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Current inverse modeling-based estimates of carbon dioxide (CO2) fluxes in 

urban areas typically use a network of 10-20 observation sites featuring high-

accuracy gas analyzers that can cost over $100,000 each. Recently, commercially 

available, low-cost sensors to measure both traditional meteorological quantities and 

trace gases such as CO2 have become a focus of atmospheric science research. These 

flux estimations are an ill-posed problem in the sense that, depending on resolution, 

the mathematical model may be optimizing fluxes for hundreds or even thousands of 

grid points, with only relatively few observations to use as constraint. Theoretically, 

by introducing many more observations into the system, the result will better 

represent the true state of the surface fluxes.  

This work comprises of three related studies that evaluate the viability of 

using a low-cost CO2 sensor combined with a mesoscale meteorology model with 

online tracers, and an advanced ensemble data assimilation technique, to estimate 



 

surface fluxes of CO2 in an urban region. First, the SenseAir K30 sensor is evaluated 

compared to a reference gas analyzer to determine the accuracy and precision of the 

observations from this sensor. Next, a simulation of atmospheric CO2 is evaluated 

against observations to understand the error in simulated mole fractions from 

variations in existing emissions inventories. Finally, a series of observing system 

simulation experiments (OSSEs) are conducted to understand the sensitivity of 

estimated CO2 fluxes to the ensemble data assimilation system configuration. 

From this work, it is found that the K30 sensor can be useful for urban 

ambient monitoring of CO2 after corrections for environmental factors such as 

temperature and pressure. Additionally, the modeled CO2 results show that the error 

in simulated mole fractions is likely larger from meteorological error than it is from 

uncertainty in emissions. Finally, the OSSEs find that this ensemble data assimilation 

system using a dense network of lower-accuracy observations can achieve 

comparable CO2 flux estimation results to that of using a sparse network of high-

accuracy observations. However, the configuration of the system, particularly the 

inflation technique used, can significantly affect the quality of the analyzed fluxes. 
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Chapter 1 Introduction 
1.1 Background 

 

Carbon dioxide (CO2), like methane (CH4), nitrous oxide (N2O), ozone (O3), 

and water vapor (H2O), is one of the major greenhouse gases (GHGs) in Earth’s 

atmosphere. While each one of these trace gases is only a small fraction of the total 

dry atmosphere, especially relative to molecular nitrogen and molecular oxygen, 

which combined make up nearly 99%, they each have a fundamental importance to 

our planet’s climate. Because of its molecular structure and vibrational frequencies, 

CO2 is able to absorb and reemit infrared radiation at many of the wavelengths 

emitted by the Earth’s surface, warming the lower atmosphere. Without it and the 

other GHGs, our planet would be over 30ºC on average cooler than it is today, 

making life on Earth less habitable.  

After water vapor, the mole fraction of which is driven by thermodynamics 

and can vary significantly in the troposphere between as little as 0.01% and as high as 

4%, CO2 is the second most abundant GHG on Earth. Since measurements started at 

the Mauna Loa Observatory on the island of Hawai’i in the 1950s (Keeling et al., 

2005), CO2 has steadily risen from the preindustrial mole fraction of approximately 

280 µmol mol-1 of dry air (parts per million, or ppm), to approximately 315 ppm 

when the continuous record began, and now to today’s level exceeding 400 ppm as 

shown in Fig. 1.1. This figure has come to be known as the Keeling curve, which 

shows the monthly and seasonally averaged CO2 mole fractions at the Mauna Loa 

Observatory as a proxy for the globally averaged free troposphere CO2 mole fraction.  
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Figure 1.1. Monthly mean (red) in situ atmospheric CO2 mole fractions observed at 
the Mauna Loa Observatory from 1958-2018. The annual mean (black) is also plotted 
to account for the variations associated with the seasonal cycle of CO2. Figure from 
NOAA/ESRL; https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html, accessed on 
September 20, 2018. 

Figure 1.2 shows a simplified cartoon of the globally averaged sources, sinks, 

and pools of carbon on Earth. Annual global carbon emissions from anthropogenic 

activities has reached over 9 gigatonnes of carbon per year (NOAA ESRL, 2010). 

While this number is small relative to biological processes or the total amount of 

carbon stored in the Earth’s crust, the global carbon cycle is no longer in balance. 

Some of this additional carbon is thought to be removed from the atmosphere by 

photosynthesis and uptake by the ocean, but even with these additional sinks the 

amount of carbon dioxide in Earth’s atmosphere is increasing by four gigatonnes per 



 

3 
 

year. This accounts for the approximately 2 ppm per year increase in globally 

averaged CO2 as reflected in the Keeling curve shown in Fig. 1.1.  

 

 

Figure 1.2. Simplified representation of the global carbon cycle. Numbers in yellow 
and red represent fluxes with units of gigatonnes/year; numbers in parentheses 
represent stored pools with units of gigatonnes. Figure courtesy of U.S. Department 
of Energy Office of Science. 

While there are many anthropogenic sources of this increase, including 

biomass burning and deforestation, this growth can largely be attributed to the 

burning of fossil fuels, which began to become widespread across the globe over the 

past two to three centuries, and has been the main way our global energy demands 

have been met ever since. The burning of any organic material, in this case CH4, can 

be shown by the following example of a combustion reaction: 



 

4 
 

CH4 + 2O2      CO2 + 2H2O + Heat     (1.1) 

 As is the case for all fossil fuels, which are basically hydrocarbons, when they burn 

they combine with the oxygen in the air, and in complete combustion produce CO2 

and water vapor, and are exothermic, meaning the give off heat used to drive a 

turbine or engine to produce electricity, for example. In reality, incomplete 

combustion often occurs, meaning there is not enough oxygen to react fully with the 

hydrocarbon, which leads to the production of carbon monoxide (CO). Additionally, 

combustion of impure fossil fuels also may lead to production of air pollution 

relevant oxides including nitrogen oxides (NOx) and sulfur dioxide (SO2).  

To better estimate the future climate as a result of the increased anthropogenic 

emissions of GHGs, a number of emission reduction goals, also called representative 

concentration pathways (RCPs; Clarke et al., 2014), have been adopted by the 

Intergovernmental Panel on Climate Change (IPCC) as part of its fifth assessment 

report. Each of these RCPs were designed to encompass a range of possible scenarios 

for the future of anthropogenic CO2 emissions over the next century: one where 

emissions peak in the next few years, two others with peaks occuring later in the 

century, and one where emissions continue to rise through 2100. These four 

scenarios: RCP2.6, RCP4.5, RCP6.0, and RCP8.5 (named for the additive radiative 

forcing in W/m2 associated with the increase in greenhouse gas concentrations) 

assume a global mean mole fraction of atmospheric CO2 of 421 ppm, 538 ppm, 670 

ppm, and 936 ppm, respectively, by 2100 (IPCC, 2013). For stakeholders and policy 

makers to assess the success or failure of emissions mitigation strategies, it is 
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essential to have an accurate assessment of the total emissions from a political 

jurisdiction or area both before and after a policy is implemented. 

 

Figure 1.3. An example of a gridded anthropogenic emissions inventory (in this case 
the Open-source Data Inventory for Anthropogenic CO2 or ODIAC inventory) 
showing the magnitude and spatial variability of emissions in six urban areas. Figure 
from Oda and Maksyutov, 2011. 

There are, generally speaking, two main methods for estimating the total 

emissions from an area of interest, the “bottom-up” approach, and the “top-down” 

approach (Leip et al., 2018). The bottom-up approach is the more traditional method, 

where individual source emissions and sinks are estimated based on things such as 

energy consumption, traffic counts, and actual emissions observations from point 

sources, and then aggregated either into totals by location and sector or made into 

emissions inventory products with spatial (and possibly temporal) variability (eg. 

Gurney et al., 2009; Rayner et al., 2010; Oda and Maksyutov, 2011; Asefi-

Najafabady et al., 2014; Oda et al. 2018). An example of a gridded emissions 
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inventory is shown in Fig. 1.3. Additionally, some studies implement a third method, 

the mass balance approach, where flux is calculated by the difference of mass upwind 

and downwind of a theoretical box, generally from aircract observations, but this 

method can only provide the total flux from the area of interest, and has no discrete 

spatial information. 

 

Figure 1.4. An illustration of the top-down method for estimating surface emissions of 
GHGs including CH4 and CO2. Observations of atmospheric mole fractions from a 
point (a tower or from an airplane) include a component of atmospheric transport as 
well as the surface fluxes. Figure courtesy of Kim Mueller, NIST. 

When estimating emissions with the top-down method an atmospheric 

transport model is used to generate three-dimensional (3D) wind fields for a time 

period of interest. In addition to this meteorological model, a Lagrangian particle 

dispersion model is typically used which is driven by the generated wind fields to 

determine the area of influence surface fluxes have on an observation for a particular 

location and time. Then coupled with some prior information on the expected fluxes 

(often from an emissions inventory created from the aforementioned bottom-up 
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method), a synthetic observation is created. Once this synthetic mole fraction is 

generated, it is compared to the observed value in order to optimize the fluxes for the 

area of influence using one of many techniques to minimize the error between the two 

mole fractions. This has been done extensively, using numerous optimization 

techniques, for surface carbon flux estimation both at the global scale (e.g. Bousquet 

et al., 1999; Michalak et al., 2004; Gourdji et al., 2008; Mueller et al., 2008) as well 

as at the regional or urban scale (eg. Gerbig et al., 2003; Peylin et al., 2005; McKain 

et al., 2012; Lauvaux et al., 2016). A diagram illustrating this technique is shown in 

Fig. 1.4.  

Methods of numerical weather prediction, atmospheric data assimilation 

techniques such as variational methods and Kalman filters (Peters et al., 2005; Baker 

et al., 2006; Kang et al., 2011, 2012; Chatterjee and Michalak, 2013; Liu et al., 2016) 

have been used to estimate surface fluxes. For these, synthetic observations of CO2 

are generally created from interpolation of output of online tracer transport models, 

rather than the Lagrangian particle dispersion method described earlier, but not 

necessarily so. The former mimics the data assimilation methodology used for 

traditional meteorological variables such as temperature and atmospheric pressure. 

Half of the world’s population now lives in cities, and the United Nations 

expects this trend to continue to two-thirds by 2050 (United Nations, 2014). The 

majority of anthropogenic emissions are also from urban areas, where electrical and 

industrial energy generation and transportation are the largest emissions sources 

located in these geographically small but densely populated areas. In recent years, 

several urban GHG measurement campaigns have been implemented to improve 
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measurement and quantification of greenhouse gas concentrations in, as well as the 

fossil fuel emission fluxes from metropolitan areas. These cities include but are not 

limited to Salt Lake City (McKain et al., 2012), Boston (Briber et al., 2013), 

Indianapolis (Turnbull et al., 2015; Lauvaux et al., 2016; Miles et al., 2017), Paris 

(Breón et al., 2015), and Los Angeles (Kort et al., 2013; Feng et al., 2016). Generally, 

these campaigns feature a relatively dense network of towers equipped with inlets at a 

height above the ground leading to state-of-the-art cavity ring-down spectroscopy 

(CRDS) GHG analyzers with sampling systems and mole fraction standards for 

periodic calibration. The observations from these towers placed upwind, downwind, 

and inside the metropolitan areas are then used to validate a prior bottom-up 

emissions inventory as well as generate an optimized top-down emissions estimate. 

The most recent urban GHG measurement campaign, led by the National Institute of 

Standards and Technology (NIST) is for the Northeast Corridor of the United States, 

with the first part of the network beginning in the region around the Baltimore, 

Maryland and Washington, District of Columbia metropolitan areas (Lopez-Coto et 

al., 2017; Mueller et al., 2018). 

CO2 observations, both from flask samples and state-of-the-art continuous 

measurement instruments, have a typical compatibility goal of ~0.1 ppm, 

recommended for observations at background global network sites (World 

Meteorological Organization, 2013). Flask-based measurements require observers to 

collect samples for lab analysis, at significant cost. Continuous in-situ CO2 analyzers 

located at towers or on top of buildings do not suffer from these regular costs, but 

these high-precision analyzers can cost upwards of $100,000 per site, plus any 
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additional costs for calibration gases and installation of equipment and inlet lines. 

High-accuracy CO2 observations are thus relatively sparse compared to other 

climatological variables such as temperature and precipitation. Even for the 

aforementioned urban campaigns, where the density of CO2 observations is much 

higher than the rest of the world, these urban areas, which each can be over 10,000 

km2, still only have approximately 10-16 measurement sites. 

 

Figure 1.5. Total fossil fuel CO2 emissions for Indianapolis, IN at the building/street 
level from the Hestia project (Gurney et al., 2012). Color bar is in units of log10 kg 
C/year. 

 This high accuracy is needed on regional or global scales where the variations 

in CO2 can be relatively small, but in urban areas the diurnal and synoptic variability 

in near-surface CO2 may be as high as 25% of the total observed mole fraction. This 

is reflected in the heterogeneity of urban emissions, where efforts are ongoing to 

estimate fluxes at the sub-kilometer scale, or even for individual city blocks and 

buildings, an example of one such very high-resolution emissions inventory for 

Indianapolis is shown in Fig. 1.5 (Gurney et al., 2012). For these urban applications 
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where enhancements of CO2 relative to the global background average are 

sufficiently large, uncertainty in the observations can still be as large as 1% and 

provide useful information. Observing system simulation experiments (OSSEs) have 

found that, depending on the methodology used, a higher spatial density of 

observations in these urban regions has been shown to better constrain the inversion 

estimates, even if the absolute uncertainty of the observations is higher (Turner et al., 

2016; Wu et al., 2016; Lopez-Coto et al., 2017; Wu et al., 2018), but a trade-off 

between total network cost and inversion constraint must be balanced.  

In recent years, a wave of small, low-cost sensors, some of which measure 

trace gases or particulate matter, in addition to traditional meteorological variables, 

using various technologies have become commercially available. Evaluation and 

implementation of some of these new low-cost sensors demonstrate their promise for 

ambient air monitoring (Eugster and Kling, 2012; Holstius et al., 2014; Piedrahita et 

al., 2014; Young et al, 2014; Wang et al., 2015; Shusterman et al., 2016; Lewis et al., 

2018). Many of these instruments are based on electrochemical reactions to measure 

the concentrations of trace gases. With the advent of widely available and low-cost 

mid-infrared light sources and detectors, a small group of non-dispersive infrared 

(NDIR) CO2 sensors have also become commercially available. They are designed for 

use in a number of applications including ventilation control, agricultural and 

industrial applications, and inclusion in stand-alone commercial products. 

Additionally, with the high volume of possible applications, these small NDIR CO2 

sensors are affordably priced on the order of $100 to $200 per sensor. Previous 

studies have compared some of these NDIR CO2 devices and concluded that after 
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application of some type of calibration procedure, some of these devices can provide 

reasonably accurate measurements (±3-5ppm) of ambient CO2 concentrations (Hurst 

et al., 2011; Yasuda et al., 2012; Shusterman et al., 2016; Kunz et al., 2018; Lewis et 

al., 2018). 

 

1.2 Thesis Objectives and Outline 
  

In this study, the viability of the use of a dense network of lower-accuracy 

observations of CO2 mole fractions for carbon flux estimation from an urban area is 

explored. Previous work has been done to estimate urban GHG emissions using top-

down approaches but only with a relatively sparse network of high-accuracy 

observations. As the nations and cities of the developing world grow their economies 

and their associated energy needs increase, the importance of quantification and 

mitigation of GHG emissions plays an even larger role in the political and 

environmental stability of our planet as a whole. Specifically, this work aims to 

answer the following questions: 

• Are any of the current commercially available and low-cost observing 

platforms for CO2 able to resolve the ambient variability both in time and 

space with sufficient accuracy and precision for use in urban environments? 

• Are high-resolution forward modeled simulations of atmospheric CO2 mole 

fractions able to accurately resolve the mean and temporal variability found in 

observed time series? 
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• Is the error associated with differences in emissions inventories greater than 

the error from meteorological transport and dispersion when comparing 

simulated CO2 to observations? 

• Can an ensemble of forward tracer model simulations be used with in situ 

observations of atmospheric CO2 and data assimilation techniques to estimate 

high resolution surface fluxes of carbon in urban areas? 

• How does the estimation of surface fluxes using a dense network of lower 

accuracy observations compare to using a sparse network of high accuracy 

observations? 

• Is there any added benefit to the surface flux estimation by creating a hybrid 

network containing both the high accuracy and low accuracy observations 

over just using the sparse high accuracy observation network? 

• How do changes in the configuration of the data assimilation system affect the 

surface flux estimates? 

 

This dissertation is divided into five chapters. The first (and current) chapter 

provides an overview of global atmospheric CO2 and its significance to climate 

change, as well as a brief description of previous and ongoing efforts to quantify 

urban GHG emissions. Chapter 2 describes the evaluation and enhancement of the 

performance of a low-cost CO2 sensor for use in urban ambient monitoring. A month 

long co-located experiment with a high-accuracy instrument determined that after 

correcting for environmental variables in a multivariate linear regression, namely 

atmospheric pressure, temperature, and water vapor mixing ratio, these sensors could 
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be used for relatively accurate quantification of urban CO2 mole fractions. The results 

of this study led to a paper that was published in Atmospheric Measurement 

Techniques (Martin et al., 2017). 

Chapter 3 describes a month-long simulation of atmospheric CO2 for the 

region around Baltimore, MD and Washington, DC. Five separate anthropogenic 

emissions inventories are used as distinct estimated CO2 enhancements, along with 

the same background CO2 concentration applied to each along with a coupled 

biospheric model for the vegetation related fluxes. The modeled time series are 

compared to observations from four locations during this period, and while the model 

and observations agree well on average, there can be significant differences for any 

given location or time. These differences are determined to be a result of atmospheric 

transport errors, or other meteorological error and the error caused by the model 

meteorology is larger than the error caused by variations between the different 

anthropogenic emissions inventories. This work led to a paper submitted to 

Atmospheric Environment (Martin et al., under review). 

Chapter 4 combines the work of Chapters 2 and 3 by using an advanced 

ensemble data assimilation technique along with a numerical weather prediction 

model to demonstrate the potential to estimate the fluxes of CO2 from the Baltimore, 

MD and Washington, DC metropolitan areas in a series of perfect model OSSEs. In 

this chapter, the same model from Chapter 3 is used as the transport model along with 

one emissions inventory to create pseudo-observations of CO2 mole fractions for four 

scenarios: 1) a network of 20 high-accuracy tower sites, 2) a network of 200 low-cost 

sensors with performance similar to what was determined in Chapter 2, 3) a 
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combination of both types of observations, and 4) an idealized network featuring one 

high-accuracy observation in each model grid point. Sensitivity of the results to the 

different observation networks, different ensemble inflation techniques, and 

observation localization radii is evaluated and presented. The results of these OSSEs 

are featured in a paper in prep for Atmospheric Chemistry and Physics (Martin et al., 

in prep). Finally, the main conclusions of this dissertation as well as directions for 

further research are featured in Chapter 5. 
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2.1 Introduction 
 

Chapter 1 mentioned that a number of small, low-cost sensors, some of which 

measure trace gases or particulate matter, in addition to traditional meteorological 

variables have become commercially available, including a small group of NDIR CO2 

sensors. In this chapter, one of these small NDIR CO2 devices is assessed by 

determining its accuracy with and without environmental corrections. Section 2.2 

describes the CO2 sensor and its Allan variance, the other instruments included in the 

system, and the data collection and processing methodology. Section 2.3 describes the 

calibration and shows the stability of the reference high-precision gas analyzer, and 

the initial results from the NDIR sensor are shown in Sect. 2.4. In Section 2.5, two 

methods are described to determine functional relationships and coefficient values to 

correct the observed values of the instrument for environmental variables and Sect. 
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2.6 discusses the potential utility of observations from this sensor after correction and 

temporal averaging. 

2.2 Instruments and Methods 
 

To test the validity of using low-cost sensors for scientific applications, a 

sensor package was implemented consisting of various off-the-shelf components. The 

K30 sensor module (K30) from SenseAir (Sweden), is the low-cost NDIR CO2 

observing instrument used in this study1. The K30 is a microprocessor-controlled 

device with on-board signal averaging, has a measurement range of 0 to 10,000 ppm, 

observation frequency of 0.5 Hz, and resolution of 1 ppm. The manufacturer’s stated 

accuracy of the K30 sensor is ±30 ppm ±3 % of reading (SenseAir, 2007) for the 

0.5Hz raw output. Additional NDIR sensors were initially evaluated before selecting 

the K30, including the COZIR ambient sensor and Telaire T6615, which have 

manufacturer specified accuracies of ±50 ppm ±3 % and ±75 ppm respectively (Gas 

Sensing Solutions, 2014; General Electric, 2011). The K30 was chosen not only 

because it has the highest manufacturer-specified accuracy, but also because initial 

testing showed reliability and consistency when compared to higher-quality 

observations. In addition to CO2, temperature, relative humidity, and pressure 

readings are recorded using a breakout board purchased from Adafruit. This board 

features a Bosch Sensortec BME280, which according to the manufacturer’s 

datasheet has an average absolute accuracy of ±1 ºC, ±3 %, and ±1 hPa, and an output 

resolution of 0.1 ºC, 0.008 %, and 0.01 hPa for temperature, relative humidity, and 

pressure, respectively (Bosch Sensortec, 2015). 
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To compare the performance of the K30 to better-performing research 

instrumentation, a greenhouse gas analyzer based on cavity enhanced absorption 

spectrometry (CEAS) was used as the control. The LGR-24A-FGGA fast greenhouse 

gas analyzer from Los Gatos Research (LGR, San Jose, CA) provides CO2, CH4, as 

well as water vapor mixing ratios at a frequency of 0.5 Hz and has an un-calibrated 

uncertainty of < 1 % (Los Gatos Research, 2013). The LGR was connected to a tee 

connection, to allow either ambient air or a calibration source (during calibrations) to 

be sampled continuously by the analyzer at a flow rate of 400 standard mL min-1. 

Calibrations for CH4 and CO2 were conducted using several NIST-certified standard 

mixtures every 23 to 47 hours for a period of one month with molar mixing ratios 

ranging from 1869.6 parts per billion (ppb) to 2159.4 ppb for CH4 and from 369.19 

ppm to 429.68 ppm for CO2. See Sect. 2.3 for details and results of this calibration 

period. 

It is important to note that there are differences in how CEAS works 

compared to NDIR, most notably that the LGR and other CEAS instruments have a 

controlled cavity where pressure and temperature are kept nearly constant (with a 

standard deviation of under 0.5 torr and 0.1 ºC for 2-second data), removing potential 

environmental interference and the need for corrections, whereas the NDIR K30 

works in the ambient environment without any mechanism for keeping temperature or 

pressure constant. Additionally, the LGR implements a water vapor correction on its 

greenhouse gas concentrations to estimate the dry gas mixing ratio, while the K30 

makes no water vapor corrections. A difference between the two analyzers with 

regard to their sensitivity to the isotopes of CO2 is expected to be small because the 



 

18 
 

standards used to calibrate the LGR account for all CO2 isotopes. To increase the 

effective path length, both the K30 and LGR use mirrors, but the LGR system uses 

highly reflective mirrors that allow for an effective path length that is many times 

longer than that of the K30. Additionally, the CEAS instrument determines the 

concentration of a gas by how long it takes for the signal to degrade inside the cavity 

(the e-folding time), whereas an NDIR sensor merely measures the intensity of the 

signal received relative to the total intensity emitted. 

For data collection, a Raspberry Pi (RPi) computer is used (Raspberry Pi 

Foundation, 2015). The RPi is a credit card sized (approximately 6 x 9 cm) computer 

running a full Linux distribution, allowing for easy customization and usability, that 

is priced at around $25. The K30 is connected to the RPi over Universal 

Asynchronous Receiver/Transmitter (UART) Serial, and the BME280 over Inter-

Integrated Circuit (I2C) serial. An image of the complete sensor package is available 

in Fig. 2.1. Data is archived on the RPi and uploaded to a centralized data storage and 

processing server. The LGR collects and archives its own data, but an RPi is used 

here as well to collect the data from the LGR over a local area network and transfer it 

to the same centralized server. The added computational power of a Raspberry Pi 

over traditional data loggers allows for the ability to archive two levels of data: the 

raw data collected every two seconds, and one-minute averages. 
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Figure 2.1. Photograph of a Raspberry Pi computer (top), a SenseAir K30 (NDIR) 
CO2 sensor (bottom center), a Bosch BME280 temperature and pressure sensor 
(bottom left), and a ruler for size reference. 

 
Archiving and comparing multiple datasets proved to be challenging, so steps 

are taken to ensure that each compared value is at the same observed time. All of the 

RPis use an internet server to synchronize their time, and the LGR uses an internal 

clock with battery that was set to the same time as the RPis at the beginning of the 

experiment. Because of various complications including the exact LGR start time and 

the potential for delays in the RPi’s Linux operating system, the data collection times 

of each K30 sensor package and the LGR are asynchronous. Additionally, power 

issues can corrupt parts of the plain text data files stored on the RPi’s SD card with 

random characters. Thus, a post-processing procedure has been developed that filters 

extraneous characters, and then each dataset is synchronized based on recorded time 
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stamps and averaged over selected time periods. These new datasets can then be 

directly compared without missing or out of phase data points. 

2.2.1 K30 Allan Variance 
 

Allan variance (Allan, 1966) is a measure of the time-averaged stability 

between consecutive measurements or observations, often applied to clocks and 

oscillators. In addition, an Allan variance analysis can be used to determine the 

optimum averaging interval for a dataset to minimize noise without sacrificing signal. 

Figure 2.2 shows the Allan deviation (the square root of the variance) for one K30’s 

raw two-second data when exposed to a known reference gas. The original two-

second data shows the maximum noise, with a standard deviation comparable to the 

manufacturer’s specifications of ±30 ppm, but averaging for even ten seconds drops 

the variance significantly. According to this analysis, the optimum averaging time, 

when the Allan variance is at a minimum (Langridge et al., 2008), is approximately 

three minutes; longer averaging times do not reduce the noise. The other sensors were 

found to perform similarly. For the subsequent analysis, an averaging time of one 

minute is used, as the Allan variance is only slightly higher than for three minutes, 

and one minute observations allow for resolution of atmospheric variability at shorter 

time scales. 
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Figure 2.2. Allan variance analysis for an NDIR (K30) CO2 sensor when introduced 
to breathing air from a high-pressure cylinder of a constant and known CO2 
concentration. Averaging times between 10 and 1,000 seconds are shown. The black 
line (slope -0.5) shows where the noise is white or Gaussian. Averaging times greater 
than about 200 s produce no improvement. 

2.2.2 Co-located Experiment 
  

The need to quickly and effectively evaluate a relatively large number of 

sensors under conditions with relatively stable CO2 led to the use of a rooftop 

observation room on the University of Maryland campus in College Park, Maryland. 

Because this rooftop room had limited access, and it was not part of the building’s 

HVAC system, it served as an ambient evaluation chamber with minimal influence 

from human respiration. The room was slightly ventilated for the entire evaluation 

period to allow outside air to slowly diffuse into the room, with a small household 

box fan also in the room to ensure that the air was well mixed. The room also features 
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a small, independent heating and cooling unit, but it was only used to keep the room 

from exceeding a certain temperature, thus the room was not fully temperature 

controlled. Even with this control, the diurnal fluctuations of temperature in the room 

were similar to that of the outdoor environment. This ventilation strategy was 

intentional so that the room then mimicked the ambient CO2 concentration of the 

surrounding atmosphere, and approximated the outdoor temperature and humidity, 

while protecting instruments from direct sunlight, extreme temperatures, and 

inclement weather. This provided an advantage over controlled tests in a laboratory 

setting in that rather than just a multi-point calibration, comparing datasets over 

ambient concentrations and environmental conditions allowed for a realistic 

evaluation of these instruments in more real-world scenarios. 

For a continuous period of approximately four weeks in spring 2016, six K30 

sensor packages as described in Sect. 2.2 were deployed alongside the LGR in the 

rooftop room, all sampling room air. The LGR was also connected to a mass flow 

controller and standard tank to periodically provide a reference for stability (details in 

Sect. 2.3). For the reference dataset, the dry CO2 (CO2 dry) output calculated by the 

LGR was used. This output includes an applied correction to the mole fraction of CO2 

to give the dry air mole fraction in ppm. The raw CO2 values were recorded from each 

K30, temperature and pressure were recorded from each BME280 sensor, and water 

vapor mole fraction was also recorded by the LGR. All of the observations were 

recorded every two seconds, and averaged into one minute values. The next two 

sections describe the stability of the LGR as well as the initial comparison between 

the K30 and LGR observations. 
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2.3 Los Gatos Evaluation and Correction 
  

To evaluate the K30 NDIR sensor performance compared to a research-grade 

analyzer, first the control dataset needs to be calibrated and corrected for drift. To 

calibrate the LGR, after the experiment concluded the dataset was corrected using a 

two-point calibration curve derived from using two NIST-traceable gas standards, one 

with a CO2 mole fraction of 369.19 ppm, and the other with a mole fraction of 429.68 

ppm. A linear fit was then assumed between the two calibration points, with the 

recorded values as the dependent variable and the NIST-assigned tank values as the 

independent variable. In addition, three cylinders of breathing air with higher CO2 

mole fractions of 449.73, 486.53, and 516.41ppm (that are NIST-traceable) were also 

previously used to calibrate the LGR and showed its linearity. Once the coefficients 

were determined, the entire LGR dataset was then corrected for further analysis. 

 In addition to the calibration described above, there was a need to quantify 

any drift in the LGR analyzer. During the experiment period, the LGR was attached 

to a tee connector, which pulled ambient air from the aforementioned evaluation 

chamber using its included pump most of the time, but received periodic calibration 

every 23 to 47 hours for a period of one hour, initially, and later, ten minutes, to 

conserve the tank, using a reference tank of breathing air connected to a Dasibi Model 

5008 calibrator, which was used to schedule the input of calibration gas. This 

breathing air tank is assumed to have a fixed CO2 mole fraction, which was estimated 

by using the LGR to be 463.7 ppm and was used to quantify and subtract the drift of 

the LGR over the comparison period. 
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Figure 2.3. Stability of the Los Gatos Fast Greenhouse Gas Analyzer shown over a 
30-day period. Excess breathing air with a fixed CO2 concentration was introduced 
periodically using a mass flow controller. The mean of each calibration period is 
plotted in green with the standard deviation as error bars. The blue line is the linear 
interpolation between each calibration point, and the red line is a linear fit of each 
calibration point over the entire time series. The red line is subtracted from the 
dataset to account for the drift of the analyzer over this period. 

 In Fig. 2.3, the ambient data from the LGR has been filtered out to show only 

each calibration period performed during the month long experiment. The data during 

each calibration period was averaged (either a total of 10 minutes or one hour 

depending on the calibration period) and the averages are plotted on Fig. 2.3. While 

there is some small variation in the mean mole fraction observed during each 

calibration from day-to-day, there was an upward trend in the recorded value, by over 

1.2 ppm over a 30-day period. This observed drift, while not insignificant, is well 

within the manufacturer’s specifications for this analyzer. However, the observed 

standard deviation of the two-second points used in each average (the error bars on 

Fig. 2.3) remained relatively constant throughout the period with a mean standard 
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deviation of ±0.3 ppm, which is the manufacturer’s specified repeatability for 2-

second data. This high-frequency noise is not a problem for the analysis with the K30 

sensor because both datasets are averaged to one minute values, which removes most, 

if not all, of this noise. For comparisons between the K30s in the remainder of this 

paper, the LGR drift is corrected by first computing a linear fit to the calibration 

points in time (red line, Fig. 2.3) and then subtracting from the LGR dataset the 

difference of this fit line from the tank’s assigned value of 463.7 ppm. After this 

linear correction, the means of each calibration had an RMSE of 0.2 ppm from the fit 

line.  

2.4 Initial K30 Results 
  

Figure 2.4 shows the original time series of data recorded during the 

evaluation experiment described in Sect. 2.2.2. The top panel shows raw CO2 mole 

fractions reported by six K30 sensors as well as the LGR analyzer, each of which is 

located in the same rooftop evaluation chamber. The middle panels show the reported 

atmospheric pressure and temperature values from one BME280 sensor, and the water 

vapor mole fraction from the LGR. Then, the bottom panel is the difference between 

the original recorded K30 value and the corrected LGR recorded CO2 mole fraction 

with the calibration periods removed. 
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Figure 2.4. Continuous 1-minute time series data during the evaluation experiment. 
Top panel: CO2 observed by six K30 sensors as well as the Los Gatos Research Fast 
Greenhouse Gas Analyzer. Middle panels: observed atmospheric pressure, 
temperature, and water vapor mixing ratio, respectively. Bottom panel: difference of 
each K30 from the Los Gatos instrument. 

 
 Over this four-week period, the LGR observed an ambient variation of CO2 

with an average value of just over 423 ppm, and a standard deviation of just under 21 

ppm. There is distinct synoptic variation in the diurnal cycle observed, with the 

magnitude varying from as little as 10 ppm over 24 hours to more than 100 ppm. 

Each of the K30s was successfully able to resolve the ambient variations in CO2 over 

this evaluation period, although none of the K30s matched the LGR perfectly in both 
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absolute concentration and relative change. However, without any correction or 

calibration, each K30 was well within the manufacturer’s stated uncertainty of ±30 

ppm ±3 % of the reading for 1-minute values. 

From the difference plot (Fig. 2.4, bottom panel), there are some important 

things to note. First and foremost, each individual K30 sensor has a distinct zero 

offset. A few of the sensors are approximately the same as the LGR, but many can 

have an offset that is as much as 5 % (20 ppm) from the LGR. The differences 

between each K30 and the LGR all have standard deviations between 4 ppm to 6 ppm 

and root mean square errors (RMSE) between 5 ppm to 21 ppm. This means that after 

accounting for the offset of each individual K30, the practical accuracy of the K30 

CO2 sensor can be within 1 % of the observed concentration. Secondly, each K30 

difference time series appears to feature two wave patterns, one with a period of 

around one week, and another with a period of approximately one day. Given that the 

cycles seem fairly consistent and are present in each K30, this suggests that the 

difference between the recorded values from the LGR and each K30 is not random, 

but instead that there are external factors that can be assessed for potential 

compensation in the K30 response. 

2.5 Environmental Correction 
 

In Fig. 2.4, the difference between the LGR and each K30 is shown in the 

bottom panel below time series of environmental data from the evaluation chamber. 

Just like in the difference plot, each of the environmental variables features two 

distinct time scales of variability. There is a diurnal cycle of each variable, as well as 
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synoptic-scale variability attributed to weather systems that occurs on the order of one 

week. Because the observed CO2 differences and the environmental variables are 

correlated on both short and long time scales, statistical regression methods were used 

to correct the observed concentration of CO2 from the K30 sensor to a value 

approximately that of the concentration determined from the calibration-corrected 

LGR measurements. Generally, a multivariate linear regression is of the form: 

   𝑦 = 𝑎$𝑥$ + 𝑎'𝑥' + ⋯𝑎)𝑥) + 𝑏 + 𝜀)     (2.1)  

In this case, the measured value y is influenced by: the ‘true’ CO2 value (taken as the 

value from the LGR instrument), pressure, and other environmental variables as the 

dependent variables x1, x2, xn, respectively. A multivariate regression analysis can 

then be used to find the corresponding coefficients. In addition, in order to better 

identify the contribution from each individual factor, the data were also analyzed in a 

successive regression analysis, as described below. 

2.5.1 Successive Regression Method 
  

Each individual K30 sensor’s original observed CO2 dataset is first regressed 

to the LGR dry CO2 dataset. This regression accounts for the traditional zero and span 

corrections made during an instrument calibration. The calibration curve of one K30 

for just zero and span is shown in Fig. 2.5. But to include biases due to environmental 

factors, then the residual, epsilon (ε), is calculated as: 

    𝜀 = 𝑦 − 𝑎𝑥 − 𝑏        (2.2)  

where in this instance x, the independent variable, is the LGR dataset and y, the 

dependent variable, is the K30 dataset. 
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Figure 2.5. Calibration curve of K30-1 vs LGR for 1-minute averages without any 
environmental correction, only span and zero offset are corrected. Solid line is the 
best fit; dashes represent the 1:1 line. 

This process is repeated for each environmental variable pressure (P), 

temperature (T), and water vapor (q), where (P,T,q) is the independent variable, x, 

and the ε from the previous step is the dependent variable, y. This linear regression 

method leads to eight correction coefficients, of the form an and bn, where n is from 0 

to 3 representing each of the independent variables included in the regression. These 

coefficients can then be used in the following equation along with the environmental 

variables to correct K30 CO2 observations for environmental influences. 

 𝑦-.//0-102 =
34564(89:9;59)4(8=:=;5=)4⋯4(8>:>;5>)

86
    (2.3) 
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Table 2.1. Root mean square error in ppm between the CEAS LGR and each K30 
NDIR sensor’s one-minute averaged data for: the original dataset before correction, 
at each step of the successive regression correction (correcting for 1. zero/span, 2. 
atmospheric pressure, 3. temperature, and 4. water vapor mixing ratio), and after the 
multivariate regression correction. Each value shown is for a regression calculated 
using data from the entire evaluation period. 

 Original Zero/Span Pressure Temp q (final) Multivariate 
K30 # 1 6.9 3.3 2.7 2.7 2.1 1.8 
K30 # 2 5.4 3.5 2.2 2.2 1.9 1.7 
K30 # 3 10.9 6.0 5.0 4.9 4.5 4.3 
K30 # 4 20.8 3.7 2.5 2.4 1.9 1.7 
K30 # 5 8.3 3.7 2.6 2.6 2.2 2.0 
K30 # 6 15.2 4.9 3.6 3.5 2.7 2.2 

 

For one typical K30, the initial standard deviation of the difference between 

the K30 and LGR, the RMSE of the data was 6.9 ppm. Using the cumulative 

univariate regression method described above for the entire evaluation period, the 

RMSE decreased after each step. After the span and offset regression, it dropped 

significantly to 3.3 ppm. Then after correcting for atmospheric pressure, the RMSE 

dropped even lower to 2.7 ppm. Furthermore, including air temperature and water 

vapor mixing ratio resulted in a RMSE of 2.7 ppm and 2.1 ppm respectively. It is 

important to note that the temperature regression did slightly reduce the RMSE, but 

not significantly enough to be resolved with only two significant figures. Therefore, 

using the successive regression method, the RMSE of the observed difference 

dropped from 6.9 ppm to 2.1 ppm, a reduction of the error by over a factor of three. 

Fig. 2.6 shows the results and scatter plots for each step of the correction for this K30; 

Fig. 2.7 shows a difference plot at each step for this same K30 unit. Similar results 
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were observed for each K30 sensor evaluated and a summary can be found in Table 

2.1. 
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Figure 2.6. A continuous time series of 1-minute averages as well as scatter plots for 
K30 #1 compared to the LGR instrument during each step of the successive 
regression described in Sect. 2.5.1. Cumulative, in order from top to bottom: the 
original dataset, after correcting for span and offset, after correcting for pressure, 
after correcting for temperature, and finally, after correcting for water vapor. The 
root mean square error (RMSE) of the K30 data compared to the LGR at each step is 
annotated to the upper left of the scatter plot. This regression contains all data points 
observed in the evaluation period. 
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Figure 2.7. Difference plots for K30 #1 compared to the LGR during each step of the 
successive regression described in Sect. 2.5.1 and shown in Fig. 2.6 for 1-minute 
averages. Cumulative, in order from top to bottom: the original dataset, after 
correcting for span and offset, after correcting for pressure, after correcting for 
temperature, and finally, after correcting for water vapor. 

2.5.2 Multivariate Linear Regression Method 
 

Alternatively, a multivariate linear regression statistical method can be used to 

calculate the regression coefficients for each K30 sensor. This results in five 

correction coefficients an and b where n represents each independent variable, the dry 

CO2 from the LGR, pressure P, temperature T, and water vapor mixing ratio q. Like 

the successive method above, these coefficients can be used in the following equation 
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along with the original K30 data, y, and the environmental variables to predict the 

true CO2 concentration observed. 

𝑦-.//0-102 =
3454(89:9)4(8=:=)4⋯4(8>:>)

86
      (2.4)  

Using the multivariate regression function provided by Python-SciPy-Stats 

(Jones et al., 2001), differences from the LGR of the same K30 described in Sect. 5.1 

were reduced to an RMSE of 2.1 ppm, slightly better than the iterative method. This 

consistently better performance from the multivariate method is shown in the other 

K30 sensors evaluated. Figure 2.8 shows the final results of the multivariate 

regression for the same K30 as in Fig. 2.6 and Fig. 2.7, as well as the difference 

between the corrected K30 dataset and the LGR. As with the univariate method, 

similar results were observed from each K30 sensor evaluated and a summary can 

also be found in Table 2.1. 
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Figure 2.8. A continuous time series of 1-minute averages as well as scatter plots for 
K30 #1 compared to the LGR for the multivariate regression described in Sect. 2.5.2. 
Top panel: the original data, middle panel: final time series after correction, and the 
bottom panel: difference plot between the corrected K30 dataset and the original 
LGR dataset. The root mean square error (RMSE) of the K30 data compared to the 
LGR before and after the regression is annotated to the upper left of the scatter plot. 

2.6 Discussion 

2.6.1 Time Averaging 
 

There are two observations to note based on the evaluation and analysis. First, 

both before and after the multivariate regressions, there are frequent shifts in the sign 

of the difference between each K30 and the LGR; these sudden changes occur at or 

around sunrise most days. Because of the rapid change in atmospheric CO2 

concentration at this time, the ambient calibration chamber may not be well mixed 

during this time period. Each K30 is located in a slightly different location in the 

ambient calibration chamber, and are all approximately 1 to 2 meters away from the 

LGR inlet. This effect, combined with the different response time of the K30s 

compared to the LGR, can lead to dramatic differences between what each K30 
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observes and what the LGR observes at the same timestamp for a short period of time 

each day. 

Atmospheric inversion methods often use hourly averaged data from tower 

observations (McKain et al., 2012; Bréon et al., 2015; Lauvaux et al., 2016), so after 

the multivariate regression was applied, the K30 and LGR datasets were further 

averaged to 10 minute and hourly datasets. The average RMSE for the six K30s with 

the one-minute data is 2.3 ppm, 2.0 ppm for 10-minute averages, and 1.8 ppm for 

hourly-averaged data. Throughout this analysis period, one of the six K30s evaluated 

performed consistently worse than the others, and after removing it from the 

averages, the RMSE values dropped to 1.9 ppm, 1.6 ppm, and 1.5 ppm, for 1-minute, 

10-minute, and hourly averages, respectively. Thus, by using hourly averages and 

discarding underperforming sensors, the average RMSE of the difference between the 

LGR and a K30 NDIR sensor can be reduced to approximately 1.5 ppm. 

 

2.6.2 Regression Period 
 

The RMSE described above and in Table 2.1 are for regressions calculated 

over the entire experiment period of approximately four weeks. One goal of this work 

is to develop a methodology to evaluate individual sensors quickly so that they can be 

used in scientific applications. In Fig. 2.9 the average RMSE calculated over the 

entire month of all six K30s is plotted with respect to the number of days used in the 

multivariate regression from Sect. 2.5.2. While the RMSE is generally minimized 

with increasing regression length, after a regression period of just a few days, the 

RMSE drops significantly from its initial values. Once a few diurnal cycles of varying 
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amplitude have been incorporated, as well as the synoptic scale variations in the 

atmosphere (with a time scale of around one week), the regression stabilizes. Thus, a 

regression length of around two weeks is recommended to maximize correction while 

minimizing the required amount of time the sensor needs to run concurrently with the 

LGR. 

 
Figure 2.9. The RMSE of all six K30 NDIR sensors when compared to the LGR over 
the entire experiment as a function of how many days the regression analysis was 
performed. The colored dots represent each K30’s RMSE, and the box plot shows the 
median in red, the first and third quartiles within the box, and the min and max values 
on the whiskers. 

 
In Fig. 2.10, a multivariate regression is applied to the same K30 as described 

in the aforementioned sections and shown in Figs. 2.6, 2.7 and 2.8, but the 
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coefficients are calculated using only data from the first 15 days. The change in the 

RMSE between the two regressions is 0.1 ppm, going from 1.8 ppm when using all 

data points to 1.9 ppm when using only approximately the first half. This small, but 

not insignificant change is most likely attributed to the fact that during the first half of 

the evaluation period, the ambient CO2 concentrations do not vary significantly, 

especially relative to the second half, where both the minimum and maximum values 

occur. In fact, when instead regressing for the last 15 days of the period, the RMSE is 

1.8 ppm, a difference not distinguishable with only one decimal place. So as stated 

above, the diurnal cycles act as a range of calibration points, but values above and 

below what is included in the regression period may cause the corrected data to still 

have large errors during these periods, increasing the RMSE for the entire evaluation 

cycle. Based on these results, it is reasonable to assume that there is either no 

noticeable baseline drift or that it is assumed to be linear and removed by the 

multivariate regression in the sensors observed on the weekly to monthly timescales. 

The longer-term drift of the sensors for periods greater than one month is not known 

at this time, however, and would require a longer evaluation period of at least six 

months.  

 

2.6.3 Generalized Regression Coefficients 
  

All of the final RMSEs calculated in this analysis are from using individual 

regression coefficients for each K30 sensor. However, it would be beneficial to 

determine if a generalized set of regression coefficients could be applied to any K30 

sensor, and what the RMSE over the evaluation period would be. To calculate the 
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generalized coefficients, the four slopes for each variable as well as the intercepts for 

each of the five remaining sensors were averaged together, K30-3 was omitted due to 

the fact that it was the poorest performing sensor, and that its coefficients were 

significantly different from the other five. After correction using the same set of 

coefficients, the RMSEs of the six sensors ranged from 3.1 ppm to as high as 23.9 

ppm. The final RMSEs in some cases were higher than with the original, uncorrected 

data. Similar results were observed when the multivariate regression coefficients were 

calculated using the mean concentration of the five sensors. Thus, it appears that for 

each K30 sensor, an independent evaluation must be completed to provide 

observations with a sufficient level of quality.  

 2.7 Conclusions 
 

The K30 is a small, low-cost NDIR CO2 sensor designed for industrial OEM 

applications. Each of the sensors tested falls within the manufacturer’s stated 

accuracy range of ±30 ppm ±3 % of the reading when compared to a high-precision 

CEAS analyzer, but these ranges are not particularly useful for scientific applications 

aimed at measuring ambient atmospheric CO2. If these sensors are individually 

calibrated, selected for stability, and corrected for sensitivity to temperature, pressure, 

and RH, the practical error of these sensors is < 5 ppm, or approximately 1 % of the 

observed value. The final RMSE of the six K30 ranged between 1.7 ppm and 4.3 ppm 

for 60 s averaging times. Averaging for 200 s further reduces the noise by about 30 

%, but longer times did not further improve precision. With errors in this range, these 

instruments could be used in a variety of scientific applications, including 
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observations at high spatial density to better represent the range and distribution of an 

urban or natural region’s CO2 concentration. 

 
Figure 2.10. As depicted in Fig. 2.8, a continuous time series as well as scatter plots 
for K30 #1 compared to the LGR for the multivariate regression described in Sect. 
5.2. Top panel: the original data, middle panel: final time series after correction, and 
the bottom panel: difference plot between the corrected K30 dataset and the original 
LGR dataset. However, this regression only includes the first 15 days of data 
(regression training data in blue, the entire dataset in red) to compute the correction 
coefficients. The difference plot (bottom) also shows running means for 10 minute 
(black) and hourly (yellow) averages. 
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3.1 Introduction 
 

As mentioned in Chapter 1, one of the most recent urban GHG campaigns is 

the National Institute of Standards and Technology (NIST) Northeast Corridor (NEC-

B/W), currently encompassing the Baltimore, Maryland and Washington, DC 

metropolitan areas (Lopez-Coto et al., 2017; Mueller et al., 2018). This GHG 

observation network was implemented to demonstrate and improve measurement 

capabilities for quantifying anthropogenic GHG emissions from urban areas that 

cannot easily be disentangled from one another. It is expected that meteorological 

conditions are not spatially uniform across the region and are temporally impacted by 

distinct synoptic events.  Although this campaign will ultimately consist of a sixteen-

tower network, in 2016 only three towers were operational. The observations from 
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these three towers provide an opportunity to (1) investigate the ability to predict mole 

fractions using an atmospheric transport and dispersion model, along with prior flux 

distributions and (2) assess the relative impact of transport and prior errors on the 

simulated observations.  

To achieve these objectives, an Eulerian transport model is employed that 

includes passive chemical tracers that use emission inventories as the surface flux 

along with initial and boundary conditions to generate 4D fields of atmospheric CO2. 

In this way, we can vary the tracers to examine the sensitivity of the predicted mole 

fractions compared to the assumed meteorology.  Eulerian models advect and 

disperse GHGs forward in time compared to Lagrangian approaches that use particle 

dispersion models operating backward from an observational 4D location.  These are 

analogous approaches, but we employ a Eulerian model so that we can examine 

simulated meteorology for the entire domain to help us interpret model performance. 

In addition, we focus on CO2 given the availability of data, specifically inventory data 

so that multiple inventories can be used to estimate errors resulting from emissions 

inventories. Simulated CO2 mole fractions are compared to CO2 observations from 

four in situ towers sites (three urban and one rural) in the NEC-B/W for the month of 

February 2016.  

This chapter is outlined as follows: Section 3.2 describes the methods used for 

this analysis, including the model domain and configuration, the observation datasets 

used in the evaluation, and the emissions inventories as input to the transport model, 

Section 3.3 presents the observed and modeled CO2 time series at specific locations, 

and compares the model meteorology and predicted mole fractions to observed 
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values. A discussion of the results is featured in Section 3.4 and a summary of results 

and conclusions are presented in Section 3.5. 

3.2 Methods 
 

The main component of the modeling framework described in this study is the 

Weather Research and Forecasting model coupled with chemistry (WRF-Chem), a 

non-hydrostatic, compressible model that provides passive tracer transport online 

with mesoscale meteorology forecasting capabilities (Grell et al., 2005; Skamarock et 

al., 2008; Beck et al., 2011). WRF-Chem has been modified to allow for separate 

passive CO2 tracers for four anthropogenic emissions inventories.  To evaluate the 

modeled CO2’s sensitivity to the tracer input, we employ inventories that are 

commonly used as prior anthropogenic fluxes in inverse modeling studies. In this 

paper, we refer to a tracer as a 4D mole fraction field of CO2 whereas the emissions 

inventory refers to the 3D (or 2D if it does not have temporal variability) flux field. 

Additionally, a tracer for the biogenic component of the CO2 concentrations is also 

included in this modified version of WRF-Chem since the mole fractions observed at 

tower locations are the integrated signal of both biospheric and anthropogenic fluxes 

on top of the global atmospheric concentration. For the subsequent analysis presented 

in this chapter, WRF-Chem was run for the month of February 2016. The month of 

February is used because it is assumed that anthropogenic emissions dominate the 

integrated atmospheric signals as observed from these tower locations during winter 

months, as the biosphere is assumed to be relatively inactive. Thus, the impact of 
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differences between various prior anthropogenic flux estimates can be better 

ascertained in the simulated observations.  

3.2.1 CO2 Observations 
 

The NEC-B/W will ultimately feature a network of 16 observation sites (12 

urban/suburban sites and 4 rural sites) to measure CO2 and methane (CH4) 

continuously. Operated by Earth Networks (EN), each site will feature a high-

precision CRDS greenhouse gas analyzer and a calibration and data processing 

system similar to the in situ sites in the Los Angeles Megacities project (Verhulst et 

al., 2017). Additionally, a software-controlled valve system switches between 

multiple inlets, where available, to pull ambient air to sample from different heights 

above ground level. Data are quality controlled and averaged to hourly mole fractions 

reported on the WMO X2007 scale (CO2) and X2004A scale (CH4) for each inlet 

height. 

In February 2016, three GHG observation tower sites had been established 

and were collecting continuous in situ CO2 mole fraction measurements. The three 

sites are: HAL in Halethorpe, MD southwest of Baltimore (39.2552N, 76.6753W), 

NDC in the Tenleytown neighborhood of northwest Washington, DC (38.9499N, 

77.0796W), and ARL in Arlington, VA (38.8917N, 77.1317W). Additionally, the 

NOAA / University of Virginia CO2 observation site in Shenandoah National Park 

(SNP, 38.6170N, 78.3500W; Lee et al., 2012; Andrews et al., 2014; CarbonTracker 

Team, 2017) was used as a rural comparison site, as it is located at 1008 m above sea 

level putting it frequently above the local planetary boundary layer (PBL) at night 
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(Poulida et al., 1991). This site is also over 10 km from the nearest town, over 25 km 

from the nearest major highway, and far from most local anthropogenic influences. 

This analysis uses observations from all inlet heights when available, but for plotting 

purposes only the lowest inlet is shown for time series. These four site locations are 

shown in Fig. 3.1, with additional information in Table 3.1. 

 
Figure 3.1. Map showing the WRF-Chem domain configuration used in this analysis. 
Domain d01 is modeled with 9km horizontal resolution, d02 with 3km, and d03 with a 
1km horizontal resolution. The lower right inset shows the immediate area around 
d03 and the locations of the observing sites used: Shenandoah National Park (SNP; 
red circle), Arlington, VA (ARL; green circle), Northwest Washington, DC (NDC; 
yellow circle), and Halethorpe, MD (HAL; blue circle). Major highways are plotted 
as dark gray lines on the inset map along with the county boundaries in light gray. 
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Table 3.1. Summary of the four observation sites used in this study. 

Site SNP ARL NDC HAL 
Site Name Shenandoah 

National Park 
Arlington, 
VA 

Northwest 
Washington, 
DC 

Halethorpe, 
MD 

Latitude (ºN) 38.6170 38.8917 38.9499 39.2552 
Longitude (ºW) 78.3500 77.1317 77.0796 76.6753 
Inlet Heights 
(meters above 
ground level) 

17 m 50 m, 92 m 45 m, 91 m 29 m, 58 m 

Site Elevation 
(meters above sea 
level) 

1008 m 111 m 128 m 70 m 

Data provider NOAA/UVA NIST/EN NIST/EN NIST/EN 
 

3.2.2 WRF-Chem 
 

A triply nested grid was defined for the WRF-Chem model configuration (Fig. 

3.1). The outermost domain (d01) covers roughly the northeastern quadrant of the 

United States at a horizontal resolution of 9 km. The d01 extent was chosen because 

the predominant wind direction for the NEC-B/W is from the North and Northwest 

(Whelpdale et al., 1984) in February, and this extent generally captures the incoming 

CO2 from areas as far away as Chicago, IL. Within this parent domain is an 

intermediate two-way nested domain (d02) with a resolution of 3 km. An additional 

fine-scale domain (d03) is nested within d02; it features a horizontal resolution of 1 

km that covers the metropolitan areas of the NEC-B/W. A description of the 

parameterizations and options used for each WRF-Chem domain is provided in Table 

3.2 (Chou et al., 2001; Hong et al., 2004,2006; Kain 2004; Mlawer et al., 1997; 

Tewari et al., 2004). 
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Table 3.2. Summary of the three WRF domains and their configurations 

Domain d01 d02 d03 

Horizontal Resolution 9 km 3 km 1 km 
Vertical Levels 50 (from surface to 50 hPa) 
Microphysics Single-Moment 5-class 
Radiation RRTM longwave and Goddard shortwave 
Cumulus 
Parameterization 

Kain-Fritsch Kain-Fritsch None 

PBL Scheme Yonsei University 
Land Surface Noah Land Surface Model 

 
 

Meteorological initial and boundary conditions are provided by the National 

Oceanographic and Atmospheric Administration (NOAA) National Centers for 

Environmental Prediction (NCEP) North American Regional Reanalysis (NARR), a 

product with a horizontal resolution of 32 km, 30 vertical layers, and three-hourly 

output (Mesinger et al., 2006). Because the simulation runs for the entire month, sea 

surface temperatures are also included as boundary conditions in the WRF-Chem 

model. The high-resolution version of the NOAA NCEP real-time, global, sea surface 

temperature analysis (RTG_SST_HR) with a horizontal resolution of 1/12 degree and 

daily output is used (Thiébaux et al., 2003; Gemmil et al., 2007).  

Initial and boundary conditions for the background CO2 concentrations are 

provided by NOAA Earth System Research Laboratory’s (ESRL) CarbonTracker 

Near Real-Time gridded product (Peters et al., 2007; 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT-NRT/index.php). This is a 3D 

mole fraction product with three-hourly output and a horizontal resolution of 1º over 

North America. This background value is available as a separate tracer at all hours of 

the simulation, and is added to the other tracers for the total predicted CO2. All tracers 
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resulting from the anthropogenic emissions inventories have initial and boundary 

conditions of zero ppm. The model-simulated CO2 mole fraction determined at a 

point in time and space is the sum of the tracer associated with the specified 

anthropogenic emissions inventory, the biospheric flux tracer, and the advected 

background CarbonTracker mole fraction. 

Ten Automated Surface Observing System (ASOS) or Automated Weather 

Observing System (AWOS) surface observation stations are used to evaluate WRF’s 

prediction of near-surface wind speed and direction. The datasets were downloaded 

from the National Weather Service’s Meteorological Assimilation Data Ingest System 

(MADIS) and processed by the supplied API. The observations for wind are generally 

sited at 10m above ground level, and the WRF interpolated 10m winds are used for 

the comparison. Both the observations and the model output provide the U and V 

components of the wind vector, which are converted to speed and degrees from north 

for subsequent comparison.  

To evaluate WRF’s simulation of the vertical temperature profile of the 

atmosphere as well as its calculation of the PBL, observations from the Aircraft 

Communications Addressing and Reporting System (ACARS) are used. Available 

from the MADIS API, profiles are created when certain aircraft take off and land at 

airports. Two of the three airports (KBWI, Baltimore-Washington Thurgood Marshall 

International and KDCA, Reagan National) located within the NEC-B/W regions 

have sufficient data available for February 2016. The WRF PBL scheme calculates 

the height of the PBL as an output variable, but the ACARS dataset only provides 

vertical profiles of observed quantities such as temperature and pressure. To compare, 
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an algorithm is used to estimate the observed and modeled PBL height by computing 

the vertical potential temperature gradient and finding where the gradient is at its 

relative maximum. For each hour, all available ACARS profiles meeting the 

following criteria are used: the lowest reported data point must be below 300 m above 

ground level, there must be at least 10 data points, and the computed PBL height must 

be below 2100 m (in case the tropopause is detected by the algorithm). The PBL 

height is computed from all valid profiles, and then the mean of these computed 

heights is used. Any hour containing fewer than three individual profiles is not used. 

To supplement the ACARS profile data at the third airport (KIAD; Washington-

Dulles International), the radiosonde profiles launched by the National Weather 

Service in Sterling, VA (KLWX) are used. The office, located onsite at the airport, 

launches radiosondes typically twice per day (0000 UTC and 1200 UTC; 7pm and 

7am local time), so the temporal coverage of observed profiles is sparse compared to 

the other two airports. 

For all hours, WRF has a positive wind speed bias at all but one site (KDCA, 

Reagan National Airport) with an average over all ten locations of 1.2 m/s. This slight 

positive bias in wind speed is consistent with previous comparisons of WRF to 

observations in similar work (e.g. Nehrkorn et al., 2012; Feng et al., 2016). The 

average wind direction bias over all sites and for the entire month is approximately 

2.8º. The standard deviation of the average difference between model and 

observations is virtually the same as the mean bias for wind speed, with an average 

standard deviation of 1.2 m/s to one decimal place. 
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When averaged over the entire evaluation period, the comparisons between 

estimated PBL heights from WRF and the observations at each airport exhibit 

different behavior. Both the computed PBL height from the potential temperature 

gradient and the YSU predicted PBL height (using the Richardson number) are 

compared to the calculated height from the observed profiles. KBWI is the best 

performer, with a mean error of the computed height of 11 m, compared to an error of 

-145 m for the YSU predicted height. At KDCA, the YSU predicted height is 30 m 

too high on average, whereas using the potential temperature profile results in a 

higher bias of 325 m. Finally, at KLWX, using only the radiosondes, the mean 

difference over the month is negative for both methods, with an average of -118 m 

below observations for the computed height and -481 m for the YSU provided height. 

For most days, KLWX only has profiles twice a day, and as such may not be 

representative of the model’s overall performance. Overall, the YSU estimated PBL 

height is an average of -71 m from the observations, and the potential temperature 

profile method results in a 150 m high bias. The aforementioned meteorological fields 

from WRF agree well with observations on average, but can vary greatly for any 

given hour. See Fig. 3.2 for time series of the mean (solid line) and range (min and 

max; shaded regions) difference between WRF and observations for all three 

variables: PBL height (blue is potential temperature; red YSU), wind speed, and wind 

direction. 
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Figure 3.2. Mean (solid line) and spread (shaded area between minimum and 
maximum values) of the difference between WRF and observations for: PBL height 
(YSU computed PBL height in red; potential temperature profile computed in blue), 
wind speed, and wind direction. For PBL, observations are for three airports (KDCA, 
KBWI, KIAD), and for wind observations, ten sites in domain d03 are used. Positive 
values indicate a larger quantity from the model. The two cases are shaded in gray, 
as in Figs. 3.4 and 3.5. 
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3.2.3 Emissions Inventories 
 

To evaluate whether the modeled observations are impacted more by the 

underlying emissions or transport, an ensemble of tracers of atmospheric CO2 

resulting from different emissions inventories are used within the same transport 

model simulation using WRF-Chem. For this study, four different anthropogenic CO2 

emissions inventories are used: EDGAR, FFDAS, ODIAC, and Vulcan. The 

following paragraphs and Table 3.3 provide details of each inventory. 

The first inventory employed is EDGAR, i.e. the Emissions Dataset for Global 

Atmospheric Research version 4.2 (Olivier et al., 2005; http://edgar.jrc.ec.europa.eu). 

EDGAR is a global emissions product with a horizontal resolution of 0.1º, and 

provides average fluxes for the year 2010 based on the International Energy Agency’s 

(IEA) energy budget statistics (IEA, 2012). The emissions are then distributed on the 

0.1º x 0.1º grid by incorporating population density, road networks, and the locations 

of point sources and industrial processes.  

The Fossil Fuel Data Assimilation System (FFDAS; Rayner et al., 2010; 

Asefi-Najafabady et al., 2014) is also used. As with EDGAR, FFDAS is a global 

product with a horizontal grid of 0.1º x 0.1º but unlike EDGAR, it features hourly 

varying anthropogenic fluxes for the entirety of 2015. FFDAS utilizes the Kaya 

Identity, a method to estimate emissions based on economic factors, as well as 

information on national fossil fuel CO2 emissions, satellite-derived nightlights, 

population density, and power plant information to estimate flux at each grid point.  

The Open-source Data Inventory for Anthropogenic CO2 (ODIAC; Oda and 

Maksyutov, 2011; Oda and Maksyutov, 2015; Oda et al., 2018) is the third inventory 
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used in WRF-Chem. It is the only dataset of the four chosen with a finer horizontal 

resolution of approximately 1 km, or ~0.01 º. Using the total emissions estimated by 

the Carbon Dioxide Information and Analysis Center (CDIAC) at the US Department 

of Energy’s Oak Ridge National Laboratory, the locations of point sources and 

satellite-derived nightlights are then used to distribute the emissions onto the 1 km 

grid. Monthly total fluxes are provided by ODIAC for each month projected using 

statistical data from the energy company BP with the most recent version for the year 

2015.  

The fourth inventory is Vulcan (Gurney et al., 2009) which is a 10 km x 10 

km fossil fuel emissions dataset for the United States for the year 2002. Unlike the 

others, the emissions of individual buildings, power plants, roadways, and other 

sectors are each characterized, and then aggregated to this 10 km x10 km grid. This 

provides a higher level of detail both spatially and temporally, but with the limitations 

of being much older than the other inventories, and only covers the coterminous 

United States, so parts of domain d01 have no emissions in this tracer. 
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Table 3.3. Summary of the four anthropogenic CO2 emissions inventories used within 
this study. For ODIAC, both the domain average sum is provided with and without 
temporal scaling added to the dataset. 

Inventory EDGAR FFDAS ODIAC Vulcan 
Version 4.2 2.2 2016 2.2 

Horizontal 
Resolution 

0.1 degree 0.1 degree 0.01 degree 10 km 

Created for 
Year 

2010 2015 2015 2002 

Temporal 
Resolution 
Provided 

Yearly Hourly Monthly Hourly 

Domain d01 
Average Sum 

(Tonnes C / hr) 

88416 104709 97732 
106231 * (no  

TIMES scaling) 

97469 

Domain d03 
Average Sum 

(Tonnes C / hr) 

2112 3622 2332 
2534 * (no 

TIMES scaling) 

2882 

Citation Olivier et al., 
2005 

Rayner et al., 
2010; Asefi-

Najafabady et 
al., 2014; 

Oda and 
Maksyutov, 

2011; Oda et al. 
2018 

Gurney et al., 
2009 

Available at: http://edgar.jrc.
ec.europa.eu 

http://www.gur
neylab.org/portf
olio-item/ffdas/ 

http://db.cger.ni
es.go.jp/dataset/

ODIAC/ 

http://vulcan.pr
oject.asu.edu 
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Figure 3.3. Average CO2 hourly fluxes for the four emissions inventories and the 
VEGAS biospheric model for all three WRF-Chem domains in February 2016. Non-
positive values (zero and negative) are shown as white. The hourly average flux for 
the month for each dataset summed over the entire domain, is shown below each map. 
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The inventories are interpolated in time and space to ensure consistency. Each 

one is linearly interpolated from its native grid to the three WRF-Chem domains. 

Additionally, the Temporal Improvements for Modeling Emissions by Scaling 

(TIMES; Nassar et al., 2013) scale factors are applied to ODIAC and EDGAR to 

provide weekly and diurnal variations to these two inventories. However, we also use 

the native monthly ODIAC product as input to WRF-Chem (aka ODIACFIX) as it 

allows us to investigate the impact of diurnal and weekly varying fluxes on simulated 

observations. Note that TIMES scaling results in an approximate decrease of 

emissions of 8.5% when averaged over the entire month because while the daily 

average remains the same for weekdays, the scaling factor causes a reduction for 

weekend hours and the number of each day of the week is not the same in any given 

month. The impact of the TIMES scaling on the simulated observations will be 

discussed in Section 3.3.1. 

  We further ensure consistency between the inventories by shifting the 

inventories so that the calendar days and hours are the same across all emission 

products.  For example, the fluxes for February 2, 2015 of FFDAS are used for 

February 1, 2016 as they are both Mondays. In addition, since the inventories were 

generated for a year differing from the modeled year, ratios are used to scale each 

emission product using national totals from the U.S. Energy Information 

Administration’s (EIA) Monthly Energy Review 

(https://www.eia.gov/totalenergy/data/monthly/) for each day of February as shown in 

Equation 3.1. Emission products will be referred to as tracers from henceforward to 
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correspond to WRF-Chem nomenclature. Fig. 3.3 shows a map of the hourly mean 

flux of CO2 from each inventory interpolated to all three WRF-Chem domains. 

 
𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦'F$G = 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦H05.J08/	× 	LMN	O.18PQRS.=69T

LMN	O.18PQRS.URVW
 (3.1) 

 

3.2.4 Vegetation Model 
 

As mentioned earlier, a dynamical vegetation model has also been coupled to 

WRF-Chem to provide the contribution of biogenic fluxes to the simulated 

observations. The VEgetation-Global-Atmosphere-Soil (VEGAS) model (Zeng et al., 

2005) is coupled offline with WRF-Chem to provide hourly biospheric CO2 flux. 

Because VEGAS features carbon pools and dynamic vegetation growth, the model 

must first be spun up on the domain to achieve a climatology. For this analysis, 

VEGAS is first initialized by forcing it with the Climate Forecast System Reanalysis 

version 2 (CFSRv2; Saha et al., 2014) calibration climatologies for the years 1981 to 

2010. The CFSR climatology dataset is first regridded to the WRF-Chem domains, 

and then the model is run for 100 years using this calibration climatology repeatedly 

to reach equilibrium. To generate the land to atmosphere carbon flux, VEGAS uses 

the WRF-Chem meteorological output variables (2 m temperature, 2 m specific 

humidity, hourly precipitation, 10 m winds, skin temperature, and total net radiation) 

as well as the WRF domain topography, emissivity, and albedo. Figure 3.3 shows the 

hourly average biospheric flux from VEGAS on all three WRF-Chem domains in 

February 2016; including areas of net uptake (the white region in the south part of 

domain d01). The biospheric VEGAS tracer has been added to all the simulated CO2 
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values shown although its average contribution to the simulated CO2 mole fraction is 

less than 0.25% of the total over the month. Additionally, no evaluation has been 

performed on the biospheric fluxes from VEGAS at these spatial scales further 

highlighting why we focus on winter months for this analysis. 

3.3 Results 

In this section we assess WRF-Chem’s ability to simulate the atmospheric 

CO2 in the NEC-B/W by comparing modeled CO2 mole fractions at four locations to 

high-accuracy in situ observations from the three urban and one rural tower sites. 

First, these datasets are compared over the entire month-long simulation to determine 

the overall performance of the model. We then select specific time periods of the 

month to diagnose possible causes of both high and low performing scenarios. These 

two analyses help us to evaluate the performance of WRF-Chem in modeling 

transport and dispersion of urban CO2 and whether there is sufficient skill in the 

model for use with various GHG flux estimation methods. 

3.3.1 Overall Model Performance 

3.3.1.1 Tower Observations 
 

Not surprisingly, the magnitudes and variability of the observations from the 

towers are different for the rural site compared to those from the urban towers (Fig. 

3.4). Over the four locations, the lowest observed CO2 of the four sites was typically 

at SNP (with an average of 412.2 ppm vs. the mean of the urban sites at just over 421 

ppm) due to its rural location and high altitude, frequently above the PBL in the free 

troposphere. The amplitude of the observational diurnal cycle at SNP is also smaller 
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than the urban towers but can vary from day to day depending on the synoptic 

weather situation. The variability in the diurnal cycle at the urban sites is much 

greater (frequently as high as 50 ppm, but occasionally under 5 ppm) which indicates 

that synoptic events have a large impact on urban CO2 observations given the 

magnitude and variation of the underlying flux distribution in such areas. 

3.3.1.2 Simulated Observations 
 

In general, WRF-Chem generated mole fractions with similar magnitudes and 

variabilities to the observed mole fractions from the four tower sites. Consistent with 

the observations, the relative magnitudes of the simulated mole fractions at urban 

towers are larger than those from the rural site and they exhibit more diurnal 

variability. In addition, when looking at the model predicted mole fractions in Fig. 3.4 

across all sites, one can note the variations in synoptic and diurnal cycles are similar 

to the observed time series. These results provide evidence that the model is able to 

reasonably recreate the time series of CO2 mole fractions when looking at the 

complete time series, but an in-depth analysis is required to determine its 

performance for a particular day or period. 

During certain unfavorable meteorological conditions, the spread of the 

individual emission tracers increases even though their overall variability remains 

proportionally the same. In terms of overall magnitudes, the differences in the 

minimum and maximum daily values (i.e. differences between the observed and 

modeled mole fractions) can be at times quite significant. These large differences 

correspond to synoptic scale weather patterns (3 d to 5 d) that also create the 

variability in the observations as discussed in Section 3.3.1.1. Depending on the day, 



 

60 
 

the differences between modeled and observed CO2 mole fractions throughout the 

day can vary by an order of magnitude from less than 5 ppm to over 50 ppm. These 

synoptic weather conditions will be discussed further in Section 3.3.2. 

 

 
Figure 3.4. Time series of hourly averaged modeled versus observed CO2 mole 
fractions at four observing sites for all hours of the day. The black lines are the 
observed values, and each color represents the model-simulated CO2 interpolated to 
that location and inlet height (only the lowest inlet levels are plotted at the 3 urban 
sites). The model-simulated mole fraction at a point in time and space is the sum of 
an anthropogenic tracer generated from a specific inventory plus the VEGAS 
biospheric flux tracer plus the background CarbonTracker advected value. From top 
to bottom: Shenandoah National Park (SNP), Arlington, VA (ARL), Northwest 
Washington, DC (NDC), and Halethorpe, MD (HAL). FFDAS predicted values are in 
red, ODIAC in blue, ODIAC without temporal scaling in light blue, Vulcan in green, 
and EDGAR in orange. Gray shaded areas are scenarios described in detail in 
Section 3.3.2. 
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Table 3.4. Results of a linear regression performed at each observing site and for 
both inlets where applicable for all five tracers. For each regression, the observed 
dataset is used as the independent variable, x, and the model predicted values are 
used as the dependent variable, y. Provided in the table are the: bias before the 
regression (ppm), slope, intercept (ppm), the coefficient of determination (R2), the 
root-mean-square error before the regression (RMSE; ppm), the number of outliers 
using the double median absolute deviation (out of 696 hours), and the mean absolute 
error before the regression (MAE; ppm), for each simulated time series dataset at 
each observing level. 

Site Code 
Tracer 
Source Inlet 

 
Bias Slope Intercept R2 RMSE 

# 
outliers MAE 

ARL FFDAS 50m 1.47 0.77 98.95 0.79 7.26 200 4.87 
ARL ODIAC 50m -3.54 0.58 174.28 0.14 6.54 167 5.06 
ARL ODIACFIX 50m -2.27 0.59 170.80 0.38 6.96 171 5.23 
ARL Vulcan 50m -1.34 0.61 162.78 0.53 6.47 174 4.66 
ARL EDGAR 50m -3.25 0.58 172.84 0.21 6.38 185 4.89 
ARL FFDAS 92m -0.93 0.74 109.54 0.76 5.61 160 3.97 
ARL ODIAC 92m -4.54 0.49 208.79 0.31 6.42 143 5.07 
ARL ODIACFIX 92m -3.78 0.55 186.30 0.03 6.36 158 4.97 
ARL Vulcan 92m -2.80 0.58 175.44 0.29 5.61 174 4.10 
ARL EDGAR 92m -4.35 0.50 204.97 0.24 6.15 149 4.77 
HAL FFDAS 29m 5.25 0.88 56.62 0.42 11.43 181 7.56 
HAL ODIAC 29m -2.40 0.65 146.57 0.48 8.24 190 6.19 
HAL ODIACFIX 29m -0.52 0.81 78.91 0.87 9.06 195 6.67 
HAL Vulcan 29m 1.08 0.79 87.94 0.86 9.67 204 6.73 
HAL EDGAR 29m -1.47 0.66 142.61 0.61 8.18 187 6.00 
HAL FFDAS 58m 4.52 0.90 44.30 0.18 8.98 174 6.15 
HAL ODIAC 58m -1.34 0.67 137.63 0.63 7.12 171 5.34 
HAL ODIACFIX 58m 0.26 0.78 94.17 0.84 7.72 190 5.69 
HAL Vulcan 58m 1.23 0.77 97.68 0.80 7.99 201 5.54 
HAL EDGAR 58m -1.04 0.64 152.35 0.61 6.58 178 4.86 
NDC FFDAS 45m 3.84 0.81 84.91 0.53 8.58 198 5.87 
NDC ODIAC 45m -2.84 0.56 182.13 0.28 6.96 157 5.31 
NDC ODIACFIX 45m -1.25 0.64 151.44 0.58 7.41 177 5.59 
NDC Vulcan 45m 0.00 0.69 129.66 0.73 7.16 190 5.18 
NDC EDGAR 45m -2.83 0.58 173.72 0.30 6.84 188 5.24 
NDC FFDAS 91m 1.56 0.67 141.20 0.64 7.11 180 4.78 
NDC ODIAC 91m -3.06 0.54 191.69 0.07 6.13 164 4.74 
NDC ODIACFIX 91m -2.11 0.56 181.34 0.30 6.39 164 4.85 
NDC Vulcan 91m -0.93 0.50 207.83 0.35 6.25 158 4.40 
NDC EDGAR 91m -2.97 0.48 217.60 0.00 6.11 169 4.69 
SNP FFDAS 17m -0.26 0.51 200.36 0.43 2.19 116 1.72 
SNP ODIAC 17m -0.68 0.52 196.53 0.32 2.37 131 1.86 
SNP ODIACFIX 17m -0.50 0.54 189.95 0.41 2.40 132 1.86 
SNP Vulcan 17m -0.25 0.48 215.68 0.28 2.20 112 1.74 
SNP EDGAR 17m -0.56 0.47 219.25 0.30 2.24 116 1.76 

 

To characterize the performance of the simulated mole fractions using WRF-

Chem relative to observations while accounting for the differences in emissions 

inventories, a linear regression was performed for all five modeled time series at each 

site (and both inlets where applicable) against their respective observed time series. 
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The results from these regressions are available in Table 3.4. For this regression, 

outliers, defined as differences larger than three standard deviations between the 

mean of both the observations and the WRF predicted values are removed. The 

resulting statistics help discern whether the simulated mole fractions, on average, 

deviate strongly from the observations, are linearly related, and reflect the true 

variability.  

Overall, for all of the urban locations, FFDAS has the strongest liner 

relationship to the observations with a slope closest to unity.  However, FFDAS has 

the largest R2 for only four out of the seven timeseries (those from two inlet heights at 

each of the three urban towers and from SNP) for the February 2016 model 

simulation. However, the lowest R2 value is associated with the modeled mole 

fractions using FFDAS at both the HAL inlet levels. This could potentially be due to 

the location of HAL near large FFDAS point sources in Baltimore that are 

redistributed onto the native WRF-Chem grid. For the other inventories, the slopes 

and R2 varies across all towers. 

The slopes associated with simulated observations from the other four 

anthropogenic tracers have a small range of spread between inventories, with the 

spread being between 0.03 and 0.16 depending on observing site. The slopes closest 

to zero tend to be either ODIAC or EDGAR depending on the observing point 

location. The fact that these two inventories have similar slopes is not totally 

unexpected, as their derived emissions may be distributed spatially in a similar 

manner, albeit at different resolutions, and the TIMES scaling factors are applied to 

both of them.  
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The other statistics indicate that the performance of the modeled time-series is 

dependent on local conditions (i.e. meteorology or flux distribution) around each 

tower site since no single tracer consistently out-performs the others. For example, 

the MAE associated with the five anthropogenic tracers varies across tower inlets for 

a single inventory (such as FFDAS from 3.97 ppm to 7.56 ppm or Vulcan from 4.40 

ppm to 6.73 ppm). FFDAS generally has the highest MAE with EDGAR or Vulcan 

usually having the lowest, but again, there is no consensus on any best or worst 

performer at each observing site. This suggests that model performance should not be 

assessed on average across the entire domain but rather locally around tower sites.  

After calculating these linear regressions, the fitted datasets can be subtracted 

from the original modeled time series to see where the linear fit is not valid. Figure 

3.5 shows the residuals of each linear fit from the observed CO2 at each site where the 

five colors represent the different anthropogenic tracers in WRF-Chem. As with the 

slope, FFDAS (red) has a consistently larger absolute residual value (5.1 ppm) than 

the other four datasets (ODIAC (blue): 3.6 ppm; ODIACFIX (cyan): 4.3 ppm; Vulcan 

(green): 4.3 ppm; EDGAR (orange) 3.5 ppm) for February 2016 across the observing 

sites, likely due to the periodic high values skewing the linear fit as noted earlier. The 

residual plot also shows clearly periods where the simulated CO2 deviates greatly 

from the observations for all tracers. This suggests that at times 1) the synoptic scale 

background CO2 provided by CarbonTracker may not be resolved correctly, 2) there 

are sufficient errors in the meteorological transport, or 3) VEGAS is under-predicting 

respiration during this period. Two of these cases (the dark gray shaded regions in 

Fig. 3.5) will be described in detail in Section 3.3.2. 
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Figure 3.5. Residuals of a linear regression between the observed CO2 and each 
tracer at all four observing sites (lowest inlet only at the 3 urban sites). See Section 
SI2 of the supplemental information for the regression equation used for this analysis. 
The different colors represent the five different tracers from the multiple emissions 
inputs. The dark gray shaded areas are scenarios described in detail in Section 3.3.2 
which were also shown on Figure 3.4. 

 
To investigate the impact of bias on the modeled vertical mixing and its 

representation of the PBL, the simulated mole fractions are analyzed using (1) all 

hours of the time series, and (2) afternoon hours only (12 pm to 4 pm local time; 17 

UTC to 21 UTC), both without removing any outliers. Afternoon observations are 

typically used in inversions since it is assumed that the meteorological models can 
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better represent well mixed conditions typically found in the middle of the day. 

Figure 3.6 shows the monthly mean bias of simulated CO2 mole fractions for all 

hours and afternoon hours only for all five tracers at the observing sites and different 

inlet heights.  

The spread of the monthly bias from all tracers ranges from -4.5 ppm to 5.2 

ppm for the five simulated observational timeseries encompassing all hours of the 

day. FFDAS has a slight positive mean bias at all three urban sites (the largest being 

at HAL and at NDC for the lowest inlet). This is consistent with the domain mean 

hourly averaged flux in domain d03 being the largest for FFDAS as shown in Fig. 3.3 

and Table 3.3. Conversely, as expected from the flux summaries in Section 3.2.3, the 

most negative bias tends to be from either ODIAC or EDGAR as they are diurnally 

scaled using the TIMES dataset and have the lowest domain mean hourly averaged 

flux in the urban domain. The impact of the TIMES scaling is clearly demonstrated 

by the fact that ODIACFIX has a smaller bias than that of ODIAC.  

When considering only afternoon hours, the spread in the monthly bias is 

smaller, ranging from (-3.9 ppm to 2.1 ppm). The FFDAS tracer yields the highest 

simulated CO2 mole fraction (similar to all hours), and is the only inventory that has a 

clear positive bias. Although mostly negative, the Vulcan tracer has a near zero bias 

at both the HAL inlets. When looking at afternoon hours only, the ODIAC and 

ODIACFIX tracers are virtually the same as the TIMES scaling factors are based on a 

value of one for the mid-afternoon (the emissions are scaled down overnight). The 

mean bias from EDGAR during these periods is similar to that from ODIAC, with a 

negative mean bias of approximately 3 ppm to 4 ppm from the observations. This 
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range of biases (FFDAS positive to ODIAC and EDGAR being the lowest) is 

consistent with their respective rankings in the areal total anthropogenic flux for 

February 2016. Using afternoon hours only appears to reduce the spread of the 

modeled time series overall compared to the complete datasets but this is dominated 

by the large reduction in spread at HAL and the lower inlet at NDC. 

Generally, WRF-Chem using these emissions inventories tends to 

underpredict near-surface CO2 as shown in Fig. 3.6 (red and blue lines represent the 

average associated with all hours and afternoon hours respectively). On average, the 

mean of the five modeled time series is below the observed values, except for the all-

hours datasets at HAL, likely largely the result of an underestimation of emissions. 

The smaller bias at SNP implies that a bias in the CarbonTracker background or the 

biospheric flux may also contribute to the low bias across the domain. Virtually no 

spread (< 1 ppm) is found at SNP for both all hours and afternoon only, with very 

little changes between the two periods, consistent with its rural location and lack of 

enhanced CO2 values from emissions sources.  
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Figure 3.6. Mean bias of WRF-Chem simulated CO2 mole fractions (ppm) compared 
to observations at each observing site and for both inlets where applicable for all five 
tracers (FFDAS: square, ODIAC: circle, ODIACFIX: pentagon, Vulcan: triangle, 
and EDGAR: square) during all hours (red) and during afternoon (12 pm to 4 pm 
local time; blue) hours only. Means of bias at each inlet are connected with 
additional lines: red for all hours and blue for afternoon. 

3.3.2 Typical Meteorological Scenarios 
 

The model-data comparisons presented in Section 3.3.1 are for simulated data 

over the entire month. While the mean biases of the modeled CO2 mole fractions are 

relatively small, the variation between days, and even between individual hours of the 

day, can be significant, as shown in the residual plots in Fig. 3.5. Two sample cases 

(the dark gray shaded regions in Fig. 3.5) are presented to show a range of scenarios. 
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One of these cases is when the model error is large (greater than 10 % of the observed 

total value) and the proportion of variability (the ratio of the standard deviation of the 

differences over the period of interest and the standard deviation over the entire 

month) is greater than 100 %. The second scenario occurs when the model-

observation difference is small (~<1 % of the total CO2) and the proportion of 

variability relative to the whole month is under 40 %. For trace gases in the 

atmosphere, winds (both speed and direction) as well as the height of the PBL are the 

most important meteorological factors in estimating near-surface CO2. In the 

subsequent subsections, two scenarios are presented that show examples of how 

different synoptic weather situations can affect the ability of WRF to predict these 

variables, and in turn, can impact the quality of the predicted CO2 in a forward 

transport model. 

 
3.3.2.1 Frontal Passages 
 

A typical mid-latitude location such as the NEC-B/W experiences frontal 

passages every 3 to 7 days. When a front passes over an area, such as this urban 

domain, it causes sharp changes in wind speed and direction, temperature and 

moisture content, as well as other defining features of an air mass including CO2 mole 

fractions (Parazoo et al., 2008). Figure 3.7 shows an example of the impact on CO2 

mole fractions when two fronts pass over the NEC-B/W as a mid-latitude cyclone 

moves east. The gradual slope of the warm front (~12 UTC February 3) can create a 

shallow PBL, allowing CO2 to accumulate near the surface, whereas a cold front (~8 

UTC February 4) is much steeper in its vertical structure. For the latter, the observed 

wind shifts are much more abrupt both in speed and direction. Both frontal passages 
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can also create surface convergence ahead of the front, allowing CO2 to build up in 

the PBL immediately before the wind shift occurs. Figure 3.8 shows surface CO2 

concentrations predicted using the FFDAS emissions inventory and 10 m wind 

vectors during the model simulated frontal passage (5 UTC February 4), illustrating 

the spatial gradient of CO2 during this period. 

For both the warm and cold fronts, WRF simulates the frontal passage and 

associated wind shift 4 to 5 hours before the observed passage (Fig. 3.7). Generally, 

correlations are observed between the wind direction, the PBL height, and the 

simulated CO2. The simulated warm front caps the PBL, allowing for predicted mole 

fractions to increase across the domain. The diurnal range is well resolved by WRF-

Chem at NDC, but it is greatly overestimated at HAL and underestimated at ARL, 

likely related to the timing and position of the passing front. The spread between the 

various inventories at HAL is also much larger than at the other two sites. During the 

first frontal passage (12 UTC February 3), it is clear that the predicted CO2 values are 

influenced by the shallow PBL depth, which is also observed at a number of periods 

during the month where the model and observations diverge. However, during the 

simulated cold front (~8 UTC February 4), the PBL heights do not change 

significantly, but the predicted CO2 peaks and then drops rapidly as the wind shifts 

from southerly to northerly. This feature is seen in the simulated time series at all 

three sites with WRF-Chem results underestimating CO2 mole fractions at the 

observing locations when the front actually passes through. This example illustrates 

that the meteorological error, in both the timing of the front and the PBL depth, 

dominates the error in the simulated CO2 values rather than the underlying emissions, 
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as often the spread in the emissions inventories (shaded red area) is generally smaller 

than the difference between the model mean (red line) and the observations (black). 

 

 
Figure 3.7. Observed (black) and modeled (red line average; shaded red spread of 
the five emissions inventories) hourly averaged CO2 at all three urban sites for a 
typical frontal passage period (February 3-4, 2016). Bottom panels show observed 
(black line average of all observing sites; shaded spread of observations) and 
modeled (red line average of all observing sites; shaded spread of the modeled values 
at each observing site) hourly averaged PBL height, and 10 m observed (black) and 
modeled (red) wind direction at KDCA. 
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Figure 3.8. Simulated surface CO2 concentrations using FFDAS emissions and 10 m 
wind vectors during a cold front passage at 5 UTC February 4, 2016 in domain d03. 
Locations of the three urban observing sites are shown (HAL in blue; ARL in green; 
NDC in yellow). 

 
3.3.2.2 Persistent Winds 

 

While the first scenario presents an example period where WRF-Chem 

significantly under or overpredicts CO2 compared to the observations, there are times 

when the model simulated CO2 is within 1 % of the observed value. One such 

example is from February 10 to February 11, 2016, when winds are steady and from a 

direction where the upwind CO2 mole fractions are more representative of the global 

average. Figure 3.9 shows the modeled and observed CO2 as well as wind direction 

and PBL height for this period. During these two days, the wind is persistently from 

the west or northwest, bringing in a steady stream of air into the urban area where the 
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mole fraction observations are strongly influenced by the incoming atmosphere, or 

regional background, values.  

The average modeled CO2 mole fractions at all three sites for this 48 hour 

subset are always within 5 ppm of the observed value. At ARL and HAL most hours 

are underpredicted, possibly due to the overprediction of the PBL height during this 

period as the modeled wind speed and direction agree well with the observations, but 

at NDC the average modeled value differs by 1 ppm to 2 ppm from the observations 

from 0 UTC to 18 UTC on February 11. Additionally, the predicted CO2 mole 

fractions from all five inventories do not vary significantly from one another during 

this case, with a spread of only 2 ppm to 3 ppm on either side of the mean throughout 

the period. Despite this agreement, there are still some subtleties that can be observed 

in the data. All three sites have a local maximum in the observations at around 20 

UTC on February 10, but the modeled time series have a local minimum there. At the 

same time, WRF overpredicts the PBL height compared to the observed height, likely 

causing dilution in the predicted CO2 mole fractions. These features are present in all 

the inventory tracers, and often the observations are not within the spread of the five 

models, even during this period of relatively good model performance. In addition to 

the meteorological errors described above, biases in the CarbonTracker background 

or the biospheric tracer (both common to all five tracers) could also contribute to the 

overall error, but are likely limited to the magnitude of the bias observed at SNP. 
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Figure 3.9. Observed (black) and modeled (red line average; shaded red spread of 
the five emissions inventories) hourly averaged CO2 mole fractions at all three urban 
sites for a typical period with persistent winds from a rural area (February 10-11, 
2016). Bottom panels show observed (black line average of all observing sites; 
shaded spread of observations) and modeled (red line average of all observing sites; 
shaded spread of the modeled values at each observing site) hourly averaged PBL 
height, and 10 m observed (black) and modeled (red) wind direction at KDCA. This 
shows that WRF-Chem is able to resolve both the wind direction and height of the 
PBL with reasonable skill, although deviations do occur. 
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3.4 Discussion 
 

As discussed in Section 3.3.1, WRF-Chem tends to underestimate hourly-

averaged values of near-surface CO2 mole fractions when compared to observations 

averaged over the entire month. The daily maxima in simulated mole fractions from 

certain emissions inventories are often high relative to observations, particularly 

when they occur during the overnight hours when the modeled PBL depth is under 

predicted. However, the larger range of predicted values during these periods as well 

as the overall underprediction during the afternoon hours result in lower averaged 

values from the model than from observed values when including all sites, hours, and 

inventories as shown in Fig. 3.6. Previous work comparing simulated CO2 to 

observed time series in an urban region also found an overall low bias, with predicted 

levels over certain hours/days exceeding observed levels (Feng et al., 2016). There 

are some synoptic situations, e.g., February 10 and February 11 (Section 3.3.2.2), 

where persistent winds allow for minimal errors in predicted CO2 across the domain 

over an entire diurnal cycle, not just in the afternoon hours. During the afternoon of 

February 10, in fact, WRF overpredicts the PBL height, and thus underpredicts the 

near-surface CO2. On this day, the modeled CO2 may be more representative of 

reality during the overnight hours than it is in the afternoon. Conversely, other days, 

such as February 3 (Section 3.3.2.1), with a passing mid-latitude cyclone and its 

associated fronts, yield much different results. During this case, because of the 

predicted wind shift timing and the magnitude of the PBL height varying from 

observations, WRF tends to either overestimate or underestimate near-surface CO2 

depending on the hour. 
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In addition to the synoptic meteorology, variations in emissions inventories 

are also reflected in the predicted CO2 mole fractions as shown in the mean biases 

described in Fig. 3.6. For the outermost domain (d01), the areal sum of the hourly 

averaged emissions is similar in magnitude (all within 10 % of the mean of the 4 

inventories) (Fig. 3.3; Table 3.3). However, in the innermost domain (d03), the areal 

sum of FFDAS is over 36 % higher than the mean and the lowest inventory EDGAR 

is 20% below the mean of the inventories. Even though on the national scale each 

inventory is similar, there can be substantial differences between them due to the 

emission disaggregation methods (e.g., Hutchins et al. 2016; Oda et al. 2018) when 

considering mesoscale modeling of CO2, a problem being studied further in other 

works (e.g., Fischer et al., 2017). The differences in totals and local sources could 

also be attributed to differing methodologies and datasets included in each emissions 

inventory, including the exact location of point sources and grid cell locations, among 

other things. These differences are generally reflected in the simulated CO2 levels, 

with FFDAS being the highest averaged over the entire month, and EDGAR the 

lowest. 

Traditionally, atmospheric inversions utilize data and meteorological model 

output from afternoon hours (12 pm to 4 pm local time) only (Kort et al., 2013; Breón 

et al., 2015; Lauvaux et al., 2016; Sargent et al., 2018). This is because the PBL is 

generally considered to be well-mixed during this time, and the model meteorology is 

thought to perform best compared with observations. By including prior emissions 

inventories, these inversions are used to estimate the total flux of carbon from an area 

of interest. However, in the forward modeling framework presented here with WRF-
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Chem, using afternoon hours only may not be the best metric to determine whether 

the model meteorology is sufficient to accurately predict CO2 mole fractions. Figure 

3.10 shows the mean absolute error (the dark bars) as well as the mean standard 

deviation (the lightly colored bars) of the five predicted CO2 mole fractions for each 

time series, both for all hours (red) and afternoon hours only (blue). When 

considering only the three urban sites, the mean absolute error for all hours is 

between 3.6 ppm and 7.0 ppm across the different observing sites and inlets whereas 

the mean standard deviations are between 1.9 ppm and 4.1 ppm. When including 

afternoon hours only, the mean absolute error of the model does decrease by an 

average of 1.42 ppm, and the standard deviations decrease by an average of 0.58 ppm. 

Despite the improvement in MAE when only including afternoon hours, the mean 

error of the model is still approximately twice the variation in the predicted CO2 

values from each emissions inventory. This result indicates that although limiting 

inversion analysis to afternoon hours may reduce overall meteorological model error 

it also limits analysis to time periods when local and regional emissions influence the 

observations the least (due to deeper PBLs and stronger mixing). 

Additionally, the mean absolute error is roughly a factor of two larger than the 

mean standard deviation at the urban sites, with the ratio of the two ranging from 1.64 

to 2.58 for all hours, and 1.57 to 1.89 for afternoon hours only, depending on the site 

and inlet level. This result suggests that on average, factors common to all five tracers 

(meteorological error, background error, or error in the biosphere tracer) contribute 

more to the overall model performance than the choice of anthropogenic emissions 

inventory. Given the low bias (~2 ppm) at SNP, the extent of our largest WRF 
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domain, and small relative contribution of the VEGAS tracer to the monthly mean 

values, we expect that the errors shown in Fig. 3.10 are dominated by meteorological 

conditions during winter. This conclusion is further supported by the two examples 

illustrated in Section 3.3.2. However, it is important to note that these meteorological 

conditions or errors can exacerbate the differences in the emissions inventories as 

well, like shown in Fig. 3.7.  

 
 

 
Figure 3.10. The mean absolute error (the dark bars) and the mean standard 
deviation (the lightly colored bars) of the five predicted CO2 mole fractions for each 
observing site and inlet height (where applicable), both for all hours (red) and 
afternoon hours only (blue). 

 
Rather than looking at the mean absolute error for the entire month and the 

mean standard deviation, it is also useful to consider the mean absolute error of the 

five tracers compared to the observed mole fraction at each hour and the associated 

standard deviation to get an idea of how the error and spread of the modeled CO2 are 
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related. These two values are reasonably related with a correlation coefficient of 

approximately 0.3 across the three urban sites over the month. At times, generally 

when the modeled CO2 is at its highest, which is when transport model errors tend to 

be largest such as during the overnight hours or frontal passages, approximately a 

factor of two difference between the highest and lowest modeled enhancements can 

be found. But for many other cases, and on average as described above, the 

differences between the various emissions inventory tracers are smaller than the 

absolute error relative to observations. During periods of low modeled CO2 error (i.e. 

small differences from the observations), the variation among the different emissions 

models is small but still discernable (as shown in Fig. 3.9 for example). Regardless, 

the error in modeled CO2 compared to observations for any given hour or day appears 

to be influenced more by the meteorology than the differences among the various 

emissions inventories. This result may pose a challenge to an atmospheric inversion 

that adjusts fluxes to match observed concentrations when variability in the modeled 

CO2 mole fractions is dominated by meteorological error. It also suggests the need for 

methods that identify time periods when meteorological conditions are best 

represented by simulations, rather than only including afternoon hours, and when it 

may be anticipated that inversions will perform with higher fidelity to actual 

emissions conditions.  This is particularly important for urban applications where the 

impact of synoptic variability may strongly and adversely impact inversion analyses. 
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3.5 Conclusions 
 

An evaluation of WRF-Chem simulated CO2 mole fractions using multiple 

anthropogenic CO2 emissions inventories at four CO2 observing sites in the 

Baltimore, MD and Washington, DC metropolitan areas was presented above. For all 

emissions inventories the modeled CO2 is within 5 ppm of observations when 

averaged over all observing sites for the month of February in 2016. However, for 

any given hour, at any particular site, the differences between the ensemble of 

simulated CO2 values and the observed CO2 can vary from near zero to as high as 100 

ppm (Fig. 3.4). The differences between the simulated time series for the different 

emissions inventories vary significantly in time, but tend to be proportional to the 

magnitude of the enhancement over the background CO2 value. When averaged over 

the entire month all simulated CO2 mole fractions are within 8 ppm of each other 

(Fig. 3.6) representing a range of approximately 2% of the total mole fraction. 

This analysis suggests that the predicted mole fraction error relative to 

observations is dominated by model meteorology and not the underlying emissions 

inventory in winter months when looking at individual observing sites. Not only do 

certain synoptic setups allow for minimum absolute errors in the predicted values, but 

the timing and location of frontal passages can significantly impact the model 

performance at predicting CO2 mole fractions. We also find that the errors associated 

with atmospheric transport are not restricted to certain times of day. This suggests 

that filtering data based on model performance rather than time of day (such as using 

only mid-afternoon observations) for atmospheric inversions might yield better 

overall results and thus further methods, such as machine learning algorithms, are 
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needed to better identify time periods where the simulated transport performs well. 

To improve the simulated CO2 mole fractions error relative to observations, the 

prediction of key meteorological variables such as wind speed and direction and the 

height of the PBL must be improved, either through more advanced physics schemes 

or through data assimilation techniques. As such, minimizing errors associated with 

atmospheric transport and dispersion generally will improve the performance of 

estimated fossil fuel CO2 emissions more than improving emission priors. 
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Chapter 4  Sensitivity of Urban Carbon Flux Estimations to 
Observation Networks and Ensemble Data Assimilation System 
Configuration in Observing System Simulation Experiments 
Chapter based on manuscript in prep for submission to Atmospheric Chemistry and 
Physics, Fall 2018. 
 

Cory R. Martin, Ning Zeng, Russell R. Dickerson, Eugenia Kalnay, Anna Karion, Tomohiro Oda, Yun 
Liu, and James Whetstone 
 
 
 

4.1 Introduction 
 

As various geopolitical entities embark upon GHG mitigation efforts, accurate 

quantification of GHG emissions can significantly inform their effective 

management, in addition to providing quantitative substantiation of progress toward 

emission reduction goals. As mentioned in Chapter 1, observations of CO2 mole 

fractions are used in conjunction with atmospheric transport models to estimate the 

total enhancement of greenhouse gases from the urban area and with statistical 

techniques to infer the underlying emissions. There are a number of examples of 

various statistical methods used for this flux estimation as well as different locations 

and spatial and temporal scales (e.g. Bousquet et al., 1999; Michalak et al., 2004; 

Gourdji et al., 2008; Mueller et al., 2008; McKain et al., 2012; Lauvaux et al., 2016), 

including atmospheric data assimilation techniques such as variational methods and 

Kalman filters (Gerbig et al., 2003; Peters et al., 2005; Baker et al., 2006; Kang et al., 

2011, 2012; Chatterjee et al., 2012; Chatterjee and Michalak, 2013; Liu et al., 2016).  

Chapter 2 focused on the use of small, commercially available, low-cost 

sensors that measure CO2 and indicated that after environmental correction, these 
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sensors demonstrate their promise for ambient air monitoring. Previous work has 

shown that an increase in observational density can improve quantification of fossil 

fuel emissions through statistical inversions (Turner et al., 2016; Lopez-Coto et al., 

2017; Wu et al., 2018). However, because of the cost of the observing sites tend to be 

in excess of $100,000 each, most urban GHG monitoring networks feature fewer than 

a dozen or so locations, with some exceptions (Shusterman et al., 2016). By utilizing 

new technology such as these lower-cost CO2 observing platforms, there is the 

potential to decrease the uncertainty in the total emissions of an urban area. 

In this chapter, a series of observing system simulation experiments (OSSEs) 

are conducted using an ensemble Kalman filter data assimilation system along with a 

mesoscale meteorology model coupled with passive tracer transport to evaluate the 

sensitivity of the estimation of fossil fuel CO2 emissions from the NEC-B/W to the 

quantity and quality of CO2 in situ observations used as well as different ensemble 

configurations. Section 4.2 describes the transport model and the Kalman filter used. 

Section 4.3 details the experiment setup, including what is used as the assumed truth 

as well as the generation of synthetic observations. Section 4.4 describes results from 

the different experiments featuring different observation networks, ensemble inflation 

techniques, and observation localization radii. Section 4.5 features a discussion on the 

results of Sect. 4.4. Finally, conclusions are presented in Section 4.6. 

4.2 Methods 
 

For these perfect model OSSEs, a mesoscale weather prediction model 

including atmospheric transport of trace gases is modified to include 50 distinct three-
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dimensional (3D) tracers using different anthropogenic fluxes to provide an ensemble 

of solutions with only one realization of meteorology. This allows for no assumed 

error in meteorological transport or dispersion, while at the same time generates an 

ensemble of CO2 with relatively minimal additional computation cost compared to a 

single tracer model simulation. For each 3D CO2 tracer, there is also a corresponding 

surface CO2 flux variable used as a constant source or sink (depending on sign) in 

time between analysis cycles of CO2 at the model surface. The ensemble data 

assimilation code has also been modified to interpret each 3D tracer in the model 

output as well as its respective surface flux variable as a discrete ensemble member 

for the analysis cycle. 

4.2.1 Forecast Model 
 

The Weather Research and Forecasting model coupled with chemistry (WRF-

Chem) is used as the atmospheric transport and meteorological prediction model. It is 

a non-hydrostatic, compressible model that provides passive tracer transport online 

with mesoscale meteorology forecasting capabilities (Grell et al., 2005; Skamarock et 

al., 2008; Beck et al., 2011). A nested grid is defined with an outer domain featuring a 

horizontal resolution of 9 km and encompassing roughly the northeastern quadrant of 

the United States. The inner domain has a horizontal resolution of 3 km and is 

approximately 350 km in each direction centered over the Baltimore, MD-

Washington, DC metropolitan areas. For both domains, 50 vertical levels are used 

and are chosen by WRF-Chem at initialization. Initial and boundary conditions of the 

meteorological variables are from the NOAA NCEP North American Regional 
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Reanalysis (NARR), a product with a horizontal resolution of 32 km, 30 vertical 

layers, and 3-hourly output (Mesinger et al., 2006). For the CO2 tracer, initial and 

boundary conditions are provided by NOAA ESRL’s CarbonTracker Near Real-Time 

(CarbonTracker-NRT; version 2016) gridded product (Peters et al., 2007; 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT-NRT/index.php). This is a 3D 

mole fraction product with 3-hourly output and a horizontal resolution of 1º over 

North America. The rest of the model configuration and domain information are 

identical to that described in Chapter 3 except in this case the innermost domain with 

1 km horizontal resolution is not used, in order to lower the computational cost of 

each OSSE. 

 

4.2.2 Data Assimilation 
 

The Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007) is a 

type of ensemble Kalman filter where the forecast error covariance statistics are 

computed from the difference of each member forecast for any variable, x, (𝐱Y(Z) 

where i is the ensemble member number) from the ensemble mean forecast (𝐱[Y). The 

information from the forecast ensemble combined with observations (𝐲.) results in a 

new analysis mean (𝐱[8) and a new analysis for each ensemble member (𝐱8(Z) where 

again i is the ensemble member number). In WRF-Chem, an online observation 

operator (H) has been implemented to interpolate the model state from every 

ensemble member to each observation at its specific time and location 𝐲Y(Z) = 𝐻𝐱Y(Z) 

as the ensemble forecast integrates, resulting in both 𝐱Y(Z) and 𝐲Y(Z) being computed 
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at the same time. For the simplest case of in situ observations of the variable being 

assimilated, as is the case of CO2 mole fraction point observations, H is a three-

dimensional interpolation of the model variable to the observation point in space.  

LETKF generates the analysis at every grid point independently of one 

another, allowing for efficient parallelization. This is achieved by only including 

observations within a certain localization radius from the computed grid point. The 

analysis mean at each grid point in the model is shown in Eq. (4.1): 

 

(4.1)  𝐱[8 = 	𝐱[Y + 𝐗Y�̀�8 

 

where 𝐗Y is the matrix of the difference of each ensemble member forecast from the 

forecast mean and �̀�8 are the weights applied to each ensemble member for the 

analysis, with R denoting the observation error covariance matrix, P ̃a is the analysis 

error covariance, K is the number of ensemble members, I is the identity matrix, and 

Yf is the perturbations of the ensemble forecast from the ensemble mean in 

observation space: 

 

(4.2) �̀�8 = 	𝐏bc(𝐘Y)O𝐑4$(𝐲. − 𝐲[Y) 

(4.3) 𝐏bc = 	 [(𝐘Y)O𝐑4$(𝐘Y) + (𝐾 − 1)𝐈]4$ 

(4.4) 𝐘Y = 	𝐲Y(Z) −	𝐲[Y  

 

Previous work has shown that the LETKF can be successfully applied to 

estimate surface carbon fluxes with atmospheric CO2 mole fractions observations 
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used and both CO2 fluxes and mole fractions used as control variables (Kang et al., 

2011, 2012; Liu et al., 2016). However, these examples are applied to a global 

domain with a coarse resolution model, and not a mesoscale model with sufficiently 

high resolution (sub 10 km) such as WRF. For the experiments evaluated in this 

study, the data assimilation system is cycled every three hours, generating a new 

analysis of the three-dimensional CO2 field and the surface CO2 flux each time. While 

observations of CO2 flux are not used, by assuming in the LETKF system that surface 

flux and the CO2 mole fraction are correlated (variable localization) we can solve for 

both control variables using only mole fraction observations. Additionally, while the 

three-dimensional CO2 field is optimized for both WRF domains, only the input for 

d02 is adjusted by LETKF for the surface CO2 flux. 

 

4.3 OSSE Design 
 
 An observing system simulation experiment, or OSSE, is often used to 

evaluate how a new set of observations or a new technique can improve a model 

analysis, and possibly the resulting forecast. Normally, data assimilation experiments 

are compared to another analysis, and use that as the assumed correct or reference 

dataset, but there is still some error associated with this analysis. In an OSSE, the true 

state of the system can be known as it is generated by a previous model simulation. 

Observations are created from this previous model simulation, which is often called 

the “nature run”. The following subsections describe how the nature run is performed, 

the observations generated from the nature run, and the experiments that will be 

evaluated in later sections. 
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4.3.1 Nature Run 
 

First, WRF-Chem is initialized with NARR meteorology at 00 UTC February 

01 2016 and uses CarbonTracker-NRT as the initial conditions of CO2 as described in 

Sect. 4.2.1. Then the model is integrated for the first ten days of February 2016 with 

the CarbonTracker-NRT boundary conditions as well as a prior emissions inventory 

to generate a 4D field of CO2 across both model domains for that period. This length 

of time was chosen as it allows for multiple diurnal cycles and 1-2 synoptic cycles 

while at the same time allowing for relatively low computation cost and time for 

multiple experiments. Synthetic observations are generated from this 4D CO2 dataset 

(henceforth referred to as “nature”) and used for the subsequent ensemble data 

assimilation experiments. Details on the assumed true fluxes, synthetic observations, 

and the ensemble generation are provided in the following subsections. 

4.3.1.1 Fluxes Used in Nature Run 
 

The Open-source Data Inventory for Anthropogenic CO2 (ODIAC; Oda and 

Maksyutov, 2011; Oda and Maksyutov, 2015; Oda et al., 2018), is used as the 

emissions inventory for fossil fuel CO2 for the nature simulation. ODIAC was chosen 

because its horizontal resolution of ~1 km is higher relative to other available 

emissions inventories. Using the total emissions estimated by the Carbon Dioxide 

Information and Analysis Center (CDIAC) at the US Department of Energy’s Oak 

Ridge National Laboratory, the location of point sources and satellite-derived 

nightlights are then used to distribute the emissions onto the ODIAC grid. Monthly 

total fluxes are provided by ODIAC for each month projected using statistical data 
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from the energy company BP for most recently, the year 2015. The emissions 

inventory is linearly interpolated from its native grid to the two domains for use as 

input in the WRF-Chem model, and the fluxes used for domain d02 are shown in Fig. 

4.1. The ODIAC provided fluxes are hourly average fluxes for the entire month with 

no diurnal or day of week variability, and no temporal scaling was added as to make 

the true fluxes constant throughout each experiment, for simplicity in comparing to 

estimated values. As ODIAC was generated for 2015 but the meteorology is for 2016, 

ratios computed from the U.S. Energy Information Administration’s (EIA) Monthly 

Energy Review’s total anthropogenic CO2 emissions 

(https://www.eia.gov/totalenergy/data/monthly/) are used to scale each of the 

emissions products as shown in Equation 4.5. The ratio of the totals provided by the 

EIA for February 2016 compared to February 2015 is applied as a constant scaling 

factor across the entire inventory.  

 

(4.5)  𝑂𝐷𝐼𝐴𝐶'F$G = 𝑂𝐷𝐼𝐴𝐶H05	'F$o	× 	LMN	O.18PQRS		=69T
LMN	O.18PQRS	=69p
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Figure 4.1. Map showing the assumed true anthropogenic emissions of CO2 used in 
the nature run. The black lines draw a box 105 km x 105 km square centered over 
Baltimore, MD and Washington, DC to represent an “urban” region for flux 
estimation comparisons. Note that the color bar is a logarithmic scale from 1 to 
1,000,000 mol km-2 hr-1. 

In addition to the fossil fuel emissions, a dynamical vegetation model has 

been coupled to WRF-Chem to provide the contribution of biogenic fluxes to the 

synthetic observations. The VEgetation-Global-Atmosphere-Soil (VEGAS) model 

(Zeng et al., 2005) is coupled offline with WRF-Chem to provide hourly biospheric 

CO2 flux. To generate the land to atmosphere carbon flux, VEGAS uses the WRF-

Chem meteorological output variables (2 m temperature, 2 m specific humidity, 

hourly precipitation, 10 m winds, skin temperature, and total net radiation) as well as 

the WRF domain topography, emissivity, and albedo. As this simulation is for 

February 2016, the biogenic component is relatively small compared to the fossil fuel 

emissions but is included anyway in the model to most accurately represent the CO2 



 

90 
 

mole fractions observed in the mid-latitude winter. Because the model meteorology is 

fixed for all ensemble members and considered perfect relative to the nature 

simulation, the biospheric fluxes are not adjusted by the LETKF, but are generated 

again and included in the simulated CO2 mole fractions for the assimilation 

experiments. 

4.3.2 Creating Synthetic Observations from Nature Run 
 

To understand the effect the quality of observations has on the CO2 flux 

estimation, two types of in situ observations of CO2 mole fractions are generated from 

the nature run. Both types of observations are linearly interpolated to a height above 

ground level (AGL) and are an hourly average of the previous hour’s instantaneous 

model output at every ten minutes. One of the types of observations is a high-

accuracy instrument with an inlet on a tower, generally with sufficient height AGL, 

which will be called Obs_HA referring to high-accuracy. The other is a medium-

precision assumed to be low-cost sensor generally located at a lower height (~10 m 

AGL) comparable to that of typical buildings in an urban/suburban area which will be 

referred to as Obs_LC (for low-cost). The error assumed with each observation is 

calculated from Equation 4.6: 

 

(4.6) 𝐸𝑟𝑟𝑜𝑟r5s = 	t(
u(vr=)
√)

)' +	𝐸𝑟𝑟𝑜𝑟x' 

 

where ErrorObs is the total error associated with each hourly observation, 𝜎(CO2) is 

the standard deviation of the instantaneous model output contained in the hourly 
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average, n is the number of model output times in the average (in this case 6, every 10 

minutes within an hour), and Errorm is the measurement error assumed of the 

instrument. For the high-accuracy locations (Obs_HA), Errorm is assumed to be 0.2 

ppm, and for the medium-accuracy sensor locations (Obs_LC), Errorm is 2 ppm.  

Four different observing network configurations are tested in subsequent experiments 

featuring both of these types of aforementioned observations: 1) NEC-B/W towers, 2) 

low-cost sensors, 3) hybrid, and 4) ideal. Each is described in detail below. Table 4.1 

summarizes these four networks, and maps of their spatial distribution are available in 

Fig. 4.2. 

 

4.3.2.1 NEC-B/W Network 
 

For the first network, named NEC-B/W, the locations of either existing or 

planned sites from the NIST NEC-B/W GHG observing network are used, with each 

assumed to be a high-accuracy observation point (Obs_HA as defined above). Each 

of these observing sites has a different height above ground level, and the WRF-

Chem observation operator (H) uses the actual inlet height for the towers in the NEC-

B/W. This network features 20 locations, with some in urban locations and the rest in 

the surrounding rural areas approximately halfway between the city centers and the 

edge of domain d02.  
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4.3.2.2 Low-Cost Network 
 

Because the medium-accuracy sensor is defined earlier (Obs_LC) to have 

error an order of magnitude larger than the tower sites, we choose to test a network 

using 200 such sensors rather than 20 tower sites. These are distributed in the domain 

d02 by randomly selecting the center of 200 urban pixels and at a height of 10 m, 

simulating a distribution of sensors that would most likely be on rooftops or light 

posts. This network is referred to throughout the remainder of this Chapter as the 

“Low-Cost” network. 

 

4.3.2.3 Hybrid Network 
 

The third type of observation network evaluated combines all of the 

observation sites from the first two networks, i.e. both towers and sensors or what 

will be called in this Chapter, the hybrid network. Specifically, the locations and 

types of observations are the same as the first two networks, meaning 200 Obs_LC 

observations in urban areas and 20 Obs_HA observations in the actual NEC-B/W 

network locations. 

 
4.3.2.4 Ideal Network 

 

Finally, to test the viability of these data assimilation methods using as many 

observations as possible, an ideal network is generated featuring an Obs_HA 

observation at a height of 5m at the center of each grid point in domain d02, i.e. 

approximately 3 km apart. This results in 13,320 high-accuracy observations in the 
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domain. While this is impractical from a cost or logistical standpoint, it is purely an 

experiment to see how the system can perform with the highest level of constraint of 

in situ observations.  

 

Table 4.1. Summary of the four different observing network configurations used in 
this study. 

Network Name NEC-B/W Low-Cost Hybrid Ideal 

# of observing 

sites 

20 200 220 13320 

# of Obs_HA 20 0 20 13320 

# of Obs_LC 0 200 200 0 

Observation 

height (above 

ground level; 

m) 

17-152 10 10-152 5 
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Figure 4.2. Map showing the distribution of observations for each of the four 
different in situ network configurations used in this study. 

4.3.3 Ensemble Data Assimilation Configurations to Test 
 

4.3.3.1 Ensemble Initialization 
 

For all of the subsequent experiments, the 50 distinct CO2 tracers comprising 

the ensemble are each initialized with a random 3D snapshot in time from the nature 

simulation output. This is done to provide a reasonable mean and spread of CO2 
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encompassing the variations occurring on both the diurnal and synoptic time scales. 

For each tracer ensemble member, their respective surface flux arrays are initialized 

with a constant value of 0 mol km-2 hr-1 across the entirety of domain d02 so that no 

prior information or initial spread of the surface flux is given to the model. The 

assumed true fluxes from ODIAC are provided for domain d01 and are not adjusted 

by the data assimilation system. 

4.3.3.2 Ensemble Inflation 
 

After each assimilation cycle, the new ensemble analysis will tend to have an 

underestimated uncertainty because of limitations in the number of ensemble 

members as well as model error. If this continues, this can lead to filter divergence 

and sub-optimal results. To account for this, in ensemble data assimilation the 

individual members are inflated using various techniques to introduce additional 

spread, and thus uncertainty, to the ensemble. We chose to use additive inflation for 

both the CO2 and flux fields, as it prevents the ensemble from trending toward the 

dominant direction of ensemble growth (Whitaker et al., 2008; Kalnay et al., 2007) 

and allows for a relatively easy method for adjusting the value for each variable and 

grid point.  

 

(4.7) 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠YZ)8P(𝑚) = 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠~LO�H(𝑚) + (𝑁𝑎𝑡𝑢𝑟𝑒(𝑡,𝑚) − 𝑁𝑎𝑡𝑢𝑟𝑒[[[[[[[[[[) ∗ 𝐶	 

 

Equation 4.7 describes how additive inflation is performed on each of the 50 

CO2 tracer ensemble members. For any member, m, the 3D field after LETKF 

assimilates observations (AnalysisLETKF) has a perturbation added to it to inflate the 
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total spread of the ensemble. To get this perturbation, a random time is chosen from 

the Nature run (t) selecting a 3D CO2 field for each member (m). The mean of these 

samples is computed, and then each member’s 3D field has the mean subtracted from 

it to compute the perturbations about the mean. Finally, before they are added to the 

analysis fields for the final analysis for each member, the perturbations are multiplied 

by a coefficient (C), to scale the final inflation added at each analysis cycle. For the 

majority of this Chapter, the coefficient C is 0.1. Increasing or decreasing this scaling 

coefficient would increase or decrease the percentage of the perturbations added to 

each member and thus increase or decrease the ensemble spread. 

 

(4.8) 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠YZ)8P(𝑚) = 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠~LO�H(𝑚) + (𝐵 ∗ 𝐶)	 

 

Equation 4.8 shows how the additive inflation is applied to the CO2 mole 

fraction ensemble members but the general form can be used for the 2D flux 

ensemble members as well. However, this equation can be put in a more general form 

where the additive inflation added to the initial analysis for each member is the 

product of the scaling coefficient, C (again assumed to be 0.1 unless otherwise 

stated), and an initial perturbation, B. In order to test the sensitivity of the ensemble 

composition to the final flux estimation, three different techniques for generating the 

initial perturbation (B) for each flux ensemble member are evaluated. Results 

comparing these different techniques will be presented in Sect. 4.4.1 and each will be 

described in the following subsections.  
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4.3.3.2.1 Infl_Constant 
 
(4.9)  𝐵M)YP_v.)s18)1 = 𝑅(𝑚) −	𝑅[ 

 

The simplest, which will be referred to as Infl_Constant, is a constant value 

applied to each pixel in the domain, meaning there is no variation in space. For each 

ensemble member (m) at each analysis time, a random value R between 1 and 5000 

mol km-2 hr-1 is chosen. Then the mean of the 50 members is calculated, and the 

perturbation for each member about this mean equals B in Equation 4.8. This inflation 

technique was chosen as it introduces no prior spatial information into the estimated 

flux analysis. 

 

4.3.3.2.1 Infl_Truth 
 

(4.10) 𝐴(𝑚, 𝑥, 𝑦) = 𝑂𝐷𝐼𝐴𝐶(𝑥, 𝑦) ∗ 𝑎 

(4.11)  𝐵M)YP_O/�1� = 𝐴(𝑚, 𝑥, 𝑦) −	𝐴(𝑥, 𝑦)[[[[[[[[[ 

 

Unlike Infl_Constant, which introduces no spatial information, Infl_Truth 

uses the assumed fluxes from the nature run to generate the additive inflation values. 

For each ensemble member at each analysis cycle, a random coefficient, a, between 

0.001 and 0.5 is selected and the ODIAC emissions are then multiplied by this 

coefficient, creating an intermediate scaled 2D flux field, A (Eq. 4.10). Again, to get 

the value added (or subtracted) to the ensemble member after the analysis, the mean 

of these scaled fluxes is computed, and the difference from the mean for each 



 

98 
 

ensemble member is what is added to the analyzed fluxes for that member (Eq. 4.11). 

This inflation method allows for not only a realistic spatial pattern, but can also 

provide information for the relative magnitudes of fluxes at adjacent grid points. 

 

4.3.3.2.3 Infl_PtSrc 
 

(4.12) 𝐴(𝑚, 𝑥, 𝑦) = �𝑂𝐷𝐼𝐴𝐶
(𝑥, 𝑦) > 100000 = 𝑂𝐷𝐼𝐴𝐶(𝑥, 𝑦) ∗ 𝑎
𝑂𝐷𝐼𝐴𝐶(𝑥, 𝑦) ≤ 100000 = 𝑅  

(4.13)  𝐵M)YP_�1�/- = 𝐴(𝑚, 𝑥, 𝑦) −	𝐴(𝑥, 𝑦)[[[[[[[[[ 

 

A compromise between the two techniques, Infl_PtSrc is also evaluated. At 

this high spatial resolution, particularly in populated areas, anthropogenic fluxes of 

surface CO2 can vary by orders of magnitude from one pixel to the next, due to power 

plants or other point sources. This third inflation method is an attempt to constrain 

these point sources to be large values (both in uncertainty and mean flux), while 

keeping the rest of the domain free from any prior information. This is a relatively 

reasonable assumption as one may have information on the location of point sources 

(and even possibly a reasonable accurate estimation of their emissions) but not know 

where smaller sources are located. For most of the domain this method is the same as 

Infl_Constant, a random value, R, between 1 and 5000 mol km-2 hr-1 is chosen 

randomly. However, for pixels in the true fluxes that are greater than 100,000 mol 

km-2 hr-1, the value is replaced by the ODIAC pixel’s value multiplied by a random 

coefficient, a, between 0.001 and 0.5 (Eq. 4.12). As with the other two methods, the 
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mean is then computed and the perturbation B is the difference of A for each 

ensemble member from the mean of all of the A arrays computed (Eq. 4.13). 

4.3.3.3 Localization Radius 
 

 Section 4.2.2 described the LETKF data assimilation framework and 

associated equations and mentioned that the localization of LETKF is applied to each 

model analysis grid point. To remove spurious correlations at long distances, 

localization is applied to optimize results in the data assimilation analysis. In this 

system, one user configurable option is a localization radius, which is based on a 

Gaussian distribution, where the radius prescribed is equal to the value of 1-sigma in 

distance. This distance tells the LETKF system for any given grid point in the model 

which observations to assimilate for the analysis and their associated weights of 

influence. So, generally, the larger the localization radius, the more observations that 

will be included. Section 4.4.2 will investigate how varying this localization radius 

affects the results of the assimilation system. 

4.4 Results 
 

In the following subsections, a number of experiments are conducted to 

evaluate the ability for an ensemble data assimilation system featuring WRF-Chem to 

accurately estimate urban surface CO2 fluxes. First, the three additive inflation 

methods described in Sect. 4.3.3 are compared for each of the observation networks. 

Next, the sensitivity to the observation localization radius, meaning the distance that 

an observation can influence the optimization of a single analysis grid point, is 

evaluated for different radii. Finally, we examine how the scaling coefficient applied 
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to the inflation perturbations, as well as the location and number of observations can 

affect the results.  

4.4.1 Sensitivity to Additive Inflation Methods 
 

In an ensemble square root filter such as LETKF, the forecast error covariance 

statistics are computed from the spread of the different ensemble members. Thus, the 

ability to adjust the surface flux for each grid point is related to the uncertainty of that 

pixel in each forecast at every analysis cycle. To evaluate how the different additive 

inflation methods described in Sect. 4.3.3.2 affect both the spatial distribution and 

magnitude of estimated fluxes, the three different methods are implemented for all 

four observing networks using the same observation localization radius (100km). 

More results with varying the localization radius will be provided in Sect. 4.4.2. 
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Figure 4.3. Time series of domain d02 averaged surface CO2 flux in mol km-2 hr-1 for 
each of the four observing networks (Top: NEC-B/W; Top-Middle: Low-Cost; 
Bottom-Middle: Hybrid; Bottom: Idealized) and for each of the three additive 
inflation methods (Blue: Infl_Constant; Red: Infl_Truth; Green: Infl_PtSrc) and the 
assumed true average flux in black. 

 
Figure 4.3 shows a time series of the average surface CO2 flux for the nature 

run (black) as well as the three different additive inflation methods for each of the 

four observing networks for domain d02. For the domain averaged estimated surface 

flux, there is significant variability in each of the time series depending on which 

observing network is used and which inflation method is applied. This variability is 

not only apparent when changing the observation network or inflation technique, but 

depending on the aforementioned choices, can be significant in time as well. Some of 

these variations are correlated across different experiments and even observing 

networks, such as the overall decrease in most of the experiments over the last 1-2 
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days or the sudden drops observed in all three of the NEC-B/W experiments on 

February 2-3 and February 6-7.  

 
Figure 4.4. Domain d02 averaged surface CO2 flux (bars) and standard deviation 
(error bars) in mol km-2 hr-1 for February 4 through February 8 2016 for each of the 
four observing networks (Top-Left: NEC-B/W; Top-Right: Low-Cost; Bottom-Left: 
Hybrid; Bottom-Right: Idealized) and for each of the three additive inflation methods 
(Blue: Infl_Constant; Red: Infl_Truth; Green: Infl_PtSrc) and the assumed true 
average flux in black. 

 
Within this variability, the majority of these experiments approach the correct 

mean value for at least some of the assimilation cycles, but a more quantitative 

evaluation is needed to determine the overall performance of these estimations. 

Figure 4.4 shows the domain d02 average surface CO2 flux (bars) and standard 
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deviation (error bars) for February 4 through February 8 2016 for each of the four 

observing networks and for each of the three additive inflation methods. The period 

of five days from February 4 through February 8 2016 was chosen to allow the 

system to spin up and approach an equilibrium, thus removing the first three days, 

and the last two days of the simulations were removed to exclude the aforementioned 

decrease observed across many of the experiments. 

Table 4.2. Analysis mean and standard deviation over days 4-8 (February 4 – 
February 8, 2016) of the domain d02 averaged surface CO2 flux in mol km-2 hr-1 for 
each of the four observing networks and the three additive inflation methods. 

Analysis Mean and Standard Deviation Over Days 4-8 
True Mean: 7418 Units: mol km-2 hr-1 
Network Infl_Constant 

Mean 
Infl_Constant 

Std. Dev. 
Infl_Truth 

Mean 
Infl_Truth 
Std. Dev. 

Infl_PtSrc 
Mean 

Infl_PtSrc 
Std. Dev. 

NEC-B/W 2081 2554 6152 866 4986 2082 
Low-Cost 6209 965 5110 355 7786 609 
Hybrid 5012 1667 5176 437 5500 1489 
Ideal 1056 967 7414 528 5775 1251 

 

For the two networks with only high accuracy observations, Infl_Constant 

performs quite poorly, with a mean value dramatically lower than the other two 

inflation methods, and a standard deviation that is comparable to or even larger than 

the mean itself. This is not nearly as dramatic in the Hybrid or Low-Cost network 

which incorporate 200 of the lower-accuracy observations, but they do still tend to 

have higher uncertainty and a lower mean than other configurations with the same 

observing network. Incorporating the point sources only, as is done in Infl_PtSrc, 

changes the results in all four observing networks, but only slightly in the Hybrid 

network. For the two networks with only high-accuracy observations, the mean value 

changes dramatically for the better, but the standard deviations either decrease as is 



 

104 
 

the case for NEC-B/W, or increase for the Ideal network. The best performer of these 

12 experiments is unsurprisingly when using the idealized network with Infl_Truth. 

Not only is the mean value of this period within less than 0.1 % of the nature mean 

value, but the variations about the mean are less than 5%. This small uncertainty for 

Infl_Truth holds true across all the observing networks, and for all three inflation 

methods the Low-Cost network has the smallest standard deviations in the estimated 

domain mean surface fluxes of CO2. Out of these twelve experiments, only two 

(Ideal-Infl_Truth and Low-Cost-Infl_PtSrc) have an estimated domain average flux 

that is within 10% of the assumed true mean value of 7418 mol km-2 hr-1. The mean 

values over days 4-8 can vary from as low as 1055 mol km-2 hr-1 for the Ideal network 

with Infl_Constant (which is only approximately 14% of the true mean), to the two 

aforementioned cases which are the highest and the closest to the assumed truth. 

Table 4.2 has the mean and standard deviation for all 12 of these experiments. These 

results suggest that the system needs to have some sort of prior information on the 

spatial distribution and relative magnitude of uncertainty to properly estimate the 

fluxes. 

In addition to the differences in the time series and mean estimated surface 

fluxes of CO2, one can also evaluate the differences in the spatial distribution of the 

estimated fluxes between the different inflation techniques and observation networks. 

Figure 4.5 shows spatial plots for all 12 of these experiments, three inflation 

techniques for each of the four observing networks, and features the average surface 

flux over days 4-8 of the assimilation experiments. Immediately one can see the effect 

introducing prior information has on the flux estimation, when using Infl_Truth the 
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magnitude and pattern of the estimated fluxes look comparable to the assumed true 

fluxes from Fig. 4.1 regardless of observing network used. The other two inflation 

methods feature much more gradual gradients across the domain, with the exception 

of the point sources in Infl_PtSrc which are appropriately much larger than their 

surrounding pixels. 

Rather than looking at the absolute values of the mean analysis flux, Fig. 4.6 

shows the percentage difference between the estimated mean flux averaged over days 

4-8 for each of the 12 experiments compared to the assumed true surface CO2 flux. 

For the ideal network configurations, it’s more apparent in these plots that 

Infl_Constant and Infl_PtSrc lead to large regions of underestimation, whereas with 

Infl_Truth, most of the region is only slightly over or underestimated compared to the 

true value, consistent with the domain averaged results shown earlier. Another thing 

to note is that across the other three observation networks, regardless of inflation 

method used, the Low-Cost network tends to have smaller errors in the urban core of 

the domain (the corridor running from Washington, DC northeast to Philadelphia, 

PA), consistent with the parts of the domain with the most of these observations. This 

area has a larger low bias (even outside of the immediate urban areas) in the Hybrid 

network, and this trend continues for the NEC-B/W network configuration. This is 

most easily visualized by looking at the ratio of red to blue in the panels on the left 

and right of Fig. 4.6. 
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Figure 4.5. Spatial plots of the estimated surface CO2 fluxes averaged over days 4-8 
of each experiment for each of the four observation networks (four rows) and three 
inflation techniques (three columns). White areas are fluxes estimated to be at or 
below zero. 
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Figure 4.6. Spatial plots of the percent difference between the estimated surface CO2 
fluxes averaged over days 4-8 of each experiment and the assumed true fluxes for 
each of the four observation networks (four rows) and three inflation techniques 
(three columns). 
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4.4.2 Sensitivity to Observation Localization Radius 
 

Section 4.3.3.3 described the observation localization radius and how it 

pertains to the LETKF data assimilation technique. This radius is related to the 

distance from a model grid point that an observation can be assimilated into the 

analysis. To evaluate the sensitivity of the estimated surface fluxes to this observation 

localization radius, both Infl_Constant and Infl_Truth inflation methods are used for a 

variety of localization radii for each of the four observing networks. Results using 

Infl_Constant are shown in Sect. 4.4.2.1 and using Infl_Truth in Sect. 4.4.2.2. 

 

4.4.2.1 Using Infl_Constant 
 

Rather than varying the additive inflation method used for a fixed localization 

radius as in Sect. 4.4.1, Figure 4.7 shows a time series of the domain average surface 

CO2 flux for the nature run (black) as well as the estimated domain average surface 

CO2 flux using the Infl_Constant additive inflation method for all experiments but the 

observation localization radius (each color represents a different localization radius) 

varies. Note that the 1 km radius is only used for the Ideal network, as it is the only 

one with sufficient observational density to work with only including observations 

within its grid cell. However, all four networks each include 50 km, 100 km, 150 km, 

and 200 km radii for direct comparisons of the observation networks. Similarly to 

what was discussed in Sect. 4.4.1, there are discernable differences in the results 

regardless of observing network depending on which localization radius is used. 
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Figure 4.7. Time series of domain d02 average surface CO2 flux in mol km-2 hr-1 
using the Infl_Constant additive inflation method for each of the four observing 
networks (Top: NEC-B/W; Top-Middle: Low-Cost; Bottom-Middle: Hybrid; Bottom: 
Idealized) and for different observation localization radii in each color with the 
assumed true average flux in black. 

For the Ideal network, the 1km radius features a relatively smooth curve of 

domain average surface flux, whereas the other localization radii all have large 

changes every few assimilation cycles. This is likely due to the fact that for the 1 km 

observation localization radius, only one observation is assimilated, whereas for 

larger radii, thousands of observations can be influencing each grid point. The 200 

km radius experiment while behaving similarly to the others at first, towards the end 

actually approaches and even exceeds the domain averaged flux for the final cycle. 

For the other localization radii, and for all of the observing networks, the results, 
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while different, tend to follow a similar pattern in time for a given observing network, 

particularly the radii larger than 50 km. Generally, for each network, the four 

experiments tend to have correlated derivatives, meaning that when the flux in one 

increases, they all increase, and vice-versa. The biggest difference in the different 

experiments tends to be the mean value of the domain averaged fluxes: the mean 

value can approach the true mean value, or can be a fraction of the truth at any given 

analysis cycle depending on which localization radius is used. This is most clearly 

shown in Fig. 4.8 where again the bars represent the time mean of the domain 

averaged flux for days 4-8, and the associated error bars are the standard deviations of 

that temporal mean. 

Of these 17 experiments using Infl_Constant, none of them have a mean value 

over days 4-8 that is within 10% of the assumed true value of 7418 mol km-2 hr-1. All 

four of the experiments using the Low-Cost network perform the best, with the 150 

and 200 km localization radii tests having the true mean within their 1-sigma standard 

deviations about their mean. Typically, the Low-Cost network experiments also 

feature the smallest standard deviations along with the largest mean values. With only 

20 observations and Infl_Constant, the four NEC-B/W experiments are the worst 

performers overall, with domain mean fluxes that are largely negative during much of 

days 4-8, likely due to the lack of any sufficient physical constraint in the magnitude 

of the surface fluxes. The mean and standard deviation over days 4-8 for all 17 of 

these Infl_Constant experiments are available in Table 4.3. 
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Figure 4.8. Domain d02 averaged surface CO2 flux (bars) and standard deviation 
(error bars) in mol km-2 hr-1 for February 4 through February 8 2016 for each of the 
four observing networks (Top-Left: NEC-B/W; Top-Right: Low-Cost; Bottom-Left: 
Hybrid; Bottom-Right: Idealized) and for each of the observation localization radii 
used (Orange: 1 km; Purple: 50 km; Blue: 100 km; Green: 150 km; Red: 200 km) 
with Infl_Constant, and the assumed true average flux in black. 
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Table 4.3. Analysis mean and standard deviation over days 4-8 (February 4 – 
February 8, 2016) of the domain d02 averaged surface CO2 flux in mol km-2 hr-1 for 
each of the four observing networks, and each observation localization radius using 
Infl_Constant. 

Infl_Constant Analysis Mean and Standard Deviation Over Days 4-8 
True Mean: 7418 Units: mol km-2 hr-1 
Network NEC-B/W Low-Cost Hybrid Ideal 
Mean - 1 km N/A N/A N/A 2795 
Std. Dev. - 1km N/A N/A N/A 332 
Mean - 50 km 795 5441 456 1134 
Std. Dev. - 50 km 1842 555 1196 822 
Mean - 100 km 2081 6209 5012 1056 
Std. Dev. - 100 
km 2554 965 1667 967 

Mean - 150 km 2119 6388 2071 1182 
Std. Dev. - 150 
km 1551 2101 1679 2394 

Mean - 200 km 1156 6639 1986 839 
Std. Dev. - 200 
km 3138 1578 2208 2350 

 
 
 In addition to variations in the domain averaged surface flux, each localization 

radius affects the spatial distribution of the analyzed CO2 fluxes. In Fig. 4.9, it is 

apparent that the choice of localization radius can drastically affect the spatial pattern 

when using Infl_Constant regardless of observing network. One thing to note is that 

for the NEC-B/W network and the Low-Cost network, that using a small (50 km) 

observation localization radius can actually determine the general areas where 

emissions are largest (the urban regions) and smallest (rural areas to the west and 

southeast). Thus, it is plausible that areas of high and low emissions of CO2 can be 

estimated or located without any prior spatial information introduced to the system. 

This concept will be evaluated further with additional experiments in a later section. 
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Figure 4.9. Spatial plots of the estimated surface CO2 fluxes averaged over days 4-8 
of each experiment for each of the four observation networks (four rows) and four 
observation localization radii (four columns) using the Infl_Constant additive 
inflation method. Areas in white are fluxes that are estimated to be at or below zero. 

 
4.4.2.2 Using Infl_Truth 
 

Section 4.4.1 showed that there is significant variability in the surface flux 

estimation depending on which additive inflation method is used. Section 4.4.2.1 used 

Infl_Constant in a variety of experiments varying the localization radius and 
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observation network used, but failed to find a satisfactory experiment that accurately 

estimated the true domain average surface flux of CO2. In the following subsection, 

now we consider the same 17 cases from Sect. 4.4.2.1, but this time the experiments 

are redone with Infl_Truth as the additive inflation method used. Figure 4.10 shows a 

time series of the domain average surface CO2 flux for the nature run (black) as well 

as the estimated domain average surface CO2 flux now using the Infl_Truth additive 

inflation method for all experiments but again the observation localization radius 

(each color represents a different localization radius) varies. Again, all four networks 

have 50 km, 100 km, 150 km, and 200 km experiments, and the Ideal network has the 

additional 1 km experiment. 

The most apparent difference between the results using Infl_Constant and 

Infl_Truth is that the curves are much smoother in time. While more than half of the 

experiments using Infl_Constant featured standard deviations in the domain averaged 

surface CO2 flux when considering days 4-8 that are larger than 1000 mol km-2 hr-1, 

none of the experiments using Infl_Truth have standard deviations that large. This is 

likely due to the fact that while over a domain average the perturbations added are the 

same, Infl_Truth adds perturbations that are a percentage of the assumed true fluxes 

rather than a constant mean value, meaning that for any given pixel the changes 

between cycles would be smaller in Infl_Truth.  Just like with Infl_Constant, for any 

given observation network, the results are different for each localization radius, but 

all of the time series behave similarly, with the only substantial differences being the 

magnitude of the estimated surface fluxes. The general trend is, the larger the 



 

115 
 

observation localization radius and thus the more observations included in the 

analysis at each model grid point, the higher the domain averaged surface CO2 flux is. 

 

 
Figure 4.10. Time series of domain d02 averaged surface CO2 flux in mol km-2 hr-1 
using the Infl_Truth additive inflation method for each of the four observing networks 
(Top: NEC-B/W; Top-Middle: Low-Cost; Bottom-Middle: Hybrid; Bottom: Idealized) 
and for different observation localization radii in each color with the assumed true 
average flux in black. 

With the assumed true domain averaged surface CO2 flux again being a 

constant value of 7418 mol km-2 hr-1, three of the experiments with the Ideal 

observing network have an estimated domain average surface CO2 flux over days 4-8 

within 5% of the true value, and another within 10% (Fig. 4.11). Unfortunately, none 

of the experiments from the other three observation networks can accurately estimate 

the total domain’s average flux within 10%. Four of the experiments (two each using 



 

116 
 

the NEC-B/W network and the Low-Cost network) have estimates that are 

approximately 6200 mol km-2 hr-1, but that is approximately 15% below the true 

estimated value. See Table 4.4 for the means and standard deviations for all of these 

experiments. While this would suggest that these observing networks cannot reliably 

estimate the surface CO2 flux, these values are for a five-day average. When looking 

at the time series for each experiment, at least one localization radius for each of the 

four observation networks estimates a value that is very close to the true domain 

mean for one or more analysis cycles. In Chapter 3, we noted the possibility of 

synoptic meteorology playing a role in CO2 transport and dispersion, and that future 

work needed to investigate metrics or methods to evaluate whether or not the certain 

synoptic situation was ideal for CO2 flux estimation. Thus, it is plausible that for only 

including ideal analysis cycles that the surface CO2 flux estimates would be closer to 

the assumed truth. 
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Figure 4.11. Domain d02 averaged surface CO2 flux (bars) and standard deviation 
(error bars) in mol km-2 hr-1 for February 4 through February 8 2016 for each of the 
four observing networks (Top-Left: NEC-B/W; Top-Right: Low-Cost; Bottom-Left: 
Hybrid; Bottom-Right: Idealized) and for each of the observation localization radii 
used (Orange: 1 km; Purple: 50 km; Blue: 100 km; Green: 150 km; Red: 200 km) 
with Infl_Truth, and the assumed true average flux in black. 
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Table 4.4. Analysis mean and standard deviation over days 4-8 (February 4 – 
February 8, 2016) of the domain d02 averaged surface CO2 flux in mol km-2 hr-1 for 
each of the four observing networks, and each observation localization radius using 
Infl_Truth. 

Infl_Truth Analysis Mean and Standard Deviation Over Days 4-8 
True Mean: 7418 Units: mol km-2 hr-1 
Network NEC-B/W Low-Cost Hybrid Ideal 
Mean - 1 km N/A N/A N/A 6194 
Std. Dev. - 1km N/A N/A N/A 322 
Mean - 50 km 3146 3992 4027 7123 
Std. Dev. - 50 
km 310 341 373 340 

Mean - 100 km 6152 5110 5176 7414 
Std. Dev. - 100 
km 866 355 437 528 

Mean - 150 km 5795 6114 5859 7275 
Std. Dev. - 150 
km 688 515 514 407 

Mean - 200 km 6116 6392 5905 7843 
Std. Dev. - 200 
km 709 355 754 597 

 

 Because experiments using Infl_Truth provide spatial patterns that are the 

same as the assumed true emissions, one cannot easily discern differences in the 

spatial plotted fluxes for each experiment. However, Fig. 4.12 shows the percent error 

of each experiment’s average flux over days 4-8 compared to the assumed true fluxes. 

Like with the Infl_Constant experiments, the localization radius makes a difference 

on the spatial distribution of the fluxes in the analysis. Because the observations for 

the three networks besides Ideal tend to be in the center of the domain rather than at 

the edges, for the 50km radius, there is a distinct ring around the urban center where 

fluxes are closer to the truth inside, and very low on the outside of this ring. For the 

larger radii, this pattern is not noticeable but one can still note how, generally, across 

the networks, when using Infl_Truth, a larger localization radius, and thus including 

more observations, reduces the error at each pixel across the domain. 
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Figure 4.12. Spatial plots of the percent error of the estimated surface CO2 fluxes 
averaged over days 4-8 compared to the assumed true fluxes from each experiment 
for each of the four observation networks (four rows) and four observation 
localization radii (four columns) using the Infl_Truth additive inflation method. 
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4.4.3 Additional Sensitivity Experiments 
 

The previous two subsections focused on how the additive inflation 

methodology and observation localization radius affected the surface CO2 flux 

estimation using LETKF. To briefly examine how other configuration choices may 

affect the analysis estimated flux, three additional experiments are performed. First, 

we can look at how doubling the perturbation size added as part of the additive 

inflation after the analysis affects the results. Additionally, the distribution of the 

observations as well as increasing the observation number by 50% are evaluated. For 

all three of these experiments, Infl_Truth is used as it provided the best overall 

results, and the lower accuracy observations (Obs_LC) are only used, but the 

observation localization radius differs for one of the three experiments. 

 

4.4.3.1 Increasing Inflation Scaling Coefficient 
 

In Sect. 4.3.3, the additive inflation ensemble perturbation method used in all 

of these experiments in this study is described. Within that section, a scaling 

coefficient that is multiplied to the randomly generated perturbations about a mean 

before the perturbations are added to each ensemble member is defined to be 0.1 for 

the OSSEs shown in this evaluation. However, this coefficient is simply a 

configurable option in the LETKF software, and thus, is simple to change for a 

sensitivity experiment. Figure 4.13 has both a time series and average over days 4-8 

for the Low-Cost network with Infl_Truth and a 200 km observation localization 

radius, with the original experiment from Sect. 4.4.2.2 in red, and a new experiment 
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with the additive inflation coefficient doubled to 0.2 in blue. There are some notable 

differences observed in the time series of surface CO2 flux, most notably that the 

initial increase in domain averaged flux is larger with the 0.2 coefficient versus the 

0.1 experiment. The general pattern of the time series is the same, and the last few 

days are very similar to one another, but the 0.2 coefficient experiment is almost 

always higher, and thus closer to the true value, than the 0.1 experiment. For the 

mean value over days 4-8 of the experiments, the 0.2 coefficient run is a little more 

than 3% higher at 6603 mol km-2 hr-1 compared to 6392 mol km-2 hr-1 when averaged 

over the entire domain. The final thing of note is that, unsurprisingly since the 

perturbations are larger, the standard deviations are now larger with the larger 

coefficient, with an approximate increase of 22% from 355 to 444 mol km-2 hr-1. 

 

 
Figure 4.13. Time series as well as the mean (bars) and standard deviation (error 
bars) over days 4-8 of domain d02 averaged surface CO2 flux in mol km-2 hr-1 using 
Infl_Truth and an observation localization radius of 200 km for the Low-Cost 
network for an additive inflation perturbation coefficient of 0.1 (red) and 0.2 (blue) 
with the assumed true flux in black. 
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4.4.3.2 Spatial Distribution of Observations 
 

The Low-Cost network defined in Sect. 4.3.2 features 200 Obs_LC 

observations placed only in pixels that WRF-Chem designated as urban/developed 

areas. However, this puts a large concentration of observations in the urban center of 

the domain and leaves the outer edges with few or no observations. Instead, the same 

number of observations can be redistributed randomly about the domain and the 

results can be compared to see how much of a difference the observation network 

design makes when using an observation localization radius of 100 km. In Fig. 4.14, a 

time series as well as the day 4-8 mean and standard deviation for experiments using 

the Low-Cost network with Infl_Truth and a 100 km observation localization radius 

are shown, with the original experiment from Sect. 4.4.2.2 in red, and a new 

experiment with the observations randomly distributed in blue. The randomly 

distributed sensor network experiment takes longer to stabilize the domain averaged 

surface CO2 flux. While the original Low-Cost network experiment starts to level off 

after one day, this doesn’t occur until the end of the second day for the random 

observation location network. Additionally, the mean value for this random network 

over days 4-8 is over 8% lower than the original Low-Cost network, decreasing to 

4711 mol km-2 hr-1 from 5110 mol km-2 hr-1. This is likely due to the fact that in the 

original network, more of the observations were in urban areas and saw greater CO2 

enhancements, and thus, adjusted the fluxes higher than when there are more 

observations in the rural parts of the domain. The standard deviation of the domain 

averaged surface fluxes increases similarly as in the previous case, with a change 
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approaching 25% of the original standard deviation (albeit still under 500 mol km-2 

hr-1). 

 

 
Figure 4.14. Time series as well as the mean (bars) and standard deviation (error 
bars) over days 4-8 of domain d02 averaged surface CO2 flux in mol km-2 hr-1 using 
Infl_Truth and an observation localization radius of 100 km for the Low-Cost 
network (red) and a random redistribution of the observations (blue) with the 
assumed true flux in black. 

4.4.3.3 200 Obs_LC vs 300 Obs_LC 
 

Finally, while the four observation networks evaluated in the previous 

sections cover a range of the distribution and number of observations, they also tend 

to only cover the extremes. Rather than having 200 randomly distributed Obs_LC 

observations throughout the domain, we can see how the estimation of the surface 

CO2 flux changes by increasing this number by 50% to 300. Figure 4.15 again 

features a time series and days 4-8 average of experiments using Infl_Truth and a 100 

km observation localization radius, the previous figure’s 200 random Obs_LC 

observations experiment is again in blue, and an experiment with 300 randomly 

distributed Obs_LC observations is in red. During the first day, both experiments 

behave very similarly and produce near identical results. However, for the next few 

days of the simulation, the experiment with 300 observations consistently estimates a 
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higher domain averaged surface CO2 flux. From midway through February 6 until the 

morning of February 9, both experiments again produce similar results. Finally, while 

this feature is not seen in the 200 random observation experiment, the 300 random 

locations experiment has a sudden drop in domain mean flux, consistent with many of 

the other experiments and likely is related to certain unfavorable meteorological 

conditions in part of the domain. However, continuing with the metric of the surface 

flux averaged over days 4-8, increasing the number of observations increases the flux 

estimate by about 7% and decreases the standard deviation by about 35%. 

 

 
Figure 4.15. Time series as well as the mean (bars) and standard deviation (error 
bars) over days 4-8 of domain d02 averaged surface CO2 flux in mol km-2 hr-1 using 
Infl_Truth and an observation localization radius of 100 km when using 200 
randomly distributed Obs_LC observations (blue) and when using 300 randomly 
distributed Obs_LC observations (red) with the assumed true flux in black. 

4.5 Discussion 

4.5.1 Urban Center Performance 
 

Section 4.4 focused on the evaluation of the performance of these OSSEs 

based on their ability to estimate the surface CO2 flux averaged across the entire 

domain of interest and over days 4-8 of the experiment. With this criterion as the 

metric of success, only the Ideal network (for multiple localization radii) using 



 

125 
 

Infl_Truth was able to successfully estimate the CO2 flux. Now we consider a 

situation where rather than estimating the CO2 flux for the entire WRF (or other 

model) domain, only a certain subset of the domain is the area of interest for flux 

estimation. For example, the domain chosen is centered over the Baltimore, MD and 

Washington, DC metropolitan areas, and thus a goal could be just to reproduce the 

surface CO2 fluxes from these urban areas. Figure 4.1 again shows the assumed true 

fluxes in domain d02, except now note that there is a box drawn around Baltimore 

and Washington that is 105 km x 105 km square (35 x 35 grid points). Now the 

experiments from Section 4.4 can be reevaluated by comparing their estimates in this 

urban box rather than the entire WRF domain. 

When reevaluating the 12 experiments from Sect. 4.4.1 where the localization 

radius is constant at 100 km, but the additive inflation technique changes for the four 

observation networks, one can see immediately how much better Infl_Truth performs 

than the other two methods in the urban center. Figure 4.16 shows the time series of 

the urban area averaged surface CO2 flux for these 12 experiments and the mean and 

standard deviations over days 4-8 are in Fig. 4.17. Infl_Truth has almost always the 

largest (and thus most correct) urban area averaged surface CO2 flux, and 

Infl_Constant the lowest, which, depending on observation network, is frequently 

estimating a net sink of CO2 in the urban center, completely different from the true 

relative maximum in the region for the assumed true emissions. When averaging over 

days 4-8 of the experiments, Ideal-Infl_Truth and Low-Cost-Infl_Truth both have 

estimates of the urban area averaged flux within 6% of the assumed true value. With 

the other two networks, using Infl_Truth can still cause an underestimation by as 
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large as 25% (from NEC-B/W). Using Infl_Constant, because there is no spatial 

constraint, the performance in the urban center is worse than for the total domain, 

with a net sink in the Ideal case, and a maximum average flux estimation that is less 

than 31% of the assumed true value. Using Infl_PtSrc fared better than Infl_Constant, 

but the urban area averaged CO2 flux failed to get to within 25% of the true value. 

 
Figure 4.16. Time series of the urban region averaged surface CO2 flux in mol km-2 
hr-1 for each of the four observing networks (Top: NEC-B/W; Top-Middle: Low-Cost; 
Bottom-Middle: Hybrid; Bottom: Idealized) and for each of the three additive 
inflation methods (Blue: Infl_Constant; Red: Infl_Truth; Green: Infl_PtSrc) and the 
assumed true average flux in black. 
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Figure 4.17. Urban region averaged surface CO2 flux (bars) and standard deviation 
(error bars) in mol km-2 hr-1 for February 4 through February 8 2016 for each of the 
four observing networks (Top-Left: NEC-B/W; Top-Right: Low-Cost; Bottom-Left: 
Hybrid; Bottom-Right: Idealized) and for each of the three additive inflation methods 
(Blue: Infl_Constant; Red: Infl_Truth; Green: Infl_PtSrc) and the assumed true 
average flux in black. 

 

 
Figure 4.18. Urban region averaged surface CO2 flux (bars) and standard deviation 
(error bars) in mol km-2 hr-1 for February 4 through February 8 2016 for each of the 
four observing networks, for Infl_Constant (left two columns) and Infl_Truth (right 
two columns), and for multiple observation localization radii (colors). 
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Figure 4.19. Time series of the urban region averaged surface CO2 flux in mol km-2 
hr-1 using the Infl_Truth additive inflation method for each of the four observing 
networks (Top: NEC-B/W; Top-Middle: Low-Cost; Bottom-Middle: Hybrid; Bottom: 
Idealized) and for different observation localization radii in each color with the 
assumed true average flux in black. 

The impact that varying the observation localization radius has on the urban 

region averaged surface CO2 flux depends greatly on which additive inflation method 

is used. Figure 4.18 features the mean and standard deviation of each localization 

radius for both Infl_Constant (the left panels) and Infl_Truth (the right panels) for all 

four observing networks. For Infl_Constant, none of the localization radii for any of 

the observing networks come close to properly estimating the urban area’s average 

flux. For the networks with the largest number of observations (Hybrid and Ideal), 

some of the configurations cause the system to make the urban area a net sink of CO2, 
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consistent with what was observed earlier, but is not limited to just one localization 

radius. The best performer with Infl_Constant (Low-Cost – 50 km) estimates a value 

that is approximately only half of the true urban average flux. When using Infl_Truth, 

the localization radius does not significantly impact the results in the urban area. For 

the Low-Cost and Hybrid networks, the difference between the highest of the four 

estimates of the urban mean flux averaged over days 4-8 and the lowest estimated 

value is less than 500 mol km-2 hr-1 for the Low-Cost network and less than 300 mol 

km-2 hr-1 for the Hybrid network. The differences between the experiments are larger 

for the NEC-B/W and Ideal observing networks, but there is still less than a 10% 

difference between the highest estimate and the lowest estimate. One final thing to 

note about the Infl_Truth experiments is that while for the entire domain generally the 

larger the localization radius, the higher the flux estimate, this is not true for the urban 

region, where in fact the largest localization radius only provides the highest flux for 

the NEC-B/W network (and the smallest localization radius tested provides the 

highest flux for the Hybrid network). 

When averaging over the entire WRF domain d02, only the Ideal network can 

estimate the surface CO2 flux within 5% or even 10%, as described in Sect. 4.4.2.2. 

However, when just considering this central urban region covering Baltimore and 

Washington, the results are more promising. In fact, the Low-Cost sensor network is 

able to estimate the urban area’s mean flux within 5% when using an observation 

localization radius of 200 km. The other three localization radii produce results that 

are within 10% of the mean value. Both the NEC-B/W network and the Hybrid 

network fail to reach this threshold, with estimated mean values that are all 
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approximately 80% of the true average flux. The 1 km Ideal experiment estimates the 

urban region’s average flux to within 10% of the true value, but all of the other four 

experiments are within 5% of the truth. All of the means and standard deviations of 

the urban region averaged surface flux using Infl_Truth are presented in Table 4.5. 

Again, as with the domain averaged estimates in Sect. 4.4.2.2, while the five-day 

averages are too low across the board, when looking at the time series plots (Fig. 

4.19), each observation network has an ensemble configuration that can closely 

estimate the true urban area averaged surface CO2 flux for one or more analysis 

cycles. 

 

Table 4.5. Analysis mean and standard deviation over days 4-8 (February 4 – 
February 8, 2016) of the urban region averaged surface CO2 flux in mol km-2 hr-1 for 
each of the four observing networks, and each observation localization radius using 
Infl_Truth. 

Infl_Truth Analysis Mean and Standard Deviation Over Days 4-8 
True Mean for Urban Area: 20114 Units: mol km-2 hr-1 
Network NEC-B/W Low-Cost Hybrid Ideal 
Mean - 1 km N/A N/A N/A 18573 
Std. Dev. - 1km N/A N/A N/A 1586 
Mean - 50 km 15912 18691 16666 19473 
Std. Dev. - 50 
km 2173 887 1683 1431 

Mean - 100 km 15692 18952 16574 19202 
Std. Dev. - 100 
km 2453 822 1741 1468 

Mean - 150 km 16923 19022 16374 19916 
Std. Dev. - 150 
km 2333 951 1340 1161 

Mean - 200 km 16123 19174 16579 19814 
Std. Dev. - 200 
km 1791 887 1791 1495 
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4.5.2 Correlations of Truth vs Analysis 
 

Section 4.4.1 showed that there is significant difference in the analyzed CO2 

flux depending on which additive inflation method is used. Without introducing any 

spatial information into the system (using Infl_Constant), generally the analysis is 

unable to estimate correctly the domain averaged surface flux. Fig 4.20 shows scatter 

plots comparing the analysis flux averaged over days 4-8 (y) with the assumed true 

flux (x) for each pixel in domain d02 for each of the four observing networks and for 

four localization radii using Infl_Constant and Fig. 4.21 is the same except for 

experiments using Infl_Truth. The comparison between the scatter plots on these two 

figures show how the introduction of spatial information into the ensemble 

perturbations and thus, into the CO2 flux analysis improves the correlation between 

the analysis and the truth at each grid point. For the Infl_Constant cases the R2 values 

are all virtually zero, with no linear correlation. The scatter plots support this, with 

almost all of the pixels in the analysis being near the mean value, with the true fluxes 

having substantial variability in their magnitude from pixel to pixel (from 0 to 107 

mol km-2 hr-1). Conversely, when using Infl_Truth, the correlations are quite good, 

with all of the experiments using a localization radius of 100 km or above having R2 

values of nearly 1. Interestingly, while one may suspect that the consistent 

underestimation of the domain averaged CO2 flux was due to an underestimation of 

the point source (or the large pixels), the scatter plots do not support this hypothesis. 

For the small localization radius (50 km), the underestimation is most pronounced at 

values near the mean of the domain, but for all experiments there is a consistent low 

bias of the surface flux across all pixels. 
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Figure 4.20. Scatter plots of the assumed true flux (x) and the analysis flux averaged 
over days 4-8 (y) for each model pixel for each observation network (the four rows) 
and for four observation localization radii (the four columns) using Infl_Constant 
(units are mol km-2 hr-1). 
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Figure 4.21. Scatter plots of the assumed true flux (x) and the analysis flux averaged 
over days 4-8 (y) for each model pixel for each observation network (the four rows) 
and for four observation localization radii (the four columns) using Infl_Truth (units 
are mol km-2 hr-1). 

4.5.3 Variability in the Analysis 
 
 The timeseries plots in Sect. 4.4 show variability across analysis times 

regardless of observing network, localization radius, or inflation technique used. 

Chapter 3 introduced this notion of how synoptic meteorology can play a role in the 
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quality of predicted CO2, and this suggests that it may also play a role in the quality 

of the analysis of surface CO2 fluxes. While the metric throughout most of this 

chapter is to take the average of days 4-8 and compare it to the assumed true flux, we 

can also consider the “best” analysis, meaning the analysis cycle where the domain 

averaged flux is closest to the true domain average, for each observing network and 

localization radius using the Infl_Truth method. Fig. 4.22 features spatial plots of the 

percent error of the analysis for each experiment’s “best” analysis, including the valid 

time for this analysis and the mean difference from the truth.  

 Recall from Sect. 4.4 that the domain averaged true CO2 flux is approximately 

7418 mol km-2 hr-1. Depending on observation localization radius, the domain 

averaged flux can be within 4% for the Low-Cost network, 1% for the NEC-B/W and 

the Hybrid networks, and within 0.05 for the ideal network (with a mean error of 3 or 

4 mol km-2 hr-1 for the 100 and 150 km radii). These numbers suggest that when the 

system is best situated for estimating the flux, that the higher accuracy observations 

do perform better than the lower accuracy observation network. Additionally, all of 

these times save for the 50 km Ideal best case are between 0 UTC February 7 and 0 

UTC February 9, supporting the hypothesis from Chapter 3 that there are periods 

where the overarching meteorological conditions allow for the model to estimate CO2 

better, and that this also may apply to flux estimation techniques. This suggests that 

further work needs to be done to quantify what periods or data should be included in 

an analysis system to get the optimum estimation of surface CO2 fluxes. 
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Figure 4.22. Spatial plots of the percent error of the “best analysis” for each 
experiment, meaning the one with the lowest mean absolute error compared to the 
true domain mean flux for each observation network (the four rows) and for four 
observation localization radii (the four columns) using Infl_Truth. The valid time of 
this optimum analysis is featured in the subplot title as well as this mean absolute 
error in units of mol km-2 hr-1. 
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4.5.4 Estimating Spatial Pattern Using A Small Localization Radius 
 

While the experiment using Infl_Constant and a 1 km localization radius for 

the Ideal network fails to get the correct mean flux for both the entire domain and just 

the urban center, Fig. 4.23 reveals something interesting. A high accuracy (Obs_HA) 

observation at every model grid point, and limiting the LETKF to only assimilate one 

observation at each point during each analysis cycle, allow for the general spatial 

pattern of the true fluxes to show up without any prior spatial information introduced 

into the data assimilation system, either through a forecasted prior flux or through 

additive inflation. The approximate regions of the Philadelphia, Baltimore, and 

Washington metropolitan areas are easily discernable in the surface CO2 flux 

averaged over days 4-8 of the simulation. Additionally, all of the smaller cities and 

towns throughout the domain (as well as the rural areas) are also able to be picked up 

in this experiment, with magnitudes that are approximately consistent with the 

assumed true fluxes. However, the spatial means are too low compared to the truth, 

likely due to the fact that the point sources, which are much larger than the rest of the 

pixels and contribute significantly to the domain total, are not well resolved in this 

experiment.  
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Figure 4.23. Spatial plots of the surface CO2 flux estimated with the Ideal observing 
network, the Infl_Constant additive inflation method, and using a 1 km localization 
radius, averaged over days 4-8 of the experiment. Left panel shows the estimated flux 
and the right panel is the percent difference each pixel is from the assumed true 
fluxes. 

 This Ideal network of 13,320 Obs_HA observations is impractical both from a 

financial standpoint, but also logistical with the installation of that many observing 

locations in such a small area. Instead, we can consider a grid of 840 Obs_LC 

observations, each 12km apart from one another. Not only is the cost of each 

individual observing point much cheaper, but there is also an order of magnitude 

fewer observations. Fig. 4.24 shows that by decreasing the observational density but 

keeping them regularly spaced, and increasing the observation localization radius to 

10 km, the system can still predict where the relative minimum and maximum fluxes 

should be. Just like with the 1km Ideal case, the domain averaged flux is 

approximately half of the true value, but without any spatial information introduced 

(aka using Infl_Constant), 840 Obs_LC locations regularly spaced can differentiate 
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between the large urban areas, the smaller cities, and the rural areas in the domain and 

their associated relative fluxes. 

 
Figure 4.24. Spatial plots of the surface CO2 flux estimated with 840 Obs_LC 
observing locations in a grid with spacing of 12 km, the Infl_Constant additive 
inflation method, and using a 10 km localization radius, averaged over days 4-8 of 
the experiment. Left panel shows the estimated flux and the right panel is the percent 
difference each pixel is from the assumed true fluxes. 

4.5.5 Atmospheric CO2 Analysis 
 

While the focus of these OSSEs is to estimate the surface CO2 flux for an 

urban region, one advantage that using data assimilation techniques such as LETKF 

has over inverse modeling, is that in addition to surface flux estimation, an analysis of 

the 3D CO2 field is also generated at each cycle. In Fig. 4.25, the nature run domain 

averaged CO2 is plotted in the thick black line, and each data assimilation 

experiment’s domain average CO2 is also plotted (blue lines using Infl_Constant, red 

lines using Infl_Truth, and green lines using Infl_PtSrc). Finally, a control run, 

meaning no data assimilation is performed, and thus the domain d02 surface CO2 flux 

is zero for the entire experiment, is also plotted in dark gray. These plots show the 
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strong dependence that meteorology has on the observed CO2 for a fixed flux (in the 

nature run) and that the contribution from the inner domain (the enhancement or the 

difference between the gray and black lines) can vary significantly in time due to the 

meteorology. Unsurprisingly, overall it seems that the experiments using Infl_Truth 

(red) provide the time series of CO2 that most accurately represent the true diurnal 

and synoptic variability of the domain averaged CO2. One thing of interest is that 

while most of the experiments underestimate the CO2 concentrations, consistent with 

the overall underestimation of the surface flux, the experiments for the Low-Cost 

network using both Infl_Constant and Infl_PtSrc consistently overestimate the CO2 

concentrations averaged over the domain. These same experiments do not 

overestimate the surface CO2 flux, so it’s possible that this overestimation has to do 

with the incorrect distribution of the fluxes, allowing for erroneously high CO2 

concentrations in much of the domain. One final thing to note, is that Sect. 4.5.3 

showed which analysis cycle had the mean value closes to the truth, and that this was 

often in the early afternoon on February 7 or February 8, which the CO2 timeseries in 

Fig. 4.25 show that the days of February 6-8 have the largest diurnal variability in 

CO2 during this 10-day period., further suggesting that meteorological conditions can 

affect the performance of the flux estimation system. 
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Figure 4.25. Time series of domain averaged surface CO2 mole fractions (ppm) for 
the nature run (black), a control simulation without data assimilation (gray), and 
multiple OSSEs using a variety of additive inflation techniques (Infl_Constant: blue; 
Infl_Truth: red; Infl_PtSrc: green) and observation localization radii. 

4.5.6 Uncertainty 
 

Because LETKF is an ensemble data assimilation method, not only is an 

analysis generated at each cycle from the mean of the ensemble, but the spread of the 

ensemble gives an uncertainty estimate of the analysis. Figure 4.26 shows the domain 

averaged ensemble spread over days 4-8 in the bars (with the error bars showing the 

standard deviation of the spread over this period) for Infl_Constant on the left, and 

Infl_Truth on the right, for all four observing networks and the different localization 

radii. Regardless of inflation method or observing network, there is a clear trend in 

that as the localization radius increases, the ensemble spread will decrease. This is 
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likely related to the increase in the number of observations assimilated to better 

constrain the estimate. With the exception of the 1km radius experiments using the 

Ideal network, and the three 50 km Infl_Constant experiments for the sparser 

networks, the ensemble spread averaged across the domain is generally on the order 

of 5% of the domain total flux value (approximately 350 mol km-2 hr-1). However, the 

ensemble spread for these outlying experiments can be as high as 1400 mol km-2 hr-1, 

a value that is approximately 20% of the true domain averaged flux. While the 

experiments using Infl_Truth overall have smaller ensemble spread relative to those 

using Infl_Constant, the differences are not more than 1-2% of the true domain 

averaged value. 

  

Figure 4.26. Domain averaged ensemble spread of the estimated surface CO2 flux 
over days 4-8 shown as the bars (with the error bars showing the standard deviation 
of the spread over this period) for Infl_Constant on the left, and Infl_Truth on the 
right, for all four observing networks and the different localization radii. 
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4.6 Summary and Conclusions 
 

A series of OSSEs are conducted and evaluated to determine not only if using 

LETKF with WRF-Chem can accurately estimate high-resolution surface CO2 fluxes 

in an urban region, but how changes in the ensemble data assimilation system affect 

the results. Averaged over five days, for an idealized case with a high-accuracy 

observation at each model grid point, the LETKF system can estimate the domain 

averaged surface CO2 flux to within 0.1% of the assumed true value, however this 

observing network is not feasible due to cost or other implementation limitations. 

Using three realistic observing network scenarios (20 high-accuracy locations, 200 

medium-accuracy locations, or a hybrid network combining both for 220 observing 

points), it is not possible to get a domain total surface flux estimate averaged over 

five days to be within even 10% of the true value. When focusing just on the urban 

center of the modeling domain however, certain configurations can get this five-day 

average within 10% or even within 5% of the true value. For both the total domain 

and the urban center, while the temporal mean of the areal sum may not be well 

resolved, each observing network has an ensemble configuration that can accurately 

estimate the surface flux for one or more analysis cycles. In fact, for observing 

networks with Obs_HA observations, the best analysis cycle can be within 1% and 

within 4% when using 200 Obs_LC observations. This further emphasizes the impact 

that meteorology plays in the ability to accurately estimate surface fluxes (as 

described in Chapter 3). 

Ensemble data assimilation techniques such as LETKF get their forecast 

(background) error statistics from the spread of the ensemble members. Thus, the 
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inflation technique used after each analysis cycle has a significant impact on the 

quality of the estimated surface fluxes and atmospheric CO2. The observation 

localization radius, or the distance from a grid point that an observation can influence 

the analysis, also plays a significant role in the quality of the estimated surface flux 

relative to the true values, but this effect is secondary to the inflation technique used. 

Additionally, while a certain inflation technique tends to work best for all observation 

network configurations, the localization radius will need to be optimized depending 

on the quantity and distribution of observations used. The results from these OSSEs 

suggest that LETKF coupled with an Eulerian meteorological transport model could 

be a reasonably useful tool for urban greenhouse gas flux estimation, but further 

evaluation is necessary. 
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Chapter 5  Conclusions and Future Work 

5.1 Conclusions Addressing Main Research Questions  
 

The individual chapters in this dissertation examined the viability of using a 

relatively dense network of low-cost and medium-accuracy CO2 sensors, coupled 

with an atmospheric transport model, and an advanced data assimilation system, to 

estimate anthropogenic CO2 fluxes in an urban area. In Chapter 2, the performance of 

a particular low-cost NDIR CO2 sensor was evaluated, and with corrections for 

atmospheric variables such as air pressure and temperature, the sensor can measure 

CO2 within 2 ppm (at the 95% confidence interval) compared to a reference analyzer 

when averaged over the entire month. Chapter 3 compared a deterministic simulation 

of WRF-Chem predicted atmospheric CO2 to observations. It was argued that while 

WRF-Chem combined with prior anthropogenic emissions inventories could 

reasonably reproduce the CO2 mole fractions averaged over the entire month, there is 

substantial variation in the quality of the modeled CO2 mole fractions for any given 

hour or observing location. Finally, in Chapter 4 a series of OSSEs are performed to 

determine if using WRF-Chem with an ensemble data assimilation technique could 

accurately estimate urban CO2 fluxes with 200 low-cost but medium-accuracy 

sensors, as well as for other observing networks. 

Chapter one featured a number of research questions to be addressed in this 

dissertation and detailed conclusions for each of these questions are presented in the 

subsequent subsections. 
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5.1.1 Are any of the current commercially available and low-cost observing 
platforms for CO2 able to resolve the ambient variability both in time and space 
with sufficient accuracy and precision for use in urban environments? 
 

Chapter 2 features the evaluation of one particular low-cost CO2 observing 

platform, a NDIR sensor called the K30 from a Swedish company, SenseAir. The 

manufacturer’s stated accuracy is ±30 ppm ±3 % of the reading, insufficient for 

ambient CO2 monitoring as even in urban areas, enhancements are generally on the 

same order of tens of ppm. However, after co-locating six of these sensors with a 

high-accuracy gas analyzer, it was found that most of this manufacturer’s stated 

uncertainty was due to an individual offset for each sensor (Fig. 2.4). Just by 

correcting for this offset, the accuracy of this sensor increases to approximately 1% of 

the observed value (4-5 ppm). To further reduce the measurement error of these 

sensors, a multivariate regression analysis was performed including atmospheric 

pressure, temperature, and water vapor mixing ratio in addition to the assumed true 

value of CO2 from the gas analyzer. By including all of these variables in a 

correction, the measurement error can be reduced to under 2 ppm for 1-minute data 

(Fig. 2.8). When increasing the averaging window to one hour (commonly done for 

atmospheric observations of CO2), the root mean square error can be reduced to as 

low as 1.5 ppm. Based on the findings from this study, with environmental correction, 

the K30 sensor can measure variability in atmospheric CO2 with sufficient precision 

for urban greenhouse gas monitoring. 
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5.1.2 Are high-resolution forward modeled simulations of atmospheric CO2 mole 
fractions able to accurately resolve the mean and temporal variability found in 
observed time series? 
 

Overall, WRF-Chem generated mole fraction time series have similar 

magnitudes and variabilities to the observed mole fractions from the four observation 

locations used in Chapter 3, and have realistic variations in the synoptic and diurnal 

cycles (Fig. 3.4). The average bias of WRF-Chem over the month of February while 

using an ensemble of anthropogenic emissions inventories varies from approximately 

-3 to 1 ppm across all of the observational data used (Fig. 3.6). However, Section 

3.3.2 illustrates that depending on the synoptic meteorological regime in the area, the 

model performance for CO2 mole fraction simulation can vary significantly. At any 

particular site, the differences between the ensemble of simulated CO2 values and the 

observed CO2 can vary from near zero to as high as 100 ppm (Fig. 3.4). When 

averaged over the entire month, all simulated CO2 mole fractions are within 8 ppm of 

each other (Fig. 3.6) representing a range of approximately 2% of the total mole 

fraction. 

5.1.3 Is the error associated with differences in emissions inventories greater 
than the error from meteorological transport and dispersion when comparing 
simulated CO2 to observations? 

In addition to the synoptic meteorology, variations in emissions inventories 

are also reflected in the predicted CO2 mole fractions as shown in the mean biases 

described in Fig. 3.6. For the outermost domain (d01), the areal sum of the hourly 

averaged emissions is similar in magnitude (all within 10 % of the mean of the 4 

inventories) (Fig. 3.3; Table 3.3). However, in the innermost domain (d03), the areal 

sum of FFDAS is over 36 % higher than the mean and the lowest inventory EDGAR 



 

147 
 

is 20% below the mean of the inventories. Even though each inventory has a similar 

national or global total, there can be substantial differences between them for any 

given region due to the emission disaggregation methods used (e.g., Hutchins et al. 

2016; Oda et al. 2018), a problem being studied further in other works (e.g., Fischer 

et al., 2017). The differences in totals and local sources could also be attributed to 

differing methodologies and datasets included in each emissions inventory, including 

the exact location of point sources and grid cell locations, among other things. These 

differences are generally reflected in the simulated CO2 levels, with FFDAS being 

the highest averaged over the entire month, and EDGAR the lowest.  

The mean absolute error of the simulated CO2 is roughly a factor of two larger 

than the mean standard deviation at the urban sites, with the ratio of the two ranging 

from 1.64 to 2.58 for all hours, and 1.57 to 1.89 for afternoon hours only, depending 

on the site and inlet level. This result suggests that on average, factors common to all 

five tracers (meteorological error, background error, or error in the biosphere tracer) 

contribute more to the overall model performance than the choice of anthropogenic 

emissions inventory. Given the low bias (~2 ppm) at SNP, the extent of our largest 

WRF domain, and the small relative contribution of the VEGAS tracer to the monthly 

mean values, we expect that the errors shown in Fig. 3.10 are dominated by 

meteorological conditions during winter. This conclusion is further supported by the 

two examples illustrated in Section 3.3.2. However, it is important to note that these 

meteorological conditions or errors can exacerbate the differences in the emissions 

inventories as well, like shown in Fig. 3.7.  
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5.1.4 Can an ensemble of forward tracer model simulations be used with in situ 
observations of atmospheric CO2 and data assimilation techniques to estimate 
high resolution surface fluxes of carbon in urban areas? 
 
 Chapter 4 featured a series of OSSEs using WRF-Chem coupled with LETKF 

to demonstrate the possibility of using ensemble data assimilation with Eulerian 

transport and dispersion models to generate 3D analysis fields of atmospheric CO2 as 

well as to estimate surface carbon fluxes. Using an idealized case of a high accuracy 

observation at every model grid point and an additive inflation method that includes 

the spatial distribution and relative magnitudes of the assumed true fluxes, the data 

assimilation system can estimate the domain averaged surface CO2 flux to within 

0.5% of the assumed correct value (Fig. 4.11). This holds true whether looking at the 

domain total or just the urban center area of interest (Fig. 4.18). However, Sect. 4.5.3 

and Fig. 4.22 show that while the other observing networks can not accurately 

estimate the surface flux over a five-day average, there are optimum analysis cycles 

where the error can be within 1% for a network featuring high-accuracy observations 

to 4 % for the network with 200 low-cost observations. 

 
5.1.5 How does the estimation of surface fluxes using a dense network of lower 
accuracy observations compare to using a sparse network of high accuracy 
observations? 
 
 In Chapter 4, four separate hypothetical observation networks of in situ CO2 

concentrations are used: one with a sparse network of high accuracy observations, 

one with a dense network of lower accuracy observations, a network combining the 

two previous networks, and an idealized network with a high accuracy observation at 

each model grid point. When using an ensemble with no spatial information 

introduced into the forecast error covariances (Table 4.3), the network of 200 lower 
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accuracy observations significantly out performs the 20 high accuracy observation 

network. While the high accuracy network only estimates a domain averaged flux that 

is approximately 30% of the true value, when using the 200 lower accuracy 

observations the system can get the value to approximately 90% of the true value (and 

the true value is within the range of uncertainty for this experiment). When 

introducing prior spatial information into the system (Table 4.4), the differences are 

much less dramatic (the difference between the two is less than 5%), however the 

dense, but lower accuracy network still out performs the sparse, high accuracy 

observation network. These results are based on a five-day average of the surface 

flux, when considering just the analysis cycle with the mean value closest to the truth 

(Sect. 4.5.3) there is a distinct advantage to using the high-accuracy observations. The 

20 high accuracy observation network out performs the 200 lower accuracy sensors, 

with a lowest mean error of within 1% vs 4%. 

 
5.1.6 Is there any added benefit to the surface flux estimation by creating a 
hybrid network containing both the high accuracy and low accuracy 
observations over just using the sparse high accuracy observation network? 
 
 When using the additive inflation method without any spatial information 

(Sect. 4.4.2.1), this combined/hybrid network performs better than the sparse, but 

high accuracy network, but worse than the dense network. Perhaps unsurprisingly, the 

results are somewhere in between these other two networks for most of the 

experiments performed in Chapter 4. In almost all cases, the hybrid network 

underestimates the domain averaged CO2 flux compared to the true value, and the 

lower accuracy network’s estimation. This is likely due to the fact that the high 

accuracy observations generally are located in more rural areas, and at higher heights 



 

150 
 

above ground level, so the concentrations observed at these sites will tend to be lower 

than that of those from the near-surface lower-accuracy observations limited to the 

urban areas. When looking at each experiment’s best performing analysis period 

(Sect. 4.5.3; Fig. 4.22), we can see a slight decrease in the mean absolute error of the 

analysis (a decrease of approximately 0.1% of the mean value) when adding 200 low 

accuracy sensors to the 20 high accuracy sensor network, but this decrease in error is 

not much for this particular cycle. It is clear that overall, the performance of this data 

assimilation system is improved across all different configurations when including 

this additional network of low-cost and lower accuracy sensors to complement a high 

accuracy network, but further evaluation needs to be done to determine the extent of 

this improvement.  

 
 
 
5.1.7 How do changes in the configuration of the data assimilation system affect 
the surface flux estimates? 
 
 For a given observation network, the estimate of surface carbon flux can 

change significantly depending on the specific data assimilation configurations 

chosen. Section 4.4 evaluates the estimated surface flux while varying the additive 

inflation method used for the ensemble after each analysis cycle, the effect changing 

the observation localization radius has, the amount/size of the inflation at each cycle, 

as well as changing the amount and distribution of observations. When varying the 

inflation technique for a fixed localization radius (Table 4.2), the differences between 

the three techniques can be as small as 10% or as large as a factor of 5 differences 

between the smallest and the largest of the three techniques. The spatial correlations 
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between the same spatial pixel for the true fluxes and the analyzed fluxes are also 

much better when using Infl_Truth compared to Infl_Constant (Figs. 4.20, 4.21). For 

a fixed inflation technique (Tables 4.3, 4.4), the changes across different observation 

localization radii are not as dramatic but still significant. The difference between an 

accurate estimation of the surface CO2 flux and an underestimation can be solely 

because of the choice of localization radius (Figs. 4.11, 4.18). Additionally, the 

amount of the inflation perturbations to the ensemble members (Fig. 4.13), the exact 

location of observations (Fig. 4.14), and a relatively small increase in the number of 

observations (Fig. 4.15), each affect the results by a non-trivial amount but they are 

secondary responses compared to that from changing the inflation techniques and 

localization radii. 

5.2 Future Research Directions 
 

 The research conducted as part of this dissertation is largely interdisciplinary, 

as it incorporates a significant component of instrumentation evaluation, mesoscale 

modeling of meteorology and trace gases, and ensemble data assimilation. As such, to 

describe the future research that this work should inspire, it is perhaps best to separate 

these directions into separate sections. Section 5.2.1 suggests ways to improve low-

cost CO2 observing platforms for use in urban monitoring. Section 5.2.2 describes 

additional work that needs to be investigated for regional and urban CO2 modeling. 

Finally, Section 5.2.3 identifies future tests and experiments that should be conducted 

to further demonstrate the viability of ensemble data assimilation as a tool for high 

resolution CO2 flux estimation. 
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5.2.1 Future Direction for Low-Cost Sensors 
 

Chapter 2 concluded that the K30 low-cost NDIR CO2 sensor could have an 

accuracy of better than 2 ppm when compared to a reference analyzer after correcting 

for environmental factors. However, this analysis was only over a 30-day period and 

did not evaluate if the sensor features any long-term drift. Thus, a long-term 

evaluation of the K30 sensor, for at least six months but a year is preferred, is needed 

where the sensor is co-located with a reference analyzer to determine if there is long-

term drift in the sensor, and if the calibration coefficients computed during the first 

few weeks are still valid throughout the evaluation period. This could provide insight 

on the stability of the instrument and how often a recalibration may be required for 

adequate results. Given the relative small size and power consumption requirements 

of this sensor, future work could also entail evaluating its use in other observing 

platforms besides surface observations, including placing them on unmanned aerial 

vehicles or in a sensor package for vertical profiles using a balloon (radiosonde). 

Additionally, if a method could be devised to regularly calibrate these sensors 

at relatively low-cost with reference gas standards, either one for baseline drift, or 

preferably two different values for a two-point calibration, this could further improve 

both the accuracy of the observations, but also the legitimacy of any datasets that 

include the observations. Longer term, new technology will almost certainly be 

developed that can either improve on existing observing methods such as NDIR, or 

perhaps a new method, that can either decrease the cost and size of an instrument or 
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increase the accuracy and precision. Efforts are already underway at SenseAir to 

create a new NDIR CO2 observing platform that may be comparable to the K30 in 

size and cost but feature improved performance. At the very least, methods to control 

the influence environmental factors have on the measured CO2 could have a 

significant impact on the real-world performance of low-cost observing platforms. 

5.2.2 Future Direction for Urban CO2 Modeling 
 

 Numerical weather prediction is a constantly evolving field, with 

improvements in model physics and dynamics coming every year, and as computers 

become faster, the feasible resolution of simulations increases as well. Related to the 

issue at hand of urban CO2 modeling, there are numerous areas of improvement in the 

short term that can be addressed. First, implementing advanced data assimilation 

techniques as well as just including new observing platforms of meteorological 

variables into the meteorological analysis can improve the prediction of urban CO2 

mole fractions. Analysis nudging was not used in Chapter 3 because it is believed to 

not fully conserve mass, and thus ways to improve the meteorology without affecting 

the CO2 tracers are needed. If the modeling community can improve the transport and 

dispersion within the model, then the simulated CO2 will almost certainly more 

realistically represent the true CO2 field. Secondly, while Chapter 3 found this to be 

secondary to the model meteorology, there is still uncertainty and variability in 

anthropogenic emissions inventories. As new technologies emerge, and areas shift 

from reliance on coal to natural gas, or from fossil fuels to renewable energy, or if a 

developing country builds new emissions sources, then there will still be a need for an 
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accurate and up to date emissions inventory to use as input to the model. Most of 

these inventories are at too low resolution, either spatially or temporally, to accurately 

represent the variability observed in urban areas, so increasing the resolution would 

be a welcome improvement. 

 The model simulation in Chapter 3 was for February 2016. This month was 

chosen not only because of data availability, but because the biospheric CO2 signal 

was assumed to be small compared to the anthropogenic emissions. Because of this, 

there was no evaluation of the VEGAS biospheric flux model, which would be key 

for accurate CO2 mole fraction simulation during the growing season. Thus, one 

obvious first next step would be to recreate the analysis from Chapter 3 but with a 

summer month rather than a winter month. Not only would this help to evaluate the 

modeling framework with the biospheric flux added, but it would also show how the 

results differ (or are similar) due to the summer meteorology (more convection, fewer 

mid-latitude storms). 

 Continuing with the differences in meteorology between summer and winter 

in the mid-latitudes, Chapter 3 suggests that the overarching synoptic meteorology 

setup may play a role in the ability for the model to accurately predict CO2 mole 

fractions. Some days the modeled CO2 error is quite small (under 1%), but for others 

the error can be well over 10% of the observed CO2 mole fraction. Future work 

should investigate this further and see if it applies to multiple regions and over all 

seasons/months. Hopefully, this future analysis could lead to criteria or a technique 

for determining which periods the model can accurate represent the CO2 mole 
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fractions, both for high-resolution modeling, but also for use in surface flux 

estimation. 

5.2.3 Future Direction for Ensemble DA CO2 Flux Estimation 
 

 Chapter 4 performed a number of OSSEs to determine the validity of using 

LETKF with WRF-Chem and in situ observations of CO2 mole fractions to estimate 

surface CO2 fluxes. One of the main findings of this chapter was that the 

configuration of the data assimilation system, particularly the inflation technique, has 

a significant impact on the quality of the CO2 flux analysis. The forecast or 

background error is very important for data assimilation systems to accurately 

generate a new analysis. First, to better understand the uncertainty of the estimations, 

one can look more closely at the ensemble spread in the experiments presented in 

Chapter 4 as well as in subsequent studies, as the LETKF code provides the analysis 

mean and spread as output at each cycle, this is briefly presented in Chapter 4.5.6. 

Further OSSEs should be performed using this data assimilation system to evaluate 

the results with additional inflation techniques, both the additive inflation methods 

described in Chapter 4, but also with new ones such as multiplicative inflation or 

relaxation to prior. In addition to the inflation techniques, further experiments should 

be conducted to evaluate additional observing networks to find a configuration (or 

multiple ones) that can best estimate the surface CO2 fluxes. Then with these new 

observing network configurations and inflation techniques, greater care should be 

taken to find the optimum localization radius (do a sensitivity test at 5 km intervals 

rather than 50 km, for example) for the surface flux estimation. 
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 As with the high-resolution modeling of CO2, the flux estimation OSSEs 

should also be conducted in a summer period as well as a winter period, to see how 

the biospheric fluxes can affect the results. With this, there will also need to be an 

error associated with the biospheric flux, and care will have to be taken to separate 

out the separate signals of the fluxes from the observations which are just the total 

CO2 mole fraction. Finally, after these additional OSSEs are performed, the best 

performing configuration(s) should be used with real observations of in situ CO2 mole 

fractions to estimate the surface CO2 flux, with the information gathered from the 

OSSEs used to generate the uncertainty associated with those estimates. LETKF 

coupled with WRF-Chem has shown to be a viable option for high-resolution CO2 

flux estimation and by using it along with traditional inverse-based flux estimation 

methods, urban carbon cycle scientists will be able to better estimate both the true 

surface flux, but also the uncertainty associated with these estimates. 

5.3 Final Thoughts 
 

Currently, the United States Environmental Protection Agency uses 

continuous emissions monitoring systems (CEMS) to estimate the emissions of trace 

gases, including CO2, from smokestacks. The CEMS systems are calibrated yearly 

with a relative accuracy test audit, but this only as the name suggests, provides 

relative accuracy calibrations. Evaluations conducted by NIST suggest that the 

uncertainty in emissions estimates from CEMS can be as large as 10%, with efforts 

underway to reduce this uncertainty to 1% by developing new techniques to measure 

the turbulent flow inside of the smokestacks (Johnson et al., 2015). The results 

presented in Chapter 4 suggest that using LETKF with WRF-Chem and various 
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observing networks can also estimate surface CO2 flux to within 10% of the true 

value.  

 As less-wealthy countries continue to develop their economies, and with that 

increase their consumption of fossil fuels, there will be a need to estimate their 

greenhouse gas emissions. In these countries, such as those in Africa or the Indian 

subcontinent, the local governments may not be able to dedicate significant resources 

to climate change mitigation, particularly relative to places like Europe, China, or the 

United States. In these developing nations are where emissions estimations using low-

cost sensor networks may be most useful. The OSSEs presented in Chapter 4 show 

that flux estimates using 200 low-cost sensors provide comparable results to that of 

using 20 high-accuracy instruments, for a total installation cost comparable to that of 

just one of the high-accuracy locations. Thus, while some tradeoffs in accuracy may 

be made, an estimation with a slightly larger uncertainty is going to be much more 

useful than no estimation at all because of prohibitive cost. 

Improving our estimates of CO2 emissions will be a crucial area of research 

with implications for the future of Earth’s climate, geopolitical conflicts, and the 

survival of mankind. While the current uncertainties of emissions estimates are still 

on the order of 10%, with additional observing systems and new estimation 

techniques, including those presented in this work, future estimations will almost 

certainly be closer to the true emissions quantity. Accurate CO2 flux estimation is key 

from a political standpoint; as most countries agree to mitigate emissions, 

accountability of the pledged reduction in emissions over time requires accurate 

estimates to confirm or dispute each nation’s progress. Additionally, in order to better 
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estimate the future global climate, an accurate estimation of global CO2 emissions is 

key to understanding which of the RCP scenarios we are most likely to achieve. 

Anthropogenic climate change is settled science, however what is far from settled is 

the magnitude that our planet’s climate will change in the coming decades. While 

there are many factors that will contribute to the net increase in global averaged 

temperatures, including aerosols and clouds, better estimation of CO2 emissions is a 

key step towards understanding the future atmospheric composition and its impact on 

our climate.   
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