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A S T R O N O M I S C H E N A C H R I C H T E N.No. 523On a New Way of Solving the Linear Systems that Arise in the Method of LeastSquaresThe burden of solving exactly a large number of linear equa-tions|the method of least squares leads to such equationsin many cases|has caused people to consider the use of it-erative methods. One such method naturally presents itselfwhen a di�erent variable in each equation is multiplied by apre-eminently large coe�cient. Speci�cally, let the equationsbe (00)x + (01)x1 + (02)x2 etc: = (0m)(10)x + (11)x1 + (12)x2 etc: = (1m)(20)x + (21)x1 + (22)x2 etc: = (2m)etc: etc: etc:;and let all the coe�cients (ik) be small compared to thediagonal coe�cient (ii). Then we can get approximations tothe unknowns x, x1, x2, etc. from the equations(00)x = (0m); (11)x1 = (1m); (22)x1 = (2m); etc:If we denote these values by a, a1, a2, etc., we obtain their�rst corrections, which I denote by �, �1, �2, etc., from theequations (00)� = �f(01)a2 + (02)a2 etc:g(11)�1 = �f(10)a + (12)a2 etc:getc: etc:In general, if we setx = a + � + �2 + �3 etc:x1 = a1 + �1 + �21 + �31 etc:x2 = a2 + �2 + �22 + �32 etc:etc: etc:;where the superscripts index the sequence of ever decreasingcorrections, then we get the �i+1 from the �i according tothe equations(00)�i+1 = �f(01)�i1 + (02)�i2 etc.g(11)�i+11 = �f(10)�i + (12)�i2 etc.g(22)�i+11 = �f(20)�i + (21)�i1 + (23)�i3 etc:g;etc: etc:;Now in the equations that come from the method of leastsquares, the diagonals usually dominate; for they are sums

of squares, while the remaining coe�cients arise from theaddition of positive and negative numbers, which tend tocancel each other. Nonetheless, some of the o�-diagonal el-ements will, as a rule, assume values large enough to a�ectthe success of the iterative method just given. However, as Iwill show in what follows, we can transform the equations bythe repetition of an easy calculation into other equations forwhich the this problem grows less and less, until eventuallythe equations assume a form that permits the application ofthe above iterative method.I will assume that the two o�-diagonal coe�cients (ik) and(kj) are equal, something that is always true of the equationsthat come from the method of least squares. I will also sup-pose that the coe�cient (01) has a signi�cant value, whosee�ect is to slow the iterative method. To annihilate thiscoe�cient, I set x = cos �:� + sin �:�1;x1 = sin �:� � cos �:�1;whence(00)x+ (01)x1 = f(00)cos �+ (01)sin �g�+ f(00)sin �� (01)cos �g�1;(10)x+ (11)x1 = f(10)cos �+ (11)sin �g�+ f(10)sin �� (11)cos �g�1:I then replace the two equationsu = (00)x + (01)x1 + (02)x2 etc: � (0m) = 0;u1 = (10)x + (11)x1 + (12)x2 etc: � (1m) = 0with two other equations:� = cos �:u + sin �:u1 = 0;�1 = sin �:u � cos �:u1 = 0:If we now determine the angle � so thatf(0; 0)� (1; 1)gcos � sin � = (01)fcos �2 � sin �2gor 12tang 2� = (01)(00)� (11) ;



299 Nr. 523 300then the two new equations becomef(00)cos �2 + 2(01)cos � sin �+ (11)sin �2g�+fcos �:(02)+sin �:(12)gx2+etc: = cos�:(0m)+sin�(1m);f(00)sin �2 � 2(01)sin � cos �+ (11)cos �2g�+fsin �:(02)�cos �:(12)gx2+etc: = sin�:(0m)�cos�(1m):One can easily determine the coe�cients of x2, x3, etc.trigonometrically by means of auxiliary angles whose tan-gents are equal to (12)(02) , (13)(03) , etc. Here one must pay closeattention to the correctness of the signs of the coe�cients. Inthis regard an e�ective check may be obtained by assumingthat in u and u1 and � and �1 we havex = cos �+ sin �; x1 = sin �� cos �;� = �1 = x2 = x3 etc: = 1and testing the equality of the values� = cos �:u+ sin �:u1;�1 = sin �:u� cos �:u1:The coe�cients of � and �1 can be represented in the fol-lowing forms: (00) + (11)2 +pR;(00) + (11)2 �pR;where R = � (00)� (01)2 �2 + (01)2:The sign ofpR depends on the the quadrant in which 2� istaken according to the two formulaspR = (00)� (01)2cos 2� = (01)sin 2�;which at the same time provides a check.When x and x1 are replaced by � and �1, each one of theremaining equations, such as(20)x+ (21)x1 + (22)x2 + etc: = (2m);is transformed as follows:f(20)cos �+ (21)sin �g� + f(20)sin �� (21)cos �g�1(22)x2 + (23)x3 + etc: = (2m):Since here the coe�cients of � and �1 are the same as thecoe�cients of x2 in the the �rst two transformed equations,we see that the transformed equations retain their symmetryabout the diagonal. Therefore, to get the coe�cients of �and �2 in the remaining equations we need only calculatethe coe�cients of x2, x3, etc. in the �rst two equations. The

coe�cients of x2, x3, etc. in the remaining equations areunchanged, as are the constant terms.In the transformed equation the coe�cient correspondingto (01) is zero. The sum of the diagonal coe�cients remainsunchanged; i.e., (00) + (11). On the other hand, the sum oftheir squares increases by 2:(01)2. From this it follows thatthese coe�cients spread apart: the larger becomes larger andthe smaller becomes smaller. However, provided the coe�-cients of the equations are formed as they are in applicationsof the method of least squares, the smaller coe�cient cannever vanish. Speci�cally, the product of the two coe�cientsis � (00)� (01)2 �2 �R = (00)(11)� (01)2:Hence if we set(00) = �� + �� + 

 + �� etc:(11) = �1�1 + �1�1 + 
1
1 + �1�1 etc:(01) = ��1 + ��1 + 

1 + ��1 etc:the product is always the quantity(00)(11)� (01)2 = �(��1 � ��1)2;which is positive. For the above sum consists of all squaresformed pairwise from the elements �, �, 
, �, etc. and cannotbe zero unless the quantities �, �, 
, �, etc. are all propor-tional to the quantities �1, �1, 
1, �1, etc.The sum of squares of the coe�cients of x2, of x3, etc.|(02)2+(12)2, (03)2+(13)2, etc.|are also unchanged in thetwo transformed equations. Likewise each of the remainingequations the sum of squares of the the coe�cients of � and�1 are the same as those of x and x1 in the original sys-tem. The sum of squares of the o�-diagonal coe�cients thusdecreases by 2(01)2, which is the same quantity by whichthe sum of squares of the two diagonal coe�cients increases.Hence the sum of squares of all the coe�cients remains un-changed, which is also true of the sum of squares of the con-stant terms. From this we see the following. Suppose thatwe treat the transformed system in a similar way, applyingtransformations several times one after the other while eachtime removing the most in
uential o�-diagonal coe�cient.Then in the last system so obtained1) the sum of the diagonal coe�cients, the sum of squaresof all the coe�cients, and the sum of squares of theconstant terms are all the same as in the original system;2) the sum of squares of the diagonal coe�cients increases,and the sum of squares of the o�-diagonal coe�cients



301 Nr. 523 302decreases by the same amount: namely, twice the sumof squares of of the coe�cients that were annihilated bythe individual transformations.In this way we can transform the equations to be solvedin the application of the method of least squares into otherequations that permit the use of the iterative method givenat the outset. In fact, it is easy to show that if we keeptransforming inde�nitely, always annihilating the largest o�-diagonal coe�cient, we can make the o�-diagonal coe�cientssmaller than any given quantity. However, at a certain point,which is best left to the judgement of the calculator, it willbe pro�table to switch to the iterative method. If this isdone too early, the iteration method itself will show whichcoe�cient is making the results uncertain and hence must beannihilated by new transformations.Since ��+ �1�1 = xx+x1x1 and the remaining unknownsx2, x3 etc. remain unaltered by the transformation, the sumof squares of all the unknowns retain the value throughoutthe successive transformations. If we denote by s, s1, s2 etc.the unknowns of the system we arrive at after several suc-cessive transformations, then1) xx+ x1x1 + x2x2 etc: = ss + s1s1 + s2s2 etc:If we collect all the successive substitutions into a single one,so that the original unknowns x, x1, x2 etc. are expressedin terms of s, s1, s2 etc. from the last equation, then thissame formula immediately gives the values of s, s1, s2 etc.in terms of x, x1, x2 etc. Namely, if we have2) x = a s + b s1 + c s2 etc:;x1 = a1s + b1s1 + c1s2 etc:;x2 = a2s + b2s1 + c2s2 etc:;etc: etc:it follows from equation 1), which must must remain an iden-tity under this substitution, thats (ax + a1x1 + a2x2 etc:)+s1(bx + b1x1 + b2x2 etc:)+s2(cx + c1x1 + c2x2 etc:)etc: etc: = ss + s1s1 + s2s2 + etc:Hence, s = ax + a1x1 + a2x2 + etc:s2 = bx + b1x1 + b2x2 + etc:s3 = cx + c1x1 + c2x2 + etc:etc: etc:In order to have a check, we can derive the last system ofequations all at once from the original by the single substi-

tution 2). Namely, denote the original system of equationsas above by u = 0; u1 = 0; ; u2 = 0; etc:;By means of 2), introduce the quantities s, s1, s2 etc. in placeof x, x1, x2 etc., and then form the equations3) au + a1u1 + a2u2 etc: = 0;bu + b1u1 + b2u2 etc: = 0;cu + c1u1 + c2u2 etc: = 0;etc: etc:which are the equations �nally obtained from the successivetransformations. Alternatively one can �rst form the equa-tion 3) from the original equations and then by means of 2)introduce the quantities s, s1, s2 etc. as unknowns. Relationsholding between the coe�cients, such asaa + a1a1 + a2a2 etc: = 1;aa + a1a1 + a2a2 etc: = 0;etc: etc:aa + bb + cc etc: = 1;aa1 + bb1 + cc1 etc: = 0;etc: etc:can also serve as checks that can be applied everywhere andin very many ways. In any case one will do well not to startapplying the iterative method before convincing himself ofthe of the correspondence between last equations and theoriginal. And it is a good idea to carry out the calculationsnecessary to form the equations in higher precision. If theequations divide into several groups that are connected toeach other by only a few unknowns, as is case for large tri-angular networks, the substitution 3) will also divide intocorresponding groups.I will now brie
y sketch how the method followed here canbe extended to linear systems that are not symmetric aboutthe diagonal; i.e., systems for which (ik) = (ki) does nothold. However, it is essential for the success of the methodthat the two coe�cients (ik) and (ki) not di�er too greatlyfrom one another|or rather that when they have signi�cantvalues they at least have the same signs. I will content myselfwith writing down the results.The system of equations is once againu = (00)x + (01)x1 + (02)x2 etc: � (0m) = 0u1 = (10)x + (11)x1 + (12)x2 etc: � (1m) = 0u2 = (20)x + (21)x1 + (22)x2 etc: � (2m) = 0etc: etc:



303 Nr. 523 304If the coe�cients (01) and (10) have signi�cant values, I setcos 2�:x = cos(�+�):� + sin(���):�1;cos 2�:x1 = sin(�+�):� � cos(���):�1;where the angles � and � are determined by the equations� cos 2� = (00) � (11);� sin 2� = (01) + (10);� sin 2� = (10) � (01):Setting � = cos(���):u + sin(���):u1;�1 = sin(�+�):u � cos(�+�):u1;I replace the �rst two equations with � = 0, �1 = 0, so thatthe transformed system is the following:� = 0; �1 = 0; ; u2 = 0; ; u3 = 0; etc:In the equation � = 0 the coe�cient of �1 vanishes; in theequation �1 = 0 the coe�cient of � vanishes. If we set� = [00]� + � + [02]x2 + [03]x3 etc:;�1 = � + [11]�1 + [12]x2 + [13]x3 etc:;u2 = [20]� + [21]�1 + [22]x2 + [23]x3 etc:;etc: etc:then we have[00] = (00) + (11)2 + �2 cos 2�;[11] = (00) + (11)2 � �2 cos 2�;[02] = cos(���)(02) + sin(���)(12);[12] = sin(�+�)(02)� cos(�+�)(12);cos 2� [20] = cos(�+�)(20) + sin(�+�)(21);cos 2� [21] = sin(���)(20)� cos(���)(21):From these formulas it follows that[00] + [11] = (00) + (11);[00]2 + [11]2 = (00)2 + (11)2 + 2(01)(10);[02][20]+ [12][21] = (02)(20) + (12)(21)These equations show that however many times the trans-formation is successively applied the sums�[ii]; �f(ii)(ii) + 2(ik)(ki)gremain unchanged. Moreover the second sum remains un-changed in such a way that �:(ii)2 is always larger and2�(ik)(ik) is always smaller by twice the product of the twocoe�cients annihilated by the transformation in question.Having reducted the o�-diagonal coe�cients su�ciently byrepeating the transformation, we can apply the iterativemethod I described at the outset.

The method given here can be used with even greater pro�twhen the equations to be solved have the following form:f(00)�Ggx+ (01)x1 + (02)x2 etc: = 0;(10)x+ f(11)�Ggx1 + (12)x2 etc: = 0;(20)x+ (21)x1 + f(22)�Ggx2 etc: = 0:As is well known, by eliminating the unknowns x, x1, x2, etc.one gets a higher equation whose roots are the various valuesof G. For each of these values we must determine the ratiosof x, x1, x2, etc. In this case the preliminary transformationsturn out to be the same for all the systems corresponding tothe various values of G, and they give these values directlyand with increasing accuracy, without the necessity of form-ing the the higher equation. Thereafter a method similar tothe one described at the outset gives the small corrections inthe values ofG and the ratios of the unknowns correspondingto these values. Here I will content myself with the abovesketch, since the method and its application to the secularperturbations of the seven chief planets will be presented inanother paper. There it will be seen from the calculations mylearned friend Herr Dr. Seidl has so carefully performed thatowing to the speed and stability with which one arrives at anaccurate approximation to the �nal results the method hasnoteworthy advantages over the one used by Herr Leverrier .The application of the method to the equations given inthe Theoria motus p. 219 will serve as an example here. Theoriginal equations are27p + 6q + �r � 88 = 06p + 15q + r � 70 = 0� p + q + 54 � 107 = 0:If the coe�cient 6 of q in the �rst equation is eliminated,then � = 22�300. Hencep = 0; 92390y + 0; 38268y0q = 0; 38268y � 0; 92390y0and the new equations are29; 4853y + � y0 + 0; 38268r � 108; 0901 = 0� y + 12; 5147y0 � 0; 92390r + 30; 9967 = 00; 38268y � 0; 92390y0 + 54r � 107 = 0From them comes the �rst approximationlog y = 0; 56419log y0 = 0; 39389nlog r = 0; 29699:



305 Nr. 523 306The second approximationlog y = 0; 56114log y0 = 0; 36746nlog r = 0; 28174:After two more easy corrections, we get the exact valueslog y = 0; 56125log y0 = 0; 36836nlog r = 0; 28233;from which come the valueslog p = 0; 39276log q = 0; 55036
The weights of y, y0, and r are very near the coe�cients onthe diagonal. In fact, from them one obtains the logarithmsof the weights of p : : : : : : : : : 1; 39092q : : : : : : : : : 1; 13565r : : : : : : : : : 1; 73239which are very near the true weights.Berlin Nov. 17 1844 C. G. J. Jacobi.


