SRC TR 87-216

Bin Packing and Dynamic File
Storage: An "Any-Fit" Algorithm
Can Stabilize

by

J.A. Gubner



Bin Packing and Dynamic File Storage: An
“Any-Fit” Algorithm Can Stabilize *

John A. Gubner !

January 4, 1988

Abstract

In this paper we first consider the one-dimensional bin-packing problem and
show that a class of “any-fit” algorithms can bound the expected wasted space
in the system under certain conditions.

In the second part of the paper we consider a dynamic file-storage problem
and show, under certain conditions, that a class of “any-fit” algorithms can

bound the expected wasted space left by deleted files.
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1 Introduction

In this paper we first consider the one-dimensional bin-packing problem and show
that a class of “any-fit” algorithms can bound the expected wasted space in the
system under certain conditions. This result is a simple application of the theory
developed in Section 2 of Gubner, Gopinath, and Varadhan (1988), summarized
here as Lemma Al in Appendix A.

For comparison, we note that Courcoubetis and Weber (1986) call a bin-packing
system “stabilizable,” if there exists a bin-packing algorithm which will bound the
expected wasted space for all time. They state and prove necessary and sufficient
conditions for a stabilizing algorithm to exist. In particular, they give conditions
under which a (complicated) stabilizing algorithm is guaranteed to exist. Using a
completely different approach, we give a simple set of sufficient conditions under
which it is guaranted that a class of simple algorithms, which includes the so called
“first-fit” and “best-fit” algorithms, will stabilize a bin-packing system. We point
out that the model of Courcoubetis and Weber (1986) is a continuous-time one,
while our model is the discrete-time analog.

In the second part of the paper we consider a dynamic file-storage problem
and show, under certain conditions, that a class of “any-fit” algorithms can bound
the expected wasted space left by deleted files. This result relies on the extended
theory in Section 5 of Gubner, Gopinath, and Varadhan (1988), summarized here
as Lemma A2 in Appendix A. The reader may wish to contrast our discrete-time
model with the continuous-time M /M /oo queuing models in Coffman, Kadota, and

Shepp (1985) and Coffman et al. (1986).



2 Bin Packing

Consider a “packing station” in a warehouse in which objects arrive on a conveyor
belt. At the end of the conveyor belt there is a packer who stands ready with an
infinite stack of empty bins, each of height N. The heights of the objects may range
between 1 and N — 1, though not all heights need to be represented. As objects
arrive, empty bins are removed from the stack and placed on the warehouse floor
while they are filled. When a bin is full it is removed from the warehouse. Bins
which are not yet full remain on the floor. The sum of all unused portions of all bins
on the warehouse floor is called the wasted space. Observe that the wasted space is
a time-varying quantity which changes as new objects are packed. The goal of the
packer is to ensure that the expected wasted space is a uniformly bounded function
of time. We assume that repacking of bins is not permitted.

To illustrate some of the problems involved, consider the following. When the
first object arrives, the packer takes an empty bin from the stack and puts the bin
on the warehouse floor. The object is then placed in the bin. This bin is not full;
when the second object arrives, it may fit in the bin with the first object. If the
second object would fit in the bin with the first object, the packer must make a
decision. Should the packer put the second object with the first or should he take
an empty bin from the stack, put the bin on the warehouse floor, and place the
second object there? To show that this question is not entirely trivial, consider the
following situations.

Suppose that the bins are of height 5 and that the objects are of heights 2 and
3. Suppose that the first two objects to arrive are of height 2. Clearly, the packer
should put the second object into a new bin. Otherwise, the wasted space will be
greater than or equal to 1 for all time onward.

Now consider the situation in which there are objects of height 1 together with

objects of various other heights. Intuitively, if the “percentage” of objects of height



1 is “high enough,” we should expect that an “any-fit” algorithm, which always
packs a new object in a partially full bin already on the floor whenever possible,
can control the wasted space. More precisely, we will show that under certain
conditions, an “any-fit” algorithm can stabilize a bin-packing system in the sense
that the expected wasted space will be bounded for all time, regardless of the inital

condition of any bins on the warehouse floor.

3 A Mathematical Model for Bin Packing

Let (2, #,P) be a probability space on which a time-homogeneous Markov chain
{X,,n = 0,1,2,...} is defined as follows. The “state” of the warehouse at time
n will be denoted by X,. The state, X,,, consists of the number of bins on the
warehouse floor together with the wasted space in each bin on the floor. Given that
Xn=z,fork=1,...,N—1, let A\; denote the probability (independent of n) that
at time n + 1, an object of height k arrives on the conveyor belt. If 1:2—211 Ar < 1, the

remaining probability mass is assigned to the event
{no object arrives at time n + 1}.

Let w(X,) denote the sum of the wasted space in the individual bins on the
floor at time n. Clearly, w is a nonnegative function defined on the state space of

the Markov process {X,.}.
We assume that an “any-fit” algorithm is employed. With regard to the behav-
ior of the process {w(X,)}, this implies the following. Given that X,, = z, with

conditional probability 1,

(1) 0(Xnt1) — w(a)] < N—1.

This implies immediately that

(2) E[[w(Xnt1) —w(@)* | Xa=2] < (N 1)
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Further, we can easily compute that when w(z) > 1,

N-1

(3) E[w(Xos) — 0(2) | Xo = 2] < [\~ 3 (¥ — KA.
k=2
Using these facts, we have
Theorem 1. Let v = E (N — k)Ax. Assume v > 0. Choose 0 < C < v/36.

Choose L = max{1, —N/— M} so that whenever w(z) > L,

(4) [w(Xn1) — w(z)| < Jw(z),

(5) Elw(Xnt1) —w(z) [ Xa=2] < —v,
and

(6) E[ lw(Xnt1) —w(2)* | Xo = 2] < Cw(a).

Set A= (N —1)+ L. Then

w(z)®
w(z) + £n)?

(M Ew) | Xe=z] < )
[w( e
Proof. Observe that when w(z) < L, (1) implies w(Xp41) < (N —-1)+ L = A.

+ A(1+4(2) 2

Thus
(8) Elw(Xon) [ Xa=2] < 4,  ifu(@)<L,
and
(9) Elw(Xon)* | Xa=2] < 4% ifw(z) < L.

Now, (1), (3), and (2) clearly imply (4), (5), and (6) when w(z) > L. The fact that
(4), (5), (6), (8), and (9) imply (7) is simply Lemma Al in Appendix A. |

Clearly, (7) implies both (see Papadimitriou (1973)).

(10) Elw(X,) | Xo=z] < w(z) +A(1+ ;(%2)?),
and
(11) Tim E[w(X,) | Xo==z] < AQ+3(%)?) < oo,



which is the desired result. We should point out that the assumption that v be
positive is not vacuous. Take, for example, N = 3, A; = %, and Ay = 41. Then

_1
I/——2.

4 Dynamic File Storage

Suppose we are given a file-storage unit, a floppy disk, for example. Such a unit
will be called a “volume” for the sake of generality. In our model we shall assume
that all volumes have infinite storage capacity. Suppose that initially the volume is
unused. As files arrive, they are stored in order beginning at an “origin” or “starting
point.” After several files have been stored, some will be deleted. This will leave
empty holes where new files could be stored, if they are small enough. In general,
even if new files are put in the holes, gaps will remain. Let V,, denote the “state”
of the volume at time n = 0,1,2,.... Let w(V,,) denote the sum of the sizes of all
gaps or holes left by deleted files. We will show that under certain conditions, an
“any-fit” algorithm, which always places an arriving file in a gap if a large enough
gap exists, will stabilize the system in the sense that the expected wasted space is

uniformly bounded for all time.

5 A Mathematical Model for Dynamic File
Storage

Let (Q2, 7, P) be a probability space on which the time-homogeneous Markov chain
{Vn,n =0,1,2,...} is defined as follows. Let the “state” of the volume at time n be
denoted by V,,. The state, V,,, consists of the total number of active files together
with their starting addresses and lengths. We let w(V,) denote the total wasted

space on the volume at time n. For example, suppose that at time n there are N



files of lengths ¢;,...,£¢y. If we let the address of the origin be 0, and if the starting

addresses are a; < --- < ay, where a; + 4; < @41, then the wasted space is
N-1

(12) a1+ ) (e — (@ + &),
i=1

which is equal to

(13) -3t

i=1
In our model we shall assume that the maximum file size is M records. Let
iy A1,. .., Ap be nonnegative numbers such that u+ %1 Am < 1. Given that V,, = v,
Am will be the conditional probability that at time ;: ; 1 a file of m records arrives
and is stored (somewhere, to be specified later) on the volume. If at time n there
are N > 1 files already stored, £ will denote the conditional probability that one of

M
the stored files is deleted at time n+1. This leaves 1— >, A,, —u as the conditional

probability that nothing happens at time n 4 1. -

Given that V,, = v, let B, denote the event that the last file (the one starting at
an) is deleted. We want to ignore the following situation. Suppose ay — (ay—; +
£y-1) is very large, say t. Then with conditional probability &, the last file is
deleted, and

(14) w(Vot1) —wlv) = —t.
Let B denote the complement of the event B,. Let Ip; denote the indicator function

of the event B:. Then, whenever w(v) > 1,
(15) I (Vass) 0(Vas1) — w(o)| < M.

This implies
(16) E[ Ing (V1) [w(Var1) —w(o)[* [ Va = v] < M”.
A little reflection yields, when w(v) > 1,

N-1
N

(17)  E[Ip;(Vas)(w(Vas1) —w(v)) [Va=v] < M p=A < Mp— A



We note that if w(v) > 1, then N > 1. We conclude with

Theorem 2. Let v A A — Mpu. Assume v > 0. Choose 0 < C < v/36. Choose

L = max{1, %, M—sz} so that whenever w(z) > L,

(18) Ip; (Var1)[w(Vat1) — w(v)] < jw(v),

(19) E{ T (Vor1) (0 (Vis1) — w(0)) | Va =] < v,
and

(20) E[ I5; (Var1) [w(Vas1) — w(@)[* | Va = v] < Cuw(v).

Let A 2 2L. Then

w(v)®

[w(v) + §n)?
Proof. Observe that if w(v) < L, then |w(Vp41) — w(v)| < max{M, L} = L, since

(21) E[w(Va) | Vo=v] < AL+ 4(2)? ikl

we are choosing L > 2M. This implies w(Vpy1) < 2L = A. So,

(22) E[w(Vass) | Va=v] < 4,  ifw() <L,
and
(23) E[w(Vat1)® | Ve =v] < A%, if w(v) < L.

Clearly, (15), (17), and (16) imply (18), (19), and (20) when w(v) > L. The fact
that (18), (19), (20), (22), and (23) imply (21) is simply Lemma A2 in Appendix A.
Hence, (21) holds. |

Clearly, (21) implies both

(24) Elw(Va) | Vo=v] < w(v) + A1+ 3(%)?),
and
(25) Tim E[w(Xa) | Xo=2] < A(1+2(2)?) < oo,

which is the desired result.
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A Appendix

We state below two simple consequences of the so-called “Key Lemma” and its

extension proved in Gubner, Gopinath, and Varadhan (1988).

Lemma Al. Let (2, 7,P) be a probability space on which {Y,,n =0,1,2,...} is a
time-homogeneous Markov process. Let u be a nonnegative function defined on the
state space of {Y,}. Suppose that there exist positive constants C, v, and L with
36C < v such that whenever Y, =y and u(y) > L,

(26) u(Yor1) —u(®)] < juy), P(-|Ya=1y)-as,
(27) Eu(Yar)) —u(9) | Yo = 9] < v,

and

(28) El|u(Ynt1) —u(¥)|* | Ya=y] < Cu(y).

If there exist finite, positive constants,! Ay and By, such that

(29) E[u(Yot1) | Y =y]| < Ao, whenever u(y) < L,
and
(30) E[u(Ynt1)® | Yo =y] < By, whenever u(y) < L,
then
u(y)® 4By 1 1
—yl < — 2o 2
(31) Elu(Yo) [ Yo=y] < [u(y) + %n]z + Ao + 2 kz=:1 k2

1In Gubner, Gopinath, and Varadhan {1988), constants A and B were used. They are related by
Ao = A and By = Bv?/4.



Lemma A2. Lemma Al holds if (26)—(28) are replaced by

(32) Ips(Vas)[u(Vosr) —u(y)| < July), P(-|Ya=y)—as,
(33) E[Ip; (Yns1) (u(Yas1) —u(y)) | Yu =y] < v,

and

(34) E[ In; (Yot1)|u(Yot1) —u(@)]* | Ya = y] < Culy),

where By 15 a subset of the state space such that

(35) y' € B, = u(y') <u(y).
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