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die reine und angewandte Mathematik, 30 (1846), 51-s94], which is now generally
cited as the source of the method. A variant for unsymmetric equations is also
considered.
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On a New Way of Solving the Linear Systems that Arise in the Method of Least

Squares

The burden of solving exactly a large number of linear equa-
tions —the method of least squares leads to such equations
in many cases — has caused people to consider the use of it-
erative methods. One such method naturally presents itself
when a different variable in each equation 1s multiplied by a
pre-eminently large coefficient. Specifically, let the equations
be

z 4+ (01)xy 4+ (02)z etc. = (0m)
(10)x + (11)xy + (12)zo etc. = (1m)

z 4 (21)x1 4+ (22)z4 etc. = (2m)

ete. ete. ete.,

and let all the coefficients (ik) be small compared to the
diagonal coefficient (é¢). Then we can get approximations to
the unknowns x, z1, 3, etc. from the equations

(00)x = (Om), (11)z; = (1m), (22)z; = (2m), etc.

If we denote these values by a, ay, as, etc., we obtain their
first corrections, which I denote by A, Ay, A, etc., from the
equations

(00)A = —{(01)as + (02)as etec.}
(1DA; = —{(10)a + (12)as etc.}

etc. etc.
In general, if we set

z =a +A + A%+ A3 etc.
xlzal—l—Al—l—A%—l—A? ete.
xzzaz—l—Az—l—A%—l—Ag’ ete.

ete. ete.,

where the superscripts index the sequence of ever decreasing
corrections, then we get the A't! from the A’ according to
the equations

(00)A™! = —{(01)A] + (02)A} et}
(1)ATH = —{(10)A + (12)A} ete.}
(22) AT = —{(20)A7 + (21)A} + (23)A} etc.},

ete. ete.,

Now in the equations that come from the method of least
squares, the diagonals usually dominate; for they are sums

of squares, while the remaining coefficients arise from the
addition of positive and negative numbers, which tend to
cancel each other. Nonetheless, some of the off-diagonal el-
ements will, as a rule, assume values large enough to affect
the success of the iterative method just given. However, as I
will show in what follows, we can transform the equations by
the repetition of an easy calculation into other equations for
which the this problem grows less and less, until eventually
the equations assume a form that permits the application of
the above iterative method.

T will assume that the two off-diagonal coefficients (ik) and
(kj) are equal, something that is always true of the equations
that come from the method of least squares. I will also sup-
pose that the coefficient (01) has a significant value, whose
effect is to slow the iterative method. To annihilate this

coefficient, I set

r = cosa.n+ sina.m,
r1 = SIna.m — cos .11,
whence
(00)x 4+ (01)x1 = {(00)cos o« + (01)sin o}
+ {(00)sin o« — (01)cos e}y,
(10)x 4+ (11)2; = {(10)cos o« + (11)sin o}
+ {(10)sin v — (11)cos a}my.

I then replace the two equations

u = (00)z + (01)z1 + (02)xg etc. — (0m) = 0,
up = (10)z + (11)zy + (12)z2 ete. — (Im) =0

with two other equations:

v =cosau+ sitnauy =0,

vy = stna.u — cos a.uy = 0.
If we now determine the angle « so that
{(0,0) = (1,1)}cos o sin o = (01){ cos a* — sin a”}

or (o)

1
§tang 200 = m,
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then the two new equations become

{(00)cos a? + 2(01)cos a sin o + (11)sin a? }
+{cos a.(02)+sin ov.(12) }xotete. = cosa.(0m)+sina(lm),
{(00)sin a? — 2(01)sin o cos & + (11)cos a? }n
+{sin «.(02)—cos av.(12) }xotetc. = sina.(0m)—cosa(lm).

One can easily determine the coefficients of x4, x3, etc.
trigonometrically by means of auxiliary angles whose tan-

t 1t (12) (13) te. H t 1

ents are equal to —=, —= etc. Here one must pay close
attention to the correctness of the signs of the coefficients. In
this regard an effective check may be obtained by assuming

that in v and v; and v and v; we have

r=cosa+ sina, ® = SILQ— COSQ,

n=1mn =axy=x3 etc. = 1
and testing the equality of the values

Vv = cos a.u+ sin aug,
V1 = SN .U — COS (¥.Uq.

The coefficients of i and 7; can be represented in the fol-
lowing forms:

(00) + (11)

VR
(00) + (11)
VR

where

R= {(00)2&}2 + (01)?.

The sign of \/R depends on the the quadrant in which 2« is
taken according to the two formulas

R CURICIVICIY

sin 2o’

2c0s 2«
which at the same time provides a check.
When x and z; are replaced by n and 51, each one of the
remaining equations, such as

(20)x 4+ (21)21 + (22)22 + ete. = (2m),

1s transformed as follows:

{(20)cos o + (21)sin o}y + {(20)sin o« — (21)cos o}y
(22)xo + (23)x3 + ete. = (2m).

Since here the coefficients of n and 7; are the same as the
coefficients of x5 in the the first two transformed equations,
we see that the transformed equations retain their symmetry
about the diagonal. Therefore, to get the coefficients of 5
and 79 in the remaining equations we need only calculate
the coefficients of xs, x3, etc. in the first two equations. The

coefficients of w2, x3, etc. in the remaining equations are
unchanged, as are the constant terms.

In the transformed equation the coefficient corresponding
to (01) is zero. The sum of the diagonal coefficients remains
unchanged; i.e., (00) 4+ (11). On the other hand, the sum of
their squares increases by 2.(01)2. From this it follows that
these coefficients spread apart: the larger becomes larger and
the smaller becomes smaller. However, provided the coeffi-
cients of the equations are formed as they are in applications
of the method of least squares, the smaller coefficient can
never vanish. Specifically, the product of the two coefficients

{M} - R=(00)(11) - (01)*.

18

Hence 1if we set

(00) =aa + 88 47y +066 etc.
(11) = a1y + B151 + 1171 + 6167 ete.
(01) =aay + 661 +911 + 661 ete.

the product is always the quantity

(00)(11) — (01)* = X(afy — Baz)?,
which is positive. For the above sum consists of all squares
formed pairwise from the elements «, 3, v, é, etc. and cannot
be zero unless the quantities «, 3, v, §, etc. are all propor-
tional to the quantities «q, f1, 71, 61, ete.

The sum of squares of the coefficients of x5, of x3, etc. —
(02)24+(12)2, (03)2+(13)?, etc. — are also unchanged in the
two transformed equations. Likewise each of the remaining
equations the sum of squares of the the coefficients of 7 and
71 are the same as those of # and z; in the original sys-
tem. The sum of squares of the off-diagonal coefficients thus
decreases by 2(01)?, which is the same quantity by which
the sum of squares of the two diagonal coefficients increases.
Hence the sum of squares of all the coefficients remains un-
changed, which is also true of the sum of squares of the con-
stant terms. From this we see the following. Suppose that
we treat the transformed system in a similar way, applying
transformations several times one after the other while each
time removing the most influential off-diagonal coefficient.
Then in the last system so obtained

1) the sum of the diagonal coefficients, the sum of squares
of all the coefficients, and the sum of squares of the
constant terms are all the same as in the original system:;

2) the sum of squares of the diagonal coefficients increases,
and the sum of squares of the off-diagonal coefficients
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decreases by the same amount: namely, twice the sum
of squares of of the coefficients that were annihilated by
the individual transformations.

In this way we can transform the equations to be solved
in the application of the method of least squares into other
equations that permit the use of the iterative method given
at the outset.

transforming indefinitely, always annihilating the largest off-

In fact, it is easy to show that if we keep

diagonal coefficient, we can make the off-diagonal coefficients
smaller than any given quantity. However, at a certain point,
which is best left to the judgement of the calculator, it will
If this is

done too early, the iteration method itself will show which

be profitable to switch to the iterative method.

coefficient 1s making the results uncertain and hence must be
annihilated by new transformations.

Since np+ mn1 = xx + x121 and the remaining unknowns
xs, x3 etc. remain unaltered by the transformation, the sum
of squares of all the unknowns retain the value throughout
the successive transformations. If we denote by s, s1, s etc.
the unknowns of the system we arrive at after several suc-
cessive transformations, then

1) rxr + x1x1 + Toxs etc. = ss+ 5151 + s959 etc.

If we collect all the successive substitutions into a single one,
so that the original unknowns z, x;, xy etc. are expressed
in terms of s, sy, sy etc. from the last equation, then this
same formula immediately gives the values of s, s1, so etc.
in terms of x, x1, ¥ etc. Namely, if we have

2) x =as+bs;+cs2 ete,

x1 = ai1s + bisy + c1s9 ete.,

XTo = ass + basy + cosq et
ete. ete.

it follows from equation 1), which must must remain an iden-
tity under this substitution, that

s (ax + a1y + azws etc.)
+s1(bx + bizy + bawa etc.)
+sa(cx + 11 + cawa etc.)

etc. etc. = ss 4+ 5181 + sos9 + etc.
Hence,
s =ax + ay1xy + asxa + ete.
s = bx + biwy + bawy + ete.
s3 =cx + c1x1 + caxs + ete.
ete. ete.
In order to have a check, we can derive the last system of
equations all at once from the original by the single substi-

tution 2). Namely, denote the original system of equations
as above by

u=0, u =0, ,us=0, etec,

By means of 2), introduce the quantities s, s1, s5 ete. in place
of ¥, xq, x5 etc., and then form the equations

3) au + aju; + asus ete. =0,
bu + biuy + bsus etc. =0,
cu + ciug + coug ete. =0,

etc. etc.

which are the equations finally obtained from the successive
transformations. Alternatively one can first form the equa-
tion 3) from the original equations and then by means of 2)
introduce the quantities s, s1, s» etc. as unknowns. Relations
holding between the coefficients, such as

aa + ayay + asas etc. =1,
aa + ayay + asas etc. =0,

etc. etc.
aa +bb  +ecc  etc. =1,
aa; + bby +ccqy  ete. =0,
etc. etc.

can also serve as checks that can be applied everywhere and
in very many ways. In any case one will do well not to start
applying the iterative method before convincing himself of
the of the correspondence between last equations and the
original. And it is a good idea to carry out the calculations
necessary to form the equations in higher precision. If the
equations divide into several groups that are connected to
each other by only a few unknowns, as is case for large tri-
angular networks, the substitution 3) will also divide into
corresponding groups.

I will now briefly sketch how the method followed here can
be extended to linear systems that are not symmetric about
the diagonal; i.e., systems for which (ik) = (ki) does not
hold. However, it is essential for the success of the method
that the two coefficients (ik) and (ki) not differ too greatly
from one another — or rather that when they have significant
values they at least have the same signs. I will content myself
with writing down the results.

The system of equations is once again

u = (00)z + (01)zy + (02)xs etc. — (0m)
up = (10)z + (11)zy + (12)z2 etc. — (1m)
uz = (20)z + (21)z1 + (22)x2 etc. — (2m)

etc. etc.

Il
o o o
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If the coefficients (01) and (10) have significant values, T set

cos 2A.x = cos(a+ A).p + sin(a — A).y,
cos 2A.x1 = sin(a + A).p — cos(a — A).m,

where the angles o and A are determined by the equations

pcos2a = (00) — (11),
psin2a = (01) + (10),
psin2A = (10) — (01).
Setting
v = cos(o — A)u + sin(a — A).uy,
v1 = sin(a+ A).u — cos(a + A).ug,
I replace the first two equations with v = 0, 1 = 0, so that
the transformed system is the following:

v=0, =0 ,u=0, ,uz=0, etc.

In the equation v = 0 the coefficient of 7; vanishes; in the
equation vy = 0 the coefficient of 1 vanishes. If we set

v =[00ln+ * +[02]xs + [03]zs etc.,

+ [11]m + [12]xo + [13]z3 etc.,

uz = [20]n + [21]m + [22]x2 + [23]23 etc.,
etc. etc.

vV, = *

then we have

From these formulas it follows that
[00] 4 [11] = (00) + (11),
[00]? + [11]% = (00)% 4 (11)* + 2(01)(10),
[02][20] + [12][21] = (02)(20) + (12)(21)

These equations show that however many times the trans-
formation is successively applied the sums

remain unchanged. Moreover the second sum remains un-
changed in such a way that ¥.(ii)? is always larger and
2% (ik)(ik) is always smaller by twice the product of the two
coefficients annihilated by the transformation in question.
Having reducted the off-diagonal coefficients sufficiently by

repeating the transformation, we can apply the iterative
method I described at the outset.

The method given here can be used with even greater profit
when the equations to be solved have the following form:

{(00) — G} + (01)xy + (02)x2 etc. =0,
(10)x + {(11) — G}ay + (12)z2 etc. =0,
(20)x + (21)x1 + {(22) — G}ws ete. = 0.

As is well known, by eliminating the unknowns z, 1, 2, etc.
one gets a higher equation whose roots are the various values
of . For each of these values we must determine the ratios
of x, x1, ®9, etc. In this case the preliminary transformations
turn out to be the same for all the systems corresponding to
the various values of (G, and they give these values directly
and with increasing accuracy, without the necessity of form-
ing the the higher equation. Thereafter a method similar to
the one described at the outset gives the small corrections in
the values of G and the ratios of the unknowns corresponding
to these values. Here I will content myself with the above
sketch, since the method and its application to the secular
perturbations of the seven chief planets will be presented in
another paper. There it will be seen from the calculations my
learned friend Herr Dr. Seid{ has so carefully performed that
owing to the speed and stability with which one arrives at an
accurate approximation to the final results the method has
noteworthy advantages over the one used by Herr Leverrier.

The application of the method to the equations given in
the Theoria motus p. 219 will serve as an example here. The
original equations are

27p+ 6g 4+ *xr— 88 =0
6p+1bg+ r— 70=0
*p+ ¢+ 54— 107=0.

If the coefficient 6 of ¢ in the first equation is eliminated,
then o = 22°30’. Hence

p=0,92390y + 0, 38268y’
g = 0,38268y — 0, 92390y

and the new equations are

29,4853y + o +0,38268r — 108,0901 = 0
oy 4+ 12,5147y — 0,92390r + 30,9967 = 0
0,38268y — 0, 92390y’ + Hdr — 107 =0

From them comes the first approximation

logy = 0,56419
logy = 0,39389n
logr =0,29699.
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The second approximation

logy = 0,56114
logy = 0,36746n
logr =0,28174.

After two more easy corrections, we get the exact values
logy = 0,56125

logy = 0,36836n
logr = 0,28233,

from which come the values

logp = 0,39276
logq = 0,55036
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The weights of y, 3/, and r are very near the coefficients on
the diagonal. In fact, from them one obtains the logarithms
of the weights of

Do 1,39092
g e 1,13565
o 1,73239

which are very near the true weights.

Berlin Nov. 17 1844 C. G. J. Jacobu.



