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1 MotivationComputer graphics is the source of many interesting and challenging applications for the designof geometric algorithms and data structures. Applications in global illumination simulation andradiosity [8] have motivated our study of problems involving lines in 3-space. In particular we areinterested in geometric data structures for answering visibility range queries. Given a 3-dimensionalscene de�ned by a set of polygonal patches, we wish to preprocess the scene to answer queriesinvolving the set of patches of the scene that are visible from a given range of points over a givenrange of viewing directions. Queries of this form are central to global illumination simulation. Thishas led us to the study of data structures for storing and accessing subdivisions over directed-linespace, where each point in this space is associated with a directed line in 3-space.In the search for these data structures, we have come across an important problem. Our solutionto this problem shows that choices for the data structures used to store the 3-dimensional scenemay have a considerable impact on the design of data structures and algorithms for answeringvisibility range queries.Data structures based on recursive subdivisions of space are popular methods for answeringrange queries. These data structures recursively subdivide space into cells until some criterion issatis�ed. Such criterion typically involve the number of data objects that intersect the cell, butin the case of approximations may also involve the size of the cell, measured by its diameter orvolume [7]. The problems of determining the size of a cell and whether a cell represents a nonemptyregion of space are implicit (and usually trivial) in the design of algorithms for building these datastructures.In the case of directed lines in 3-space, there is a natural way of subdividing space. Given twodirected lines, we may assign them an orientation, which is either positive, zero, or negative accord-ing to the direction of one line relative to a viewer looking along the direction of the other. Thus
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(intersection)Figure 1: Orientations.we may use directed lines in 3-space as a basis for subdividing directed-line space. An equivalentformulation, which may be more natural in some circumstances, is to consider subdivisions of linespace according to whether lines intersect an oriented polygonal patch. In particular, given a convexpolygonal patch in 3-space, whose boundary is oriented in some direction, we say that a directedline stabs the patch if it intersects the interior of patch and it crosses the oriented patch accordingto a right-handed transversal. Equivalently the line has a positive orientation with respect to everydirected edge of the patch. Such a line is also called a transversal.Consider a set of convex, oriented polygonal patches in 3-space. Let n denote the total numberof edges in all the patches. Teller showed that in O(n2) time it is possible to determine the existenceof a transversal of these patches, and more generally to compute a complete description of the setof stabbing lines [10]. Amenta [2] showed that if the patches consist of a set of orthogonal (that is,1



axis-aligned) rectangles, then the existence of a transversal can be determined in more e�cientlyin O(n) time by a variation of linear programming. Megiddo [5] showed that the orthogonal casecan be solved in O(n) time in all �xed dimensions through linear programming. This suggests oneadvantage of using orthogonal rectangles and lines in 3-space (as arise in quad-trees, k-d trees, andR-trees [7], for example) as the basis of subdivisions of directed line space.An extension to this problem is that of determining not just the existence of a stabbing line, butvarious properties and functions of this set of lines. Examples of this include computing randomsamples over this set, balanced spatial decompositions, and measurements of the size or diameterof this set. It is the latter problem that we consider here. We introduce a way of measuring thesize of a set of directed lines that stab a set of n polygonal patches in 3-space. We show that if thepatches are orthogonal rectangles, then this measure can be approximated in O(n) time.2 The Size of a Set of LinesLet P denote a set of oriented convex polygonal patches in 3-space. Let S(P ) denote the set ofstabbers, that is, the set of directed lines in 3-space that stab every patch in P . Given two lines`p; `q 2 S(P ), let dist(`p; `q) denote the minimum distance between these lines, and let ang(`p; `q)denote the minimum angle of rotation to make `p parallel to `q. Intuitively, these two quantitieswill be small if patches of P de�ne a narrow \tunnel" through which the stabbers must pass.Because the distance and angle taken from di�erent domains, and since our size will dependon both, we normalize them over the interval [0; 1] as follows. We assume that we are given anorthogonal cube C in 3-space that encloses the scene and all of the patches of P . Let D denotethe diameter of C. Every line in S(P ) intersects C, and hence the closest distance between anypair of stabbers is at most D. De�ne the normalized distance dist0(`p; `q) to be dist(`p; `q)=D.We also assume that the lines of S(P ) lie within a region of angular diameter �=2, and thus theangle between `p and `q can be at most �=2. We de�ne the normalized angle ang0(`p; `q) to besin ang(`p; `q). Clearly both normalized quantities lie in the interval [0; 1]. Finally we de�ne thesize of S(P ) to be size(P ) = sup`p;`q2S(P )max(ang0(`p; `q); dist0(`p; `q)):Intuitively, if the set P admits a set stabbers that have a very narrow range of angles and distances,then size(P ) will be small.Although we do not know of an e�cient way to compute size(P ) without of computing acomplete representation of S(P ) (which can be done in roughly O(n2) time [10]), we claim that wecan approximate the size in O(n) time. Our approach combines the use of Pl�ucker coordinates andvariants of linear programming spaces of �xed dimension.3 Pl�ucker CoordinatesPerhaps the most elegant method for representing directed lines in 3-space is through the use ofPl�ucker coordinates. Let ` be a directed line in 3-space, and let a and b be any two points on `, suchthat ` is directed from a to b. Let [a0; a1; a2; a3] and [b0; b1; b2; b3] be the homogeneous coordinatesof a and b with a0; b0 > 0 be the homogenizing coordinates (so that the Cartesian coordinates ofa, for example, are (a1=a0; a2=a0; a3=a0)). The Pl�ucker coordinates of ` are the six real numbers[�01; �02; �03; �23; �31; �12];2



where �ij = aibj � ajbi. It is easy to see that any positive scalar multiple of the coordinate vectorrepresents the same line. Thus we can regard the Pl�ucker coordinates of a directed line as a pointin projective 5-space P5 [9]. Not all Pl�ucker coordinates represent lines in 3-space. The coordinatesof a line in 3-space must satisfy the quadratic equation�01�23 + �02�31 + �12�03 = 0:The locus of points satisfying this equation is called the Grassmann manifold (also called the Pl�uckerhypersurface).Consider two directed lines `p and `q in 3-space, and let p and q denote their respective Pl�uckercoordinates. De�ne p� q to bep01q23 + p02q31 + p03q12 + p23q01 + p31q02 + p12q03:De�ne the orientation of `p relative to `q to be the negation of the sign of p� q. Observe that theset of lines `p that have a particular orientation relative to a �xed line `q is the intersection of ahalfspace in 5-dimensional Pl�ucker space with the Grassmann manifold.Given a set P of oriented polygonal patches in 3-space, two lines `p and `q are in the sameorientation class (o-class) relative to P if both have the same orientations with respect to all thelines of P . The set S(P ) is the particular o-class that we are interested in. These two lines arein the same isotopy class (i-class) relative to P if there is way of continuously mapping `p to `q(a connected path on the Grassmann manifold between their respective Pl�ucker coordinates) suchthat all the points on this path are in the same o-class. A striking feature of lines in 3-space isthat two lines may be in the same o-class relative to P , but are not in the same i-class [4]. Wesay that two directed lines `p and `q are in the same orthogonal sign class (s-class) if the signs ofthe components of the 3-dimensional directional vectors for the two lines are equal. There are 8orthogonal sign classes, one for each of the coordinate octants.Given a set of n oriented patches P , it follows that S(P ) is the intersection of the Grassmannmanifold together with a set of n halfspaces (one for each line of P ) in Pl�ucker space. An i-classof S(P ) is any connected component of this intersection. Consider a set of patches P consistingof a set of oriented orthogonal rectangles in 3-space, and suppose that we consider only lines in asingle orthogonal sign class. (This will be the case if for each coordinate axis there is at least onerectangle in P orthogonal to this axis.) Amenta has shown in this case S(P ) is connected [1], thatis, if it is nonempty, then it has a single i-class. This is one of the important properties possessedby orthogonal constraints.4 The ApproximationFor our approximation we assume that we are given a set P of n oriented orthogonal rectangles in3-space, and a cube C enclosing the rectangles of P . To restrict ourselves to a single orthogonal signclass, we assume that P contains at least one rectangle orthogonal to each of the three coordinateaxes. If this is not the case, then we may add an appropriate face of C to enforce this constraint.We may assume without loss of generality that the lines of S(P ) are directed into the positiveoctant.Our approximation is based on two observations. The �rst is that the �rst three Pl�uckercoordinates indicate the direction of a line. In particular, it is easy to verify that if (�01; �02; �03)are the �rst three coordinates of a directed line ` (not a line at in�nity), then this vector is thedirectional vector for `. Because all scalar multiples of Pl�ucker coordinates represent the same line,3



we may apply a suitable normalization by requiring that �01+�02+�03 = 1. From our assumptionthat lines are directed into the positive octant, these coordinates will all lie within the interval[0; 1]. By computing bounds on these three normalized components for all lines in S(P ), we canbound the range of possible line angles.The second observation is that, although it is di�cult to bound the normalized distances betweenlines, it is a consequence of the fact that P consists of orthogonal rectangles that if there are twolines of S(P ) with a large normalized distance, then there are two lines of S(P ) whose normalizedangle is proportionately as large. This does not hold for arbitrary convex polygonal patches. Thus,it su�ces to compute an approximation to the maximum normalized angle.Here is the approximation procedure. Given the set of patches P , convert each directed side ofeach rectangle of P into a halfspace in 6-dimensional Pl�ucker space. Add to this set of halfspacesthe constraint �01+�02+�03 = 1. Observe that any line directed into the positive octant intersectsthis plane in a point whose coordinates are in the interval [0; 1]. It follows from Amenta's results [1]that the resulting system of O(n) linear inequalities is of LP-type [3]. For each axis, i 2 f1; 2; 3g,invoke any linear time procedure for generalized linear programming (in dimension 6) to determinelower and upper bounds on the i-th coordinate, denoted ��0;i and �+0;i, respectively. If the system isinfeasible, then return an indication of this. Otherwise return the maximum width,� = maxi ��+0;i � ��0;i�as the approximation. Observe that 0 � � � 1. The running time is dominated by the O(n) timeneeded for generalized linear programming in dimension 6 [3].5 AnalysisIn this section we show that the above algorithm returns a value that is within a constant factorof size(P ). In particular, we prove the following result.Theorem 5.1 Given a set of oriented orthogonal patches P , let � denote the value returned bythe size approximation algorithm of the previous section. Then13p2 � size(P )� � 4p5:The proof begins with a series of technical lemmas. The �rst lemma provides bounds on theangle between two vectors, in terms of bounds on the di�erences in their coordinates.Lemma 5.1 Let p0 and p1 be two points in 3-space that lie in the positive octant on the planeT : x+ y + z = 1, and let� = max(jp0:x� p1:xj; jp0:y � p1:yj; jp0:z � p1:zj):Letting o denote the origin, consider the two vectors ~op0 and ~op1, and let � denote the angle betweenthese vectors. Then �3p2 � sin � � �p8:4
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Proof : We present the lower and upper bounds separately. De�ne �x = jp0:x� p1:xj, and de�ne�y and �z analogously.Lower Bound. Assume without loss of generality that � = �z . Consider, the triangle formed bythe intersection of T with the positive octant and the trapezoidal region on this triangle shown inFigure 2(a). For a �xed �, the smallest angle between any two vectors, occurs when points p0; p1 lieon a plane containing the z-axis. Let ' denote the angle between this plane and the x-axis, and leta' denote the length of the segment on this plane between the origin and T . (See Figure 2(b).) Wesee that a' cos' + a' sin ' = 1, which gives a' = 1=(cos'+ sin ') and 1=p2 � a' � 1. Considera0, a1, and a' from Figure 2(c). By similar triangles, we have the relations1a' = 1� z0a0 = 1� (�+ z0)a1 :Thus a0 = a'(1 � z0) and a1 = a'(1� (� + z0)). The angle � between the two directions can beexpressed as � = �1 � �0. The value of tan � = tan(�1 � �0) is thentan � = a'�a2'(1� z0)(1� (� + z0)) + z0(�+ z0) ;where tan �0 = z0=a0 = z0=a'(1 � z0) and tan �1 = z1=a1 = (� + z0)=a'(1 � (� + z0)). Thevalue of z0 ranges from 0 to 1 � �. To get the minimum value of tan �, we �nd the maximumvalue of its denominator. The denominator of tan � is a quadratic in z0 whose leading coe�cientis 1 + a2' > 0. Thus the maximum value of the denominator occurs at one of the extreme valuesz0 = 0 or z0 = 1��. We have tan � equal to the value �=a'(1��) for z0 = 0 and a'�=(1��)for z0 = 1��, where a'�1�� � �a'(1��)because � is �xed and 1=p2 � a' � 1. Thus, the lower bound of tan � is�p2(1��) � a'�1�� � tan �:Upper Bound. Let l(p0p1) be the length of segment p0p1. In Figure 3(a), each one of ranges�x, �y , or �z will result in a segment of length p2�x, p2�y or p2�z along the plane T . Themaximum length of segment connecting any two points of the intersection of T and the positiveoctant happens when two or three of �x;�y;�z are equal to �, and l is the longest diagonal ofthe hexagon illustrated in Figure 3(b). Each pair of parallel edges of the hexagon are separated bydistance at most p2�. This implies that the length of its edge is at most p2=3�, and the lengthof the diagonal is at most p8=3�. Thus, the bound of l(p0p1) is l(p0p1) � p8=3�.Let d be the distance from the origin to any point on the triangle de�ned by plane T . Then d isbounded as 1=p3 � d � 1, where d = 1 happens at the corners of this triangle, d = 1=p3 happensat the triangle's centroid (1=3; 1=3; 1=3). The relation between angle � of vectors ~op0, ~op1 and thelength of segment p0p1, as depicted in Figure 3(c), isk ~op0k tan� � k ~op1 � ~op0k � k ~op1k sin �:Combining with inequalities on l(p0p1) and d, we have the upper bound on of tan �, k ~op0 � ~op1k =l(p0p1), tan �p3 � k ~op0k tan � � l(p0p1) � r83�:6
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That is, tan � � 2p2�. The quantity sin � has the propertiessin � � tan � and sin � = tan �=p1 + tan2 �:It follows that the bounds on sin � are�3p2 < �(1��)p2(8�2+ 1) � sin � < 2p2�;since (1��) < 1 and (8�2 + 1) < 9. This completes the proof. 2For the next lemma, de�ne dist1(p; q) to be the L1 distance between two points, that is, themaximum absolute di�erence between corresponding coordinates of p and q. It is easy to see thatdist(p; q)p3 � dist1(p; q) � dist(p; q):We can de�ne the L1 distance between any two sets as the minimum L1 distance between anypair of points from each of the sets. The next lemma states that if two lines are distance d apartthen there is a projection to a coordinate plane that attests to this separation.Lemma 5.2 Let `1 and `2 be two lines in 3-space, let d = dist(`1; `2) and let p be any point on`1. There exists a coordinate plane such if `01, `02 and p0 denote the orthogonal projections of theseelements onto this plane, then dist1(p0; `02) � dp3 :Proof : Let d0 = d=p3. Suppose to the contrary that in all three orthogonal coordinate projections,the distance from p0 to `02 is less than d0. Then it follows that dist1(p; `2) (in 3-space) would beless than d0. This implies that dist(p; `2)=p3 < d0, and hencedist(`1; `2) � dist(p; `2) < d;a contradiction. 2The third lemma provides a bound on the angle between two lines in the plane, given conditionson the vertical distance between the lines at some point.Lemma 5.3 Consider two directed lines `1 and `2 in the plane both with positive slopes, and onewhose slope is at most 1. Suppose that they meet at some point q, and within horizontal distanceat most h from q the lines are vertically separated by distance at least v. Let � denote the anglebetween these lines. Then sin � � min� 1p3 ; vhp10� :Proof : It is easy to see that the minimum value of � is achieved when the horizontal distance ish, the vertical distance is v, and the line with the smaller slope has a slope of 1. The line with thelarger slope has a slope of at least (v+h)=h. By basic trigonometry (the law for the tangent of thedi�erence of two angles, in particular) it follows thattan � � (v + h)=h� 11 + (v + h)=h = v2h+ v :8
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6 Proof of the Main LemmaConsider lines `1; `2 2 S(P ). We assume that these lines are in general position. Let d = dist(`1; `2).Let Clo and Chi denote the low and high endpoints of the enclosing cube C. Thus, for example, allpoints in C have x-coordinates satisfying Clo:x � x � Chi:x. Given any object p in 3-space, let pxdenote its orthogonal projection onto the zy-coordinate plane. De�ne py and pz analogously.Consider any point on `1 within the cube C. Apply Lemma 5.2. Without loss of generality, wemay assume that the axes have been labeled so that the projection described in the lemma is onthe xy-coordinate plane, and that the projected line with the smaller slope has slope at most 1 (byswapping the x and y axes if necessary). Let d0 = d=p3. From the lemma it follows that at somepoint within the cube the L1 distance between this point to `2 is at least d0, implying that thevertical distance between this point and `2 is at least d0.Consider the vertical strip on the xy-coordinate plane de�ned by the projections of the sides ofthe cube of C, Clo:x � x � Chi:x:Consider `z1 and `z2, the respective projections of `1 and `2 onto the xy-plane. We de�ne two lines `z3and `z4 on the xy-plane. The lines `3 and `4 will be constructed so that these are their projectionsonto the xy-plane. We consider three cases, as illustrated in Fig. 5.
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Let � denote the angle between `z3 and `z4. The diameter of C is D, implying that the width ofthe strip is D0 = D=p3. Observe that within horizontal distance at most D0 of the intersection of`z3 and `z4, the vertical distance between the lines is at least d0, and that `z4 has slope at most 1. Byapplying Lemma 5.3 (where `z4 and `z3 are the `1 and `2 in Lemma 5.3, respectively) it follows thatsin � � min� 1p3 ; d0D0p10� = min� 1p3 ; dDp10� :Since d � D, the second term is always smaller, implying that sin � � d=(Dp10).Observe that if we can �nd two lines `3; `4 2 S(P ) whose projections are `z3 and `z4, then theangle between these two lines in 3-space will be at least as large as �, and so establish the desiredbound of Lemma 5.4 and completing the proof. The remainder of the proof is concerned with�nding these lines.First we observe that in Case (a) we may select `3 = `2 and `4 = `1 to complete the proof.Thus it su�ces to consider cases (b) and (c). Since `z4 is equal to either `z1 or `z2, if we choose `4 tobe equal to `1 or `2, respectively, then `4 2 S(P ). Thus it su�ces to �nd `3.Let H denote the plane formed by extruding the line `z3 parallel to the z-direction. Also considerthe extrusion of the strip as well, to the region bounded between two planes that are orthogonal tothe x-axis. By choosing any line (in general position) on H , it will follow that its xy-projection is`z3. We may think of each patch in P as consisting of four directed, axis-parallel constraint lines.Let `r denote such a line that is parallel to the z-axis.To establish whether any given line ` in 3-space satis�es this constraint, it su�ces to considerwhether the projection `z of the line ` onto the xy-plane lies above or below (depending on thedirection of `r) the point r onto which `r projects. Since all patches lie within C, whose projectionlies within the strip, r lies within in the strip. By our choice of `z3 in either of cases (b) or (c), ifboth `z1 and `z2 lie below (above) point r, then `z3 lies below (above) r as well. Thus by choosing `3to lie on H , it follows that it will satisfy any z-axis parallel constraints that both `1 and `2 satisfy.Also observe that we have chosen `z3 so that it is directed into the positive quadrant, and so itsatis�es the sign-class constraint (at least with respect to x and y).We will apply this same analysis to the other two orthogonal projections. First consider y-axisparallel constraint lines. For i = 1; 2, see Fig. 6, let ai and bi denote the intersections of line `i withthe lower (low x) and upper (high x) sides of the strip, respectively. Let ha and hb denote the linesalong which H intersects the lower and upper sides of the strip.
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of the lines it follows that a1 lies on ha and b2 lies on hb andax1 :y � fax2 :y; bx1:yg � bx2:y:(where a � fb; cg means that a � b and a � c). We also have, for i = 1; 2, axi :z � bxi :z, by the signassumption. Let a02 and b01 denote the y-parallel projections of a2 and b2 onto ha and hb respectively.Consider the projection of the strip onto the zx-coordinate plane. (See Fig. 7.) The segmentsa1a2 and b1b2 project onto segments ay1ay2 and by1by2. Letting `y3 denote the projection of `3 onto thezx-plane, to guarantee that `3 satis�es all y-parallel constraints that `1 and `2 do, we should select`3 so that `y3 intersects both of these segments. Furthermore, if `y1 and `y2 intersect at some pointpy within the projected strip, then `y3 should also intersect this point (for example, as the dashedline in the �gure does).
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yFigure 7: Projection onto the zx-plane.We consider two cases illustrated in Fig. 7.Case Fig. 7(a) In the �rst case, `y1 and `y2 do not intersect within the strip. Consider theprojections onto the zy-plane (see Fig. 8). Our requirement that `y3 intersects the segments ay1ay2and by1by2, implies that in this projection, the line `x3 intersects the segments ax1a0x2 and b0x1 bx2 (shownin heavy lines in the �gure).If ax1 :z > ax2 :z (see Figs. 8(a)) then because the y-projections of the lines do not intersect withinthe strip, we have bx1 :z > bx2:z. Let `3 be the line passing through a02 and b01. It is easy to see that`3 satis�es the sign-class constraints as well as all x-parallel constraints because it lies entirely tothe right of the line `x2 and to the left of the line `x1 while in the strip.On the other hand, if ax1 :z � ax2 :z (see Figs. 8(b)-(c)) then we have bx1:z � bx2:z. There are twosubcases to consider.(i) If line `x1 intersects the segment b0x1 b2 or line `x2 intersects segment ax1a0x2 (the former occursin Fig. 8(b)) then let `3 be the line, either `1 or `2, whose projection satis�es this condition.(We would take `3 = `1 in the �gure.) Since `3 is equal to either `1 or `2 it is in S(P ).12
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Figure 8: Projection onto the zy-plane.
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(ii) If both lines `x1 and `x2 fail to intersect segments ax1a0x2 and b0x1 b2 (see Fig. 8(c)), then it followsthat `x2 intersects ha to the left of ax1a0x2 and `x1 intersects hb to the right of b0x1 bx2 . Let `3 bethe line extending through a1b2. This line satis�es all x-parallel constraints because it lies inthe portion of the strip the right of `x2 and to the left of `x1 .
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Figure 9: Projection onto the zy-plane.Case Fig. 7(b) In the second case, `y1 and `y2 intersect at some point py within the strip. Asbefore, consider the projections onto the zy-plane (see Fig. 9). As before, there are two subcases.Either ax1 :z � ax2 :z, implying that bx1 :z > bx2:z, or ax1 :z > ax2 :z, implying that bx1:z � bx2:z. These twocases are symmetric with respect to a 180 degree rotation and a reversal of a's and b's, 1's and 2's,so it su�ces to consider just the former case.The projected intersection point py de�nes a y-parallel line (passing through `1 and `2) andintersecting H at some point p. The zy-projection of p, denoted px, is the intersection of the linesegments ax1b0x1 and a0x2 bx2 . (This is because these are zy-projections of unique lines on H whosezx-projections are ay1by1 and ay2by2, respectively.) Let qx denote the intersection of lines `x1 and `x2 .(i) If line `x2 intersects the segment ax1a0x2 (see Fig. 9(a)), then we claim that the line extendingthe segment qxpx intersects both the segments ax1a0x2 and b0x1 bx2 . This is because qx lies withinthe double wedge whose apex is p and whose extreme lines pass through the endpoints ofthese segments. In this case let `3 be the unique line on H projecting onto the segment qxpx.Because it lies on H and intersects segments ax1a0x2 and b0x1 bx2 , it satis�es the z- and y-parallelconstraints of P . Because it passes through qx it satis�es the x-parallel constraints of P .It satis�es the sign-class constraints because the slope of the line lies between the (positive)slopes of ax1b0x1 and a0x2 bx2.(ii) On the other hand, if line `x2 does not intersect the segment ax1a0x2 (see Fig. 9(b)), then itfollows from slope considerations that it intersects ha to the left of this segment. Let `3 be14



the unique line on H that projects onto the segment ax1b0x1 . (Observe that qx lies outside of thestrip in this case.) This line passes through px, and intersects segments ax1a0x2 and b0x1 bx2 , andhence it satis�es the z- and y-parallel constraints of P . It satis�es the x-parallel constraintsbecause it lies in the portion of the strip to the left of `x1 and the right of `x2. Finally, itsatis�es the sign-class constraints because ax1 :z � b0x1 :z.This completes the case analysis for the construction of `3. Because we showed in all cases that `3satis�es all three orthogonal constraints as well as the sign-class constraints, it is in S(P ), and thiscompletes the proof of the Main Lemma and, hence, the analysis of the approximation algorithm.
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