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Abstract: Lightweight, compliant actuators are particularly desirable in robotic systems
intended for interaction with humans. Pneumatic artificial muscles (PAMs) exhibit these
characteristics and are capable of higher specific work than comparably-sized hydraulic
actuators and electric motors. The objective of this work is to develop a control
algorithm that can smoothly and accurately track the desired motions of a manipulator
actuated by pneumatic artificial muscles. The manipulator is intended for lifting humans
in nursing assistance or casualty extraction scenarios; hence, the control strategy must
be capable of responding to large variations in payload over a large range of motion.
The present work first investigates the feasibility of two output feedback controllers
(proportional-integral-derivative and fuzzy logic), but due to the limitations of pure output
feedback control, a model-based feedforward controller is developed and combined with
output feedback to achieve improved closed-loop performance. The model upon which
the controller is based incorporates the internal airflow dynamics, the physical parameters
of the pneumatic muscles and the manipulator dynamics. Simulations were performed in
order to validate the control algorithms, guide controller design and predict optimal gains.
Using real-time interface software and hardware, the controllers were implemented and
experimentally tested on the manipulator, demonstrating the improved capability.

Keywords: pneumatic artificial muscle; fluidic muscle; model-based control; feedforward
control; nonlinear control
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1. Introduction

Commercial and domestic applications for mobile robots continue to expand into areas that require
human-robot interaction. Often, the design objectives considered in mobile robotic applications are low
weight, high range of motion, high torque and low power. However, interaction with humans warrants
additional safety measures, including compliant manipulation. This requirement is problematic for
many conventional actuators, which typically use high stiffness to achieve high performance, thereby
increasing inertia and leading to large impact forces upon collision [1].

One type of actuator that can satisfy these competing requirements is the pneumatic artificial
muscle (PAM). PAMs are extremely lightweight, compliant and capable of higher specific work than
comparably-sized hydraulic actuators and electric motors [2]. They are typically composed of a helically
braided sleeve surrounding an elastomeric bladder and are held together by end fittings. Pressurization
of the soft bladder inflates the muscle and causes the stiff braid fibers to reorient, generating a
contractile stroke and pulling force similar to human muscle. Also known as McKibben actuators,
PAMs were initially developed as orthotic devices for polio patients [3]. Similar applications have
dominated the field over the years, with PAM-powered devices for orthotics and rehabilitation [4–6]
and biologically-inspired humanoid robotic devices [7,8]. Looking to other applications, these actuators
are particularly desirable in portable robotic systems intended for interaction with humans [1], such as
those envisioned for nursing assistance and in casualty extraction. Similar designs with bi-directional
capabilities [9] may permit an even greater range of applications.

While being considered in robotics for several decades, work still remains to develop an
all-encompassing PAM model formulation. Many modeling approaches exist, including energy
balance [10], force balance [11] and finite elasticity theory [12], but precise modeling of the nonlinear
behavior has proven difficult. Moreover, scalability to different sizes, length-to-diameter ratios and
bladder thickness-to-diameter ratios have seen limited success. Direction-dependent hysteresis, caused
by the interaction between the bladder and braid, can be approximated using the empirical Preisach
model [13] or by modeling braid-bladder and inter-braid contact [14], but hysteresis is difficult to predict
a priori for different materials and geometries. Modeling error is compounded farther in PAM systems
when considerations for the flow and compressibility of air are included, making precise control difficult.
Control is especially difficult for a PAM-based manipulator, with payload weights ranging from zero to
several times the mass of the manipulator itself.

Past efforts to control pneumatic artificial muscles span a wide range of established tech-
niques. Caldwell et al. [15] used adaptive control based on model estimation, demonstrating
accuracy for lightweight payloads (0.325 kg (0.7 lb)) over 9 deg of arm rotation. However, it
is important that manipulators intended to lift humans can handle payloads exceeding their own
weight and can operate over a much larger range of motion. Ahn and Nguyen [16] developed
an intelligent switching algorithm using a learning vector quantization neural network for various
payloads, showing experimental data for step inputs. This controller requires “training” the
neural network for an extended amount of time before the system could reliably lift different
payloads. Wu et al. [17] developed a self-tuning fuzzy proportional-integral-derivative (PID)
controller for a hand exoskeleton actuated by PAMs. The experiments showed undesired oscillation
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about the reference trajectory, though there was a time-varying disturbance, due to human input.
Yeh et al. [18] designed an optimal controller using loop transfer recovery (LTR) for a leg exoskeleton,
which was deemed successful, but limited to only 15 deg of rotation. Beyl et al. [19] developed a
PAM-actuated gait rehabilitation robot, which demonstrated good performance and allowed for knee
flexion angles of up to 90 deg.

When manipulator joint trajectories require high speed and acceleration, the tracking capabilities
of pure feedback control are degraded [20]. Moreover, over-simplified computed torque controllers or
adaptive controllers with slow parameter updating may not have the capability to track fast nonlinear
dynamics. To address this problem, several approaches to PAM-based control have incorporated highly
detailed models of the system. Zhu et al. [21] designed an adaptive robust controller for a parallel
manipulator with only a few degrees of movement, incorporating a model of the flow dynamics and
valve. Ganguly et al. [22] introduced static and dynamic empirical models of PAM actuation and
valve characteristics in a model-based PID controller for a rotary joint. The adoption of feedforward
compensation was shown to improve system response in the work by Nho and Meckl [23], who
demonstrated neuro-fuzzy and inverse dynamics feedforward control on a two-link manipulator. Fateh
and Izadbakhsh [24] employed a hybrid computed torque approach to a two-link manipulator and found
that feedforward control reduces tracking error. These model-based feedforward strategies influenced
the design of the control system in the present study.

Control studies on PAM-based systems have often employed sliding mode control, a robust nonlinear
control strategy, which drives the dynamics of the system to that of an exponentially stable system [25].
This methodology has been extended to adaptively control robot manipulators [26], improving the
response to unmodeled dynamics or payload variations. Many sliding control algorithms have
been proven to be globally stable when model errors and system disturbances are bounded [27].
Carbonell et al. [28], Cai and Dai [29] and Lilly [30] performed simulations of PAM-actuated systems
using sliding mode controllers. However, these second-order controllers assume that the PAM pressure
or force being used as a control input is instantaneous, which cannot be assumed in a practical system
with a large PAM volume. Similarly, Nouri et al. [31] designed an adaptive controller with a sliding
component, which neglected airflow dynamics for lightweight payloads (0.6 kg (1.3 lb)). Xing et al. [32]
applied sliding mode control with a disturbance observer to a PAM in linear motion experiments with a
1-kg (2 lb) load. While the controller showed good performance, airflow dynamics were neglected, and
the commanded pressure was assumed to be instantaneous, which is not realistic in more demanding
applications. In order to address such problems, Shen [33] designed a model-based sliding mode
controller, including a dynamic airflow model, and applied it to a linear table actuated by PAMs.
Aschemann and Schindele [34] developed a cascaded sliding mode controller for a high-speed linear
axis with a detailed empirical model of valve dynamics for pressure feedback and a model of the linear
axis for position feedback. As in other model-based control strategies, these detailed physical models
were necessary to achieve satisfactory performance. Tondu et al. [35] applied sliding mode control
with twisting and super-twisting algorithms to two degrees-of-freedom of a PAM-based manipulator,
noting that the equivalent force control term was not helpful on the link farther from the base because of
model uncertainty. Overall, studies that have successfully applied sliding mode control to experimental
PAM-actuated systems have used systems with high stiffness, low inertial loads and minimal time delays.
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However, the robotic arm in the present study, as outlined in the following section, exhibits relatively
low stiffness, highly variable inertial loads and substantial time delay. Moreover, sliding mode control
can be negatively affected by measurement noise and low-resolution sensors, which are present in the
system. The authors intend to investigate the implementation of an adaptive sliding mode controller on
a system better suited to this strategy in future work.

While many of these studies have demonstrated smooth and accurate motion, control of a
PAM-actuated manipulator with both a high range of motion (90 deg) and high tip payload variations
(0 to 45 kg (0 to 100 lb)) has not been attempted. It should be noted that the manipulator arm in
question weighs 7 kg (15 lb), several times less than the maximum payload. In previous work, the authors
detailed the design and construction of the proof-of-concept manipulator actuated by pneumatic artificial
muscles that was intended for interaction with humans [36]. The objective of the present work is to
develop a control algorithm for this manipulator that satisfies accuracy and smooth motion requirements.
This began first by considering proportional-integral-derivative (PID) and fuzzy logic controllers, but
moved toward a model-based feedforward structure to achieve improved performance. In this study,
the controllers were simulated and experimentally tested on the manipulator. System performance was
evaluated for different trajectories and payloads. Additionally, the effect of varying the gain in the
feedforward model was analyzed.

2. PAM-Actuated Robotic Manipulator

2.1. Design and Experimental Setup

The PAM-actuated manipulator was designed and constructed in a previous study [36]. Figure 1
illustrates the components of the actuator system, including a high-pressure air source, pneumatic valves
and a manipulator. As illustrated, the actuators provide torque in only the positive direction, and gravity
provides a restoring force in the opposing direction. In other words, the system is not operating in
an antagonistic configuration. While an antagonistic PAM configuration would allow variable stiffness
control [37], the goal of this study was position control; therefore, a unidirectional actuation system
was deemed sufficient. The manipulator design includes space for a compression spring to provide
antagonistic force; however, a spring was not used in this study. An earlier design study determined
that several parallel actuators generated higher specific force and force density than a single large
actuator [36]. Figure 2 shows the arm in operation, holding 50 kg (110 lb). Throughout experimentation,
angular Hall-effect sensors (Midori Precisions) were attached to each joint to measure rotation angles,
which typically varied from 0 to 100 deg. Pressure transducers (Omegadyne Inc.) were attached to
incoming air lines to monitor PAM pressure. Each degree-of-freedom can be fed compressed air through
a proportional servo-valve (Festo MYPE-type). However, in these experiments, only the elbow joint was
actuated. The cross-sectional area of the valve inlet and outlet are a function of the voltage sent from the
controller. Hence, the controller was capable of directly manipulating the flow rate of air.
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Figure 1. Schematic of the pneumatic artificial muscle (PAM)-actuated manipulator system.

Figure 2. PAM-actuated joint holding 50 kg (110 lb).

The sensors and control valves were connected to a dSPACE R© real-time interface, which
allowed for quick implementation and modification of controllers modeled in Simulink R©. In these
single degree-of-freedom (SDOF) control experiments, a single-input, single-output (SISO) controller
was employed for elbow rotation. Output error between the measured (actual) angle and the reference
(desired) angle was used to compute a voltage to the control valve. The pressure supply was set to 0.83
MPa (120 psi).

2.2. System Model

A complete model of the elbow degree-of-freedom consists of three major components: the airflow
through the valve, the response of the PAM actuators and the manipulator dynamics. The control valve
regulates air pressure in the actuators, which is used to calculate the PAM force. PAM force is then
translated to actuator motion. Airflow is regulated by the control voltage to the valve, whose orifice area,
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A, is a nonlinear function of the control voltage. The orifice area is calculated by interpolating values
from a lookup table.

The mass flow rate of air depends on both upstream and downstream pressures, Pus and Pds, and the
orifice area:

ṁair =
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√
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The term, Cd, is a discharge coefficient capturing the losses in the orifice; Pcr = (2/(γ + 1))γ/(γ−1) is
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where γ is the specific heat ratio of air.
Richer and Hurmuzlu [38] derived an expression for pressure change in a container of changing

volume using the ideal gas law, conservation of mass and conservation of energy:

Ṗ =
RT

Vair
(αinmin − αoutmout) − αP

V̇air
Vair

(3)

whereR is the specific gas constant for air, T is air temperature, Vair is air volume in the PAMs, αin = 1.4

and αout = 1 are the respective specific heat ratios of the gas flow into and out of the PAMs and α = 1.2

is the approximate specific heat ratio due to volume change. From this expression of pressure rate, the
time-varying pressure inside the PAM actuators can be determined by integration.

Quasi-static PAM actuator models relating force to contracted length and applied pressure can be
derived using a number of approaches [39]. Experimental data was found to best match the force
balancing method derived initially by Ferraresi et al. [11]. In this model, corrected for the effect of
non-constant bladder thickness, PAM force is given by:

F =
P

4πN2

[
3(L0 − ∆L)2 −B2

]
+ P

[
VB

L0 − ∆L
− (t0 − ∆t)(L0 − ∆L)

2π(R0 − ∆R)2N2

]
+ FL + FT (4)

where L0 is resting length, ∆L is contraction, VB is bladder volume, B is braid length, N is the number
of braid turns around the circumference of the PAM, t0 is the resting bladder thickness, ∆t is the change
in bladder thickness, R0 is the resting bladder radius and ∆R is the change in radius. The forces, FL and
FT , are pressure-independent terms governed by the elasticity of the bladder, ER, and are as follows:

FL = ERVB

(
1

L0

− 1

L0 − ∆L

)
(5)

FT =
ER(L0 − ∆L)

2π(R0 − ∆R)N2
[(t0 − ∆t)(L0 − ∆L) − t0L0] (6)
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This formulation was found to be accurate for PAMs undergoing contraction, but there is an inherent
hysteresis that alters the force-contraction profile in extension. In extension, the resistive force preventing
the PAM bladder from expanding increases the PAM force. Furthermore, there is friction both between
the braid and bladder and between the braid fibers themselves. This hysteresis is captured in the model
by adding empirical constants to the terms:

F2 =
P

4πN2

[
3(L0 − ∆L)2 −B2

]
+ 0.3P

[
VB

L0 − ∆L
− (t0 − ∆t)(L0 − ∆L)

2π(R0 − ∆R)2N2

]
+ 0.8FL + 0.8FT (7)

Force from the PAM group is translated into an arm torque, defined as τ = Freff cos θfnPAM ,
where reff is the effective length of the moment arm (nonlinear function of joint angle), θf is the angle
between the stationary upper link and the joint tendon and nPAM is the number of parallel PAMs in the
muscle group.

PAM torque is resisted by the weight and inertia of the arm and payload. The arm dynamics for single
degree-of-freedom motion are related to PAM torque by:

τ = Iz θ̈d +mpldl
2
armθ̈d + (marmlc,arm +mpldlarm)g sin θd (8)

where θd is the desired angle, Iz is the link inertia, marm is the arm mass, lc,arm is the distance between
the joint and the link center of mass,mpld is the payload mass, larm is the link length and g is gravitational
acceleration. With the previous equation, the joint angle can be determined and continuously monitored
by the controller.

3. Control Strategies

3.1. Output Feedback Control

3.1.1. Proportional-Integral-Derivative Control

Proportional-integral-derivative (PID) control is a feedback strategy widely used in industrial
applications. The controller input, the voltage to the pneumatic valve, is given by:

u(t) = kP e(t) + kI

∫
e(ζ)dζ + kDė(t) (9)

The control signal can be manipulated by three user-defined gains: the proportional gain, kP , integral
gain, kI , and derivative gain, kD. Additional improvement was achieved by adding a low-pass filter to
the controller output to eliminate high-frequency content and to provide a smoother response, while only
slightly increasing total error.

3.1.2. Fuzzy Control

As an alternative to PID control, a fuzzy logic controller was designed and implemented based on
the approach described by Passino and Yurkovich [40], which is briefly described in this section. Fuzzy
control employs membership functions and a ruleset established by the designer to translate controller
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inputs into a desired output in a smooth, non-discrete manner. A fuzzy controller categorizes a numerical
input value using linguistic variables, such as “positive big” and “negative medium.” Each linguistic
variable, i, has its own membership function, µi(x), which quantifies the “certainty” that the numerical
input, x, can be classified as that variable (on a scale from zero to one). Triangular-shaped membership
functions are most common and were used here.

In this fuzzy controller, the input variables were angle error and error rate, and the output variable
was valve voltage. Each of the inputs was scaled by gains g1 and g2, and the output was scaled by gain
h. Note that in this study, the inputs were divided by g1 and g2, meaning that higher values of g1 and g2
decrease the system sensitivity. However, the output was multiplied by h; therefore, higher values of h
increased the system reaction.

Figure 3 shows the seven membership functions associated with each linguistic variable with unity
gains. It is clear from the overlapping membership functions that a numerical input can be categorized
as more than one linguistic variable simultaneously. This leads to the “fuzzy” combinations that enable
smooth transitions between different outputs.

Figure 3. Fuzzy membership functions for input/output variables.

Table 1 displays the user-defined ruleset for the fuzzy controller. The control logic combines the
linguistic input variables that are given non-zero membership values and prescribes the output based on
this ruleset. For example, IF the angle error is “negative small” AND the error rate is “positive small”
THEN the output will be “positive small.” However, the membership of a given numerical value is
almost always split between two membership functions. To determine the weight given to a particular
rule, we define:

µp,ij = min(µei , µė,j) (10)

as the “premise” membership to rule ij, where µe,i and µė,j are the membership values of error with
respect to membership function i and the error rate with respect to membership function j. Since multiple
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linguistic variables can be activated, multiple outputs from the ruleset are combined and weighted using
the “center of gravity” defuzzification method. This final combination is then multiplied by gain h to
produce the total output. It should be noted that, as with PID control, a low-pass filter was added to the
output to reduce oscillatory content.

Table 1. Fuzzy ruleset.

3.2. Model-Based Feedforward Control

Although output feedback controllers, such as PID and fuzzy logic, can be tuned for smooth trajectory
following and good disturbance rejection, neither take advantage of the known system dynamics to
improve control. Therefore, a model-based feedforward controller was designed and implemented.
The system model described in the last section was used previously for control studies [41]. These
simulations accurately predicted the dynamic behavior of the arm when subjected to an arbitrary input.
Thus, a controller was designed with a feedforward control element based on an inverse system model.

3.2.1. Model-Based Control without Feedback

Figure 4a depicts the structure of the basic model-based feedforward controller. The system contains
an inverse model of the arm, pneumatic muscles and airflow dynamics to help negate the nonlinear
dynamics of the plant. This feedforward element samples the commanded trajectory and calculates
desired PAM pressure at each time interval. If desired pressure is greater than actual pressure, the system
exhausts air until it reaches the desired pressure, and vice versa. Note that actual PAM pressure must be
known in order to calculate the desired airflow rate in the valve, which could be considered a feedback
component within the feedforward controller. Given the desired state of the system, inverse dynamics
are used to calculate desired torque using Equation (8), though payload mass must be known a priori to
achieve accurate trajectory tracking.

By rearranging the PAM group torque equation, desired force can be determined as:

Fd =
τd

reff cos θf
(11)

Then, desired pressure in each PAM is calculated by rearranging Equation (3) as:

Pd =

(
Fd

nPAM
− FL − FT

)[
(3(L0 − ∆L)2 −B2

4πN2
+

VB
L0 − ∆L

− (t0 − ∆t)(L0 − ∆L)

2π(R0 − ∆R)2

]
(12)
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(or alternatively, Equation (7) for PAM extension). Simply differentiating desired pressure to find
the desired pressure rate does not produce good results, because initial pressure error would not be
compensated for and model inaccuracy may cause the error to compound. Therefore, actual PAM
pressure P is monitored by the feedforward controller, and pressure error ∆P = Pd − P is determined.
The goal of the controller now is to minimize the pressure error, by proportionally adjusting the desired
pressure rate, Ṗd = −kM∆P , where gain kM is introduced to adjust the speed of convergence of the
actual pressure to the desired pressure. Therefore, ṁd, the desired mass flow rate of air to the PAM
group, is estimated as:

ṁd =


ṖdV+αPV̇
RTαout

Ṗd < 0

ṖdV+αPV̇
RTαin

Ṗd > 0

(13)

From this flow rate, a desired valve orifice area, Ad, is calculated by rearranging Equation (1) as:

Ad =


ṁd

CdC1Pus

Pds
Pus

< Pcr

ṁd
CdC2Pus

Pds
Pus

≥ Pcr

(14)

Ideally, the gain would be very high in order to obtain the desired pressure nearly instantaneously,
but problems with oscillation and model inaccuracies require that the gain be tuned for an optimal
combination of accuracy and smoothness.

Figure 4. Model-based feedforward (a) without output feedback; (b) with PID or fuzzy
feedback control.

(a)

(b)

3.2.2. Model-Based Control Augmented with Output Feedback

If the joint is following a commanded trajectory with only model-based feedforward control, minor
inaccuracies in the model can produce significant steady-state error, and major inaccuracies may lead
to instability. Therefore, the model-based feedforward controller can be augmented with a stabilizing
feedback controller, such as a PID or fuzzy controller, as illustrated in Figure 4b. A desired joint angle is
passed into the model, and the feedback controller in parallel. Their outputs are summed, creating a total
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control voltage that is sent to the PAM manipulator. The arm dynamics are sensed and used in feedback
to ensure that the arm closely follows the trajectory.

4. Control Analysis via Simulation

4.1. PID and Fuzzy Control

The two output feedback control strategies that were implemented on the manipulator use distinct
approaches to provide smooth, stable and accurate motion. However, both rely on gain tuning to
achieve desired results. This section details the metrics used to evaluate controller performance in
trajectory-following exercises as the gains were varied.

4.1.1. Gain Tuning Metrics

For simulations and experiments, performance metrics were established to ensure that the best set of
gains was chosen. The first was an integration of the squared error in angular position as a function of
time, giving a total error metric:

ν =

∫ Tf

0

(yd − y)2dt (15)

where y is the measured joint angle, yd is the desired joint angle and Tf is the final time of the test run.
Note that the input to the controller is the error signal, e = yd − y. While it may seem that this metric is
sufficient in tuning the gains, since it minimizes angle deviation, it became quickly apparent that some
responses with a lower value of ν also had substantial oscillation about the desired profile, yd. Hence,
another error metric was considered to highlight the smoothness of the response. This metric was based
on the local curvature of the measured angle:

κ =
y′′

(1 + y′2)3/2
(16)

where y′ is the first time derivative of the measured angle and y′′ is the second time derivative. With the
local curvature at each time step, an error metric was computed by integrating κ with respect to time,
giving the total curvature:

ω =

∫ Tf

0

κdt (17)

This integration provides a single value for comparison, where the response with minimal curvature,
or oscillation in the response, is easily identifiable. Having two error metrics now, one based on minimal
overall error and one based on minimal oscillation, a combined metric was established drawing on
contributions from both individual metrics. Each individual metric was normalized with respect to the
minimum value of that metric and weighted with Wi as:

J = Wν
ν

minν
+Wω

ω

minω
(18)
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such that the minimum possible combined value was J = 1. The weights were chosen as Wν = 0.25

and Wω = 0.75 to give more precedence to the smoothness of the controlled response than total error,
which tended to be undesirably oscillatory alone.

4.1.2. Simulated Trajectory Following

Prior to experimental testing, simulations of the feedback controllers were performed. In each
simulation, the elbow joint was commanded to follow a “lift-hold-return” trajectory with 5-s segments;
the error and smoothness were monitored, and a combined metric score was calculated. Each of the
control gains was varied iteratively, and the set of gains that produced the lowest score was determined
to be optimal. Both PID and fuzzy controllers were simulated for various payload weights hung from
the tip of the end effector.

Figure 5. Performance metrics as g1 and h vary (g2 = 0.6) with a 23-kg (50 lb) payload:
(a) error metric; (b) smoothness metric; (c) combined metric.

(a) (b)

(c)

Figure 5 shows surface contour plots of the performance metrics from fuzzy gain tuning simulations
(similar results were also obtained for the PID controller). These plots allow g1 and h to vary, while g2 =
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0.6 is held fixed at the value determined to be optimal for some of the cases. The two individual metrics
are shown, along with the combined metric. It is clear that the optimal gain set according to the error
metric and smoothness metric are different, producing a combined metric that includes characteristics of
both individual metrics and returns a new optimal value (g1 = 0.45, h = 0.65). Note that the area directly
surrounding this minimum is smooth and relatively flat, meaning that small deviations from these gains
will not cause abrupt changes in behavior. This is important, because a future controller may incorporate
gain scheduling in order to account for changes in payload, and as the controller transitions from one set
of gains to another, gains may not be at their exact optima at all times.

4.2. Model-Based Control with Output Feedback

Model-based feedforward control was also evaluated in simulation. Some plant parameters (PAM
force, friction and arm inertia) were intentionally made slightly different from the controller parameters,
so that the model would not match perfectly. Figure 6 shows the trajectory and pressure response for
the feedforward controller with fuzzy feedback. It can be seen that both the reference trajectory and
pressure are closely followed in all three cases. Control gains are identical for each simulation (g1 = 0.4,

g2 = 0.3, h = 0.7, kM = 1.0). As predicted, larger payloads require higher pressure to achieve the
maximum angle. Error during the lift ramp is seen to increase with increasing payload, because the
maximum mass flow rate of air decreases as upstream pressure and downstream pressure converge. This
effect could be reduced with higher source pressure.

Figure 6. Simulated control, feedforward with fuzzy feedback.

Figure 7 shows the same trial simulations with PID feedback in place of fuzzy feedback. Again,
controller gains are identical for each simulation (kP = 5.0, kI = 2.0, kD = 0.0, kM = 1.0). Operation
is similar to feedforward control with fuzzy feedback; however, there is slightly increased error in the
return stage, which is likely an effect of the integral term delaying a change in direction because of
accumulated prior error.
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Figure 7. Simulated control, feedforward with PID feedback.

In both trials, the operation of the model-based controller is smooth and accurate across a large range
of payloads and no overshoot is present. The simulations provided a good case for implementation and
evaluation on the manipulator hardware.

5. Experimental Evaluation

5.1. PID and Fuzzy Control

5.1.1. Experimental Validation

Guided by optimal results from simulation, experimental tests were performed and compared with
simulation data. There was generally good correlation between model predictions and experimental
measurements, providing validation that the simulation model is sufficient for closed-loop design with
the noted PID and fuzzy controllers. Validation of the predicted joint behavior suggested that the
simulation model could be extended to other manipulator configurations and control strategies, such
as model-based approaches.

5.1.2. Experimental Gain Tuning

Although simulations with optimal gains showed good correlation with experiments, the differences
between the model and actual system indicated that experimental gain tuning could improve
performance. Unlike in simulation, evaluating an exhaustive set of gain combinations was not practical,
so experimental gain tuning began with the predicted optimal gains and varied these in search of
experimental optima. Tuning of the PID controller was performed for three payloads: 11, 23, 34 kg
(25, 50, 75 lb). The process began with kP . Next, kI was varied while a highly rated value of kP was
held constant. Then, kD was added, and incremental adjustments were made again. Fuzzy controller
gains were tuned similarly, in the order of g1, h and then g2.
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Figure 8 shows an example of how the different error metrics guided the selection of different gains
as being “optimal” in the experiments. This example is with 23 kg (50 lb) and considers variations in
kI with two different values of kP , while kD = 0. As can be seen for the two individual metrics in
Figure 8a,b, each gives a best response (minimum value) with a different value of kP , and that minimum
metric value occurs at a different gain value of kI . This is the main purpose for considering the combined
(normalized and weighted) metric in Figure 8c. With the weights discussed above, this figure shows that
the best overall closed-loop response with respect to these metrics and weights occurs when kP = 1.4

and kI = 2.5. To help show the differences in the actual measured time response of the joint rotation
angle, Figure 8d has been included, showing the responses with the best gains according to each metric
in Figure 8a–c. As seen, “Best Error” follows the “Desired Angle” the closest, but it also has the largest
oscillations. “Best Smoothness” and “Best Combined” are much closer to each other, though slightly
less accurate than “Best Error,” but both have less oscillatory behavior. This provides an example of the
trade-offs considered in tuning the gains.

Figure 8. PID control, integral gain selection with a 23-kg (50 lb) payload: (a) error metric;
(b) smoothness metric; (c) combined metric; (d) time response for “best” cases.

(a) (b)

(c) (d)

Two data points corresponding to kI = 2.5 in Figure 8a seem to be outliers, potentially caused by
factors that are specific to this system and the chosen reference trajectory. For instance, this integral gain
value could have lead to a buildup of steady-state error that started to rebound just as the reference angle
began to increase/decrease, causing the arm to closely follow the reference angle in its upward/downward
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movement, in effect anticipating system motion and canceling out the time delay. Another possibility
is that this specific integral gain value causes the swaying of the payload in a manner that “helps” the
controller follow the path. The most obvious outlier (kP = 2.6, kI = 2.5) was weeded out because of
less impressive performance in terms of the “smoothness metric.” The use of a combined metric helps
to reduce anomalies in the data, especially because low error often corresponds to high oscillation. It
is possible that the point (kP = 1.4, kI = 2.5) would no longer correspond to the optimal set of gains
if a different trajectory were chosen, but because it is close to the other local minimum in Figure 8c,
(kP = 1.4, kI = 3.0), it should be safe to assume good performance for other similar lifting trajectories.

Figure 9 compares the optimal gains determined from simulation and experiment. Figure 9a shows
that the PID experimental gains are within a reasonable range of those simulated. The derivative gain is
zero or near zero at each payload, and the proportional gain starts just above kP = 1 at 11 kg (25 lb) and
decreases with increasing payload. At the minimum payload, the integral gains for both cases are near
kI = 4, but above this payload, there is some deviation, with the experiment showing a downward trend
and the simulation showing an upward trend initially before turning downward. Optimal fuzzy control
gains are displayed in Figure 9b. The g1 values and trend from 23 to 34 kg (50 lb to 75 lb) are close,
but there is a large difference in the preferred values at 11 kg (25 lb). Both g2 and h follow experimental
trends better, where g2 stays relatively constant with payload (the values differ up to 2 times), and h
shows an increasing trend with payload, with nearly equivalent values at 23 and 34 kg (50 lb and 75
lb). The difference with the small payload may be caused by system parameters involved with the
dynamics that were not well-modeled, but were not critical factors at heavy payloads or for PID control.
These parameters (damping, friction or payload swinging) are difficult to estimate. The discrepancy in
modeling created an optimal region in simulated gain tuning that did not exist for the physical system.
Overall, it can be stated that the experimentally determined optimal gains are fairly similar to the optimal
gains predicted by the simulation model, though future model refinement may be beneficial.

Figure 9. Experimental vs. simulated optimal gains: (a) PID; (b) fuzzy.

(a) (b)
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5.1.3. Comparison of Output Feedback Controllers

Figure 10 shows the time histories of lift-hold-return trajectory-following experiments using the
experimentally optimized PID gains for three payload weights. In each case, the joint initiated positive
rotation with about 1 s of delay and quickly converged to a steady-state during the hold stage. Additional
payload prevented contraction until the pressure increased, which slightly added to the delay. Due to the
larger weighting on the smoothness metric, oscillations reached acceptable levels, but the total error was
slightly larger. The cumulative angle error over the trajectory also increases with payload. Most visible
with the PID controller is the undesirably large error in the return stage (arm lowering). With 34 kg
(75 lb), this is attributable to integrator windup, when the integral term accumulates a high error, because
the arm cannot produce the required torque in this case. Consequently, when the reference changes, the
integrator must unwind before the arm can change position. This also causes a considerable overshoot
past the rest position when the arm is lowered. This problem could be mitigated by preventing the
integral term from increasing over certain bounds. However, an anti-integrator windup will not remove
this overshoot phenomenon completely, unless the integral gain is set to zero. Some integral gain is
needed to allow PID control to remain smooth, reactive and able to settle to the steady-state. Hence, this
is a drawback of the PID control strategy for this system.

Figure 10. PID control with optimized gains.

Figure 11 displays the results of optimal gains using the fuzzy controller under the same experimental
conditions. All three joint angle trajectories are similar in shape, implying minimal change in the lifting
behavior with changes in payload weight. There is some undesirable low-frequency oscillation during
the lift stage, and the arm, while close, does not quite reach the desired hold angle. There is no overshoot,
however, and more gradual movement during the return stage, making the closed-loop tracking appear
better overall with the fuzzy controller than the PID controller.

Figure 12 presents a direct comparison of the PID and fuzzy experiments with the 23-kg (50 lb)
payload. In lifting the payload, fuzzy control produces more oscillation, but the overshoot seen with
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the PID controller does not self-correct until after the return stage has begun. The fuzzy controller lags
during the lift stage more than with PID, but PID generally reacts more slowly to the return stage (mainly
due to integrator windup). The consistent lag of about 0.75 s in each fuzzy control case indicates that
introducing a time-shift in the “Desired Angle” to account for the characteristic delay in the system as a
type of feedforward correction could decrease error, thereby artificially improving the tracking capability
of the manipulator joint. It should also be noted that this type of correction would likely be less beneficial
to the PID controller, because it can better track the lift slope, and its major delay is only at the start of
the return stage.

Figure 11. Fuzzy control with optimized gains.

Figure 12. Comparison of optimized experimental PID and fuzzy control, 23-kg
(50 lb) payload.
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5.2. Model-Based Control with Output Feedback

5.2.1. Model Validation

Following successful simulations, the feedforward controller with PID/fuzzy feedback was
implemented on the PAM-based manipulator using dSPACE real-time control hardware and software.
Figure 13 displays both simulated and experimental results for the same lift-hold-return trajectory with
45 kg (100 lb) and identical system gains (g1 = 0.4, g2 = 0.3, h = 0.7, kM = 0.5). The only major
difference between simulation and experimental results is the final resting angle after the return stage,
which maintains a steady-state error even after 5 s in the experiment. The major cause of the discrepancy
is that the PAM model is inaccurate at low pressures (<40 psi [0.275 MPa]). Additionally, friction in the
joint and hysteresis in the actuators that was not accurately described by the model exaggerate the error.

Figure 13. Simulated and experimental results using feedforward control with fuzzy
feedback, 45-kg (100 lb) payload.

5.2.2. Experimental Analysis of Feedforward Gain

Significant variations in the system response with changing feedforward gain kM warrant a more
detailed analysis of this relationship. Figure 14 shows the desired trajectory of several experimental
trials varying kM , while the feedback controller gains were fixed (g1 = 0.45, g2 = 0.3, h = 0.7). With
kM = 0 (pure fuzzy feedback), the responsiveness is low, and the lag increases error. However, this
case has the lowest steady-state error at the initial/final angle, where the model is inaccurate. In terms
of pressure, trials with higher kM follow the predicted pressure (dotted line) more closely. This pressure
“trajectory,” representing the model calculation of the needed pressure, is accurate at high pressures, but
inaccurate at lower ones. As kM increases, the model aids the system in quickly responding to changes
in direction, but the steady-state error at low angles (i.e., low pressures) increases. The optimal gain
based on an RMS error over the 25 s interval is kM = 0.5.
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Figure 14. Lift-hold-return trajectory while varying model gain kM , 23-kg (50 lb) payload.

5.3. Discussion of Controllers

Figure 15 compares the response of the four controllers investigated. Two are simple output feedback
controllers (PID and fuzzy) and two are model-based feedforward controllers augmented with PID and
fuzzy feedback (kM = 0.5). It is clear that the feedforward term increases accuracy in all stages of the
response. Feedforward with PID control also decreases oscillation in comparison to PID control alone.

Responsiveness to change in direction is also improved with model-based feedforward control. In this
manner, the feedforward term is similar to an increase in the feedback gains. Unlike increasing feedback
gains, however, the system does not exhibit more oscillation. While there is a large time delay in joint
angle, there is significantly less time delay in achieving desired pressure. Therefore, the convergence of
actual and predicted pressure occurs smoothly and without overshoot.

Figure 15. Comparison of all four control techniques studied, 11-kg (25 lb) payload.



Actuators 2014, 3 61

A well-known concern with PAM-based systems is undesired energy storage in the form of spring
force when the system is deflected from its equilibrium [42,43]. However, the feedforward controller
presented in this study is able to respond safely to abrupt changes in deflection and payload. Figure 16
illustrates the angle response to the addition and subsequent removal of a 27 kg (60 lb) payload.
The system deflects by about 10 deg, but soon recovers to the desired angle. A video provided
as supplemental content shows the elbow joint response to various disturbances, such as payload
addition/subtraction and human disturbances.

Figure 16. Elbow angle response to the addition/subtraction of a 27 kg (60 lb) payload,
feedforward control with PID feedback. Also, see multimedia video content.

6. Conclusions

This study investigated the use of several controllers on the elbow joint of a heavy-lift two
degree-of-freedom manipulator actuated by pneumatic artificial muscles. Each method was designed,
simulated and implemented on experimental hardware. Output feedback (PID and fuzzy) controllers
were examined, as well as model-based feedforward controllers augmented with output feedback. A
model of the manipulator, actuators and airflow dynamics was developed to enable simulation control
studies and gain tuning. Trajectory-following simulations and preliminary gain optimizations were
conducted with the system model, where it was determined that a combined performance metric
weighing angle error and smoothness was necessary to achieve the desired response.

Using real-time interface software and hardware, the controllers were experimentally tested.
Refinement of each technique was performed through an experimental gain tuning procedure, where it
was learned that the predicted optimal gains were fairly accurate for PID and fuzzy control. When further
tuned experimentally, output feedback controllers demonstrated robustness to variations in payload
weight over a large range of motion and were shown to follow basic lift-hold-return trajectories with
small oscillation, lag and overshoot. PID control demonstrated higher accuracy and smoothness than
fuzzy control during the lifting phase, but was more susceptible to overshoot and lag while holding
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or lowering the weight. The overall performance with output feedback alone suggested the need for
improvement.

To improve closed-loop performance, model-based feedforward control augmented with output
feedback was implemented. This approach was shown to produce smooth and precise motions with low
error for varying payloads, even without changing control gains. The feedforward gain was also varied
to demonstrate its effect on the response, where it was shown that there is an optimal gain setting. There
is room for improvement in model accuracy at low pressures, which would allow for higher feedforward
gain values and would further improve the tracking ability of this control strategy.

Due to the complicated control structure and the unmodeled or unanticipated dynamics in the system,
it is difficult to formally establish the stability of the system. When the open-loop system is in static
equilibrium at any point between the joint limits, the system is stable because of the large passive
damping component inherent to pneumatic muscles. This damping helps to ensure that PAMs are stable
in well-tuned closed-loop feedback systems. However, to guard against potential instability when a
controller is employed, one should perform a careful analysis to determine a stable range of control gain
values over the known range of payloads.

Future improvements to consider include a dynamic PAM model that better accounts for nonlinear-
ities, such as hysteresis, an adaptive element that responds to abrupt changes in payload in real-time
and automated trajectory planning. Another challenge is to extend this system to multiple
degrees-of-freedom, where coupling between joints and three-dimensional motion increases the
complexity and small model errors may propagate to links farther down the manipulator.
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