
ABSTRACT

Title Of Dissertation: PREFETCHING VS THE MEMORY SYSTEM : OPTIMIZATIONS
FOR MULTI-CORE SERVER PLATFORMS

Sadagopan Srinivasan, Doctor of Philosophy, 2007

Dissertation Directed by: Professor Bruce Jacob
Department of Electrical and Computer Engineering

This dissertation investigates prefetching scheme for servers with respect to realistic

memory systems. A large body of research work has been done in prefetching, even for

server workloads that have sparse locality. Real systems disable prefetching in server set-

tings, suggesting that there is a fundamental disconnect between research and practice.

Our theory, a major point of this thesis, is that this disconnect is due to the use of simplis-

tic memory models — and our experimental results show that, among other things, using

simplistic models can over-predict the system performance by up to 65%. Our investiga-

tion proceeds as follows:

• (In)Accuracy of Simplistic Memory Models. We demonstrate the degrees of

inaccuracy of models commonly used in system design: in particular, simple mod-

els are reasonably accurate when applied to simple systems (e.g. uniprocessors),

but they become increasingly inaccurate as the level of complexity of the system

grows — as cores are added, and as prefetching is added.

• Memory side prefetching. We then perform a detailed case study of a well known

server oriented prefetch scheme — memory-side sequential prefetch — to

develop understanding of the interaction between prefetch scheme and memory

systems. In particular, we find that the projected performance gains fail to materi-

alize due to the lack of locality in the server benchmarks and the bandwidth con-

straints introduced by the prefetch requests. We conclude that prefetching studies

so far have been using the wrong metric to gauge idleness of the memory sub-

system and consequently saturate the bus with prefetch requests.

• Multi-core Server Prefetching. We use our newfound understanding of prefetch

and memory systems interplay to develop a novel scheme for prefetching in

server platforms that does interact well with real memory systems. We find that

tuning the aggressiveness of prefetching to the average memory latency, which

depends on the available bandwidth, performs the best in server platforms.

PREFETCHING vs MEMORY SYSTEM : OPTIMIZATIONS FOR MULTI-CORE

SERVER PLATFORMS

by

Sadagopan Srinivasan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:

Professor Bruce Jacob, Chair
Professor Manoj Franklin
Professor Gang Qu
Professor Chau-Wen Tseng
Dr. Li Zhao

ii

TABLE OF CONTENTS

List of Tables iv

List of Figures v

 Chapter 1: Introduction 1
1.1. Motivation. 1

1.2. Problem . 1

1.3. Contributions and Significance. 11

1.4. Organization of Dissertation . 12

 Chapter 2: Related Work 13
2.1. Performance Optimizations for the Memory Sub-System 13

2.1.1 Embedded systems optimizations . 14

2.1.2 General purpose systems optimizations . 16

2.2. Power Optimizations. 29

2.3. Commercial Memory Controllers . 33

2.4. Embedded DRAM Architectures . 35

2.5. Accurate Architectural Models . 38

 Chapter 3: Simplistic Memory Models 41
3.1. Simulation Methodology. 41

3.1.1 Multi-core Architecture . 41

3.1.2 Simulator . 42

3.2. Benchmarks. 53

3.3. Simplistic Memory Models. 54

3.4. Performance comparison of memory models . 57

3.4.1 Average Memory Latency Behavior . 72

3.5. Comparison with prefetching optimization. 77

3.5.1 Performance Comparison. 79

3.5.2 Latency Comparison . 83

iii

3.6. Summary . 87

 Chapter 4: Memory Side Prefetching 89
4.1. Strides in Server Workloads . 89

4.2. Multi-stride Prefetching . 90

4.2.1 Prefetch Requests Priority . 95

4.3. Experimental Setup and Results . 98

4.3.1 Impact of Degrees of Prefetching. 100

4.3.2 Impact of DRAM Scheduling . 102

4.3.3 Impact of DRAM Bandwidth. 105

4.3.4 Impact of Prefetch Threshold. 108

4.4. Summary . 113

 Chapter 5: Multi-core Server Prefetching 115
5.1. Load Aware Prefetching . 116

5.2. Experimental Setup and Results . 122

5.2.1 Impact of Degrees of Prefetching. 123

5.2.2 Impact of DRAM bandwidth . 125

5.2.3 Read Queue Threshold . 128

5.2.4 Load Aware Scheduling . 130

5.3. Summary . 133

 Chapter 6: Conclusion 134

 References 138

iv

List of Tables
TABLE 3.1. Multi-core configuration. 42
TABLE 3.2. Memory models behavior . 52
TABLE 3.3. DDR3-800 Memory System Parameters . 57
TABLE 3.4. Average memory latency over cores for SJBB with DDR-800 64
TABLE 3.5. Performance projection over cores for SJBB with DDR-800. 64
TABLE 3.6. DDR3-1600 Memory system parameters . 66
TABLE 3.7. Performance projection over cores for SJBB with DDR-1600. 66
TABLE 3.8. Average memory latency over cores for SJBB with DDR-1600 67
TABLE 3.9. Average latency memory model configuration. 75
TABLE 3.10. DDR3-1067 Memory System Parameters . 75
TABLE 3.11. Performance improvement over cores for SJBB with prefetching 82
TABLE 3.12. Average memory latency over cores for SJBB with prefetching 82
TABLE 4.1. Multi-stride Prefetching Simulation Parameters. 98
TABLE 4.2. Memory System Parameters for DDR-800 and DDR-1600 99
TABLE 5.1. Load Aware Prefetching Simulation Parameters 122
TABLE 5.2. Memory System Parameters for DDR-800 and DDR-1600 124
TABLE 5.3. L3 hit rate increase for various prefetching depths. 132

v

List of Figures
Figure 1.1. Performance Scaling over threads for SPECJbb benchmark.. 2
Figure 1.2. Average memory latency over threads for SPECJbb benchmark. 4
Figure 1.3. Bandwidth Vs. Latency Curve.. 5
Figure 1.4. Queuing model Vs. Cycle-accurate model comparisons. 7
Figure 1.5. Histogram of Memory requests for SPECJbb and TPCC workloads. 9
Figure 2.1. Multiprocessor System-on-Chip with Distributed Memory System. 15
Figure 3.1. multi-core architecture. 43
Figure 3.2. Memory trace capture . 45
Figure 3.3. ManySim Core Module: . 46
Figure 3.4. L1 to L2 and L3 interconnect topology . 47
Figure 3.5. ManySim On-die Interconnect Example for multi-core Platform 48
Figure 3.6. Queuing model Vs. Cycle-accurate model comparisons. 50
Figure 3.7. Pseudocode for the fixed latency and Queuing models 51
Figure 3.8. Memory latency response for DDR-800. 56
Figure 3.9. Performance comparison of various memory models 58
Figure 3.10. Performance comparison of various memory models 60
Figure 3.11. Memory latency response distribution for DDR-800. 62
Figure 3.12. Performance comparison of various memory models for DDR-1600 . . . 68
Figure 3.13. Performance comparison of various memory models for DDR-1600 . . . 69
Figure 3.14. Memory latency response for DDR-1600. 70
Figure 3.15. Memory latency response distribution for DDR-1600. 71
Figure 3.16. Synthetic Traffic Generator Model . 73
Figure 3.17. Average memory latency response for various configurations. 74
Figure 3.18. Performance comparison of various memory models with prefetching. . 78
Figure 3.19. Memory Latency distribution for TPCC 1-core and 8-core system. 81
Figure 3.20. Memory latency response for DDR-800 with prefetching. 84
Figure 3.21. Memory latency response distribution for DDR-800 with prefetching. . . 86
Figure 4.1. Frequency Distribution of Memory requests for SJBB and TPCC. 92
Figure 4.2. Frequency Distribution of Memory requests for SAP and SJAS. 93
Figure 4.3. Multi-stride Memory Side Prefetcher . 94
Figure 4.4. Flowchart for Multi-stride Prefetching algorithm 97
Figure 4.5. Performance improvement of multi-stride prefetching scheme for DDR-

800. 101
Figure 4.6. Performance improvement of multi-stride prefetching scheme for DDR-

800. 102
Figure 4.7. Performance improvement of multi-stride prefetching scheme for DDR-

1600. 103
Figure 4.8. Performance improvement of multi-stride prefetching scheme for DDR-

1600. 106

vi

Figure 4.9. Memory bandwidth variation for different schemes. 107
Figure 4.10. Distribution of memory accesses for DDR-800 109
Figure 4.11. Distribution of memory accesses for DDR-1600 110
Figure 4.12. Distribution of prefetch requests for DDR-800 111
Figure 4.13. Distribution of prefetch requests for DDR-1600 112
Figure 5.1. Load Aware Prefetcher . 116
Figure 5.2. Prefetching threshold latency regions. 118
Figure 5.3. Average memory latency threshold for different prefetching zones. . . . 120
Figure 5.4. Flowchart for Load Aware Prefetching algorithm 121
Figure 5.5. Performance improvement using stream prefetcher for DDR-800. 123
Figure 5.6. Performance improvement using stream prefetcher for DDR-1600. . . . 126
Figure 5.7. Performance improvement using stream prefetcher for DDR-1600x2. . 127
Figure 5.8. Performance improvement trend for different read queue threshold . . . 128
Figure 5.9. Performance improvement with load aware scheduling. 130

1

 Chapter 1: Introduction
1.1. Motivation

Prefetching has been proposed as one of the important solutions to hide memory

latency in systems. Numerous prefetching schemes have been proposed, both hardware and

software, targeting regular/irregular spatial locality [1][2]. Almost all of these prefetching

techniques have been studied from a single core perspective, and most of them use simplis-

tic memory models [3][4]. In spite of the performance improvement shown by the vast

amount of prefetching research, prefetching is disabled in servers due to their lack of local-

ity [personal experience in Intel][5].

The increased number of cores in modern chips and lack of locality in servers has

further aggravated the memory wall problem. A memory-side prefetching scheme pro-

posed by others was shown to improve the performance for server workloads, but our

results prove otherwise. Though aggressive and novel prefetching methods have been pro-

posed for workloads that lack locality, these results don’t translate to actual performance

gain in a real system, due to the use of inaccurate memory models in these studies. Simplis-

tic memory models which worked well for uni-processor systems can’t handle the com-

plexity of the multi-core systems that have more bandwidth constraints and increased

contention among requests.

1.2. Problem

The scaling limitations of uni-processors and availability of a large silicon area due

to reduced transistor size has led to an increased number of cores on a chip. The cost of

extracting more instruction level parallelism (ILP) from a single thread/core is becoming

2

expensive due to complex logic, wider issue width, and more accurate branch predictors.

These factors have fueled the growth of chip multi-processors (CMPs), also known as

multi-core processors which extract ILP using simpler, less costly means. This is the cur-

rent trend in the performance growth of processors. These complex CMPs are becoming

the ubiqitous architecture for commercial servers targeting throughput-oriented applica-

tions [6].

The emergence of CMPs has led to increased exploitation of thread-level parallel-

ism. Furthermore, independent processes in a system can be executed in tandem on differ-

ent cores for faster response time and to improve overall throughput. The simultaneous

execution of multiple processes/threads increases the memory bandwidth demand, i.e, the

increased number of cores aggravates the memory wall problem.

Figure 1.1. Performance Scaling over threads for SPECJbb benchmark. This
figure shows the performance improvement for various number of threads for SPECJbb
server workload. The threads were increased from 8 to 128 and the cache sizes were
scaled proportionately. The dotted line shows the ideal performance possible in an
unlimited bandwidth system.

0

2

4

6

8

10

12

14

16

0 32 64 96 128

Number of Threads

No
rm

al
iz

ed
 P

er
fo

rm
an

ce

16 8

Performance constrained by BW

Ideal Performance

Performance constrained by BW

Ideal Performance

3

To illustrate this unfortunate side effect refer to Figure 1.1, which shows the perfor-

mance scaling of a server workload for various number of threads. This study was under-

taken for a SPECJbb benchmark. SPECjbb (Java Server Benchmark) is SPEC's benchmark

for evaluating the performance of server side Java. SPECjbb evaluates the performance of

server side Java by emulating a three-tier client/server system (with emphasis on the mid-

dle tier). The benchmark exercises the implementations of the JVM (Java Virtual

Machine), JIT (Just-In-Time) compiler, garbage collection, threads, and some aspects of

the operating system. The threads in SPECJbb benchmark are separate warehouses that are

spawned independent of each other. It is similar to independent search queries in databases.

Our study is based on instruction traces collected from a Pentium 4 machine using

SoftSDV [7]. The system under observation had three levels of cache. We varied the num-

ber of threads from 8 to 128. [Note: here thread refers to independent cores]. Each thread

had its private L1 cache of 16KB (separate instruction and data cache), and every 8 threads

shared a 512KB L2 cache. All the threads shared the last level cache (L3), which was

increased proportionally from 2MB to 32MB for 8 to 128 threads. The maximum available

memory bandwidth was set to 52 GB/sec. for all configurations.

We see that the performance of the system scales linearly from 8 threads to 16 and

thereon to 32 as shown in Figure 1.1. Beyond 32 threads, performance of the system tapers

off. This is because of the increased average memory latency of the system as shown in

Figure 1.2. The average memory latency increases with the requested bandwidth of the sys-

tem. The memory latency increases exponentially, as explained below, for a large number

of threads [greater than or equal to 64 in this case]. This contributes to the non-linear

increase of system performance with the number of threads.

4

Since all other factors such as cache sizes are scaled proportionally, our obvious

conclusion is that the memory bandwidth can significantly limit the performance of multi-

core systems. The performance of future multi-core systems will scale only with the avail-

able memory bandwidth.

The DRAM latency can be divided into two parts i) Idle Latency and ii) Contention

Latency. Idle latency is the round trip time for a memory request with no other request in

the memory controller. Contention latency is the overhead which a memory request experi-

ences due to other requests pending in the memory controller. This can be due to write-to-

read turn around time, read-to-write turn around time, switching between ranks and

DIMMs, etc.

Figure 1.2. Average memory latency over threads for SPECJbb benchmark. This
figure shows the average memory latency for various number of threads for SPECJbb
server workload. The threads were increased from 8 to 128 and the cache sizes were
scaled proportionately. The latency increases linearly at the lower end of the spectrum
and becomes exponential at the higher end of number of threads.

5

Figure 1.3 shows the bandwidth Vs. latency response curve in a system with a max-

imum sustained bandwidth of 10 GB/sec. Maximum sustained bandwidth is the maximum

bandwidth observed in the system and is different from the theoretical maximum. Maximum

sustained bandwidth has been observed to be around 70% to 75% of the theoretical maxi-

mum for server workloads, and depends on various factors such as read-write ratio, pag-

ing policies, address mapping, etc. The bandwidth-latency curve consists of three distinct

regions.

Constant region: The latency response is fairly constant for the first 40% of the sus-

tained bandwidth. In this region the average memory latency equals the idle latency in the

system. The system performance is not limited by the memory bandwidth in this zone,

either due to applications being non-memory bound or due to excess bandwidth availabil-

ity.

Figure 1.3. Bandwidth Vs. Latency Curve. The memory bandwidth Vs. average
memory latency for a system with a maximum sustained bandwidth of 10GB/sec. is
shown. Memory latency increases exponentially as the system bandwidth approaches the
maximum sustainable bandwidth

Constant
region

linear
region

exponential
region

6

Linear region: In this region, the latency responses increases almost linearly with

the bandwidth demand of the system. This region is usually between 40% to 80% of the

sustained maximum. The average memory latency starts to increase due to contention over-

head introduced into the system by numerous memory requests. The performance degrada-

tion of the system starts in this zone, and the system is claimed to be fairly memory bound.

Exponential region: This is the last region of the bandwidth-latency curve. This

region exists between 80%-100% of the sustained maximum. In this zone the memory

latency is dominated by the contention latency, which can be two times the idle latency or

more. Applications operating in this region are completely memory bound, and their per-

formance is limited by the available memory bandwidth.

The above figure clearly illustrates the need for a system to operate in the constant

region or at worst the linear region. The need for a better memory system becomes even

more important as we go towards aggressive multi-core systems and simple models are

increasingly inaccurate in these scenarios.

Most modern CMP simulators, though they might boast detailed cache and inter-

connect models, assume a simplistic memory model [8]. The memory system is assumed to

be a fixed latency or is represented by a simple queuing model [9]. In the fixed latency

model, all memory requests experience the same latency irrespective of bandwidth con-

straints. A slightly improved model is a queuing model which has bandwidth constraints,

with a specific arrival and service rate for memory requests.

Figure 1.4 shows the difference in average memory latency of a system while using

a cycle accurate model Vs. a queuing model [all the other components in the system such as

cache and interconnects being the same]. The queuing model under study is of a Poisson

7

distribution, i.e. the arrival and servicing of the memory requests are assumed to be at a

Poisson arrival rate. This model accurately constrains the bandwidth of the system. Both

models (cycle-accurate and queuing) were simulated for different system bandwidth

requirements with a maximum of 10 GB/sec. and the same idle latency.

We observed that the queuing model behaves close to the cycle-accurate model in

the constant region, but it does not capture the contention overhead accurately at other

regions. This results in the average memory latency of the system to be under-estimated by

up to 45% in a queuing model. In a fixed latency model the average memory latency would

be a straight line in the graph for all the bandwidth requirements. This would fare even

worse than a queuing model in depicting the memory controller accurately.

Figure 1.4. Queuing model Vs. Cycle-accurate model comparisons. This graph
compares the memory latency behavior of a cycle accurate model with a queuing model
for various bandwidths. The x-axis represents the various sustained bandwidths of the
system and y-axis denotes the average memory latency corresponding to it. The queuing
model assumes a poisson arrival and service rate.

8

Our results show that the performance difference between the two models can be as

high as 15% in a multi-core system with eight cores. This performance difference increases

with increased bandwidth requirement of the system and can go up to 65% for memory

optimization studies, such as prefetching. This can lead to artificial improvement in perfor-

mance while using a simplistic model, but it will not result in true performance gain in an

actual system which will have a cycle-accurate model. This behavior can lead to wrongful

conclusions about certain optimization techniques and result in substandard products.

We also show that, irrespective of memory optimization techniques, using a queu-

ing model or a simple latency model can result in incorrect performance projections for

multi-core systems. We observed that the difference in IPC between simple latency model

and cycle-accurate model (with rest of the system being same for both models) is 2% for a

single core and increases to 15% for 8 cores. This can lead to incorrect conclusions about

performance gains as the number of cores is increased.

Memory side prefetching is a concept wherein the prefetched data is stored in a

small buffer that resides in the memory controller. Studies show that memory side prefetch-

ing complements the processor side prefetching and is independent of it. This has been

shown to perform well even for workloads that lack locality [5]. Earlier studies were

mainly focused on stream based prefetchers. Our studies show that memory access patterns

are not strictly sequential and have few strides repeated.

Figure 1.5 shows the histogram of memory requests stride pattern for SPECJbb and

TPCC benchmarks. SPECJbb benchmark has 10% of its memory requests with a stride

length of 2, 5% of its requests with a length of 3 and 7% with a length of 1. On-line transac-

9

SPECJbb Benchmark

TPCC Benchmark

Figure 1.5. Histogram of Memory requests for SPECJbb and TPCC workloads.
This graph shows the stride pattern of memory requests arrival rate for two server
workloads. X-axis shows the stride pattern and y-axis show the distribution of the pattern.
Approximately 30% of memory requests has a stride pattern of 10 or less. The rest of the
requests does not have any specific pattern.

10

tion processing (OLTP) benchmark TPCC has 13% of its memory requests with a stride

length of 1, 5% with a stride length of 2, and 3% with a stride length of 4 and 5. Approxi-

mately 30% of memory requests have a stride pattern of 10 or less. This distribution shows

that there isn’t much locality/regularity in server workloads. These systems need aggres-

sive prefetching schemes, not simple sequential schemes, to achieve significant improve-

ment in performance.

Our studies show that, instead of the expected 15% gain, the actual performance

benefit obtained from memory side prefetching is about 6% due to irregular spatial locality

in server workloads such as SPECJbb, SPECJapp, TPCC etc. We also observed that the

performance of the system degraded as the prefetching aggressiveness was increased. This

was due to the system operating in the exponential region instead of constant or linear

region in the bandwidth-latency curve. This increased the average memory latency

response and correspondingly decreased the system performance. Our results project

smaller gains compared to other works in terms of performance improvement obtained

using memory side prefetchers. Further, we also found that scheduling algorithms proposed

in [5] doesn’t perform as well as in multi-core systems.

Our solution to the memory wall problem in servers is a novel concept called load

aware prefetching. Aggressive prefetching schemes can be used to reduce the memory

latency of applications that lack regular spatial locality. This improves the performance of

the system at the cost of increased memory bandwidth. This worsens the situation in a

memory bandwidth constrained system such as CMPs, where multiple cores are trying to

access the memory at the same time. The existing prefetching solutions try to hide the

memory latency without considering the impact of memory bandwidth.

11

We propose a solution which controls the aggressiveness of the prefetching based

on the average memory latency. Our approach exploits the relationship between the band-

width requirement and the observed latency of the system. We observed that aggressive

prefetching without bandwidth constraints can degrade the performance by up to almost

65% compared to a no-prefetching scheme. This is due to the system operating in the expo-

nential region of the bandwidth-latency curve. Our solution varied the aggressiveness of

the prefetching scheme based on the latency and ensured that the prefetching requests were

issued only during the constant or linear region of bandwidth-latency curve. By varying

the aggressiveness we were able to improve the performance by up to 15% when there was

sufficient bandwidth available in the system compared to a no-prefetching scheme. Our

solution improves the performance of the system and also guarantees no performance deg-

radation in a bandwidth constrained system.

1.3. Contributions and Significance

This dissertation consists of three major inter-related studies. First, we performed a

detailed study on the accuracy of various simplistic memory models and compared their

performance against a cycle accurate memory system (including bus interface unit, con-

troller, and DRAMs) in multi-core environment. In this study we showed the limitations of

the simplistic models and highlighted the wrongful conclusions that can be obtained using

them.

Secondly, we showed the performance benefits of a multi-stride prefetcher imple-

mented as a memory side prefetching mechanism for server workloads. This study is an

extension of the proposed adaptive steam detection scheme. We extended the idea to handle

strides, which are predominant in server workloads, in a multi-core system.

12

Third, we proposed a novel load aware prefetching algorithm to handle the band-

width constraints in a multi-core system. This solution controls the aggressiveness of the

prefetcher based on the available bandwidth in the system. This scheme can improve the

performance by prefetching aggressively when the system is operating in the linear/con-

stant region of the bandwidth-latency curve and reducing the prefetching when it is operat-

ing in the exponential region of the curve.

1.4. Organization of Dissertation

This dissertation is organized as follows. Chapter 2 describes the related work done

in the CMP memory systems area both in academia and industry. Chapter 3 describes the

necessity of cycle-accurate memory models for multi-core systems and describes in detail

various issues that arises due to using simple latency or queuing model. Chapter 4 discusses

the multi-stride memory side prefetching for server workloads and its performance impact.

Chapter 5 describes the load aware prefetching optimization technique that we explored to

improve the performance of multi-core systems with various available memory band-

widths. Chapter 6 summarizes the final conclusions of this dissertation.

13

 Chapter 2: Related Work
Microprocessor performance has tracked Moore’s law [1], early on by increased

frequencies due to complex logic viz. deeper pipelines, aggressive scheduling, accurate

branch predictors etc., and now with increased number of cores on a single chip. While the

processor performance has been steadily improving, DRAM performance has increased at

a more moderate rate of roughly 7% [2], doubling only every 10 years. This has resulted in

a huge gap in performance between processor and memory and has lead to the development

of various techniques to reduce or hide memory latency.

2.1. Performance Optimizations for the Memory Sub-System

Numerous techniques have been proposed to solve this memory wall problem. The

three different approaches are to hide memory latency, reduce memory latency, and reduce

memory requirements. Solutions to hide memory latency were done from the perspective

of processor and cache. Some of these techniques are lock-up free caches [3], speculative

execution and multi-threading focus on tolerating memory latency [7]. Techniques to

reduce memory latency were done mainly in the form of hardware and software prefetch-

ing [4][5]. Burger et al. [6] demonstrated that the majority of these techniques lowered

latency by increasing bandwidth demands. Data compression is a technique that is used to

reduce the memory capacity/bandwidth demand for certain applications [8].

There have been extensive memory optimization studies in embedded systems as

well as general processors. Most of the studies can be broadly classified into two: i) Soft-

ware optimizations: such as compiler optimizations, data compression, algorithmic modifi-

14

cations, etc., and ii) Hardware optimizations: such as changes to the memory controller,

scheduling policies, DRAM subsystem, etc.

2.1.1 Embedded systems optimizations

Yang et al. estimate the memory usage of the embedded application and perform

algorithm level optimization in [9]. This paper describes a methodology for memory analy-

sis and optimization of embedded system design with the goal of reducing memory usage.

The paper illustrates an efficient way to optimize the memory module of the embedded sys-

tems at design time. Panda et al. [10] have performed extensive studies of various memory

optimization techniques for embedded systems. They present a survey of the state-of-the-

art techniques used for data and memory related optimizations in embedded systems. They

investigate various schemes such as code transformation, dynamic memory allocation,

memory estimation, custom memory architecture etc. These optimizations are targeted

directly or indirectly at the memory subsystem and impact area, performance, and power

dissipation of the resulting implementation.

A compile time data remapping algorithm is discussed in [12]. This remapping

algorithm is an automatic approach applicable to pointer-intensive dynamic applications,

and is designed to reduce the energy consumption as well as memory size needed to meet a

user-specified performance goal. This is a static approach and is done using the compiler

during software design. Contrary to this, Vahid et al. [11] propose a three step approach of

memory tuning once the software has been developed. This work proposes functional sim-

ulation, trace based simulation and equation-based estimation for memory tuning with

regard to power and performance. Using the three step approach a tool developer can deter-

mine the best memory hierarchy for a particular embedded system.

15

All the ideas discussed so far propose solutions which involve significant changes

to the compiler, the algorithm, or both. Moreover, their objectives have been memory usage

reduction, memory hierarchy optimization, memory architecture customization etc. Our

work focuses on studying the impact of memory systems in a multi-core environment.

Han et al. [13] propose a distributed memory architecture to address bandwidth

requirements and scalability. Massive data transfers in emerging multimedia embedded

applications require an architecture that facilitates highly distributed memory structure and

multiprocessor computation. Figure 2.1 shows a Multi-processor SoC with distributed

memory server (DMS). The authors propose a DMS composed of: 1) high-performance

and flexible memory service access points (MSAPs), 2) data network, and 3) control net-

work. Though it meets the performance requirements, this solution is expensive in terms of

die area. When each subsystem is provided an individual memory controller, the cost of the

system increases with the complexity of the logic. Our study focuses on a single centralized

external memory controller.

Figure 2.1. Multiprocessor System-on-Chip with Distributed Memory System.
The above figure shows a distributed memory system for a heterogeneous
multiprocessor system-on-chip configuration. source [13]

16

2.1.2 General purpose systems optimizations

This section deals with optimizations in general purpose systems. They are catego-

rized into three divisions based on techniques to reduce memory consumption, memory

controller performance optimization in terms of latency and bandwidth, and power optimi-

zations.

2.1.2.1 Data Compression

Data compression has been proposed to reduce the memory bandwidth require-

ment. Alameldeen and Wood show that cache compression can increase performance by

increasing effective cache capacity and eliminating misses [8]. Their adaptive policy

dynamically modifies the L2 cache to hold compressed or uncompressed data based on the

miss rate.

IBM’s MXT technology uses a real time memory compression that can effectively

double the capacity using a parallel algorithm. The parallel algorithm used in this paper

was Parallel Block-Referential Compression with Directory sharing, which divides each

input block into sub-blocks and constructs a dictionary while compressing all sub-blocks in

parallel [14].

X-Match hardware compression algorithm is used in [15] to reduce communication

bandwidth by compacting cache-to-memory address streams and data streams. This algo-

rithm maintains a dictionary and replaces each input data element with a shorter code in

case of a total or partial match with a dictionary entry.

A data compression/decompression scheme to reduce memory traffic is proposed

in [16]. This scheme stores compressed data in the cache and compresses/decompresses it

dynamically when the data is transferred from/to memory. The compression scheme used

17

in this study is based on the assumption that it is likely for data words in the same cache line

to have some common bits.

A compressed memory hierarchy that selectively compresses L2 cache and mem-

ory is proposed in [17]. This work uses the X-RL compression algorithm, a variant of X-

Match algorithm that treats zeros specially to reduce the memory requirements by a factor

of two.

Ahn et al. propose four compression algorithms to be used in a compressed cache

architecture [18]. These are variants of the X-Match algorithm, and their results show 10%

to almost 100% improvement in performance.

A dynamic cache partition scheme is proposed by Chen et al. in [19]. This scheme

partitions the cache into different sections based on the compressibility factor. Hallnor and

Reinhardt propose an indirect index cache to allocate variable amounts of storage to differ-

ent blocks depending on their compressibility. This method increases the effective cache

size by allocating unused compressed cache blocks to other blocks [20].

Yang and Gupta show that a small number of distinct values occupy a large fraction

of memory access values in SPECint 95 benchmarks [21]. This study has lead them to pro-

pose a “compression cache”, value centric cache design called Frequent Value Cache [22].

In this work, the authors show that a small direct mapped cache dedicated to holding fre-

quent benchmark values can reduce the cache miss rate. The Frequent Value Cache aug-

ment the performance along with the small direct-mapped cache.

2.1.2.2 Processor Side Prefetching Optimization

Processor side prefetching is done from the perspective of processor’s cache access

pattern. Prefetch requests are issued on a cache miss, and the prefetched data is usually

18

stored in the cache or in a prefetch buffer. Prefetching was proposed initially to reduce the

cache miss penalty by Smith in [23]. This study evaluates the type of prefetching with

respect to page size and memory size. They propose and implement prefetching methodol-

ogies to improve the performance of the system. Stream buffers, a similar concept to

prefetching, were proposed by Jouppi [24]. Stream buffers prefetch cache lines starting at a

cache miss address. The prefetched data is placed in a separate stream buffer and not in the

cache. Stream buffers are useful in removing capacity and compulsory misses, as well as

some instruction cache conflict misses. Dahlgren and Dubois further extend this idea to

shared memory multiprocessors in [26].

Stride directed prefetching to improve the cache performance of numerical pro-

grams executing on a vector was proposed in [27]. This study implements a simple hard-

ware mechanism called the stride prediction table to calculate the stride distances of array

accesses made from within the loop body of a program.

A modification of the above mentioned schemes is proposed by Ki and Knowles

[28]. Their study shows that for maximum effectiveness it is necessary to adapt the

prefetching parameters, such as prefetch offset and prefetch degree, to match programs and

system conditions. This work utilizes the usage of prefetched data and rate of replacement

of prefetched data to change the prefetching dynamically.

Dahlgren and Stenstrom evaluate the performance of hardware based stride and

sequential prefetching in [25]. Their study shows that both mechanisms have their advan-

tages depending on the workloads with the balance slightly tilted in favor of stride

prefetches, due to its reduced bandwidth consumption and fewer useless prefetches.

19

A novel multi-stride prefetcher that supports streams with up to four distinct strides

was proposed by Iacobovici et al [29]. This study was based on the observation that single

non-unit stride prefetchers are unable to prefetch for some commonly occurring streams.

The authors show that most programs exhibit up to four streams 40% of the time with some

of them having as high as 32 different streams 80% of time. Their multi-stride prefetcher

responds to this behavior accurately and improves the system performance.

Apart from stream and stride prefetchers, the Markov prefetcher has been proposed

in [30]. The Markov prefetcher is distinguished by prefetching multiple reference predic-

tions from the memory system and then prioritizing the delivery of those references to the

processor. A Markov model based on the access pattern is used for the basic prediction

mechanism. This is shown to be useful in pointer chasing applications.

Prefetching schemes have also been implemented in software as shown by Mowry

et al. in [31]. The compiler schedules the prefetch instructions explicitly to bring the data

into cache or prefetch buffer. A compiler algorithm identifies the data references that are

likely to be cache misses, and prefetch instructions are inserted only for them. The focus is

on array accesses whose indices are linear functions of the loop indices.

2.1.2.3 Memory Side Prefetching

Memory side prefetching was initially proposed as cache that resides along DRAM.

Studies have shown that memory side prefetching is orthogonal to processor side prefetch-

ing. A prediction and prefetching technique combined with a distributed cache architecture

to build a high performance memory system was proposed in [32]. This study prefetches

multiple cache blocks into the prefetch buffer which is integrated into the DRAM IC. This

huge bandwidth gives the opportunity to do aggressive prefetching based on prediction

20

tables. In this work up to four adjacent cache blocks of 128bytes each are prefetched into

the buffers. They also show a performance improvement in the range of 50%-80% with a

prefetch buffer of 32KB.

A cached DRAM for ILP processor to reduce memory latency is proposed in [33].

In a cached DRAM, a small or on-memory cache is added onto the DRAM core. The on-

memory cache exploits the locality that appears on the main memory side. The DRAM core

can transfer a large block of data to the on-memory cache in one DRAM cycle. This data

block can be several dozen times larger than an L2 cache line. The on-memory cache takes

advantage of the DRAM chip’s high internal bandwidth, which can be as high as few hun-

dred gigabytes per second.

Adaptive stream detection, a simple technique for modulating the aggressiveness of

a stream prefetcher to match a workload’s spatial locality was proposed by Hur and Lin

[34]. This technique is effective for streams of any length, including extremely short

streams. The authors show 15% improvement in performance with a small prefetch buffer

that resides in the memory controller.

Most previous solutions have addressed the single-core processor’s perspective and

haven’t taken into account the bandwidth limitations of multi-core processors. Further,

most of these studies were done using SPEC integer and floating point workloads, and not

server benchmarks which lack locality.

2.1.2.4 Adaptive Prefetching Optimizations

Prefetching has been studied extensively to reduce memory latency, and the optimi-

zation studies have been primarily oriented towards improving the prefetcher efficiency in

terms of accuracy. Most studies focussed on improving the prefetching algorithms in terms

21

of tracking more streams/strides, and some tried to improve the learning time for new pat-

terns [28]. Most of these ideas designed their prefetcher to adapt to any new pattern fast.

Few studies focus on the system factors that determine the performance improvement with

prefetching enabled in the system.

The impact of timeliness on prefetching has been studied by Wong and Baer in [36].

This work examines the impact of hardware-based prefetchers at the L2-main memory

interface on the performance of an aggressive out-of-order superscalar processor. The

authors show the importance of timeliness by simulating prefetch oracles with perfect cov-

erage and accuracy. Their studies show that prefetches must be initiated ahead of at least

one L2 cache miss and in some cases by as much as four.

Emma et al. explore the limits of prefetching in terms of timeliness and bandwidth

limitation [35]. This work profiles the workload to identify the maximum amount of per-

formance gain that can be obtained with prefetching for a given application. This is a limit

study and uses a queuing model based memory controller for the simulation. This work

identifies the importance of line transfer interval, the time it takes to transfer the data from

DRAM to cache, and quantifies the impact of bus speed on prefetching.

An aggressive prefetcher unit integrated with L2 cache and memory controller is

discussed by Lin et al. in [37]. In this study, prefetch requests are issued only when the

memory channels are idle. Further, the requests are prioritized to maximize the row buffer

hits, and they are given low replacement priority to improve the cache hit rate. This work

shows up to 43% improvement in performance of the system. Their approach led them to

come within 10% of perfect L2 cache.

22

Srinath et al. propose a mechanism that incorporates dynamic feedback into the

design of the prefetcher to increase the performance improvement provided by prefetching

as well as to reduce the negative performance and bandwidth impact of prefetching [38].

This work estimates prefetcher accuracy, prefetcher timeliness, and prefetcher caused

cache pollution to adjust the aggressiveness of the data prefetcher dynamically. The authors

introduce a new method to track cache pollution caused by the prefetcher at run-time along

with smart cache replacement policies.

Adaptive stream detection, a simple technique for modulating the aggressiveness of

a stream prefetcher to match a workload’s spatial locality, was proposed by Hur and Lin

[34]. This technique is effective for streams of any length, including extremely short

streams. Adaptive Scheduling, a heuristic associated with the technique, uses variations of

the number of outstanding requests to determine when to issue prefetch requests. The dif-

ferent policies include issuing prefetches when there are i) no outstanding requests in the

memory controller, ii) no pending requests in the read queue, iii) no pending requests in the

conflict queue, and so on. Their study shows minimal variation in performance between

different scheduling policies.

Our work, load aware prefetching, differs from the above mentioned studies in that

we use the average memory latency to determine when to prefetch and the prefetching

depth as explained below. Since the goal of prefetching is to reduce memory latency, our

methodology uses the main metric — average memory latency — as a feedback loop for

prefetching. Further, all the above mentioned studies were conducted in a uniprocessor

environment. Our work focuses on a multi-core system and highlights the drawbacks of the

aforementioned schemes in such an environment.

23

2.1.2.5 Memory Controller and Address Mapping Optimizations

There have been several studies at the controller level which examine how to lower

latency while simultaneously increasing bandwidth utilization. These techniques have low-

ered row-buffer miss rates by employing address mapping, memory request access reorder-

ing, or split-transaction scheduling. Row-buffer misses are expensive, because conflicts

can be resolved only after a precharge-activate sequence. Zhang et al. [39] studied how

address mapping can reduce row-buffer conflicts. The scheme attempts to distribute blocks

that occupy the same cache set across multiple banks in the system, by XORing the lower

page-id bits with the bank-index bits.

The Impulse memory controller [40] adds an optional level of address indirection

at the memory controller which may involve the operating system. Impulse extends the

traditional virtual memory hierarchy by adding address translation hardware to the mem-

ory controller. Applications can use this level of indirection to remap their data structures

in memory. As a result, they can control how their data is accessed and cached, which in

turn improves cache and bus utilization. This scheme is unsuitable for an SoC environ-

ment, since SoCs typically lack virtual memory.

There have been numerous studies on application specific memory controller opti-

mization. Zhang et al. [41] propose stream prefetching and dynamic access ordering to

overcome memory bottlenecks. This study combines a stride-based reference prediction

table, a mechanism that prefetches L2 cache lines, and a memory controller that dynami-

cally schedules accesses to a Direct Rambus memory subsystem. Applications with

strided access patterns are targeted in this work. Despite their poor cache behavior, these

applications have predictable access patterns. This can be exploited to reduce the latency

24

of the memory subsystem in two ways: 1) latencies can be masked by prefetching stream

data, and 2) latencies can be reduced by reordering stream accesses to exploit parallelism

and locality within the DRAMs.

Matthew et al.[42] describes a Parallel Vector Access unit, the vector memory sub-

system that efficiently gathers sparse, strided data structures in parallel on a multi-bank

SDRAM memory. Their proposal improves memory locality via remapping and increases

throughput with parallelism. The memory controller in this study lets applications dictate

how their data is being accessed and cached. To mitigate the high latency of SDRAM, they

operate multiple banks simultaneously with components working on independent parts of

a vector request.

Mckee et al. [44] discusses a Stream Memory Controller (SMC) that combines

compile-time detection of streams with execution-time selection of the access order and

issue. The SMC effectively prefetches read-streams, buffers write-streams, and reorders

the accesses to exploit the existing memory bandwidth as much as possible.

The Imagine [43] architecture proposes a bandwidth-efficient media processor.

Imagine consists of a single-chip programmable processor which exploits the parallelism

and locality of streaming media applications and provides a storage bandwidth hierarchy.

This study supports the stream programming model by providing a bandwidth hierarchy

tailored to the demands of media applications.

These projects mainly focus on media applications, streamed computations, or

applications with strided access patterns; they do not account for other random behaviors

and timing constraints. Our work is not tailored towards specific applications and instead

focuses on the whole system in general.

25

Memory controller scheduling policies have also been studied in detail. Rixner et

al. [46] were the first to consider priorities for various commands in a memory controller.

Using a Stream Processor Architecture [43], they show that rescheduling access requests

based on priorities improves the performance of the processor by an order of magnitude.

The focus of their study was on effective utilization of the memory, by re-ordering DRAM

commands, and not on the individual components. Our work not only considers the

requirements of various components in the system, but also the DRAM commands, in

designing the memory controller.

Hur et al. [45] propose a novel memory scheduler which uses the history of

recently scheduled operations for future scheduling policies. This work shows the usage of

history based arbiters implemented as finite state machines. The authors highlight the

effects of arbitration when scheduling decisions are done based on recently scheduled

operations. Their approach investigates the advantages of a history-based system which i)

allows the scheduler to better reason about delays associated with its scheduling decisions

and ii) allows the scheduler to select operations so that they match the program’s mixture

of Reads and Writes, thereby avoiding certain bottlenecks within the memory controller.

Building on their prior work [46], Rixner et al. [47] discuss memory controller

scheduling policies for web servers. The authors come up with various memory controller

scheduling policies such as sequential, bank sequential, first ready, row and column and

investigate their performance on the system. Each policy schedules the next command

based on the instructions arrival order, availability of bank, activate command or read/

write operation.

26

All the above mentioned works focus on improving the DRAM bandwidth and do

not consider real-time constraints/quality-of-service. Further, their simulation environ-

ment is designed for a single master (uniprocessor) system. Hence, their schemes may not

be applicable for a multi-processor environment where many components compete to

access a shared memory. The various components might have their individual timing con-

straints which may not be satisfied by the above mentioned scheduler as they focus only

on DRAM bandwidth utilization.

Natarajan et al. [48] study the performance impact of memory controller features in

a multi-processor server environment. They were the first to focus on various scheduling

policies in a multi-processor server environment. This study utilizes intel’s 870 bus con-

troller architecture [49] and investigates various scheduling policies similar to [47] in a

multi-processor scenario. Bus controllers are important in multi-processor environment

because they funnel the requests from the master to the memory controller. This paper

includes different address mapping schemes as part of scheduling policies and analyzes its

impact on performance along with open/closed page policy in DRAM. This study priori-

tizes between read and write commands along with its scheduling policies. Only homoge-

neous cores are considered in this study.

[50] studied how such re-ordering benefitted from the presence of SRAM caches on

the DRAM aka Virtual-Channel DRAM for web servers Takizawa et al. [51] proposed a

memory arbiter that increased the bandwidth utilization by reducing bank conflicts and bus

turnarounds in a multi-core environment. The arbiter reduces bank conflicts by reducing

the priority of DRAM accesses that are to the same bank as the previously issued access or

if the access direction (read or write) is different from that of the previously issued access.

27

Wang [52] proposed a memory request re-ordering algorithm which focussed on

increasing bandwidth utilization. The algorithm attempted to get around bus constraints

like bus turnaround time, and DRAM constraints like row-activation windows. Shao et al

[53] propose a burst reordering scheduling scheme in order to improve the system memory

bus utilization. The scheme reorders memory requests, such that read accesses, that are

addressed to the same row of the same bank are clustered together. Writes are typically

delayed until the write queue is either full or hits a particular threshold size. When the latter

occurs, the scheduler piggybacks write transactions onto the ongoing burst by issuing a

write transaction which is addressed to the currently open row. When the write queue is

full, the scheduler issues the oldest write transaction in the system.

Lin et al. [37] studied how memory controller based pre-fetching can lower the sys-

tem latency in a system with an on-chip memory controller. This was done to optimize for

both power and performance. Zhu et al. [54], on the other hand studied how awareness of

resource usage of threads in an SMT could be used to prioritize memory requests.

Cuppu et al [55] demonstrated that concurrency is important even in a uni-proces-

sor system, but split-transaction support would lower latency of individual operations. [56]

studied how split-transaction scheduling in a multi-channel environment could be used to

lower latency.

A bit reversal address mapping scheme for SDRAM systems was proposed by Shao

et al. [57]. This scheme reverses the ‘N’ highest address bits and uses them to map the rank

bits, bank bits and part of the row address bits. They demonstrate that this scheme improves

execution time by mapping the most likely changing bits to the column, rank and bank bits

and by redistributing memory accesses to be equally distributed across all banks.

28

Mitra et al. [58] characterized the behavior of 3D graphics workloads in order to

understand the architectural requirements for these applications. They explored the impact

of using architectural optimizations such as active texture memory management, specula-

tive rendering and dynamic tiling on the performance of graphics applications. In addition

they characterized the memory bandwidth requirements for these applications.

Embedded system controllers used in media systems have to provide high band-

width utilization for the media and signal processing workloads while simultaneously pro-

viding low latency service to on-chip processing elements. Harmsze et al. [59] proposed a

solution in which fixed scheduling intervals are allocated to continuous streams and any

additional slack time at a higher priority to CPUs and peripherals. This scheme was used in

conjunction with on-chip buffering to provide compile-time guarantees of performance.

This scheme does not take into account the state of the underlying DRAM. Weber [61]

investigates the memory controller scheduling policies in a SoC environment with a shared

bus and DRAM subsystem. This study focuses on both bus arbitration and memory con-

troller scheduling policies. This paper briefly explains the bandwidth requirements and

gives result for their scheduling policy.

Lee et al. [62][63] proposed a memory controller design that used a layered archi-

tecture, with a layer dedicated to DRAM management, QoS scheduling and address gener-

ation for continuos streams requestors to solve the same problem. The DRAM management

layer generated the DRAM command stream required to process an actual request. As in

earlier work, the DRAM layer designed a schedule that takes into account bank conflicts,

bus turnaround times etc. In addition, the Quality of Service Access layer provided the

DRAM layer with information regarding the priority of a given request which is taken into

29

account to build the schedule. The QoS Access layer sends the DRAM layer information

whether a given access is latency-sensitive, bandwidth sensitive or neither. Like Harmsze

et al, they provide fixed bandwidth to a bandwidth sensitive stream, but unlike them they

build in pre-emptive mechanisms which allows the scheduler to pre-empt a bandwidth-sen-

sitive stream when a latency sensitive requestor makes a request.

A fair queuing memory controller scheduling algorithm for chip multiprocessor

platforms was proposed by Nesbit et al. [64]. This study is based on concepts developed for

network fair queuing and scheduling algorithms. This work explains the effect of starvation

that can be caused by aggressive threads on others and quantifies the system performance

degradation. This study highlights the destructive interference caused between threads due

to uncontrolled sharing and provides solutions to prevent it. The controller allocates mem-

ory bandwidth to each thread based on the threads memory utilization. Excess bandwidth is

then distributed across threads that have consumed less bandwidth in the previous cycles.

Thus fairness in memory access is maintained across threads.

2.2. Power Optimizations

The memory density has been increasing with the shrinking transistor sizes, and the

DRAM frequency is increasing to meet the higher bandwidth demand of the system. These

two factors have fueled the power consumption of memory systems. Further, FB-DIMM, a

serial memory interface designed to address the memory capacity issues [65], has lead to

increased power consumption due to its unique design with its Advanced Memory Buffer

[AMB] logic. These factors have lead to extensive research in DRAM power management.

In the case of the memory system, power modes are available in nearly all DRAMs

e.g. RDRAM, SDRAM, DDR/2. In DRAMs, a large portion of the power is drawn by the I/

30

O circuitry, PLLs, on-chip registers. The low power modes disable this circuitry. Inter-node

transitions take non-zero time, with the transition from low power modes to high power

modes taking longer than transitions from high power modes to low power ones. All the

DRAM models [Rambus, DDR] provide support for different power modes with varying

degree of power consumption. The deeper the power mode, the longer it takes to bring the

DRAM to active state.

Lebeck et al. [68] introduce the concept of power aware page allocation. They pro-

pose a hardware/software cooperative approach, that exploits power-aware memory, to

reduce energy consumption. They explore the interaction of page placement with both

static and dynamic hardware policies to exploit the individual chip power mode. They also

consider page allocation policies that can be employed by an informed operating system to

complement the hardware power management strategies.

Huang et al. [67] propose a power aware virtual memory, where individual memory

devices are put into low power modes dynamically using software control, to reduce power

consumption. The authors propose schemes to manage memory nodes — the smallest unit

of memory that can be power managed independently of other units — to reduce power

used by the memory. They utilize the operating system to make better transition decisions

from active to idle power mode, to minimize performance degradation, and reap greater

energy savings.

There are other studies which focus on DRAM power management. Fan et al. [66]

investigate memory controller policies for manipulating DRAM power states in cache-

based systems. The authors monitor the gap between various DRAM accesses and decide

on appropriate thresholds to transition the DRAM from active to idle mode. Their work

31

focuses on identifying the transition time period where benefits outweigh the penalty for

transitioning back to the active state.

Various energy management policies in servers based on commercial workloads

has been analyzed in [70]. In their work, authors survey various power management tech-

niques in a commercial web server environment. They investigate various issues which

impact the power consumption in servers such as frequency and voltage scaling, processor

packing, data placement, simultaneous multithreading, etc. and utilize them in their energy

management mechanisms.

Huang et al. [69] propose page migration, where they monitor memory traffic and

move pages between ranks to increase the idle periods. This work elaborates a new tech-

nique that actively reshapes memory traffic to coalesce short idle periods — which were

previously unusable for power management — into longer ones, thus enabling existing

techniques to effectively exploit idleness in the memory.

De La Luz et al. proposed automatic data migration for reducing energy consump-

tion in multi-bank memory systems in [73]. This paper describes an automatic data migra-

tion strategy which dynamically places the arrays with temporal affinity into the same set

of banks. This strategy increases the number of banks which can be put into low power

modes and allows the use of more energy saving modes.

De La Luz et al. [71] also examined how to control DRAM power consumption for

an RDRAM system. Their study focused on compiler modifications and insertion of direc-

tives to transition the DRAM into the appropriate power state based on profiling informa-

tion. They also examined array accesses reordering, and clustering arrays with similar

access patterns together to reduce power consumption. They studied some hardware-based

32

techniques that were threshold monitoring or history based techniques and found that these

performed better because compiler-based techniques tended to be more pessimistic and

lacked the detailed runtime information.

In a follow-up paper [72], they examined the operating system power management

policies of the memory system. They observed that the OS can keep track of which pages

are required by a process, and enable the associated modules prior to its scheduling, while

disabling the idle modules. Power savings using this technique did not scale well with the

number of modules, because of the uniform distribution of a process’ pages across multiple

modules. As the number of active threads increased, the returns also diminished.

An efficient method for dynamic power management of DRAM based on accessed

physical addresses is proposed in [74]. This paper presents an efficient method that sets an

accessed node to active state and sets each not accessed node to proper low power state.

The proposed method is simple and faster than the earlier methods. This model requires a

software counter for each node in the DRAM to check whether the threshold for transition-

ing to low power state is satisfied.

Lin et al. propose FB-DIMM specific optimizations in [37]. The authors propose an

AMB prefetching method that prefetches memory blocks from DRAM chips to Advanced

Memory Buffers [AMB]. This method reduces the DRAM power consumption by merging

some DRAM precharges and activations.

Most of these above mentioned techniques involve hardware-software cooperation

or the involvement of operating system. Moreover, these work have been focussed on uni-

processor environment. The commercial memory controllers discussed in the next section

do focus on entirely hardware oriented optimizations.

33

2.3. Commercial Memory Controllers

The commercial memory controllers are divided into two groups i) External Memory

controller: This has been the traditional design in the general purpose processor with a

north bridge consisting of video card (AGP) unit, and the memory controller connected to

the processor through a Front Side Bus (FSB). Intel memory controller [75] has been tradi-

tionally designed based on this concept. The FSB can’t scale well for higher bandwidth

demand. This will be a bottleneck as the number of cores increase on chip. The advantage

of this type of design is that the memory controller is not tied to the chipset, and the con-

sumers have the freedom to make their own choice of processor and memory controller. ii)

Integrated Memory controller: The memory controller is integrated with the processor on-

chip. Advanced Micro Devices (AMD) memory controllers adopt this concept [76].

Though there is no flexibility as the memory controller is tightly coupled with the proces-

sor, the performance benefits outweigh the drawbacks.

G3MX is the latest memory controller from AMD. This innovative platform-level

technology is designed to extend the total memory footprint in future AMD Opteron pro-

cessor-based systems, and therefore, enable increased performance to customers’ enter-

prise-class servers, such as those used for databases and emerging technologies like

virtualization and multi-core computing. This is an on-die memory controller and is geared

for DDR3 memory systems. The processors will interface with one or more G3MX chips,

which in turn are connected to the memory ports. G3MX will act as a memory port

extender for the memory controller in the CPU socket and provides a serial link to the

RAM. Also, the electrical signaling between the memory controller and G3MX is based on

HyperTransport 3.0.

34

The 21174 memory controller [77], which was designed for the 21164 and 21164PC

Alpha workstations [78], was an SDRAM based memory controller. This controller repre-

sented the transition from the use of asynchronous DRAM architectures to synchronous

DRAM architectures. The design goals of this project were to eliminate the latency over-

heads incurred due to multiple chip domain crossing. This was achieved by using a novel

memory sub-system where the CPU was directly connected to the DRAM data bus, but the

addressing and control was managed by the memory controller. The controller was

designed for an open page policy, and had a built-in 4-bit predictor per bank, which was

used to determine whether the next access will be a hit or a miss. A 16-bit software con-

trolled register was used to configure the predictor state. They noted that the performance

improvement by using this predictor is substantial for a few applications.

The Intel 870 is a memory controller for the Itanium processor. This controller sup-

ports up to 4 channels each with 8 DDR ranks. This chip can be connected to 4 processors

simultaneously. It has an on-chip scalability port that enables it to add another 12 proces-

sors. The chipset supports memory access re-ordering policies which focus on taking

advantage of row locality and read/write re-ordering to avoid the impact of bus turn around

times. The chipset also has its own read caches that act as prefetch buffers for controller

level pre-fetching. Being a multi-processor memory controller, it has support for directory

level cache coherence. Several chipsets can be connected via the scalability port to form a

network of 16-way processor system. Communication on this network is high-speed serial

packet based communication.

The Intel front-side bus architecture has the processor communicating to the North-

bridge chipset and cores via a fast, wide, shared bus. The northbridge chip, which was

35

mainly the off-chip memory controller and cache coherence controller, is connected to the

I/O controller, the AGP and the memory channels. With the trends towards increased inte-

gration, Intel first moved the graphics controller onto the chip-set [79]. More recently, the

Intel 5000 series memory controller, (code-named Blackford), that is designed for dual-

core and quad-core chips, takes this integration process further by moving the PCI Express

controller onto the chipset [80]. The Blackford chipset supports 2 logical channels of

FBDIMM memory (4 physical channels), that are referred to as “branches”. The chipset

supports interleaving of cachelines across channels, ranks and banks. To provide increased

RAS (Reliability, Availability and Serviceability), the memory is stored with ECC and the

memory controller supports scrubbing i.e. periodically reading back memory and checking

that it is correct. Both the PCI-express and FBDIMM channel are protected by CRC due to

the higher transfer rates.

The increased integration of platform level components has resulted in the moving of

the memory controller on-chip for both IBM’s Power 5 [81] and AMD Opteron processors

[82][83]. Both these chips support a dual-channel, 16-byte memory channel interface and

reduce memory latency by eliminating a chip domain crossing. In the past, on-chip mem-

ory controllers have been built for the Sun Sparc 5, which used a simple 1 level caching

hierarchy and an on-chip memory controller to reduce memory access overheads. Intel is

expected to follow this trend with their future Nehelam processor.

2.4. Embedded DRAM Architectures

Complex Out-Of-Order (OOO) processors have been built to extract more Instruc-

tion Level Parallelism (ILP) in order to hide the memory latency. These processors use

sophisticated techniques such as complex issue logic, big issue widths, deeper pipelines

36

and speculation to hide this latency. A large amount of memory is required to keep these

complex OOO processors busy. As the memory hierarchy gets more complex, the distance

between the CPU and memory increases. Saulsbury et al. [84] proposed moving away from

CPU-centric design in order to reduce the impact of the memory wall. They proposed

bringing the processor and memory closer by moving the processor onto the DRAM chip.

The Berkeley Intelligent Random Access Memory (IRAM) RAM [85][86][87][88]

project studied how to merge the processor and DRAM onto the same chip. This work

demonstrated techniques to improve memory access latency, available bandwidth to the

processor, overall energy efficiency and cost savings. Memory latency was reduced by

redesigning the memory and allowing the processor to get data from accesses to rows

which are closer to the processor earlier than those which were further away. This approach

differed from traditional DRAM methodology. Energy savings were achieved due to the

lower cost of a DRAM access as compared to the SRAM access. Further, due to the larger

density of DRAM, the reduction in number of off-chip accesses also contributed to addi-

tional energy savings [88]. System cost reductions were achieved by reducing the number

of chips on a mother board.

Vector IRAM [89][90][91] is an architecture that combines vector processing and

IRAM in order to meet the demands of multimedia processing, with high energy efficiency.

The vector IRAM processor comprises of an in-order superscalar core with one level of

cache, a eight pipeline vector execution unit and several banks of memory. Code written for

this architecture had to be compiled by a vectorizing compiler [89][92] which was designed

to compile code such that it took advantage of the on-chip memory bandwidth.

37

FlexRAM architecture, another approach to merge DRAM logic on chip was pro-

posed by Kang et al. [93]. This architecture comprises of many simpler processing ele-

ments each with a DRAM bank. Each compute element is restricted to access its own

DRAM bank and that of its immediate neighbors. A Main processor on chip, which acts as

the scheduler, manages the execution of tasks on the simpler compute elements and the

communication between non-adjacent members. The FlexRAM chip in turn can be con-

nected onto any commodity memory interconnect. Cache coherence is managed either by

the programmer or by using a directory based shared memory controller [94]. Program-

ming for this architecture is made easy by the use of a special language and compiler sup-

port to automatically layout the code across the different compute elements [95][96].

Some of the issues with building logic on DRAM technology [88] is the process vari-

ation. The DRAM technology has been primarily optimized for small size and low leakage,

whereas a processor technology is optimized for speed. Further, the number of layers avail-

able in the two fabrication processes differ. The packaging used in DRAM chips is

designed to dissipate significantly lower power (on the order of Watts) than that used by

processors (can dissipate on the order of tens of watts). Further, the merging of logic and

DRAM on the same chip can also increase testing time.

The third approach proposed that has been proposed is the use of active pages

[97][98][99], a page-based model of computation that associates simple functions with

each page of memory. Active Page architectures are different from the previous two pro-

posals as they are used to enhance performance of the conventional processor-memory

architecture and not replace them. This approach does not change the memory interface

and hence is easier to adopt this methodology. Active Page data is modified with conven-

38

tional memory reads and writes; Active Page functions are invoked through memory-

mapped writes. Synchronization is accomplished through user-defined memory locations.

Finally, Active Pages can exploit large amounts of parallelism by being able to support

simultaneous computations to each of the pages in memory.

An alternate approach to reduce the distance between the processor and DRAM is to

use a stacked micro-architecture. Black et al.[100] proposed a 3D die-stacked micro-archi-

tecture, where the DRAM is stacked on the CPU, thereby reducing memory latency and

increasing bandwidth. Further, they demonstrate that this is a more power efficient archi-

tecture since it reduces the off-chip bus lengths.

2.5. Accurate Architectural Models

There are various studies that highlight the need for accurate architectural models

to evaluate the system performance. Alameldeen and Wood identifies the performance

variability as a major challenge for architectural simulation studies for multi-threaded

workloads [101]. Variability refers to the differences between multiple estimates of a work-

load performance. These variability can be classified into i) time variability where the

workload exhibits different behavior during different phases of a single run, and ii) space

variability, that occurs due to different input data and leads the program to follow different

execution paths. Their studies show that variability can lead to do as much as 31% differ-

ence in performance for different runs. The impact of variability of multi-threaded work-

loads can be extended to chip-multiprocessors.

Alameldeen et al. also have characterized commercial workloads dependency on

non-determinism in [102]. They propose a methodology of that uses pseudo-random per-

turbations and standard statistical techniques to compensate for the non-deterministic

39

effects. Their approach reduces the probability of reaching incorrect conclusions while

completing the simulation within reasonable time limits.

Desikan et al. show the experimental error that arises from the use of non-validated

simulators in computer architecture research [105]. Their work describe ways to reduce the

error by considering specific aspects of the pipeline, and their results show optimization

techniques to reduce average error from 40% to 20%. This work was conducted in a single

processor environment.

A similar study involving multiprocessors was studied in [104] by Gibson et al. The

authors have compared their simulator with an actual hardware for FLASH based systems.

This paper studies the source and magnitude of error in a range of architectural simulators

by comparing the simulated execution time of several applications and microbenchmarks

to their execution time on the actual hardware being modeled.

Krishnan and Torellas examined experimental errors in multiprocessor simulations

due to simple processor models [106]. They propose a novel direct-execution framework

that allows accurate simulation of wide-issue superscalar processors without the need for

code interpretation.They achieve this with the aid of an interface window between the

front-end and the architectural simulator, that buffers the necessary information, thus elim-

inating the need for full fledged instruction elimination.

Cain et al. discusses about the issues of precision and accuracy in simulation [107].

Their work highlights the operating system effects on both commercial and SPECint work-

loads. They also show that simulation incorrect speculative path is unimportant for these

benchmarks. Finally they show the I/O effects on simulation accuracy even for uniproces-

sors.

40

Simulation errors by selecting particular program phases were investigated by

Sherwood et al. [109]. This study proposes a solution to address this problem by selecting

basic block distribution that represents the entire program’s execution across different

architectural metrics such as branch miss rate, IPC, cache miss rate etc. This approach is

based upon using program’s profile code structure to uniquely identify the different phases

of execution in the program. They provide fast profiling tools that can provide practical

techniques for finding the periodicity and simulation in applications.

Oskin et al. introduce a hybrid processor simulator that uses statistical models and

symbolic execution to evaluate design alternatives [108]. This simulation methodology

allows for quick and accurate contour maps to be generated to the performance space

spanned by design parameters. The authors validate their approach against a cycle accurate

simulator and hardware.

Trace based sampling techniques to estimate architectural parameters were done in

[]. Kessler et al. use multi-billion references to estimate the accuracy of sampling in deter-

mining the miss rate of multi-megabyte caches. Their set sampling approach predicts the

behavior 90% accurately for 90% of the time.

The effects of I/O configuration to the entire system in terms of both performance

and power is studied in [103]. This work highlights the need for a full system simulator, and

investigate the system-level impacts of several disk enhancements and technology

improvements to the detailed interaction in memory hierarchy during the I/O intensive

phase.

41

 Chapter 3: Simplistic Memory Models
In this chapter, we demonstrate the necessity for a cycle-accurate memory model

for complex systems — multi-core architectures in our case. We examine the impact of

simple latency/queuing model as the number of cores is increased on-chip. We have imple-

mented four different simplistic models, and found out that the performance between these

models and cycle-accurate simulator increases with the number of cores. We also found out

that optimization studies done using simplistic models can lead to erroneous conclusions.

Our studies show that the performance difference between simplistic models and accurate

memory controller can be as high as 65% for memory optimization studies.

3.1. Simulation Methodology

This sections describes our simulation methodology. We first describe the architec-

ture details of the chip multiprocessor/multi-core environment. We then describe the simu-

lator used with detailed explanation of all the modules in the system. We describe the

various server workloads used in our experiments. Finally, we explain the various memory

models implemented in our studies.

3.1.1 Multi-core Architecture

The multi-core architecture for one, two and eight cores is shown in Figure 3.1.

Each core in our model have their private L1, a shared L2 and a shared L3 cache. Table 3.1

gives the various configuration parameters of our simulation environment in terms of

cache, DRAM and cores.

42

t.

3.1.2 Simulator

In this section, we describe the ManySim simulation environment for multi-core

architecture. ManySim is a hybrid trace-driven platform simulator and consists of four

module: a core module, an interconnect module, a cache module and a memory module. In

the hybrid trace-driven simulation approach, traces are collected offline from a real

machine and fed through a feeder module to reproduce the core behavior as described

below.

3.1.2.1 Core Module

The core module is Architectural Simulator for Parallel ENgines (ASPEN) [1]. It is

in fact a simulation framework as shown in Figure 3.3. It is composed of several stages:

profiling of the workload of interest, generation of memory traces and finally replaying

TABLE 3.1. Multi-core configuration

Parameter Variations
Number of cores 1, 2, 4, 8
L1 cache size 16K separate I/D cache. 4-way, 64-

byte line size
Shared L2 cache size 256KB - 2MB.(scaled linearly

with cores). 8-way, 64-byte line
size

Shared L3 cache size 1MB - 8MB (scaled linearly with
cores). 16-way 64-byte line size

Memory Bandwidth 6.4 GB/Sec.
Accurate Memory Model DDR3 800-6-6-6
Simplistic Memory models Fixed latency and Queuing models
Memory Idle latency 430 cycles
Core Frequency 4 GHz

43

L1

L2

L3

DRAM

P1

L1

L2

L3

DRAM

P1 P2

L1

Figure 3.1. multi-core architecture. The above figure illustrates our model of one, two
and eight core architectures. Each core has its private L1 cache and a shared L2 and L3
cache. Cache sizes are scaled proportional to the number of cores.

L1

L2

L3

DRAM

P7 P8

L1L1

P1 P2

L1

P3

L1

on-chip

off-chip

44

these traces in a Multi-Core, Multi-Threaded simulator. The profiling involves identifying

the basic units of work (e.g. transactions in OLTP or packets in network processing), iden-

tifying long latency events that have a potential of being optimized, and also identifying

dependencies among these units of work that dictate how these units can be scheduled

across multiple threads in multiple cores.

The memory traces were captured from a four socket dual core Pentium 4 machine.

The traces were captured from significant points in the workload that reflect the bench-

marks behavior accurately. This approach is intel proprietary and is similar to Simpoint [2].

The memory traces are collected beyond L1 cache using bus probes as shown in Figure 3.2

(i.e. only L1 cache misses are captured). The traces are captured for 10 billion instructions

from different points of the workload. This translates to approximately 200 - 300 million

memory references depending on the workload’s L1 miss rate. Necessary statistics such as

L1 miss rate (Misses per Instruction), number of outstanding misses, IPC etc. are gathered

using EMON counters to reproduce the system behavior accurately (EMON counters are

sophisticated hardware counters [3]). Based on the information collected, the transactions

are scheduled across multiple cores with a scheduler built in ASPEN.

The memory traces are injected into the platform modules based on the average

IPC, miss rate and number of outstanding misses. The number of outstanding misses deter-

mine the memory level parallelism. These platform events along with the workload profiles

aids in reproducing the core behavior accurately. For e.g. the product of IPC (Instruction/

Cycle) and MPI (Misses/Instruction) gives MPC (Misses/Cycle). Decoupling platform

events from CPU core events gives us a level of abstraction and flexibility that allows us to

45

quickly adapt to new architectures with a reasonable degree of accuracy. For multi-core

studies where we focus more on the shared cache and interconnects, the abstraction of

cores by the trace mechanism comes in handy.

3.1.2.2 Interconnect Module

The interconnect module is used to connect cores and caches, and forward mes-

sages among them. It is capable of modeling various topologies like a ring, a mesh, or a

cross bar. It is modular to enable flexibility in supporting multiple levels of cache/memory

systems. This allows us to specify different topologies and parameters for different levels.

The interconnect instance can be configured as a bus to connect L1 and L2 within one

node, another instance can be configured as a ring to connect all L2s and the shared L3 as

shown in Figure 3.4.

While the interconnect between L1 and L2 is usually a bus-like structure, which is

simple and straightforward, the interconnect between L2 and L3 (on-die interconnect) is

CPU

L1 Cache

to next level cache
and memory

CPU

L1 Cache

Bus probes capturing
memory traces and
writing to a storage

medium

Figure 3.2. Memory trace capture. The above figure shows the point of memory
trace capture. Bus probes are inserted beyond L1 cache, and traces are captured at
specific intervals using SimPoint like approach. This aids in reproducing the workload
behavior accurately in terms of CPI, L1 miss rate etc.

46

not. This is because as the number of threads/cores increases, more memory traffic is gen-

erated, which increases the communication between L2 and L3 significantly. Therefore, it

is important to have an efficient interconnect topology and take on-die interconnect band-

width into account. The topology depends on a lot of other factors like the area space that is

allowed, the power dissipation and latency restrictions [4].

Currently, we focus on a bi-directional ring. To illustrate how this ring works,

Figure 3.5 shows an example, where there are 8 nodes (each node representing a thread/

core) with 8 L3 slices on the ring. Each node has a local L3 slice, which means that a node

can send requests to its local slice without entering the ring. However if a node sends a

workloads Real Platform
with L1 cache

enabled

Memory Traces
and EMON Data

ASPEN

Figure 3.3. ManySim Core Module: The above figure illustrates the various steps
involved in the capturing and reproduction of CPU behavior using traces. The workloads
are profiled using SimPoint like approach and are run through a four socket dual core
Pentium 4 machine. Bus probes are inserted beyond L1, and memory traces are captured
as L1 misses. System data such as L1 miss rate, CPI etc. are captured using EMON along
with the traces. These statistics help in reproducing the core behavior when fed through
ASPEN module.

47

request to a remote slice, the request has to be queued into a buffer, put onto the ring, and

routed to its corresponding destination. For instance, if Node 0 sends a request to L3_6, the

request will be routed through two hops (0 to 7 to 6). The hop delay can be configured to

represent how fast the request can be forwarded, and the ring bandwidth can be configured

to constrain the number of requests that can be put onto the ring simultaneously. Similar to

this request ring that forwards requests, we also add another ring simulating responses sent

from L3 caches to each node. The snoop requests and responses are also forwarded through

these two rings.

CCCC

L1

L2

L1

L2

L1

L2

L1

L2

Figure 3.4. L1 to L2 and L3 interconnect topology. The above figure shows the inter-
connect topology for a four core architecture. The four private L1’s are connected to L2
through a bus interconnect. The shared L2 slices are connected to each other through a
ring topology. C stands for the core module. Core along with L1 cache and L2 slice refers
to the node in Figure 3.5.

Shared L3 Cache

Bus interconnect
between L1-L2

Ring interconnect
between various L2

Node

48

3.1.2.3 Cache Module

The cache module models a two-level cache structure with MESI coherence proto-

col. We focus on L2 and L3 caches assuming that the L1 cache is integrated with the core

module. This is enabled by running a workload through the actual processor with L1 sup-

ported and thus obtaining the memory traces with L1 cache hits filtered out. Three level

caches is the trend in the multi-core platforms available today.

The cache module can support private caches as well as distributed shared caches.

The L2 cache is a distributed shared cache. Each node in our simulation environment has a

core module along a L2 cache slice modeled as shown in Figure 3.4. The L3 cache is also a

distributed cache, and each slice of it is associated with a node. The cache parameters such

as cache size, associativity, line size, MSHR size and latency can be configured. MSHR

table is used to limit the number of outstanding cache misses that can be supported. Simi-

larly a pending table is used to limit the number of outstanding snoops. The coherence for

 Node0

 L3_0

 Node1

 L3_1

 Node2

 L3_2

 Node3

 L3_3

 Node7

 L3_7

 Node6

 L3_6

 Node5

 L3_5

 Node4

 L3_4

Interconnect

Figure 3.5. ManySim On-die Interconnect Example for multi-core Platform. This
figure shows 8 nodes (cores with L1 and L2 caches) with 1 L3 slice per each node. The
nodes are interconnected through a bi-directional ring network.

49

the two-level caches is maintained by building a state transition model based on the MESI

protocol.

3.1.2.4 Memory Module

The memory controller is a detailed cycle-accurate model that supports DDR and

FBD protocols similar to DRAMSim [5]. The model supports various scheduling algo-

rithms such as read first, write first, adaptive etc. The scheduling algorithm used in this

study is an adaptive scheduling algorithm. This policy gives priority to read requests over

write requests as long as the number of outstanding writes is below a threshold. The thresh-

old is set to be 2/3rd of the write queue size. The model also provides the flexibility to vary

the address mapping policies, number of ranks, DIMMs etc.in the system.

We have also implemented two simplistic memory models to compare the perfor-

mance against an accurate memory controller (AMC). The first simplistic model is the

fixed memory latency model as used in GEMS [6], an execution driven chip-multiproces-

sor simulator. In this model all memory requests incur the same delay irrespective of the

requested system bandwidth, access pattern, ratio of read to write requests etc. There is no

concept of bandwidth limitation in this model. This model can be represented in Figure 1.4

[redrawn here as Figure 3.6 for convenience] as a straight line across the entire requested

bandwidth.

The second simplistic model is a queuing model based on poisson distribution

[7][8]. The arrival of memory requests and their servicing rate is considered to be of pois-

son distribution. Poisson distribution is a discrete probability distribution that expresses the

probability of a number of events occurring in a fixed period of time if these events occur

with a known average rate, and are independent of the time since the last event.

50

The model is based on M/M/1 queuing theory [9]. “M” refers to the poisson distri-

bution. In this model, the first two parameters M/M refers to the arrival and servicing rate

of the memory requests. They are both considered to be of poisson distribution in our

experiments. The last parameter “1” refers to the number of servicing units i.e. the memory

controller. We model the memory controller to mimic an external memory controller as

represented by our AMC.

This model gives the flexibility to simulate the bandwidth of the system over the

fixed latency model. This model can capture the effects of bandwidth-constraints on mem-

ory latency to some extent as show in Figure 3.6. The average memory latency of this

scheme, unlike the fixed latency model, varies with the requested bandwidth of the system

Figure 3.6. Queuing model Vs. Cycle-accurate model comparisons. This graph compares the memory
latency behavior of a accurate memory controller with a queuing model for various bandwidths. The x-axis
represents the various sustained bandwidths of the system and y-axis denotes the average memory latency
corresponding to it. The queuing model assumes a poisson arrival and service rate. The idle latency model is
represented by the solid straight line for various bandwidths.

Fixed Latency Model

51

if (MEM_INSTR(INSTR))
{

if (L1_Access(addr) == MISS)
{

if(L2_Access(addr) == MISS)
{

if(L3_Access(Addr) == MISS)
{

cycles += DRAM_LATENCY
}

}
}

}

Fixed Latency Model

if (MEM_INSTR(INSTR))
{

if(L3_Access(Addr) == MISS)
{

if(Bandwidth <= Sustained Bandwidth)
{

if(BUS_AVAILABLE)
{

cycles += DRAM_LATENCY
LOCK_BUS for DRAM_LATENCY

}
else
{

wait for Bus availability
cycles += BUS wait cycles;

}
}
else {

Wait X cycles to meet the sustained bandwidth
cycles += X + DRAM_LATENCY

}
}

}
Queuing Model

Figure 3.7. Pseudocode for the fixed latency and Queuing models. The above code
illustrates the working methodology of fixed latency and queuing model based memory
controller. The fixed latency model returns a constant latency for all memory requests
assuming an unlimited bandwidth. The queuing model adds a bandwidth constraint and
returns the latency appropriately with X cycles added as necessary.

52

Though this model captures the bandwidth constraint, it doesn’t account for the reordering

of requests in the memory controller which is observed in most modern systems [10].

All the memory requests are serviced in order in both the simplistic models.

Figure 3.7 shows the pseudo code for both the simplistic models. Fixed latency model

always return a constant DRAM latency value. Queuing model returns the latency value as

long as the system bandwidth is less than the specified bandwidth. Whenever the system

bandwidth requirement exceeds the bandwidth limitations of the queuing model, memory

requests are delayed until the constraints are met and the total latency (sum of DRAM

latency and wait delay) is returned as the memory access time.

TABLE 3.2. Memory models behavior

Table 3.2 summarizes the behavior of various memory models. The different col-

umns indicate the important parameters that are considered in a memory model. The fixed

latency model can only capture the idle latency of the system and doesn’t address the band-

width limitation or buffer overflow. Buffer overflow/contention overhead is the effect

experienced by a memory request when the memory controller’s transaction queue is full.

In this scenario a memory request has to contend with other requests to get serviced and

Memory Models Idle Latency
Bandwidth
Limitations

Buffer overflow/
Contention
overhead

Simulation
speed

Fixed latency
model

Y N N Fastest

Queuing model Y Y N Fast

Accurate Memory
controller (AMC)

Y Y Y Slow

53

becomes more pronounced at higher bandwidths of the system. This is the most simplest of

all models, and hence the fastest.

The queuing model captures the idle latency of the system, and to an extent can

model the bandwidth. This model still does not capture the effects introduced in the system

due to contention among memory requests. This model is faster than the accurate memory

controller but slower than the idle latency model.

The accurate memory controller (AMC), as the name suggests, is the most accurate

of all models and captures the memory system behavior completely. This is also the slowest

among all models.

3.2. Benchmarks

The following server benchmarks are used in this dissertation. Server workloads is

one of the important class of applications to exploit the performance benefits of chip multi-

processors.

OLTP: For representing on-line transaction processing (OLTP), we used traces of a TPCC-

like workload. TPC-C [11] is an online-transaction processing benchmark that simulates a

complete computing environment where a population of users executes transactions

against a database. The benchmark is based on the primary transactions in an order-entry

environment. These transactions include entering and delivering orders, recording pay-

ments, checking the status of orders, and monitoring the level of stock at the warehouses.

ERP: For representing ERP workloads, we used traces from a SAP SD 2-tier benchmark.

The SAP SD 2-tier benchmark [12] is a sales and distribution benchmark to represent

enterprise resource planning (ERP) transactions. The transaction include creating orders,

creating deliveries for orders, displaying orders, changing options, listing and creating

54

invoices. An average transaction executes roughly 70 million x86 instructions, making this

a very difficult benchmark to characterize.

Java1: SPECjbb2005 [13] is a Java-based server benchmark that models a warehouse

company with warehouses that serve a number of districts (much like TPC-C). This work-

load is intended to test the performance of JVM components including garbage collection

and runtime optimization. From hereon we use SJBB to represent this workload.

Java2: SPECjAppServer2004 (Java Application Server) is a multi-tier benchmark for

measuring the performance of Java 2 Enterprise Edition (J2EE) technology-based applica-

tion servers. SPECjAppServer2004 is an end-to-end application which exercises all major

J2EE technologies implemented by compliant application servers such as transaction man-

agement, database connectivity, EJB container etc. From hereon we use SJAS to represent

this workload.

Web Server: SPECweb2005 emulates users sending browser requests over broadband

Internet connections to a web server [14]. It provides three new workloads: a banking site

(HTTPS), an e-commerce site (HTTP/HTTPS mix), and a support site (HTTP).

SPECweb2005 benchmark includes many sophisticated and state-of-the-art enhancements

to meet the modern demands of Web users such as simultaneous user sessions, browser

caching effects, etc. From hereon we use SPECW to represent this workload.

3.3. Simplistic Memory Models

We compare the performance difference of various types of memory models in this

section. Earlier we had described two types of simplistic models i) Fixed Latency and ii)

Queuing model. This is further classified into two i) Idle Latency Model (ILM) and ii)

55

Average Latency Model (ALM). We compares these four simple models with a cycle-accu-

rate model.

Figure 3.8 shows the memory latency distribution, idle and the average latency for

SAP and SJBB. Idle latency is the minimum round trip time for any memory request in the

system. Average latency is the mean of the all the memory requests latency for the entire

simulation run.

In the Idle latency model (ILM), the minimum round trip time for a memory request

is equal to the idle latency of the accurate memory controller. The minimum round trip time

for any memory request in an Average Latency Model is equal to the average memory

latency of the accurate memory controller i.e. the idle latency of this model is equal to the

average latency of the accurate model. The following are the four types of simplistic mem-

ory models:

Simple Idle Latency Model (SILM): This is a type of fixed latency model. In this model

the fixed latency is equal to the idle latency of the AMC. Idle latency is the round trip time

for a memory request with no other request pending in the memory controller i.e. the mini-

mum time for any request without contention overhead.

Simple Average Latency Model (SALM): This is a type of fixed latency model, where the

fixed latency is equal to the average latency of the cycle accurate model. Average latency

for each workload is computed for the entire simulation period using an accurate memory

controller.

Queue Idle Latency Model (QILM): This is a type of queuing model based on the poisson

distribution. In this model the minimum latency for a memory request is equal to the idle

56

Figure 3.8. Memory latency response for DDR-800. The figure shows the memory
latency distribution, idle and the mean latency for SAP and SJBB with 8 cores. The first
solid line indicates the idle latency of the system: the minimum round trip time for any
memory request. The second solid line is the average latency of the system. This latency
is the mean of the all the memory requests latency for the entire simulation run.

SAP

SJBB

Average latency of
the system.= 572

Average latency of
the system.= 617

Idle latency of the
system.

Idle latency of the
system.

57

latency of the AMC. Since the queuing model has bandwidth constraints, the latency of the

requests increases with the requested bandwidth of the system.

Queue Average Latency Model (QALM): This is the type of queuing model wherein the

minimum latency of a memory request is equal to the average latency of the cycle accurate

model. The average memory latency is computed as described before for each benchmark.

All of the above models were compared against a cycle accurate simulator to deter-

mine the performance impact of these models in a multi-core system as shown in Table 3.1.

The DRAM model was DDR3-800 with parameters shown in Table 3.3.

3.4. Performance comparison of memory models

We found that the degree of inaccuracy introduced by the memory model increased

with the number of cores. This was true even for a model like the queueing models which

take into account the first order of effects like the impact of bandwidth on memory latency.

TABLE 3.3. DDR3-800 Memory System Parameters

Parameter DDR3
Data-rate (Mbps) 800
tRAS (ns) 37.5

tRP (ns) 15

tRC (ns) 52

tRCD (ns) 15

tFAW (ns) 40

tRRL (ns) 20

tRRD (ns) 7.5

tCL (ns) 15

tWL (ns) 12.5

Number of logical channels 1
Scheduling policy Adaptive

58

SAP

SJBB

Figure 3.9. Performance comparison of various memory models. The x-axis show
the different number of cores and y-axis show the IPC difference for various memory
models normalized to accurate memory controller. We can observe that the difference
increases with the number of cores.

59

Figure 3.9 and 3.10 show the IPC values of various memory models normalized to a accu-

rate memory controller (AMC) for SAP, SJBB, TPCC and SPECW. The x-axis represent

the various cores and y-axis represent the IPC values of various models normalized to

AMC. (Note: a negative values indicates that the model predicts a better performance than

AMC, and a positive value means that the AMC’s performance is better than the model).

These results show that the performance difference between simplistic models and AMC

grows as the number of cores is increased.

Our results show that a simple idle latency model can over-predict the performance

by up to 18% for a 8-core system. The performance difference is less than 2% for a single

core system and increases steadily thereon. The memory bandwidth requirement increases

with the number of cores on a chip, and the system operates in the exponential region of

bandwidth-latency curve (Figure 3.6). SILM is a type fixed latency and hence doesn’t cap-

ture this behavior accurately.

The simple average latency model behaves better than SILM, and the performance

difference with a AMC is less than 5% for all benchmarks. This model performs well for

smaller number of cores and has a performance difference of less than 2% for single core

system across benchmarks. Though this is a fixed latency model, the system always gives

conservative results by under-predicting the IPC. This happens due to the memory latency

being distributed less than the average latency most of the time as show in Figure 3.8 and

3.11.

The queue idle latency model, which has a bandwidth constraint, fares better than

SILM. The bandwidth sustained in this model is set to match the AMC. This scheme over-

60

TPCC

SPECW

Figure 3.10. Performance comparison of various memory models. The x-axis
show the different number of cores and y-axis show the IPC difference for various
memory models normalized to accurate memory controller.We can observe that the
difference increases with the number of cores

61

predicts the performance of the system by up to 12% for 8 cores. The performance differ-

ence is as less as 2% for a single core system. The bandwidth constraint in this model

ensures a better prediction than the SILM.

The queue average latency model under-predicts the performance by up to 7% for

8-core system. This scheme performs worse than SALM. The latency experienced by most

requests in this scheme is greater than or equal to the average memory latency of the AMC

[at higher bandwidths, this model increases the memory latency response of the system due

to its bandwidth constraint higher]. Hence, at higher bandwidths this model performs

worse the SALM, and under-predicts the performance than AMC.

Our results conclusively indicate that both the idle latency models (simple and

queue) over-predict the performance of the system. This is because the memory latency

experienced in these simplistic models is closer to the AMC’s idle latency. We can observe

from Figure 3.8 that the average latency in AMC is between 1.3 to 1.4 times the idle

latency of the system and depends on the bandwidth region the benchmark operates on. The

average latency can be more than 3 times the idle latency for the exponential region of the

bandwidth-latency curve [Figure 3.6]. Hence these simplistic models over-predict the per-

formance as the memory latency overhead is lesser in these models compared to AMC.

Further, the queuing model performs closer to AMC at higher bandwidths due to its model-

ing of bandwidth limitations. The memory latency increases with the processor’s requested

bandwidth. Since both the idle latency models are over-predicting the performance at lower

bandwidths, queuing model becomes more conservative and behave closer to AMC at

higher bandwidths.

62

SAP

SJBB

Figure 3.11. Memory latency response distribution for DDR-800. The figure shows
the memory latency response for SAP and SJBB with 8 cores. The latency distribution
decreases exponentially. The latency distribution is concentrated closer to the idle
latency and tapers off gradually. Most of the latencies lie to the left of average latency
i.e. they are less than the mean latency of the system.

Average latency of
the system = 572

Average latency of
the system. = 617

63

We also observe that average memory models are more accurate than the idle

latency models. This is due to the memory latency experienced by the requests in these

models is closer to the AMC’s average latency. However the average latency models

always under-predict the performance of the system. This is due to the fact that most mem-

ory requests experience latency less than the average latency, i.e. the memory latency is

unevenly distributed with respect to the average latency as shown in Figure 3.8. We noticed

that almost 70% of requests experience a latency less than the mean value. Since the queu-

ing model experiences higher latency than the simple model at higher bandwidths, due to

its modeling of the bandwidth limitations, the average memory latency of the queuing

model is much more than the AMC’s average latency, and hence performs worse than the

SALM.

Table 3.4 shows the average memory latency experienced in simplistic models for

different number of cores using various memory models, and highlights the difference

between the simplistic and accurate memory controller. We observe that the difference

increases with the number of cores and that translates to the increased difference in perfor-

mance as shown in Table 3.5.

Table 3.5 shows the performance predicted for multi-core architecture using differ-

ent memory models. This shows that the performance measured by simplistic models

increases linearly with the number of cores. We observe that the idle latency models give

wrong performance projection for increased number of cores. The conclusion based on idle

latency models will be as follows: The performance of the system increases linearly with

the cores. This is due to the fact that average memory latency experienced in this model is

64

less than the AMC as shown in Table 3.4. The accurate memory controller studies reveal

that the performance is less than linear as the number of cores is increased, and highlight

the memory bottleneck problem.

TABLE 3.4. Average memory latency over cores for SJBB with DDR-800

TABLE 3.5. Performance projection over cores for SJBB with DDR-800

Memory model 1 core 2 cores 4 cores 8 cores
Difference with
AMC (8 cores)

Simple Idle
Latency Model

459.05 459.08 459.13 459.20 -19.65%

Simple Average
Latency Model

467.08 476.88 499.13 569.18 -0.41%

Queuing Idle
Latency Model

460.99 464.49 475.52 511.62 -10.48%

Queuing Average
Latency Model

469.99 482.40 515.54 610.25 +6.77%

Accurate Memory
Controller (AMC)

469.88 478.86 501.66 571.51 —

Memory Model 1 core 2 cores 4 cores 8 cores
Difference with
AMC (8 cores)

Simple Idle
Latency Model

1 1.98 3.95 7.8 +13.09%

Simple Average
Latency Model

1 1.96 3.77 6.90 -0.99%

Queue Idle
Latency Model

1 1.97 3.86 7.36 +5.89%

Queue Average
Latency Model

1 1.95 3.72 6.61 -0.95%

Accurate Memory
Controller (AMC)

1 1.96 3.78 6.95 —

65

Though the average latency models predict the performance improvement similar

to the AMC, it has its drawback in memory optimization studies as shown in the subse-

quent section. The conservative projection of these models can also lead to erroneous con-

clusion of negligible to no improvement in some cases. Furthermore, the average memory

latency depends on various factors such as address mapping, available bandwidth, number

of ranks, number of DIMMs, number of banks, read-write requests ratio and scheduling

algorithms. We need multiple simulation runs to obtain the average memory latency as

there are numerous parameters that influence it as shown in the next section. If we ought to

vary the following three parameters in the memory system, number of banks (4&8), sched-

uling algorithms (read optimized and write optimized), dimms (2& 4), we will need 8 sim-

ulation runs for each benchmark to determine the average latency. This still does not

account for dynamic variations such as read-write mix or burstiness of the benchmark.

We repeated the same set of experiments for DDR3-1600 with memory parameters

shown in Table 3.6. This is to show the behavior of simplistic models performance for a

different sustained bandwidth of the system.

Figure 3.12 and 3.13 shows the performance difference between simplistic models

and AMC for SAP, SJBB, SJAS and TPCC. We observe that the performance difference

between the simplistic models and AMC follows the same trend as in the earlier case,

although the difference is less in the DDR-1600 configuration than DDR-800. This is due

to the system operating mainly in the linear and constant region of the bandwidth-latency

curve. The difference between the simplistic models and AMC never exceeds 6% and is

less than 5% for most cases. Figure 3.14 shows the memory latency response for DDR-

66

1600 configuration, and the trend here follows the DDR-800 wherein most of the memory

requests experience memory latency less than average latency of the system.

TABLE 3.6. DDR3-1600 Memory system parameters

Parameter DDR3
Data-rate (Mbps) 1600
tRAS (ns) 17.5

tRP (ns) 5.625

tRC (ns) 23.75

tRCD (ns) 5.625

tFAW (ns) 15

tRRL (ns) 5

tRRD (ns) 3.55

tCL (ns) 5.5

tWL (ns) 5

Number of logical channels 1
Scheduling policy Adaptive

TABLE 3.7. Performance projection over cores for SJBB with DDR-1600

Memory Model 1 core 2 cores 4 cores 8 cores
Difference with
AMC (8 cores)

Simple Idle
Latency Model

1 1.985 3.97 7.9 +3.22%

Simple Average
Latency Model

1 1.975 3.83 7.62 -0.139%

Queue Idle
Latency Model

1 1.984 3.93 7.84 +2.6%

Queue Average
Latency Model

1 1.983 3.87 7.68 0.57%

Accurate Memory
Controller (AMC)

1 1.98 3.85 7.64 —

67

Table 3.8 shows the average memory latency response for SJBB for various cores

with DDR-1600 configuration, and Table 3.7 shows the performance improvement over

cores for the same. We can observe that the performance projection made by the simplistic

models is much closer to the projections based on AMC for the DDR-1600 than the DDR-

800 configuration. They differ only by 3% in the worst case. Further, the average memory

latency response in the simplistic models follows the AMC closely. These trends reiterate

the earlier performance difference results shown in Figure 3.12 and 3.13. The simplistic

models fare better in the DDR-1600 configuration than the DDR-800. This is due to the

availability of more bandwidth in the system, which enables it to operate in the lower end

of the bandwidth-latency curve, where these models capture the behavior more accurately.

Figure 3.14 and 3.15 show the memory latency distribution of TPCC and SJBB

with DDR-1600 configuration. We can observe that most responses lie closer to the idle

latency than the DDR-800 configuration due to increased availability of bandwidth in the

TABLE 3.8. Average memory latency over cores for SJBB with DDR-1600

Memory model 1 core 2 cores 4 cores 8 cores
Difference with
AMC (8 cores)

Simple Idle
Latency Model

398.06 398.09 398.14 398.22 -7.87%

Simple Average
Latency Model

403.05 407.08 416.14 430.20 -0.46%

Queuing Idle
Latency Model

399.17 399.90 401.59 404.56 -6.41%

Queuing Average
Latency Model

414.19 408.90 419.55 436.18 +0.90%

Accurate Memory
Controller (AMC)

405.69 409.74 418.22 432.28 —

68

SAP

SJAS

Figure 3.12. Performance comparison of various memory models for DDR-1600.
The x-axis show the different number of cores and y-axis show the IPC difference for
various memory models normalized to accurate memory controller. We can observe that
the difference increases with the number of cores albeit lesser than DDR-800
configuration.

69

SJBB

TPCC

Figure 3.13. Performance comparison of various memory models for DDR-1600.
The x-axis show the different number of cores and y-axis show the IPC difference for
various memory models normalized to accurate memory controller. We can observe that
the difference increases with the number of cores albeit lesser than DDR-800
configuration.

70

SJBB

TPCC

Figure 3.14. Memory latency response for DDR-1600. The figure shows the memory
latency response for TPCC and SJBB with 8 cores. Most requests experience latency
less than the mean latency of the system.

Average latency of
the system = 455.

Average latency of
the system. = 432

71

TPCC

SJBB

Figure 3.15. Memory latency response distribution for DDR-1600. This figure shows
the distribution of memory latency response for TPCC and SJBB with 8 cores. The
latency distribution decreases exponentially. The latency distribution is more concentrated
closer to the idle latency than DDR-800 configuration, and tapers off gradually. Most of
the latencies lie to the left of average latency i.e. they are less than the mean latency of the
system.

Average latency of
the system. = 432

Average latency of
the system = 455.

72

system i.e. the system is operating in the linear or constant region of the bandwidth-latency

curve.

3.4.1 Average Memory Latency Behavior

We can observe from our previous studies that SALM performs as well as AMC.

An argument that could be brought in favor of using SALM over AMC would be to run

each benchmark once with an AMC for a given DRAM configuration and compute the

average latency, which can later be used in SALM. Our studies show that it is an harder

problem than it seems as the average latency depends on various factors in the system. This

section highlights the difficulty in computing the average latency for each benchmarks

under different circumstances.

We characterize the average memory latency of the system for different configura-

tions based on various parameters such as scheduling algorithms, sustained bandwidth of

the system, read-write mix in traffic. Our results highlight the fact that the memory latency

varies a lot based on these parameters. The average memory latency varies from 400 cycles

for the best-case scenario to more than three times (1200 cycles) for a worst case scenario

in our studies.

As mentioned before, the average memory latency of a system depends on various

factors such as cache sizes, number of channels, bandwidth available, bandwidth requested

by the system, DRAM paging policies, scheduling algorithms etc. [15] shows that even

DRAM address mapping can affect the performance of the system significantly. This sec-

tion shows the average memory latency results of a system for two different DRAM con-

figurations on a synthetic traffic. The studies were conducted for two different scheduling

73

algorithms with various read-write ratios as shown in Table 3.9. The DRAM configuration

used were DDR3-800 as shown in Table 3.3 and DDR3-1067 as shown below in Table

3.10. [DDR-1067 was used as it was closer to DDR-800 in terms of sustained bandwidth,

and we wanted to highlight the variation in memory latency even for a small change in sys-

tem bandwidth.].

The synthetic traffic was generated using a traffic generator. Parameters such as

read-write mix, percentage of random addresses, amount of traffic to be generated (i.e.

bandwidth requirement of the system) are configurable in the generator. The traffic genera-

tor was directly connected to the memory controller, as shown in Figure 3.16, for this study

as we wanted to quantify the various parameters that can affect the average memory latency

of the system. This study was based entirely on random addresses. Since we used closed

Figure 3.16. Synthetic Traffic Generator Model. The above figure shows the
experimental setup for average memory latency analysis. A synthetic traffic generator is
hooked onto the memory controller directly through a bus. There is no processor or cache
model in this study, and traffic generator regulates the traffic to reproduce their behavior.

Synthetic
Traffic
Generator

External
Memory
Controller

DRAM

Front Side Bus

Synthetic
Traffic
Generator

External
Memory
Controller

DRAM

Front Side Bus

74

Write Requests Optimized Algorithm

Figure 3.17. Average memory latency response for various configurations. The y-
axis shows the average memory latency of the system for various sustained bandwidths
(along x-axis). We notice that the memory latency changes drastically depending on
various parameters from 390 cycles to 1200 cycles.

Read Requests Optimized Algorithm

75

page DRAM paging policy, locality of the addresses is not of concern. We also ensured that

the traffic was evenly distributed to all banks/ranks as it happens in a real system. .

Figure 3.17 shows the average memory latency for different configurations. 800

and 1067 represents the DDR data rates, and 25, 50, 75, 100 refers to the percentage of

reads in the read-write mix (i.e. the percentage of reads in the total traffic was increased

from 25% to 100% with all the requests being reads at 100%). The experiments were con-

TABLE 3.9. Average latency memory model configuration

Parameters Configuration
DRAM data rate 800, 1067
DRAM Paging policy Closed
Read-write ratios 25, 50, 75, 100
Scheduling Algorithms Read Requests Optimized (RRO),

Write Requests Optimized (WRO)
Number of Banks 8
Number of Ranks 2
Number of DIMMs 2
System Requested Bandwidth 2.5 GB/Sec. to 19 GB/Sec.

TABLE 3.10. DDR3-1067 Memory System Parameters

Parameters DDR3
Data-rate (Mbps) 1067
tRAS (ns) 18.5

tRP (ns) 5.5

tRC (ns) 25

tRCD (ns) 5.5

tFAW (ns) 18.5

tRRL (ns) 7.5

tRRD (ns) 4

tCL (ns) 5.5

tWL (ns) 4.5

Number of logical channels 1

76

ducted using synthetic traffic on closed page DRAM system. The two graphs show the

results for two different scheduling algorithms with one of them being optimized for

writes, and the other optimized for reads. Write requests are given priority in the write opti-

mized algorithm (WRO), and the read optimized algorithm (RRO) gives priority to read

requests.

Our results show that the memory latency ranges from 390 cycles for read opti-

mized algorithm at 2.5 GB/Sec. of system bandwidth to 1200 cycles for a write optimized

algorithm at 14 GB/Sec. The latency increases from 900 to 1200 cycles for DDR 800 when

the scheduling algorithm is changed from RRO to WRO. The latency changes from 390

cycles to 900 cycles for a system bandwidth change from 2.5 GB/Sec. to 15 GB/Sec.

Further, the latency changes from 400 to 800 cycles as the DRAM configuration is

changed from DDR-800 to DDR-1067 at 14GB/Sec. with RRO. For the same bandwidth

and read-write mix, the latency increases from 600 to 1200 in a system with WRO as the

DRAM configuration is changed from DDR-800 to DDR-1067. This is because of the sys-

tem shifting its operating zone from linear to exponential region in DDR-800 system as

shown in Figure 1.3. The system continues its operation in linear region for DDR-1067 due

to higher available bandwidth.

The latency decreases from 800 to 500 cycles when the percentage of reads in the

traffic is increased from 25% to 100% in DDR-800 system with RRO algorithm for the

same bandwidth (14 GB/Sec.). In a similar scenario with WRO the latency decreases from

1200 to 800 cycles. We also observe that the sustained bandwidth of the system increases

from 14 GB/Sec. to 16 GB/Sec. in DDR-800 system with RRO when the traffic consists of

77

entirely read requests from 25%. This is because of the reduced read-to-write and write-to-

read turn around time overheads.

Our results conclusively prove that the average memory latency of a system

depends on various factors, and a separate simulation run is needed to determine the aver-

age latency for each possible configuration. Simulating the benchmarks with cycle-accu-

rate model for each DDR-configuration once wouldn’t suffice as the latency depends on

numerous other parameters such as system requested bandwidth and read-write mix of the

workload etc. apart from the DDR data rate. These factors are heavily system dependent,

and varies with cache sizes and replacement policies as shown in [16]. Further, any changes

to the core (in terms of issue width, branch predictor) and other modules (caches, intercon-

nect etc.) can also lead to change in the system traffic pattern and rate. Thus it is hard to use

a single computed average memory latency in simplistic models.

3.5. Comparison with prefetching optimization

Prefetching has been proposed as one of the main schemes to reduce memory

latency. This section shows the impact on the performance, of various memory models

when the system implements prefetching. The prefetching model under study uses a hard-

ware stream prefetcher with a stream depth of 5. Each L3 cache miss (last level cache) ini-

tiates a memory request for the missing line and 5 subsequent lines. The memory, cache

and interconnect modules remained the same as the previous study. The cache misses and

prefetch requests are given the same priority in the memory controller.

Stream prefetchers/buffers were first proposed in [17]. Stream buffers prefetch

cache lines at starting at a cache miss address. The prefetched data was placed in a separate

78

Figure 3.18. Performance comparison of various memory models with prefetching.
This graphs shows the IPC difference normalized to accurate memory controller for
prefetching scheme [stream prefetcher with a depth of 5]. The performance difference
between the simplistic models and AMC increases with the cores and is greater than the
no-prefetching scheme.

SJBB

TPCC

79

stream buffer and not in the cache. Stream buffers are useful in removing capacity and

compulsory misses. Later hardware prefetchers [18] extended the stream buffers concept to

prefetch data into the cache. Our study is based on this concept wherein a cache miss trig-

gers a sequence of adjacent cache lines to be prefetched into the cache. We prefetch the 5

adjacent cache lines into the cache.

3.5.1 Performance Comparison

We studied the impact of simplistic models on performance for a DDR-800 system

as specified in Table 3.3. Figure 3.18 shows the performance difference results of various

memory models with respect to the AMC. The simplistic model behaves similar to the ear-

lier “no-prefetching” cases. The performance difference of simple idle latency model with

AMC varies between -5% for single core systems to -65% for eight core systems (i.e.) it

grossly over-predicts the performance for some benchmarks. This is because of the higher

bandwidth requirement of the prefetching scheme, which pushes the system to operate in

the exponential region of the bandwidth-latency curve. This is the zone where the simplis-

tic models perform worse compared to AMC. The latency experienced by the requests is

very high in this region, and having a SILM wherein all the requests are experiencing the

idle latency without a bandwidth constraint will lead to erroneous conclusions.

The SALM model performs better than the SILM, and the performance difference

varies between 8% to 2% for TPCC. An interesting observation is that the performance dif-

ference decreases with the cores contrary to the SILM. This is due to the difference in the

distribution of memory requests latency between 1-core and 8-core system as shown in

Figure 3.19. We can observe that around 50% of the requests experience a latency equal to

or less than the mean latency in a 1-core system, whereas it is 70% in a 8-core system. The

80

system performance prediction using SALM will be more conservative as the memory

latency distribution below the mean latency increases, and will be closer to AMC. This is

an additional complexity introduced by the average latency model. The distribution of

memory latency depends on the dynamic behavior of the application and is hard to predict.

Hence an average latency model can really be conservative and under-predict the perfor-

mance by up to 10%.

The queuing models (QILM and QALM) behave differently as opposed to fixed

latency models (SILM and SALM). The performance difference of queuing models vary

from 5% to 15% with respect to AMC. The average latency assumption performs better

than idle latency in the fixed latency model i.e. SALM performs better than SILM, whereas

the QILM performs better than QALM. This is due to the QILM scheme being able to cap-

ture the system behavior accurately at higher end of bandwidth-latency curve as shown in

Figure 3.6. The prefetching schemes increases the bandwidth requirement and the system

primarily operates in the exponential region of the curve. The QILM, which has bandwidth

constraints, is able to perform better than QALM in this region. The QALM which uses the

average latency tend to under-predict the system performance by up to 15%. This is due to

the queuing model latency varying with the bandwidth, and the assumption of average

latency of AMC as the QALM round trip time increases the latency of queuing model fur-

ther in the higher bandwidth region.

The simplistic models predict the system performance with prefetching scheme

similar to the no-prefetching scheme. The idle latency models over-predict the perfor-

mance by up to 65% and the average latency models under-predict the performance by up

81

1-Core

8-Core

Figure 3.19. Memory Latency distribution for TPCC 1-core and 8-core system. his
graphs shows the memory latency distribution of requests for 1-core and 8-core system
with prefetching. X-axis represents the various latencies and Y-axis represent the
cumulative distribution. The distribution below the mean latency increases from ~50% for
1-core system to almost 70% for 8-core system. The mean latency for 8-core system is off
the graph limits.

Mean Latency = 580.97

Mean Latency = 2137.19

Average latency of
the system.

82

to 15%. The main difference between the two scenarios is the change in trend of perfor-

mance difference as the number of cores is increased. The difference increases with cores

in no-prefetching scheme and decreases for QALM. Further, both idle and average latency

models followed similar trend in the fixed and queuing based schemes in no-prefetching

TABLE 3.11. Performance improvement over cores for SJBB with prefetching

TABLE 3.12. Average memory latency over cores for SJBB with prefetching

Memory Model 1 core 2 cores 4 cores 8 cores
Difference with
AMC (8 cores)

Accurate Memory
Controller (AMC)

4.05% -3.72% -28.48% -56.91% —

Simple Idle
Latency Model

10.15% 8.86% 5.74% 5.31 62.22%

Simple Average
Latency Model

-3.88% -10.67% -32.98% -57.74% -0.82%

Queue Idle
Latency Model

6.19% -0.26% -22.04% -54.15% -2.77%

Queue Average
Latency Model

-6.74% -15.62% -38.1% -61.75% -4.84%

Memory model 1 core 2 cores 4 cores 8 cores
Difference with
AMC (8 cores)

Simple Idle
Latency Model

448.45 448.65 449.14 450.21 -69.06%

Simple Average
Latency Model

587.46 661.62 988.88 1458.21 -01.2

Queuing Idle
Latency Model

563.46 613.82 868.55 1443.61 -8.38%

Queuing Average
Latency Model

702.07 833.02 1225.22 1993.45 15.72%

Accurate Memory
Controller (AMC)

590.12 663.84 991.22 1461.64 —

83

study. The models behave exhibit opposing trend with aggressive prefetching due to above

mentioned reasons.

3.5.2 Latency Comparison

Table 3.12 shows the difference mean latency experienced by the cache misses in

simplistic models as opposed to AMC. We can observe that the aggressive prefetching is

increasing the bandwidth requirement of stem the system and operates in the linear/expo-

nential region of the bandwidth-latency curve. Hence, we see that the mean latency of the

system increases from ~600 cycles for single core system to about 1500 cycles for 8-core

system (more than 250% increase). The latency increases by 30% between no-prefetching

and prefetching scheme for single core system, and increases by 330% for 8-core system.

The memory latency increases drastically due to the increased conflict between requests

and queuing over head at higher bandwidth requirements

Figure 3.20 and 3.21 shows the memory latency response and the distribution for

SAP and SJBB with prefetching enabled. The memory latency response follow the same

trend as the no-prefetching scheme as in almost 65-70% of the responses were below the

mean latency. [since we didn’t capture the histogram beyond first 1000 cycles, the mean

latency is off graph limits but we can extrapolate from the given graph]. The memory

latency distribution is different from the no-prefetching scheme. Earlier, about 10% of the

responses lay close to the idle latency, and rest of the distribution tapered of gradually i.e.

there was exponential decay. In this scenario, due to severe bandwidth limitations, no

response occurs for 10% of the time. Almost all responses are evenly distributed around

0.5% of the time.

84

SJBB

SAP

Mean Latency = 1248.14

Mean Latency = 1461.64

Figure 3.20. Memory latency response for DDR-800 with prefetching. The figure
shows the memory latency response for SAP and SJBB with 8 cores for DDR-800
configuration with prefetching. The histogram was collected only for first 1000 cycles so
mean latency is off the graph limits.

85

Table 3.11 shows the performance improvement with prefetching scheme by differ-

ent memory models for all the core configurations [performance improvement are com-

puted based on the no-prefetching scheme for corresponding memory models and are

normalized to single core system]. We observe that the AMC model projects a performance

improvement of 4% for single core system and degradation of 56% for 8-core system. The

performance degrades due to the system operating at the exponential region of the band-

width-latency curve thereby increasing the average memory latency. The mean latency of

the system increases from 569 cycles for no-prefetching scheme in a 8-core system to 1461

cycles for stream prefetching depth of 5 with DDR-800 configuration.

The simplistic model, especially SILM, doesn’t capture the bandwidth constraint

and hence projects a performance improvement for all the core configuration. Performance

with AMC starts degrading from 2 cores onwards, and at 8 cores the difference between

AMC and SILM is 62%. The conclusion based on SILM would be moderate to no improve-

ment with prefetching, whereas AMC shows a degradation of 56%. Here, both the absolute

performance with respect to AMC and the performance improvement due to prefetching

scheme are vastly different from the cycle accurate model.

The QALM scheme, whose absolute performance is close to AMC is still not able

to capture the performance improvement due to prefetching scheme. The QALM behavior

depends on the region (bandwidth-latency curve) of operation. It is not able to capture the

queuing over heads in the linear region, whereas is able to reproduce it in the exponential

region more faithfully. Hence it shows a performance degradation of 7% for single core

system when there is a performance improvement of almost 5%.

86

SJBB

SAP

Mean Latency = 1248.14

Mean Latency = 1461.64

Figure 3.21. Memory latency response distribution for DDR-800 with prefetching.
This figure shows the distribution of memory latency response distribution for SAP and
SJBB with 8 cores. The DRAM is DDR-800 and prefetching is enabled in this
configuration. The latency distribution is more or less evenly spread out across all
responses. This is due to the bandwidth constraints of the system.

87

3.6. Summary

This chapter described our simulation methodology and highlighted the drawbacks

of using inaccurate/simplistic models. One of the main argument in favor of these simplis-

tic models has been that they are sufficient to compute the performance difference between

various systems, though may not be useful for absolute values. Our studies show that these

models can be wrong both in absolute performance numbers and relative performance

comparison between different systems.

We show case studies where the simplistic models either over-predict or under-pre-

dict the system performance with respect to a cycle accurate model. We also show that

using simplistic models can lead to wrongful conclusions in terms of performance projec-

tion. There are scenarios wherein the comparison between models are similar to AMC

whereas the absolute numbers are not. In some cases both the performance comparison and

absolute numbers are different from the AMC. Under-predicting the performance can lead

to over designing the system, and will render it expensive. Over-predicting the perfor-

mance can lead to system being ineffective due to not being able to meet the performance

constraints of applications in a real world environment. Both these cases are causes of con-

cern due to simplistic models.

Our results show as the system grows in complexity more accurate models are

needed to evaluate system performance. The ease of use and speed offered by the simplistic

models are easily offset by the inaccurate results produced by them. Further, the simplistic

models are not able to capture the performance trends accurately as we observed with

prefetching schemes. SILM and QILM projected performance increase whereas the AMC

showed performance degradation due to memory contention. Thus the use of simplistic

88

models can lead to erroneous conclusions, wherever memory is the bottleneck, which can

be avoided using accurate memory models.

89

 Chapter 4: Memory Side Prefetching
In the earlier chapter, we demonstrated that inaccurate memory models can lead to

wrongful conclusions by giving artificial performance improvements for experimental

memory optimization schemes. In this chapter, we do an extended case of study of the

impact of memory side prefetching in multi-core servers with real memory systems. Mem-

ory side stream prefetching has been shown to improve performance for server workloads

that lack locality [1]. Since our results show that there is a significant amount of stride pat-

tern and since this is investigative research, we extended this idea to track different strides

in the application.

Our results show that about 30% to 45% of memory requests exhibit some type of

stride behavior in the memory accesses of commercial server workloads that have sparse

locality. Hence, a novel multi-stride prefetcher was implemented as a memory side

prefetcher to exploit this behavior. The prefetcher resides in the memory controller with a

buffer to store the prefetched data. Our optimization improves the performance of the sys-

tem by about 6% for certain workloads while degrading the performance by about 1% in

certain cases.

4.1. Strides in Server Workloads

Figure 4.1 shows the distribution of memory requests with different stride patterns

for SJBB and TPCC. This shows that there is some pattern in the memory access behavior

of the server workloads that have sparse locality. This can be exploited to reduce the mem-

ory latency of the system and correspondingly improve the performance. SPECJbb’s mem-

ory requests have the following distribution: 7% of the requests have a stride length of 1,

90

10% of the requests have a stride of 2 and 4% have a stride of 3. The memory requests also

have almost 2% distribution of each stride 4, 5 and 6.

TPCC has 13% of its memory requests with a stride length of 1, 5% of the requests

have a stride of 2, and 3% of the requests are of stride 3. Strides of 4, 5 and 6 occur in the

memory requests with an almost equal distribution of 2% each. This distribution of these

workloads doesn’t cover 100% of the memory requests as they don’t exhibit any specific

memory access pattern. Still approximately 30% of memory requests have a stride pattern of

10 or less. [Note: The stride pattern shown in the graph is cumulative and is not uniformly

distributed with respect to time].

Figure 4.2 shows the frequency distribution of memory requests with different

stride patterns for SJAS and SAP. These benchmarks behave differently from the earlier

ones as more memory requests exhibit a specific pattern in strides, one being predominant.

Both these benchmarks have almost 30% to 40% of the requests having a stride pattern of

1, i.e. the adjacent cache line is being accessed. Further, both these benchmarks have

approximately 50% of their requests being covered with a stride of 10 or less in this distri-

bution.

4.2. Multi-stride Prefetching

Figure 4.3 shows the block diagram of multi-stride prefetching implemented as a

memory side prefetcher. The proposed prefetcher is located in the memory controller,

which can be on-chip or off-chip. It consists of the following components:

•Prefetch buffer to store prefetched data (from 64B to 512B per thread)

•Stride filter with prefetch generator

91

Note: “Threads” in this dissertation refer to Hardware Threads i.e. requests from

different cores.

Prefetch Buffer: When a processor's memory request arrives at the memory controller, the

prefetch buffers are examined for the availability of data. The buffers can be organized as a

set associative cache. If the data exists in the prefetch buffer the memory request is satisfied

directly from the prefetch buffer, or else it is sent to the memory. The size of the buffer

depends on the number of strides that need to be captured and can vary from 64Bytes (1

cache line) to 512B per thread (8 cache lines).

Stride Filter: Memory requests from the processor are intercepted by the stride filter. The

stride filter monitors the access pattern and identifies the stride based on the difference in

physical address between the current and previous address. This is done on a per thread

basis (i.e. each thread's stride is monitored separately). This keeps the patterns from differ-

ent threads from polluting each other. Further, our model monitors more than one stride at

any instance for each thread. This increases the probability of capturing a thread's stride

behavior. The number of strides monitored at a given instant is programmable to a fixed

value. The prefetch generator monitors the stride pattern and generates the next access

based on the prefetch threshold (PT) value. For example: Let the PT value be 3 and a given

thread exhibits the following pattern in terms of physical addresses - 1, 3, 5, 7, 9,11, We can

observe that this thread is exhibiting a stride of 2. The first occurrence of stride 2 is when

address 3 arrives, second occurrence is for address 5, and third occurrence is for 7. Once the

number of occurrences has met the PT value prefetching begins. In this example, we

prefetch from address 9 onwards and store it in the prefetch buffer.

92

Figure 4.1. Frequency Distribution of Memory requests for SJBB and TPCC. This
graph shows the stride pattern of memory requests arrival rate for two server workloads.
X-axis shows the stride pattern and y-axis show the distribution of the pattern.
Approximately 30% of memory requests has a stride pattern of 10 or less. The rest of the
requests does not have any specific pattern.

TPCC

SJBB

93

SAP

SJAS

Figure 4.2. Frequency Distribution of Memory requests for SAP and SJAS. This
graph shows the stride pattern of memory requests arrival rate for two server workloads.
X-axis shows the stride pattern and y-axis show the distribution of the pattern.
Approximately 50% of memory requests has a stride pattern of 10 or less. The rest of the
requests does not have any specific pattern.

94

Figure 4.3. Multi-stride Memory Side Prefetcher. The above figure illustrates the
block diagram of multi-stride prefetcher implemented in the memory controller. Read
requests from the processor is checked for a prefetch buffer hit. If it is present in the
buffer then the data is returned from it. Other requests are analyzed by the memory
controller and classified into conflict queue or centralized arbiter queue. A request is
stored in the conflict queue if the incoming request has a bank and row conflict with any
other requests that is already in the arbiter queue. Stride filter observes for stride patterns
and issues prefetch requests when the prefetch threshold is met. The prefetched data is
returned to the prefetch buffer, and normal data back to cache. The flowchart is given in
Figure 4.4

Requests From processors

Read/Write reorder
Queue

Prefetch Generator
Stride Prediction Table

Prefetch
Buffer

Final Scheduler

Main Memory (DRAM)

Prefetch Queue Conflict Queue Centralized Arbiter Queue

Prefetched Data

Stride Filter

Scheduler

Check
StatusUpdate

Modified Memory
Controller

Regular Memory
Controller

Prefetch buffer
hit data to cache

Normal data
to cache

Requests From processors

Read/Write reorder
Queue
Read/Write reorder
Queue

Prefetch Generator
Stride Prediction Table
Prefetch Generator
Stride Prediction Table

Prefetch
Buffer

Final SchedulerFinal Scheduler

Main Memory (DRAM)

Prefetch Queue Conflict Queue Centralized Arbiter Queue

Prefetched Data

Stride FilterStride Filter

Scheduler

Check
StatusUpdate

Modified Memory
Controller

Regular Memory
Controller

Prefetch buffer
hit data to cache

Normal data
to cache

95

The PT value is programmable to a fixed value or can be adaptive. When a thread

shows a good prefetch buffer hit rate (ratio of prefetch buffer hit to number of prefetches

issued), we can dynamically reduce the PT value, and if the hit rate is low (say < 50%) we

can increase the PT value to reduce the number of prefetches.

4.2.1 Prefetch Requests Priority

There are two ways of scheduling a prefetch request in the memory controller. 1)

Prefetches can be given the same priority as normal requests 2) Prefetches can be treated as

low priority requests. Let us examine each scenario separately. Both schemes have their

advantages and disadvantages as described below. Studies have been conducted with both

schemes without much difference in performance as shown by our results. Normal requests

are given higher priority so as to not stall the processor on a cache miss. The normal

requests shouldn’t be slowed down, assuming they don’t hit in the prefetch buffer, due to a

prefetch request. Though this is the obvious case, it can get complicated based on various

scenarios as described below.

Case 1: Let a prefetch request P1 be generated @ cycle 100 and a normal request

N1 arrive at cycle 101. In our example, we consider a bank conflict between the two

requests. If the prefetches are given equal priority, then the normal request N1 gets delayed

due to P1. Considering the fact that the normal requests have to compete with prefetch

requests for the available bandwidth, this can degrade the performance of the system. As it

is, the increased bandwidth requirement might push the system to operate in the exponen-

tial region of the bandwidth-latency curve.

Case 2: If the prefetch request's priority is reduced, N1 gets served fast, and P1 gets

delayed. This can result in prefetch response being untimely and may impact the perfor-

96

mance in multiple ways - either delayed (due to other memory request) or issuing more

memory requests than necessary. Let us further examine the possible causes for both sce-

narios.

Case 2A: Let a normal request N2 arrive @ cycle 200 which happens to be a

prefetch pending hit to P1 (i.e. a prefetch request P1 has been submitted to the memory

controller, but the data hasn't arrived yet). In a system with low priority for prefetch

requests, we have to issue a separate memory request for N2 to achieve fast turn around

time. This increases the memory bandwidth requirement because the prefetch request P1

which was issued @ cycle 100 will eventually be served, and we would have issued two

requests for the same data. The increased bandwidth can potentially increase the memory

contention and can indirectly lead to increased memory latency.

Case 2B: In continuation of the above example, if we decide not to initiate a new

request for N2 but decide to wait for the pending request to come back, then the memory

latency for the request N2 might be high. This can happen in a situation where the prefetch

request P1 gets inadvertently delayed due to normal requests. This leads to increased mem-

ory latency and reduced processor performance. This will most likely happen when the

memory is saturated with normal requests that have higher priority than prefetches. In such

a situation, if N2 had been sent to the memory directly without waiting for prefetch data to

come back, it might have finished earlier.

A pending hit is NOT always better than a “no-prefetch” scheme as illustrated by

the above example. There can be situations where a “no-prefetch” can perform better than

the prefetch model. In such a scenario (when the memory is saturated with normal

97

requests), it is better to have not issued the prefetch request P1. This avoids the perfor-

mance degradation by reducing the bandwidth requirement and, correspondingly, the aver-

age memory latency.

Figure 4.4 shows the flowchart for our prefetching algorithm. The incoming

requests are analyzed for a stride pattern, and the stride prediction table is updated accord-

ingly. The prefetch generator then generates prefetch memory requests based on the criteria

for the prefetch threshold. The prefetch data is returned back to the prefetch buffer, and the

regular requests are sent back to cache.

Is prefetch
buffer hit?

Incoming Memory
requestSend Data back to

CPU

Y

N

Any stride
pattern?

N

Memory

Y

Send Normal Data
back to CPU

Prefetch
threshold

met?

Y

Send Prefetch
request to
memory

Do nothing

N

Send Prefetch Data
back to prefetch buffers

Is prefetch
buffer hit?

Incoming Memory
requestSend Data back to

CPU

Y

N

Any stride
pattern?

N

Memory

Y

Send Normal Data
back to CPU

Prefetch
threshold

met?

Y

Send Prefetch
request to
memory

Do nothing

N

Send Prefetch Data
back to prefetch buffers

Figure 4.4. Flowchart for Multi-stride Prefetching algorithm. The above flowchart
describes the multi-stride prefetching methodology. The incoming requests are checked
for the prefetch buffer hit. If so the prefetch buffer satisfies the memory request. Then
the memory requests are checked for a stride pattern and the stride predictor table is
updated. Once the prefetch threshold is met, prefetch requests are issued to the memory
and the data returned is stored in the prefetch buffer.

98

4.3. Experimental Setup and Results

This section describes the performance improvement achieved using a multi-stride

side prefetcher implemented as a memory side prefetcher in a multi-core environment. We

used the Manysim simulator described in Chapter 3 for our studies [2]. The simulation

parameters were varied as shown in Table 4.1. We used the DDR-800 and DDR-1600

memory configurations for our study as shown in Table 4.2. These studies were carried out

for an 8-core system with different prefetching thresholds and degrees of prefetching.

Prefetching degree refers to the number of unique streams/strides monitored simulta-

neously. It is also referred to as prefetching depth in some studies.

TABLE 4.1. Multi-stride Prefetching Simulation Parameters

Parameters Configurations
Prefetching Degree/Depth 1, 2, 4, 8
Prefetching Threshold 1, 2
Number of Cores 8
DRAM configurations DDR-800, DDR-1600
Shared L2 cache size 2MB
Shared L3 cache size 8MB
cache line size 64B
Prefetch buffer capacity 512B to 4KB
Prefetch buffer hit latency 10 cycles
Prefetch requests scheduling Same priority as normal requests,

lower priority with respect to nor-
mal requests

99

TABLE 4.2. Memory System Parameters for DDR-800 and DDR-1600

Parameter DDR3
Data-rate (Mbps) 800
tRAS (ns) 37.5

tRP (ns) 15

tRC (ns) 52

tRCD (ns) 15

tFAW (ns) 40

tRRL (ns) 20

tRRD (ns) 7.5

tCL (ns) 15

tWL (ns) 12.5

Number of logical channels 1
Scheduling policy Adaptive

Parameter DDR3
Data-rate (Mbps) 1600
tRAS (ns) 17.5

tRP (ns) 5.625

tRC (ns) 23.75

tRCD (ns) 5.625

tFAW (ns) 15

tRRL (ns) 5

tRRD (ns) 3.55

tCL (ns) 5.5

tWL (ns) 5

Number of logical channels 1
Scheduling policy Adaptive

100

4.3.1 Impact of Degrees of Prefetching

In this section we describe the impact of prefetching degree (i.e. number of strides

tracked simultaneously) on the multi-stride prefetching. Figure 4.5 and 4.6 shows the per-

formance improvement in performance for the server workloads for different prefetching

degrees. Our results show that the performance improvement was 2-5% with respect to no-

prefetching scheme for DDR-800, and about 6% for DDR-1600 as shown in Figure 4.7 and

4.8. This is due to the lack of locality as explained later. Further, the performance degraded

in some cases as shown in Figure 4.5 due to bandwidth constraints.

We monitored the performance improvement of the system for prefetching degrees

of 1, 2, 4 and 8. The prefetching threshold was varied between 1 and 2 for the DDR-800

configuration. We observed that the performance improvement was only minimal in all

these schemes with degradation in some cases. The performance degradation due to band-

width limitations is discussed in the next section.

Our results show that the performance difference between degrees of prefetching is

minimal. The performance improved, by about 3%, when the number of strides tracked

was increased from one to eight. This is due to the lack of regularity, in terms of memory

accesses, in the server workloads. Even with an aggressive prefetch threshold, most of the

memory requests are a pending hit in the prefetch buffer as shown in Figure 4.10 and 4.11.

The performance improvement was slightly better with DDR-1600 due to the avail-

ability of more bandwidth in the system, as can be seen in Figure 4.7 and 4.8. The perfor-

mance improvement ranges from 3% to about 6% for SAP. Our results conform with the

established results in terms of the performance improvement with various degrees of

101

prefetching [1][3]. The performance improvement saturates beyond a prefetching degree of

4 for most benchmarks. This is due to the lack of unique strides as shown in Figure 4.1. In

some benchmarks, TPCC in particular, performance actually degrades as the prefetching

degree was increased. This is due to the increased bandwidth contention between the

prefetch and regular requests in the system. The average memory latency with prefetching

Figure 4.5. Performance improvement of multi-stride prefetching scheme for
DDR-800. The above graph shows the percentage improvement in performance for
various benchmarks with multi-stride prefetching. The prefetching degrees were varied
from 1, 2, 4 and 8. The DRAM configuration in this study is DDR-800. Priority refers to
the memory controller scheduling policy wherein the regular requests are given higher
priority over prefetch requests, and No priority refers to the scheduling mechanism
where all requests are treated the same. The prefetching threshold was set to 1 i.e.
prefetch requests are issued after observing a stride pattern once.

102

increases due to the memory serving more requests, leading to degrading system perfor-

mance. This is discussed in detail in a further subsection.

4.3.2 Impact of DRAM Scheduling

Our study involved two different scheduling algorithms i) Priority Scheduling (PS)

and ii) No Priority Scheduling (NPS). Priority Scheduling policy gave priority to normal

Figure 4.6. Performance improvement of multi-stride prefetching scheme for
DDR-800. The above graph shows the percentage improvement in performance for
various benchmarks with multi-stride prefetching. The prefetching degrees were varied
from 1, 2, 4 and 8. The DRAM configuration in this study is DDR-800. Priority refers to
the memory controller scheduling policy wherein the regular requests are given higher
priority over prefetch requests, and No priority refers to the scheduling mechanism
where all requests are treated the same. The prefetching threshold was set to 2 i.e.
prefetch requests are issued after observing a stride pattern twice.

103

requests over prefetch requests. In such a scheme, prefetch requests were scheduled when-

ever no normal/regular requests were available to be scheduled to a specific bank in a given

cycle. This scheme is implemented on top of the regular DRAM scheduling algorithm

which gives priority to read over writes, and takes into account the DRAM timing con-

Figure 4.7. Performance improvement of multi-stride prefetching scheme for
DDR-1600. The above graph shows the percentage improvement in performance for
various benchmarks with multi-stride prefetching. The prefetching degrees were varied
from 1, 2, 4 and 8. The DRAM configuration in this study is DDR-1600. Priority refers
to the memory controller scheduling policy wherein the regular requests are given
higher priority over prefetch requests, and No priority refers to the scheduling
mechanism where all requests are treated the same. The prefetching threshold was set to
1 i.e. prefetch requests are issued after observing a stride pattern once.

104

straints while scheduling commands. No Priority Scheduling treats all requests with equal

priority and uses the regular DRAM scheduling algorithm.

Our results show that the two schemes performed alike in all scenarios. The perfor-

mance difference is less than 1% between these schemes for varying degrees of prefetching

with both DDR-800 and DDR-1600 configurations. The NPS scheme has better prefetch

buffer hit rate than the PS scheme, and lower pending hit rate as shown in Figure 4.10 and

4.11. This is due to the NPS scheme giving equal priority to all requests there by reducing

the average latency for prefetch requests. The total hit rate [sum of buffer and pending hit

rate] remains almost the same for both schemes.

Prioritizing normal requests over prefetch requests does not yield much perfor-

mance gain compared to a NPS scheme as there is sufficient memory level parallelism

between threads/cores. This can be effective in a uniprocessor environment with a simple

in-order core. A good design of aggressive out-of-order cores or multi-core architecture

can yield sufficient memory level parallelism to offset the benefits obtained by the priority

scheduling.

We also showed, that contrary to conventional wisdom, giving equal priority to

prefetch requests can improve the system performance in certain cases (SJBB Figure 4.7

prefetch depth 4). This happens when the prefetch buffer hit rate is more than the pending

hit rate, and cache misses don’t have to wait for the pending data to come back from the

memory. The pending hit latency can be more in a system with PS policy due to normal

requests getting higher priority than the prefetch requests. The prefetch buffer hit rate will

be more in a NPS policy as the prefetch requests are served at the same rate as normal

105

requests; hence the probability of data being available in the prefetch buffers using NPS

scheme is higher than the PS.

One of the most interesting observations we noticed with our scheduling policies is

that Adaptive Scheduling algorithm as described in [1] is not possible in a multi-core sys-

tem. The authors show performance improvement by scheduling prefetch requests when

there are no regular requests from the processor pending in the memory controller. In our

studies we observe such a scenario less than 1% of the time. This is because in multi-core

systems more cores/threads are competing to get access to the shared memory subsystem

than in a uniprocessor environment.

4.3.3 Impact of DRAM Bandwidth

This section discusses the impact of bandwidth on multi-stride prefetching.

Figure 4.5 and 4.6 show the performance improvement with DDR-800; Figure 4.7 and 4.8

show the performance improvement with DDR-1600 DRAM configuration. We can

observe that the performance improvement for DDR-1600 is more than the DDR-800 con-

figuration. The DDR-800 shows a performance improvement of about 4.5% for any bench-

mark. The performance improvement is up to 6% for DDR-1600 configuration. This is due

to the increased sustained bandwidth of the DDR-1600 system.

We also notice that lowering the prefetch threshold improves the system perfor-

mance in DDR-1600 configuration, whereas it degrades the performance in DDR-800 for

SJBB. This is because lowering the prefetch threshold, i.e. issuing prefetch requests after

observing a stride pattern once, can lead to increased memory requests. This, combined

with the regular requests, can push the system to operate in the exponential region of the

106

bandwidth-latency curve. This happens only with SJBB in DDR-800 configuration

because it has the highest bandwidth requirement among the discussed workloads, even

without any memory optimization technique. This can be noticed from Figure 4.9 where

TPCC has 25% more bandwidth requirement than SAP and SJBB. The DDR-1600 config-

uration has enough bandwidth to meet the system requirements. The bandwidth supported

Figure 4.8. Performance improvement of multi-stride prefetching scheme for
DDR-1600. The above graph shows the percentage improvement in performance for
various benchmarks with multi-stride prefetching. The prefetching degrees were varied
from 1, 2, 4 and 8. The DRAM configuration in this study is DDR-1600. Priority refers
to the memory controller scheduling policy wherein the regular requests are given
higher priority over prefetch requests, and No priority refers to the scheduling
mechanism where all requests are treated the same. The prefetching threshold was set to
2 i.e. prefetch requests are issued after observing a stride pattern twice.

107

in this system is doubled, and the requirements grow by only 60%. Thus there is more than

necessary bandwidth available in the system to meet the demand. Hence, the performance

improves as the prefetch threshold is reduced in a higher bandwidth system.

Figure 4.9. Memory bandwidth variation for different schemes. The above graph
shows the bandwidth requirement for four benchmarks SAP, SJAS, SJBB and TPCC for
the various memory configuration and prefetch threshold. DDR-800 thresh2 refer to the
DDR-800 configuration with prefetch threshold 2 and DDR-800 thresh1 refer to DDR-
800 configuration with prefetch threshold 1. DDR-1600 configuration is represented by
DDR-1600 thresh1 and DDR-1600 thresh2. thresh1 and thresh2 follow the same trend as
with DDR-800 i.e. they represent Prefetch threshold 1 and 2. The y-axis represents the
bandwidth scaled in GigaBytes/Sec. The bandwidth increases steadily with different
schemes for all the benchmarks. The rate of increase is more for TPCC as its bandwidth
requirements are more and also due to its prefetch requests being useless, and most
requests end up accessing memory. SJAS has increased bandwidth requirement due to the
prefetcher being able to predict the pattern of the benchmark. All the configurations are
for No Priority Scheduling scheme with a prefetch degree of 8.

108

4.3.4 Impact of Prefetch Threshold

This section details the impact of prefetch threshold on performance. Figure 4.10

and 4.11 shows the distribution of memory accesses in terms of prefetch buffer hit, prefetch

pending hit, and prefetch buffer miss for DDR-800 and DDR-1600 given different prefetch

thresholds. A prefetch pending hit is a hit in the prefetch buffer, for which a memory

request has been made but the data hasn’t arrived yet. Buffer Miss refer to the requests from

the processor that didn’t hit the prefetch buffer and had to access their data from main

memory.

We observe that both the buffer and pending hit increases with the reduction in

prefetch threshold. This happens for both DDR-800 and DDR-1600 configuration with PS

and NPS schemes. The sum of buffer hit and pending hit increases from around 20% to

almost 40% for SJAS workload as the prefetch threshold is reduced. The hit rate increases

from 16% to 22% for SAP. Even the workloads such as TPCC and SJBB that lack regular-

ity exhibit a similar trend, although to a smaller degree as shown in Figure 4.11. This

increased hit rate leads to better performance improvement compared to a higher prefetch

threshold as shown in Figure 4.7 and 4.8.

Figure 4.12 and 4.13 show the distribution of prefetch requests, i.e. the number of

prefetches issued to the memory. The distribution is again divided into prefetch buffer hits,

pending hits, and useless prefetches. We observe that as the prefetch threshold is reduced

the number of useless prefetches increases. This is prominent in workloads that lack local-

ity such as TPCC and SJBB as shown in Figure 4.13. In these cases, the useless prefetches

reduces from 70% to 60% for SJBB and 82% to 70% for TPCC. Though increasing the

109

Figure 4.10. Distribution of memory accesses for DDR-800. This graph shows the
distribution of memory accesses in terms of prefetch buffer hit, pending hit and prefetch
buffer miss. This is for DDR-800 configuration with a prefetch degree of 8. The top
graph shows the result for prefetch threshold 1, and bottom graph shows the result for
prefetch threshold 2. For each benchmark, the left bar is for PS and right bar is NPS
scheme.

Prefetch Threshold 1

Prefetch Threshold 2

110

Prefetch Threshold 1

Figure 4.11. Distribution of memory accesses for DDR-1600. This graph shows the
distribution of memory accesses in terms of prefetch buffer hit, pending hit and prefetch
buffer miss. This is for DDR-1600 configuration with a prefetch degree of 8. The top
graph shows the result for prefetch threshold 1, and bottom graph shows the result for
prefetch threshold 2. For each benchmark, the left bar is for PS and right bar is NPS
scheme.

Prefetch Threshold 2

111

Figure 4.12. Distribution of prefetch requests for DDR-800. This graph shows the
distribution of prefetch requests in terms of prefetch buffer hit, pending hit and prefetch
buffer miss. This is for DDR-800 configuration with a prefetch degree of 8. The top graph
shows the result for prefetch threshold 1, and bottom graph shows the result for prefetch
threshold 2. For each benchmark, the left bar is for PS and right bar is for NPS scheme.

Prefetch Threshold 1

Prefetch Threshold 2

112

Figure 4.13. Distribution of prefetch requests for DDR-1600. This graph shows the
distribution of prefetch requests in terms of prefetch buffer hit, pending hit and prefetch
buffer miss. This is for DDR-1600 configuration with a prefetch degree of 8. The top
graph shows the result for prefetch threshold 1, and bottom graph shows the result for
prefetch threshold 2. For each benchmark, the left bar is for PS and right bar is for NPS
scheme.

Prefetch Threshold 1

Prefetch Threshold 2

113

prefetch threshold can reduce the useless prefetches, it also reduces the performance due to

increased prefetch buffer miss. This reduction in useless prefetches can reduce the band-

width consumed in the system. This increased prefetch threshold can give better perfor-

mance than a lower prefetch threshold in a bandwidth constrained system as shown in

Figure 4.5 and 4.6 for TPCC.

4.4. Summary

This chapter highlighted the performance improvements using a multi-stride

prefetching technique implemented as a memory side prefetcher. Our studies show a per-

formance improvement of about 6% for certain workloads. This leads to the conclusion,

contrary to the published results, that a simple prefetcher cannot improve the performance

significantly for workloads that lack locality/regularity. Though there is a significant

amount of stride behavior in these workloads, they do not occur in regular intervals and

thus make it harder to predict/prefetch. Aggressive prefetching mechanisms need to be

implemented to extract significant performance improvements for server workloads.

We also showed that, contrary to conventional wisdom, giving equal priority to

prefetch requests can improve the system performance in certain cases. This happens when

the prefetch buffer hit rate is more than the pending hit rate, and cache misses don’t have to

wait for the pending data to come back from the memory. The pending hit latency can be

more in a system with PS policy due to normal requests getting higher priority than the

prefetch requests. This can be circumvented by issuing separate prefetch requests for pend-

ing hits, but this will increase the bandwidth requirement of the system and correspond-

ingly the average latency.

114

Our results don’t correlate well against other published results in terms of perfor-

mance improvement, and also we found an interesting anomaly. One of the main observa-

tions from this study is that Adaptive Scheduling mechanism as proposed in [1] will not

work in a multi-core system. The authors show performance improvement by scheduling

prefetch requests when there are no regular requests from the processor pending in the

memory controller. In our studies we observe such a scenario less than 1% of the time. This

is because in multi-core systems more cores/threads are competing to get access to the

shared memory subsystem than in a uniprocessor environment.

115

 Chapter 5: Multi-core Server Prefetching
In the previous chapter, we established that simple prefetching schemes can’t give

significant performance improvements for server workloads which have sparse locality.

We also demonstrated that increasing the aggressiveness of the prefetcher can increase the

bandwidth usage and correspondingly lead to performance degradation. In this chapter, we

use this newfound understanding to address the memory wall problem for server platforms

by proposing a novel prefetching technique called Load Aware Prefetching.

Our characterization of server workloads shows that aggressive prefetching is nec-

essary to improve the system performance of applications that lack regularity/locality. This

can improve the performance of the system at the cost of an increased memory bandwidth

requirement. This aggressiveness worsens the situation in a memory bandwidth con-

strained system such as CMPs, where multiple cores are trying to access the memory at the

same time. We observed that aggressive prefetching that does not limit itself to realistic

bandwidth constraints can degrade the performance by up to 65% compared to a no-

prefetching scheme. This is due to the system operating in the exponential region of the

bandwidth-latency curve.

We propose a solution which controls the aggressiveness of the prefetching based

on the average memory latency. The prefetcher in this study is stream buffer based mecha-

nism. Our approach exploits the observed relationship between the bandwidth requirement

and resulting memory latency of the system. By varying the aggressiveness we were able to

improve the performance by up to 15% compared to a no-prefetching scheme when there

was sufficient bandwidth available in the system, and perform as well as the base no-

116

prefetching scheme or achieve any improvement if possible in a bandwidth constrained

system.

5.1. Load Aware Prefetching

Figure 5.1 shows the diagram of load aware prefetching implementation. There are

two main components in this system i) Stream Prefetcher and ii) LM-PAC. The prefetcher

used in this study is based on stream prefetcher proposed in [1]. The prefetcher in our study

LM-PAC = Latency Monitor –
Prefetch Aggression Controller

Figure 5.1. Load Aware Prefetcher. The above diagram shows the load aware
prefetcher implementation for a dual core system. A latency monitor unit is
associated with the last level cache which keeps track of the average cache miss
latency continuously. The prefetcher is a stream based prefetcher. Based on the
average memory latency, the prefetching degree/depth is adjusted dynamically.

Interconnects

P1

L1

P1

L1

Shared L2

Shared L3LM-PAC

Memory
Controller

Front Side
Bus (FSB)

On-chip

Off-chip

Stream
Prefetcher

Interconnects

P1

L1

P1

L1

P1

L1

P1

L1

Shared L2Shared L2

Shared L3LM-PAC

Memory
Controller

Front Side
Bus (FSB)

On-chip

Off-chip

Stream
Prefetcher

117

can prefetch anywhere between zero to four adjacent cache lines on a cache miss for the

last level cache. The prefetched data, along with the regular data, is stored in the cache.

LM-PAC: LM-PAC is latency monitor - prefetch aggression controller. This is the second

and the most important component of our prefetching methodology. We have shown in the

previous chapter that generating unconstrained prefetches can lead to system performance

degradation. This can happen in a bandwidth constrained system in spite of a good prefetch

predictor. Our approach handles this case by moderating the prefetches using a feedback

loop. This feedback loop is useful when the memory controller is saturated with normal

memory requests, which happens mostly in server platforms. In such a scenario, even if a

thread exhibits good locality, it is beneficial not to prefetch. We use a feedback threshold

(FT) to decide whether to generate a prefetch or not. The feedback threshold in our study is

based on average memory latency of the system. We use this metric, as the memory latency

faithfully keeps track of the system operating region in the bandwidth-latency curve and

gives an accurate idea of when to prefetch. This is essential in a system with heavy memory

traffic such as server workloads. A latency monitor unit is attached to the shared last level

cache. This unit continuously keeps track of the average memory latency of the system for

every 1000 cache misses (This monitoring value is programmable in the system).

We monitor the average cache miss latency at any given instance and decide to gen-

erate a prefetch based on the system operating region. Figure 5.2 shows the prefetch gener-

ation for different regions of the bandwidth latency curve. The aggressiveness of the

prefetching (degree/depth of prefetching) is steadily increased as long as the system is

operating in the constant region i.e. the mean latency of the system is less than 1.2 times the

118

idle latency. In this region the prefetching depth is incremented by one every 1000 cache

misses.

Prefetching aggressiveness is reduced if the system is found operating in the expo-

nential region of the bandwidth-latency curve. If the average latency of the system is found

to be more than 1.4 times the idle latency, the prefetching depth is steadily decreased by

one. The prefetching depth is maintained constant once the system starts operating in the

linear region of the curve i.e. as long as the system average latency remains between 1.2

and 1.4 times the idle latency.

The prefetching depth varies across various zones and will not be uniform even

within a zone. This is especially true while maintaining prefetches in the linear region. This

Figure 5.2. Prefetching threshold latency regions. The aggressiveness of the
prefetcher (i.e. degree/depth of prefetching) is increased in the constant region of the
bandwidth-latency curve, maintained in the linear region of the curve and decreased in the
exponential region. The prefetching depth is increased or decreased by at most one at a
time.

decrease
prefetch

increase
prefetch

maintain
prefetch

119

can happen because the system might enter this region either from the constant or the expo-

nential region, and depending on the prefetch depth at the time of entering this zone the

aggressiveness of the prefetcher will vary. We equated the different regions (constant, lin-

ear and exponential) of bandwidth-latency curve to different values of idle latency based on

our observation of the system behavior for different DRAM configurations and read-write

mix as explained below. This is because the sustained bandwidth of a system, i.e. efficiency

of the DRAM subsytem, depends on numerous factors such as memory scheduler policies,

read-write mix, number of banks/ranks, memory level parallelism available in the work-

load etc., and it varies a lot dynamically. Hence we chose to use the memory latency behav-

ior instead of the sustained bandwidth of the system.

Figure 5.3 shows the average memory latency for different configurations (this is

redrawn from chapter 3 Figure 3.17 for convenience). 800 and 1067 represents the DDR

data rates, and 25, 50, 75, 100 refers to the percentage of reads in the read-write mix (i.e.

the percentage of reads in the total traffic was increased from 25% to 100% with all the

requests being reads at 100%). The experiments were conducted using synthetic traffic on

closed page DRAM system. The two graphs show the results for two different scheduling

algorithms with one of them being optimized for writes, and the other optimized for reads.

We observed that the memory latency below 1.2 times the idle latency represents

the constant region of the bandwidth-latency curve and above 1.4 times the idle latency

represents the exponential region of the curve. This ratio remains almost the same for dif-

ferent read-write mix, scheduling algorithms and sustained bandwidth. Hence in our stud-

ies we used this latency threshold to increase or decrease the aggressiveness of the

prefetcher.

120

Write Requests Optimized Algorithm

Figure 5.3. Average memory latency threshold for different prefetching zones. The
y-axis shows the average memory latency of the system for various sustained bandwidths
(along x-axis). We can notice that below 1.2 times memory latency zone represent
constant region and 1.4 times represent exponential region of bandwidth-latency curve.

Read Requests Optimized Algorithm

increase prefetch
depth below this

latency

decrease prefetch
depth above this

latency

decrease prefetch
depth above this

latency

increase prefetch
depth below this

latency

121

The feedback threshold can also be based on other factors such as DRAM power

consumption, prefetch data hit rate, cache pollution etc. These ideas are orthogonal to our

methodology and can complement our scheme. Further, the latency threshold can also be

made adaptive depending on these factors.

Figure 5.4 shows the flowchart for the load aware prefetching algorithm. Normal

cache misses are sent to memory and returned data is stored in the cache. Latency monitor

unit computes the average latency of misses every so many cycles or cache misses. The

stream prefetch generator then generates the prefetch memory requests based on the crite-

Figure 5.4. Flowchart for Load Aware Prefetching algorithm. The above flowchart
describes the load aware prefetching methodology. 1) Cache misses are sent to memory
and 2) Data is received from memory. 3) The average memory latency is computed for
every X cache misses (where X is programmable). 4) Based on the prefetch zone,
determined by the latency feedback, necessary number of stream prefetches are
generated.

Generate Prefetch
request for demand miss
based on prefetch zone

Memory

Prefetch
request to
memory

CACHE

Data back to
cache

Latency
Monitor

Latency
tolerable?

Y

Normal
request to
memory

Do nothing

N
1

2

3
4

Generate Prefetch
request for demand miss
based on prefetch zone

Memory

Prefetch
request to
memory

CACHE

Data back to
cache

Latency
Monitor

Latency
tolerable?

Y

Normal
request to
memory

Do nothing

N
1

2

3
4

122

ria for feedback threshold, which depends on the operating region of the system. The

prefetch data is returned back to the cache along with regular requests.

5.2. Experimental Setup and Results

This section describes the performance improvement achieved for different sus-

tained DRAM bandwidth with stream prefetchers and the adaptive scheduling policies of

load aware prefetcher in a multi-core environment. We used the Manysim simulator

described in chapter 3 for our studies [2]. The simulation parameters were varied as shown

in Table 5.1. We used the DDR-800 and DDR-1600 memory configurations for our study

as shown in Table 5.2. These studies were carried out for an 8-core system with different

degrees of prefetching. Prefetching degree refers to the number of adjacent cache lines

TABLE 5.1. Load Aware Prefetching Simulation Parameters

Parameters Configurations
Prefetching Degree/Depth 1, 2, 4
Number of Cores 8
DRAM configurations DDR-800, DDR-1600, DDR-

1600x2
Shared L2 cache size 2MB
L2 hit latency 15
L2 Associativity 8
Shared L3 cache size 8MB
L3 hit latency 50
L3 Associativity 16
cache line size 64Bytes
Prefetch Scheduling Policy Normal scheduling, Adaptive

Scheduling

123

fetched on a demand miss. It is also referred to as prefetching depth in some studies. (In this

thesis prefetching degree and depth are used interchangeably.)

5.2.1 Impact of Degrees of Prefetching

In this section we describe the impact of prefetching degree (i.e. number of adja-

cent cache lines prefetched) using stream prefetchers. Figure 5.5 shows the performance

improvement with respect to no-prefetching scheme for different prefetching depth with

DDR-800 configuration. We observed that as the number of adjacent cache lines fetched in

is increased, the performance degrades for all benchmarks for DDR-800 configuration. The

performance degrades from +5% for single adjacent cache line to about -25% for SAP. The

Figure 5.5. Performance improvement using stream prefetcher for DDR-800. The
x-axis shows the various benchmarks with different prefetching degree. The performance
improves by 5% for SAP and degrades from there on for all cases due to bandwidth
constraint.

124

TABLE 5.2. Memory System Parameters for DDR-800 and DDR-1600

Parameter DDR3
Data-rate (Mbps) 800
tRAS (ns) 37.5

tRP (ns) 15

tRC (ns) 52

tRCD (ns) 15

tFAW (ns) 40

tRRL (ns) 20

tRRD (ns) 7.5

tCL (ns) 15

tWL (ns) 12.5

Number of logical channels 1
Scheduling policy Adaptive

Parameter DDR3
Data-rate (Mbps) 1600
tRAS (ns) 17.5

tRP (ns) 5.625

tRC (ns) 23.75

tRCD (ns) 5.625

tFAW (ns) 15

tRRL (ns) 5

tRRD (ns) 3.55

tCL (ns) 5.5

tWL (ns) 5

Number of logical channels 1 and 2
Scheduling policy Adaptive

125

performance degradation is more pronounced in TPCC which needed more bandwidth

even for the base case i.e. no-prefetching scheme. The performance degrades from -10% to

-65% with TPCC. This is due to the increased bandwidth constraint which increases the

memory latency. The average latency increases from 645 cycles for TPCC with no-

prefetching scheme to 1640 cycles (more than 220% increase) when 4 adjacent cache lines

are prefetched. The performance degradation slows down for SJAS compared to SAP as

more number of adjacent cache lines are prefetched due to increased hit rate. The hit rate

increases by almost 7% from prefetching degree of 2 to 4 for SJAS and only by 3% for

SAP. We can observe from our earlier studies that SJAS had the most locality among all

server workloads.

Figure 5.6 shows the performance improvement for the DDR-1600 configuration.

The performance improvement is better than the DDR-800 configuration. The performance

improves by almost 12% for SAP and around 8% for SJAS for a prefetching depth of 2.

The performance degrades for SJBB and TPCC due to their lack of locality, which

increases the miss rate further with a stream prefetching scheme and correspondingly the

bandwidth requirement. This increases the average latency for these two benchmarks and

hence the performance degrades.

5.2.2 Impact of DRAM bandwidth

We wanted to study the possibility of further improvement in performance for these

workloads in a higher bandwidth environment. So we simulated the DDR-1600 configura-

tion in a dual channel mode. We effectively doubled the theoretical bandwidth of the sys-

tem to 25.6 GB/Sec. Figure 5.7 shows the performance improvement for different

prefetching depths using this configuration. We observed that SJAS is the single workload

126

that benefitted more than others. The performance improves from 5% to 10% when the

prefetching depth is increased from 1 to 2 and 10% to 12% when the depth is increased

from 2 to 4.

SJBB and TPCC are also benefitted due to the increased bandwidth availability as

both don’t degrade the performance, with respect to no-prefetching scheme, when the

prefetching depth is increased from 2 to 4 (performance degrades for TPCC very minimally

in this case). The performance goes up from 12% to 15% for SAP as the prefetching depth

is increased from 1 to 2, and reduces to 14% on further increasing the prefetching depth to

4.

Figure 5.6. Performance improvement using stream prefetcher for DDR-1600. The
x-axis shows the various benchmarks with different prefetching degree. The performance
improves by 12% for SAP and almost 8% SJAS. It degrades the performance for all other
cases due to bandwidth constraint.

127

An interesting observation to be noted for all benchmarks with a prefetching depth

of 1 is that the performance improvement, with respect to no-prefetching, remains almost

the same for most benchmarks for DDR-1600 single channel and dual channel mode. This

is due to the reduction in average memory latency in the base case — no-prefetching

scheme. The memory latency reduces from 586 cycles to 390 cycles for SAP, and reduces

from 856 cycles to 420 cycles for SJAS when the DDR configuration is changed from

DDR-800 to DDR-1600x2.

Figure 5.7. Performance improvement using stream prefetcher for DDR-1600x2.
The x-axis shows the various benchmarks with different prefetching degree for DDR-
1600 configuration in dual channel mode. The performance improves by about 15% for
SAP and almost 12% SJAS. It degrades the performance for all other cases as even this
high bandwidth is not sufficient for an aggressive prefetcher in server platforms.

128

5.2.3 Read Queue Threshold

This section highlights the incapability of DRAM schedulers to obtain optimal per-

formance based on the number of outstanding requests. Adaptive scheduling algorithms

have been proposed based on the number of outstanding requests in [3]. We found out that

their most conservative scheduling policy, submitting prefetch requests when there are no

commands in the memory controller, doesn’t work in a multi-core system. This situation

happened less than 1% of the time in our simulations. The authors have other scheduling

Figure 5.8. Performance improvement trend for different read queue threshold.
The x-axis shows the SAP and SJBB with different read queue threshold. y-axis shows
the performance improvement for different DDR configurations. We can observe that the
performance trend is not uniform across all configurations for these benchmarks between
these two threshold. Depending on the available bandwidth and locality performance
improves, mainly for DDR-1600, and degrades for bandwidth constrained system. All
the results are for prefetching depth 4

129

policies such as issuing prefetch requests when conflict queue is empty, when there are no

transactions in read queue alone etc. We modified these policies into two of our own adap-

tive schedulers based on read queue occupancy.

In the first case we scheduled prefetch requests only when the read queue was less

than 25% of its full capacity (prefetch requests are included in the read requests). In the

second scenario we scheduled prefetch requests when the read queue was up to 50% to its

full capacity and beyond that no prefetch requests were issued. In both these cases

prefetches weren’t generated above the threshold value.

Figure 5.8 shows the performance variation for the two read queue threshold poli-

cies for different DDR configurations with a prefetch depth of 4. We observe that the per-

formance trend is not uniform across all configurations. The performance degrades when

the read queue threshold is increased from 0.25 to 0.5 for both SAP and SJBB workloads

with DDR-800 configuration. The performance degrades from 2.5% to -5% for SAP and

degrades from -5% to around -20% for SJBB. On the contrary, performance improves for

SAP with both DDR-1600 configurations (single channel and dual channel mode). The

performance improves from 10% to 12% for DDR-1600 configuration and 12% to 14% for

DDR-1600x2. The performance remains almost the same for SJBB with DDR-1600x2 and

degrades slightly for 8% to 4% for DDR-1600.

This shows that the behavior of the workloads depends more on the available band-

width than on the number of outstanding requests. Performance degrades as the threshold is

increased in a bandwidth constrained system and improves otherwise. Using a conservative

policy is good in a bandwidth constrained system and being aggressive in a bandwidth

130

abundant system is prudent. Hence we went with an adaptive policy based on the average

latency of the system as explained earlier.

5.2.4 Load Aware Scheduling

This section highlights the performance benefits obtained using our load aware

scheduling policy. We have shown that using outstanding requests as a feedback threshold

does not work optimally. The second approach shown by authors in [4] is to submit

prefetch requests when the DRAM channels are idle. The authors had used a uniprocessor

simulation environment and their channel utilization increased from 25% for no-prefetch-

ing scheme to 41% with aggressive prefetching. We observed in our studies that DRAM

Figure 5.9. Performance improvement with load aware scheduling. x-axis shows
the SAP and SJBB and y-axis shows the performance improvement for different DDR
configurations with load aware scheduling policy. Performance improves in most cases
with the improvement achieving the best case possible with a stream prefetcher for a
given DRAM bandwidth. There is slight degradation for DDR-800 with SJBB as it takes
the scheduler sometime to reach optimal operating region for prefetches.

131

efficiency in server settings is around 70%-75%. This being the case, DRAM channels are

idle at least 25% of the time. The average memory latency reaches the exponential region

beyond 75% of the sustained bandwidth, which is around 55% of the theoretical maximum

bandwidth. Hence this scheme of submitting prefetching requests during idle cycles is not

possible in multi-core systems. If we try to submit prefetch requests during the available

idle cycles, performance will degrade if the system is already operating in the exponential

region of the bandwidth latency curve. This can be observed from our earlier results in the

previous chapter when we submitted prefetches as low priority requests in the memory

controller for TPC.

This highlights the fact that we need a different metric to be able to submit prefetch

requests to obtain optimal performance improvement across different DDR configurations,

i.e. available system bandwidth. We use latency as the metric, because it is this we are try-

ing to reduce using prefetch optimizations. Since this faithfully gives the operating region

of the application, we can be aggressive or docile in prefetching depending on the available

bandwidth.

Figure 5.9 shows the performance improvement obtained using the load aware

scheduling policy as described in 5.1. We observe that the performance improves across all

DDR configurations, and we are able to achieve the best possible improvement for the

available bandwidth. We get about 14.5% improvement in performance for SAP with

DDR-1600x2 configuration, which is close to 15.1% obtained using prefetch depth of 4 for

the same configuration. We get almost 12% performance gain for DDR-1600 and 4.5% for

DDR-800 for SAP which comes close to our other best results obtained using stream

prefetchers of different depth.

132

Performance improvement is similar for other benchmarks for DDR-1600 and

DDR-1600x2 configurations. Though there is a small performance degradation in DDR-

800 configuration, this is due to the fact that the scheduler needs sometime to adjust to the

optimal prefetching operation region. The scheduler starts off submitting prefetch requests

aggressively and reduces it slowly as the system operating zone shifts from constant to

exponential region. If there is not sufficient locality in the benchmark, there will be a degra-

dation in the performance as there will be useless prefetches submitted during this learning

phase. The reason we were able to gain performance with our multi-stride prefetching

mechanism even for DDR-800 configuration was due to the fact that prefetchers generated

prefetch requests after observing a specific stride pattern. Hence, the probability of

prefetch data hit rate in this scheme is higher than submitting prefetch requests based on

latency without any locality or access pattern information as in adjacent cache line

prefetchers. But the aggressiveness does help in bandwidth abundant systems.

The L3 hit rate uniformly increases across all benchmarks with aggressive

prefetching. Table 5.3 shows the percentage increase in hit rate for the shared last level

cache with different aggressiveness, i.e. prefetching depth, compared to a no-prefetching

scheme. This is shown for the DDR-1600x2 configuration and remains almost the same for

TABLE 5.3. L3 hit rate increase for various prefetching depths

Benchmark depth 1 depth 2 depth 4
SAP 15.4% 21.1% 24.7%
SJAS 12.3% 16.4% 22.9%
SJBB 17.5% 22.3% 34.2%
TPCC 8.1% 11.7% 13.9%

133

other configurations. This is because the hit rate depends on the aggressiveness of the

stream prefetcher and not on the DDR configuration. We can observe that the hit rate

increases by up to 35% for SJBB, 25% for SJAS and 22% for SAP. TPCC is the only

benchmark that shows a small improvement in hit rate due to its lack of locality. This can

be seen in its small performance improvement of only 6% for the best case.

5.3. Summary

This chapter highlighted the drawbacks of other scheduling policies for prefetch

requests without considering the bandwidth constraints in server platforms. We showed

that existing scheduling policies for prefetchers don’t work well in a multi-core systems

due to the increased bandwidth contention among cores. We provided a new metric to be

used for prefetching in server settings and showed how performance gains can be obtained

using smarter scheduling policies based on average memory latency behavior of the sys-

tem. Our results showed that performance improvement as high as 15% can be obtained

using an aggressive stream prefetchers combined with a load aware scheduling policy. We

also showed the cases where this prefetcher may not perform as well as multi-stride

prefetching and explained the reasons. We also show that performance improvement tapers

off at higher bandwidths even with aggressive prefetching. This is due to the improvement

in base case i.e. average memory latency reducing significantly with no-prefetching

scheme for different DDR configurations.

134

 Chapter 6: Conclusion
The importance of memory models in performance evaluation is not clearly

understood. Simplistic models have been used to show performance improvement with

memory optimization schemes such as prefetching. The fact that industry practice cannot

reproduce these theoretical results demonstrates a problem with this experimental

approach. This dissertation has been an attempt to address this problem in a holistic

manner, and to identify mechanisms to improve the system performance in server

platforms.

This dissertation consists of three major inter-related studies. First, we performed a

detailed study of the accuracy of various simplistic memory models for different multi-core

configurations, and we compared it against a cycle accurate model. We then showed how

the inaccuracy increases as the complexity of the system increases — the number of cores

in our case. We explored the memory optimization technique of prefetching and its impact

on performance gains using these simplistic models. We showed that performance

projections using the simplistic models can be misleading. We also showed how the

average memory latency of the system varies with different things such as read-write mix

in the workload, sustained bandwidth, and scheduling algorithms. The contributions of this

study include:

• Detailed characterization results of different simplistic models in multi-core

configuration and their performance compared against a cycle accurate model. The

performance difference increased from 2% for single-core system to 15% for multi-

core architectures. The performance improvement projection with the simplistic

135

memory models was shown to be linear whereas it tapered off at higher number of

cores due to bandwidth constraints.

• Highlighted the complexity of using average memory latency in performance

evaluation. We showed that the average latency, which depends on numerous

factors, varies a lot with read-write mix in the traffic, DRAM sustained bandwidth

and scheduling policies. We showed that the average memory latency varied from

390 cycles to more than 1200 cycles (~300% increase) based on these different

configurations.

• We studied the effects of prefetching using simplistic models. We showed that

the performance difference increases between these models and a cycle accurate

model with memory optimization studies. The performance difference was as high

as 65% for an 8-core configuration. We showed that the performance projection

trend using the simplistic models and cycle accurate model vastly differed, and we

might under-design the system based on these results.

In the second study, we did a case study to improve the performance of server

platforms using established approaches. We extended the idea of memory side sequential

prefetch, which has been shown to work for server platforms, to accommodate the strides

observed in server workloads. We demonstrated that the performance improvement did not

match the established results due to lack of locality/regularity in the server workloads. We

also identified that bandwidth is a constraint in these systems. We showed that prefetching

without feedback can lead to performance degradation in certain cases. The contributions

made in this study include:

136

• Extending the memory sequential prefetcher to account for stride patterns in

server workloads. A novel multi-stride prefetcher to track different strides in server

benchmarks was proposed. The prefetcher was implemented as memory side

prefetcher i.e. prefetcher residing in memory controller with buffers. We showed

performance improvement of up to 6% in these workloads. This limited improve-

ment was due to the sparse locality in these benchmarks and also the bandwidth

constraint imposed by the prefetch requests.

• We also showed that contrary to conventional wisdom, giving equal priority to

prefetch requests can improve the system performance in certain cases when the

prefetch buffer hit rate is more than the pending hit rate, and cache misses don’t

have to wait for the pending data to come back from the memory. Though the

performance difference is minimal and happens rarely, it has to be taken into

account while designing a system.

Third, we used the knowledge gained from the previous studies to propose a novel

load aware scheduling policy for prefetching schemes in server platforms. We found out

that using average memory latency of the application to efficiently schedule prefetch

requests gave optimal performance gain over other schemes, which calibrates the idleness

of the system based on the DRAM channel idleness or the number of outstanding requests

in the memory controller. We showed performance improvement using aggressive

prefetching technique in combination with our scheduling policy for server workloads. The

contributions made in this study include:

137

• Highlighted the drawbacks of existing scheduling policies for prefetch requests

in multi-core systems. We showed that either these schemes are inapplicable, or

they do not give optimal performance for different sustained system bandwidths.

• Highlighted the benefits of our scheduling policy with an aggressive stream

prefetcher in a multi-core environment. Our results show a performance improve-

ment of up to 15% without much degradation across various system bandwidths.

Taken together, these studies address one of the major problems in performance

evaluation and optimization of complex systems such as CMP server platforms. The results

quantified by our models should enable researchers to gain a better understanding of the

working behavior of memory systems and the role it plays in bandwidth intensive environ-

ments such as CMPs. The ideas proposed in this study based on real memory systems

should improve the performance of server platforms.

138

References

Chapter 1

[1] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers”, In Proceedings of the 17th International
Symposium on Computer Architecture, pp. 364-373, May 1990.

[2] F. Dahlgren and P. Stenstrom, “Effectiveness of hardware-based stride and sequential
prefetching in shared memory multiprocessors”, In Proceedings of 1st IEEE Symposium
on High Performance Computer Architecture, pp.68-77, January 1995.

[3] P. G. Emma, A. Hartstein, T. R. Puzak, and V. Srinivasan, “Exploring the limits of
prefetching”, IBM Journal of Research and Development, vol. 49, issue 1, pp. 127-144,
January 2005.

[4] W. A. Wong and J. L. Baer, “The Impact of timeliness for hardware-based prefetching
from main memory”, Technical Report UW-CSE-02-06-03, University of Washington,
February 2003.

[5] I. Hur and C. Lin, “Memory prefetching using adaptive stream detection”, In Proceed-
ings of 39th International Symposium on Microarchitecture, pp. 397-408, December
2006.

[6] J. D. Davis, J. Laudon, and K. Olukotun, “Maximizing CMP throughput with mediocre
cores”, In Proceedings of the 14th International Conference on Parallel Architectures
and Compilation Techniques, pp. 51-62, September 2005.

[7] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang, “SoftSDV: a presilicon devel-
opment environment for the IA-64 architecture”, Intel Technology Journal, 1999.

[8] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood, “Multifacet's
General Execution-driven Multiprocessor Simulator (GEMS) Toolset”, Computer
Architecture News (CAN), September 2005.

[9] L. Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni, and D. Newell, “Exploring Large-
Scale CMP Architectures using Manysim”, IEEE Micro, vol. 27, issue 4, pp. 21-33,
August 2004.

Chapter 2

[1] G. E. Moore, “Cramming more components onto integrated circuits”, Electronics,
vol. 38, April 1965.

[2] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvi-
ous”, Computer Architecture News, 1994.

[3] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization”, in ISCA ’81:
Proceedings of the 8th annual symposium on Computer Architecture, (Los Alami-
tos, CA, USA), pp. 81–87, IEEE Computer Society Press, 1981.

[4] D. Callahan, K. Kennedy, and A. Porterfield, “Software prefetching”, in ASPLOS-
IV: Proceedings of the fourth international conference on Architectural support for
programming languages and operating systems, (New York, NY, USA), pp. 40–52,
ACM Press, 1991.

139

[5] T.-F. Chen and J.-L. Baer., “A performance study of software and hardware data
prefetching schemes”, In Proceedings of the 21st Annual International Symposium on
Computer Architecture, 1994.

[6] D. Burger, J. R. Goodman, and A. Kagi, “Memory bandwidth limitations of future
microprocessors”, In Proceedings of the 23rd Annual International Symposium on
Computer Architecture, 1996.

[7] Dean Tullsen, Susan J. Eggers, Henry M. Levy, “Simultaneous Multithreading: Maxi-
mizing On-Chip Parallelism”, In Proceedings of the 22th Annual International Sympo-
sium on Computer Architecture, 1995.

[8] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for high performance
processors”, In Proceedings of the 31st Annual International Symposium on Computer
Architecture, 2004.

[9] Shenglin Yang, Ingrid M. Verbauwhede, “Methodology for Memory Analysis and
Optimization in Embedded Systems”, GSPx 2004.

[10] P. R. Panda, F. Catthhoor, N. D. Dutt, et al., “Data and Memory Optimization
Techniques for Embedded Systems”, ACM Transactions on Design Automation of
Electronic Systems, Vol. 6, no. 2, pp. 149-206, April 2001.

[11] Frank Vahid, Tony Givargis, Susan Cotterell, “Power Estimator Development for
Embedded System Memory Tuning”, Journal of Circuits, Systems and Computers,
vol. 11, no. 5, pp. 459-476, October 2002.

[12] Krishna V. Palem, Rodric M. Rabbah, Vincent J. Mooney III, Pinar Korkmaz,
Kiran Puttaswamy, “Design Space Optimization of Embedded Memory Systems
via Data Remapping”, In 6th Annual High Performance Embedded Computing
Workshop (HPEC), 2002.

[13] Sang-II Han, Amer Baghdadi, Marius Bonaciu, Soo-Ik Chae, Ahmed. A. Jerraya,
“An Efficient Scalable and Flexible Data Transfer Architecture for Multiprocessor
SoC with Massive Distributed Memory”, In 41st Design Automation Conference,
2004.

[14] R. B. Teremaine, P. A. Franaszek, J. T. Robinson, C.O. Schulz, T. B. Smith, M. E.
Wazlowski, and P. M. Bland, “IBM Memory Expansion Technology”, IBM Journal
of Research and Development, vol. 45, issue 2, pp. 271-285, March 2001.

[15] M. Kjelso, M. Gooch, and S. Jones, “Design and performance of a main memory
hardware data compressor”, In Proceedings of 22nd EUROMICRO conference,
1996.

[16] L. Benini, D. Bruni, B. Ricco, A. Macii, and E. Macii, “An adaptive data compres-
sion scheme for memory traffic minimization in processor based systems”, In pro-
ceedings of International Conference on Circuits and Systems, pp. 866-869, May
2002.

[17] J. Lee, W. Hong, S-D Kim, “Design and Evaluation of a selective compressed
memory system”, In Proceedings of International Conference on Computer
Design, pp. 184-191, October 1999.

[18] E. Ahn, S-M. Yoo, and S-M S. Kang, “Effective algorithms for cache-level com-
pression”, In Proceedings of the 2001 conference on Great Lake Symposium on
VLSI, pp. 89-92, 2001.

140

[19] D. Chen,E. Peserico, and L. Rudolph, “A Dynamically partitionable compressed
cache”, In Proceedings of Singapore-MIT Alliance Symposium, January 2003.

[20] E. Hallnor and S. Reinhardt, “A compressed memory hierarchy using an indirect
index cache”, Technical Report CSE-TR-488-04, University of Michigan, 2004.

[21] J. Yang and R. Gupta, “Frequent value locality and its applications”, ACM Trans-
actions on Embedded Computing Systems, vol. 1, issue 1, pp. 79-105, November
2002.

[22] Y. Zhang, J. Yang and R. Gupta, “Frequent value locality and value centric data
cache design”, In Proceedings of 9th International conference on Architectural
Support for Programming Languages and Operating Systems, pp. 150-159,
November 2000.

[23] A. J. Smith, “Sequential program prefetching in memory hierarchies”, IEEE Com-
puter, vol. 11, issue 12, December 1978.

[24] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers”, In Proceedings of the 17th International
Symposium on Computer Architecture, pp. 364-373, May 1990.

[25] F. Dahlgren and P. Stenstrom, “Effectiveness of hardware-based stride and sequential
prefetching in shared memory multiprocessors”, In Proceedings of 1st IEEE Symposium
on High Performance Computer Architecture, pp.68-77, January 1995.

[26] F. Dahlgren and M. Dubois, “Sequential hardware prefetching in shared-memory
multiprocessors”, IEEE Transaction on Parallel and Distributed Systems, vol. 6,
issue 7, July 1995.

[27] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching in scalar
processors”, In Proceedings of 25th International Symposium on Microarchitec-
ture, pp. 102-110, 1992.

[28] A. Ki and A. E. Knowles, “Adaptive data prefetching using cache information”, In
Proceedings of 11th International Conference on Supercomputing, pp. 204-212,
1997.

[29] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham, “Effective
stream-based and execution-based data prefetching”, In Proceedings of 18th Inter-
national Conference on Supercomputing, pp. 1-11, 2004.

[30] D. Joseph and D. Grunwald, “Prefetching using Markov Predictors”, In Proceed-
ings of the 24th Annual International Symposium on Computer Architecture, 1997.

[31] T. Mowry and A. Gupta, “Tolerating latency through software-controlled prefetch-
ing in shared-memory multiprocessors”, Journal of Parallel and Distributed Com-
puting, June 1991.

[32] T. Alexander and G. Kedem, “Distributed prefetch buffer/cache design for high
performance memory systems”, In Proceedings of the 2nd International Symposium
on High Performance Computer Architecture, pp. 254-263, 1996.

[33] Z. Zhang, Z. Zhu, and X. Zhang, “Cache dram for ILP processor memory access
latency reduction”, IEEE Micro, vol. 21, issue 4, pp. 22-32, August 2001.

[34] I. Hur and C. Lin, “Memory prefetching using adaptive stream detection”, In Proceed-
ings of 39th International Symposium on Microarchitecture, pp. 397-408, December
2006.

141

[35] P. G. Emma, A. Hartstein, T. R. Puzak, and V. Srinivasan, “Exploring the limits of
prefetching”, IBM Journal of Research and Development, vol. 49, issue 1, pp. 127-144,
January 2005.

[36] W. A. Wong and J. L. Baer, “The Impact of timeliness for hardware-based prefetching
from main memory”, Technical Report UW-CSE-02-06-03, University of Washington,
February 2003.

[37] W. F. Lin, S. K. Reinhardt, and D. Burger, “Reducing DRAM latencies with an
integrated memory hierarchy design,” in HPCA, 2001.

[38] S. Srinath, O. Mutlu, H. Kim, Y. N. Patt, “Feedback directed prefetching: improv-
ing the performance and bandwidth-efficiency of hardware prefetchers, in HPCA,
2007.

[39] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving scheme
to reduce row-buffer conflicts and exploit data locality,” in MICRO 33: Proceed-
ings of the 33rd annual ACM/IEEE international symposium on Microarchitecture,
(New York, NY, USA), pp. 32–41, ACM Press, 2000.

[40] J. B. Carter, W. C. Hsieh, L. Stoller, M. R. Swanson, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, T. T. Kuramkote,
M. Parker, L. Schaelicke, and T. Tateyama, “Impulse: Building a smarter memory
controller,” in HPCA, 1999.

[41] Chengqiang Zhang, Sally A. Mckee, “Hardware-Only Stream Prefetching and
Dynamic Access Ordering”, In 14th Intl. Conference on Supercomputing, 2000.

[42] Binu K. Mathew, Sally A. Mckee, John B. Carter, Al Davis, “Design of a Parallel
Vector Access Unit for SDRAM Memory Systems”, In 6th International Sympo-
sium on High Performance Computer Architecture, 2000.

[43] Scott Rixner, William J. Dally, Ujval J. Kappasi et al., “A Bandwidth-Efficient
Architecture for Media Processing”, In 31st Intl. Symposium on Microarchitecture,
1998.

[44] Sally A. Mckee, William A. Wulf, James H. Aylor, Robert H. Klenke et al.,
“Dynamic Access Ordering for Streamed Computations”, IEEE Transactions on
Computers, vol. 49, no. 11, pp. 1255-1271, November 2000.

[45] Ibrahim Hur, Calvin Lin, “Adaptive History-Based Memory Schedulers”, In 37th
Intl. Symposium on Microarchitecture, 2004.

[46] Scott Rixner, William J. Dally, Ujval J. Kappasi, Peter Mattson, John D. Owens,
“Memory Access Scheduling”, In 27th Intl. Symposium on Computer Architecture,
2000.

[47] Scott Rixner, “Memory Controller Optimizations for Web Servers”, In 37th Intl.
Symposium on Microarchitecture, 2004.

[48] K.-B. Lee, T.-C. Lin, and C.-W. Jen, “An efficient quality-aware memory control-
ler for multimedia platform soc,” in IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY, vol. 15, 2005.

[49] K.-B. Lee and C.-W. Jen, “Design and verification for configurable memory con-
trollermemory interface socket soft ip,” in Journal of Chin. Institute of Electrical
Engineers, vol. 8, p. 309 323, 2001.

142

[50] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “High-performance drams in work-
station environments,” in IEEE Trans. Comput, vol. 50, (Washington, DC, USA),
pp. 1133–1153, IEEE Computer Society, 2001.

[51] T. Takizawa and M. Hirasawa, “An efficient memory arbitration algorithm for a
single chip mpeg2 av decoder,” in ICCE International Conference onConsumer
Electronics, 2001.

[52] D. T. Wang, Modern DRAM Memory Systems: Performance Analysis and a High
Performance, Power-Constrained DRAM-Scheduling Algorithm. PhD thesis, Uni-
versity of Maryland College Park, 2005.

[53] B. D. Jun Shao, “A burst scheduling access reordering mechanism,” in HPCA 07:
Proceedings of the 13th International Symposium on High-Performance Computer
Architecture, Feburary 2007.

[54] Z. Zhu and Z. Zhang, “A performance comparison of dram system optimizations
for smt processors,” in HPCA, 2005.

[55] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “High-performance drams in work-
station environments,” in IEEE Trans. Comput, vol. 50, (Washington, DC, USA),
pp. 1133–1153, IEEE Computer Society, 2001.

[56] Z. Zhu, Z. Zhang, and X. Zhang, “Fine-grain priority scheduling on multi-channel
memory systems,” in 8th International Symposium on High Performance Com-
puter Architecture, (HPCA-8), 2002.

[57] J. Shao and B. T. Davis, “The bit-reversal sdram address mapping,” in
SCOPES’05: Proceedings of the 9th International Workshop on Software and Com-
pilers for Embedded Systems, pp. 62–71, 2005.

[58] T. Mitra and T. cker Chiueh, “Dynamic 3d graphics workload characterization and
the architectural implications,” in International Symposium on Microarchitecture,
pp. 62–71, 1999.

[59] F. Harmsze, A. Timmer, and J. van Meerbergen, “Memory arbitration and cache
management in stream-based systems,” in Proceedings of Design, Automation and
Test in Europe Conference and Exhibition., 2000.

[60] F. A. B. Chitra Natarajan, Bruce Christenson, “A study of performance impact of
memory controller features in multi-processor server environment.,” in Workshop
on Memory performance issues, 2004.

[61] W. Weber, “Efficient Shared DRAM Subsystems for SOCs”, http://www.sonics-
inc.com/sonics/products/memmax/productinfo/docs/DRAM_Scheduler.pdf

[62] K.-B. Lee, T.-C. Lin, and C.-W. Jen, “An efficient quality-aware memory control-
ler for multimedia platform soc,” in IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY, vol. 15, 2005.

[63] K.-B. Lee and C.-W. Jen, “Design and verification for configurable memory con-
trollermemory interface socket soft ip,” in Journal of Chin. Institute of Electrical
Engineers, vol. 8, p. 309 323, 2001.

[64] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queuing memory sys-
tems,” in Proceedings of the 39th Annual International Symposium on Microarchi-
tecture (MICRO-39), December 2006.

143

[65] P. Vogt. Fully buffered dimm (fb-dimm) server memory architecture: Capac-
ity,performance, reliability, and longevity. Intel Developer Forum, Session
OSAS008., Feburary 2004.

[66] Xiaobo Fan, Carla S. Ellis, Alvin R. Lebeck, “Memory Controller Policies for
DRAM Power Management”, In Intl. Symposium on Low Power Electronics and
Design, 2001.

[67] Hai Huang, Padmanabhan Pillai, Kang G. Shin, “Design and Implementation of
Power-Aware Virtual Memory”, In USENIX Annual Technical Conference, 2003.

[68] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, Carla S. Ellis, “Power Aware Page
Allocation”, In 9th Intl. Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[69] Hai Huang, Kang G. Shin, Charles Lefurgy, Tom Keller, “Improving Energy Effi-
ciency by Making DRAM Less Randomly Accessed”, In Intl. Symposium on Low
Power Electronics and Design, 2005.

[70] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kis-
tler, Tom W. Keller, “Energy Management for Commercial Servers”, IEEE Com-
puter, vol. 36, no. 12, pp. 39-48, December 2003.

[71] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J.
Irwin, “Dram energy management using software and hardware directed power
mode control,” in 7th International Symposium on High Performance Computer
Architecture, 2001.

[72] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin, “Scheduler based dram energy management,” in DAC, 2002.

[73] V. Delaluz, M.T. Kandemir, I. Kolev, “Automatic data migration for reducing
energy consumption in multi-bank memory systems”, in Proceedings of the 39th
Design Automation Conference DAC’02, pp. 213–218, 2002.

[74] J-H Min, H. Cha, and V. P. Srini, “Dynamic power management of DRAM using
accessed physical addresses”, Microprocessors and Microsystems, vol. 31, issue 1,
February 2007.

[75] “Intel 975x express chipset.” http://www.intel.com/products/chipsets/975x/
index.htm, 2005.

[76] “AMD Unveils Forward-Looking Technology Innovation To Extend Memory
Footprint for Server Computing”, http://www.amd.com/us-en/Corporate/Virtual-
PressRoom/0,,51_104_543%7E118446,00.html

[77] R. C. Schumann, “Design of the 21174 memory controller for digital personal
workstations,” Digital Tech. J., vol. 9, no. 2, pp. 57–70, 1997.

[78] K. M. Weiss and K. A. House, “Digital personal workstations: the design of high-
performance, low-cost, alpha systems,” Digital Technical Journal, vol. 9, pp. 45–
56, 1997.

[79] F. Briggs, M. Cekleov, K. Creta, M. Khare, S. Kulick, A. Kumar, L. P. Looi,
C. Natarajan, S. Radhakrishnan, and L. Rankin, “Intel 870: A building block for
cost-effective, scalable servers,” IEEE Micro, vol. 22, pp. 36–47, 2002.

[80] S. Radhakrishnan and S. Chinthamani, “Intel 5000 series: Dual processor chipsets
for servers and workstations.” Intel Developer Forum, 2006.

144

[81] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner,
“Power5 system microarchitecture,” IBM Journal of Research and Development,
vol. 49, 2005.

[82] C. Keltcher, “The amd hammer processor core.” Hot Chips 14, August 2002.
[83] C. Keltcher, K. McGrath, A. Ahmed, and P. Conway., “The amd opteron processor

for multiprocessor servers.,” IEEE Micro, vol. 23, pp. 66–76, March-April 2003.
[84] A. Saulsbury, F. Pong, and A. Nowatzyk, “Missing the memory wall: the case for

processor/memory integration,” in ISCA ’96: Proceedings of the 23rd annual inter-
national symposium on Computer architecture, (New York, NY, USA), pp. 90–101,
ACM Press, 1996.

[85] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick, “A case for intelligent ram,” IEEE Micro, vol. 17, no. 2,
pp. 34–44, 1997.

[86] W. Bowman, N. Cardwell, C. Kozyrakis, C. Romer, and H. Wang, “Evaluation of
existing architectures in iram systems,” in Workshop on Mixing Logic and DRAM,
24th International Symposium on Computer Architecture, 1997.

[87] D. Patterson, K. Asanovic, A. Brown, J. G. Richard Fromm, B. Gribstad,
K. Keeton, C. Kozyrakis, D. Martin, S. Perissakis, R. Thomas, N. Treuhaft, and
K. Yelick, “Intelligent ram (iram): the industrial setting, applications, and architec-
tures,” in Intelligent RAM (IRAM): the Industrial Setting, Applications, and Archi-
tectures, October 1997.

[88] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy, D. Patterson,
T. Anderson, and K. Yelick, “The energy efficiency of iram architectures,” in The
24th Annual International Symposium on Computer Architecture, June 1997.

[89] C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope, D. Jones,
D. Patterson, and K. Yelick, “Vector iram: A media-oriented vector processor with
embedded dram,” in 12th Hot Chips Conference, August 2000.

[90] C. Kozyrakis, D. Judd, J. Gebis, S. Williams, D. Patterson, and K. Yelick, “Hard-
ware/compiler co-development for an embedded media processor,” Proceedings of
the IEEE, vol. 89, pp. 1694 – 1709, 2001.

[91] C. Kozyrakis and D. Patterson, “Overcoming the limitations of conventional vec-
tor processors,” in 30th Annual International Symposium on Computer Architec-
ture, 2003.

[92] D. Judd, K. Yelick, C. Kozyrakis, D. Martin, and D. Patterson, “Exploiting on-
chip memory bandwidth in the viram compiler,” in Second Workshop on Intelligent
Memory Systems, 2000.

[93] Y. Kang, M. W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and
J. Torrellas, “Flexram: Toward an advanced intelligent memory system,” in ICCD
’99: Proceedings of the 1999 IEEE International Conference on Computer Design,
(Washington, DC, USA), p. 192, IEEE Computer Society, 1999.

[94] J. Torrellas, L. Yang, and A.-T. Nguyen, “Toward a cost-effective dsm organiza-
tion that exploits processor-memory integration,” in Sixth International Symposium
on High-Performance Computer Architecture (HPCA), January 2000.

145

[95] B. Fraguela, P. Feautrier, J. Renau, D. Padua, and J. Torrellas, “Programming the
flexram parallel intelligent memory system,” in International Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP), June 2003.

[96] Y. Solihin, J. Lee, and J. Torrellas, “Adaptively mapping code in an intelligent
memory architecture,” in 2nd Workshop on Intelligent Memory Systems, November
2000.

[97] M. Oskin, F. T. Chong, and T. Sherwood, “Active pages: A model of computation
for intelligent memory.,” in International Symposium on Computer Architecture,
1998.

[98] M. Oskin, J. Hensley, D. Keen, F. T. Chong, M. Farrens, and A. Chopra, “Exploit-
ing ilp in page-based intelligent memory,” in Proceedings of the International Sym-
posium on Microarchitecture, November 1999.

[99] M. Oskin, F. T. Chong, and T. Sherwood, “Activeos: Virtualizing intelligent mem-
ory,” in International Conference on Computer Design (ICCD99), 1999.

[100] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh,
D. McCauley, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley,
S. Shankar, J. Shen, and C. Webb, “Die stacking (3d) microarchitecture,” in Inter-
national Symposium on Microarchitecture (MICRO), 2006.

[101] A. R. Alameldeen and D. A. Wood, “Variability in architectural simulations of
multi-threaded workloads”, in 9th HPCA, 2003.

[102] Alaa R. Alameldeen, Milo M.K. Martin, Carl J. Mauer, Kevin E. Moore, Min Xu,
Daniel J. Sorin, Mark D. Hill and David A. Wood, “Simulating a $2M Commercial
Server on a $2K PC”, IEEE Computer, February 2003

[103] Nuengwong Tuaycharoen, Disk Design-Space Exploration in Terms of System-
Level Performance, Power, and Energy Consumption. PhD thesis, University of
Maryland College Park, 2006.

[104] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich, “Flash
Vs. (Simulated) Flash: closing the simulation loop”, in ASPLOS 2000.

[105] R. Desikan, D. Burger, and S. W. Keckler, “Measuring experimental error in
microprocessor simulation”, in 28th ISCA 2001.

[106] V. Krishnan and J. Torellas, “A Direct execution framework for fast and accurate
simulation of superscalar processors”, in proceedings of International Parallel
Architecture and Compilation Techniques, 1998.

[107] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Lipasti, “Precise and accu-
rate processor simulation”, in proceedings of fifth workshop on computer architec-
ture evaluation using commercial workloads, pp. 13-22, 2002.

[108] M. Oskin, F. T. Chong, and M. Farrens, “HLS: Combining statistical and sym-
bolic simulation to guide microprocessor designs”, in 27th ISCA, 2000.

[109] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution analysis to
find periodic behavior and simulation points in applications”, in proceedings of
International Parallel Architecture and Compilation Techniques, 2001.

[110] R. E. Kessler, M. D. Hill, and D. A. Wood, “A comparison of trace-sampling
techniques for multimegabyte caches”, IEEE Transaction on Computers, vol. 43,
issue 6, pp. 664-675, 1994.

146

Chapter 3

[1] J. Moses, R. Illikkal, R. Iyer, R. Huggahalli, and D. Newell, “ASPEN: Towards effective
simulation of threads and engines in evolving platforms”, 12th IEEE International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunications
Systems (MASCOTS'04) , pp. 51-58, 2004.

[2] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution analysis to find
periodic behavior and simulation points in applications”, in proceedings of Interna-
tional Parallel Architecture and Compilation Techniques, 2001.

[3] B. Sprunt, “Pentium 4 Performance-Monitoring Features”, IEEE Micro, vol. 22, no. 4,
pp. 72-82, August 2002.

[4] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnection in multi-core architectures:
understanding mechanisms, overheads and scaling”, in 32nd ISCA, 2005.

[5] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Katie Baynes, Aamer Jaleel,
and Bruce Jacob, “DRAMsim: A memory-system simulator”, SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 100-107. September 2005.

[6] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood, “Multifacet's
General Execution-driven Multiprocessor Simulator (GEMS) Toolset”, Computer
Architecture News (CAN), September 2005.

[7] P. G. Emma, A. Hartstein, T. R. Puzak, and V. Srinivasan, “Exploring the limits of
prefetching”, IBM Journal of Research and Development, vol. 49, issue 1, pp. 127-144,
January 2005.

[8] L. Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni, and D. Newell, “Exploring Large-
Scale CMP Architectures using Manysim”, IEEE Micro, vol. 27, issue 4, pp. 21-33,
August 2004.

[9] L. Kleinrock, “Queuing Systems volume 1: Theory”, John Wiley and Sons publishers.
[10] “Intel 975x express chipset.” http://www.intel.com/products/chipsets/975x/

index.htm, 2005.
[11] “TPC-C Design Document”, www.tpc.org/tpcc/
[12] Sap America Inc., “SAP Standard Benchmarks”, http://www.sap.com/solutions/bench-

mark/index.epx
[13] SPECjbb2005 Java Business Benchmark, available online at http://www.spec.org/

jbb2005/
[14] SPECweb2005 webserverBenchmark, available online at http://www.spec.org/

web2005/
[15] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving scheme

to reduce row-buffer conflicts and exploit data locality,” in MICRO 33: Proceed-
ings of the 33rd annual ACM/IEEE international symposium on Microarchitecture,
(New York, NY, USA), pp. 32–41, ACM Press, 2000.

[16] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely Jr., and Joel Emer,
“ Adaptive Insertion Policies for High-Performance Caching”, in ISCA 2007.

[17] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers”, In Proceedings of the 17th International
Symposium on Computer Architecture, pp. 364-373, May 1990.

147

[18] F. Dahlgren and P. Stenstrom, “Effectiveness of hardware-based stride and sequential
prefetching in shared memory multiprocessors”, In Proceedings of 1st IEEE Symposium
on High Performance Computer Architecture, pp.68-77, January 1995.

Chapter 4

[1] I. Hur and C. Lin, “Memory prefetching using adaptive stream detection”, In Proceed-
ings of 39th International Symposium on Microarchitecture, pp. 397-408, December
2006.

[2] L. Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni, and D. Newell, “Exploring Large-
Scale CMP Architectures using Manysim”, IEEE Micro, vol. 27, issue 4, pp. 21-33,
August 2004.

[3] T. Alexander and G. Kedem, “Distributed prefetch buffer/cache design for high per-
formance memory systems”, In Proceedings of the 2nd International Symposium on
High Performance Computer Architecture, pp. 254-263, 1996.

Chapter 5

[1] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers”, In Proceedings of the 17th International
Symposium on Computer Architecture, pp. 364-373, May 1990.

[2] L. Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni, and D. Newell, “Exploring Large-
Scale CMP Architectures using Manysim”, IEEE Micro, vol. 27, issue 4, pp. 21-33,
August 2004.

[3] I. Hur and C. Lin, “Memory prefetching using adaptive stream detection”, In Proceed-
ings of 39th International Symposium on Microarchitecture, pp. 397-408, December
2006.

[4] W. F. Lin, S. K. Reinhardt, and D. Burger, “Reducing DRAM latencies with an inte-
grated memory hierarchy design,” in HPCA, 2001.

