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Abstract

Continuity/discontinuity of robustness indicators is reviewed. For the case of real or mixed
uncertainty, a regularization of the frequency dependent robustness margin is proposed and its
properties are discussed. Implication of this regularization in the case of polynomial families

with affine dependency on the uncertainty is pointed out.

1. Background

Roughly speaking, given a nominally stable system and an uncertainty structure, the size of
the smallest uncertainty for which the system has a pole at jw is given by 1/u(w), where p(w)
is the structured singular value, at s = jw, of a certain matrix M(s) representing the nominal
system. The corresponding “g-norm”, sup{p(w) : w € [~o00, 0]}, is thus the inverse of the
norm of the smallest destabilizing perturbation in the given structure. In terms of the value
set Ps(w) of the characteristic polynomial of the system (with uncertain parameters ranging
over balls of radius ), r(w) := 1/u(w) is the smallest § > 0 such that Ps(w) touches the origin.
If the coefficients of the characteristic polynomial depend affinely on the uncertainty, r(w)
and p(w) have a simple graphical interpretation in relation to Ps=1(w) (u(w)=1/r(w)=~¢1 /£,

on Fig. 1). While in this case r(w) and u(w) can be readily computed, it is often necessary,
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in general, to resort to making use of an upper bound f(w) to u(w) (e.g., the refined real-mu

upper bound obtained in [1}).

Prnom (JW)

=

€

|
Qg

l
S

IPJ(]@')

Figure 1.

It is a simply established fact (see, e.g., [2]) that if all uncertain parameters or “blocks”
are allowed to take on complex values, then p(w) is continuous; under mild nondegeneracy
assumptions, this implies continuity of the y-norm, thus of the robustness margin. When
real uncertainty is present, it is well known that p(w) can be discontinuous, and so can the
p norm. Recently, Barmish et al. [3] showed that this can occur even in the simple situation
of affine dependency of the coefficients of the characteristic polynomial on the uncertainty,
with only two uncertain parameters (possible discontinuity of p(w) as a function of w in such
simple cases had been observed earlier, e.g., [4,5]). Packard [6] and Packard and Pandey
[2] then suggested a “regularization” of u(w) and of the p-norm, constructed by introducing
small complex uncertainties at judiciously selected locations.

In Section 2 below, we briefly review continuity results in the case of complex uncertainty
and note that a standard upper bound for this case is continuous. The main contribution is in
Section 3, which is devoted to the case where real uncertainty is present (possibly concurrently
with complex uncertainty). After reviewing recent results, we propose a regularization for the
upper bound f(w) of [1] and discuss its properties. Implications in the context of polynomial

families are pointed out.

The following two Lemmas are used in the paper.

Lemma 1. (see, e.g., [7, Theorem 1.5.2 |) Let f(z,y) be continuous on the direct product of
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compact sets Z = X x Y. Then max f(z,y) is continuous. [
x

Lemma 2. Let X be any set and, for any z € X, let f(z,y) be continuous in y. Then

1nf f(z,y) is upper semicontinuous and sup f(z,y) is lower semicontinuous.
z€X

Proof: Let yx — ¢. For any 7 € X,
Since f(Z,-) is continuous,
f(&,9)= hm f(Z,ye) > hmsup 1nf f(z,yr).
Since this holds for any 7 € X,
. T . '
Jnf f(z,9) 2 hirisolip inf f(e,ys)
Thus the first claim holds. The second claim follows from the fact that

sup f(z,y) = — mf[ f(z,y)]-
z€X

2. Complex uncertainty

The structured singular value of a complex square matrix M with respect to a given complex

uncertainty structure [8] can be defined, e.g., as
w(M) = max{p(MA): A e X,5(A) <1} (1)

where p denotes the spectral radius, & the spectral norm, and X the set of all block-diagonal
matrices with fixed block sizes corresponding to the uncertainty structure. Continuity of
(M) in the entries of M is a direct consequence of Lemma 1. Robust stability of a nominally

stable system characterized by a matrix transfer function M(s), for all uncertainty of size
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(Hoso norm) at most 1 and of structure X, is then equivalent to satisfaction of the inequality

|M||. <1, where ||M]|, is the “u-norm” of M(s) (not a norm), given by
M|y = sup u(M(jw))
weR

(Small g Theorem [9]; see also [10]). Suppose that M(s) depends on some parameter d
(“problem data”); denote this by M(d, s). Suppose that, for any w, M(-, jw) is continuous in
a neighborhood of some d. Then, by Lemma 2, ||M(d)||, is lower semicontinuous around d.
If M(-,s) is also rational and strictly proper in a neighborhood of d, then it is a consequence
of Lemma 1 that ||M(d)||, is continuous around d. If M(d,s) is merely proper though, this
result is not true in general (take M(d, s) = ds/(d?s + 1), with d = 0) but still holds under
a certain no-degree-dropping condition (see [11] for an analysis in the context of polynomial
families).

We conclude this section by noting that, when uncertainty is nonrepeated, the well known
complex upper bound to g(M) can be shown to be continuous in the entries of M. Here, D
is the set of positive definite diagonal Hermitian matrices, denoted as diag(d',---,d"™), that

commute with X', and for any matrix A, A" denotes its (7, 7)th element.

Proposition 1. Suppose D consists of diagonal matrices (i.e., uncertainty is nonrepeated) then

(M) = [i)réf;) d(DMD™1) is continuous in the entries of M.

Proof: Upper semicontinuity follows from Lemma 2. To prove lower semicontinuity, let

My — M and, given ¢ > 0, let Dy := diag(d},---,d?) be such that &(DxMiD;') <

jnf 5(DMyD™") + e Thus 5(DpMipD7') is bounded. Since (DiMD;')7 = %M,ﬁf,
%E& must be bounded for all i, j such that M%¥ # 0. Thus %;’;- M,ij — Mii) - 0, ie.,
k k
(Dy (M, — M)D;l)ij — 0 Vi, j such that M* # 0. Thus there exist sequences {Si}
and {T}} such that

Dy(My — M)D;l =S+ T

with Ty — 0 as k — oo, and S¥ = 0 if M/ # 0. Then, for all %,
G(DrMD;Y) < 5(DyMD; ' + Si)
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and thus
(M) = jof §(DMD™) < 1ig§f&(DkMD;1 )

< lim inf G(DxMD; + Sk)
= likrgiox.}f&(DkMkD;l — T}).
Since all components of DkMkD;1 are bounded and T} — 0,
lim inf G(DeMiD.' —T}) = lim inf &(DrMiD. ")
< lilgligfﬂ(Mk) + €.

Since € > 0 is arbitrary, this completes the proof. []

This implies that when M(d,s) is rational and strictly proper in a neighborhood of d,

sup li)IéfD d(DM(d, jw)D™1) is continuous in d around d. It is conjectured that Propostion 1
weR

holds without the restriction on D.

3. Real or mixed uncertainty

When some of the blocks in X" are constrained to be real (this is the case when parametric
uncertainty is present) expression (1) is no longer valid (see, e.g., [1]). The following upper

bound to (M) is in most cases lower than the “complex” upper bound of Proposition 1 (see

[1,12)):

’

p(M) < (M) := \/max {O’De%)nf(‘;eg MMEDM + j(GM — MHG),D)} (2)

where G is the set of Hermitian matrices with zero entries at positions corresponding to
uncertainty allowed to take on complex values, and where, given Hermitian matrices A and
B with B > 0, \M(4,B) = max{a : det(A — aB) = 0}. This upper bound to u(M) is
computationally attractive in view of the fact that A(-,-) is quasi-convex whenever its second
argument is positive definite [12] and that powerful algorithms are available for minimization

of such functions [12-14]. In general, by Lemma 2, i(M) is upper semicontinuous, but
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because D and G are not compact, it is not always continuous in the entries of M (e.g., take
the case of a complex scalar M). Note however that, for the case when M is real and the
real uncertainty is nonrepeated, it has been shown that an optimal choice for G in (2) is

G = 0y, the zero matrix, so that 4(M) = li)réfp d(DMD™1) [15]; and, in view of Proposition

1 above, under the additional assumption that the complex uncertainty is also nonrepeated,
it is continuous. To circumvent the discontinuity problem in the general case, consider, for

€ € (0,1], the quantity

» — i M MH ’ - MHG),D
(M, €) \/max{O,DegelfgegeA(M DM + j(GM ) )}

where D, = {D € D: ||D|| £ L, D > eI} and Gc = {G € G : ||G]| < 1}, where || - || is
any given norm. Also let 4(M,0) = i(M). Since both D, and G. are convex, ji(M,¢) is still
efficiently computable. Moreover, the following holds.

Proposition 2. For any M, ji(M,-) is continuous over [0, 1] and monotonically decreasing as

e\, 0. For any € € (0,1], (-, €) is continuous.
Proof: Continuity of fi(M,-) at any e € (0,1] follows from continuity of A(+,-) and from
compactness and continuity in € of D, and G, in the Hausdorff metric. Monotonicity in € and

continuity of i(M,-) at e = 0 directly follow from the facts that D = |J D, G = |J G. and,
>0 €>0

given ¢, > €2 > 0, D, C D, and G, C G,,. Finally, continuity of ji(-,¢) directly follows

from Lemma 1. [}

The Small 4 Theorem still holds in the real/mixed uncertainty case. However, since pu(M(s))

may now be discontinuous at s = 0o, the “u-norm” must be defined as [2]

M1l = max{ilelg wM(Gw)), f(M(e0))} = sup  p(M(jw))

wE[—00,00]
where M(oo0) = lim M(s). Thus a sufficient condition for robust stability of the correspond-

ing system under structured uncertainty of size no more than 1 is that, for some € € (0, 1],

sup  fi(M(d,jw),e) <1 (3)

wE[—o00,00]



where d is again some “problem data”. If M(d, s) is continuousin s (e.g., rational), continuity
of i(-,€) implies that the “sup” can be taken over (—oo,00). If M(d, s) is continuous in (d, s)
and is rational and strictly proper, the left hand side in (3) is a continuous function of d. The
next proposition shows that not much is lost by taking € # 0. Again, the strict properness

condition can be relaxed.

Proposition 3. Let M(s) be rational and strictly proper. Then

sup p(M(jw),e) — sup A(M(jw)) as €\, 0.

Proof. That the lim inf of the left hand side, as € \, 0, is no smaller than the right hand side
follows from monotonicity in e (Proposition 2). We prove by contradiction that the lim sup
of the left hand side is no larger than the right hand side. Thus, suppose that‘ there exist
8 >0, €; \, 0 such that, for all ¢,

sup A(M(jw), €i) > sup (M (jw)) + &.

By upper semicontinuity and strict properness, both suprema are achieved, say at w; and w*
respectively, with {w;} bounded (since, for any € € [0,1], A(M(jw),e) < 6(M(jw)) for all w).

Without loss of generality, assume that, for some &, w; — @ as 7 goes to co. We can write
MM (jwi), &) > f(M(jw")) +6 = [(M(Go)) + 6.
The value (M (jw;),€;) is increased when we replace €; by e with k < 7, thus,
PM(jwi), ex) > f(M(5&))+ 6 Vi kb with k <z
Taking the limit as ¢ — oo, we obtain, in view of Proposition 2,
M (o)) > (M) +8 Y k.

This contradicts continuity of 4(M(j&),-) over [0, 1] (Proposition 2). [

Compared to the regularization proposed by Packard and Pandey [2], i(M,€) has the ad-

vantage that its computation does not involve any augmented uncertainty structure (note
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that, in general, the regularization of [2] is not efficiently computable, and an upper bound
to it—such as fi—must be used).

Finally, it is known that robustness problem for polynomial families with affine depen-
dency on the real uncertain parameters can be formulated as rank 1 g problem. In such
cases p(M(jw)) can be computed exactly [17] (but may be discontinuous). Young et al. [18]
recently showed that if rank(M) = 1, then (M) = p(M). This implies that, in the rational

strictly proper rank 1 case,

sup i(M(jw), €) = |[M|y s €= 0.
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