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This note is a summary of recent results obtained jointly
with Paul Yang. The author would like to express his gratitude to
Professor S. Coen for the invitation to deliver this lecture at

the Universitd di Bologna.

Several questions in harmonic analysis, partial differential
eguations and applied mathemétics lead to the guestion of
characterizing domains for which overdetermined boundary value
problems have solutions. Given the existence of an excellent
bibliography in (1] T will not attempt to trace the history of the
problem (D) and (N) introduced below, except to say that their
origins go back to the treatise [2] of Lord Rayleigh.

Let Q be an open relatively compact subset of real analytic

Riemannian manifold M. Assume further that J8Q is connected and
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of Lipshitz class. What can we say about @ if any of'the

following problems (D) or (N} has an eigenvalue o > 07

(AW + qu = 0 in @
(D) < u =0 and QE =1 on 0&Q
an

| (overdetermined Dirichlet problem)

[ Au + au = 0 in @

- du _
(D) u =1 and 35 = 1 OP aQ
(overdetermined Neumanh problem)

It is remarkable that the existence of such an eigenvalue
already implies that 8Q 1is a real analytic submanifold of M (at
least if &80 is of class Cz+£; if M =R™ or B - real
hyperbolic space - it is enough if J0Q is Lipschitz, this follows
from work of Cafarelli [3]. It is quite possible that this last
condition is always sufficient). In order to proceed any further
we have to impose restrictions on both M and «. For instance,
if M = gD {resp. mn) and a in (D) is the first eigenvalue of
Dirichlet problem, i.e. u > 0, then @ = ball (resp. geodesic
ball). This follows from a theorem of Serrin [4]. A few other
cases are known [5], [6], [7] of the non—-existence of eigenvalues
if M =R", 0« ball. On the otherhand, if M = R" (resp. i)
and Q = ball (resp. geodesic ball) then one can see that,

considering the radial eigenfunctions of the usual Dirichlet or

Neumann problems in the role of wu, there are infinitely many

eigenvalues for (D) and for (N). Sometime ago I have proved in
Rz that the converse was true [5], later I obtained the same
result with P. Yang in Nz[s]. We have now:

Theorem [{9] Let M = Rn(resp. mn), the existence of infinitely

many eigenvalues for either of the problems (D) or (N)

characterizes the balls (resp.geodesic balls) among all the



relatively compact domains Q with connected Lipshitz boundary.

Note that in the Poincaré model B = unit ball of gD and

the geodesic balls are then euclidean balls.

It would seem to be natural to jump to the conclusion that
this theorem should remain true in all M. The following example

shows that one needs some caution.

2 2 2

_ _ _ . _ L2 . .
Example Let u = u(x) = x1 x2 + + x2u_1 x2 defined in
Rzn, denote by v 1its restriction to M = SZn—l. Denote by L

2n

the Laplace operator in R A the Laplace Beltrami operator in

M. It is well known they are related by

< _ 0 2n-1 o 1
(1) ety ot gt
r r
We also have
su _ X _ 2u _
A R R

where the last identity holds by Euler's formula, u being

homogeneous of degree 2. Therefore
2
(2) 6w 29w _2 , _2u
3 2 r Or 2 2
r T r

It follows that

2u {2n-1) 1 - -

— + — 2u + — Au = Lu = 0,

T r r
and the function v satisfies Av + 4n v = 0 on {r=1} = M.
Consider now the set Q = connected component containing
(1,0,-++,0) of {x € M: u{(x) > 0}. Then on J8Q we have v(x) =0
and therefore o = 4n is the first eigenvalue of Dirichlet
problem for Q. We claim now that g% constant on dJ8Q. Note

that the (exterior) normal derivative is an operator tangent to

the sphere M. First, observe that (2) implies



(3) vau(x) . x if x e 8Q.

2n

Since X 1is the normal vector to M in R we have
vu(x) € TXM for x € 0. Therefore we have

3v - .
(4) Vu(x) = 5H(x) * n(x) if x € 38Q,

= X s .
where n represents the unit exterior normal to Q in M. We

only need to verify that |Vu(x)| = constant when x € 8Q. But
Vu(X) = 2(X1’_x2'...'X2'n—1' —in)

and

(5) vul? = 4|x|? =4  if xe M,

which says that v satisfies:

[ Av + 4n'v = 0 in Q
v >0 in Q
(6) 1 = 0 on 8Q
ov _ _ 2 on 38Q
on
L
. _ on-1 n-1 .
Note that topologically 80 = S x S which shows that

Serrin's theorem fails on M. We want to ;bow now that there. are

infinitely many solutions for both (D) and (N) in Q.

Let f be a twice differentiable function of a single real

variable and define

p(x): = f(u(x)).

Using again identity (2) we have

Lo = £ (u)|Vu|? + £(u)Lu = £“(u)4|x| = 4f“(u) on M.
do _ _, du _ . u _ /
3r = f(u)g; = 2f'(u) el 2f' (u)u on M
2 2
a(p_ ¢ u 2 ’ au 2 ‘ -
— = 4f( )&J + = £ (u) 37~ 3 f'(u)u =
or _ r
. 2 2 . " 2 .
= _ff (ayu™ + = f'(u)u = 4£f" (u)u” + 2f' (u)u on M.



Hence,. on M,

Lo = 4f“(u) = 4£f" (u)u’ + 4nf' (u)u + A,
and

(7) Ap + ap = 4f”(u)(1-u?) - 4nf'(u)u + af(u).

Therefore the eqguation A¢ + a¢p = 0 in Q@ becomes the ordinary

differential equation

(8) 4(1-t2)F"(t) - 4ntf”(t) + af(t) = 0, 0 = t

1A
[ury

This equation has a regular singuﬁar point at end point t = 1.

Each eigenvalue a and eigenfunction of (8) satisfying
(9) f(1) bounded, f£(0) =0
provides an eigenvalue for (D) since

Vo = f£'(u)Vu
hence again V¢ x = 0 on 08Q and to check whether == = constant
we only need to compute ]V¢|2 on 8Q. But

2 ' 2 2 ' 2
Ve | = (£'(u))%|Vu|® = 4(f'(u))“,

which shows

a(p — ’ s
(10) 3n = + 2f°(0) on 0oQ.
{This is different from zero since the eigenfunctions of (8) - (9)
satisfy £(0) = 0). This same computation shows that the

eigenfunctions of (8) satisfying

(11) f(1) bounded, f(0) = O,
will provide eigenfunctions ¢ (x) for (N). This time g% = 0 on
80 and ¢ = £(0) = 0 on &8Q. Since it is a well known theorem

of the theory of ordinary differential equations that (8)-(9) and
(8)-(10) have infinitely many eigenvalues, the domain @ has
infinitely many eigenvalues for (D) and (N). @ 1is not even

topologically a geodesic ball in M.



On this note we leave the reader to reflect on these

beautiful questions.
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