
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

MASTER’S THESIS

Error Control for Satellite and Hybrid Communication
Networks

by D.E. Friedman
Advisor: A. Ephremides

CSHCN M.S. 95-1
(ISR M.S. 95-10)

Abstract

Title of Thesis: Error Control for Satellite and Hybrid

Communication Networks

Name of degree candidate: Daniel E. Friedman

Degree and year: Master of Science, 1995

Thesis directed by: Professor Anthony Ephremides

Department of Electrical Engineering

Both forward-error-correction (FEC) and automatic-repeat-request (ARQ)

error control schemes are used for assuring the accuracy of information trans-

ferred through imperfect channels. In satellite systems, in which propagation

times are typically large, ARQ error control can result in poor throughput to

the destination. Also, an ARQ protocol for satellite multicast communication

must be carefully crafted to assure good throughput to all destinations regardless

of which stations require retransmissions.

Supplementing a satellite link with a parallel terrestrial link may allow mit-

igating some problems of using ARQ in satellite communication systems. ARQ

acknowledgments, and possibly retransmissions as well, can be sent terrestrially

in such a hybrid network, and so avoid the large satellite propagation delay.

The satellite transmission capability of a receiving station which communicates

with the transmitter exclusively by terrestrial means can be eliminated and the

system cost correspondingly reduced. Further, multicasting with a hybrid net-

work may allow retransmissions to be conducted without interrupting the
ow

of new information to all destinations, so throughput need not drastically su�er

if retransmissions are required.

The degree to which throughput can be improved by adopting a hybrid net-

work is not clear. A hybrid network's e�ect on the �delity of information de-

livered to the destination(s) is also not clear. An experiment is presented for

investigating such error control issues of hybrid networking.

Error Control for Satellite and Hybrid

Communication Networks

by

Daniel E. Friedman

Thesis submitted to the Faculty of the Graduate School
of The University of Maryland in partial ful�llment

of the requirements for the degree of
Master of Science

1995

Advisory Committee:

Professor Anthony Ephremides, Chairman/Advisor
Professor John Baras
Professor Evaggelos Geraniotis

c
 Copyright by

Daniel E. Friedman

1995

Acknowledgments

I wish to express my thanks to some of the many individuals who made

this work possible. Foremost among these is my advisor, Professor Anthony

Ephremides, who has provided me excellent opportunities for learning and pa-

tiently given me invaluable guidance.

I am also grateful to Professors John Baras and Evaggelos Geraniotis for

kindly consenting to join the defense committee and review this thesis.

Without the help of the Computing Support Sta� of the Institute for Systems

Research, in particular Haisong Cai, Amarendranath Vadlamudi and Irving Hsu,

it would have been impossible to conduct the experiment which is described in

this thesis. Their many e�orts, including recon�guring Sun workstations, making

sense of incomplete software documentation, �nding disk space to store hundreds

of megabytes of data and answering numerous questions are greatly appreciated.

Yannis Konstantopoulos, now of MCI Communications Corporation (Reston,

Virginia), assisted with the UNIX networking aspects of the software used for

ii

the experimentation.

The NASA Advanced Communication Technology Satellite (ACTS) Exper-

iments O�ce (Lewis Research Center, Cleveland, Ohio) granted the proposal

for experiments with ACTS, and was kind enough to loan us an ACTS termi-

nal. I would like to particularly thank our experiment liaison to NASA, Barry

Fairbanks of Analex Corporation, and Mike Jarrell and Kevin McPherson of the

ACTS System Engineering O�ce, who were especially helpful. Barry helped

arrange for the loan of the satellite terminal and continually campaigned on our

behalf for more satellite time, while Mike and Kevin helped keep our terminal

in working order.

Marjorie Weibul of the National Telecommunication and Information Admin-

istration (NTIA) and Dr. Stanley Bush, Fan Huang, Gil Weiss, Neill Cameron,

Wenjin Yang and David Bailey of the University of Colorado at Boulder made it

possible to use a second satellite terminal in this work, and responded with good

nature and sincere e�ort to our many requests for checking and recon�guring

equipment to suit experimentation.

This work was supported by the Graduate School of the University of Mary-

land at College Park through a graduate fellowship, and by the Center for Satel-

lite and Hybrid Communication Networks and the Institute for Systems Research

through a research assistantship.

Finally, I wish to thank my family and friends for their support and encour-

agement.

iii

Table of Contents

Section Page

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Error Control : 1

1.2 Error Control for Satellite Communication : : : : : : : : : : : : : 3

1.3 Hybrid Networks : 5

1.4 An Experiment in Error Control for Satellite and Hybrid Networks 9

1.5 Overview of the Thesis : 11

2 Experiment Description 12

2.1 Motivation : 12

2.2 Experiment Hardware : 13

2.2.1 Advanced Communications Technology Satellite (ACTS) : 15

2.2.2 ACTS T1 Very-Small Aperture Terminal (VSAT) : : : : : 15

2.2.3 Frame Relay Access Switch (FRACS) : : : : : : : : : : : : 16

iv

2.2.4 Apparatus in College Park, Maryland : : : : : : : : : : : : 17

2.2.5 Apparatus in Boulder, Colorado : : : : : : : : : : : : : : : 17

2.3 Experiment Design : 18

2.3.1 Arti�cial Noise : 19

2.3.2 FEC Tests : 20

2.3.3 Point-to Point ARQ Tests : : : : : : : : : : : : : : : : : : 24

2.3.4 Multicast ARQ Tests : 28

2.4 Software Overview and Implementation Details : : : : : : : : : : 34

2.4.1 FEC Software : 34

2.4.2 ARQ Software : 35

2.4.3 Additional Details : 38

3 Experiment Results and Discussion 40

3.1 Di�culties Experienced : 40

3.2 FEC Results : 41

3.3 ARQ : 41

4 Conclusion 46

A Software Listings 49

A.1 Introduction : 49

A.2 Software for FEC Tests : 49

A.2.1 Encoders and Decoders : 49

A.2.2 FEC Transmitter : 50

A.2.3 FEC Receiver : 52

A.3 Software for ARQ Tests : 54

A.3.1 ARQ Transmitter : 54

v

A.3.2 ARQ Receiver : 65

A.3.3 Delayer : 72

vi

List of Tables

Number Page

2.1 FEC transmission blocks. : 24

2.2 Combinations of networks and arti�cial noise bit error rates tested

with point-to-point GBN and SR ARQ protocols. : : : : : : : : : 27

2.3 Combinations of networks and arti�cial noise bit error rates tested

with point-to-multipoint GBN and SR ARQ protocols. : : : : : : 33

3.1 Transfer times (in seconds) for FEC tests. : : : : : : : : : : : : : 42

3.2 Residual bit error rates for FEC tests. : : : : : : : : : : : : : : : 42

vii

List of Figures

Number Page

1.1 A hybrid network. : 6

2.1 Experiment infrastructure. : 14

2.2 FEC testing concept. : 21

2.3 Point-to-Point ARQ testing concept. : : : : : : : : : : : : : : : : 25

2.4 Hybrid network for point-to-two point ARQ tests. : : : : : : : : : 29

viii

Error Control for Satellite and Hybrid
Communication Networks

Daniel E. Friedman

October 29, 1996

This comment page is not part of the dissertation.

Typeset by LATEX using the dissertation class by Pablo A. Straub, University of

Maryland.

0

Chapter 1

Introduction

1.1 Error Control

A communication system is used for transferring information. The communi-

cation channel is typically imperfect and may distort information, causing the

received data to be an erroneous version of the information which was to have

been transmitted. The errors in the received information are undesirable and so

error-control techniques must be adopted to transfer information accurately.

The two broad types of error-control techniques are forward-error-correction

(FEC) and automatic-repeat-request (ARQ). In FEC, k information symbols are

mapped to a larger number of symbols, n, which are sent through the channel.

The mapping|the FEC code|is devised so that there is some redundancy in

the symbols and so, upon receipt, the redundancy can be exploited to detect

and correct errors which may have developed in transport. Thus error control is

achieved by sending more symbols than would have been sent if no error control

were needed. In general, codes with lower code rates (n=k) or complex codes can

protect against more errors. Hence, higher �delity transmission can be achieved

1

at the expense of sending more symbols in the channel and/or complexity.

In ARQ-based error control, the information is segmented into packets, to

which are attached check symbols calculated from the packet in a manner similar

to the mapping in FEC. These symbols are used [generally] only to detect errors,

and so n is usually only slightly greater than k. If an error is detected in a

received packet, the receiver sends to the transmitter a request for the packet to

be retransmitted: a negative acknowledgment. If no error is detected, a positive

acknowledgment of the received packet is sent instead. The code used for error

detection is usually a cyclic redundancy check (CRC), and such codes provide

excellent error detection capabilities while admitting simple implementations.

In some cases, FEC may be preferred for error control, while ARQ may be

better in others. If the channel is very noisy, information sent through it will

be severely corrupted. If ARQ is used in this case, many retransmissions will

be required. A retransmission sent through the same channel as the original

transmission will also likely be corrupted. Hence, if channel conditions are poor,

information delivery may be slow or non-existent if ARQ error control is em-

ployed. A FEC code which can correct many errors would be a better error

control choice in this case. Such a code would would have many check sym-

bols although such overhead may be tolerable if high-�delity communication is

required.

If the channel is fairly noise-free, ARQ may be a better choice. Usually, less

overhead is required for to provide excellent error detection capability than to

achieve a comparable degree of error correction. Hence, less overhead is required

for high-�delity communication if ARQ is employed than if FEC is used. With

less overhead, information can be delivered more quickly by ARQ than FEC if

2

the channel symbol rate is �xed and errors are unlikely. Of course, if no channel

is available for feedback from the receiver to the transmitter, ARQ is not a

feasible error control option, and FEC must be employed.

It is clear, then, that selecting an error-control scheme entails considering the

interrelationships of several factors which include required �delity of information

delivered, amount of acceptable overhead, error characteristics of the channel,

implementation cost and the availability of a feedback channel.

1.2 Error Control for Satellite Communication

Communication via satellite has historically been conducted predominantly with

satellites in geostationary orbits (at an altitude of 22,300 miles/35,800 kilome-

ters [1]). A characteristic of communication with such satellites is a large propa-

gation delay, more than two-tenths of a second, for transmission via the satellite

from one earth station to another. If ARQ is used for error control, the ARQ

protocol must be able to provide e�cient communication despite this great delay.

In the stop-and-wait (SW) ARQ protocol, for example, the transmitter waits for

an acknowledgment after sending each packet. With this protocol, new pack-

ets can be sent at intervals no smaller than about four-tenths of a second (the

propagation times of a packet and an acknowledgment) and new information

is transferred to the receiver during less than half the time the protocol oper-

ates. Thus the ine�ciency of SW ARQ is magni�ed in satellite operation. This

protocol is relatively simple to implement, however.

A more e�cient (and more complex) ARQ protocol is the go-back-N (GBN)

protocol. With GBN, the transmitter can send new packets continuously if no

3

retransmissions are required (and the positive acknowledgments from the receiver

arrive at the transmitter). If an error in a packet is detected by the receiver, the

packet is rejected, a negative acknowledgment is sent to the transmitter, and no

other packets are accepted until the one requested is received. While the negative

acknowledgment travels to from the receiver to the transmitter, new packets

arrive at the receiver but are rejected since none of them is the packet the receiver

will now accept. When the transmitter receives the negative acknowledgment,

it \goes back" to send the requested packet and continues transmission with

packets immediately following the one retransmitted. The number of packets

which are sent again is approximately N , so each retransmission request from the

receiver causes the transmitter to send approximately N packets another time.

The number N , the \window size," is a parameter of the protocol operation

and is related to the propagation times for a packet and an acknowledgment.

If these propagation times are great, N may be large as well. Consequently,

many packets must be sent again for a retransmission request generated by GBN

operation in a satellite network. However, if the channel is fairly noise-free, then

such retransmissions will be rare and the transmitter will be able to send new

information packets to the receiver continuously. Thus, GBN is a more e�cient

ARQ protocol than SW especially under good channel conditions.

Yet, each GBN retransmission requires retransmitting N packets. It would

be more e�cient if the negative acknowledgment were to precisely specify the

packets the receiver needed to have sent again, and if only these speci�ed pack-

ets would have to be retransmitted. This improvement is incorporated in the

selective-repeat (SR) ARQ protocol. With SR ARQ, if an invalid packet ar-

rives at the receiver, valid packets received subsequently can be accepted, and

4

need not be discarded as in GBN. This ability to accept packets out-of-order,

combined with the feature of retransmitting only speci�c packets, makes SR the

most e�cient of the three ARQ protocols discussed here. A SR ARQ implemen-

tation is correspondingly the most complex, and requires bu�er space to allow

for re-sequencing of packets into their correct order. With the great propaga-

tion delays of satellite communication, many packets may arrive at the receiver

between the time a retransmission is requested and the time the retransmission

arrives, so the bu�ering requirements may be substantial. This discussion shows

that if ARQ is used for error control in satellite communication, a sophisticated

protocol is required for reasonable throughput to be achieved. Such a protocol

will be complex and require signi�cant amounts of memory.

However, while both the complexity and memory requirements add costs

to the system, the cost for the required feedback satellite channel may be far

greater. In order to use the satellite for feedback, the ground terminal of the

receiving station must be able to transmit on the satellite channel. Such satel-

lite transmission capability can compose a substantial portion of the terminal's

cost. This large cost to implement ARQ for satellite communication, combined

with the great propagation delay which magni�es ARQ ine�ciencies, reduce the

attraction of ARQ for satellite communication error control. Accordingly, FEC

methods are more commonly used for error control in satellite communication.

1.3 Hybrid Networks

If the propagation delay and the cost of a feedback channel could both be re-

duced, perhaps ARQ would be a more attractive error control scheme for satellite

5

satellite link

terrestrial link

A B

Figure 1.1: A hybrid network.

communication. This motivates supplementing the satellite communication link

with a parallel terrestrial link, such as a modem connection through the public

telephone network, as depicted in Figure 1.1. Such a network of parallel satellite

and terrestrial links is termed in this work a hybrid network .

Supplementing a satellite link with a parallel terrestrial link o�ers additional

possibilities for error control, particularly ARQ. A retransmission request can be

sent terrestrially and so avoid most of the propagation delay experienced with

satellite transport. A terrestrially-carried retransmission request will arrive at

the transmitter sooner than one sent via satellite, so the transmitter can begin

retransmission sooner. Thus the receiver need not wait as long for its desired

retransmission to arrive. Thus suggests it may be possible to achieve a higher net

rate of information transfer with a hybrid network. It is possible the memory

6

requirements for ARQ can be relaxed as well in a hybrid network. Further

improvement might be attainable by sending retransmitted packets terrestrially

as well. The degree of throughput improvement will be discussed below in 1.4.

An additional bene�t of a hybrid network is one of cost reduction. Suppose A

and B are stations in a hybrid network, and A sends to B a body of information

through the satellite using ARQ error control. Station B transmits only positive

and negative acknowledgments, which can be carried terrestrially instead of via

satellite. If B transmits only on the terrestrial link, it does not use its capability

to transmit on the satellite link. Hence the satellite transmission capability of

station B can be eliminated. As satellite transmission capability composes a

substantial portion of a satellite terminal's cost, a signi�cant cost reduction can

be achieved by adopting a hybrid network architecture.

A hybrid network concept may also be used to supplement a terrestrial link.

For example, many people access the Internet and other computer networks

through modems and the public telephone system. Commonly, a user will re-

quest much more information from the network than he will send to/through

it. The speed of the user's modem connection may be the principal constraint

upon the rate at which requested information can be downloaded. Even with

the fastest modems available, downloading a �le, image, etc. from the network

may require several minutes. Now, if a relatively high-rate satellite link were

to be used for the link from the network to the user, download times could

be greatly reduced. To achieve such improvement, the user would require a

receive-only satellite terminal, which can be purchased for less than $1000. So,

the user can obtain at reasonable cost a means for retrieving information from

a network at speeds much greater than attainable through modems. Hughes

7

Network Systems has developed the hybrid network concept for this purpose

into its recently-announced DirecPC product.1 This is an example of the great

commercial potential of hybrid networks, driven by the availability of low-cost

receive-only satellite terminals.

The di�erence in rates of the satellite and terrestrial links of a hybrid network

poses a restriction on the sort of communication which can be supported by this

type of network. Commonly, there is much information to send in one direction

of a communication, but much less to send in the opposite direction. Examples

of such bandwidth-asymmetric communication are �le transfer and multimedia

database lookup. In such communication, one station requests a large amount

of information from another, and the requested information is then sent to the

�rst station. A hybrid network can be used for this type of communication: the

request can be sent terrestrially and the bulk information can be returned via

satellite. So, while the hybrid network is well-suited for bandwidth-asymmetric

communication and perhaps not appropriate if the bandwidth requirements are

symmetric, much communication falls into the former category, making the hy-

brid network a good architecture for many communication needs.

While the discussion to this point has been about point point-to-point (uni-

cast) communication, a satellite is an excellent facility for point-to-multipoint

(multicast) communication. Accordingly, the hybrid architecture ought be con-

sidered for multicasting as well as for unicasting. The general problem with

using ARQ error control for multicast communication is that the need of one

receiver for a retransmission may cause cause the throughput for all receivers

to be reduced. More precisely, a retransmitted packet sent over the multicast

1DirecPC is a trademark of Hughes Network Systems.

8

channel interrupts the
ow of new packets to all stations and does not bene�t

those receivers which do not require the retransmission. However, if there is a

terrestrial link between each receiver and the transmitter, retransmitted packets

can be sent terrestrially only to the stations requiring them, while the trans-

mitter can continue sending new packets over the satellite multicast link. With

such a multicast hybrid network, if only some stations require retransmissions,

the throughput to all stations need not su�er so drastically as in the case of

using satellite-only network. A challenge here is to devise the ARQ protocol so

that such bene�ts can be achieved.

1.4 An Experiment in Error Control for Satel-

lite and Hybrid Networks

It has been suggested above that throughput to receiver(s) in both unicast and

multicast satellite networks could possibly be improved by adopting a hybrid

network. The degree of this improvement will depend on the ARQ protocol as

well as on the size of a packet, the transmission rates through the satellite and

terrestrial links and the propagation delays of these links. For example, while the

terrestrial link has smaller propagation delay than the satellite link, the former

has a lower rate than the latter, so the terrestrial transmission time of, say, an

ARQ acknowledgment, may o�set the gain of lesser propagation delay. Hence,

it is possible a hybrid network may not provide any throughput improvement

for some combinations of network and protocol parameters. Conversely, given

the propagation times and transmission rates of both links, there is a challenge

to �nd the optimal combination of window size, ARQ timer period and ARQ

9

protocol.

A terrestrial link typically has di�erent error characteristics than a satellite

link, so an ARQ protocol may behave di�erently in a hybrid network than in a

satellite-only network. Thus the hybrid network presents both additional pos-

sibilities and problems for error control. The precise di�erences of satellite and

hybrid networks, including e�ects on throughput and error control, as well as

best protocols to use with a hybrid network, are not immediately seen.

An experiment, discussed in the next two chapters, was conceived and devel-

oped by the Center for Satellite and Hybrid Communication Networks (CSHCN)

at the University of Maryland to investigate such error control issues of hybrid

networking. This experiment was one of a group of advanced networking ex-

periments proposed by the CSHCN in 1992. The experiments were originally

motivated by the availability of low-cost receive-only satellite terminals and the

commercial potential of hybrid networks, but their scope was later expanded to

include other advanced networking concepts. Three experiments were ultimately

devised:

1. An examination of dynamic allocation of satellite bandwidth in

response to variations in amount of tra�c to be sent through

the satellite.

2. Investigation of error-control schemes for use in a hybrid net-

work, with particular attention given to multicasting.

3. Remote multimedia database access via a hybrid network and

performance comparison of networking protocols in local area

network (LAN) interconnection.

10

1.5 Overview of the Thesis

The second of the three experiments is discussed in the next two chapters of this

thesis. The experiment was developed between May 1993 and August 1995, but

was not completed in time for all results to be included in this thesis. Chapter 2

describes the design and implementation of experiment, and Chapter 3 presents

the available results and discusses the experiment further. Finally, Chapter 4

presents conclusions and ideas for further work. Listings of experiment software

are provided in a following appendix.

11

Chapter 2

Experiment Description

2.1 Motivation

The terrestrial link of a hybrid network can be used as a path for feedback from

the receiver to the transmitter. This presents additional possibilities for error

control, particularly ARQ, as well as additional problems, due to di�ering char-

acteristics of satellite and terrestrial links. Also, since communication with a

terrestrial link does not incur the great propagation delay of satellite transport,

it has been speculated that throughput in a satellite network could perhaps be

improved with a hybrid network. The e�ects on error control are not clear, how-

ever, as described in the previous chapter. Hence an experiment was proposed

to investigate ARQ schemes in hybrid networks. Since a satellite is an excellent

medium for point-to-multipoint communication, both point-to-point (unicast)

and point-to-multipoint (multicast) communication was considered.

To gauge the improvement o�ered by a hybrid architecture, an investigation

and comparison of error control techniques in a hybrid network should include

examining error control techniques used in a satellite-only network. In particular,

12

FEC is commonly used for satellite communication, so FEC error control schemes

should be included in the comparison. Also, the relative throughput and �delity

of ARQ and FEC schemes depend on many factors, including the incidence and

nature (bursty, random, etc.) of channel errors, propagation times and channel

rates. For such reasons, the experiment also considered FEC error control.

Accordingly, the experiment may be outlined as follows:

1. Testing of FEC schemes in a satellite-only network.

2. Testing of ARQ schemes for point-to-point communication in

satellite-only and hybrid networks.

3. Testing of ARQ schemes for point-to-multipoint communication

in satellite-only and hybrid networks.

For all tests, the measures of chief interest were the time required to transfer a

prescribed amount of information and the bit error rate (BER) of that informa-

tion after receipt (and decoding, if applicable). The experiment was designed to

allow comparison of these results not only within each of the three parts, but

also between parts 1 and 2 and parts 2 and 3. Such comparisons are discussed

in Chapter 3.

The experiment hardware will be presented next, followed by the experiment

design.

2.2 Experiment Hardware

The experiment was conducted with a satellite and two earth stations, one at

the University of Maryland at College Park (UMCP) and the other in Boulder,

Colorado. This infrastructure is diagrammed in Figure 2.1. Communication

13

ACTS

T1 VSAT T1 VSAT

FRACS
control

data
control

data
data

control

data

FRACS

Internet

control

data

optical link

modem link

Public Switched Telephone Network

University of Maryland at
College Park

University of Colorado
at Boulder

E
thernet

E
thernet

National
Telecommunication

and Information
Administration

14.4 kb/s 14.4 kb/s

beep

morse perigee2

apogee

Figure 2.1: Experiment infrastructure.

14

between these stations was conducted with Sun computers running both com-

mercial and specially-developed software (described in 2.3).

2.2.1 Advanced Communications Technology Satellite

(ACTS)

The satellite used in this experiment was NASA's Advanced Communications

Technology Satellite (ACTS), which was launched in September 1993. The tech-

nological innovations incorporated in this satellite include operation at Ka-band

(30 GHz uplink/20 GHz downlink), hopping spot beams, on-board processing,

and signal regeneration through demodulation/remodulation. Each of the fea-

tures just listed allows the use of terminals with very small antennas. In ACTS's

baseband processor (BBP) mode, which is the mode used for this experiment,

FEC can be applied as needed to combat fading due to precipitation. The satel-

lite also has a microwave switch matrix (MSM) mode, which can support very

high rate satellite-switched TDMA operation.

ACTS is controlled from a master control station located at the NASA Lewis

Research Center in Cleveland, Ohio [2].

2.2.2 ACTS T1 Very-Small Aperture Terminal (VSAT)

The most common way of using ACTS's BBP mode is with a T1 very-small

aperture terminal (VSAT). The name \T1 VSAT" is somewhat inaccurate, for

this terminal actually supports a maximum of 28 64 kb/s channels. This terminal

supports both voice calls, carried at a rate of 64 kb/s, and data calls, at multiples

of 64 kb/s.

15

Physically, the T1 VSAT comprises an outdoor dish antenna and associated

electronics, a rack of indoor electronics and connecting cabling. The antenna

diameter is usually either 1.2 or 2.4 meters.

If suitably con�gured, the T1 VSAT can accept commands from an external

computer for making and breaking calls through ACTS [3, 4].

2.2.3 Frame Relay Access Switch (FRACS)

An example of such an external processor is the Frame Relay Access Switch

(FRACS) used in the CSHCN ACTS experiments. The FRACS is a Motorola

68040-based unit custom-developed for the CSHCN by COMSAT Laboratories

(Clarksburg, Maryland). In addition to controlling the VSAT, the FRACS served

as a frame relay interface to the ACTS system. While frame relay was not

integral to this experiment, this protocol was examined in a separate CSHCN

experiment (Experiment 3). Further, the FRACS can be used for dynamically

allocating bandwidth to suit tra�c requirements, a capability utilized in yet

another CSHCN experiment (Experiment 1) [5].

In this experiment, the FRACS was used solely as a tra�c interface to the

VSAT, and for making/breaking calls. Tra�c and control information were

carried between the VSAT and the FRACS over T1 and 9600 b/s RS-232 con-

nections, respectively. The FRACS provides commands for reporting packets

sent and received via its T1 interface and via ACTS, for changing the allocated

satellite bandwidth, and for con�guring interfaces, frame relay virtual circuits,

and the bandwidth allocation algorithm. For this experiment, the bandwidth

allocation algorithm was disabled and all ACTS circuits were established man-

ually.

16

2.2.4 Apparatus in College Park, Maryland

As mentioned above, one of the earth stations used in this experiment was located

in College Park, Maryland. A T1 VSAT, kindly loaned by NASA for CSHCN

experimentation on ACTS, was installed at the University of Maryland in July

1994. This VSAT had an antenna 1.2 meters in diameter.

A FRACS was used as an interface unit between the VSAT and two Sun

workstations which ran experiment software. Each of these workstations, named

apogee and perigee2, was connected to the FRACS through a Sun High-speed

Serial Interface (HSI). This interface a�orded a tra�c data connection, of rate

up to 1.536 Mb/s (T1), between each workstation and the FRACS [6]. Sun-

Link Frame Relay software was used on the workstations for this connection.

Additionally, the FRACS was controlled and monitored through a 4800 b/s RS-

232 serial connection to perigee2. (This connection was made to the FRACS's

\console" port.)

The two computers were connected to an Ethernet LAN, and so to the In-

ternet. Apogee was also linked to a peer computer in Boulder via a dialed-up

14.4 kb/s modem connection through the public switched telephone network

(PSTN).

The VSAT indoor equipment, FRACS and workstations were located in the

Systems Integration Laboratory (SIL) of the Institute for Systems Research at

the University of Maryland.

2.2.5 Apparatus in Boulder, Colorado

The hardware installation in Boulder, Colorado was similar to that in College

Park, Maryland. Again, two computers, named beep and morse, were used.

17

Of these two, only beep was equipped with a Sun High-speed Serial Interface,

and so was the only computer in Boulder which could transmit data through a

FRACS. Hence, beep was the only computer in Boulder which operated exper-

iment software. As with apogee and perigee2 in College Park, beep operated

SunLink Frame Relay software during this experiment. The second computer

in Boulder, morse, was used exclusively for controlling the Colorado FRACS

(primarily making and breaking calls).

As in College Park, both of the computers in Boulder were connected to the

Internet through an Ethernet LAN. A 14.4 kb/s modem was attached to beep

for communication with apogee through the PSTN.

A signi�cant di�erence between the hardware arrangements in Boulder and

College Park was that the VSAT in Boulder was not located with the experiment

computers. Rather, the Boulder VSAT was installed at the National Telecommu-

nication and Information Administration (NTIA). (This VSAT had a 2.4 meter

diameter antenna.) The balance of the Boulder apparatus was located in the

Telecommunications Laboratory of the University of Colorado. A two-way in-

frared beam through air|an \optical" link|was used for conveying tra�c data

between the VSAT and the experiment computers, while a 4800 b/s modem link

carried control information between the VSAT and the FRACS. Equipment at

the University of Colorado was controlled from College Park via the Internet.

2.3 Experiment Design

Everything between the transmitting software and the receiving software|

including the FRACSes, VSATs, and ACTS|was regarded as the \satellite

18

channel" in this work. This channel was used with a rate of 128 kb/s con-

sistently through the experiment. This rate was chosen to avoid overloading

the 14.4 kb/s modem connection used in the hybrid network ARQ tests, and to

avoid overwhelming the experiment software. Note that the rate in the physical

ACTS channel was greater than 128 kb/s due to overhead added by frame relay

software, the FRACS and other sources (as will be discussed below).

2.3.1 Arti�cial Noise

It had been originally intended to conduct tests using a satellite link and so

letting the transferred data su�er the noise phenomena of this link. However, it

became clear in developing the experiment that the errors accrued by the tra�c

during satellite transport could not be directly observed. The reason for this is

that every frame sent through the FRACS has a cyclic redundancy check (CRC)

protecting it [5]. Thus, if a frame develops an error in satellite transport, the

frame will fail the CRC check in the destination FRACS and so will be discarded.

Furthermore, it was learned from other ACTS experimenters that the ACTS

satellite link exhibits very low BER when not compromised by severe weather.

Experience with the T1 VSAT at UMCP corroborates this �nding. Thus, not

only does the FRACS prevent observing naturally-produced errors, such errors

were infrequent.

Hence, in order to study error control schemes, it was necessary to inject

arti�cially-produced noise, in the form of bit inversions, into received data.

Upon resolving to use such arti�cial noise e�ects, a model to characterize the

noise e�ects was required. A reasonable choice was a more severe version of the

noise experienced with the ACTS channel, when such noise appears. Now it had

19

been originally expected that the errors experienced with the ACTS satellite

link would be primarily burst errors, particularly due to disturbances of the

ACTS Ka-band channel by water in the atmosphere. The results of another

ACTS experimenter [7] helped in this case, too: these results indicate that a

binary symmetric channel (BSC), not a burst channel, best characterizes the

development of errors in the ACTS channel. Such a model was used in the

experiment software for corrupting received data.

These noise e�ects were generated with bit error rates of 10�5, 3:16� 10�5,

10�4, 3:16�10�4, 10�3, and 3:16�10�3. A control case of zero arti�cial noise was

included as well. To make meaningful statistical inferences from the experiment

data, it was decided to send at least ten million information bits from one station

to another when operating the noise e�ects at BER=10�5 (the minimum selected

non-zero BER setting). For purposes of consistency and easy comparison, at least

ten million information bits were sent in all scenarios of the experiment.

2.3.2 FEC Tests

The FEC testing conducted in this experiment is conceptually depicted in Fig-

ure 2.2.

For this testing, a short plain text message was encoded, for each of the FEC

coding options described below. Several codewords were concatenated to form a

block of encoded information (stored as a �le) about 125 bytes long. This length

was chosen because such a length is common for packets in ARQ communication

via satellite, and was adopted for ARQ testing in this experiment. To allow

straightforward comparisons, information was communicated in blocks about

125 bytes long throughout the experiment.

20

continuous
source

encoder
(offline)

data

artificial
noise

storage

decoder
(offline)

comparison
(offline)

Figure 2.2: FEC testing concept.

This block of encoded information was then transmitted via satellite at

128 kb/s from apogee to perigee2. The block was sent repeatedly so that

at least ten million information bits were transfered. By sending a brief message

repeatedly instead of sending a single huge message, far less computer storage

space was required at the transmitting station. Thus the actual information

transfered comprised thousands of copies of the encoded short text message.

The time to transfer the many blocks|the period starting with receipt by the

receiver of the �rst block and ending with receipt of the last block|was recorded.

Upon arrival at the receiving station, received blocks were corrupted with

21

the arti�cial noise described earlier, and then stored. Later, the blocks were

decoded, and the decoded information|multiple copies of the short message|

was compared bit-by-bit to the original message. Erroneous bits in the received

information were counted to obtain a residual BER.

It might appear that the FEC measurements obtained in this con�guration

would nothing more than simulated results of FEC schemes over a BSC, results

which are well-known (see for example [8]). It might further appear the actual

use of the satellite is super
uous. However, since an aim of the experiment was

to compare error control techniques for satellite and hybrid communication, it

was necessary to conduct the FEC tests in exactly the same fashion as the ARQ

tests, which indeed require the use of a satellite and the hardware shown in

Figure 2.1.

Codes

The codes used in the FEC portion of this experiment were linear block codes.

While convolutional codes are often used in satellite communication [9], it was

feared software implementations of such codes would be complex and so would

run slowly. In fact, even for the selected block codes, both the software encoder

and decoder were found to operate too slowly to support real-time operation

coordinate with the desired ACTS channel rate of 128 kb/s. Accordingly, all

encoding and decoding operations were conducted o�ine. Such o�ine operation

was deemed acceptable because specialized hardware would ordinarily be used

for conducting coding operations in real-time in an actual system.

Two of the codes selected were the BCH (15, 7) and Golay (23, 12) codes,

since these codes were relatively simple to implement and have code rates of

22

about one-half. The code rate was signi�cant because it had originally been

hoped to compare the performance of these codes with that of the rate one-half

code used by ACTS (a convolutional code with constraint length 5) to combat

rain fading [2]. This goal was abandoned upon realizing the performance of

ACTS's coding could not be measured since it was impossible to examine received

data for errors before ACTS's coding corrected them.

A third code, the BCH (15, 11) code, was later added to provide a broader

set of FEC choices. For comparison purposes, plain uncoded text was also se-

lected as an FEC option. (The Reed-Solomon (127, 123) and (127, 121) codes

constructed over GF(27) were originally included as FEC options since they pro-

tect against burst errors, but were abandoned when the actual non-bursty noise

model was adopted as described earlier.) Thus the following four FEC options

were considered in this experiment:

1. BCH (15, 7)

2. Golay (23, 12)

3. BCH (15, 11)

4. Plain text

Each of these options was tested with the seven settings for the noise e�ects

BER mentioned above (in 2.3.1), yielding 28 FEC scenarios.

As mentioned earlier, each block was sent many times so that at least ten

million information bits were transfered. The number of blocks sent for each

code is shown in Table 2.1.

It might appear that the described FEC tests would represent nothing more

than the simulated results of the FEC schemes over a BSC, which are well-

23

Block size Information Blocks Information
Code (bits) bits per block sent bits sent

BCH (15, 7) 960 448 22,322 10,000,256
Golay (23, 12) 920 480 20,834 10,000,320
BCH (15, 11) 960 704 14,205 10,000,320
Plain text 1000 1000 10,000 10,000,000

Table 2.1: FEC transmission blocks.

known [8]. It might further appear that the actual use of the satellite is su-

per
uous. However, the purpose of this work was examine and compare error

control techniques for satellite and hybrid communication, and so it was neces-

sary to conduct the FEC portion of the experiment in exactly the same fashion

as the ARQ portions, which indeed required the use of the actual satellite and

hybrid architecture of Figure 2.1.

2.3.3 Point-to Point ARQ Tests

The point-to-point (unicast) ARQ testing conducted in this experiment is con-

ceptually depicted in Figure 2.3. Paralleling the FEC tests, in each ARQ test

a set of data packets was sent over the satellite at 128 kb/s. Each packet com-

prised a 125-byte plain text message, a 2-byte ARQ sequence number and a

2-byte CRC (CRC-CCITT). This packet was sent ten thousand times so that

ten million information bits were transfered.

As each packet was received, it was corrupted with arti�cial noise. The re-

sulting packet was then checked for errors using the CRC. Valid packets were

stored and invalid packets were discarded. The receiver then generated a corre-

sponding acknowledgment message according to the ARQ protocol in use, and

sent this reply to the transmitter. Data stored by the receiver was later compared

bit-by-bit with the original message to obtain a residual BER.

24

continuous
source

data

noise
effects

storage

comparison
(offline)

error
detection

ARQ
protocol

CRC

buffer

noise
effects

PSTN

Internet

acknowledgments

ARQ
protocol

Figure 2.3: Point-to-Point ARQ testing concept.

Acknowledgments were carried over ACTS or terrestrially, via the Internet or

via the public switched telephone network. For cases in which acknowledgments

were carried terrestrially, retransmitted packets were sent either over ACTS or

over the same terrestrial link (in the opposite direction). Retransmitted packets

were always sent via satellite if the acknowledgments were so transported.

The time to send the ten thousand information packets was recorded in each

test. This transfer time was de�ned as the period starting with receipt by the

receiver of the �rst valid packet and ending with receipt of the last valid packet.

25

The message and acknowledgment packets sent, received and received in error

on each link were counted and also recorded.

Both go-back-N (GBN) and selective-repeat (SR) ARQ protocols were tested

in this experiment. The GBN and SR protocols tested followed the logic of the

REJ protocol and SREJ protocol with multi-selective reject option, respectively,

speci�ed in [10, 11]. The parameters of the protocols, such as window size,

were modi�ed for satellite experimentation, and some parts not integral to error

control, such as call setup and termination, were not included in the software

implementation of the protocols since they were accomplished by other means.

The ARQ timer period was set to 0.788 s for satellite-network operation

and 0.674 s for hybrid operation. Each of these times accounts for the time

to transmit a packet on the satellite link, the propagation time through this

link, the transmission time for an acknowledgment on the feedback link, the

propagation time of the acknowledgment, and time for software processing on

the ground. (For such purposes, the Internet was conservatively assumed to have

the same bandwidth and propagation time as the 14.4 kb/s modem connection.)

The period was less for hybrid operation than for satellite operation because of

the lesser propagation delay through the terrestrial link than the satellite link.

It might be expected the timer period for hybrid operation should be even less

than just speci�ed because the terrestrial propagation delay is substantially less

than that of the satellite. However, the terrestrial link bandwidth was less than

one-eighth that of the satellite link, which partly o�set the e�ect of the former's

smaller propagation delay in the calculation of the ARQ timer period.

The window sizes (N) corresponding to the aforementioned timer periods

were 76 for operation in a satellite network, and 65 for the hybrid network.

26

Network Arti�cial noise BER
type 0 10�5 3:16� 10�5 10�4 3:16� 10�4 10�3 3:16� 10�3

Satellite p p p p p p p
Hybrid-1:
Internet p p p p
Modem p p p p

Hybrid-2:
Internet p p p p
Modem p p p p

Hybrid-1: Acknowledgments sent terrestrially.
Hybrid-2: Acknowledgments and retransmitted packets sent terrestrially.

Table 2.2: Combinations of networks and arti�cial noise bit error rates tested
with point-to-point GBN and SR ARQ protocols.

It would have been possible to conduct the satellite network unicast ARQ

tests using apogee and perigee. However, the terrestrial propagation delay

would be unrealistically small if these two machines would have been used for

the hybrid network tests. Hence beep and apogee were used not only for the

hybrid network tests, but, for purposes of consistency and better comparison,

for the satellite network tests as well. Because all received tra�c data and

measurements had to be stored and processed at UMCP, beep transmitted to

apogee during all unicast ARQ tests.

Due to time constraints, it was not feasible to test every possible combina-

tion of network architecture, type of terrestrial link and arti�cial noise BER.

Accordingly, only the combinations indicated in Table 2.2 were tested. All the

indicated combinations were tested with both GBN and SR ARQ, yielding a

total of 46 unicast ARQ scenarios.

27

2.3.4 Multicast ARQ Tests

A group of point-to-two point ARQ tests was included in this experiment as

the start of an inquiry into point-to-multipoint ARQ schemes for satellite and

hybrid networks. In a purely-satellite multicast ARQ system, each destination

station must have a relatively expensive two-way (receive and transmit) termi-

nal in order to receive information and send acknowledgments. Also, if a single

receiving station requires a packet retransmission, then the transmitting sta-

tion must send the packet over the satellite link. This retransmission interrupts

the stream of new packets for all destination stations. Only one receiving sta-

tion bene�ts from the retransmission; the others are forced to wait during this

time. This delay might be circumvented, and the information delivery rate to

each receiver possibly increased, by sending the ARQ acknowledgments and re-

transmitted packets terrestrially. Again, a receive-only satellite terminal su�ces

for the destination stations, and a signi�cant cost savings may be achieved in

addition to the aforementioned throughput improvement. This portion of the

experiment investigated these concepts.

The multicast ARQ testing was similar to the unicast testing except two desti-

nations were used (Figure 2.4). Apogee transmitted simultaneously to perigee2

(a loopback transmission from the perspective of ACTS) and to beep. Two net-

work con�gurations were employed: either all data packets and acknowledgments

were sent over the satellite links and nothing was sent over terrestrial links, or

data packets were originally sent via satellite while both acknowledgments and

retransmitted packets were sent terrestrially.

Both the Internet and the PSTN were used for the terrestrial link between

apogee and beep. Terrestrial communication between apogee and perigee2

28

beep apogee perigee2

software
delayInternet or PSTN

Figure 2.4: Hybrid network for point-to-two point ARQ tests.

was conducted with Ethernet. This Ethernet communication was delayed with

software to simulate the propagation delay which would have been realistically

experienced had these two stations not been located so near each other. For

each test, this delay was matched to the bona �de terrestrial link used between

apogee and beep so that terrestrial transmissions between apogee and beep and

between apogee and perigee2 experienced similar delays. The software delay

was not �xed, but varied stochastically with each packet to re
ect the non-

constant propagation times experienced with Internet and with the telephone

system. For simulating Internet, the delay value was uniformly distributed on

[0.090, 0.150) seconds. (This interval was half-open and not closed only because

the random number generator produced values in [0,1).) For simulating the mo-

dem connection, the delay was uniformly distributed on f0.160, 0.170, 0.180g

29

seconds. Both of these models were obtained experimentally, using the UNIX

ping command between apogee and beep through Internet and through a mo-

dem connection. While ordinarily it may be possible for packets to arrive out of

sequence, the delay software preserved the correct order.

For the ARQ multicasting tests, the GBN and SR ARQ protocols used in

the unicast testing were modi�ed slightly to accommodate two receiving sta-

tions. While the ACTS system supports multipoint transmission, this feature

was not used because it was not supported by the FRACS. Instead, each packet

to be sent via ACTS to the two destinations had to be sent twice, once on

the apogee-perigee2 satellite connection and once on the apogee-beep satellite

connection. However, a single transmitting process was used to send packets

over the satellite, process acknowledgments and conduct retransmissions as nec-

essary. Thus the system implemented was a point-to-two point ARQ system,

not two simultaneously-operating point-to-point systems. As with the unicast

ARQ tests, the transfer times to each receiver and the number of packets and

acknowledgments sent, received and received in error on each link were recorded.

Multicast ARQ Protocols for Hybrid Networks

The multicast ARQ protocols tested in this experiment were developed from

their point-to-point counterparts, and merit some discussion. One important

concept is the ARQ transmitter's \window." As for the point-to-point case, the

window was de�ned as the range of sequence numbers of packets which may be

sent but remain unacknowledged until expiration of the ARQ timer. Hence, if

the minimum of the sequence numbers of the packets awaited by receiver A and

those of the packets awaited by B was x, and the window size was N , packet

30

number x + N � 1 could be transmitted, but x + N could not be sent until

x was positively acknowledged by both stations. For SR operation, a receiver

would discard a valid packet if the packet had already been received or if the

packet's sequence number less N exceeded the minimum of the sequence numbers

of packets not yet delivered to the receiver. (Such operation is a direct extension

of the point-to-point operation speci�ed in [11].)

The problem in a satellite multicast ARQ system of a retransmission for

a single receiving station forcing all stations to su�er a throughput reduction

was described earlier and should be examined more closely. Consider, then, a

hybrid network employing multicast SR ARQ. Assume that each destination can

receive simultaneously on both its satellite and terrestrial links. If one station

requires a retransmission, the retransmitted packet can be sent terrestrially and

the
ow of new packets need not be interrupted for the station which does

not require the retransmission. In fact, the receivers can, to a limited degree,

accept packets out of order because SR ARQ is used. Hence the
ow of new

packets to the station requiring the retransmission also need not be interrupted.

Thus, if channel conditions permit, the hybrid network allows the transmitter

to send fresh packets continuously to all receivers even while one may require a

retransmission, and the throughput need not su�er signi�cantly. This approach

was taken in implementing the multicast SR ARQ protocol for this experiment.

Now consider the situation if GBN ARQ is used. If receiver A requires

a retransmission while receiver B does not, the latter can continue to receive

new packets over the satellite link. Suppose k new packets are successfully

delivered via satellite to B during the time between A sends its retransmission

request and A sends the positive acknowledgment for the retransmission. During

31

this time, receiver A will reject all packets other than the one it requires|the

one requiring retransmission|so A will discard these k packets. Thus, after

sending the positive acknowledgment for the retransmission, A will lag B by k

packets. Next the transmitter will have to send via satellite the k packets for

A, an action which does not bene�t B, since B already has these k packets.

Thus 2k packets will be sent via satellite to deliver k packets to each of the

two stations. This is no more e�cient than operating two point-to-point ARQ

systems simultaneously, and does not take advantage of the satellite's multicast

capabilities. The situation in practice likely will be worse than described since

both receivers may require retransmissions of di�erent packets.

A more e�cient approach, taken in this experiment, is to suspend sending

fresh packets on the satellite link until the retransmission event for receiver A

is concluded. In this case, no new packets need be transmitted twice, although

receiver B is still forced to wait. Hence it appears GBN ARQ is not an e�cient

protocol for ARQ multicasting in satellite nor hybrid networks. This is not

highly surprising, since GBN ARQ is less e�cient than SR for point-to-point

communication [12].

If all the receivers of a large network require retransmission of the same

packet, it is more e�cient to retransmit the packet via the high-bandwidth mul-

ticast satellite channel than via the separate low-bandwidth terrestrial channels.

Such operation was adopted for the experiment's con�guration of two receiv-

ing stations. That is, a packet was retransmitted via satellite if both receivers

requested the packet be sent again.

The results from the unicast ARQ tests could be expected to render un-

necessary performing multicast ARQ tests with some combinations of network

32

Arti�cial noise BER
Network (Receiver 1, Receiver 2)
type (10�5; 10�5) (0; 10�5) (10�3; 10�5)

Satellite p p p
Hybrid-1:
Internet (No tests with hybrid-1 network)
Modem

Hybrid-2:
Internet p p p
Modem p p p
Hybrid-1: Acknowledgments sent terrestrially.

Hybrid-2: Acknowledgments and retransmitted packets sent terrestrially.

Table 2.3: Combinations of networks and arti�cial noise bit error rates tested
with point-to-multipoint GBN and SR ARQ protocols.

architectures, type of terrestrial link and arti�cial noise BER. In particular,

it was expected the point-to-point tests would show sending both acknowledg-

ments and retransmissions terrestrially yields superior throughput performance

than using the terrestrial link for acknowledgments alone. Accordingly, the com-

binations of networks and arti�cial noise bit error rates indicated in Table 2.3

were selected for testing with GBN and SR multicast ARQ protocols, a total of

18 multicast ARQ scenarios. As shown, the noise bit error rates at the receivers

were set independently. This allowed simulating cases of reception conditions at

one receiver being much poorer than at the other (as when one satellite station

su�ers from deep rain fading while the other enjoys a clear sky). In all cases,

all acknowledgments were corrupted by arti�cial noise e�ects (with BER set to

10�5) upon receipt by the transmitter, and ten thousand packets (ten million

information bits) were transmitted.

33

2.4 Software Overview and Implementation

Details

General descriptions of the software programs used in the experiment, as well as

some implementation details, are provided in this section. More details regarding

the software may be found in Appendix A.

The software for this experiment was written in the C language and utilized

User Datagram Protocol/Internet Protocol (UDP/IP). UDP was chosen over

Transmission Control Protocol (TCP) because the latter has an ARQ scheme of

its own, which would interfere with testing the error control protocols of interest

in the experiment.

2.4.1 FEC Software

Nine programs were used in FEC experimentation. Six of these were encoders

and decoders, an encoder-decoder pair being required for each of the three FEC

codes tested. The other three programs were the FEC transmitter, the FEC

receiver and the program for comparing bit-by-bit the received information with

the original information.

To prepare for an FEC test, an encoder was used to process a portion of a

125-byte plain text �le, yielding an encoded block with the properties given in

Table 2.1. The resulting block was stored as a �le.

The task of the FEC transmitter software was to read a �le speci�ed by the

user and sent it multiple times via satellite to the receiver. This �le consti-

tuted the packet which was sent repeatedly by the transmitter program. With

this arrangement, selecting the FEC code to test corresponded to selecting the

34

appropriate source �le for the transmitter.

The transmitter used UDP/IP to send packets to a particular [logical] port

of the receiver. The receiver listened for packets on this port and recorded them

in a �le as they arrived. Later, the received packets were processed with an

appropriate decoder and the decoded information was compared bit-by-bit with

the original text.

For testing with un-encoded text, no encoder nor decoder was required, and

the 125-byte message �le was used directly as the packet sent via satellite.

2.4.2 ARQ Software

Five programs were used in ARQ experimentation: a point-to-point transmitter,

a multicast transmitter, two receivers, and a delayer. Originally, the point-to-

point and multicast ARQ transmitter programs were written separately; the two

were later combined into a single body of C code. The combination facilitated

debugging and adding new features, for oftentimes during program development

a change was deemed necessary for both the point-to-point and the multicast

transmitters. The production of two programs from a single body of code was

made possible by using conditional compilation directives.

A single body of program code was used for the receivers as well. The receiver

programs used for multicasting di�ered only in port numbers, which were also

selected with conditional compilation directives. One of the two receivers was

used for the point-to-point tests while both were used for multicast tests.

35

Three logical links, to which corresponded three port numbers, were de�ned

between the transmitter and each receiver:

1. A link for the transmitter to send new packets to the receiver,

via satellite.

2. A link for the transmitter to retransmit packets, via terrestrial

link.

3. A link for the receiver to send acknowledgments to the trans-

mitter, via satellite or via terrestrial link.

In tests which did not use a terrestrial link for retransmissions, the transmit-

ter sent retransmitted packets over the satellite link.

In a fashion similar to the FEC transmitter, the ARQ transmitter used a

speci�ed �le as the information portion of the packet which was sent repeatedly.

A sequence number and CRC were added to each packet before transmission, as

described earlier.

The heart of the transmitter program is a loop comprising four parts:

1. Send a packet requiring retransmission (if any).

2. Send a new packet (if any).

3. Process acknowledgments (if any).

4. Check for expiration of ARQ timers.

Each step was conducted for all destinations before proceeding to the next

step, instead of repeating the four steps for each destination. This was necessary

so that the transmitter would treat the receivers as a group and not individually.

36

For example, if a packet is successfully sent to all destinations, positive acknowl-

edgments from the receivers will arrive at the transmitter nearly simultaneously

if propagation delays are the same between the transmitter and all destinations.

The transmitter should regard all the acknowledgments as having arrived to-

gether. If all earlier packets have already been acknowledged, the transmitter

should discard the newly-acknowledged packet and slide forward one position the

ARQ window. The transmitter should not possibly regard the acknowledgments

as having arrived at di�erent times because of delay in sequentially processing

an acknowledgment from each destination. Similarly, time-stamping of events

such as sending a packet was carefully conducted to avoid incorrect operation

due to such sequential processing delays.

The order of steps in the transmitter loop was determined by design. Pack-

ets requiring retransmission were sent before new packets because the need for

a retransmission impedes the progress of the system. That is, until all receiving

stations acknowledge a packet, that packet cannot be discarded by the trans-

mitter, and the lower-edge of the ARQ window cannot be advanced beyond that

packet. Also, if GBN ARQ is used, the receiver will refuse any new packet while

a retransmitted packet is awaited. Hence, it is desirable to attend to retrans-

missions as soon as possible. Similarly, the receiver checked for packet arrivals

on its terrestrial link before checking its satellite link since all packets arriving

on the terrestrial link are retransmissions.

Also, acknowledgments were processed before checking for timer expirations

because it is wasteful to declare an expiration of the timer for packet number z,

and so order an retransmission, while an acknowledgment for z may have arrived

at the transmitter but not yet have been processed.

37

Separate ARQ timers were required for each destination since the receivers

operated independently. For example, one receiver may positively acknowledge

a packet while another requests retransmission. The transmitter must then send

the requested packet again to the second station and somehow regard the fact of

a packet having been sent more recently to the second destination than to the

�rst. The solution to this problem is to use separate timers for each destination.

For multicasting, it was necessary to delay terrestrial communication between

apogee and perigee2. This delay was accomplished by a separate program,

which queued each packet and released it after the packet had been queued for a

speci�ed time. The amount of delay varied stochastically, as described in 2.3.4.

2.4.3 Additional Details

For each data packet sent by experiment software via the satellite, UDP/IP

added 28 bytes of overhead [13]. SunLink Frame Relay software was used to

transport the UDP/IP datagrams between FRACSes and between each FRACS

and workstations connected to same; this software added two bytes of overhead

for addressing purposes [14]. The High-level Data Link Control (HDLC) protocol

in the Sun HSI added to each frame a one-byte opening
ag, a two-byte CRC

and a one-byte closing
ag, constituting an additional four bytes of overhead

(ignoring bit stu�ng) [6]. For frames sent via satellite, the FRACS added �ve

bytes of overhead for its own purposes (such as frame sequence restoration) [5].

Thus, for every experiment packet sent over the satellite, 28+2+4+5=39 bytes

of overhead were sent through ACTS. For an experiment packet 129 bytes long

(as in the ARQ tests) sent at 128 kb/s, this corresponds to a rate of 169.3 kb/s

supported by ACTS. Accordingly, at least three 64 kb/s ACTS channels (a

38

total bandwidth of 192 kb/s) were required to conduct this experiment. Due to

particulars of FRACS operation, a margin of additional bandwidth was deemed

necessary and so the entire experiment was conducted using four ACTS channels

(a total bandwidth of 256 kb/s) for each satellite link required.

The Point-to-Point Protocol (PPP) was used for sending packets over the

modem link. PPP added an overhead of eight bytes to every packet produced

by experiment software [13, 15]. The modems were set to operate with V.42bis

and MNP5 compression algorithms enabled.

39

Chapter 3

Experiment Results and Discussion

3.1 Di�culties Experienced

The previous chapter presented an experiment developed to examine a hybrid

network's implications with respect to error control. Unfortunately, a number of

di�culties hampered conducting the experiment. These di�culties included:

1. The software for ARQ experimentation had been originally written im-

properly (by another party) and so had to be nearly completely rewritten.

2. The optical link in Colorado was often disrupted by precipitation, and

su�ered several failures.

3. The T1 VSAT in Maryland su�ered several problems, including:

� Incorrect con�guration information (resulting in high-BER operation,

or no operation at all).

� Two Intermediate Power Ampli�er failures.

� Two High-Power Frequency Doubler failures.

� Partial failure of VSAT control computer.

40

Because of such di�culties, the results from only the FEC tests are available for

inclusion in this thesis.

3.2 FEC Results

The number of blocks sent for each code tested was speci�ed in Table 2.1. The

times required to transfer these blocks in the FEC tests are given in Table 3.1.

These results show the time to transfer the ten million information bits depends

in each test depends on the code rate and is independent of the degree of channel

noise, as would be expected.

In each test, the received data was decoded and compared to the original mes-

sage and the received information bits in error were counted to yield a residual

BER. The residual BERs so obtained are given in Table 3.2. The nonzero resid-

ual BER from the test of the BCH (15, 11) code with noise BER of 3:16� 10�5

may appear anomalous, but may be attributed to the statistical nature of the

results.

3.3 ARQ

The point-to-point and point-to-multipoint tests were not completed in time for

their results to be included in this thesis. Some comments about the results

expected, and the comparisons which would have been made, can nonetheless

be advanced here.

Regardless of the noise BER, the residual BER would be expected to be

zero for all ARQ tests, with possibly some rare exceptions. This can be claimed

because the CRC is an excellent error-detecting code. In fact, the CRC is more

41

Code
Noise E�ects Plain BCH Golay BCH

Bit Error Rate Text (15, 11) (23, 12) (15, 7)
3:16� 10�3 78.539 107.263 150.659 168.476

10�3 78.596 107.257 150.658 168.540
3:16� 10�4 78.607 107.195 150.668 168.460

10�4 78.615 107.216 150.634 167.818
3:16� 10�5 78.621 107.219 150.609 168.534

10�5 78.613 107.170 150.651 167.802
0 78.515 107.194 150.644 168.573

Table 3.1: Transfer times (in seconds) for FEC tests.

Code
Noise E�ects Plain BCH Golay BCH

Bit Error Rate Text (15, 11) (23, 12) (15, 7)
3:16� 10�3 2:042� 10�3 9:990� 10�5 1:180� 10�5 1:300� 10�6

10�3 8:163� 10�4 1:160� 10�5 1:100� 10�6 0
3:16� 10�4 2:877� 10�4 1:100� 10�6 0 0

10�4 9:970� 10�5 0 0 0
3:16� 10�5 3:210� 10�5 2:000� 10�7 0 0

10�5 1:010� 10�5 0 0 0
0 0 0 0 0

Table 3.2: Residual bit error rates for FEC tests.

42

powerful at detecting errors, and so prompting a retransmission, than are any

of the tested FEC codes at correcting errors. Accordingly, the residual error

rates for point-to-point ARQ tests with a particular noise e�ects BER would, in

general, be expected to be less than or equal to the residual BERs in FEC tests

at the same noise level.

The transfer times in ARQ tests would be expected to increase with the

noise e�ects BER, since ARQ operation with poorer channel conditions results

in more retransmissions. Accordingly, to achieve similar residual BERs, it would

be expected that, if the amount of noise is below a certain level, an ARQ test

would have smaller transfer time than obtained with a particular FEC code.

Above that noise level, the opposite would be expected to be true. The extent to

which such comparisons can be made is limited by the CRC being able to detect

a larger fraction of error patterns (and signal the need for a retransmission)

than the error-correcting codes can correct. That is, as stated in the previous

paragraph, the residual BERs would be expected to be less for ARQ tests than

for the FEC tests.

The GBN ARQ protocol does not permit the receiver to accept packets out

of order. Accordingly, if the receiver is waiting for a retransmission, new packets

are rejected until retransmitted packets arrive. These packets may be accepted

if SR ARQ is employed. Further, far more packets need be sent again with GBN

than SR if a retransmission is requested. Accordingly, transfer times in GBN

tests would be expected to be greater than for SR tests.

It is possible retransmitted packets can be delivered more quickly to the

receiver via a low-delay, yet low-bandwidth, terrestrial link than via a high-

bandwidth, yet high-delay, satellite link. However, the exact parameters of the

43

situation (the packet size, the window size, the rates and propagation delays of

each link) may be such that the retransmitted packets can be delivered more

quickly via satellite than terrestrially. Hence it is not immediately clear if tests

with the hybrid network and GBN ARQ would be expected to yield lesser trans-

fer times than would corresponding tests with the satellite-only network. It may

well be that sending both acknowledgments and retransmitted packets terrestri-

ally instead of by satellite reduces the throughput because each retransmission

requires sending N packets through the low-rate terrestrial link. Of course, de-

termining if|and to what extent|the throughput can be improved is one of the

purposes of the experiment.

In SR ARQ tests, however, the availability of a separate path for retransmit-

ted packets, combined with the protocol's [limited] capability to accept packets

out of order, would suggest smaller transfer times for hybrid network opera-

tion than for satellite-only operation. If the transmitter is able to retransmit a

packet terrestrially while continuing without interruption to send new packets on

the satellite link, then, if retransmissions are infrequent, the throughput can be

nearly as great as in a zero-noise case. Even if the channel noise is severe enough

to cause more frequent retransmissions, or if the transmitter must brie
y inter-

rupt sending new packets in order to retransmit, some throughput improvement

may be expected. Again, this depends greatly on the operating parameters.

The transfer times in the multicast ARQ hybrid network tests would be

expected to be less than those in the corresponding satellite network tests. Mul-

ticast ARQ tests would be expected to have longer transfer times than would

point-to-point ARQ tests, since in the former multiple receivers may require re-

transmissions and the information rate to all receivers might su�er, even in a

44

hybrid network.

A surprising �nding gleaned in developing and testing the experiment is a

great delay when using the modem link. In particular, the round-trip time for

a UNIX ping message between apogee and beep was found to average about

350 ms. To eliminate most of the propagation delay between College Park and

Boulder, an identical test was performed with apogee and perigee2, using two

phone lines in the Systems Integration Laboratory. This second test yielded a

round-trip time of 285 ms. Subtracting the time to transmit the ping message

leaves 192 ms (96 ms in each direction) of delay comprising propagation time

through the local phone system and the modems. The modems' share of the delay

is speculated to be due to compression/decompression of the data carried and the

modems' trellis-coded modulation scheme (particularly the Viterbi decoding).

As the delay experienced with modems is a signi�cant fraction of the single-hop

propagation delay through a geostationary satellite, it is possible transfer times

obtained in a pure-satellite architecture might not be signi�cantly reduced by

adopting a hybrid network with a modem-based terrestrial connection. (This

�nding does not, however, diminish the signi�cant cost savings, mentioned in

Chapter 1, which may be achievable by adopting a hybrid network instead of a

pure-satellite network.)

45

Chapter 4

Conclusion

Error control is required for assuring the accuracy of information transfered

through an imperfect channel. FEC and ARQ are the two broad categories of

error control schemes. The great propagation delay of a satellite channel presents

challenges for ARQ schemes provide good throughput to a destination station.

The challenges are compounded for multicasting, where the throughput to all

stations may su�er if a retransmission is required, even if only for one station.

A hybrid network has been suggested for mitigating such problems. ARQ

acknowledgments, and perhaps retransmissions as well, can be sent terrestrially,

and greater throughput possibly achieved. A hybrid network may help tremen-

dously for ARQ multicasting by allowing retransmissions to be conducted with-

out drastically reducing throughput.

The precise e�ects a hybrid network may have on throughput and �delity are

not clear. An experiment to investigate such error control e�ects was presented.

This experiment examined FEC in a point-to-point satellite network, ARQ in

point-to-point satellite and hybrid networks, and ARQ multicasting in satellite

and hybrid networks. It was seen that an ARQ protocol and its parameters must

46

be carefully tailored to suit point-to-point satellite communication. Similarly, a

satellite multicast ARQ protocol must incorporate features of unicast protocols

as well as other measures in order to operate well. While all results were not

available for inclusion in this thesis, it is strongly believed that the experiment,

when completed, will show a throughput advantage of a hybrid network, espe-

cially for ARQ multicasting.

A problem su�ered throughout the experiment was the need to send overhead

from UDP/IP, frame relay, and the FRACS. Such overhead, as calculated in 2.4,

amounts to more than 20% of the bits transmitted via the satellite, and did not

improve error control. Such overhead was not regarded in calculating residual

BERs and transfer times, yet a penalty of additional satellite bandwidth was

su�ered for carrying it. It is likely smaller transfer times could have been achieved

if there had been less overhead.

The great delays experienced with modem links were unexpected, and suggest

other terrestrial links may be better for hybrid networking.

Throughout this work, the satellite was assumed to be in a geostationary

orbit. Several systems employing low- and medium-earth orbit (LEO and MEO)

satellites, which provide less propagation delay than geostationary satellites,

have been proposed in recent years. It may be speculated that, because propa-

gation delays are smaller, a hybrid architecture with these newer satellites will

not provide bene�ts as great as for higher-altitude satellites. However, consid-

ering the features and applications foreseen for LEO and MEO satellite systems

may suggest other advantages. Hybrid networking with LEO and MEO satellites

is therefore a worthy topic for future examination.

Pure FEC and pure ARQ were the error control schemes considered in this

47

work. Hybrid ARQ uses FEC in conjunction with ARQ to provide high-�delity,

high-throughput communication with fewer retransmissions than with pure ARQ

and with less overhead than required with pure FEC. This form of error control

was not examined in this work. Combining hybrid ARQ schemes and hybrid

networks o�ers additional possibilities for error control, and remains a topic for

inquiry.

Two standard point-to-point ARQ protocols were modi�ed to suit multicas-

ting in this experiment. While these multicast ARQ protocols were perhaps

not optimal for communication over a pure satellite network, they o�ered a

standard for gauging the bene�ts o�ered by operation in a hybrid architecture.

Accordingly, this thesis motivates future inquiry and development in the �eld of

multicast ARQ protocols for satellite and hybrid networks. The author hopes to

develop these techniques and others for exploiting the hybrid architecture.

48

Appendix A

Software Listings

A.1 Introduction

An overview of the experiment software was presented in Section 2.4. This

appendix presents the software in a mix of actual C code and C-like pseudo-

code. Concentration is given to elements unique to the experiment; details such

as declaration of variables, �le operations and networking with UNIX sockets

are largely omitted.

A.2 Software for FEC Tests

A.2.1 Encoders and Decoders

For each of the three codes tested, an encoder and a decoder were required. Most

of the encoders and decoders were software implmentations of circuits described

in [9] (to which the page numbers below refer).

All codes were encoded using a software implementation of the cyclic shift

circuit described on pages 95-96. The decoder for the BCH (15, 7) code was

49

a type-II one-step majority logic decoder descrived on pages 188-190. For the

Golay (23, 12) code, Kasami's error-trapping technique was used for decod-

ing (pages 135-138; also [16]). Finally, table-lookup was used for decoding the

BCH (15, 11) code.

A.2.2 FEC Transmitter

The operation of the FEC transmitter is determined by the combination of a

command-line argument and information in a con�guration �le. The command-

line argument is an Internet host name/address which is the destination to which

packets should be sent. The name/address used in the experiment corresponded

to the local interface to the satellite link to the destination.

50

/*

FEC Transmitter

*/

main(argc, argv)

int argc;

char *argv[];

{

seed_random_number_generator();

/* read from configuration file:

output rate (bit/s),

(variable: Output_rate)

Number of packets to send

(variable: Source_size)

Name of file to send repeatedly

*/

get_parameters();

/* Read the data to repeatedly send */

read_source_file();

N = length_of_source_file();

/* here we calculate the bit/sec rate */

/* The time between sending successive packets is

given by:

(bits/packet) / (bits/second in the channel) */

txinterval = (N * 8 / Output_rate);

/* Open a "connection-oriented" UDP connection to

the destination; returns the socket descriptor the

program will use for sending data */

txsock = init_connection(argv[1]);

run_tx();

}

run_tx()

{

struct timeval lastsend, timenow;

double timediff;

51

/* must put some initial time into lastsend */

gettimeofday(&lastsend, NULL);

pktssent = 0;

do {

/* send a packet if it's time to */

gettimeofday(&timenow, NULL);

if ((it is time to send a packet) {

if (Tx(databuf, N) >= 0) {

pktssent++;

lastsend = timenow;

}

}

} while (pktssent < Source_size);

}

A.2.3 FEC Receiver

A con�guration �le, but no command-line argument, is used to control operation

of the FEC receiver.

/*

FEC Receiver

*/

main()

{

seed_random_number_generator();

/*

Read from configuration file:

Number of packets to expect to receive

(variable: Source_size)

Enable/disable noise (variable: NOISE)

*/

get_parameters();

run_rx();

52

}

struct timeb first_arrival, latest_arrival;

run_rx()

{

int length, i, n, NumFrames;

unsigned char buf[FRAMESZ], noisebuf[FRAMESZ],

filenamedata[12], filenameinfo[12];

unsigned char codeword[BCHOUT],

decode[PKTZ_FRAME];

struct timeval time0;

int udp_cleanup();

/* Open a "connection-oriented" UDP connection from

the transmitter; returns the socket descriptor

the program will use for reading data */

rxsock = init_connection();

counter = 0;

/* the number 2500 a few lines below is an

arbitrarily-chosen limit for the size of a packet

*/

do {

bytes_received = recv(rxsock, buf, 2500, 0) ;

if (bytes_received>0) {

ftime(&latest_arrival);

if (!counter) {

/* First packet has just arrived */

first_arrival = latest_arrival;

}

counter++;

if (NOISE==ENABLED) {

/* corrupt the received data (buf) with

i.i.d. noise, and store result in bufC;

(BER is set in a header file) */

corrupt(buf, bufC);

record_to_disk(bufC);

}

else

53

record_to_disk(buf);

}

} while (bytes_received != 0 && counter < Source_size);

/* Record the elapsed time between receipt of first and

last packets; number of packets received */

record_measurements();

}

A.3 Software for ARQ Tests

A.3.1 ARQ Transmitter

As described in Section 2.4, a single body of code was used to generate the ARQ

point-to-point and multicast transmitters. Conditional compilation was used to

select which type of transmitter was produced at compile-time.

As wih the FEC transmitter, the operation of the ARQ transmitter was

controlled command-line arguments and information in a con�guration �le. In

the point-to-point transmitter, either one or two command line arguments were

required. The �rst argument was an Internet name/address for the local interface

to the satellite link to the destination. The second argument, if any, was the

name/address to which retransmissions should be sent. When Internet was used

as the terrestrial link, the second name was simply the name of the destination

computer (apogee, for example). If the program had been compiled to support

two destinations, two addresses were required for each destination: one address

for new packets, and one address for retransmitted packets.

The key data structure in the ARQ transmitter is a special array, used as

queue, from which packets are sent at regular intervals. The array is accessed in a

circular fashion using the C % (modulo) operator. It was found that % operates

54

fairly slowly so auxilliary variables were introduced to allow the modulo operator

to be used sparingly.

For both the transmitter and the receiver, the CRC was encoded and decoded

with a combined cyclic shift/table-lookup algorithm.

/*

ARQ Unicast/Multicast Transmitter

*/

/*

NUM_DEST is the number of destinations; the

program supports values of 1 or 2. The value for

NUM_DEST is set by a -DNUM_DEST=1 or -DNUM_DEST=2

option for the "cc" compiler

*/

#if (!defined (NUM_DEST) || (NUM_DEST>2))

/* doesn't yet support more than two destinations;

alert user with a compiler error */

undeclaredvar = ;

#endif

typedef short SEQNUMTYPE;

/* On Sun machines, sizeof(short) is 4 bytes */

#define SEQNUMSZ 4

/* there should NOT be one of these TERR_RETRAN's

for each destination, but one for the entire program */

short TERR_RETRAN;

/* FALSE means retransmissions are sent via

satellite */

SEQNUMTYPE SOURCE_SIZE;

/* these flags can all be shorts */

short NOISE, SELECTIVE;

/* SELECTIVE==FALSE means use GBN */

double TIMEOUT;

SEQNUMTYPE WIN_SIZE;

double RATE;

double TxOUTRATE_1, TxOUTRATE_2;

55

/* rate (bit/s) on satellite link(s),

terrestrial link(s) */

/* and here (next declaration) are the corresponding

intervals (seconds) between sending packets

double txinterval1, txinterval2 ;

char SOURCE_FILENAME[50];

char init_guf[32], init_guf1[32], init_guf2[

32], init_guf3[32];

unsigned char DATABUF[DATASZ];

/* Data Socket descriptors: satellite link(s) */

int sfwd1[NUM_DEST];

/* Data Socket descriptors: links for terrestrial

retransmissions */

int sretran[NUM_DEST];

/* ack. Socket descriptor */

int sack[NUM_DEST], acksock[NUM_DEST];

/* port numbers */

int txport[NUM_DEST],

retxport[NUM_DEST],

ackport[NUM_DEST];

int AckFlag[NUM_DEST];

/* indicates retran. in progress */

int retranflag[NUM_DEST];

SEQNUMTYPE startofretran[NUM_DEST];

SEQNUMTYPE endofretran[NUM_DEST];

int N;

int rframelen;

/* next two variables used to copy the command

line arguments */

char freshpktaddr[NUM_DEST][51];

char stalepktaddr[NUM_DEST][51];

struct hostent *host_entry;

struct in_addr *ptr, inetaddr;

/* ack. packets which fail CRC check */

56

int corruptedpkts[NUM_DEST];

/*

The key data structure in the program is a

buffer/queue, which keeps track of which packets

have been sent to the receiver, which have been

acknowledged, for which ones a retransmission

has been requested, and other such things.

The queue is used circularly by accessing its elements

with expressions of form

head % queue_size

and the like. This way, we can use (except when

accessing the queue) the array indices "head" and

"tail" as if the queue were infinitely large.

The tail is the highest sequence number of all packets

transmitted. This corresponds to the send state

variable V(S) in ISO/IEC 7776. The head is the sequence

number X such that all packets 0 through X-1 have been

acknowledged. Hence the transmitter can discard the

first "head" packets. Thus head is the minimum

sequence number of all packets not yet acknowledged.

At all times, we require head-tail <= window size.

Instead of making confusing additional variables, we

will call head and tail SNmin and SNmax respectively,

for indeed head and tail, as defined above, represent

these values.

*/

#define TRUE 1

#define FALSE 0

typedef short BOOLEAN;

SEQNUMTYPE TXARRSZ;

struct TXARRAY {

SEQNUMTYPE seqno; /* sequence number */

unsigned char packet[FRAME_SZ];

/* packet = sequence number, data, CRC */

BOOLEAN valid;

BOOLEAN doretran[NUM_DEST];

57

/* TRUE if receiver asked for a

retransmission, returns to FALSE after

retransmitting */

BOOLEAN acked[NUM_DEST];

BOOLEAN sent[NUM_DEST];

struct timeval timesent[NUM_DEST];

/* this is used for checking for timer

expiration*/

} ;

struct TXARRAY *txarr; /* [TXARRSZ]; */

/* for ALL destinations */

SEQNUMTYPE SNmax=-1 , SNmin=0 ;

/* need these for multicasting: */

SEQNUMTYPE SNmineach[NUM_DEST];

void main(argc, argv)

int argc;

char *argv[];

{

seed_random_number_generator();

/* open connections */

txport[0] = CLI_PORT;

retxport[0] = CLI_PORT_RETRAN;

ackport[0] = ACK_PORT;

#if (NUM_DEST==2)

txport[1] = CLI_PORT2;

retxport[1] = CLI_PORT_RETRAN2;

ackport[1] = ACK_PORT2;

#endif

for (m = 0; m<2*NUM_DEST; m+=2) {

init_connections(m/2, argv[m+1], argv[m+2],

txport[m/2], retxport[m/2], ackport[m/2]);

}

/* Read from configuration file (names of

associated variables given in parantheses) */:

Output rate for satellite link;

Output rate for terrestrial link;

58

Number of packets to send (SOURCE_SIZE);

Size of data structure (TXARRSZ);

Window size (WIN_SIZE);

Noise type: i.i.d or none (NOISE);

Noise BER (BER);

ARQ protocol (SELECTIVE);

ARQ timer period (TIMEOUT);

Name of file to send repeatedly */

get_parameters();

/* make the array by dynamically allocating memory */

make_txarray(TXARRSZ);

/* Read the data to repeatedly send */

read_source_file();

N = length_of_source_file();

/* initialization for all the destinations */

for (m=0; m<NUM_DEST; m++) {

SNmineach[m] = 0;

searchbot[m] = SNmin;

retranflag[m] = 0;

corruptedpkts[m] = 0;

}

run_arq();

/* Measurements to record: number of packets sent,

received, and received in error on each link;

elapsed time between arrival of first and last

valid packets */

record_measurements();

}

/* Once arriving in this function, the program remains

here (or in functions called by it) until the end

of the program */

run_arq()

{

struct timeval timenow,

/* time of last transmission on primary link

for ALL destinations */

59

lastsend1,

/* time of last transmission on secondary link

for EACH destination */

lastsend2[NUM_DEST];

/* Here we calculate the bit/sec rates. The time

between sending successive packets is given by:

(bits/frame) / (bits/second sent in channel)

Now, TxOUTRATE_{1,2} = output rate in bits/sec. We

must add the time required for the sequence number

and CRC. We will then obtain

txinterval{1,2} = time in seconds between

sending packets */

txinterval1 = ((N +SEQNUMSZ+CRC_SIZE) * 8) /

TxOUTRATE_1 ;

txinterval2 = ((N +SEQNUMSZ+CRC_SIZE) * 8) /

TxOUTRATE_2 ;

lastsend1 = timenow;

for (m=0; m<NUM_DEST; m++) {

lastsend2[m] = timenow;

}

retrandestcount=0;

do {

for (m=0, retrandestcount=0; m<NUM_DEST; m++) {

if (retranflag[m])

retrandestcount++;

}

/* Sending of packets */

/* In two steps, we see if it is time to send a

packet; that is, if enough time has passed since

sending the last packet. We use one step for

packets to be sent over the primary link, and

one for the secondary link */

/* We want to get rid of any packets requiring

retransmission as soon as possible, so we'll

consider first the retransmission link */

60

if (TERR_RETRAN && retrandestcount) {

gettimeofday(&timenow, NULL);

for (m=0; m<NUM_DEST; m++) {

/* in case it is not yet time, or no

packet to send */

nexttosend[m] = -1;

if (!retranflag[m]) {

continue;

}

if (it's time to send a packet

terrestrially) {

nexttosend[m] = findpkttosend(m, 1);

/* first arg. of findpkttosend() is

the destination number, second tells

if the search should be only for

packets to be retransmitted

terrestrially */

}

}

/* Below, we don't want to timestamp it

now, rather use the earlier time of "timenow",

since otherwise the acheived transmission

rate is strictly less than the

desired transmission rate, significantly */

#if (NUM_DEST>1)

/* See if perhaps it would be more efficient to

send the packet over the satellite link instead of

the terrestrial link */

/* Here we make use of knowing that NUM_DEST>1,

then NUM_DEST is actually 2 */

/* (NUM_DEST==2) */

if (nexttosend[0] == nexttosend[1] &&

nexttosend[0] != -1) {

/* Send same frame to all destinations

over the satellite link */

for (m=0; m<NUM_DEST; m++) {

qq = nexttosend[m] % TXARRSZ;

61

Tx(txarr[qq].packet,

SEQNUMSZ+DATASZ+CRC_SIZE, m);

txarr[qq].doretran[m] = FALSE;

txarr[qq].timesent[m] = timenow;

if (nexttosend[m]>SNmax) {

SNmax = nexttosend[m];

}

}

lastsend1 = timenow;

}

else {

for (m=0; m<NUM_DEST; m++) {

if (nexttosend[m] == -1) {

continue;

}

qq = nexttosend[m] % TXARRSZ;

ReTx(txarr[qq].packet,

SEQNUMSZ+DATASZ+CRC_SIZE, m);

lastsend2[m] = timenow;

txarr[qq].doretran[m] = FALSE;

txarr[qq].timesent[m] = timenow;

}

}

#else /* ==> NUM_DEST ==1 */

if (nexttosend[0] != -1) {

qq = nexttosend[0] % TXARRSZ;

ReTx(txarr[qq].packet,

SEQNUMSZ+DATASZ+CRC_SIZE, 0);

lastsend2[0] = timenow;

txarr[qq].doretran[0] = FALSE;

txarr[qq].timesent[0] = timenow;

}

#endif /* NUM_DEST>1 */

}

/* Now search for a packet to send via

satellite;

If we are engaged in a retransmissions for GBN,

we don't want to send some packets which are

not going to be accepted at the stations

requiring those retransmissions. Also, we want

to be sure we send only retransmitted packets

62

--and on the correct links--for GBN

retransmissions */

if (! (!SELECTIVE && retrandestcount &&

TERR_RETRAN)) {

for (m=0; m<NUM_DEST; m++) {

/* in case it is not yet time,

or no packet to send */

nexttosend[m] = -1;

if (it's time to send a packet on the

satellite link)

nexttosend[m] = findpkttosend(m, 0);

/* we will not send the packet now, but

collect them all and send them together

a few lines below... */

}

/* ...and here is where we send them */

for (m=0; m<NUM_DEST; m++) {

if (nexttosend[m] == -1)

continue;

qq = nexttosend[m] % TXARRSZ;

Tx(txarr[qq].packet,

SEQNUMSZ+DATASZ+CRC_SIZE, m);

txarr[qq].sent[m] = TRUE;

txarr[qq].doretran[m] = FALSE;

txarr[qq].timesent[m] = timenow;

if (nexttosend[m]>SNmax) {

SNmax = nexttosend[m];

}

/* we actually have to do this only

once, but must be sure to do it

only if we actually send something

on the primary link */

lastsend1 = timenow;

}

}

/* process acknowledgments */

/* Structure of an acknowledgment:

- List of packets requiring retransmission

(SR only, and only if necessary);

63

- Request number

- CRC on all above */

for (m = 0; m<NUM_DEST; m++) {

GetAck(m);

}

/* consolidate the information from the

acknowledgments and release packets all

packets 0, 1,..., X such that these X+1

packets have been ACKed by all

destinations */

i = SNmin;

jj = i % TXARRSZ;

while (i<=SNmax) {

ackcount=0;

for (m=0; m<NUM_DEST; m++) {

if (txarr[jj].acked[m] == TRUE)

ackcount++;

}

if (ackcount == NUM_DEST) {

/* packet number i may be discarded,

everyone's ack'ed it */

for (m=0; m<NUM_DEST; m++) {

txarr[jj].doretran[m] = FALSE;

txarr[jj].sent[m] = FALSE;

}

txarr[jj].valid = FALSE;

SNmin++;

i++;

jj++;

if (jj == TXARRSZ)

jj = 0;

}

else {

break;

}

}

/* check for time out */

gettimeofday(&timenow, NULL);

/* must do this for all the destinations */

64

for (m = 0; m<NUM_DEST; m++) {

if (SNmax == -1)

break;

jj = SNmineach[m] % TXARRSZ;

if (txarr[jj].sent[m] == TRUE &&

txarr[jj].doretran[m] == FALSE) {

if (more than TIMEOUT seconds have

passed since sending the earliest

un-ack'ed packet to destination m) {

/* prepare data structure for

timeout-based retransmission */

i = SNmineach[m] ;

jj = i % TXARRSZ;

while (i<= SNmax) {

txarr[jj].doretran[m] = TRUE;

i++;

jj++;

if (jj == TXARRSZ)

jj = 0; /* % is slow */

}

searchbot[m] = SNmineach[m];

retranflag[m] = 1;

}

}

}

} while (SNmin <= SOURCE_SIZE -1) ;

}

A.3.2 ARQ Receiver

The ARQ receiver requires a single command-line argument, the address to which

acknowledgments should be sent. A con�guration �le is used for this software

as well. A data structure similar to the one used in the transmitter software is

used in the receiver. Conditional compilation is used to select which set of port

numbers the receiver uses.

65

/*

ARQ Receiver

*/

/* v26: try to make Selective Repeat work properly. To

do this, we make a buffer/queue, which keeps track of

which packets have arrived in good condition, and

other such things.

The queue is used circularly by accessing its elements

with expressions of form

head % queue_size

and the like. This way, we can use (except when

accessing the queue) the array indices "head" and "tail"

as if the queue were infinitely large.

The tail is the highest sequence number of all accepted

packets. The head is the sequence number X such that

all packets 0 through X-1 have been accepted, and

released (=written to the data output file, in this

context). Thus head is the minimum sequence number of

all packets not yet received.

Instead of making confusing additional variables, we

will call head and tail RN and RNmax, respectively.

Note that this definition of RN complies with

ISO/IEC 7776.

For go-back-N ARQ, after receiving a valid, in-sequence

packet,

RNmax = RN-1;

*/

#define TRUE 1

#define FALSE 0

typedef short BOOLEAN;

SEQNUMTYPE RXARRSZ;

struct RXARRAY {

SEQNUMTYPE seqno; /* sequence number */

unsigned char data[PKTZ_FRAME];

BOOLEAN valid;

66

/* BOOLEAN acked; */

} ;

struct RXARRAY *rxarr;

SEQNUMTYPE RN ;

/* minimum seq. num. of all packets not yet received */

SEQNUMTYPE RNmax ;

/* maximum seq. num. of all received packets */

/* Compose the information field for a compound SR

ACK in this variable; naklist is an array, in which

we actually store sequence numbers of packets not

yet received correctly in chunks of SEQNUMSZ

(= sizeof(SEQNUMTYPE)) bytes, at 0, SEQNUMSZ,

2*SEQNUMSZ, etc. */

#define NAKLISTSZ 60 /* unit is bytes */

unsigned char naklist[NAKLISTSZ], *nlp;

/* the pointer is NakListPointer */

int nakcount = 0;

/* how many NAKs in the naklist ? */

void main(argc, argv)

int argc;

char *argv[];

{

int i;

seed_random_number_generator();

/* Read from configuration file (names of

associated variables given in parantheses) */:

Output rate for acknowledgment link;

Number of packets to expect (SOURCE_SIZE);

Size of data structure (RXARRSZ);

Window size (WIN_SIZE);

Noise type: i.i.d or none (NOISE);

Noise BER (BER);

ARQ protocol (SELECTIVE); */

get_parameters();

67

/* make the array by dynamically allocating memory*/

make_rxarray(RXARRSZ);

/* Open connections for acknowledgments to be sent

to the transmitter and for data to arrive from the

transmitter */

init_connections(argv[1]);

RN = 0;

RNmax = -1;

run_rx_arq();

}

run_rx_arq()

{

int n;

SEQNUMTYPE j;

int rval1, rval2;

unsigned char buf1[FRAMESZ + CRC_SIZE],

buf2[FRAMESZ + CRC_SIZE];

SEQNUMTYPE seqno = 0;

struct timeval timenow, lastsend;

int bytessent;

short ack_to_send;

/* indicates if there is an ack to send */

counter = 0;

ack_to_send = 0;

/* we need an initial time in lastsend; we will

subtract several seconds from the time so that

the first ack will not be delayed */

gettimeofday(&lastsend, NULL);

lastsend.tv_sec -= 100;

/* We also need an initial sendinterval, the time

between sending packets; given by:

(bits/frame) / (bits/second sent in channel) */

sendinterval = ((SEQNUMSZ+CRC_SIZE) * 8) /

OUTPUT_RATE ;

68

do {

/* two basic parts to the loop: checking for

and processing new packets, which is done in

every pas of the "do" loop, and sending

acknowledgments, if it is time to do so */

rval2=recv(sfwd2, buf2, FRAMESZ + CRC_SIZE, 0)

if (rval2 <= 0) {

rval1 = recv(sfwd1, buf1,

FRAMESZ + CRC_SIZE, 0);

if (rval2 > 0 || rval1 > 0) {

if (rval2 > 0) {

rxpkts2++;

}

else if (rval1 > 0) {

rxpkts1++;

}

/* use this for determining if to send an

ack now */

gettimeofday(&timenow, NULL);

/* Read the SEQNUMSZ-byte sequence number */

if (rval2 > 0) {

seqno = * (SEQNUMTYPE *) buf2;

bcopy(buf2+SEQNUMSZ, tmpframe,

PKTZ_FRAME);

}

else if (rval1 > 0) {

seqno = * (SEQNUMTYPE *) buf1;

bcopy(buf1+SEQNUMSZ, tmpframe,

PKTZ_FRAME);

}

if (!NOISE) {

if (rval2 > 0)

check = check_crc(buf2);

else if (rval1 > 0)

check = check_crc(buf1);

69

}

else if (NOISE == 1) {

if (rval2 > 0)

check = check_crc(corrupt1(buf2));

else if (rval1 > 0)

check = check_crc(corrupt1(buf1));

}

if (rval1>0)

corruptedpkts1++;

else if (rval2>0)

corruptedpkts2++;

}

else if (!check /* valid information ? */

&& ((!SELECTIVE && seqno == RN)

|| (SELECTIVE /* SR ? */

&& seqno >= RN

/* don't have it already ? */

&& seqno < RN + WIN_SIZE - 1))

/* within the window ? */

&& rxarr[seqno % RXARRSZ].valid ==

FALSE) {

/* accept the packet */

counter++ ;

/* store in the buffer/array */

rxarr[seqno % RXARRSZ].seqno = seqno;

bcopy(tmpframe, rxarr[seqno % RXARRSZ].

data, DATASZ);

rxarr[seqno % RXARRSZ].valid = TRUE;

/* we need RNmax for composing the SR

acknowledgment */

if (seqno > RNmax)

RNmax = seqno;

/* release the data--adjust RN, too */

while (rxarr[RN % RXARRSZ].valid==TRUE

&& RN<=RNmax) {

/* write to output file */

record_pkt_to_disk(RN%RXARRSZ);

rxarr[RN % RXARRSZ].valid =

70

FALSE;

RN++;

}

/* now RN, the "head" of the queue, is

the minimum sequence number of all

packets not yet received */

/* Next, compose and send the ack */

nakcount = 0;

if (RNmax > RN && SELECTIVE) {

/* compose compound ACK for SR */

/* put RN in the sequence number

field--this is done in SendAck */

/* put information about other

needed packets into the information

field, which we will compose in

naklist */

nakcount = 0;

nlp = naklist;

j = RN + 1 ;

while (j <= RNmax+1 && nlp-naklist

< NAKLISTSZ) {

if (rxarr[j % RXARRSZ].valid ==

FALSE) {

bcopy((unsigned char *) &j,

nlp, SEQNUMSZ);

nakcount++;

nlp += SEQNUMSZ;

}

j++ ;

}

}

ack_to_send = 1;

}

else if (!check && !SELECTIVE && seqno>RN) {

nakcount = 0;

ack_to_send = 1;

}

} /* if (rval2 > 0 || rval1 > 0) */

71

gettimeofday(&timenow, NULL);

if (ack_to_send && it's time to send an ack) {

bytessent = SendAck(sack);

ack_to_send=0;

/* compute the new sendinterval */

sendinterval = (bytessent * 8)/OUTPUT_RATE ;

lastsend = timenow;

}

} while (rval1 != 0 && counter < SOURCE_SIZE);

cleanup();

} /* run_rx_arq() */

cleanup()

{

/* release any data still in the data structure */

while (rxarr[RN % RXARRSZ].valid == TRUE &&

RN<=RNmax) {

/* write to output file */

record_pkt_to_disk(RN%RXARRSZ);

rxarr[RN % RXARRSZ].valid = FALSE;

RN++;

}

/* Measurements to record:

Time elapsed between arrivals of first and last

valid packets;

Number of packets sent, received, and received

in error on each link;

*/

record_measurements();

}

A.3.3 Delayer

The delayer is implemented as a queue. Each queued packet is released after

having been queued for a speci�c amount of time. This amount of time may be

�xed or set stochastically to model propagation through a modem connection or

through Internet, as described in Section 2.3.4 on page 29.

72

/*

Delayer: Program to simulate propagation

delays found in channels such as satellite

channels, Internet, and others.

*/

#define QUEUE_SIZE 5000 /* more than adequate */

unsigned long loopcount;

int input_port, output_port;

int use_tcp;

double delay_value; /* time in seconds */

char output_address[51];

int in_socket, out_socket, sock_in;

int dummy=0;

double drand48();

unsigned long pktssent, pktsrecvd;

double sum_delays;

double actual_delay, max_delay, min_delay;

#if (defined INTERNET) && (defined MODEM)

/can't define them both, only one: */

undeclared_var = ;

#endif

main()

{

/* Read operating parameters:

input_port,

output_port,

output_address,

delay model.

*/

get_parameters(argc, argv[1]);

#if ((defined INTERNET) || (defined MODEM))

seed_random_number_generator();

#endif

73

/* Open UDP connections from a source and to a

destination */

open_connections();

give_and_take();

cleanup();

}

int give_and_take()

{

struct {

/* this is system time in

seconds.milliseconds */

double arrtime;

#if ((defined INTERNET) || (defined MODEM))

float delay;

#endif

unsigned char frame[500];

short size;

} qa[QUEUE_SIZE] /* queue-array */;

int tail=-1, head=-1;

loopcount=0;

while (1) {

rval = recv(sock_in, buf, sizeof(buf), 0) ;

if (rval >= 0) {

ftime(&tb_temp);

++tail;

if (tail == QUEUE_SIZE)

tail=0;

if (tail == head) {

printf("queue overflow,\

program terminated\n");

exit(3);

}

if (head== -1)

head=tail;

qa[tail].arrtime = tb_temp.time +

74

(double)tb_temp.millitm/1000.0;

memcpy(qa[tail].frame, buf, rval);

qa[tail].size = rval;

#if (defined INTERNET)

/* Uniform on [0.090, 0.150] seconds */

qa[tail].delay = 0.090 +

(drand48() * 0.060);

#elif (defined MODEM)

/* Uniform on {0.160, 0.170,

0.180} seconds */

qa[tail].delay = 0.160 +

((lrand48() %3) * 0.010);

#endif

}

/* now see if it's time to send out a packet */

if (head != -1) {

ftime(&tb_temp);

if ((actual_delay = (double) tb_temp.time +

(double)tb_temp.millitm/1000.0

- qa[head].arrtime)

#if ((defined INTERNET) || (defined MODEM))

>= qa[head].delay

#else

>= delay_value

#endif

){

Tx(qa[head].frame, qa[head].size,

out_socket);

pktssent++;

if (head==tail)

head= -1;

else {

head++;

if (head == QUEUE_SIZE)

head=0;

}

}

}

loopcount++;

}

}

75

Bibliography

[1] Wilbur L. Pritchard and Joseph A. Sciulli. Satellite Communication Systems

Engineering. Prentice-Hall, 1986.

[2] National Aeronautics and Space Administration, Lewis Research Center,

Cleveland, OH. System Handbook: Advanced Communications Technology

Satellite (NASA TM-101490), 1993.

[3] Harris Corporation. ACTS T1 VSAT Operation and Maintenance Manual,

August 1993. Prepared under NASA contract NAS3-25860.

[4] Mary L. Rivett, Zubin H. Sethna, and Je�rey D. Speigler. Advanced

Communications Technology Satellite (ACTS) Call Manager (CM) Dial-

ing and Call Control Speci�cation (NASA Doc. CM-USR-002), Revision

4.0. NYMA, Inc., April 1995. Prepared under NASA contract NAS3-27186.

[5] COMSAT Laboratories, Clarksburg, MD. COMSAT Frame Relay Access

Switch (FRACS) Reference Manual [Software Release 2.2], June 1994.

[6] Sun Microsystems, Inc., Mountain View, CA. High Speed Interface/SBus

(HSI/S) Installation and Administration Guide, 1991.

[7] David P. Kennedy. Personal communication, May 1994. INTELSAT, Wash-

ington, DC.

76

[8] John G. Proakis. Digital Communications. McGraw-Hill, New York, 2nd

edition, 1989.

[9] Shu Lin and Daniel J. Costello, Jr. Error Control Coding: Fundamentals

and Applications. Prentice Hall, Englewood Cli�s, NJ, 1983.

[10] International Standards Organization. International Standard ISO 4335,

\Information processing systems { Data communication { High-level data

link control procedures { Consolidation of elements of procedures".

[11] International Standards Organization. Proposed Draft International Stan-

dard ISO 7776/DAM 2, \Information processing systems { Data commu-

nication { High-level data link control procedures { Description of the X.25

LAPB-compatible DTE data link procedures { DAM 2: Multi-selective Re-

ject Option".

[12] Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice-Hall, 2nd

edition, 1992.

[13] W. Richard Stevens. TCP/IP Illustrated, volume 1. Addison-Wesley, 1994.

[14] Sun Microsystems, Inc., Mountain View, CA. 1.0 SunLink Frame Relay

Installation and Administration Guide, 1992.

[15] D. Perkins. \The Point-to-Point Protocol for the Transmission of Multi-

Protocol Datagrams Over Point-to-Point Links," RFC 1171. Carnegie-

Mellon University, July 1990.

[16] Arnold M. Michelson and Allen H. Levesque. Error-Control Techniques for

Digital Communication. John Wiley & Sons, New York, 1985.

77

[17] Fred Halsall. Data Communications, Computer Networks, and Open Sys-

tems. Addison-Wesley, 3rd edition, 1992.

[18] W. Richard Stevens. UNIX Network Programming. Prentice-Hall, 1990.

[19] W. W. Wu. Elements of Digital Satellite Communication, volume 2. Com-

puter Science Press, Rockville, MD, 1985.

78

