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Abstract

The time delay neural network (TDNN) is an effective tool for speech recognition
and spatiotemporal classification. This network learns by example, adapts its weights
according to gradient descent, and incorporates a time delay on each interconnection.
In the TDNN, time delays are fixed throughout training, and strong weights evolve
for interconnections whose delay values are important to the pattern classification
task. Here we present an adaptive time delay neural network (ATNN) that adapts its
time delay values during training, to better accommodate to the pattern classification
task. Connection strengths are adapted as well in the ATNN. We demonstrate the

effectiveness of the TDNN on chaotic series prediction.






1 Introduction

The time-delay neural network (TDNN) proposed by Waibel et al [17] employs time-delays
on connections and has been successfully applied to phoneme recognition [18, 19]. The time-
delay neural network also classifies spatiotemporal patterns and provides robustness to noise
and graceful degradation [10]. In the TDNN architecture, each neuron takes into account
not only the current information from all the neurons of the previous layer, but also a certain
amount of past information from those neurons due to delays on interconnections. Typically
the time delays are evenly spaced over a time interval called the frame window, although
arbitrary time delays may be used. Training is on spatiotemporal patterns, and inputs are
classified at each time step by the output layer. After training, weights are strengthened
along interconnections whose time delays are important to recognition.

A limitation of the TDNN as originally posed [17] is its inability to learn or adapt the
values of the time delays. Time delays are fixed initially and remained the same throughout
training. In this paper we present the adaptive time delay neural network (ATNN), which
adapts time delays as well as weights during training. The result is a dynamic learning
technique for spatiotemporal classification.

Biological studies have shown that time delays do occur along axons due to different
conduction times and differing lengths of axonal fibers, and that, in addition, temporal
properties such as temporal decay and integration occur at synapses. Thus biological systems
inspire the TDNN and ATNN architectures.

Previous work has lacked adaptive capabilities for time delays in neural networks. Stud-

ies on the temporal behavior of neural network models have examined signal transmission



along neurons [13, 14] and identification of temporal events [1, 4, 8, 15, 16, 20]. Work by
Bodenhausen [2, 3] utilizes time-delay adaptation, but applies only to a particular recircu-
lation network. Related techniques such as backpropagation through time [21] have applied
to temporal pattern recognition but not with adaptive time delays.

In Section 2 of this paper we demonstrate the effects of time delays on system performance
through modeling chaotic series prediction with a TDNN. We describe the ATNN architecture

in Section 3 and derive its learning rule in Section 4.

2 Effects of Time-Delays on Chaotic Series Prediction

The prediction of future variations from past and current system measurements is an essential
task in dynamic systems analysis; this task can be addressed by a TDNN. To show the effects
of changing time-delays on system performance, we have applied a time-delay neural network
with fixed time-delays to chaotic time series prediction of the Mackey-Glass delay differential

equation. The delay differential equation of the form

dz(t)
dt

= F(z(t), z(t — 7)) (1)
describes systems in which a stimulus has a delayed response [7]. This equation fits practical
examples from physiological control systems, economics, and other complex systems. In this
study, we used the example proposed by Mackey and Glass which describes the production

of blood [11] as the following

az(t)

i:m—bm (2)

This differential equation pogsesses many dynamic properties such ag nonlinearity, lirnit cycle

oscillations, aperiodic wave forms and other dynamic behaviors [6] and it can be used as a
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m connections with
m — 1 time-delays

n connections with
n — 1 time-delays

Figure 1: TDNN configuration for prediction

benchmark for temporal learning.

With the Mackey-Glass differential equation, the state of the system is determined by the
function f(.) on the interval [t — 7, ¢]. This function can be approximated by N samples taken
at 6t = (—J\TT——E These N samples can be considered as /N variables from an N dimensional

vector space

(1, Ty oy an) = (2(t — (N — 1)ét), ..., z(t — 26t), z(t — &t), z(t))

Conventionally, the prediction is accomplished by mapping this N dimensional vector space
to a real value. The mapping f : R* — R maps the n most recent samples of the time series
to the value at a future moment z(¢+7"). Thus, the prediction task is accomplished by finding
a function such that z(t + 7') = f(z1,22,...,2,). The function f(.) can be approximated by
many approaches, e.g., Euler integration, Runge-Kutta algorithm, or other methods.

The TDNN accomplishes this prediction in a novel manner. The schematic architecture

of the TDNN used in this study is illustrated in Figure 1. Qutput from each neuron in the



network is given by a single line, which is then subject to delays of various lengths. These
various delayed signals are then connected as inputs to the neurons of the second layer and
again, each unit in the second layer is connected in the same manner to the next layer. The
synapse weights are updated by an error backpropagation algorithm until the RMSE goes
below a threshold criteria [5]. The detailed description of the activation rule and learning
rule for the TDNN can be found in [10].

In our simulation, we used one input unit, three hidden units, and one output unit.
Experiments were conducted by changing the number of delays on each layer (m and n in
Figure 1) and the values of the delays (m; and 7, indicated in Figure 1). For simplicity, we
kept all delays in the same layer consistent (e.g., each neuron’s output signals were subject
to delays of 0,7;,27;,..., (n —1)7;). The error measure NMSE (normalized mean square error)

is defined as the following:

_ E[(2(t) — 2(1))
NMSE = B2 (1)

where (1) is the original signal value and #(¢) is the network prediction value.

In the experiment, the observation of prediction performance and convergence speed
is made with different values of time-delay 71 under three different network configurations
(different values of m and n); different performance levels are observed for different configu-
rations. T'wo of the simulation results are shown in Figures 2 and 3, which give performance
for differing values of 7.

The TDNN performance was compared to the original function. The network output

of two different trials was plotted to overlap with the system output in Figure 2 and 3,

where solid lines and dashed lines stand for network output and the original function value
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Figure 2: Simulation results,7; = 1,7, = 1, = 4,n = 8
respectively. In Figure 2, the network predictions match the function value relatively well,
following the original function waveform closely except for some bumping peaks. In Figure 3,
which utilizes different time delay values, the match is not very good although the overall

trends are preserved.

3 Time-Delay Learning Adaptation

The schematic architecture of the connections from one neuron to another neuron of the
ATNN is illustrated in Figure 4. Node ¢ of layer A — 1 is connected to node j of the next
layer h, with the connection having time-delay 7;ix,—1 and synaptic weight wj;xn—1. The
multilayered network is not necessarily fully connected layer by layer, but may be sparsely
connected, and connections can skip layers. It is not necessary to have the same number
of delays from different units in the same layer or the same delay values from different

units, since the computation is local for each interconnection. Each connection can have an
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Figure 3: Simulation results,r; = 4,7 = 1,m = 4,n = 8

1 € Nh_l

Figure 4: Basic time-delay connections between two neurons (node i of layer A — 1 and node
J of layer h) in ATNN



arbitrary delay value. For the sake of simplicity, we assume the network is layered and fully
connected layer by layer.
We assume in this discussion that network parameters are updated in a discrete manner

and the input signals are differentiable and sampled at a Nyquist rate, i.e. the sampling

1

timestep r = o

—, where fy,,; is the maximum frequency of all input channels. We define

the following notation:

L = the number of layers in the network.
N, = theset of nodes {1,2,..., \W}|} of layer A.
Tiikim1 = the time-delay of the kth connection to node j of layer h from
node ¢ of layer h — 1
Kj;n—1 = the total number of connections to node j (layer h) from node ¢
of layer h — 1
Tjin-1 = theset of delays on connections to node j (layer k) from node ¢
of layer h — 1, i.e. Tjin—1 = {Tjit,h=1, Tjiz,h=1s -+s Tjim,h—1}, Where
m = Kjin
aio(t) = the ith channel of the input training pattern p at time ¢
t, = the nth sampling time, where r is a single time step (e.g., t, =
nr)
Wiikh—1 = the synapse weight of the kth connection to node j from node ¢

of layer h — 1, and k = 1,2, ..., Kj; 1

The activation value of node j of layer A when input pattern u is present at time ¢, is



defined as:
[i(Sin(tn)) ifh>2

a;{h(tn) =
ajo(tn) ifh=1
where
Kjin
Shtn) = Do D Wikno1 @y (ta — Tiikho1) (3)
1€NL_1 k=1
B;
file) = 7=~ " 63_%95 — i (4)

where «;, ; and 7; are real numbers which define the symmetry point (0, %L — ;) of fi(z)
if x is symmetric to 0, the range [—v;,3; — ;] of fi(x) and the steepness of f;(z) (e.g.
JH0) = %) For simplicity, we use the same sigmoid function for each node in this paper,
although in practice f; may differ for each node.

The adaptation of the delays and weights are derived based on the gradient descent
method to minimize the error measure F during training. The training set consists of a set
of spatiotemporal patterns and target outputs over time. Thus, for spatiotemporal inputs,
training may proceed in any of three ways: batch mode, pattern mode, and incremental mode.
Theoretically, the true gradient descent should be based on the total error measure over all
spatiotemporal training patterns over all times when patterns are presented. This is called
batch mode learning: the parameters are updated after all patterns have been presented.
It requires additional local storage for each connection. Instead of measuring all patterns,
pattern mode takes into account a single complete spatiotemporal pattern and the network
parameters are updated after each spatiotemporal pattern is presented.

The third alternative is incremental mode. This incremental approach updates all pa-
rameters after every time step of each spatiotemporal pattern is considered. For a static

back-error propagation network [5], pattern mode learning is the same as incremental mode
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learning, and batch mode has been shown equivalent to pattern mode for small learning
rates [12]. For any of these training modes, learning will become inefficient and parameters
may overshoot if the learning rate is too large. The relative effectiveness of these differing
approaches depends on the problem, but the latter one is likely to be superior for very regular
or redundant training sets [9].

We will follow the incremental updating method (on-line learning) in this discussion. An

instantaneous error measure is defined as MSE:

E(t,) = 9 Z (dj(tn) — aj(tn))z (5)

JENL

where L denotes the output layer and d;(t,) indicates the desired (target) value of output
node j at time t,,.
The time-delay is modified step by step proportional to the opposite direction of the error

gradient with respect to this delay. The updating rule is therefore:

DE(t,)

ATjik,h—l = —7]18
Tiik,h—1

where 7y is the learning rate.

4 Learning Algorithm Derivation

By the chain rule

BE(tn) _ aE(tn) 8Sj,h(tn)
OT;jik h—1 OSin OTjirp

The second factor of Equation (7) can be expressed as

85, h(tn) 9 e
5___._ — —é——-————‘—-——-———— Z Z wqu,h—l“p,h—l(tn - ij‘]»h"l)
Tjik,h—1 Tjik,h—~1 pEN,_; gq=1
= —Wjikh-1 1 (tn — Tjikn-1) (8)
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We define

JE(t,)
Pinltn) =
Jh( ) aSL

Substitute Equation (8) and (9) into Equation (7), we obtain

OE(t) _

OTjik h—1

= pih(tn)wjinn-165 1 (tn — Tjikn-1)

(8)
- ATjik,h—l = Ulpj,h(tn)wﬁk,h—w;,h_l(tn — Tjik,h-—l)

To derive p;u(t,), we need to apply chain rule and consider two cases:

JE(t,
pin(tn) = 85(',1)
Js
_ 8E(tn) 6aj,h(tn)
- Oaj,h OSM
_0E(t) .
- 8aj,h f(SJyh(tn))

To find %’}%’l, we consider the following two cases:
Js

1. If 7 is an output unit:

JE(t,)

dan

= —(d;(tn) — ajn(ts))

L pin(tn) = =(di(ta) = aza(ta)) f(Sin(ta))

2. If 7 is a hidden unit:

OB(t.) _ OE(tn) 8Synin(t)
a(lj’h PENn11 85p7h+1 a(l]"h
dE(t i
Z 98, 8 (Z Z wplq:halh Tpiq))
peNh+1 pvh+1 a.77 zE_}\fh q= 1
Kpon
= Z ot (ta)( Z Wpjgh(tn))
PEN1 g=1
(12 Rpi,

pj.h(tn) = —[Epe/\/‘hH Zq 1 Pp 1 (tn )ijq,h(tn)]f’(sj,h(tn))

11
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(15)

(16)



We have now found p.
From Equation (11) it remains to find o}, (.~ Tjikh—1). Lhe value of a;,h_l(tn—Tjik,h—l)
can be approximated as following: From the elementary calculus we know that if the function

f(z) is differentiable, then

df

3; l-rzl'-«

f(zo+h) = fwo) = h (17)

for some point z, such that zq < z, < zo + h. The derivative is evaluated at a point z,
(between z¢ and xo + k), and by the Mean Value theorem of differential calculus, z. always

exists. Accordingly, we get

tn)— (tn—1) :
eln)malina) - f 7y =0

13 T

a5 py(tn = Tiikpo1) =

altgy)—alte—1) . — .
o if tn — Tjikhe1 = thy Tjikp—1 7 0

where r =t — t,_1,k € {0,1,...,n}.

Theoretically, 7jikn-1 can be zero or any positive real number, and the value a;p—1(tn —
Tikh—1) can be easily again approximated by the numerical approximation method. But,
in this way, the network will be trained by a simulated pattern or noisy signal due to the
approximation. Therefore, more consideration of this effect is necessary and this issue will
be addressed elsewhere. In this paper, we will consider all time-delays as integer times of
timestep, i.e. Tjigp—1 = nNT,N € N, and ATji p—1 should be rounded before updated or save
the non-rounded value and use the rounded value for updating.

The time-delay learning rule is summarized as follows:

ATjik,h—l = nlpj,h(tn)wjik,h—la;,h_l(tn - Tjik,h—l) (18)
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where

—(d;(tn) — ajn(tn)) f(Sjn(tn)) ,if 7 is an output unit
pj,h(tn) =
“[Zp@’\th Yg€Tin Pt (tn)Wpjg (L) f/(Sin(tn)) i 7 is a hidden unit

Similarly, the learning rule for weights can also be obtained in the same manner and is

summarized as following:
Awjik -1 = N6 p(tn)ajh—1(tn — Tjikh-1) (19)

where

(d;(tn) — ajn(tn)) f(Sjn(tn)) Jif 7 is an output unit

(ZPENh+1 > ogeT, , 0 ,h“(tn)ijq,h(tn))f’(Sj,h(tn)) ,if j is a hidden unit

Pk
5 Conclusion

We have introduced an extended algorithm of time-delay adaptation which can be viewed
as a generalization of the TDNN and the error back-propagation learning paradigm. Unlike
previous studies of TDNNs whose time-delay values have to be predetermined and remain
fixed throughout training, in our approach the time-delays as well as the weights are adjusted
with a learning procedure to achieve the desired system criterion. This work provides more
dynamics and flexibility for the network itself to approach an efficient performance level
and to optimize its configuration. Our results show that the time-delays and connection
strengths in an ATNN can be optimized automatically. The learning paradigm proposed
here is expected to improve performance of convergence speed and generalization significantly

compared to the utilization of fixed delays in the conventional TDNN.
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