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Liquid crystals (LCs) have revolutionized the display and communication technologies. 

Doping of LCs with inorganic nanoparticles such as carbon nanotubes, gold 

nanoparticles and ferroelectric nanoparticles have garnered the interest of research 

community as they aid in improving the electro-optic performance. In this thesis, we 

examine a hybrid nanocomposite comprising of 5CB liquid crystal and block 

copolymer functionalized barium titanate ferroelectric nanoparticles. This hybrid 

system exhibits a giant soft-memory effect. Here, spontaneous polarization of 

ferroelectric nanoparticles couples synergistically with the radially aligned BCP chains 

to create nanoscopic domains that can be rotated electromechanically and locked in 

space even after the removal of the applied electric field. We also present the latest 

results from the dielectric and spectroscopic study of field assisted alignment of gold 

nanorods. 
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Chapter 1 

Introduction 

Materials that conduct electrical current under the influence of an electric field are 

called conductors. Materials whose internal charges do not flow freely under the 

application of electric field are called insulators. According to the band theory of solids, in 

a conductor, the charges can be excited to electronic states where they can move freely 

(conduction band) and this energy difference is often referred to as ‘band gap’. Most 

insulators have large band gaps. A dielectric material is an insulator that can be polarized 

by the application of an electric field. Here, the electrons are bound to the nucleus and have 

limited movement and when an external field is applied, the nucleus of the atoms are 

attracted to the negative terminal and the electrons are pulled towards the positive terminal 

and tend to align in equilibrium position. These charges separated by a small distance 

constitute a ‘dipole’ and the process is known as ‘polarization’ (P). The term ‘dielectric’ is 

often used to indicate the energy storing capacity of the material and dielectrics are an 

efficient supporter of electrostatic fields. The extent to which a substance concentrates the 

electrostatic lines of flux can be quantified by “Dielectric constant” (𝜀 =  𝜀𝑟𝜀𝑜) or in other 

words, the response of charge-free sample to an applied electric field.1 In corollary, all 

dielectrics are insulators but not all insulators are dielectrics. The polarizability and 

structural arrangement dictates the behavior of dielectrics (Figure 1-1). The built-up 

polarization in dielectrics take a certain finite time (τ) before reaching its maximum value. 

This time-dependent dynamics is characteristic to each material and is termed as ‘dielectric 

relaxation’.  
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Figure 1-1 : Dielectric material 

 

1.1 Different polarization mechanisms 

 Dielectric relaxation processes are studied based on the frequency range within 

which it is most active.2   

1. Electronic polarization (𝛼𝑒): Fast response, τ is small. 

When an electric field is applied to an atom, positively charged nucleus 

displaces in the direction of the field and electron cloud in the opposite 

direction. This resonant process as a result of interplay between electric and 

restoration forces leading to an equilibrium occurs because of within an 

atom and the equilibrium displacement is proportional to the applied 

magnetic field. This is mostly observed in motoatomic gases and only at 

high enough optical frequencies (1015 Hz). 

2. Ionic polarization (𝛼𝑖): Slow response. This is a resonant process 

that occurs in a molecule comprising of charged atoms/ions. These ionic 

components get displaced under the applied field resulting in a net dipole 

moment. 

3. Orientation or dipolar polarization (𝛼𝑑): Slower response. 
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Certain molecules (e.g., CH3Cl, HCl, and H2O) carry inherent dipole 

moment and in the absence of any field, molecular dipoles are oriented 

randomly and cancel their moments. However, in the presence of electric 

field, these dipoles orient themselves in the direction of the field and the 

resulting net dipole is very large. The intrinsic frequency of the dipoles 

dictates the relaxation time. Also, the thermal perturbation and immediate 

chemical surrounding play a key role in the net resultant dipole. 

4. Space charge polarization (𝛼𝑠): very slow response. τ is large. 

It is a combination of ionic conductivity, interfacial and space charge 

relaxation. At low frequencies, the ionic conductivity dominates and hence, 

the losses are introduced. 

 

Figure 1-2: Various polarization mechanisms. (Courtesy: Dr. Raj Basu, USNA) 

 

It is important to understand the frequency dependence of polarization and the 

dominant modes of relaxation for various frequency regimes. Relaxation time (τ) indicates 
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the mobility of molecules. As stated earlier, it is the time required for dipoles to become 

oriented in an electric field. Under solid and liquid conditions, the molecules are in 

condensed state and have limited freedom to move when an electric field is applied. The 

constant collision of molecules cause friction and with time τ, the molecules slowly 

approach the equilibrium polarization state/orientation.3 This buildup of polarization over 

time can be described by an equation (Equation 1), where P(t) is the instant polarization at 

time t and 𝑃∞ is the built up polarization at t = ∞.  

𝑃(𝑡) = 𝑃∞ (1 − 𝑒−
𝑡

𝜏)  (Equation 1-1) 

 When the applied field is turned off, the molecules revert back to random 

orientation. Relaxation frequency (τf) can also defined as the inverse of relaxation time and 

at low frequencies below the τf, the dipoles keep up with the alternating electric field 

variations. Based on the exponential law quoted above, the real and imaginary components 

of dielectric constant can be deduced. The real/in-phase component can be written as,  

𝜀′ = 𝜀∞ +
∆𝜀

1+(𝜔𝜏)2
   (Equation 1-2) 

The out-of-phase (imaginary) component of the dielectric constant is,  

𝜀′′ = 𝜀∞ +
∆𝜀

1+(𝜔𝜏)2  (𝜔𝜏)  (Equation 1-3) 

Here, the ω is the frequency of the applied AC field and ∆𝜀 =  𝜀0 − 𝜀∞ is the 

dielectric relaxation strength for an individual process. The dielectric strength at infinite 
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frequency is represented as 𝜀∞ and the static dielectric strength is given by 𝜀0. The complex 

dielectric constant (𝜀∗) of a material then takes the form, 

𝜀∗(𝜔) = 𝜀′ − 𝑗𝜀"  (Equation 1-4) 

Here, the real component, 𝜀′(𝜔) is the relative permittivity and represents the 

material’s ability to store electric field energy and the imaginary part, 𝜀"(𝜔) is the dielectric 

loss and gives us information about the energy loss of that material in a relaxation process.4  

 

Figure 1-3: (a) Debye relaxation wherein the frequency dependence of ε'(w) and 

ε "(w) are plotted. (b) geometrical representation of dissipation factor in a 

relaxation process. 

 

 The dissipation factor described in Figure 1-3 is a measure of effectiveness of a 

dielectric material.  In an ideal dielectric, the current leads the voltage by an angle of 90°, 

but in the case of a commercial dielectric, the current doesn’t exactly leads the voltage by 

90°, it leads by some other angle lesser than 90° and as a result, the electric displacement 
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in a dielectric will have a phase lag. To put it simply, the dielectric loss angle (Figure 1-

3b) will be greater for a non-ideal dielectric.  Now, we have some basic understanding of 

the dielectric materials, I will provide an introduction to the dielectric spectroscopy 

measurement technique used in my studies. 

1.2 Broadband Dielectric Spectroscopy 

Molecular dynamics can be studied by various techniques such as, 

1. Relaxation: Dielectric relaxation, Nuclear Magnetic Resonance (NMR) 

2. Scattering: Quasi-elastic light scattering, Neutron scattering 

3. Spectroscopy: UV-Vis, IR, time-resolved fluorescence depolarization 

Broadband dielectric spectroscopy is a powerful method for the study of interaction 

of electromagnetic waves with matter in the frequency domain of 10-6 Hz to 1012 Hz.5 In 

this extended dynamic range, molecular and collective dipolar fluctuations, charge 

transport and polarization effects occur and these phenomenon determine the overall 

dielectric response of a material. The graphical representation of dielectric dispersion in 

the frequency domain has been presented in Figure 1-4. At low frequencies, all of the 

polarization modes (electronic, ionic, dipolar and space charge) can keep up with the 

frequency.2 Above 107 Hz, space charge mode can’t keep up and that the dipolar mode is 

most active in the 109-1012 Hz window and that is indicated by a huge dip in the curve in 
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Figure 1-4. Subsequent downward gradient or fluctuations are attributed to the dominant 

modes in the frequency regime.  

 

Figure 1-4: Different polarization mechanisms in dielectric materials 

 To span this large frequency range, normally two slightly different measurement 

instruments will be used. From 10-6-107 Hz, lumped circuit method which involve a parallel 

plate capacitor-type cells was used and for frequencies greater 107 Hz, distributed circuit 

methods with high resolution was used. More details about the specific instruments would 

be highlighted in the subsequent chapters.  
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Chapter 2 

Dielectric Studies of Liquid crystal Nanocomposites 

This chapter is largely adapted from the paper: Appl. Phys. Lett. 108, 083105 (2016) 

Here in this chapter, we detail the experimental results of ferroelectric nanoparticle 

doped liquid crystal nanocomposites and the ‘soft-memory’ effect. Doping of liquid 

crystals (LCs) with nanoparticles, quantum dots and other nanomaterials have become a 

common method for improving their optical, magnetic, and physical properties.6,7 These 

enhanced properties could lead to various applications and researchers are studying them 

to understand different aspects such as electro-optical, dielectric, memory effects, self-

assembly and phase behavior.8,9 However, doping ferroelectric nanoparticles (FNPs) in 

LCs is rarely reported in literature.10 Long-range forces between these nanoparticles and 

interplay of elastic forces of LCs produces interesting colloidal properties. We found that 

dielectric studies of FNPs in LC matrix in isotropic phase exhibits enhanced dielectric 

anisotropy and introduces ferroelectric behavior. We begin with introduction to LC 

systems and the doping methodologies and then move onto the detailed study.  

2.1 Liquid Crystal Materials 

Liquid crystal is a state of matter that is intermediate between the crystalline solid 

and the liquid phases i.e., it may flow like a conventional liquid, but have the molecules  in 

the liquid have positional and/or orientational arrangement as shown in Figure 2-1a.  

http://dx.doi.org/10.1063/1.4942593
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LCs were first discovered back in 1888 by an Austrian scientist, Friedrich Reinitzer 

when he tried to extract cholesteryl benzoate from carrots.11  

 

Figure 2-1(a) order of phases as the temperature is changed (b) Molecular structure of 5CB. (c) 

Graphical representation of rod-like anisotropic mesogen. 

Later, collaborative studies conducted by Otto Lehmann, Von Zepharovich along 

with Reinitzer found that cholesteryl benzoate (LC monomer) exhibited (i) two distinct 

melting points (145.5℃ and 178.5℃), (ii) reflected circularly polarized light and (iii) rotate 



10  

Dielectric Studies of Liquid crystal Nanocomposites 

 

10 

 

the polarization of light passing through them. The real breakthrough in LC research came 

about when Hans Keller synthesized a LC monomer that had a nematic phase at room 

temperature, N-(4-Methoxybenzylidene)-4-butylaniline (MBBA). The commercial 

application of LCs for displays took off when George Gray at the University of Hull 

synthesized low melting cyanobiphenyls that was stable over wide range of temperature.12 

The structure of most commonly used cyanobiphenyl, 4-Cyano-4'-pentylbiphenyl (5CB) 

has been shown in Figure 2-1.  

2.2 Liquid Crystal Structure and Phases. 

LC molecules are typically formed by a combination of aromatic rings attached to 

aliphatic chains/tails, as shown in Figure 2-1. The aromatic ring provides elastic moduli of 

solids whereas the aliphatic tail provides the fluidity to the LC molecules. As a result, the 

molecules (mesogens) are anisotropic in nature with aspect ratio ranging from 3 to 10, and 

their mechanical, electric and optical properties also exhibit anisotropic behavior. The 

average direction of the long axes of the molecules is called the director n. 

There are two major categories of LC molecules: 

1. Lyotropic LCs, whose mesophase formation is dependent on concentration 

and the solvent. Eg., lipids, fatty acids. 

2. Thermotropic LCs, whose mesophase is temperature (T) dependent. This 

class of LC systems have a large repository of LC molecules.  
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Nobel laureate Pierre-Gilles de Gennes and G. Friedel did extensive studies and 

they classified the LC molecules based on the order and symmetry of the phases. Presented 

below is the most-widely accepted method of classification.   

1. Nematic phase (from the Greek word Nematos meaning “thread”): 

This phase of LC is characterized by molecules that do not have positional 

order (center of mass of each molecule is randomly placed) but orient along 

the same direction (the director). Molecules align parallel to each other and 

have long-range interaction, Figure 2-2. 

2. Smectic phase (from the Green work Smectos meaning “soap”): 

In this mesophase, the LC molecules show a degree of translational order 

and tend to align in layers or planes. The molecular motion is restricted to 

these planes. Because of the enhanced order, they have slightly ‘solid-like’ 

behavior. There are few distinct sub-phases within smectic category. 

Smectic-A mesophase has director perpendicular to the smectic plane and 

with no positional order within the planes. Smectic-B also has similar 

directional orientation but the molecules within the planes are arranged into 

a hexagonal pattern. In smectic-C mesophase, the director is at a small tilt 

angle with respect to the smectic plane. 
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3. Cholesteric phase (also known as chiral nematic) is a mesophase where the 

nematic state accompanies a progressive twist in the z-direction. The 

director in each layer is unidirectionally skewed to the layer below it. 

The following figure describes the LC phases, graphically (Figure 2-2). 

 

Figure 2-2: Different phases of thermotropic LC systems 

 

Orientational order parameter (s), elastic constant, rotational viscosity and dielectric 

anisotropy are the most important physical properties of LC material because of the electro-

optic characteristics of LC systems strongly depend on these properties.[x] Order 

parameter is a measure of the degree of order in a system. For rod-like molecules, the 
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average direction of the long axis of often chosen as the unit vector representing the 

orientation of the molecule and is defined as, 

𝑺 =  
𝟏

𝟐
(𝟑 𝐜𝐨𝐬𝟐𝜽 − 𝟏)    

Equation 2-1 

Where 𝜃 is the angle between the long axis of an individual molecule and the 

director n. For perfect alignment, 𝜃 = 0° and S =1. 

Due to the uniaxial symmetry of the rod-like LC mesogens, the dielectric constant 

differ in value along the preferred axis (𝜀∥) and the perpendicular axis (𝜀⊥). The dielectric 

anisotropy is defined as, 

∆𝛆 = (𝜺∥ − 𝜺
⊥

) 

Equation 2-1 

 

This anisotropy can be studied using dielectric capacitance and spectroscopic 

techniques, optical birefringence etc.13 

2.3 Nanocomposites and Doping with Nanoparticles. 

Nanocomposite materials are engineered with two or more constituent materials, 

one of them being nano-scale sized and with significantly different physical, chemical or 

electrical properties to obtain the best of all constituent materials. The individual 

components remain distinct at the nanoscopic scale. The ability to tune the properties of 

the final structure by altering the concentration of one of the ingredients is a key feature. 
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Because of the extremely high surface to volume ratio, nanocomposites differ substantially 

from conventional composites and electrical, optical, thermal and mechanical property may 

be very different from the starting materials.14  

Doping of LCs with nanoparticle has become a very active area of research. They 

provide a versatile platform for improving electro-optic, magnetic, plasmonic and physical 

properties.15,16,17 Until now, usage of FNPs like BaTiO3 has been limited to high 

permittivity dielectric nanocomposites to increase energy density or power delivery and 

doping in nematic suspensions to enhance the mesogen ordering, Kerr effect and mild 

improvement in photoluminescence.18,19,20  
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Figure 2-3: (a) and (b) usage of FNPs in high permittivity dielectrics and relaxor materials with 

enhanced capacitance [Ref 16, 17]. 

 

2.4 Motivation and Hypotheses. 

Here, we hypothesize and prove that polymer functionalization of FNPs lead to not 

only enhanced ordering in LCs even in isotropic conditions, but also possible non-volatile 

memory application. The surface of these FNPs are amenable for functionalization by 

various amphiphilic and ferroelectric polymers and the resulting hybrid structure exhibits 

improvement in threshold voltage and mechanical stability.19,21 
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The use of Liquid crystals (LCs), a well-known display material, for electronic data 

storage has attracted interest in both fundamental and applied research communities.22,23,24 

Nanocomposites containing inorganic nanoparticles (NPs) and LC matrices bear a great 

potential for this application and beyond. The synergistic interactions between NPs and 

LCs gives rise to new or advanced properties of the hybrid system.  

Mobility and order are two key properties for any self-organizing system. LCs 

possess fluidity, long-range order and by nature they are anisotropic and respond to 

external stimuli like electric and magnetic fields. As a result of these characteristics, they 

are considered as an excellent platform for guiding the organization of inorganic NPs into 

2D or 3D hierarchical structures with rich optical properties.6,25,8, 26 LCs enable dynamic 

assembly of NPs in two ways: i) they provide structured but flexible medium, and ii) they 

provide tangential anchoring at the interface of NPs and LCs to stabilize the ordered 

structures. Hexagonal or Blue phases of LCs, owing to their periodic defects, can induce 

photon modulation and most importantly, play a pivotal role in 2D long range ordering and 

self-assembly of 3D hierarchical superstructures.27,28,29 Tuneable metamaterial-like 

application has been shown using such nanocomposites.17,30,31  

The presence of plasmonic NPs enhances optical properties of LCs composites 

without distorting the global nematic director.32,33,34 The effect changes when NPs with 

inherent dipole moment like Barium Titanate (BaTiO3) ferroelectric NPs (FNPs) are used 

in place of plasmonic NPs.35,16 Several studies have been carried out to understand the 
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electro-optical and dielectric behavior of LCs when doped with FNPs.36,16,37 It is reported 

that doping of FNPs reduces the switching voltage while enhancing the photoluminescence 

intensity of the FNP and LC nanocomposite.38,39,40 The short range forces between these 

particles collectively affect dielectric anisotropy, reduce splay elastic constant and decrease 

response time.15,40,41 Pure polymers and hydrocarbons when doped in LCs, have shown 

similar electro-optic effects.42 When polymers are attached on the surface of FNPs like 

BaTiO3, they exhibit a huge in increase in dielectric strength.43,44 Thus, one can 

hypothesize that a nanocomposite comprising   LCs, FNPs and polymers will have very 

different properties.  

 Creating programmable memory devices holds great promise in multi-level data 

storage systems.45,46 LC molecules have inherent dipole moment and respond to electric 

fields by aligning along the direction of the applied field.  The field-oriented LC inside a 

cell with alignment layers, however, reverts back to original orientation once the field is 

removed. Therefore, such an effect is volatile. Non-volatile memory effects in ferroelectric 

LCs have been demonstrated by doping carbon nanotubes, both bare and polymer capped 

gold nanoparticles (Au NPs) and low-frequency dielectric spectroscopy has been a major 

tool to probe such phenomena.47,48 These phenomena have been attributed to ion transfer 

between LCs to Au NPs and simultaneous ion trapping by polymer corona on the surface 

of these NPs.49 Nematic LCs confined in nano and micro-scale porosities are found to 

exhibit memory effects due to the field induced anchoring of nematics at the interface of 
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the pores. This effect has been attributed to the presence of topological defect lines.50  In 

the nematic phase of these nanocomposites, the global director trumps individual molecular 

orientation and the effect of FNPs on the molecular orientation is hard to distinguish.  

However, non-volatile memory effect has been reported in the isotropic phase of 

nanocomposites made of 5CB (4-cyano-4’-pentylbiphenylcarbonitrile) LC and FNPs 

BaTiO3.
10 Although these electrically bi-stable, non-volatile memory effects have been 

reported, practical realization and discreet quantification at the smaller length scale is still 

challenging. 

2.5 Materials and characterization methods 

2.5.1 Materials 

The nematic 5CB LC was purchased from Sigma Aldrich. The LC has a nematic to 

isotropic transition (NI) TNI of 35℃. BaTiO3 FNPs with a diameter of 50±5 nm were 

purchased from U.S. Research Nanomaterials INC and they were found to be in single 

phase. Block copolymer (BCP) of polyethylene oxide-b-polystyrene (PEO45-b-PS670-SH) 

containing a small polyethylene oxide block (45 repeating units) and a long polystyrene 

(670 repeating units) terminated with a thiol functional group was synthesized following 

the reversible addition-fragmentation chain transfer (RAFT) polymerization procedure as 

described in the previous report.51 Another type of BCPs of polystyrene-b-poly(acrylic 

acid) (PS-b-PAA) with varied polystyrene block length was also produced using the same 

synthetic approach. Figure 1e depicts what happens when FNPs are introduced into 5CB, 
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BaTiO3 molecules carry inherent polarization and as a result, 5CB molecules orient 

themselves along the dipole field near the interface. A small arrow represents the direction 

of polarization. 

2.5.2 Surface Functionalization and Nanocomposite Preparation 

Surface modification of BaTiO3 FNPs was performed in several stages. First, 2.5 

mg BaTiO3 powder was dispersed in N,N-Dimethylformamide (DMF) and sonicated for 

3 hrs. Sonicated solution was centrifuged at 6000 rpm for 20 mins to collect the FNPs and 

washed with tetrahydrofuran (THF) for three cycles. Finally, the FNPs were redispersed in 

5 mL of THF. This control sample was used for measuring the soft-memory effect arising 

from pristine, non-functionalized FNPs. To attach the polymer ligands, 2.5 g of 

amphiphilic PEO45-b-PS670-SH BCP was dissolved in 5 mL of THF and it was mixed with 

5mL premade THF solution containing non-functionalized BaTiO3 FNPs. The mixture was 

sonicated for 30 minutes and left undisturbed for 1 hr to promote attachment of the ligands 

on FNPs surface. The result is a homogeneous colloidal solution containing BaTiO3 FNPs 

with BCPs tethered to their surface. Block copolymer chains attach to the FNPs surface via 

intermolecular interaction and/or van der Wall’s forces. Since THF readily dissolves 5CB, 

the pure and polymer modified BaTiO3 were mixed with 5CB in different vials respectively 

and sonicated for 1hr to allow homogeneous amalgamation, followed by slow thermal 

annealing overnight to evaporate THF. The final product was degassed to remove any 

residual organic solvent and sonicated again for an hour. 



20  

Dielectric Studies of Liquid crystal Nanocomposites 

 

20 

 

 

Figure 2-4: Graphical representation of the following materials (a) Barium titanate FNP, (b) 

Amphiphilic block copolymer,  (c) 5CB rod-like molecule, (d) 5CB  molecules randomly 

arranged in isotropic phase, (e) BaTiO3 suspended in isotropic phase of 5CB  showing 

alignment along the particle interface. 

 

  The concentration of BaTiO3 in weight percentage (wt%) for all cases was chosen 

such that uniform dispersion was maintained without large aggregates and the global 

nematic director field wasn’t perturbed significantly. Finally, three concentrations were 

chosen for investigation i.e., c1=0.175 wt%, c2=0.275 wt%, c3=0.375 wt%. Because of the 

presence of the permanent dipole moment within the molecules, BaTiO3 FNPs tend to 

cluster together and above 0.4 wt%, the cluster size becomes large enough to short the LC 
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cell, affecting the dielectric measurements. Therefore, the reported concentrations for this 

experiment are below 0.4 wt%.      

 

Figure 2-5: Polarized optical microscopy images of BaTiO3 FNP doped 5CB under cross-

polarizers. (a) and (b) show minimal texture, while (c) has very minimal aggregates but (d) 

has large aggregates that could short the cell. 

 

2.5.3 Dielectric Characterization 

Dielectric measurements were carried out using a custom apparatus setup consisting 

of microscope thermal stage, a programmable precision temperature controller, waveform 

generator- amplifier and automatic liquid crystal tester (ALCT), all manufactured by 

Instec, Inc. Commercially available LC cells (SA100A200uG180, planar rubbed) with 1 
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cm2 semi-transparent indium tin oxide electrode area, 1° pretilt angle and a spacing d= 20 

µm was used for our experiments. Design of the custom I-V setup is made up of a Stanford 

Research Systems SG394-4 signal generator and a lock-in amplifier that controls the 

voltage (V) and current input (I). These two apparatus were controlled virtually by a 

computer that is configured to LabVIEW interface and all the readings were recorded in 

this way for further processing. The voltage was set to vary from 0 V to 30 V in a cyclical 

fashion for finite number of cycles and in an incremental step of 0.1V at 1 KHz frequency. 

An AC field would deter any remnant ions in the 5CB from accumulating at the electrode 

interface and thereby shorting the circuit. 

Dielectric characterization experiments were conducted in the Soft Matter and 

Nanomaterials Lab at the United States Naval Academy. Scanning Electron Microscopy 

(SEM) was done using Hitachi SU-70 field emission scope at the Advanced Imaging and 

Microscopy (AIM) laboratory at the University of Maryland. 

 



23  

Dielectric Studies of Liquid crystal Nanocomposites 

 

23 

 

 

Figure 2-6: (a) schematic of the circuitry of the dielectric measurement setup at USNA. (b) 

Automatic liquid crystal tester (ALCT) equipment connected to a programmable precision stage 

and LabVIEW interface. (Courtesy: Dr. Raj Basu, US Naval Academy).  
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Figure 2-7: (a) programmable microscope hot and cold stage with LC cell. (b) Schematic 

of the LC cells coated with ITO from Instec Inc. 

 

2.6 Experimental Findings and Discussions. 

Here, we report a giant electromechanical soft-memory effect found in a 

nanocomposite system comprised of isotropic phase of an LC doped with block BCP 

modified FNPs. The soft-memory effect we are referring to in this report is a non-volatile 

electromechanical effect at the interface of LC molecules and FNPs surface. As shown in 

Figure 2-7, the automatic liquid crystal tester was fully customized and automated with a 

computer interface. 

The synergistic effects of polymer ligands and FNPs lead to the formation of several 

nanoscopic domains of local paranematic ordering, having different anisotropy than the 
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global nematic phase. The size of such ordered domains is much larger than the domains 

found in nanocomposites of bare BaTiO3 FNPs in 5CB. The combined effect of BCP-

modified FNPs in the LC, as studied by the dielectric hysteresis effect, is significantly 

larger than the sum of individual contributing components i.e., pure polymers and pristine 

BaTiO3 FNPs.  

We chose one of the most widely used systems, 5CB for LCs and BaTiO3 for FNPs. 

The topology of these polymer-modified FNPs can be affected by the external stimuli and 

hence, both kinetics and thermodynamic pathway play a role in alignment of mesogens 

around these particles. 

 The 5CB LC is dielectrically anisotropic in nature and possesses long-range order. 

Its global nematic director (𝑛̂) is defined as the average molecular direction of preferred 

orientation of individual molecules. As a result of this anisotropy, it has two different 

dielectric constant components i.e., dielectric constant along the global nematic director, 

𝜀∥  and dielectric constant in the orthogonal direction, 𝜀⊥, as shown in Equation 1. In a 

parallel-plate planar cell, the rubbing direction promotes homogeneous alignment of the 

LC director. In the nematic phase, the LC exhibits Fréedericksz transition behavior, where 

an electric field (E) is applied across the cell and the nematic director orients from a planar 

configuration (𝜀⊥) to a homeotropic configuration (𝜀∥ ). This director reorientation occurs 

because the LC experiences a rotational torque proportional to  in the presence of the 
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electric field. When the field is switched off, the director reorients back to planar 

configuration due to the LC’s long range splay elastic interaction and the surface anchoring 

mechanism in the cell. When the temperature is raised above TNI, the global nematic order 

is destroyed and the Fréedericksz transition is no longer observed.52  

 Figure 2-8 shows the dielectric constant as a function of electric field in nematic 

phase for pure 5CB, 5CB doped with bare BaTiO3 (5CB/BaTiO3) and 5CB doped with 

polymer functionalized BaTiO3 (5CB/BCP-modified-BaTiO3), at a doping concentration 

of 0.275 wt% of FNPs. As the applied field across the cells was raised, the dielectric 

constant increased, showing a typical Fréedericksz transition with a threshold field of 0.04 

V/μm-1 for all three samples. No hysteresis effect in the dielectric constant was observed 

on turning the field down to zero in the nematic phase. The nematic phase shows dielectric 

anisotropy as indicated by Equation 2-2. For a positive dielectric anisotropic LC, 𝜀∥  > 𝜀⊥, 

and so, the director field reorients parallel to an applied electric field. In a uniform 

homogeneously aligned parallel-plate cell configuration, the nematic director is aligned 

perpendicular to the applied electric field due to surface anchoring but the director can 

reorient parallel to the field if the field magnitude is above some critical threshold. This is 

the essence of a Fréedericksz transition.  
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Figure 2-8: Dielectric constant of pure 5CB, 5CB doped with BaTiO3 FNPs and polymer 

modified BaTiO3 FNPs at 0.275 wt %. Dielectric constant is plotted against applied RMS 

field (f= 1 KHz) and in nematic phase of LCs (25℃). 

 

BaTiO3
 FNPs carry a spontaneous polarization P = 0.26 C.m2.53 As a result they 

enable very strong local electric fields on the order of 1010 V m-1 near the surface. This 

local field, EFNP attenuates as 1/r3. The presence of EFNP creates nanoscopic domains where 

LC mesogens orients along EFNP surrounding the FNPs, and we call these regions — 

pseudonematic domains. In the nematic phase, these short-range domains align with the 

global nematic director to reduce the free energy of the nematic matrix. These domains 
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collectively increase the nematic orientational order, increasing the dielectric anisotropy in 

the nematic phase of the system, as shown in Figure 2-9. 

The dipole moment magnitude for a 5CB molecule is p = 6.5 D = 2.15 × 10-29 C.m. 

When the LC molecule aligns with EFNP close to the FNP, the associated energy can be 

written as UFNP = - 𝑝⃗. 𝐸⃗⃗FNP ~ -10-19 J.54  The thermal energy in the isotropic phase of 5CB 

at T = 42oC = 315 K is Uthermal ~ kBT ~ 10-21 J.  Apparently, the thermal energy is too small 

to eliminate the FNP-induced LC-order in the isotropic phase.  Due to the presence of these 

domains, the isotropic phase of 5CB/BaTiO3 nanocomposite maintains a net dielectric 

anisotropy and is expected to interact with the external electric field.  

 Figure 2-9 shows the dielectric constant as a function of applied field in the 

isotropic phase (T = 42oC) for pure 5CB, 5CB/bare BaTiO3, and two different 5CB/BCP-

modified-BaTiO3 samples as listed in the legend. Pure 5CB shows a featureless behavior 

in the isotropic phase as expected. The hybrid systems show an increase in the dielectric 

constant above a threshold field, exhibiting a Fréedericksz-like transition. The dielectric 

constant for these nanocomposite systems does not relax back to its original value on 

turning the field down to zero, manifesting a dielectric hysteresis effect. The hysteresis 

area correlates to the soft-memory effect in the hybrid samples. The memory effect for the 

5CB and pure BaTiO3 nanocomposite (sample 1) can be seen from the red (□) curve in 
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Figure 2-9; the dielectric anisotropy holds its value (∆𝜀5𝐶𝐵 / 𝐹𝑁𝑃
𝑖𝑠𝑜 = 0.4) even when the field 

is switched off. 

 

Figure 2-9: Dielectric hysteresis of pure 5CB (black), pure  PEO45-b-PS670-SH polymer 

(purple) doped in 5CB, 5CB/ bare BaTiO3 composite (red), polymer functionalized BaTiO3 

FNPs (blue and green) as a function of applied electric field in isotropic phase (T= 42℃). 
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Even though the hybrid system contains short-range pseudonematic domains, the 

global nematic order is still absent in the isotropic phase. Therefore, there is no long-range 

elastic interaction present in the isotropic phase. Accordingly, these isolated 

pseudonematic domains do not interact with the aligning layers of the LC cell. Therefore, 

when the field is turned off, there is no restoring force to mechanically torque these 

domains back into original orientation in the isotropic phase and the domains stay oriented, 

as schematically shown in Figure 2-11. The hysteresis area in the doped hybrid sample can 

also be directly attributed to the enhanced pseudonematic domains as shown in the Figure 

2-10. If we consider a single dimer of bare BaTiO3 and PEO45-b-PS670-SH polymer doped 

FNP dimer in isotropic 5CB, the polymer chains act as a scaffold for the mesogens to attach 

to and active area becomes roughly 6 times larger.  

In Figure 2-10, the hysteresis curve for sample 2, 5CB/PEO45-b-PS670-SH polymer 

functionalized BaTiO3 FNPs (blue curve) clearly shows a giant increase in the magnitude 

of dielectric anisotropy (∆𝜀5𝐶𝐵 / (𝑃𝐸𝑂45−𝑏−𝑃𝑆670)𝐹𝑁𝑃
𝑖𝑠𝑜 = 2.4) and a six-fold increase (ratio 

of dielectric anisotropy of sample 2 to sample 1 = 6) in the hysteresis area compared to 

nanocomposite sample containing just 5CB and pure BaTiO3 FNPS at the same wt% 

concentration. 
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Figure 2-10: Schematic representation of enhanced pseudonematic domains as 

a result of polymer functionalization of FNPs and the subsequent increase in the 

dielectric anisotropy. 

 

 If we compare this value to the dielectric anisotropy of nematic 5CB, (∆𝜀5𝐶𝐵
𝑛𝑒𝑚 =

12), we can estimate that even in isotropic phase, 20% of all the mesogens have directional 

orientation compared to fully nematic 5CB. As stated earlier, in both cases, the thermal 

perturbations (kBT) is not large enough to induce any changes to the order of the mesogens 

at the interface. 
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Figure 2-11: (a) When there is no applied field across the LC cell, the mesogens are randomly 

oriented (b) we see that upon the application of AC field across the LC cell, pseudonematic 

domains mechanically rotate BaTiO3 FNPs in the direction of the field. The density of mesogens 

is greater along the poles. This remnant polarization leads to giant soft-memory. 
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 An electric field of 1.3 V/μm-1 was first applied to a hybrid system for 30 seconds 

to initiate the reorientation of pseudonematic domains and then switched off. The dielectric 

constant was monitored using a capacitance bridge as a function of time for the next 72 

hours and plotted in the Figure 2-12. No significant change was observed in this time 

period.  

 

Figure 2-12: Non-volatility of pseudonematic domains in the isotropic phase of 5CB. 

The dielectric constant maintains a constant value over a period of 3 days. 

This is the essence of a non-volatile nano-electromechanical memory effect, as the 

electric field mechanically rotates the domains at the nanoscale. In addition, the absence of 

the back flow in the thin LC cell also allows the domains to stay oriented. The thermal 



34  

Dielectric Studies of Liquid crystal Nanocomposites 

 

34 

 

diffusion mechanism in this case takes days to randomize the domains in the cell, as can 

be seen from the Figure 2-12. 

The limiting factor in doping LCs with NPs is the severe aggregation of NPs in LCs. 

Several studies have been carried out on attaching a variety of polymer and mesogenic 

ligands onto the surface of inorganic NPs to enhance their stability in the LC matrix and 

induce memory effect. We doped 5CB with FNPs functionalized with a BCP of PS-b-PAA. 

The PAA block is expected to bind strongly with BaTiO3 FNPs surface via a combination 

of chemical and van der Wall’s interaction.55 Even with shorter PS chain in the PS-b-PAA 

BCP, we noticed it produced comparable hysteresis effect as the PEO45-b-PS670-SH 

polymer (See Figure 2). This can be explained by the stronger binding of PS-b-PAA to 

BaTiO3 than PEO-b-PS-SH BCP, because of the multiple binding sites on PAA block. Our 

measurements were limited by the availability of polymer that had longer PS block and 

higher affinity PAA block. 

To understand the roles of these factors on this soft-memory, especially the role of 

polymer chemistry and FNPs concentration, we have studied three different concentrations 

of 5CB / PEO45-b-PS670-SH modified BaTiO3: 0.175 wt%, 0.275 wt% and 0.375 wt%. 

Figure 2-14 shows the effect of the dopant concentration on the hysteresis effect. To further 

understand this huge increase in dielectric hysteresis in detail, we studied (i) the effect of 

only pure PEO45-b-PS670-SH in 5CB, and (ii) the dispersibility of BaTiO3 when 

functionalized with PEO45-b-PS670-SH.  
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Figure 2-13: Dielectric hysteresis area of PEO45-b-PS670-SH polymer functionalized BaTiO3 

nanocomposite as a function of concentration of dopants. Inset shows the dielectric hysteresis for 

various polymers that were used to functionalize BaTiO3 and dope 5CB LC. 

 

The repeating units of hydrophobic PS block of BCPs have electron-rich benzene 

ring that can interact with biphenyl group of 5CB via π-π stacking interaction. Therefore, 
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a polymer that has more units of hydrophobic PS block, will favour aligning with 5CB 

molecules because of this π-π stacking. While pure 5CB does not produce any hysteresis, 

increasing the dopant concentration results in larger dielectric hysteresis owing to more 

pseudonematic domains. Homopolymer of PAA600 alone (without the PS block) cannot 

produce the same effect as PS-b-PAA which contains PS block, due to absence of π-π 

stacking interaction (red curve, Figure 2-9). However, an introduction of even small PS 

block (PS260) with PAA100 can produce much larger dielectric hysteresis (green curve, 

Figure 2-9).  
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Figure 2-14: (a) Molecular structure of PEO45-b-PS670-SH BCP.  (b) Schematic illustrating 

the π-π stacking interaction between 5CB mesogens and benzene rings of polystyrene units. 

 

 The end-to-end length of each hydrophobic PS670 block in a polymer chain is 

calculated to be around 6-7 nm. Increasing the thickness of polymer brushes, depending on 

the conformation, leads to several structural modifications. First, rotational viscosity of the 

LC mesogens around the FNPs changes as a result of new anchoring onto these BCP chains 

and the resulting pseudonematic domains are bigger by 10-14nm. Here, the available 

electromechanical force by which the particles can be rotated also becomes higher. We 

then doped 5CB with pure PEO45-b-PS670-SH such that the wt% of the dopant is 

approximately equal to the weight of the polymer chains tethered on the BaTiO3 FNPs 

surface. This normalized weight was essential as not all polymers we use for 
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functionalization goes onto the surface of the FNPs. In this case, we also noticed a 

hysteresis curve (purple) as shown in Figure 2-11. This result clearly suggests that the 

presence of pure PEO45-b-PS670-SH in 5CB also form paranematic domains due to the π-π 

stacking between the LCs and the polymer chains. These domains also interact with the 

external electric field, showing a hysteresis effect. However, as clearly seen in Figure 2-

10, the hysteresis effect of 5CB / PEO45-b-PS670-SH polymer functionalized BaTiO3 is 

significantly larger than the sum of individual contributing components i.e., the  pure 

polymer and the pure BaTiO3 FNPs. 

Due to the dipole-dipole interaction between the FNPs, it is expected that some 

FNPs are present in aggregates in a solution, resulting in antiparallel-dipole arrangements. 

An antiparallel-dipole configuration can be approximately treated as a quadrupole, whose 

field magnitude drops as ~ 1/r4 and hence the pseudonematic domains formed by the FNP-

clusters would have smaller anisotropy. On the other hand, the presence of the polymer 

ligands on the FNP surface prevents the aggregation of FNPs to a large scale. To visually 

examine the effects of polymer ligands on aggregation and dispersability, we prepared two 

samples: i) 5CB and bare BaTiO3 FNPs and ii) 5CB and BaTiO3 FNPs functionalized with 

PEO45-b-PS670-SH polymer. After preparation, they were allowed to stabilize for 10 hours 

and then a drop of each of sample in THF solution was deposited on a silicon substrate for 

Scanning Electron Microscopy (SEM) imaging (the substrate was washed by acetone, 

ethanol, and isopropanol to remove any organic impurities). Figure 2-15 shows 
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representative SEM images of these samples. It was apparent that bare 50 nm BaTiO3 

sample formed several micron-sized aggregates (Figure 2-15 a & c), whereas PEO45-b-

PS670-SH polymer functionalized BaTiO3 FNPs showed a much better dispersion (Figure 

2-15 b & d).  

Without large clusters, therefore, the polymer functionalized BaTiO3 FNPs retain 

their strong dipolar electric field that drops as ~ 1/r3 and create pseudonematic domains 

with a higher dielectric anisotropy and a larger size, as illustrated in the schematic in Figure 

2-10. Due to this enhancement in the pseudonematic domains, the polymer-functionalized-

BaTiO3 samples exhibit a giant hysteresis effect. It is reported that the size of the inorganic 

NP’s, the nature of the capping ligand, the concentration of the dopant, the length of 

polymer chain, all play a major role in affecting the dispersibility, long-range ordering and 

electro-optic properties.9,14,20, 56  
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Figure 2-15: Scanning Electron Microscopy images of the pure BaTiO3 and PEO45-b-PS670-SH 

BCP functionalized BaTiO3 FNP's. From the inset (a) and (c), we can infer that clusters and 

random aggregates are prevalent. Functionalized samples as shown in (b) and (d) provides 

evidence of uniform colloidal dispersion. 

 

With increasing concentration of the dopant, we see larger dielectric hysteresis, 

indicating the presence of more number of pseudonematic domains at higher 

concentrations. The Figure 2-16 explains the role of different polymer chemistry on the 

dielectric hysteresis area. Finally, polymers not only act as anchoring scaffold for LC 

mesogens to orient preferentially due to π-π stacking interaction, but they also play an 
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important role in the stabilizing FNPs in the LC matrix, thus dramatically enhancing the 

soft-memory effect.  

 

In conclusion, we have shown that 5CB doped with BCP functionalized BaTiO3 

FNPs yield giant enhancement of soft-memory effect under isotropic conditions and the 

memory is non-volatile and stable for several days. Dielectric anisotropy (∆𝜀) is enhanced 

by multi-fold by simple attachment of BCP chains on the surface of NPs. Both polymer 

chemistry and concentration dependent studies have been conducted to understand the 

phenomena. Doping LCs with functional NPs is an effective way of enhancing the 

electrical and optical behaviour of this soft matter system. We expect that the hybrid 

nanocomposite’s ∆𝜀 can be further enhanced by optimizing the composition or by attaching 
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ferroelectric polymer attached to a ferroelectric nanoparticle. This new finding provides 

insight to design a programmable, completely erasable non-volatile memory device. 
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Chapter 3 

Dielectric Spectroscopy of Gold Nanorods 

The nematic LC has been the ubiquitous standard for display devices. The flat panel 

(TFT, OLED, AMOLED etc.) industry has a global revenue of ~ USD $130 Billion as of 

2015 and is expected to rise sharply over the next few years.56a Recently, the industry has 

been facing some challenges for advanced applications including sourcing precious metals 

for ITO coating. There has been tremendous interest in the research community to discover 

alternative material for optical filters and display devices. One such candidate is gold 

nanorods (AuNRs).57 AuNRs offer many advantages as they can be solution processed, 

offer unique SPR-based anisotropic optical properties. Because individual AuNRs are 

larger than LC mesogens, the anisotropy of electric susceptibility of AuNRs is large enough 

(comparable to thermal excitations~ kbT) to be coupled to electric fields. Because of this 

reason, AuNRs can be aligned using electric fields and tuned by light and can be assembled 

into dimers, chains and even bulk metamaterials.17,58,59 Unlike LCs which depend on near 

neighbor interaction for their alignment and a solution of AuNRs can be made into an 

extremely thin display, continuously tuned and offer the possibility of ultra-fast switching 

(<5μs). Until now, there has not been a systematic study of field dependent orientational 

behavior of AuNRs and dielectric loss at various frequency regimes. We initiated a 

systematic study to probe these features and the results from the recent experiments have 

been documented here in this chapter. 



44  

Dielectric Spectroscopy of Gold Nanorods 

 

44 

 

3.1 Materials and Characterization Methods 

Solution-based synthesis of AuNRs is normally done using CTAB and sodium 

borohydride (NaBH4), as CTAB has a non-uniform affinity for the Au sphere’s surface due 

to the lattice structure of the gold. This allows the Au spheres to grow into an anisotropic 

ellipsoidal shape. To maintain purity and minimize polydispersity within samples, we 

opted to purchase high-purity AuNRs from Nanopartz™ Inc. We chose AuNRs of three 

different aspect ratios and the details are tabulated in the Figure below. Thiol terminated 

polystyrene polymer (P4434-SSH) with a molecular weight of 50,000 (Mn) was purchased 

from Polymer Source Inc. and used as is. Tetrahydrofuran (THF), refractive index matched 

oil and toluene were purchased from Sigma Aldrich. 

The solution synthesis of AuNRs using CTAB makes them dispersible in polar 

solvents but makes running any dielectric measurements impossible. For this reason, it is 

important to disperse the nanorods in a non-polar solvent and be able to torque them with 

electric fields. The solvent should support long range orientation of AuNRs and provide 

minimal torqueing resistance. 
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Figure 3-1: AuNRs with their respective LSPR peak and transmission electron 

microscopy (TEM) images. 

 

So, coating the AuNRs with polymer ligands and then phase transferring into 

organic solvents was accomplished as detailed below and the images show the sequence of 

steps involved. 
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Figure 3-2: (a-c) Sequence of steps involved in phase transferring of AuNRs. 

Initially, 100mg of thiol terminated polystyrene was measured and dissolved in 4ml 

of THF. 2ml of AuNR solution was taken in a new 20ml vial. To this AuNR solution, 1ml 

of polystyrene/THF solution was added and shaken vigorously. Because of the 

hydrophobic interaction, the nanorods stick the walls of the vial and the residual solution 

at the bottom becomes clear. This mixture was allowed to settle was for 15 minutes. The 

clear solution of THF at the bottom of the vial was pipetted out carefully. Depending on 

the desired concentration of the AuNRs, 2 to 5ml of toluene was added. The vial was 

shaken and sonicated to homogenously disperse the rods in the solution for further use in 

dielectric studies and the AuNR concentration was kept at an optical density of ~1 for all 

three aspect ratios and used as is.60 



47  

Dielectric Spectroscopy of Gold Nanorods 

 

47 

 

3.2 Dielectric Anisotropy and Spectroscopy Measurements 

Field aligned carbon nanotubes in dilute suspensions have been studied but the 

orientation order of AuNRs have not been studied from the dielectric standpoint. The 

following experiments were an effort to bridge the theory and experiment to yield 

quantitative measurement of orientational parameter at different voltages and frequency. 

For this study, we could not use the existing Instec LC cells or IPS LC cells as the limited 

ITO region in these cells give rise to edge effect where the buckling electric field lines lead 

to huge gradient pulling away all the AuNRs towards itself. Therefore, we had to design a 

custom cells (from Instec Inc) that had complete coverage of the longitudinal surface with 

ITO coating and thereby eliminating the edge effect. The schematic and actual image of 

the cell is presented in the following image. The custom cells were made to specific 

dimensions and the thickness varied from 5μm, 10μm and 20μm. The cells did have 

polyimide anti-parallel buffing to minimize the possibility of shorting the cells by AuNRs 

forming a conductive pathway.  
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Figure 3-3: (a) Schematic of the custom designed ITO cell with dimensions. 

(b) Actual image of the cell used. 

Considering AuNRs to be a prolate spheroid (with semi-major axis length a, and 

two semi-minor axes b and c of equal length), one can deduce that longitudinal 

polarizability (𝛼∥) along the major axis of the nanorods to be distinctly different from the 

transverse polarizability tensor (𝛼⊥). The alignment of AuNRs within a cell under external 

field can be schematically shown as follows. 
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Figure 3-4: Schematic illustrating the induced dipole in AuNRs within a ITO 

cell, under the applied electric field 

 

Under an applied field, induced dipoles moments are created within the rods and 

this is given by the following expression, where 𝛼̅𝑜is the polarizability tensor of the 

nanorods. 

𝑝⃗ = 𝛼̅𝑜𝐸⃗⃗(𝑡) 
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The electric field induced ordering of AuNRs is a result of the torque that the 

external field exerts on the rods and this torque is represented by this following equation 

3-1. 

 

𝑇⃗⃗(𝜃, 𝑡) = (𝛼𝑜 𝐸⃗⃗(𝑡)) × 𝐸⃗⃗(𝑡) 

= −∆𝛼𝑜 cos(𝜃) sin(𝜃) 𝐸2(𝑡)3̂ 

Equation 3-2 

               Where, 𝑝⃗ is the dipole moment, 𝛼̅𝑜 is the polarizability tensor as stated 

before, 𝐸⃗⃗(𝑡) is the applied electric field, Θ = angle between the nanorod and the electric 

field and ∆𝛼𝑜 is the difference in longitudinal & transverse polarizability tensor.61,62 The 

physics behind the derivation of this equation is beyond the scope of this work. 

3.3 Quantitative Measurement of Dielectric Anisotropy 

For the purpose of measuring the dielectric anisotropy of AuNRs, we used the same 

setup used in the previous study involving FNPs i.e., automatic liquid crystal tester and 

signal generator coupled to a lock-in amplifier. The orientational order not only depends 

on the applied field but also on the depolarization anisotropy and nanorods volume.[x] The 

concentration of phase transferred nanorods were adjusted a OD of 1 in solvents such as 

toluene and RI oil. Using a micropipette, a small fraction of these suspension was 
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introduced into 5μ ITO cell at room temperature and annealed for 5 minutes. The voltage 

across the cells was slowly raised in steps 0.5V until we reached the limit for that particular 

cell thickness. The capacitance of the ITO cell in comparison to empty cell capacitance and 

dielectric constant were calculated and plotted against the root mean squared voltage across 

the cell (Figure 3-5) 

 

Figure 3-5 : Change in dielectric constant as a function of applied electric field 

for 5μ cell has been plotted. Dielectric constant increases with voltage. 

The threshold voltage at which the slope of the above curve starts rising from the 

plateau is noted and the difference in dielectric constant at this threshold voltage and the 
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highest voltage is considered as the anisotropy and it qualitatively indicates the 

orientational order of the nanorods. The depolarization tensor which is responsible for the 

mechanical torque is directly related to the aspect ratio and the volume of each rod. So, the 

experimental results complies with this hypothesis i.e., higher aspect ratio AuNRs show 

higher dielectric anisotropy compared and this has been shown in the image below.  

 

Figure 3-6: Dielectric anisotropy as a function of aspect ratio of the nanorods 

 

From our preliminary studies it suffices to say that, AuNRs can be aligned via 

electric fields in non-polar solvents and the critical field needed to align bulk of the rods 

depends on the volume of individual rods, aspect ratio, spacing of the cells used for 

measurement and the solvent used. To make a conclusive statement further tests and trial 

runs for various concentrations and aspect ratios must be conducted.  



53  

Dielectric Spectroscopy of Gold Nanorods 

 

53 

 

3.4 Dielectric Spectroscopy 

Understanding the frequency dependence of these nanorods suspensions is critical 

for usage in devices, achieve high efficiency and in possible metamaterial applications. 

Towards this end, we attempted to study the real and imaginary components of the 

dielectric constant using spectroscopic techniques. As outlined in chapter 1, there are many 

different dominant modes of relaxation and to characterize the storage and loss factor in 

wide frequency regimes, we employed two different high-resolution spectrometers i.e., 

Keysight E4980A for frequencies up to 106 Hz and E4982A LCR for frequencies between 

106 Hz -1012 Hz. Because of the limited time constraints, we were able to run few different 

trials in two different non-polar solvents i.e., toluene and R.I matched silicon oil. The figure 

below has both real and imaginary components of the complex dielectric constant as a 

function of frequency for a cell containing AuNRs of aspect ratio 3.2 and in R.I oil. It is 

important to note that following data applies to the longitudinal, complex dielectric 

constant of the nanorods.63 
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Figure 3-7: (left) Real component indicating the storage factor. (Right) 

Imaginary component of complex dielectric constant indicating the loss factor. 

Another attempt to study the same but using toluene as solvent did exhibit similar 

spectral characteristics but there was a distinct contribution from the chemical structure of 

toluene and for this reason, we decided not to proceed with toluene for dielectric 

spectroscopy measurements. The following figure has a lot of real and imaginary parts of 

the spectra for AuNRs with aspect ratio of 2.4 and dispersed in toluene. The cell used for 

this test had a thickness of 20μm and the voltage was kept to a minimum of 1V.  
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Figure 3-8: Dielectric relaxation spectra of AuNRs dispersed in toluene. One 

can observe the distinct peak from the toluene chemical structure in both real 

and imaginary components. 

 

It is also a major challenge to separate the contribution of the solvent medium from the 

AuNRs itself when it comes to relaxation dynamics. We found that the refractive index 

matched silicon oil produces very similar relaxation dynamics (Figure 3-9) as shown in 

Figure 3-7 and for this reason, it is essential to continue this study with higher concentration 

suspensions to differentiate the effects of the solvent from the rods.  
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Figure 3-9: Dielectric relaxation spectra of pure R.I oil as a function of 

frequency in a 5μm cell. 

 

Further investigation along this line of work could elucidate on the critical field 

characteristics and loss behavior for different aspect ratio of AuNRs at various 

concentrations. Thereby, one would be able to optimize the efficiency by choosing a certain 

window of concentration and aspect ratio which would correspond to faster switching times 

and alignment. 
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Chapter 4 

Perspective and Future Work 

Some of the most widely studied systems like ferroelectric polymers, amphiphilic 

polymers can be used in conjunction with nanoparticles to discover new electro-optical 

effects, decrease rotational viscosity and ionic conductivity. We envisage that future 

studies in this direction would be interesting to unearth new effects. 

4.1 Ionic Conductivity in Doped LCs 

The surface of nanoparticles, defects in the LC media and polymer ligands or the 

polymer corona on the surface of functionalized nanoparticles are all considered potential 

charge trapping sites. As shown in the image below,  
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Figure 4-1: Ionic conductivity of LC when doped with functionalized AuNPs 

 

We functionalized 20nm, 0.2 wt% AuNPs with PEO45-b-PS670-SH polymer and 

were used to dope 5CB LC in nematic phase. We found that modified LCs exhibit 

significantly low ionic conductivity and low ionic conductivity in LCs account for faster 

switching and such doping methods could potentially lead to more efficient displays. 

4.2 Ferroelectric Polymers in LCs 

Polyvinylidine fluoride (PVDF) is a well-known ferroelectric polymer (FPs) that 

has been used for supercapacitor applications. Until now, there has been no reports about 

the effects of doping FPs in LCs. FPs tend to phase separate in LCs but it is possible to 

attach nematic soluble polystyrene block. Our preliminary test involving a isotropic 

sample of 5CB doped with 0.025 wt% PVDF did show observable hysteresis. 
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Figure 4-2: Hysteresis observed in PVDF doped 5CB in isotropic phase 
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4.3  Conclusions 

Several significant conclusions can be drawn from these two works. 

First, LCs can be aligned into a domain even in isotropic phase via doping of 

nanoparticles and doping nematic 5CB with BaTiO3 FNPs in small quantities facilitate 

the formation of pseudonematic domains that is particularly pronounced in the isotropic 

phase of LCs. Polymer functionalization of FNPs enable enhanced volume of these 

pseudonematic domains and can be locked in space for a very long time. We infer that 

polymer ligands play a crucial role in providing a scaffold-like structure and aligning 

the mesogens via pi-pi bond stacking. One could also deduce that by using such 

polymer functionalization, non-volatile memory devices could be created for actual 

applications.  

Second, AuNRs tend to align in electric field and the efficacy depends on the aspect 

ratio, solvent chemistry and volume of individual nanorods. Aligned nanorods affect 

the overall dielectric capacitance of the system and can be detected by dielectric 

techniques. Display devices using anisotropic nanoparticles like AuNRs could 

potentially have faster switching than LC mesogens owing to stronger coupling with 

electric fields and reversal via thermal perturbations. In a population of mixed aspect 

ratio AuNRs, each segment of rods with similar aspect ratio can be tuned separately.  
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Appendix A 

X-ray Diffraction pattern of BaTiO3 

 

Figure 0-1: XRD spectra indicating the single phase of BaTiO3 nanoparticles 

(Courtesy of U.S Nanomaterials Research Inc.) 

The peak seen here clearly indicates the single phase of BaTiO3 FNPs and if the 

material was amorphous, we would not be seeing this distinct peak.    
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Appendix B 

Dielectric Spectroscopy setup 

 

Figure 0-1: Keysight E4980A and E4982A broadband frequency 

spectrometers. 
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