energy eigenspace. Many of these systems can

exist in a glassy phase [23]. A glass, which is an archetype of a phase of matter that exists

in a range of materials, most famously glass itself, has a few distinguishing characteristics.

The statistical properties of a glass, including their response to an outside pertubation, such

as a fist put through a glass window, depends strongly on the history of the temperature of

the glass, rather than just its current temperature. This history can bemapped to something

called quasitemperature, which statistically describes the quasicrystalline order that exists

in any given glass. On fast timescales a glass looks like a solid, and shatters rather like

a crystal might under enormous pressure. But on long timescales it looks more like a

very viscous fluid, so that a gentle force like Earth’s gravity wll gradually thin the tops of

windows and thicken their bottoms as the glass flows downwards over the centuries. This

is true in part because these systems all have many possible configuations which, while

approximately the same energy, have very small cross-sections, which dramatically slow

transitions from one nearby lying state to another. The fluctuation dissipation theorem

breaks down for glassy systems, which one expects to see in disordered systems, but

extensions that describe the relationship between fluctuations and response functions in

terms of quasi-temperature and time do exist [39]. To measure those deviations from

the fluctuation dissipation theorem we constructed an imaging system with a resolution

comparable to our de-Broglie wavelength and healing length at our lower temperatures.

The result is a diffraction limited microscope at 780 nm with a numerical aperture of 0.5.

Simulations in Oslo calculated the imaging resolution to be about 900 nm when imaging

through our glass cell. Our testing was limited to a 1951 USAF test target, and with our

3.75 µm pixel size and 5.7x magnification, the 2 pixel wide full contrast transition regions

show our resolution to be at least 1.3 µm.

The backbone of this microscope is a 25mm wide A25-20HPX-DL-B asphere with

EFL 20mm we purchased from Asphericon. The lens is designed to be diffraction limited

at 780 nm. The stock items they listed at the time did not represent the full quality
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Figure 3.4: A test image captured with our high resolution two lens objective through our science cell wall.
Oslo calculates our field of view, before coma starts distorting the image, to be a 140 µm wide disk. The
field of view here is 847x634 microns, and one can see coma at the large bars on the left side of the image.
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range of the products they manufacture, so anyone who wants imaging quality aspheres

must inquire directly. We bought one of a small set of very high quality aspheres they

manufactured as a product test run. We determined it to be diffraction limited at the full

aperture using a short focal length 40x magnification freespace compound microscope

objective. They very kindly lent it and an ion polished uncoated reference model as well,

for testing purposes. We found the diffraction limited model to be sufficient, and didn’t

touch their reference model.

The asphere was designed for imaging through air, which is a dramatically different

task than imaging through a window at high resolution. The primary source of degredation

in our system, without any correction, is spherical aberration. The effect drives from

the difference between two trigonometric functions. When a spherical set of rays pass

through a window they are deflected according to Snell’s law, n1sin(θ1) = n2sin(θ2).

Optical lenses, when designed for beams travelling through air, are designed to deflect

into copropogation a ray travelling at angle θ a distance of f · tan(θ) from the center

of the lens, where f is the focal length. So for two rays traveling at angles θ and

φ through a piece of glass of thickness d, there will be a differential displacement of

d · (tan(arcsin( sin(θ)nglass
)) − tan(arcsin( sin(φ)nglass

))). In air each of those displacements on its own

would require a distance d′ along the focal axis of d′ = d · tan(arcsin( sin(θ)nglass
))/tan(θ) and

φ respectively. At small angles, where tan(θ) ≈ sin(θ) ≈ θ, the nglass term just follows

through linearly and the ratio of displacement to focal axis travel remains the same for

all rays. But at large angles one gets a differential focal shift between the two rays of

d′θ − d′φ. This relative focal shift is spherical aberration. We compensate for the spherical

aberration imparted by the glass with a stroke of luck, an achromatic lens that, when used

backwards, adds spherical aberration that cancels out the aberration imparted by the glass

cell. The lens, at the time, was a CVI Melles-Griot product that was sold by Edmund

Optics under part number 49-360. A 25mm lens, it was designed for a 100 mm focal

length. Turned around, as it is in our system, its effective focal length is 114 mm. The
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total cost of the high resolution imaging objective is less than 700 dollars.

Figure 3.5: An in-situ image of our BEC taken with our high resolution objective with a magnification of
5.7, a Point Grey Flea2g, and a probe sized to be within the diffraction limited field of view.

We constructed a high magnification attachment for our high resolution microscope

with a magnification of four. It did not have to be high performing. The object plane

of this second microscope requires 5.7 micron resolution while the image plane requires

22.8 micrometer resolution. For the objective portion we chose to use half the aperture

of a 25 EFL asphere from thorlabs, and for the imaging lens we used a high performance
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plano-convex lens from CVI Melles-Griot. The result is a diffraction limited spot size

with a diameter of 6 pixels. When we tested it on its own it had a resolution of 4µm. To

this we later added a number of filters so we could image our atoms in the presence of our

lattice light.

Asphericon
 A25-20HPX-DL-B

Flea2G

Semrock 
FF01-709/167-25

Short Pass

Reversed 
Achromat

Thorlabs
AL1225-B

100 mm
 plano-convex

Semrock
NF03-785E-25

Long Pass

Image Planes

Object Plane

High Resolution Objective

High Magni�cation Attachment

Figure 3.6: This is a diagram of our full in-situ imaging system. The asphere in the high magnification
attachment can be swapped out with the CCD to provide a wider field of view and to align the high resolution
objective and optical lattice. The Semrock filters remove our 800 nm+ lattices from the imaging line.

3.4 The High Bandwidth Arbitrary Lattice

To study the sliding phase we set out to produce a potential disordered on only one

axis. We did not realize exactly how challenging the job would be. We had previously

used optical speckle, which requires a phase diffuser, a high NA lens, and intensity control.

A beam of intensity I(x, y) passes through a diffuser, obtaining a spatially varying phase

Φ(x, y). ®∇
√

I(x, y)Φ(x, y) will add perpendicularly to ®k0 to produce a local wavevector

just after the surface of our diffuser, which we can then pass through a lens. The statistical

properties of that local ®k(x, y) will determine the spread of the resulting pattern, and
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Figure 3.7: An image capturedwith our high resolutionmicroscope and its long-pass filter highmagnification
attachment, through the wall of a glass cell of the same manufacture as the science cell in our setup. We
have been unable to detect any distortion of the glass cell due to vacuum pressure, and simulations in Oslo
suggested slight distortions wouldn’t be problematic at our NA. The thinnest bars in this image of a Thorlabs
1951 USAF test target are from Group 7, Element 6, at 2.19 µm wide. The test target has quite a few dings.
The sharp response indicates a resolution near a µm, with some local distortions. The out-of-focus bars in
the image are an etaloned out of focus image from our CCD cover glass. Our long pass 795nm edge filter is
not specified as imaging quality.
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the numerical aperture will determine the gaussian width of the autocorrelation function

of that pattern, which should match the diffraction limit of the aperture the lens is used

to focus. One can make highly anisotropic patterns by illuminating a speckle pattern

with an elliptical aperture instead of a circular one. And a speckle pattern in which

I(x, y) ≈ I(x, y+a) can be produced with a cylindrical lens and a similarly anisotropically

diffuser. But this technique has a drawback. The intensity of an optical field whose fourier

decomposition has more than one component will also vary along the imaging axis.

We can restrict ourselves to uniform polarization and say that, for a monochromatic

field,

I(x, y, z) =
(
Σ®k A®k ei(®k · ®x−ωt)

)
∗

(
Σ®k A∗

®k
e−i(®k · ®x−ωt)

)
(3.6)

A one dimensional lattice will be generated if we choose two k vectors. It will

have a gradient along ®k1 − ®k2, and if we allow ourselves the unrealistic case of uniform

illumination, it will have no intensity gradient in the plane perpendicular to this vector. If

we choose to overlap a pair of Gaussian beams, we can approximate the gradient in that

plane as an anisotropic parabola, which gives rise to the harmonic oscillator approximation

so common to those using optical traps. We can make the trap minimally more interesting

by adding a third beam.

(®k1, ®k2, ®k3) = (
√

k2 − ky ẑ − ky ŷ,
√

k2 − ky ẑ + ky ŷ,
√

k2 − 2ky ẑ − 2ky ŷ) (3.7)

Plugging this into equation 3.6 will yield periodic trig terms with gradients along

®k1 − ®k2, ®k1 − ®k3 and ®k2 − ®k3, where we can now only identify a vector of uniformity, where

the planes orthogonal to these sets of vectors intersect. One dimensional optical speckle

can be constructed by randomizing the ampltiude, number, and phase of a set of ®k spanning

one axis, with a cutoff in angle determined by the aperture of the lens used to create the
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pattern. That set of wave vectors will produce gradient vectors pairwise, most of which

will project to some degree along the imaging axis, creating a disordered potential along

that direction. The rule of thumb is to follow the behavior of a gaussian beam properly

focused at the diffraction limit. So with 780nm light with a Gaussian width of 1µm being

analogous to optical speckle with a 1µm correlation length, so too is the Rayleigh range

zR = πω
2
0/λ = 4µm analogous to the correlation length of the disorder along the optical

propagation axis. The minimum dimension of any monochromatic disordered potential is

2.

Figure 3.8: A series of pictures through the focus of a one dimensional speckle field created with a phase
diffuser and a cylindrical lens.
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Our goal was to study BKT physics with disordered coupling between planes, and

with sufficient coupling that we could achieve a measure of coherence across the entire

cloud. To produce one dimensional optical speckle with a sufficiently long correlation

length along the pancake to produce slightly staggered, but single pancakes, would have

required a UV field.

The goal was as follows, where every k> is transposed from k across the same plane,

defining the two dimensional isotopy of the potential.

I(®x, t) =
(
ΣωAω(ei(®kω · ®x−ωt+φω) + ei(®k>ω · ®x−ωt))

) (
ΣωAω(ei(®kω · ®x−ωt+φω) + ei(®k>ω · ®x−ωt))

)∗
(3.8)

This represents a multichromatic set of shallow angle lattices which all follow the same

direction, k̂lattice, which is perpendicular to the plane of transposition. A full expansion

shows that running lattices do exist between cross terms. Let us consider the case with

two different shallow angle lattices. The intensity is as follows.

Id(®x, t) = 2
(
A2

1 + A2
2 + A2

1cos((®k1 − ®k>1 ) · ®x) + A2
2cos((®k2 − ®k>2 ) · ®x)

+4A1 A2cos((®k1− ®k>1 ) · ®x/2)cos((®k2− ®k>2 ) · ®x/2)cos(t(ω1−ω2)+
1
2
(®k>1 + ®k1− ®k>2 − ®k2) · x)

)
(3.9)

The two regular shallow angle lattice terms are straightforward, but the cross term,

which occupies the second line, is a bit strange. This cross term varies in two dimensions

at any given slice in time. The first two cosine terms create a gradient in k̂lattice, and are a

pair of terms modulated at half the period of each of the two regular shallow angle lattices.

These are modulated by a third cosine, which is a running modulation of the field along

the imaging axis, perpendicular to the direction we choose to engineer. The third, two

dimensional term is time-averaged out to zero at the beat frequency of the bichromatic
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lattice.

∫ 2π
ω1−ω2

0
Id(®x, t)dt =

π

2
(
A2

1 + A2
2 + A2

1cos((®k1 − ®k>1 ) · ®x) + A2
2cos((®k2 − ®k>2 ) · ®x

)
(3.10)

At a small enough difference frequency the time dependent term will matter. In

order to evaluate the effects in a specific multichromatic lattice one would solve for the

eigenspectrum of the time averaged potential and then use time dependent perturbation

theory to evaluate the contribution to the Hamiltonian. It is straightfoward to see one can

get strong resonant effects if one modulates the entire potential in narrow bursts at the rate

of the difference frequency, selecting out some precise value of (ω1 −ω2)t. At sufficiently

low ∆ f the drive can dress trapped states of the system. And at very low frequencies the

atoms would just follow the moving lattice and be shoved out of the system along ®k> + ®k.

In order to avoid all these regimes any pulses must average over tens of periods of the

difference frequency, 1/∆ f , and 2π~∆ f >> Umax , where Umax is the depth of the total

trap. The latter condition ensures the only states coupled by the time dependent term are

free particle states, which oscillate quickly in space. The first order term in the time series

will be vanishingly small.

We produce this type of potential with arbitrary control over a whole range of

reciporical lattice vectors and a sufficiently wide chromatic range with a pair of high

bandwidth AOMs. The central idea is to relay image the diffracting volume of each AOM

onto the same spot. One can drive the pair of AOMs with a range of frequencies, which

create acoustic sound waves with wavevector =̨ω/c, where c is the speed of sound in the

material. These sound waves are longitudinal compression waves, and in acousto-optic

materials the strain tensor is coupled directly to the optical impermeability tensor, so

compression waves are also index of refraction waves [40]. When the bragg condition is

met at an angle θB = arcsin( kacoustic2nkopt
), the photons in the laser field can pick up phonons

in the AOM’s compression wave to shift their phase, energy and momentum. The phase
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shift is determined by the phase of the acoustic wave. One can see this by considering the

derivation of Bragg diffraction. Diffraction occurs when partial reflections off of a crystal

lattice add up in concert. Consider a set of layers at spacing d of thickness 20d. Light

of wavelength λ will diffract when 2d/sin(θ) = nλ, where n is an integer. Upon entering

and leaving the material the phase of the light accumulated will always be a multiple of

2π. But compared to some point in freespace a distance h from the surface of the volume,

that nπ phase shift will begin at relative phase πh/sin(θ)λ, so the total relative phase

accumulated before the beam returns to that height is dependent on the position of the

grating. In our system the grating is the phonon, and it can be considered to begin and

end at peaks in the compression over the overlap volume of the compression wave and the

beam. So if we modify the phase of the acoustic wave we modify the effective position

of the grating, and modify the phase of the output beam. The phase of the optical lattice,

φω, can therefore be controlled by controlling the relative phases of two acoustic waves

that travel through the pair of AOMs.

Our AOMs were manufactured by IntraAction, model ATD2003AK2.780. They

are specified to work with a relatively flat response between 150 and 250 MHz with a 2

Watt drive. There was some miscommunication during the ordering process and so we

received a lower bandwidth than we were after. After discussing them with John Lekavich

and extensive, incremental testing, we settled on driving them between 135 and 270 MHz

at a maximum of 3W. The high frequency range benefits from the added power, the low

frequency range not so much. The apertures are 2mmx6mm, so we can diffract nice broad

beams.

In general AOMs as broad bandwidth deflectors use a crystal axis with a slow speed

of sound. This allows large acoustic wavevectors, which in turn allows large deflections,

at relatively low drive frequencies. Other groups report injecting these with a large set of

frequencies to produce large sets of beams, whether they are shaping custom potentials or

creating arrays of microtraps, and part of the trick is that the relative phases of all their
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drive frequencies are sufficiently disordered that P ∼ E2 , (
√

P1 +
√

P2...)
2, so they less

vulnerable to any peak power problems. We are interested in controlling the phases of our

optical field, which are determined by the phases of our acoustic fields, so this option is

not available to us. And because we want to be able to have as many simultaneous lattices

as possible, we need to consider the power diffracted into a first order beam as a function

of RF power.

Popt = sin(
π

2

√
Pa

Psat
) (3.11)

Figure 3.9: As we increase the number of frequencies and stay under the RF power limit we drop out of the
linear regime into a region of sluggish response.

This function has a linear response when the acoustic power Pa is between .25 and

.75 Psat . The response is small below .1 Psat , so if we want to drive ten frequencies

at the same time and avoid overdriving our AOMs our total diffraction efficiency will

be untenable. Instead, in order to maximize our diffraction efficiency, we use a train of
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pulses. Each is at Psat , so we can use our laser power as efficiently as possible. We vary

how deep each lattice is in the time averaged pulse train by varying how often we pulse

any given beam before the pattern repeats itself. This requires AOMs that work on the

fast axis to avoid unintentional periodic driving effects. In our current setup we use 300

ns pulses, which puts the time-dependent perturbation from the pulse itself up at the 3

MHz energy scale, and our rep rate is never below 100 kHz, which keeps us well above

both the depth of our optical potential and the lower band manifold by a factor of 50. The

repetition rates of our higher recoil energy lattices are higher than the repetition rates of

our smaller wavevector lattices to avoid deviations from a time averaged potential in our

disorder.

For our disordered many-lattice experiment we produce our RF fields with a pair

of Tektronix AWG2040s. They are old fashioned arbitrary waveform generators (AWG)

that can output 8 bit numbers at 1.024 gigasample per second (GS/sec). We bought our

first on ebay for a few hundred dollars. The modern and far more capable equivalents

cost tens of thousands of dollars. We pass their outputs through a 300 MHz filter to

suppress digitization noise and them amplify them through a pair of MiniCircuits ZHL-

03-5WF+. We chose a five watt amplifier so we can stay in the linear region of its response

function and still have overhead for the RF power. We run two AWGs in a master-slave

configuration, so they run off the same clock and the start times of their waveforms are

coordinated. This allows us to produce a large set of optical lattices with arbitrary relative

phases. We can even offset the entire waveform on one AWG from the other to account

for the differing distances our phonon fields must traverse through the AOM before they

reach our optical beams.

This is sufficient for producing a set of beams for our disordered lattice, which

really does not require specific tones, but it has its limits. While the AWG would be

within the Nyquist limit for observing signals over our entire bandwidth, the Nyquist limit

is insufficient for producing good oscillators. Let us consider Bragg spectroscopy. To
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produce a lattice moving at some speed v = φdt/k we would need two tones for our

AOMs with a detuning of d
dt φ/2π. This speed could be as slow as tens of Hz. We could

pulse on this moving lattice for a microsecond, and despite the divergent timescales that

velocity would not change. If we consider what our AWG can represent over the period

of a microsecond we can decompose this into a linear algebra problem. If we want to

produce a lattice that moves at 10 Hz using ®k270MHz, we will need to produce both 270

and 270.000010 MHz signals. If we calculate sin(270x) − sin(270.000010x) and look for

the first point in time the norm of that difference is 1/28, it’s way out at 300us. Similarly

a 100 Hz detuning would have a one bit difference in the enitre waveform after 30 us. It is

thus useless for Bragg spectroscopy. It’s simply not a good oscillator for the majority of

the spectrum. We have employed PLLs to make some running lattices, with resolutions

down in the Hz range, and I will discuss them in the future directions section.

Our disordered lattices currently have wavevectors that range from 5.5 µm to 1.3

µm, with a recoil energy that ranges from 1.35 kHz to 7.58 Hz. Those energy bands are

closely spaced, and the pairwise gaps opened up by absorbing from one lattice and emitting

into another are at the Hz level. This means even the slowest changes in our potential,

rather than being adiabatic and reversible, will be a source of heating. Consequently we’ve

worked very hard to make this lattice very stable. As with other optical arrangements near

the cell every optic in the lattice setup is on one aluminium breadboard. Cage cubes are

used in tandem with minimally spaced 1" posts where possible. The number of optics was

minimized. The aluminium breadboard is clamped to the optical table by four short posts.

The results were insufficient; there was too much phase jitter between the two arms of the

lattice. However, as we discuss below, we solved the problem with active stabilization.

We use a thorlabs fiber coupler to launch light out of a PM fiber designed for 780.

A pair of walking mirrors follow to allow simultaneous alignment with the apertures

and primary axes of two AOMs and the optical arrangement: the height of the laser

beams is kept a constant distance from the optical breadboard to within the uniformity
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Figure 3.10: This shows, mostly to scale, howwe construct our HiBAL. The two arms of our lattice generator,
which pass through our two AOMs, are length-stabilized with a piezo-mounted mirror. The actual lattice is
realized with an asphere.
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of the breadboard. Vertical deflections of the beam paths are not compatible with our

optical potential. After the walking mirrors we polarization stabilize with a PBS, intensity

stabilize with a pickoff, intensity balance with a half waveplate and a PBS, and align

the polarizations with a pair of half waveplates. After the second PBS there are two

paths for the two AOMs. One of the two paths passes through an AOM and a lens,

then gets recombined with the second arm. The second arm, however, uses two mirrors

for alignment. After recombination every beam in the lattice passes though the same

optics as every other beam. Contributions along this part of the optical path to dynamic

dephasing are so small as to be unmeasurable. Phase noise is not introduced past this

point. But because the lattice is split briefly into two paths the lattice’s phase, uncorrected,

is completely unstable.

We measure the phase stability of our lattice with an unusual Mach-Zehnder inter-

ferometer. We were concerned about adding phase noise to our lattice by trying to correct

deviations imposed by acoustics within the interferometer itself, so we chose to put all the

optics on a single piece of metal to make it as monolithic as possible. We use a pair of

prisms to deflect the two arms of the lattice towards a beamcube, and each sublattice has

its own little spot on that beamcube where the phase measurement is made. The signal

is then deflected up by a pair of prism mirrors, where it is then directed by disconnected

mirrors onto a pair of photodiodes, Thorlabs PDA100s. As manufactured the photodiode

coverglass distorted our interferometer signal through etaloning. Zach and I removed that

glass, each in our own way. He disassembled and resoldered his. I went at mine with a

hacksaw. Both are still in the experiment. When our interferometer is aligned it measures

the relative phases, pairwise, of each set of lattice beams.

In a normal lattice the recoil energy is usually quite large, so some phase noise

produces a different quasimomentum. In ours phase noise changes the shape of the

potential, not just its position. A deviation in the length of the beampath in one arm

will add a uniform relative phase φa to each of the two sets of beams. This will then be
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written into the shallow angle lattices, which will individually experience displacements

of φa/kω The differential displacement doesn’t just displace the potential, it reshapes it,

which would render the study of systems at thermodynamic equilibrium impossible. We

can choose to take an inner product of the lattice with itself. We restrict our inner products

ranges to the periods of the individual sublattices because
∫
cos(ωx)cos(σx) = δ(ω, σ).

For more than one kn a ∆x cannot be chosen to restore the inner product of the whole set

to 1 in the presence of some phase offset φ.

∑
n

∫ 2π/k

0
cos(knx)cos(kn(x + ∆x) + φ) = (3.12)

∑
n

π cos(∆x · kn + φ) +
sin(2πkn) cos(∆x · kn + 2πkn + φ)

2k
(3.13)

This needed to be fixed, and we needed to ensure that it would be fixed for all lattices

simultaneously.
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Figure 3.11: Above I have cos(x + φ) + cos(2x + φ) + cos(2.8x + φ) at several choices of φ, demonstrating
that phase shifts between the two arms of our lattice would change the shape of the potential rather than just
translate it.

It is common for lattice phase stabilization and modulation to be performed by phase
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modulating the RF used to feed AOMs that drive diffraction [41]. We cannot do so with

our discounted AWGs. Phase modulators don’t work identically over a large bandwidth.

Inserting a time delay into the AWGs clocks would not work either for reasons similar

to those described above. A translation in time of the RF drives would shift each drive

frequency at ∆t/ωk , causing another differential shift in phase instead of a uniform shift.

We went with a direct approach by piezo-actuating one of the two beam paths.

We attempted to emulate [42] to get high bandwidth control but mostly failed to do so.

For reasons that are unclear to us we were no where near as successful in suppressing

resonances in the piezo mount. We measured the effects of our stabilization scheme using

Figure 3.12: The amplitude and phase response of our piezo mirror as measured with a Michelson interfer-
ometer.
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our Mach-Zehnder and our in-situ imaging system. We eliminate phase noise in our lattice

to be smaller than .04 radians, which on our longest wavelength lattice is a displacement

of 30 nm.

Figure 3.13: This is a multifrequency phase
locked lattice imagedwith our in-situmicroscope
onto our Flea2g and shuttered at 200Hz, each
horizontal line is a different time step.

Figure 3.14: A dataset taken in the same manner
as 3.13, but without the phase lock the optical
potential wanders about, as in 3.11. Equilibrium
physics isn’t possible here.

Figure 3.15: We suppress noise out to 2 kHz,
where we have our first resonance in the piezo
mount.

Figure 3.16: This shows the power spectrum
of noise measured by our novel Mach-Zehnder
interferometer, both locked and unlocked.

3.5 Levitation Coil

Time of flight measurements are often restricted by the space available in a vacuum

chamber. Some groups have gone to great lengths to study atoms free of the influence of

gravity [43], while others can compensate for it using the linear magnetic field gradient in

their quadrupole coils [18] or water cooled levitation coils [13]. A levitation coil is a turn
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of wire that utilizes the Zeeman shift and its gradient to create a potential to counteract

gravity, and it’s form is as follows.

mFgF Bz =
µ0
2

R2I
(z2 + R2)3/2

(3.14)

−∇zmFgF Bz = mFgF
3µ0
2

R2Iz
(z2 + R2)5/2

(3.15)

Our atoms are magnetically trapped in the low field seeking state in the chamber, and we

provide a quantization axis with permanent magnets to maintain our spin polarization. In

order to better resolve the momentum distributions of our clouds we utilize the Zeeman

shift in the F=1 manifold using a levitation coil with a novel system that requires very low

power.

Our all optical trap and microscope arrangement is tightly packed and leaves little

room for any water-cooled coils. Instead we use a small coil of 16 gauge wire. It’s held

just under the cell centered on the vertical imaging axis by a piece of fiberglass. We use a

bank of supercapacitors gated with MOSFETS to put hundreds of amps through the coil.

The circuit itself was designed and built by Aaron Stahl (undergraduate), and the details

will be in a future paper. Its current implementation has a capacitance of 930 Farads.

It’s designed to levitate the atoms for up to 200 ms with a relatively constant current, but

we’ve found the best SNR in the current experiment is achieved at 50 ms TOF. Its ability

to provide bursts of hundreds of amps at relatively constant current while powered by a 10

W power supply is a novel and effective design that can turn an easily obtainable phone

charger into a kilowatt linear supply for a number of applications. Uncooled coils are

limited by the fusion current of the wire in question on the time scale of the pulse. Shorter

pulses allow higher currents. For actively cooled coils the limit will be set by the choice

of supercapacitor.
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3.6 Microwaves

Figure 3.17: A mostly m=0 cloud

As discussed at the end of chapter 2, the transfer to the cell passes the atoms through

a variety of magnetic field profiles in the presence of stray RF fields. The combination

tends to depolarize atoms during the 300 mm transfer to the cell. The depolarization

is obvious in TOF when we use our levitation coil. Our interest has been in U(1), and

spin mixtures would put us into entirely new phase diagrams. Using some rare earth

magnets to adjust the magnetic field along the atomic transfer path we minimize the spin

depolarization. We further implemented a microwave system to purify the sample before

evaporating down to degeneracy. We used the microwaves to characterize the magnetic

field by using it as a repump from F=1 to F=2, and found the magnetic field from the

permanent magnet to be 3.54 Gauss at the cross trap. This separates our transitions by

2.47 MHz, which we measured with our microwave system.

We generate our microwaves with a PLL evaluation board, the ADF4350EB1Z.

We’ve also used these to produce Raman beams on our HBAL. They are fractional PLLs

and range from 140 MHz up to the 3 GHz region. We clock it with an Agilent 33220A

function generator, and sweep the clock with its analog sweep control. This we pass to a

ZX90-2-50-S+ to double the frequency to the 6.8 GHz F=1,m f =0 to F=2,m f =0 transition,
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and filter it with a VHF-5500+. We then run the signal through a preamp, a ZX60-

8008E=S+, an attenuator. Our power comes from an HP 493A Microwave Amplifier, a

travelling wave tube amplifier (TWT). We then use a directional coupler, the ZADC 13-

73-S+ and a CS-6000 circulator to monitor back reflections and protect our electronics.

We then use an ebay-bought NARDA 903n s/n323 double stub tuner to impedance match

our circuit to our 206476 SMA+ waveguide, kindly donated by Rb1.

To purify our clouds we sweep our microwaves across the F=1 to F=2 transition for

states we want to eject. We then blast them away with F=2 to F=3 probe light. The relative

scattering rate of our 6MHz wide probe beam and our 6.8 GHz detuned F=1 atoms is

nominal and does not depolarize our F=1 atoms to a degree we can image.
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Chapter 4: The Sliding Phase

Figure 4.1: A picture of one of our disordered lattices, taken with our high magnification imaging system.
Much of the vertical banding is etaloning in our CCD cover glass. We’ve confirmed this by measuring the
same lattice with different flea2gs.

A trio of papers earlier this decade inspired our current experiment [24] [25] [26].

They used computational tools to explore the phase diagram in three dimensions in a

U(1) system of coupled, randomly sorted stacks of different two dimensional materials.

Absent disorder these systems would undergo the BKT transition in-plane at TBKT and

then establish superfluidity, superconduction, or net magnetization in the third dimension
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at a lower temperature. Mohan et. al. considered randomly stacked layers of a pair
sf
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Figure 4.2: Taken from Nicolas Laflorencie’s Monte Carlo paper, this demonstrates the difference between
a disordered system on the left and a clean system on the right. The in plane and perpendicular phase
stiffnesses ρs scale differently at the transition and have different transition temperatures.

of materials and identified three distinct phases of matter below the two-dimensional

critical temperature through scaling arguments [26]. Pekker et. al. found roughly the

same behavior using RNG theory on a system of stacked layers of harmonically trapped

superfluids with random chemical potenials on the boundaries of the quasi-2D regime [25].

Nicolas Laflorencie used monte carlo simulations to study a binary material system as

described in the Mohan paper with hard core Bosons at half filling. All identify the

emergence of two-dimensional superfluidity, via the BKT transition, at higher temperature

than full three dimensional superfluidity, which emerges as a first order transition distinct

from a BEC transition. The Monte Carlo study identified one intermediate phase, and

the renormalization group and scaling argument studies identified two. All identify the

intermediate region as a Griffiths phase, defined as a phase of matter whose behavior

is dominated by the most extreme deviation of the disordered crystal from its average.

This intermediate phase has been called the sliding phase since the observation of two-

dimensional superconduction in bulk copper cuperate superconductors before the onset

of three-dimensional superconduction at lower temperatures. In the case of disordered

coupling of superfluid pancakes, the transition temperature and scaling of the superfluid

fraction in the Griffiths phase would be determined by the weakest link between coherent

61



subsystems.

If we assume we can take ourWannier states to describe our pancakes as distinct and

local objects, we consider the full Hamiltonian in the appropriately named tight binding

approximation, where m is the mass of the particle, Vi is the depth of an individual

pancake’s trapping potential, g̃i is the effective interaction energy of the pancake due to

the local compression, ω is the hamonic trapping frequency due to our 1550 nm trap, ∆ωi

is the devation from that trap due to the local depth and curvature of the lattice, and Ji, j is

the hopping term between any pair of planes.

Ĥ =
∑

i

(
p̂2

i

2m
+ Vi + g̃iψiψ

†

i +
m
2
~2(ω + ∆ωi)

2(x2 + y2) − Ji, jψ
†

i ψ j) (4.1)

This allows us to to map a series of quantities using the LDA to the parameters charac-

terizing the disordered systems described in the three theory papers. Our system exhibits

disorder in three local parameters. The coupling from one pancake to the next is disor-

dered. The local compression, and thus the local g̃, is disordered. And the local number

varies due to a varying local site depth. Our system is thus most similar to the model

in [25].

Pekker et al identify the sliding phase as a pair of Griffiths phases whose behaviors

are dominated by the rarest region in the system. They identify a regime where isolated

coherent layers separated by regions of normal gas pancakes are able to establish some

mutual coherence that produces a vanishingly small but finite phase stiffness along the

lattice axis. The point where this happens and the scaling of the stiffness is set by the

weakest link in the chain of pancakes.

With our HiBAL system we can create a highly anisotropic system, composed of

coupled pancakes of Bose gases. Each layer is harmonically trapped, and the range of

temperatures and chemical potentials of each layer µi span regimes from entirely thermal

3-dimensional systems to coupled quasi-2D systems. We explore a parameter regime
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where our quasi-2D trapping parameter, the gap between our different band-manifolds

E®kmax
(q = 0), ranges from 5.4 to 5.9 kHz, is always greater by a significant factor than

the chemical potential of our gas, and always lower than the trap lattice depth. The Tc

at which our system exhibits a nonzero two dimensional coherent fraction is around 200

nK, where KT
2π~ =4.16 kHz, which leaves our thermal gas on the edge of being 2D. In our

lattices we have emerging quasi-2D coherence in isolated pancakes coupled by a three

dimensional thermal gas, which exhibits excitations perpendicular to the BKT planes on

length scales smaller than the spacing provided by ®kmax . These coherent planes we relate

to the two dimensional Bose gas and its famous infinite-order BKT transition through the

local density approximation, as our system’s energy scale is significantly larger than the

in-plane trapping frequency. KT+µ
~ω > 10. The minimum ratio of the energy scales for

perpendicular in-plane excitations to parallel excitations is 40.

4.1 Our Sliding Phase

Our toolset differs from those of the theoretical studies. Our primary tool is the time-

of-flight measurement. Energy scales and the length scales of phase fluctuations in both

the theoretical models and our own realization of the Hamiltonian are highly anisotropic,

which lead our TOF distributions to be highly anisotropic. We define several terms

separately for the in-plane and out-of-plane directions. The in-plane coherent fraction

we define as the atoms at low enough momentum that density and phase fluctuations are

subsumed into a Castin-Dum like expansion [44] in TOF.We define the ballistic fraction as

the atoms that obey the relation E = p̂2

2m in-plane, beyond the energy scale of Bogoliubov

modes. The coherent pancakes are small enough to have a BEC fraction, which will

give each an average phase. We use the correlations of the average phases of the various

coherent pancakes as a function of temperature and lattice depth as a proxy for phase

stiffness along the disordered direction. As a function of temperature we expect to first

see the emergence of an in-plane coherent fraction which will emerge as a Thomas-Fermi
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distribution on top of a thermal distribution in the in-plane TOF direction. At this point

we expect the individiual coherent fractions of each pancake to be incoherent with one

another, so despite in-plane coherence the interference pattern of the planes will resemble

a thermal distribution. This will indicate we have entered the uncorrelated sliding regime,

where we have no superfluid fraction in the disordred direction but we do in the other two.

The emergence of correlations in the disordered direction will appear as deviations from a

thermal distribution. This is not direct evidence of a finite phase stiffness across the entire

cloud, but is evidence of the same physics described by Pekker et. al. as order begins to

emerge in puddles. According to Pekker et al, "The key signature of the Griffiths phase,

in interference experiments, is very strong shot noise which results from the interference

of several weakly coupled superfluid droplets." So if our TOF measurements of similar

clouds are dramatically different from one another, our sliding phase is also a Griffiths

phase. It will not be possible to differentiate the finite phase stiffness sliding phase from

the zero phase stiffness sliding phase just from a momentum distribution. For a system

of our size we expect a full 3D superfluid to emerge alongside a full three dimensional

condensate fraction, along the lines of the momentum distributions calculated by Nicolas

LaFlorencie in his paper in Fig. 4.3.

We use an ROI, a region of interest within the field of view of our camera, that

spans beyond ± 4π~
(1.3µm)(87amu) (50ms) along the lattice, which corresponds to two recoil

momenmta of our shortest wavelength lattice and the span of our lowest band manifold,

and in plane we span twice the widest widthmeasured of any Thomas-Fermi distribution in

our dataset (p‖,min, p‖,max). Nicolas LaFlorencie’s work included momentum distributions

in his stacked pancake system. They show near-separability of the distributions along

p‖ and p⊥. To enhance our SNR we create a pair of one-dimensional distributions

n(p‖) =
∑ROI

p⊥ n(p‖, p⊥) and n(p⊥) =
∑ROI

p‖ n(p‖, p⊥). In n(p‖) a TF distribution emerges

below the BKT transition on top of the thermal distribution. In every picture we label

±p‖,TF as the outer limits of the TF distribution, and fit aGaussian distribution to n(p‖) over
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Figure 4.3: From top to bottom, taken from Nicolas LaFlorencie’s paper [24], are the distributions of a
thermal cloud, a sliding-phase superfluid, and a full 3D superfluid in a disordered system. In the sliding
phase cuts along p⊥ displaced along p‖ have very similar distributions.

the span (p‖,min,−p‖,TF), (p‖,TF, p‖,max). We use that fit to estimate the thermal contribution

in the span (−p‖,TF, p‖,TF), and then re-fit the TF distribution to the residual to determine

the in-plane coherent fraction and produce an estimate of µ.

To accurately track the dynamics of φ(x⊥) we remove the ballistic fraction from
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our distribution along p⊥. We subdivide our ROI along p‖ in to three sections, a =

(p‖,min,−p‖,TF), b = (−p‖,TF, p‖,TF), c = (p‖,TF, p‖,max). The two outer sections only

contain ballistic contributions from the cloud, and so we extract the form of the separable

thermal distribution nac(p⊥) =
∑a

p‖ n(p‖, p⊥) +
∑c

p‖ n(p‖, p⊥). We remove this from the

distribution nb(p⊥) =
∑b

p‖ n(p‖, p⊥) to derive the perpendicular distribution of the coherent

fraction,

nb,C(p⊥) = nb(p⊥) − nac(p⊥)

( ∑b
p‖

(
∑a

p‖ +
∑c

p‖

)
nT (p‖) (4.2)

In a system with no correlations along the c-axis (p⊥) the distribution of the coherent

fraction will look thermal. In a clean sufficiently deep lattice containing a cold cloud

n(p‖) would be a Thomas-Fermi distribution, and n(p⊥) would be a Gaussian distribution

reflecting the compression of the individual pancakes, and it is both what we expect and

what we see in the sliding phase in our system at sufficiently high temperatures. As we
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Figure 4.4: Left to right, n(p‖) and n(p⊥) in a cloud just below the BKT transition. A tiny Thomas-Fermi
distribution shows up in-plane while there’s no evidence of any coherence along p⊥ The units, Atoms per
µm, .

cool the cloud correlations begin to develop along p⊥. While the density profile does not

change much, the ensemble average of the power spectral density of phase fluctuations in

our system, ρ(µ,T,V, p) narrows in p according to e−
E(p,µ,V )
kBT Because our system size is

not large enough for our excitation spectrum to be gapless the density of states ν(E) is not

gapless, and so the narrowing distribution as a function of momentum is not smooth. At

the lowest temperatures and lattice depths we see a few macroscopically occupied states
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Figure 4.5: Left to right, n(p‖) and n(p⊥) in a cloud well below the BKT transition and establishing
coherence along the lattice.

in TOF in a very narrow profile. If the distributions were roughly isotropic as in Fig. 4.3’s

ensemble averages they would unambiguously be 3D superfluids, but they are feature-full.

We have no theoretical predictions to compare individual cloud profiles against, but the

phase fluctuations that result from asmall phase stiffness expected in a disordered 3D

superfluid would express themselves as wide distributions when projected into TOF.
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Figure 4.6: Left to right, n(p‖) and n(p⊥) of a likely 3D disordered superfluid. The distribution is narrow
but still has significant phase fluctuations along the lattice, which are represented here.

4.2 Phase Fluctuations, Induced vs Many-Body

Our identically prepared clouds are much different from one another. Allowing for

equilibration on a seconds long time scale does not diminish these effects. When one

manufactures a BEC big changes in the shape of a cloud strongly suggest instability in the

shape, position, or depth of a trap. We’ve well characterized the behavior of our optical
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potentials, and I estimate such contributions to be nonexistent. Our optical dipole cross

trap does change position as a function of its depth along the lattice axis by about 12

µm. The final evaporation step that sweeps us over this range is two seconds long. The
87Rb deBroglie wavelength at a velocity of 6 µm/s is 764 µm. The kinetic energy in

freespace would be 3.9 · 10−3 Hz. The excitations that could be imparted by phase noise

in our lattice, properly calculated, are done over the full noise spectrum with knowledge

of the full many-body excitation spectrum available, but with a full range of .04 radians

and a statistical width closer to .02 over the full bandwidth we can estimate that, for our

longest wavelength lattice, the movement is over a distance of about 30 nm. Putting all

those noise into our 2 kHz peak give us a kinetic energy at max velocity of .446 Hz,

which is on the same scale of deBroglie wavelength excitations at the size of our cloud.

The length scales differences of the drive field of 5 µm, the size of the excitation 75 µm,

and the scale difference of the drive energy and the excitation energies of 104, we can

estimate that any coupling will be very weak. This would be the highest energy drive and

closest-to-resonance case. Lower energy excitations cannot exist on the length scale of our

system. We conclude what we see is the result of the intended many-body Hamiltonian.

4.3 Dispersion in TOF

A noninteracting gas suddenly released from a trap Ĥ(t = [−∞, 0]) = p̂2/2m +

V̂(x, p) in a TOF measurement will be suddenly projected into momentum-space Ĥ(t =

[0,TOF]) = p̂2/2m, which constitutes a Fourier transform of the in-situ wave function.

In a long enough TOF the distribution n(x) → n(p). An interacting gas in the mean field

limit in TOF will experience coherent nonlinear distortions under the GP equation Ĥ(t =

[0,TOF]) = p̂2/2m+g
∑

pi+pj=pk+pl

��ψ̂i
〉 ��ψ̂ j

〉 〈
ψ̂k

�� 〈ψ̂l
��whose nonlinear term disperses the

wavefunction. In the case of a BEC in a harmonic trap this leads to a self-similar Castin-

Dum expansion of the Thomas-Fermi distribution. Our in-plane momentum distribution

is dominated by these dynamics, but in our system the out-of-plane trapping energy
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Figure 4.7: These are GPLab TOF simulations projected on momentum-space of our disordered cloud for
the first 8ms of TOF in the presence of phase fluctuations. At left is post-TOF, to the right is pre-TOF.
Dispersion makes peaks smaller and valleys shallower in our clouds, but the envelope remains roughly
constant.

is larger than the chemical potential. The quick expansion of each individual pancake

spreads the phase-fluctuation information contained in the cloud and freezes in the overall

envelope. We confirm this with a set of GP simulations where phase-fluctuations have

been added in Fig. 4.7. We take these simuilations as evidence our individual pictures

well represent a smoothed-out occupation n(p⊥) and the phase fluctuation power spectrum

of the disordered cloud.

4.4 Phase Fluctuation Power Spectrum

In an individual cloud we expect the probability of occupation for a given phonon

mode to follow the grand canonical ensemble, we approximate n(p⊥) = ν(E)e−
E(p,µ,V )
kBT .

We take a natural log of nb,C(p⊥). We identify p = 0 and create an object n(|p⊥ |) =

n(p⊥) + sum(−p⊥) and fit a line. We take the slope of the line to characterize the phase

fluctuation power spectrum, which we call our coherence parameter. The information

derives from p»0, so it is not a measurement of phase stiffness, which looks at dE
dp |p→0.

4.5 Our Data Set

Our lattice depth lock points varied from 1 to 5 Volts on our pickoff photodiode,

which characterizes how much power we send to the AOMs, but which we correlate
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Figure 4.8: Clouds at varying lattice depths and temperatures, the object ln(n(|p⊥ |)) and its fit, along with
n(p⊥)
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Figure 4.9: The result of our Thomas-Fermi profile fits to the in-plane momentum distribution for our 2
and 4 ER lattices. They identify a minimum in-plane coherent fraction of approximately .05 even for purely
thermal clouds. Tc,2D = 200 nK

directly with only one of our shallow angle lattices. We characterized our lattice depth by

the depth of our 1.3 µm period lattice in standing wave pulses. The lattice depth of this

band-manifold defining lattice was 1.11 kHz/V, which is about .82 ER/V. We performed

two different scans. In every shot we evaporate from a thermal distribution to our final

temperature in the presence of our phase-locked lattice. We then utilize the depolarization

caused by spontaenous emission in our optical lattice to take an in-situ picture of our cloud.

The probe beam is not uniform, and so the imaging process disturbs the atoms left in the

trap, forming a type of quench. Our first scan observed our cloud at low temperatures and
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time-of-flight distribution. We see growth begin in our deep lattice near 100 nK and in our more modest
lattice near 175 nK

over a variety of hold times and lattice depths. The hold times start at 200 ms and range

out to 7s. For our second scan we chose two lattice depths, 2 and 4 ER, to obtain a detailed

phase diagram as a function of temperature. In addition we performed each of the two

sets of scans with two different optical potentials with two choices of φ®k
The in-plane coherent fraction emerges near 200 nK for both of our temperature-
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scanned lattice depths. This is unsurprising. Our band gap varies by less than 7%

between the two lattices and the average number in the deepest lattice is reduced slightly

by enhanced photon scattering. The two curves are nearly identical. The coherence

parameter begins to grow at 175 nK in the well-connected lattice and at 150 nK for the

deep lattice. At low temperature the parameter saturates. The low temperature cuts show

shallower lattices have a larger range and a higher saturation value as the cloud approaches

BEC. The near lack of variation of the parameter as a function of temperature between

the 2 and 4 ER lattices is suprising, as inter-lattice hopping is suppressed exponentially

in lattice depth. The changing saturation values of this coherence parameter as function

of lattice depth roughly follows this expected behavior, and follows the expected behavior

p⊥ of the system described in the body of theoretical work on the subject. It may only be

useful at low temperatures.

In the next section we’ll discuss the average, ensemble distributions constructed in

25 nK temperature bins for our two temperature-scan lattices, where we point out that they

resemble the curves of Bose distributions. The results of the fits are nonsensical; they

return higher temperatures for 25 nK clouds than they do for 200 nK clouds, and there’s no

reason to expect a 1DBose distribution for the system. But because Bose distributions well

duplicate the statistical average, and because the bins in that section may be over-broad,

we fit to the clouds individually and sum up the deviations of the clouds from those fits to

characterize the shot noise of our systems. We see our shot noise begin to grow at 175 nK

in our 2 ER lattice and at 100 nK in our 4 ER lattice . This stands in contrast to my phonon

occupation coherence measurement shown in Fig. 4.8 where the momentum distribution

begins to shirnk quickly in both systems near 175 nK. The magnitude of the shot noise is

evidence of the emergence of a quasi-coherent Giffiths phase according to Pekker et. al.,

and with a lower onset temperature for the deeper lattice it matches the trends predicted

in the theory.
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4.6 Momentum-Space Bunching

Because our clouds are so different from one another we chose to study the statistics

of those differences. One can identically prepare a set of clouds and let them evolve in

TOF to generate ψ†ψ(p). The average of these distributions can produce an ensemble

average,
1
m

∑
m

ψ†ψ(p)m = ψ†ψ(p)avg = n(p) (4.3)

and consider each individual distribution’s deviation from the average.

ψ†ψ(p)m − ψ†ψ(p)ave = δn(p)m (4.4)

The object
∑

m < δn(pi)mδn(p j)m > is the set of available 2 body correlation functions

of deviations from mean distributions in momentum-space. They’ve been shown useful

in discriminating between phases in 1D Bose gases by Feng et. al. [45]. Qualitative

differences in the shapes of these correlation functions emerge for different phases of

matter. Compared against quantum monte carlo simulations they can accurately identify

those phases. We found the most interesting axes of symmetry in Fig. 4.12 data were the

diagonal axes, the lower-left to upper-right axis being a correlation function, and the upper-

left to lower-right being a convolution function. The number and locations of maxima

and minima vary in their system in different phases matter. We have no simulations to

compare our data against, but we are better able to resolve our momenta. We measured

how these fluctuation correlation functions vary in our data as a function of temperature

in 25 nK bins over the range of temperatures including purely thermal gasses down to a

gas with a nonzero BEC fraction, from 250 nK down to what we label for convenience

0 nK, and more accurately identify as T << µ < 50nK , where our temperatures are so

low our fits fail. We chose two lattice depths for this measurement, 2.77 and 5.55 kHz.

There are several things to pay attention to in Fig. 4.13. The underlying lattice is
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Figure 4.12: This description is lifted wholly from Feng et. al. [45]: Momentum correlations < δnαδnβ >
for a gas in the IBG regime (Data A, left column), in the qBEC regime (Data C, right column), and in the
qBEC-IBG crossover (Data B, middle column). The pixel size is ∆/~ = 0.15µm1. The experimental data
are shown in the top row. Data A, B and C are compared with the IBG theory, QMC calculations, and qBEC
theory respectively, at the temperature of the data determined by independent thermometry methods [26].
The middle row gives the computed momentum correlations. The bottom row shows the diagonal cuts: the
experimental data in circles for α = β (squares for α = β for Data B and C only) are compared with their
respective theory model in dashed (dotted) lines. The error bars are statistical. The dash-dotted lines give
the shot-noise limit.

visible in the ensemble average. One can see the 2~®k peaks from the 1.3 and 1.5 µm

lattice at the edges of the image. The momentum-space range of the data was selected to

encompass the lower band manifold set by the band gap of the 1.3µm lattice. They are

apparent throughout our temperature range. The ensemble averages also resemble Bose

distributions. In one dimension the density of states d(p) = 2, so the distribution is just
A

e(ε−µ)/kBT )−1 , where A is a normalization constant, and ε is the energy of the free particle

eigenstate, in this case p2/2m. The distribution diverges as µ→ 0, and our distributions

resemble a Bose gas approaching condesation at high temperature. Several parameters

returned by the fit lack any correlation to reality. Lower temperature clouds are identified

as higher temperature, and the fact that colder clouds do have several momentum states
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Figure 4.13: The ensemble average of every temperature bin in our well-connected disordered system.
Between 200 nK, the onset of 2D superfluidity, and 125 nK the distribution looks mostly thermal, with a
signature of our 1.3 µm lattice at ±2~k. Below 125 nK the center of the distribution rises quickly, indicating
a crossover towards phase coherence along the direction of the disorder.
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w_1 =0.00040498 ± 0.000178
w_2 =269.69 ± 0.365
w_3 =1.3683e+005 ± 5.89e+004
w_4 =0.078898 ± 0.0345

200-225 nK:
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Figure 4.14: Bose fits identify the colder cloud as closer to condensation, with the chemical potential term
w4 = µ/T approaching zero, but it also identifies the 25-50 nK bin as being hotter than the 200-250 nK bin
(w3 = T in arbitrary units)

with nonzero chemical potentials means the distribution shouldn’t apply. But it does

have worth some worth. The undistorted momentum distribution of our cloud represents
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the power spectral densitiy of fluctuations in-situ, and so its Fourier transform should be∫
ψ(x)ψ(x + a)dx, the g(1) of the order parameter. The proximity of µ/T to zero shows

a deviation from the Gaussian distribution of a purely thermal gas. So while we may not

be able to identify any particular renormalization group’s characteristic g(1) or exponents

in our system, the parameter µ in the Bose fits of the average distribution does indicate

how far the ensemble average deviates from a purely thermal distribution. This deviation

begins when the central feature in the distribution starts growing quickly near 125 nK, and

is evidence of strong p⊥ correlations. d
dTψ

∗ψ(p = 0) is obvious in profile.

0 nK

240
nK

Color and Height Map Pro�les
of ψψ(p) as a Function of Temperature

0 nK240
nK

*

Figure 4.15: These are profiles of a 3D rendered and colorscaled average distributions of our clouds as a
function of temperature. The sudden jump in the growth of p=0 stands out at 125 nK. The growth saturates
at 50 nK

The average of the autocorrelation of deviations from the average distribution

AC(q,T) =
∑

m

∫
δn(p)mδn(p + q)mdp provides more evidence of a crossover from a

thermal to a quantum degenerate regime in p⊥ after 2D superfluidity. At low temperatures

fluctuations gain both correlation and anticorrelation length scales. The first anticorre-

lation dip occurs at a momentum offset with a 87Rb deBroglie wavelength of 2.6 µm,

while the offset in the positive correlation peaks are one recoil momentum of our manifold

defining wavevector. The crossover from thermal fluctuations to correlated fluctuations

begins at 175 nK and is complete once we get to 100 nK, but is still obvious in the region
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of 100-125 nK. I thus identify three crossovers. 2D superfluidity’s onset occurs at 200
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Figure 4.16: Displayed here is AC(q,T) =
∑

m

∫
δn(p)mδn(p+q)mdp The staggered BKT transition begins

near 200 nK. At higher temperatures there are some signatures of the lattice, a consequence of the band
gap being on the order of the temperature. As temperature decreases we resolve three prominent peaks,
the outermost of which creeps in closer to the q=0 peak as temperature decreases. The thermal inter-peak
occupation is gone below 100 nK.

nK. Between 175 nK and 100 nK the gas becomes more correlated along p⊥. And between

125 nK and 50 nK we have condensation. If we identify 200 nK, 175 nK, and 125 nK as

critical temperatures, we have as many phases as predicted through RNG theory and at

approximately the right temperatures.

The convolutions Conv(q,T) =
∑

m

∫
δn(p)mδn(−p + q)mdp offer different micro-

scopic information but identify similar crossover regions. In a convolution there’s no

reason to expect the q = 0 term to be one. The fluctuation distributions would need

to be symmetric about p = 0. So the peak amplitude in these convolutions offers data

about how symmetric the distributions are. In p⊥’s thermal regime the symmetry of the

fluctuations climbs with temperature near 150 nK. The trend at all other temperatures is a

steady decrease in the amplitude of the convolution. At low temperatures the convolutions

are packed with features separated at length scales that don’t map easily onto any of the

77



0.8

0.6

0.4

0.2

0.0

-0.2

5004003002001000

 25-50 nK
 75-100 nK
 125-150 nK
 175-200 nK
 225-250 nK

41.25 q 
(μm/ms)

0

N 

o
r
m
a
l
i
z
e
d 

D
e
n
s
i
t
y

Figure 4.17: We show AC(q,T) =
∑

m

∫
δn(p)mδn(p + q)mdp at selected temperatures to highlight

differences. Clearer here is the bunching behavior at low temperatures. The outer peak gaining density
correlates with a decrease in the density in the region before the middle peak below 100 nK, where the
correlation function actually becomes negative. This is true below 50 nK for the second intermediate region.
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Figure 4.18: We show Conv(q,T) =
∑

m

∫
δn(p)mδn(−p + q)mdp at selected temperatures to highlight

differences. At low temperatures the convolutions are feature-full and show correlations at no obvious
lengthscale. At higher temperatures in the sliding regime convolutions are purely thermal.

length or momentum scales of our system. At high temperatures they’re Gaussian, which

one expects in the presence of thermal correlations. When the data sets are separated

into sub-bins the shapes of these distributions do not change much, which suggests the
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correlations are real, but we need simulations to say more.
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Figure 4.19: The ensemble average of every temperature bin in our deep disordered system.

At 4 ER we see qualitative differences at lower temperatures. Tunneling is suppressed

by a factor of 1/e compared to the 2 ER lattice, so p⊥ transitions should occur at lower

temperatures. The 125 nK point should map to 50 nK, and the 150-175 nK region should

map to 75 nK The momentum distributions are wider due to a flatter band structure. The

distributions are also more feature-full at low temepratures and momentum. But we only

identify three regimes, and the crossover to a correlated system is sharp at 75 nK, both in

the growth of the p=0 population and in the fluctuation autocorrelation. The convolutions

show a growth in fluctuation correlations below 75 nK by a factor of two, reinforcing the

75 nK transition point. The growth in the convolution peaks between the 50-75 nK bin

and the 25-50 nK bin may suggest a phase crossover around 50 nK, but while the size of

the correlations changes quite a bit between the two bins, its fundamental character does

not.
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Figure 4.20: At the same temperature the deeper lattice (dashed lines) has a depleted ψ∗ψ(p = 0) and a
wider distribution.
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Figure 4.21: There are some sub-thermal correlations below Tc,2D , but no significant differences between
200 nK and 75 nK, at which point there’s a sharp transition. In addition there’s a clear length scale at low
temperatures matching the autocorrelation data.
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Figure 4.22: The growth in correlations between 75 and 25 nK gives us a probe of a temperature regime
that otherwise looks static. The correlation and anticorrelation revivals persist out to high momenta. The
three lower temperatures are offset to 6 · 10−5

4.7 Our Phase Diagram

Using standard Thomas-Fermi fits we have identified a transition to 2D superfluidity

as consanguinous with the emergence of in-plane BEC fractions through our Thomas-

Fermi fits at 200 nK. We’ve identified a second likely critical point at two different

temperatures in two different lattice depths where correlations begin to grow between

pancakes. We identify these points through the emergence of interferometric effects in

TOF images in individual atom clouds’ deviations from a Bose fit. In the 2 ER lattice this

occurs at 150 nK, and in the 4 ER lattice this occurs at 100 nK.

Our fluctuation correlation measurements, which are signfiicantly clearer than our

scatter-shot deviation-from-a-Bose-fit measurements, indicate a slow crossover in the 2

ER lattice in the 150 to 75 nK range. A BEC-like peak in the 2 ER ensemble average

shows growth starting at 100 nK, which hints at a growing 3D superfluid coexisting with a

quasi-coherent Griffiths phase, likely starting in the densest region of the cloud, between

100 and 75 nK.

In the 4 ER lattice, both the growth of the BEC-like fraction and a sharp cross-over in
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the fluctuation autocorrelation occur simultaneously, at 75 nK. All the qualitative changes

that occur below the BKT transition thus occur somewhere between 100 nK and 75 nK.

This suggests a very brief, if at all present, quasi-ordered Griffiths phase in the deeper

lattice between 75 and 100 nK, and an ordered full 3D phase below 75 nK.

The convlution data is odd, and doesn’t correspond to our other measures. The 2 ER

and 4 ER lattice show a change in the fluctuation convolution starting at 50 nK, and growth

of this ordering at lower temperatures. It may only indicate the growing global coherence

in the 3D superfluid regime, but without a direct measure of a p⊥ superfluid critical

velocity we are unable to truly identify which phase we see at our lowest temperatures.

4.8 Future Directions

The HiBAL’s current capabilities are mostly limited by RF engineering. Driven

systems in a disordered environment may open a path to exploring higher dimensional

spaces. Our spin polarization control opens the door to spin mixtures in disordered

systems, and our instantly and broadly tunable range of lattice ®k and velocities allows

broad momentum-state addressability. We do not know all the available applications of

our control scheme. Our experiment is designed to be capable of creating two reservoirs

on either side of our disordered potential, where an imbalance in the atom number in either

reservoir can be treated as a voltage difference. We could also switch between several

different potentials faster than a microsecond, which allows us to precisely populate every

other pancake, or to perform and ensemble pairwise interferometric measurment. Band

mobility and superfluid critical velocity measurements would be more direct measures

of the bulk 3D properties of our disordered system, and would likely unamibulously

identify the phase of our clouds at their lowest temperatures. Theory work to produce

< δnαδnβ > along p⊥ may shed light on measurements we’ve already made, and we

encourage interested parties to pursue those simulations.
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Chapter 5: A Mobioid Proposal

The BKT crossover and the physics of vorticies in quasi-2D systems can be altered

with boundary conditions. Vortices can be trapped at the center of ring systems, and

the result is macroscopic superflow. Quantum quenches in such systems produce net

angular momentum through the Kibble-Zurek mechanism as a spontaneously broken U(1)

symmetry. These mechanisms are underpinned by vortices, and the BKT phase transition

is a topological phase transition because a vortex is a topological object. It’s angular

momentum makes it an orientable object, and it’s antiparticle is a vortex of opposite

rotation.

There are a limited set of closed systems with a smooth translation symmetry in two

dimensions, and they are distinguished by their topology, how they connect to themselves.

A globe is one such object. The hairy balls theorem states if a globe is going to have one

phase defect, it is going to have two, and they will have opposite rotation/charge. The

curvature of the surface can exert a torque on the defects’ angular momentum, but that

angular momentum is always well defined as a function of position, and so whenever a

vortex antivortex pair meet, they annihilate. But there do exist more twisted spaces, such

as the Klein Bottle or Mobius strip, which lack orientability. A vortex with curl q at its

core will circle a strip once and return to its original spot with charge -q. It is possible

to create a 2D Bose superfluid in at least one of these: the Mobius strip, and play with

topological order in a topologically nontrivial space.
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5.1 An Optical Potential for Mobius Strips of Cold Atoms

It is possible to build a Mobius strip out of a degenerate Bose gas without engaging

in a complicated and Sisyphean alignment scheme. One only needs two laser beams:

one blue detuned elliptical Gaussian, and one red detuned trapping beam shaped with a

mask. Fig 5.1 depicts the geometry of the trap in three dimensions. Along the ẑ direction

one can relay image an optical beam in the shape of the outline of a tadpole, symmetric

about the ŷ axis. The imaging system’s resolution determines the waist of the beam

perpendicular to its curved surface, and optical resolutions of five micrometers are easy to

achieve even on experimental apparatuses with thick windows and long working distances.

Quasi-2D trapping potentials with out of plane harmonic confinement are possible in such

a regime with some hundreds of milliwatts of light within several nanometers of the

cycling transition in 87Rb. A trap depth of 10 kHz would produce out of plane harmonic

confinement of 2.7 kHz and trap a cloud with temperatures on the order of a kiloHertz.

With a Rayleigh range of 100 micrometers that would create a tadpole shaped quasi-2D

degenerate Bose gas with a width along the beam of about 20 um. In this regime the BKT

transition can be crossed by varying the density of the cloud by varying the number. A

second simple elliptical Gaussian beam propagating down at a 60 degree angle through

the x̂ ẑ plane can push atoms out of the center of the tail and cut off its connection to the

cylindrical head at the top on one side and the bottom of the other. This disconnects the

tadpole and leaves behind a quasi-2D gas connected as a Mobius strip.

5.2 Non-Orientable Spaces and a Local L̂

AMobius strip is defined by the strange way in which it connects to itself. It has only

one edge, and only one surface. Imagine a traveller who gets lost in a strange place and

resolves to find her way out. She stands at the edge of a precipice. She turns left and sees

a path that curves away into the unseeable distance. Turning further she sees a far edge
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Tadpole And Elliptical Beam

Final Trap Shape

Figure 5.1: This is a demonstration of how an optical trap for a mobius strip could be constructed with two
beams and a single bichromatic trap imaging axis.

at distance 2w from her position and turns once more to see an identical path going off

into the distance. With two choices of direction looking rather similar and two promising

certain death she then then takes a stroll with the far edge on her right, and leaves some

crumbs in this otherwise sterile place so she doesn’t get turned around if she goes mad.

After a distance L she looks to the far edge on her right and sees the start of a trail of

bread-crumbs which goes off along the direction she’s already travelling. Perturbed she

keeps walking, and after another distance L she happens upon the start of a very familiar

trail of crumbs. And then she wakes up, and tries to make sense of the whole thing.

To rigorously track this path one defines a coordinate system constructed from the

generators −i d
dx and −i d

dy . Choosing to place y=0 at the center of the strip and x =0 at any

position, the symmetries are as follows,

ψ(x, y) = ψ(x + L,−y) = ψ(x + 2L, y) (5.1)

This states a traveller that goes around the strip once percieves his original position on

the opposite side of the strip, and ultimately must travel the length of the strip twice to

come back to his original spot. Choosing a distance from the center y and walking once
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around the strip lands one at ψ(x + L, y), which is the same physical position as ψ(x,−y).

Thus walking around the strip once flips the coordinate system along the y direction,

but not the x direction. Consequently the momentum operator −i d
dy flips sign while the

momentum operator −i d
dx does not. One can attempt to construct an angular momentum

operator p̂x + i p̂y. Imagine placing a single vortex at y = 0, right in the center of the

strip. In this coordinate frame we evaluate the angular momentum of the strip and it has

some positive value. But then we send the vortex around the strip once, and because this

is identical to translating the coordinates around once p̂y has changed sign, and so the

angular momentum of the quantum gas has not been conserved by a translation operator.

We have not created something that violates real conservation laws in our Universe. This

is rather an effect of the torque the optical potential adiabatically exerts on the system as

it passes around the cylindrical part of the potential. While angular momentum of the

full three dimensional object is a good quantum number, within the confines of this type

of two dimensional closed space angular momentum has been rendered a bad quantum

number.

5.3 Vorticies in a Non-Orientable Space

In an attempt to develop exact solutions for what now appear to be dubious quasi-

particles we employed a Green’s Function method. In two dimensions one can define a

flow field ®J(x, y) with divergence ®∇ · ®J = 0 and curl ®∇ × ®J = 2πδ(®x − ®x0) as ẑ × ®E with

®∇ · ®E = 2πδ(®x − ®x0) and ®∇ × ®E = 0. Our mobioid boundary conditions require the flow

Jx(x + L, y) = Jx(x,−y) and Jy(x + L, y) = −Jy(x,−y) at all points. At the borders of the

strip we require Jy(x,w) = Jy(x,−w) = 0 if our boundaries are to be stable in time. This

defines the mobioid conditions for our dual scalar potential,

d
dy
Φ|x+L,y =

d
dy
Φ|x,−y (5.2)
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d
dx
Φ|x+L,y = −

d
dx
Φ|x,−y (5.3)

While the border condition requires

d
dx
Φ|x,−w =

d
dx
Φ|x,w = 0 (5.4)

We define ®E as the gradient of a scalar potential in a fourier representation,

Φ =

∞∑
n=1

∞∑
m=1
(An,mcos(

nπx
L
)+Bn,msin(

nπx
L
))(Cn,msin(

mπ(y + w)
2w

)+Dn,mcos(
mπ(y + w)

2w
))

(5.5)

Tomeet the condition ®∇× ®J = 2πδ(®x− ®x0) andmatch the boundary conditions, we evaluate

®∇2Φ = 2πδ(®x − ®x0) and the intermediate step,

®∇Φn,m(x, y) = (x̂
nπ
L
(−An,msin(

nπx
L
) + Bn,mcos(

nπx
L
))

(Cn,msin(
mπ(y + w)

2w
) + Dn,mcos(

mπ(y + w)
2w

))

+ŷ
mπ
2w
(Acos(

nπx
L
) + Bsin(

nπx
L
))

(Cn,mcos(
mπ(y + w)

2w
− Dn,msin(

mπ(y + w)
2w

))

(5.6)

®∇2
Φn,m(x, y) = −

( (nπ
L

)2
+

(mπ
2w

)2)
(An,msin(

nπx
L
) + Bn,mcos(

nπx
L
))

(Cn,msin(
mπ(y + w)

2w
) + Dn,mcos(

mπ(y + w)
2w

))

(5.7)

First we consider 5.4,

nπ
L
(−An,msin(

nπx
L
) + Bn,mcos(

nπx
L
))(Cn,msin(mπ) + Dn,mcos(mπ))

=
nπ
L
(−An,msin(

nπx
L
) + Bn,mcos(

nπx
L
))(Cn,msin(0) + Dn,mcos(0))

= 0

(5.8)
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and we see that Dm,n = 0, rendering Cm,n redunant. Combining 5.2 and 5.6 we have

mπ
2w
(Am,ncos(

nπ(x + L)
L

) + Bm,nsin(
nπ(x + L)

L
))cos(

mπ(y + w)
2w

) =

mπ
2w
(Am,ncos(

nπx
L
) + Bm,nsin(

nπx
L
))cos(

mπ(−y + w)
2w

)

(5.9)

If f (y) is odd under y → −y, then f (x) will have to be odd under x → x + L. The same

goes for an even symmetry in each. Odd m provides odd symmetry around y = 0, and

vice versa. Odd n provides odd symmetry under translation by L, and even even. The sum

over the indices becomes (2m, 2n) and (2m + 1, 2n + 1). Next we combine 5.3 and 5.6,

nπ
L
(−An,msin(

nπ(x + L)
L

) + Bn,mcos(
nπ(x + L)

L
))sin(

mπ(y + w)
2w

)

= −
nπ
L
(−An,msin(

nπx
L
) + Bn,mcos(

nπx
L
))sin(

mπ(−y + w)
2w

)

(5.10)

We find that the same odd/even conditions satisfy the boundary condition above. To

evaluate the Green’s function we take an inner product of the divergence of the field

and a delta function. For ®∇2Φ = 2πδ(®x − ®x0), A = Kcos(nπx0
L ), B = Ksin(nπx0

L ) and

K =
4sin(mπ(y0+w)

2w )

πwL( nL
2+ m

2w
2
)
. We also allow ourselves a superflow term ®Jd = k x̂ which we may

employ to ensure the boundary condition ψ(x, y) = ψ(x + L,−y) is satisfied.

The 5.2 represents a few specific path integrals over the flow field. Contributions

to the phase accumulated along each arrow are written down as their scalar totals as

letters a through d. Explicitly a =
∫ w

−w
( d

dxΦ(x, y
′)|x=0,y′=y)dy, b and c are two more

contributions from the vortex, and d is from the superflow term. Any closed path integral∮
(ẑ × ®∇Φ)dxdy = n2π. Consider two such path integrals a + c + d and 2a + c − b. We

can choose d to satisfy the condition a + c + d = 2π. A path enclosing the vortex we’ve

placed at the center of the strip must also acquire a 2π phase, so the closed path integral

2a+ c − b = 2πWhen we use the first path to solve for a and substitute that into the other,

we produce the relationship d = π − c − b. If we make the coordinate transformation

y+w → y and then 2w → wj, c+b =
∑∞

n=1
∑∞

m=1 128(4(2m−1) sin2(πm) cos(πn) sin ( 1
20 π(2m−1)y0)

π(2n−1)(64m2−64m+4n2−4n+17) −

88



∇x J

2π

a

c+d

-a

b+d

Path Integrals Along The Strip

Figure 5.2: The scalar values a, b, c and d are path integrals taken along the directions indicated. The
superflow component d is separated from the purely rotational contribution from the vortex

m cos2(πm) sin(πn) sin ( πmy0
10 )

16πm2n+πn3 ). Because sin2(πm) = sin2(πn) = 0, every term in this sum is zero.

What we have then is c = −b and d = π.

The eigenbasis with which we represent the phase and its Green’s function analog

is a discrete fourier eigenbasis. The fourier representation of a delta function does not

converge, but any superfluid system with chemical potential µ will see energy scales

above µ become incoherent ballistic states of a thermal gas, so we roll off our series

summation past lengthscales longer than the healing length. We do this by replacing the

delta function with a narrow-waisted 2D Gaussian distribution, which turns into a wide

Gaussian distribution in momentumspace. I’ve numerically evaluated this truncated series

for all y0 and found something I wasn’t trying to produce, a line defect that can be seein

in Fig. 5.3.

The whole problem boils down to one thing: The divergence of the green’s function

is not a delta function. There is also a ridge located at y = y0, which leads to a small curl

everywhere on the strip at the same location. It is not due to any ringing. Multiplying the

solution by a narrower gaussian in fourier space turns the ridge into amore diffuse presence

but does not remove it. The ridge becomes broad, and so a smaller curl per area exists over
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An Eigenspace Approach

Figure 5.3: Above are both a Green’s function and a phase profile as constructed with the eigenspace
approach. Note the kink in the Green’s function and the corresponding phase discontinuity in the strip. The
units on the graph are raw matrix indices.

a larger area. But neither approach changes the central problem: the phase profile is path

integral dependant. There is a line phase defect centered at y = y0 that separates the strip

into two distinct bands, one central and one outer. It only disappears when the vortex is at

the absolute center of the mobius strip. The size of the phase difference between (x, y0+δ)

and (x, y0 − δ) depends on where along x one crosses that line defect. It is a line defect

that cannot exist in a real interacting quantum fluid. The energy cost is too high. This

suggests a vortex can only exist exactly at the Mobius strip’s center. This would call into

question the viability of the XY renormalization group’s local symmetry as a function of

the boundary conditions of the problem, and is thus unlikely.

I chose a second approach. A method of images solution would approach the

boundary conditions perturbatively and guarantee the absence of any sharp localized

artifacts due a poor choice of eigenbasis. A Mobius strip can be considered a real space

projection of half of a virtual cylinder of circumference 2L and width 2w. There exists

a method of images solution whose individual flow contributions converge in 1/n, with a
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Boundary

Figure 5.4: By treating the Mobius Strip as half a cylinder and its borders as mirrors I construct a method
of images solution as a special case of the infinite parallel conductor solution in 2D electrostatics. Blue and
red dots represent vorticies of opposite helicity.

potential of the form (−1)n+m ln
√
(x − x0 − nL)2 + (y − (−1)n+my0 + 2nw)2 The truncated

solution differs from the eigenbasis approach in one obvious way: there are no line phase

defects. The superflow term is still roughly a constant as a function of y0. The same path

integrals can be constructed, and the same condition set that a + c + d = 2π produces

d = π The important thing to notice in the green’s function drawing is that there aren’t any

kinks in the slope. The phase function similarly does not see any kinks. The integrand

in the phase funcion picture, Figure 5, first integrates along x then along y. The function

mostly meets the boundary conditions. This image and green’s function was produced

with a max m and n of 400, so any futher effects will be at the center of a multipole of a

very, very high order at a very long distance.

The numerical evaluation of the method of images solution of a lone vortex reveals

roughly the same behavior one sees in with a single vortex on a ring. A vortex can enter

from one side, traverse the strip, and exit the other, with the total superflow in the strip

the ratio of y0+w
2w 2π/L. A vortex can similarly enter a ring from the outside, traverse the

ring as it ramps up the superflow, and then enter the center of the ring, at which point
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The Method of Images Superflow Remainder
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Figure 5.5: The axes on this graph are the position y along the strip and the postiion of the vortex y0. This
is

∫ x=L

x=0 ∇φ(x, y, y0) The phase accumulated in the absence of the superflow term is roughly π regardless of
the position of the vortex or the line along the strip the integrand is taken. The discontinuity in the graph
is the vortex core. This is numerical evidence that the multipole solutions require the same superflow term
d = π

any path integral around the ring leads to a phase of 2π. The behavior of interacting

vortices is radically different. Two nearby vorticies each of rotational charge q will be

repelled from one another and attracted to each other’s mirror image around the strip,

enhancing the interaction potential. They can race around the strip and annihilate each

other. This smoothly connects a Mobius strip with angular momentum 4πn to 0 without

any quasiparticles leaving the system by its boundary. There are two orthogonal axes in

the set of topologically distinct states in a superfluid mobius strip. One derives from the

round-trip superflow term, which in real space consists of a tensor angular momentum.

The other is whether there are an even or odd number of vortices on the strip. In a real

system I expect vortices to enter and exit at the edges of the strip by a variety of the

Magnus force, acting as transient states between quanta of superflow. An isolated space

would see two varieties of state. One where there was a vortex and some fractional value

of superflow. The other where there were no vortices and 2π quantized superflow. The
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A Method of Images Solution

050100150200250300350400450120100806040200

10

9.5

9

5

6

6.5

7

8

7.5

8.5

5.5

450400350300250200150100500

120

100

80

60

40

20

-4

4

2

5

1

0

-1

-2

-3

3

0

Figure 5.6: Note the lack of any kink. The phase profile integral was the simplest I could take, and so it
passes quite close to the core. The integral was first taken along x, then y. Every postion y0 of the vortex
core looks roughly the same. Note the π difference from one side to the other. This phase function has no
superflow term added in. A gradient of πx

L realizes a self-consistent and continuous wave function with a
curl solely at the vortex core.

thermodynamic limit cannot exist for this system, as when L scales to ∞ we recover

only the local symmetry class. The most interesting physics are likely to come out of

vortex interactions. I cannot predict how the Kibble-Zurek mechanism would change on a

Mobius strip compared to a ring, but I’m willing to bet it would, as there exists a path for

any spontaneously generated angular momentum of order greater than 1 to cancel itself

out. And if my method of images is fundamentally flawed, it may mean that the only

eigenspace solution with a localized vortex, where it’s right in the middle, would be very

interesting.

93



Bibliography

[1] Nigel Goldenfeld. Lectures on Phase Transitions and the Renormalization Group.
Frontiers in Physics, 85, 1992.

[2] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell.
Vortex Nucleation in Bose-Einstein Condensates in an Oblate, Purely Magnetic
Potential. Science., 269:198–201, 1995.

[3] K.B. Davis, M.-O.Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn,
and W. Ketterle. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev.
Lett., 75:3969–3973, 1995.

[4] B. DeMarco and D. S. Jin. Onset of Fermi Degeneracy in a Trapped Atomic Gas.
Science., 285:1703–1706, 1999.

[5] Andrew G. Truscott, Kevin E. Strecker, William I. McAlexander, Guthrie Partridge,
and Randall G. Hulet. Observation of Fermi Pressure in a Gas of Trapped Atoms.
Science., 291:2570–2572, 2001.

[6] C. Ospelkaus, S Ospelkaus, L. Humbert, P. Ernst, K. Sengstock, and K. Bongs.
Heteronuclear Molecules in a 3D Optical Lattice. Phys. Rev. Lett., 97:120403, 2006.

[7] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Heteronuclear
Molecules in a 3D Optical Lattice. Rev. Mod. Phys., 82:1225, 2010.

[8] J L. Roberts, N R. Claussen, S L. Cornish, E A. Donley, Eric A. Cornell, and C E.
Wieman. Controlled Collapse of a Bose-Einstein Condensate. Phys. Rev. Lett., 86,
2001.

[9] F. Bringas, M. T. Yamashita, , and T. Frederico. Triatomic continuum resonances
for large negative scattering lengths. Phys. Rev. A, 69, 2004.

[10] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. HÃďnsch, and Im-
manuel Bloch. Quantum phase transition from a superfluid to a Mott insulator in a
gas of ultracold atoms. Nature, 415:39–44, 2002.

94



[11] Ian B. Spielman, William D. Phillips, and James V. Porto. The Mott Insulator
Transition in a Two Dimensional Atomic Bose Gas. Phys. Rev. Lett., 98:080404,
2007.

[12] KÃűhl M, Moritz H, StÃűferle T, and Esslinger T. GÃĳnter K. Fermionic Atoms
in a Three Dimensional Optical Lattice: Observing Fermi Surfaces, Dynamics, and
Interactions. Phys. Rev. Lett., 94:080403, 2005.

[13] Toshiya Kinoshita, TrevorWenger, and David S. Weiss. A quantum Newton’s cradle.
Nature, 440:900–903, 2006.

[14] Z Hadzibabic, P KrÃĳger, M Cheneau, S P Rath1, and J Dalibard. The trapped
two-dimensional Bose gas: from BoseâĂŞEinstein condensation to Berezinski-
iâĂŞKosterlitzâĂŞThouless physics. New Journal of Physics, 10, 2008.

[15] Ming-Shien Chang, Qishu Qin, Wenxian Zhang, Li You, and Michael S. Chapman.
Coherent spinor dynamics in a spin-1 Bose condensate. Nature Physics, 1:111–116,
2005.

[16] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn.
Spontaneous symmetry breaking in a quenched ferromagnetic spinor BoseâĂŞEin-
stein condensate. Nature, 443:312âĂŞ315, 2006.

[17] Gregor Jotzu, Michael Messer, RÃľmi Desbuquois, Martin Lebrat, Thomas
Uehlinger, Daniel Greif, and Tilman Esslinger. Experimental realization of the
topological Haldane model with ultracold fermions. Nature, 515:237–240, 2014.

[18] Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto. Rapid
production of 87Rb Bose-Einstein condensates in a combined magnetic and optical
potential. Phys. Rev. A, 111:063631, 2009.

[19] AndrÃľ Eckardt, Martin Holthaus, Hans Lignier, Alessandro Zenesini, Donatella
Ciampini, Oliver Morsch, , and Ennio Arimondo. Experimental realization of the
topological Haldane model with ultracold fermions. Phys. Rev. A, 79:013611, 2009.

[20] M.C. Beeler, M.E.W. Reed, T. Hong, and S.L. Rolston. Disorder-Driven Loss
of Phase Coherence in a Quasi-2D Cold Atom System. New Journal of Physics,
14:073024, 2012.

[21] B Allard, T Plisson, M Holzmann, G Salomon, A Aspect, P Bouyer, and T Bourdel.
Effect of disorder close to the superfluid transition in a two-dimensional Bose gas.
Phys. Rev. A, 85:033602, 2012.

[22] S. S. Kondov, W. R. McGehee, J. J. Zirbel, and B. DeMarco. Effect of disorder close
to the superfluid transition in a two-dimensional Bose gas. Science, 344, 2011.

[23] Matthew P. A. Fisher. Quantum Phase Transitions in Disordered Two-Dimensional
Superconductors. Phys. Rev. Lett., 65:073024, 1990.

95



[24] Nicolas Laflorencie. Sliding phase in randomly stacked 2d superflu-
ids/superconductors. EPL, 99, 2012.

[25] David Pekker, Gil Refael, and Eugene Demler. Finding the Elusive Sliding Phase
in the Superfluid-Normal Phase Transition Smeared by c-Axis Disorder. Phys. Rev
Lett., 105:085302, 2010.

[26] Priyanka Mohan, Paul M. Goldbart, Rajesh Narayanan, John Toner, and Thomas
Vojta. Anomalously Elastic Intermediate Phase in Randomly Layered Superfluids,
Superconductors, and Planar Magnets. Phys. Rev Lett., 105:085301, 2010.

[27] Nikolai V. ProkofâĂŹev and Boris V. Svistunov. Two Definitions of Superfluid
Density. arxiv, 1999.

[28] Chen-Lung Hung, Xibo Zhang, Nathan Gemelk, and Cheng Chin. Observation of
scale invariance and universality in two-dimensional Bose gases. Nature, 470:236,
2011.

[29] Tin-Lun Ho and Qi Zhou. Obtaining the phase diagram and thermodynamic quanti-
ties of bulk systems from the densities of trapped gases. Nature Physics, 6:131–134,
2010.

[30] Tarik Yefsah, RÃľmi Desbuquois, Lauriane Chomaz, Kenneth J. GÃĳnter, and Jean
Dalibard. Exploring the thermodynamics of a two-dimensional Bose gas. Phys. Rev.
Lett., 107:130401, 2011.

[31] Gregory H Wannier. The Structure of Electronic Excitation Levels in Insulating
Crystals. Physical Review, 52:191–197, 1937.

[32] Emily E Edwards. CONSTRUCTION OF APPARATUS AND FIRST EXPERI-
MENTS INVESTIGATING DYNAMICS OF BOSE-EINSTEIN CONDENSATES
IN DISORDERED OPTICAL LATTICESs. University of Maryland Library, 2009.

[33] Matthew Beeler. Disordered Ultracold Two-Dimensional Bose Gases. University of
Maryland Library, 2010.

[34] JenniferRobinson. Explorations ofVariable Interactions in aColdRubidiumRydberg
Gas. University of Maryland Library, 2012.

[35] Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto. Rapid
production of 87Rb Bose-Einstein condensates in a combined magnetic and optical
potential. Phys. Rev. A, 79:063631, 2009.

[36] Michael Schreiber, Sean S. Hodgman, Pranjal Bordia, Henrik P. LÃĳschen, Mark H.
Fischer, Ronen Vosk, Ehud Altman, Ulrich Schneider, and Immanuel Bloch. Obser-
vation of many-body localization of interacting fermions in a quasi-random optical
lattice. Science, 349:842–845, 2015.

96



[37] Dina Genkina, LM Aycock, BK Stuhl, Hsin-I Lu, RA Williams, and IB Spielman.
Feshbach enhanced s-wave scattering of fermions: direct observation with optimized
absorption imaging. New Journal of Physics, 18, 2015.

[38] Chen-Lung Hung, Xibo Zhang, Li-Chung Ha, Shih-Kuang Tung, Nathan Gemelke,
and Cheng Chin. Extracting densityâĂŞdensity correlations from in situ images of
atomic quantum gases. New Journal of Physics, 13, 2011.

[39] Francesco Sciortino and Piero Tartaglia. Extension of the Fluctuation-Dissipation
Theorem to the Physical Aging of a Model Glass-Forming Liquid. Phys. Rev. Lett.,
86, 2001.

[40] Las-Pho. Encyclopedia of Optical Engineering. CRC Press, page 1892, 2003.

[41] G. Birkl, M. Gatzke, I. H. Deutsch, S. L. Rolston, and W. D. Phillips. Bragg
Scattering from Atoms in Optical Lattices. Phys. Rev. Lett., 75:842–845, 2015.

[42] G. Birkl, M. Gatzke, I. H. Deutsch, S. L. Rolston, and W. D. Phillips. Sim-
ple piezoelectric-actuated mirror with 180 kHz servo bandwidth. Optics Express,
18:9739–9746, 2010.

[43] H Muntinga, H Ahlers, M Krutzik, A Wenzlawski, S Arnold, D Becker, K Bongs,
H Dittus, H Duncker, N Gaaloul, C Gherasim, E Giese, C Grzeschik, T W Hansch,
OHellmig, WHerr, S Herrmann, EKajari, S Kleinert, C Lammerzahl, WLewoczko-
Adamczyk, J Malcolm, N Meyer, R Nolte, A Peters, M Popp, J Reichel, A Roura,
J Ruldolph, M Schiemangk, M Schneider, S T Seidel, K Sengstock, V Tamma,
T Valenzuela, A Vogel, R Walser, T Wendrich, P Windpassinger, W Zeller, T van
Zoest, W Ertmer, W P Schleich, and E M Rasel. Interferometry with Bose-Einstein
Condensates in Microgravity. Phys. Rev. Lett., 111:093602, 2013.

[44] Y. Castin and R. Dum. Bose-Einstein Condensates in Time Dependent Traps. Phys.
Rev. Lett., 77, 1996.

[45] Bess Fang, Aisling Johnson, Tommaso Roscilde, and Isabelle Bouchoule.
Momentum-Space Correlations of a One-Dimensional Bose Gas. Phys. Rev. Lett.,
116, 2016.

[46] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release
1.0.11 of 2016-06-08. Online companion to [47].

[47] F.W. J. Olver, D.W. Lozier, R. F. Boisvert, and C.W. Clark, editors. NIST Handbook
of Mathematical Functions. Cambridge University Press, NewYork, NY, 2010. Print
companion to [46].

97


	Foreword
	Acknowledgements
	List of Figures
	Introduction
	Phase TransitionsTextbook
	The BKT Transition
	The BKT Transition in Finite Systems
	Equations of State
	The Quasi-2D Approxmation, 3D Dynamics and Band Structure
	Emerging 3D Superfluidity, Phase Stiffness and the Sliding Phase

	The Chamber
	Redesign and Rebuild
	Collecting Atoms
	RF Evaporation
	Transportation

	The Cell
	The 1550 nm Cross Dipole Trap
	Absorption Imaging
	Imaging and Phase Transitions
	The High Bandwidth Arbitrary Lattice
	Levitation Coil
	Microwaves

	The Sliding Phase
	Our Sliding Phase
	Phase Fluctuations, Induced vs Many-Body
	Dispersion in TOF
	Phase Fluctuation Power Spectrum
	Our Data Set
	Momentum-Space Bunching
	Our Phase Diagram
	Future Directions

	A Mobioid Proposal
	An Optical Potential for Mobius Strips of Cold Atoms
	Non-Orientable Spaces and a Local 
	Vorticies in a Non-Orientable Space

	Bibliography

