
Interprocedural Data Flow Based Optimizations for DistributedMemory CompilationGagan Agrawal and Joel SaltzUMIACS and Department of Computer ScienceUniversity of MarylandCollege Park, MD 20742(301)-405-2756fgagan, saltzg@cs.umd.eduAbstractData parallel languages like High Performance Fortran (HPF) are emerging as the ar-chitecture independent mode of programming distributed memory parallel machines. In thispaper, we present the interprocedural optimizations required for compiling applications havingirregular data access patterns, when coded in such data parallel languages. We have devel-oped an Interprocedural Partial Redundancy Elimination (IPRE) algorithm for optimizedplacement of runtime preprocessing routine and collective communication routines insertedfor managing communication in such codes. We also present three new interprocedural opti-mizations: placement of scatter routines, deletion of data structures and use of coalescing andincremental routines. We then describe how program slicing can be used for further applyingIPRE in more complex scenarios. We have done a preliminary implementation of the schemespresented here using the Fortran D compilation system as the necessary infrastructure. Wepresent experimental results from two codes compiled using our system to demonstrate thee�cacy of the presented schemes.1 IntroductionIn recent years, there have been major e�orts in developing language and compiler supportfor programming distributed memory machines. High Performance Fortran (HPF) consists ofFortran 90 extensions designed to allow users to specify parallelism and data distributions ina high level manner. The �rst round of HPF language de�nition has been completed [28] andmany commercial HPF compiler development projects are currently underway. E�orts are alsounderway in the High Performance Fortran Forum to increase the scope of HPF for compiling awider range of applications.Traditionally, data parallel programming languages like HPF are considered to be most suitedfor compiling regular or structured mesh applications, in which loop partitioning and commu-nication can be statically determined by the compiler. However, signi�cant e�ort has also beenmade to compile applications having irregular and/or dynamic data accesses (possibly with thehelp of additional language support) [7, 14, 23, 29, 30, 31, 34, 38]. For such codes, the compiler1

can analyze the data access pattern and insert appropriate communication and communicationpreprocessing routines.Recent work has demonstrated that sophisticated compilation techniques can play a crucialrole in optimizing performance obtained from irregular codes [14, 24]. Thus far, experiencesand experimental results reported have been from small code templates. We anticipate that theability to apply optimizations across procedure boundaries will prove to be extremely importantin generating e�cient parallel code in large applications.In this paper, we discuss the interprocedural analysis and optimizations for compiling irregularapplications. Speci�cally, we concentrate on applications in which data is accessed using indirec-tion arrays. Such codes are common in computational uid dynamics, molecular dynamics, inParticle In Cell (PIC) problems and in numerical simulations [11].The commonly used approach for compiling irregular applications is the inspector/executormodel [29]. Conceptually, an inspector or a communication preprocessing statement analyzes theindirection array to determine the communication required by a data parallel loop. The resultsof communication preprocessing is then used to perform the communication. CHAOS/PARTIlibrary provides a rich set of routines for performing the communication preprocessing and opti-mized communication for such applications [35]. The Fortran D compilation system, a prototypecompiler for distributed memory machines, initially targeted regular applications [26] but hasmore recently been extended to compile irregular applications [14, 23]. In compiling irregularapplications, the Fortran D compiler inserts calls to CHAOS/PARTI library routines to managecommunication [14, 22].An important optimization required for irregular applications is placement of communicationpreprocessing and communication statements. Techniques for performing these optimizationswithin a single procedure are well developed [18, 24]. The key idea underlying these schemesis to do the placement so that redundancies are reduced or eliminated. These schemes arebased upon a classical data ow framework called Partial Redundancy Elimination (PRE) [16,32]. PRE encompasses traditional optimizations like loop invariant code motion and redundantcomputation elimination.We have developed an Interprocedural Partial Redundancy Elimination framework (IPRE) [1,2] as a basis for performing interprocedural placement. In this paper, we discuss various prac-tical aspects in applying interprocedural partial redundancy elimination for placement of com-munication and communication preprocessing statements. We also present a number of otherinterprocedural optimizations useful in compiling irregular applications, this includes placementof scatter operations, deletion of data structures constructed at runtime and use of incrementaland coalescing routines. While none of these optimizations can be directly achieved by the basicIPRE scheme, they can be achieved through extending the IPRE scheme or by using a variationof the IPRE analysis. We then discuss how the notion of program slicing can be used for increas-ing the scope of IPRE. We also discuss a related issue of ordering application of IPRE on variouscandidates within a single procedure.We have carried out a preliminary implementation of the schemes presented in this paper,2

using the existing Fortran D compilation system as the necessary infrastructure. We presentexperimental results from the codes compiled using the prototype compiler to demonstrate thee�ectiveness of our methods.While several details and examples presented in this paper speci�cally concentrate on codeswhich use indirection arrays, the general ideas broadly apply to all applications in which com-munication preprocessing calls are inserted and/or collective communication routines are used.We have shown in our previous work how communication preprocessing is useful in regular ap-plications in which data distribution, strides and/or loop bounds are not known at compile-time [3, 5, 4, 36] or when the number of processors available for the execution of the programvaries at runtime [17].The rest of the paper is organized as follows. In Section 2, we discuss the basic IPREframework. In Section 3, we present several new optimizations required for compiling irregularapplications. In Section 4, we discuss modi�cations and extensions required in IPRE framework,in applying it for placement of communication preprocessing statements in some more complexscenarios. An overall compilation algorithm is presented in Section 5. We present experimentalresults in Section 6. We briey compare our work with related work in Section 7 and concludein Section 8.2 Partial Redundancy EliminationMost of the interprocedural optimizations required for irregular applications involve some kind ofredundancy elimination or loop invariant code motion. Partial Redundancy Elimination (PRE)is a uni�ed framework for performing these optimizations intraprocedurally [16, 32]. It has beencommonly used intraprocedurally for performing optimizations like common subexpression elimi-nation and strength reduction. More recently, it has been used for more complex code placementtasks like placement of communication statements while compiling for parallel machines [18, 24].We have extended an existing intraprocedural partial redundancy scheme to be applied interpro-cedurally [1, 2]. In this section, we describe the functionality of the PRE framework, key data owproperties associated with it and briey sketch how we have extended an existing intraproceduralscheme interprocedurally.Consider any computation of an expression or a call to a pure function. In the program text,we may want to optimize its placement, i.e. place the computation so that the result of thecomputation is used as often as possible and, redundant computations are removed. For conve-nience, we refer to any such computation whose placement we want to optimize as a candidate.If this candidate is an expression, we refer to the operands of the expression as inuencers of thecandidate. If this candidate is a pure function, we refer to the parameters of the pure functionas the inuencers of the candidate.There are three type of optimizations which are performed under PRE:� Loop invariant Code Motion: If the inuencers of a candidate are all invariant in the loop,then the candidate can be computed just once, before entering the loop.3

(a) A = ... A ...Do i = 1, 20� � �R = A * B� � �Enddo#A = ... A ...H = A * BDo i = 1, 20� � �R = H� � �Enddo
(b) A = ... A ...R = A * B� � �S = A * B� � �#A = ... A ...H = A * BR = H� � �S = H� � �

(c) A = ... A ...R = A*B� � �If fooA = ... A ...Endif� � �S = A*B#A = ... A ...H = A*BR = H� � �If fooA = ... A ...H = A*BEndif� � �S = H� � �Figure 1: Examples of functionality of Partial Redundancy Elimination. (a): Loop invariant codemotion, (b): Redundant code elimination, (c): Supressing partial redundancies� Redundant Computation Elimination: We may �nd two consecutive occurrences of a com-putation, such that none of inuencers of the candidate are modi�ed along any control owpath from the �rst occurrence to the second occurrence. In this case, the second occurrenceis redundant and is deleted as part of the PRE framework.� Suppressing Partial Redundancies: We may �nd two consecutive occurrences of a compu-tation such that one or more inuencers are modi�ed along some possible control ow path(but not all ow paths) from the �rst occurrence to the second occurrence. In this case,the second occurrence of the candidate is called partially redundant. By placing candidatesalong the control ow paths associated with the modi�cation, the partially redundant com-putation can be made redundant and thus be deleted.Figure 1 explains the functionality of PRE through small code templates. In 1(a), if theinuencers A and B are not modi�ed inside the loop, then the computation A�B is loop invariantand can be placed before entering the loop. In 1(b), if the inuencers A and B are not modi�edbetween the two computations of A � B, then the second computation is redundant and can bereplaced. In 1(c), the second computation of A �B is partially redundant. This is because if foois true, then the inuencer A is modi�ed, and the second computation of A �B is not redundant(since this computation will give di�erent answer than the �rst computation). If foo is nottrue, then A is not modi�ed, and the second computation is redundant. In this case, additional4

placement of the computation A�B can be carried out to make the partially redundant occurrencefully redundant. This is termed as suppressing partial redundancies.We now introduce the key data ow properties that are computed as part of this framework.We use these terms for explaining several new optimizations later in the paper. The propertiesare:� Availability: Availability of a candidate C at any point p in the program means that C lieson each of the paths leading to point p and if C were to be placed at point p, C will havethe same result as the result of the last occurrence on any of the paths.� Partial Availability: Partial availability of a candidate C at a point p in the program meansthat C is currently placed on at least one control ow path leading to p and if C were tobe placed at the point p, C will have the same result as the result of the last occurrence onat least one of the paths.� Anticipability: Anticipability of a candidate C at a point p in the program means that C iscurrently placed on all the paths leading from point p, and if C were to be placed at pointp, C will have the same result as the result of the �rst occurrence on any of the paths.� Transparency Transparency of a basic block with respect to a candidate means that noneof the inuencers of the candidate are modi�ed in the basic block.A basic block of code in a procedure is a sequence of consecutive statements in a procedurein the ow enters at the beginning and leaves at the end without possibility of branching expectat the end [6].If a candidate is placed at a point p in the program, and if it is available at the point p, thenthe occurrence of the candidate at the point p is redundant. If a candidate is placed at a pointp in the program, and if it is partially available at the point, then it is considered to be partiallyredundant. Anticipability of a computation is used for determining if the placement will be safe.A Safe placement means that at least one occurrence of the candidate will be made redundant bythis new placement (and will consequently be deleted). Performing safe placements guaranteesthat along any path, number of computations of the candidate are not increased after applyingoptimizing transformations.By solving data ow equations on the Control Flow Graph (CFG) of a procedure, the Avail-ability, Partial Availability and Anticipability properties are computed at the beginning and endof each basic block in the procedure. Transparency is used for propagating these properties, e.g.if a candidate is available at the beginning of a basic block and if the basic block is transparentwith respect to this candidate, then the candidate will be available at the end of the basic blockalso.Based upon the above data ow properties, another round of data ow analysis is done todetermine properties PPIN (possible placement at the beginning) and PPOUT (possible place-ment at the end). These properties are then used for determining �nal placement and deletionof the candidates. We do not present the details of data ow equations in the paper.5

Our interest is in applying the PRE framework for optimizing placement of communicationpreprocessing statements and collective communication statements. The �rst step in this directionwas to extend the existing PRE framework interprocedurally. For applying this transformationacross procedure boundaries, we need a full program representation. We have chosen a concise fullprogram representation, which will allow e�cient data ow analysis, while maintaining su�cientprecision to allow useful transformations and to ensure safety and correctness of transformations.2.1 Program RepresentationIn traditional interprocedural analysis, program is abstracted by a call graph [19, 20]. In a callgraph G = (V;E), V is the set of procedures and directed edge e = (i; j) (e 2 E) represents a callsite in which procedure i invokes procedure j. The limitation of call graph is that no informationis available about control ow relationships between various call sites within a procedure. Wehave developed a new program representation called Full Program Representation (FPR). In thissubsection we describe how this structure is constructed for any program.We de�ne a basic block to consist of consecutive statements in the program text withoutany procedure calls or return statements, and no branching except at the beginning and end. Aprocedure can then be partitioned into a set of basic blocks, a set of procedure call statements anda set of return statements. A return statement ends the invocation of procedure or subroutinecall.In our program representation, the basic idea is to construct blocks of code within each pro-cedure. A block of code comprises of basic blocks which do not have any call statements betweenthem. In the directed graph we de�ne below, each edge e corresponds to a block of code B(e).A block of code is a unit of placement in our analysis, i.e. we initially consider placement onlyat the beginning and end of a block of code. The nodes of the graph help clarify the control owrelationships between the blocks of code.Full Program Representation: (FPR) is a directed multigraph G = (V;E), where the setof nodes V consists of an entry node and a return node for each procedure in the program. Forprocedure i, the entry node is denoted by si and the return node is denoted by ri. Edges areinserted in the following cases:1. Procedures i and j are called by procedure k at call sites cs1 and cs2 respectively and thereis a path in the CFG of k from cs1 to cs2 which does not include any other call statements.Edge (ri; sj) exists in this case. The block of code B(e) consists of the basic blocks ofprocedure k which may be visited in any control ow path p from cs1 to cs2, such that thepath p does not include any other call statements.2. Procedure i calls procedure j at call site cs and there is a path in the CFG of i from thestart node of procedure i to cs which does not include any other call statements. In thiscase, edge (si; sj) exists. The block of code B(e) consists of the basic blocks of procedure iwhich may be visited in any control ow path p from start of i to cs, such that the path pdoes not include any other call statement.6

Program ExampleReal X(nnodes), Y(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges), IB(nedges)C Input data ...do 10 i = 1, 20Call Proc A(X,Y,Z,IA,IB)if (nt .gt. 0) thenCall Proc B(X,W,IA)endifdo 50 j = 1, nedgesIB(j) = .. IB(j) ..50 continue10 continueendSubroutine Proc A(A,B,C,D,E)do 20 i = 1, nedgesC(i) = C(i) + A(D(i))20 continuedo 30 i = 1, nedgesC(i) = C(i) + B(E(i))30 continuedo 35 i = 1, nnodesB(i) = ...35 continueendSubroutine Proc B(X,W,IA)do 40 i = 1, nedgesW(i) = W(i) + X(IA(i))40 continuedo 45 i = 1, nnodesX(i) = ...45 continueendFigure 2: An Irregular Code
Procedure Entry Node

Procedure Return Node

Main

Proc_A

Proc_A

Proc_B

Proc_B

Main

Figure 3: FPR for the example program
7

3. Procedure j calls procedure i at call site cs and there is a path in the CFG of j from callsite cs to a return statement within procedure j which does not include any other callstatements. In this case, edge (ri; rj) exists. The block of code B(e) consists of the basicblocks of procedure j which may be visited in any control ow path p from cs to a returnstatement of j, such that the path p does not include any call statements.4. In a procedure i, there is a possible ow of control from start node to a return statement,without any call statements. In this case, edge (si; ri) exists. The block of code B(e)consists of the basic blocks of procedure i which may be visited in any control ow path pfrom start of i to a return statement in i, such that the path p does not include any callstatements.In Figure 2, we show an example program (which involves irregular accesses to data). Theprogram represenation FPR for this program is shown in Figure 3.For performing partial redundancy elimination on the full program, we apply data ow anal-ysis on FPR, rather than the CFG of a single procedure. Instead of considering transparencyof each basic block, we consider transparency of each edge or the block of code. The data owproperties are computed for the beginning and the end of each edge in the FPR program repre-sentation. The details of the data ow analysis required for computing the above properties andthen determining placement and deletion based on these has been given elsewhere [1, 2]. Thereare several di�culties in extending the analysis interprocedurally, this includes renaming of in-uencers across procedure boundaries, saving the calling context of procedures which are calledat more than one call sites and further intraprocedural analysis in each procedure to determine�nal local placement. These details have been presented elsewhere and are not the focus of thispaper.We are only interested in placement of communication preprocessing statements and collectivecommunication statements. A particular invocation of a communication preprocessing statementor a collective communication statement is considered for hoisting out of the procedure onlyif none of the inuencers is modi�ed along any path from the start of the procedure to thisinvocation of the statement and the statement is not enclosed by any conditional or loop.2.2 Applying IPRE for Communication OptimizationsWe briey show how partial redundancy elimination is used for optimizing placement of communi-cation preprocessing calls and collective communication routines. We use the example presentedin Figure 2 to show the communication preprocessing inserted by initial intraprocedural analysis,and the interprocedural optimizations that can be done.Initial intraprocedural analysis inserts one communication preprocessing call and one gather(collective communication routine) for each of the three data parallel loops in the program shownin Figure 4. We have omitted several parameters to both the communication preprocessingroutines and collective communication routines for keeping the examples simple. Consider the8

Program ExampleReal X(nnodes), Y(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges), IB(nedges)C Input data ...do 10 i = 1, 20Call Proc A(X,Y,Z,IA,IB)if (nt .gt. 0) thenCall Proc B(X,W,IA)endifdo 50 j = 1, nedges localIB(j) = .. IB(j) ..50 continue10 continueendSubroutine Proc A(A,B,C,D,E)Sched1 = Irreg Sched(D)Call Gather(A,Sched1)do 20 i = 1, nedges localC(i) = C(i) + A(D(i))20 continueSched2 = Irreg Sched(E)Call Gather(B,Sched2)do 30 i = 1, nedges localC(i) = C(i) + B(E(i))30 continuedo 35 i = 1, nnodes localB(i) = ...35 continueendSubroutine Proc B(X,W,IA)Sched3 = Irreg Sched(IA)Call Gather(X,Sched3)do 40 i = 1, nedges localW(i) = W(i) + X(IA(i))40 continuedo 45 i = 1, nnodes localX(i) = ...45 continueend

Program ExampleReal X(nnodes), Y(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges), IB(nedges)C Input data ...Sched1 = Irreg Sched(IA)do 10 i = 1, 20Call Proc A(X,Y,Z,IA,IB)if (nt .gt. 0) thenCall Proc B(X,W,IA)endifdo 50 j = 1, nedges localIB(j) = .. IB(j)..50 continue10 continueendSubroutine Proc A(A,B,C,D,E)Call Gather(A,Sched1)do 20 i = 1, nedges localC(i) = C(i) + A(D(i))20 continueSched2 = Irreg Sched(E)Call Gather(B,Sched2)do 30 i = 1, nedges localC(i) = C(i) + B(E(i))30 continuedo 35 i = 1, nnodes localB(i) = ...35 continueendSubroutine Proc B(X,W,IA)do 40 i = 1, nedges localW(i) = W(i) + X(IA(i))40 continuedo 45 i = 1, nnodes localX(i) = ...45 continueendFigure 4: Result of Intraprocedural Compilation (left), and Code after Interprocedural Optimiza-tions (right) 9

execution of the partitioned data parallel loop on a particular processor. The o�-processor ele-ments referred to on this processor are fetched before the start of the loop. A simple memorymanagement scheme is used in the CHAOS/PARTI framework. For each data array (i.e. anarray whose contents are accessed using indirection arrays), a ghost area is created, contiguouswith the local data array. The o�-processor elements referred to in the parallel loop are storedin this ghost area. The communication preprocessing routine Irreg Sched takes in the indirectionarray and information about distribution of the data arrays. Besides computing a communicationschedule, it outputs a new local version of the indirection array and the number of o�-processoraccesses made by the loop. In this new local version of the indirection array, the o�-processorreferences are replaced by appropriate references to the elements in the ghost area. The collectivecommunication calls also need the starting position of the ghost area as one of the parameters.For simplicity, this detail is omitted in all the examples.In Figure 4, we also show the program after interprocedural optimization of communicationpreprocessing routines and gather routines. We refer to loop in the main of the program (whichencloses the calls to the routines Proc A and Proc B) as the time step loop. Initially, interpro-cedural partial redundancy elimination is applied for communication preprocessing statements.Since the array IA is never modi�ed inside the time step loop in the main procedure, the sched-ules Sched1 and Sched3 are loop invariant and can be hoisted outside the loop. Further, it can bededuced that the computation of Sched1 and Sched3 are equivalent (since their inuencers, afterrenaming across procedure boundaries, are the same). So, only Sched1 needs to be computed,and the gather routine in Proc B can use Sched1 instead of Sched3. For simplicity, Sched1 isdeclared to be a global variable, so that it does not need to be passed along as parameter at dif-ferent call sites. After placement of communication preprocessing statements is determined, weapply the IPRE analysis for communication routines. The gather for array IA in routine Proc Bis redundant because of the gather of array D in routine Proc A. Note that performing IPRE oncommunication preprocessing statements before applying IPRE on communication statements iscritical, since it is important to know that Sched3, one of the inuencers of gather for array IBcan be replaced by Sched1.2.3 DiscussionIn the rest of this paper, we concentrate on three issues:� We discuss three new optimizations that are useful in compilation of irregular applications.These three optimizations are: placement of scatter operations, deletion of runtime datastructures and the use of incremental and coalescing routines. While none of these opti-mizations can be directly achieved by the IPRE scheme we have so far described, they canbe achieved by extending the IPRE scheme or using a variation of the basic IPRE analysis.� We extend the applicability of IPRE, by considering slices of candidates and performingmotion of the entire slice. We also discuss the related issue of determining the order inwhich IPRE is to be applied over di�erent candidates from the same procedure.10

� We describe the implementation of the IPRE framework and the extensions mentionedabove using the Fortran D compilation system as the necessary infrastructure. We alsoreport experimental results which demonstrate the e�cacy of our methods.3 Other Optimizations for Compiling Irregular ProblemsIn this section, we discuss three new interprocedural optimizations which are useful in compilingirregular applications. These optimizations are: placement of scatter operations, deletion ofruntime data structures and use of incremental and coalescing routines. While none of theseoptimizations can be directly achieved by the interprocedural partial redundancy eliminationscheme we have so far described, they can be achieved through extending the IPRE scheme orusing a variation of the basic IPRE analysis.3.1 Placement of Scatter OperationsCollective communication routines can be broadly classi�ed to be of two kinds: gathers andscatters. By gather, we mean a routine which, before entering a data parallel loop, collects theo�-processor elements referred to in the loop. By scatter, we mean a routine which, after a dataparallel loop, updates the o�-processor elements modi�ed by the loop.In distributed memory compilation, a commonly used technique for loop iteration partitioningis owner computes rule [26]. In this method, each iteration is executed by the processor whichowns the left hand side array reference updated by the iteration. If the owner computes ruleis used, then no communication is required after the end of a data parallel loop, since no o�-processor element is modi�ed by the loop.Owner computes rule is often not best suited for irregular codes. This is because of tworeasons: Use of indirection in accessing left hand side array makes it di�cult to partition theloop iterations according to the owner computes rule, secondly, because of the use of indirectionin accessing right hand side elements, total communication may be reduced by using heuristicsother than the owner computes rule.If a method other than owner computes is used for loop partitioning, there is need for routinesscatter op, which will perform an op on the o�-processor data, using the values computed in theloop. In Figure 5, we show an example of a code requiring scatter op routines. In the twodata parallel loops, loop iteration i is executed by processor owning Z(i) and W (i) respectively.Further, suppose that the arraysW , X and Z are identically distributed. Array element X(IA(i))is modi�ed (an addition operation is performed) in such an iteration, and in general, this can be ano�-processor reference. The communication preprocessing routine generates a new local versionof the array IA, in which the references to the o�-processor elements are changed to referencesto the elements in the ghost area. Modi�cations to the o�-processor references are stored in theghost area. (Before the loops, the elements of the ghost area need to be initialized to 0, this detailis omitted from our example). After the end of the loop, the collective communication routinescatter add is used to update the o�-processor elements.11

Program ExampleReal X(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges)C Input data ...do 10 i = 1, 20Call Proc A(X,Z,IA)Call Proc B(X,W,IA)10 continueendProc A(A,B,C)do 20 i = 1, nedgesA(C(i)) = A(C(i)) + B(i)20 continueendProc B(X,W,IA)do 40 i = 1, nedgesX(IA(i)) = X(IA(i)) + W(i)40 continuedo 45 i = 1, nnodesX(i) = ...45 continueend
Program ExampleReal X(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges)C Input data ...do 10 i = 1, 20Call Proc A(X,Z,IA)Call Proc B(X,W,IA)10 continueendProc A(A,B,C)Sched1 = Irreg Sched(C)do 20 i = 1, nedges localA(C(i)) = A(C(i)) + B(i)20 continueCall Scatter add(A, Sched1)endProc B(X,W,IA)Sched2 = Irreg Sched(IA)do 40 i = 1, nedges localX(IA(i)) = X(IA(i)) + W(i)40 continueCall Scatter add(X,Sched2)do 45 i = 1, nnodes localX(i) = ...45 continueend

Program ExampleReal X(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges)C Input data ...Sched1 = Irreg Sched(IA)do 10 i = 1, 20Call Proc A(X,Z,IA)Call Proc B(X,W,IA)10 continueendProc A(A,B,C)do 20 i = 1, nedges localA(C(i)) = A(C(i)) + B(i)20 continueendProc B(X,W,IA)do 40 i = 1, nedges localX(IA(i)) = X(IA(i)) + W(i)40 continueCall Scatter add(X,Sched1)do 45 i = 1, nnodes localX(i) = ...45 continueendFigure 5: Compilation and optimization of a code involving scatter operations: Original sequen-tial code (left), Result of Intraprocedural Compilation (center), and Code after InterproceduralOptimizations (right)
12

In the example presented in Section 2, the collective communication routine involved were thegather operations. For performing optimized placements, gather operations were treated in thesame way as the communication preprocessing routines. We now discuss what kind of analysis isrequired to determine optimized placement of scatter ops.There are two di�erences in dealing with scatters ops as compared to gathers. We haveseen so far, how the placement of a gather operation can be moved earlier, if this can reduceredundant communication. The required condition is that the placement must be done after thelast modi�cation of the array whose data is being gathered. Thus, we need to check if the arraywhose data is being gathered is modi�ed.In the case of scatter ops, the placement can be done later, if this can reduce redundancies.The required condition is that the array whose data is being scattered must not be referred toor modi�ed. If the array being scattered is referred to, then the reference made may be incorrectbecause the modi�cations made in an earlier loop have not been updated. Similarly, if the arraybeing scattered is modi�ed, then the updates made later may be incorrect.Optimization of scatter ops is therefore done by applying IPRE scheme with three di�erences:� We consider a scatter operation for interprocedural placement only if none of the inuencersare modi�ed or referred to along any control ow path from the scatter's invocation to theend of the procedure, and if this invocation of scatter operation is not enclosed by anyconditional or loop.� We change the de�nition of Transparency, to check if the inuencers of the candidate areneither referred to nor modi�ed.� We consider our graph, as de�ned in Section 2, with the notion of source and sink re-versed. Thus, we tend to move the scatter ops downwards, if there is any redundancy tobe eliminated this way.In Figure 5, the result of interprocedural optimization is shown in the right. In the procedureProc A, the scatter operation can be deleted, since this scatter is subsumed by the scatter donelater in Proc B.Scatter operations have also been used by distributed memory compilers in compiling regularapplications [8]. The HPF/Fortran 90D compiler developed at Syracuse University uses scatteroperations (called post-comp writes) whenever the subscript in the left hand side array referenceis a complex function of the index variable. The optimization described above will therefore beapplicable in compiling regular applications also.3.2 Deletion of Data StructuresRuntime preprocessing often results in construction of large data structures, which are usedby other routines later. This includes communication schedules which store information aboutthe o�-processor elements which need to be gathered/scattered to each other processor. Large13

scienti�c applications involve large arrays and consequently, the memory required by the datastructures like communication schedules can be large.In hand parallelizing applications using libraries like CHAOS/PARTI, it is generally useful tofree the memory required by these data structures after the last time they are used. Since thelarge distributed arrays themselves require large memory, it is important not to let these datastructures increase the memory usage of the program substantially. This is even more importanton machines which do not support virtual memory.If a compiler does an unoptimized placement of communication preprocessing calls (i.e. place-ment just on the basis of a single loop level or single procedure level analysis), then data structurescan be easily deleted after their use is over. However, this is a non-trivial problem when inter-procedural analysis is performed to do optimized placement.We now describe how to determine the places where the data structures can be deleted. Thekey idea is to make sure that there must not be any use of the data structure along any controlow path starting from the point where it is deleted. In ensuring this, our method may not deletea data structure ever (which is equivalent to saying that it is deleted at the end of the program).The steps of our method are as follows:� Interprocedural analysis is done to determine optimized placement of communication pre-processing routines and collective communication routines. None of the schedules are ini-tially deleted.� We mark a placement of free(sched), immediately after each use of the sched. For theanalysis here, we consider these free(sched) statements as the candidates for placement.� We determine optimized placement of these candidates, by applying IPRE analysis on thereversed graph (i.e. FPR with notion of source and sink reversed, as used earlier fordetermining placement of scatter operations).� After determining placement of the these candidates, we check if the candidate is partiallyavailable at any of the places where it is marked for placement. (The partial availabilitywe use must be computed on the reversed graph.) We actually place a free(sched) only ifit is not partially available.The signi�cance of the last step mentioned above is as follows. In placement of candidates,PRE or IPRE analysis can do a placement at a point where the candidate may be partiallyavailable. So, if the analysis has determined that an optimized placement of the candidate needsto be done at a point p in the program, there may already be another placement of the candidateat one of the paths leading to the point p. In determining deletion of data structures, we cannotplace a deletion if the schedule is going to be used at any path starting from that point.3.3 Using Incremental and Coalescing Communication RoutinesConsider an occurrence of a communication statement. While this communication statement maynot be redundant (the same candidate may not be directly available), there may be some other14

Program ExampleReal X(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges), IB(nedges)C Input data ...do 10 i = 1, 20Call Proc A(X,Z,IA)if (nt .gt. 0) thenCall Proc B(X,W,IB)endif10 continueendSubroutine Proc A(A,B,C)do 20 i = 1, nedgesB(i) = B(i) + A(C(i))20 continueendSubroutine Proc B(X,W,IB)do 40 i = 1, nedgesW(i) = W(i) + X(IB(i))40 continuedo 45 i = 1, nnodesX(i) = ...45 continueend

Program ExampleReal X(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges), IB(nedges)C Input data ...Sched1 = Irreg Sched(IA)Sched2 = Irreg Sched Inc(IB,IA)do 10 i = 1, 20Call Proc A(X,Z,IA)if (nt .gt. 0) thenCall Proc B(X,W,IB)endif10 continueendSubroutine Proc A(A,B,C)Call Gather(A,Sched1)do 20 i = 1, nedges localB(i) = B(i) + A(C(i))20 continueendSubroutine Proc B(X,W,IB)Call Gather(X,Sched2)do 40 i = 1, nedges localW(i) = W(i) + X(IB(i))40 continuedo 45 i = 1, nnodes localX(i) = ...45 continueendFigure 6: Use of incremental schedules. Original code is shown in left and the SPMD code (afterInterprocedural Optimizations) is shown in right
15

communication statement, which may be gathering at least a subset of the values gathered in thisstatement. The execution time of the code can be reduced by disallowing redundant gatheringof certain data elements.Consider the program shown in Figure 6. The same data array X is accessed using anindirection array IA in the procedure Proc A and using another indirection array IB in theprocedure Proc B. Further, none of the indirection arrays or the data arrayX is modi�ed betweenow of control from �rst loop to the second loop. The set of data elements to be communicatedbetween the processors can only be determined at runtime, however it is very likely that therewill be at least some overlap between the set of o�-processor references made in these two loops.At the time of schedule generation, the contents of the array IA and IB can be analyzed toreduce the net communication required by these two loops.PARTI/CHAOS library provides two kinds of communication routines for reducing communi-cation in such situations. Coalescing preprocessing routines take more than one indirection array,and produce a single schedule, which can be used for generating the communication required bydi�erent loops. In the example mentioned above, a coalescing communication preprocessing rou-tine will take in arrays IA and IB and produce a single communication schedule. If a gatheroperation is done using this schedule, then all o�-processor elements referred to through indirec-tion arrays IA and IB will be gathered. Incremental preprocessing routine will take in indirectionarrays IA and IB, and will determine the o�-processor references made uniquely through indirec-tion array IB and not through indirection array IA (or vice-versa). While executing the secondloop, communication using an incremental schedule can be done, to gather only the data elementswhich were not gathered during the �rst loop.Use of both incremental and coalescing routines reduces the net communication volume. Theadvantage of using coalescing routines over incremental routines is that only one message isrequired for communication. This further reduces the communication latency involved.The following analysis is done to determine use of coalescing and incremental communicationpreprocessing routines. After the placement of communication preprocessing and communicationstatements has been determined, consider two communication statements L1 and L2, which dogathers for the same data array.Recall the de�nition of Availability and Anticipability, as presented in Section 2. The com-munication done by the statements L1 and L2 can be done by using a single coalescing routineif the following holds:� The communication done in L1 is available at the point L2 in the program, and� The communication done in L2 is anticipable at the point L1 in the program.In this case, the communication at L2 can be deleted and the communication at L1 can bereplaced by a coalesced communication. The �rst condition above ensures that the elements com-municated at the point L1 in the program will still be valid at the point L2 in the program. If thecommunication at L1 is replaced by a coalesced communication, then the second condition above16

ensures that, along any control ow path starting from L1, the additional data communicatedwill be used.The second communication can be replaced by an incremental communication if the followingconditions hold:� The communication done in L1 is available at the point L2 in the program, and� The communication done in L2 is not anticipable at the point L1 in the program.In this case, the communication statement at L1 remains as it is and the communicationat L2 can be replaced by an incremental communication. In Figure 6, we show the use ofincremental routines. Note that the call to the procedure Proc B is enclosed inside a conditional,so the second communication is not anticipable at the point of the �rst communication. If thisconditional was not there, then the second communication could be removed all together and the�rst communication could be replaced by a coalesced communication.The analysis described above can be performed at two stages. After calls to communicationpreprocessing routines and communication statements have been inserted by initial intraprocedu-ral analysis, the above analysis can be done intraprocedurally. For this purpose, availability andanticipability must be computed intraprocedurally on the CFG of the single routine. Next, afteroptimization of communication preprocessing routines and communication statements has beendone through IPRE, another round of the analysis described above can be done on the FPR. Inthis case, availability and anticipability is computed on the FPR.The scatter operations can also be optimized further using coalescing and incremental rou-tines. The di�erence in analysis would be to consider the graph with notion of source and sinkreversed and the de�nition of transparency changed to use both Mod and Ref information insteadof just the Mod information.4 Further Application of IPREIn this section, we �rst discuss how program slicing can be used for further applying IPRE inmore complex scenarios. We then discuss the related issue of determining the order in whichIPRE can be applied to di�erent candidates from the same procedure.4.1 Use of SlicingIn all the examples presented so far, the parameters of the candidates were formal parametersor global variables. As described in Section 2, such a call to a candidate can be considered forplacement across procedure boundaries only if none of the inuencers is modi�ed along any pathfrom the start of the procedure to this invocation of the candidate, and if the call by itself is notenclosed by any conditional or loop.This may not be adequate for performing code motion in several irregular applications, espe-cially the ones in which data is accessed using multiple levels of indirection [14]. For such codes,IPRE can be performed by using slices of the call to the candidates.17

Program ExampleReal X(n), Real Z(n)Integer P(n), Q(n)C Input data ...do 10 i = 1, 20Call Proc A(X,Z,P,Q)do 55 l = 1, nQ(l) = ...55 continue10 continueendProc A(X,Z,P,Q)do 20 j = 1, 20Call Proc B(X,Z,P,Q)20 continueendProc B(X,Z,P,Q)Integer R(n/2), S(n)k = 0do 30 l = 1, n, 2k = k + 1R(k) = P(l)30 continuedo 35 l = 1, nS(l) = Q(R(2*l)) + P(l)35 continuedo 40 l = 1, nX(l) = X(l) + Z(S(l))40 continuedo 45 l = 1, nZ(l) =45 continueend

Program ExampleReal X(n), Real Z(n)Integer P(n), Q(n)C Input data ...do 10 i = 1, 20Call Proc A(X,Z,P,Q)10 continuedo 55 l = 1, n localQ(l) = ...55 continueendProc A(X,Z,P,Q)do 20 j = 1, 20Call Proc B(X,Z,P,Q)20 continueendProc B(X,Z,P,Q)Integer R(n/2), S(n)k = 0do 30 l = 1, n local, 2k = k + 1R(k) = P(l)30 continueSched1 = Irreg Sched(R) C1Call Gather(Q, Sched1) C2do 35 l = 1, n localS(l) = Q(R(2*l)) + P(l)35 continueSched2 = Irreg Sched(S) C3Call Gather(Z,Sched2) C4do 40 l = 1, n localX(l) = X(l) + Z(S(l))40 continuedo 45 l = 1, n localZ(l) =45 continueend

Program ExampleReal X(n), Real Z(n)Integer P(n), Q(n)k2 = 0do 32 l2 = 1, n local, 2k2 = k2 + 1R2(k2) = P(l2)32 continueSched1 = Irreg Sched(R2)do 10 i = 1, 20Call Proc A(X,Z,P,Q,R2)10 continuedo 55 l = 1, n localQ(l) = ...55 continueendProc A(X,Z,P,Q,R2)Call Gather(Q, Sched1)do 37 l4 = 1, n localS2(l4) = Q(R2(2*l4)) + P(l4)35 continueSched2 = Irreg Sched(S2)do 20 j = 1, 20Call Proc B(X,Z,P,Q,S2)20 continueendProc B(X,Z,P,Q,S2)Integer R(n/2), S(n)Call Gather(Z,Sched2)do 40 l = 1, n localX(l) = X(l) + Z(S2(l))40 continuedo 45 l = 1, n localZ(l) =45 continueFigure 7: Compilation and optimization of a code involving multiple levels of indirection: Originalsequential code (left), Result of Intraprocedural Compilation (center), and Code after Interpro-cedural Optimizations (right) 18

Consider the code given in Figure 7. In the procedure Proc B, the array Q is accessed usingarray R, which is local within procedure Proc B. Earlier in the procedure, the array R is computedusing array P, which is a formal parameter of the procedure. If the computation of the schedulefor communicating Q is to be hoisted up, then the computation of the array R will also need tobe moved. For this purpose, we use the notion of program (or procedure) slices.Program Slice. A program (procedure) slice is de�ned as a program comprising of a set ofstatements which contribute, either directly or indirectly, to the value of certain variables at acertain point in the program [14, 15, 37]. This set of variables and the point in the program istogether referred to as the slicing criterion. For our purpose, the slicing criterion used is the setof parameters of the candidate at the point in the program where the candidate is invoked. Wecompute the slice of the procedure with respect to the parameters of candidate at the point inthe procedure where candidate is called.We change the de�nition of inuencers of the candidate when we consider entire slice forplacement across procedure boundaries. After computing the slice, we identify all global variablesand formal parameters of the procedure which contribute, either directly or indirectly, to the valueof any of the parameters of the candidate. (These are simply the global variables and formalparameters which appear in the slice). This set of global variables and formal parameters is nowcalled inuencers of the candidate.An interesting case is the presence of procedure calls in control ow from the start of theprocedure to a candidate. For each such procedure call in the control ow path of candidate, wejust examine if any of the variables in the slice are modi�ed by the procedure call [12]. If so, wedo not consider this candidate for hoisting outside the procedure.When we use slices of the candidates, additional steps are required in �nal placement of thecandidates. In placing the candidate, the entire slice corresponding to candidate is placed. Notethat the slice may include assignments to a number of variables, which may also be referred tolater in the procedure (even after the computation of the candidate). While we need to placethe entire slice when we hoist the candidate, the entire slice cannot be deleted in the procedure.For this reason, when we place the slice in a new location, all variables written into in the slice(prior to the computation of the candidate) are privatized, i.e., a new name is given to them.While removing the code from the original procedure, only the candidate is removed. After thecandidate has been deleted, we can perform dead code elimination to delete the computationswhich are never used later in the procedure.4.2 Ordering Application of IPREConsider the example shown earlier in Figure 4. In Section 2.2, we had discussed how we need toperform the placement decision for the communication preprocessing statements (i.e. the com-putation of Sched1 and Sched3) before we consider the placement of communication statements.This was because the communication statements have the corresponding schedule as one of theinuencers. If the inuencer is actually computed within the procedure, then the communication19

statement cannot be considered for interprocedural placement. However, if analysis determinesthat it is possible to hoist up placement of a communication preprocessing routine, then it ispossible that the corresponding communication statement could also be hoisted.In general, a communication preprocessing routine may use the contents of an array, whichby itself is communicated earlier in the procedure. In Figure 7, the result of intraproceduralcompilation is shown in the center. There are four candidates in the procedure Proc B, twocommunication preprocessing routines (C1 and C3) and two communication statements (C2 andC4). The candidate C3 computes a schedule based upon the contents of array S, array S iscomputed earlier in the procedure using the array Q. The o�-processor references to Q madewhile computing array R are gathered by the statement C2. When interprocedural placement ofthe candidate C3 is considered, we need to see if C2 can be hoisted up. The placement of C2,in turn, depends upon placement of C1 and similarly, the placement of C4 depends upon theplacement of C3.Because of the possibility of such dependence between the candidates, there are two importantdi�erences in the way we select candidates for placement and apply IPRE.� While computing the slice of a candidate Ci, we identify all the candidates on whose place-ment the placement of Ci depends.� We perform the application of IPRE in such an order, that if the placement of a candidate Cidepends upon the placement of candidates Ci1; : : : ; Cim, then the placement of candidatesCi1; : : : ; Cim, is decided before applying IPRE for placement of Ci.Computing Slices. Algorithms for computing a slice, given a slicing criterion, have beenpresented in the literature [37]. We make one important di�erence in the way slices are computed,since we need to accommodate the fact that some of the statements included in the slice maythemselves be candidates for placement. We do not present the modi�ed algorithm formally, butexplain the di�erence with the help of an example.Consider the slice of the statement \Sched2 = Irreg Sched(S)" (candidate C3). The loopfor computing contents of the array S will clearly be included in the slice. This loop includesreferences to array Q, so the statement(s) modifying array Q also need to be included in theslice. The only such statement is the communication statement \Call Gather(Q, Sched1)". Thisstatement is a candidate for placement by itself (C2). In this case, we do not further includethe statements which modify Q and Sched1 in the slice. Any such statement will obviouslybe included in the slice for candidate C2. Instead, we mark a dependence C2 ! C3. Thesigni�cance of this dependence is that if C2 is not moved outside procedure, C3 cannot be movedabove procedure either. If it is determined where C2 is to be placed, then the block of code whereC2 is placed is considered to be the last modi�cation of the array Q and Sched1. Since Q is oneof the inuencers of C3, C3 cannot be moved beyond the block of code where the placement ofC2 is determined. 20

Once we have constructed the slices for all the candidates using the method described above,we form a dependence graph between the slices. The dependence graph for the candidates in theprocedure Proc B in Figure 7 will be C1! C2! C3! C4.Applying IPRE. We now determine the order in which IPRE is applied to di�erent candidatesfrom the same procedure. We have described how a dependence graph can be constructed forvarious candidates within the same procedure. For simplicity, we consider only the dependencegraphs which are acyclic. Topological sort is done on the dependence graph formed above fordetermining the order in which IPRE is applied to each individual candidate. This ensuresthat if the placement of a candidate Ci depends upon the placement of candidates Ci1; : : : ; Cim,then the placement of candidates Ci1; : : : ; Cim is determined before performing the analysis fordetermining placement of Ci.In Figure 7, the code shown in the right is the result of the interprocedural placement of theslices. The candidate C1 can be moved across the enclosing loops in Proc A and the main, sincethe array P is never modi�ed. The candidates C2 and C3 can then be moved across the enclosingloop in the procedure Proc A.5 Overall Compilation AlgorithmSo far we have presented various optimizations required for compiling irregular applications. Wenow discuss an overall compilation algorithm, to show how the optimizations are applied andhow these optimizations interplay with the rest of the compilation process.There are three phases in our overall compilation method (see Figure 8). The �rst phase is theintraprocedural compilation as in the existing Fortran D compilation system. During this phase,we collect information about candidates (including their slices and list of inuencers) and controlow relationships between the call sites in each procedure. The second phase performs data owanalysis for optimizing placement. This phase uses only the summary information stored abouteach procedure in the previous phase. In the third phase, each procedure is visited again, andthe decisions made about placement of candidates are actually incorporated in the code for eachprocedure.First Phase. The initial local compilation phase inserts communication preprocessing andcommunication statements based upon intraprocedural analysis [26]. This code generation isbased upon reaching decomposition analysis [21]. Reaching decomposition analysis propagatesinformation about the distribution of arrays from calling procedures to callees. In compilinglanguages like Fortran D or HPF, the information about data distribution is used by the compilerfor determining loop partitioning, communication and to decide upon the appropriate runtimeroutines to insert. The existing Fortran D compiler uses the call graph of the full program todetermine the order in which procedures are compiled. For most of the Fortran programs, thecall graph is a directed acyclic graph. If the procedures are compiled in topological order on the21

f* Initial Intraprocedural Compilation *gGlobal Max dep = 0Foreach Procedure P (In topological order)Propagate reaching decomposition informationGenerate code for distributed memory machinesCreate blocks of code from basic blocks of PCompute Mod and Ref Information for each block of codeForeach Candidate C compute- Slice of C within the procedure- The list of inuencers for C- Determine if C can be hoisted at the top of the procedureEndGenerate the dependence graphGlobal Max dep = max(Global Max dep;Max dep(P))For i = 1 to Max dep(P)Store the list of candidates at level i in procedure PEndEndf* Interprocedural Analysis for Placements *gGenerate FPR for the programInitialize nodes of FPR with candidates for placementFor i = 1 to Global Max depApply IPRE for all candidates at level i (in all procedures)EndDo analysis for using coalescing and incremental routinesPerform analysis for determining deletion of data structuresf* Addition/Deletion of Candidates based upon Analysis above *gForeach Procedure P (In any order)Do addition/deletion of candidates based upon analysis aboveEnd Figure 8: Overall Compilation Algorithm
22

call graph, then each calling procedure is compiled before its callee(s) and the information aboutdata distributions is available while compiling each procedure.Three important pieces of information are collected during this phase which are used duringthe second phase. We use the control ow graph of the procedure to compute blocks of code(see Section 2.1) for the procedure. Then, we traverse the basic blocks in each block of code fordetermining Mod and Ref information for the block of code (i.e. the list of variables modi�ed andreferred to, respectively, in each block of code). Next, we identify all the candidates for placementin the procedure. We compute the slices of the candidates in the procedure and �nd the list ofinuencers of the candidate. We also construct the dependence graph of the candidates from theprocedure. As shown in the Figure 8, the variable Max dep(P) determines the maximum depthof any candidate in the dependence graph built for the procedure P . We maintain a variableGlobal Max dep to store the maximum of Max dep(P) over all the procedures in the program.For each depth level i (1 � i �Max dep), we store the list of candidates which are at the level iin the dependence graph of the procedure.Second Phase. After the initial pass over all the procedures, we perform the data ow analysisfor determining placement. The �rst step is to generate the full program representation (FPR)using the summary information computed from each procedure [1]. The procedure entry nodesare then initialized with the candidates for placement.During the �rst phase, we have stored the value Global Max dep, the maximum depth level ofany candidate in any procedure. We iterate over 1 to Global Max dep, and perform the analysisfor placement of all candidates at that depth level, across all the procedures. Next, for each pairof gather routines (or scatter routines), it is checked if communication time can be reduced byusing coalescing or incremental routines (Section 3.3). After determining placement of all theseroutines, analysis described in Section 3.2 is applied to determine where the data structures canbe deleted. All information about addition and deletion of statements is just stored in this phase,and no actual change in the code for each procedure is done. This phase uses only the FPRconstructed in the previous phase, the information associated with blocks of code (Mod andRef) and the information about candidates. The abstract syntax tree (AST) and other auxiliarystructures associated with each procedure are not accessed during this phase.Final Phase. The �nal phase of the analysis performs the actual placement or deletion of theroutines. Each procedure is visited again, and �nal addition or deletion of the candidates is done.6 Experimental ResultsWe now present experimental results to show the e�cacy of the methods presented so far.We measure the di�erence made by performing interprocedural placement of both the communi-cation preprocessing statements and the collective communication statements. We have used twoirregular codes in our study, an Euler solver on an unstructured mesh [13], originally developed23

V 1

V 2

V 3

Timing (sec.)

No. of Proc.
4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

46.00

48.00

5.00 10.00 15.00 20.00 25.00 30.00V 1 : Performance before interprocedural optimizationsV 2 : Interprocedural placement of preprocessing stmts.V 3 : Interprocedural placement of comm. stmts alsoFigure 9: E�ect of Optimizations on Euler solver (10K mesh, 20 iterations) on Intel Paragon.at ICASE by Mavriplis et al. and a template taken from CHARMM [9], a molecular dynamicscode. We used Intel Paragon at Rice University for performing our experiments.The Euler solver we experimented with performs sweeps over an unstructured mesh insidethe time step loop. The data parallel loops iterate over both the edges and the faces of theunstructured mesh. Indirection arrays are used to store the nodes corresponding to each edgeand each face of the mesh. This leads to irregular accesses to data in the major computationalloops of the program. The version of the code we worked with comprised of nearly 2000 linesof code across 8 procedures. We used two sets of input data in our experiments, a mesh having53000 mesh points and 350000 edges, and another mesh having 9500 mesh points and 55000edges.The existing Fortran D compiler inserts appropriate communication preprocessing statementsand collective communication statements in parallelizing such irregular codes, but (before thework presented here) did not perform any interprocedural placement of these statements.In Figure 9, we show the performance di�erence obtained by interprocedural placements ofcommunication preprocessing statements and communication statements. Performance of thedi�erent versions of the code is measured for 2 to 32 processors of Intel Paragon. The sequentialprogram took 71 seconds on a single processor of the Intel Paragon. A super-linear speed upwas noticed in going from one processors to two processors, we believe happens because on single24

V 1

V 2

V 3

V 4

Timing (sec.)

No. of Proc.0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

5.00 10.00 15.00 20.00 25.00 30.00V 1 : Communication time, before optimizationsV 2 : Communication time after IPREV 3 : Further use of coalescing gather routinesV 4 : Further use of coalescing scatter routinesFigure 10: E�ect of Communication Optimizations on Euler solver (10K mesh, 20 iterations) onIntel Paragon.processor, all data cannot �t in the main memory of the machine. The �rst version (V 1) isthe code which does not perform any interprocedural placement. In the second version (V 2),interprocedural placement is performed for only communication preprocessing statements. Thisleads to signi�cant di�erence in the performance. The third version (V 3) is further optimizedby various placement optimizations on communication statements, this includes applying IPREon communication statements and the use of coalescing gather and scatter routines. On a smallnumber of processors, the total communication time is small, and therefore, the overall perfor-mance di�erence due to the di�erent communication optimizations is not signi�cant. However,when the same data is distributed over a larger number of processors, the communication timebecomes a signi�cant part of the total execution time and the communication optimizations makesigni�cant di�erence in the overall performance of the program.In Figure 10, we further study the impact of di�erent placement optimizations on communi-cation statements. Only the communication time is shown for the various versions of the code.The �rst version (V 1) does not perform any optimizations on communication statements. Thesecond version (V 2) performs IPRE on communication statements. Figure 10 shows that thisresults in substantial reduction in the communication time. In the next version (V 3), coalescing25

V 1

V 2

V 3

Sec.

No. of Proc.10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

170.00

5.00 10.00 15.00 20.00 25.00 30.00V 1 : Performance before interprocedural optimizationsV 2 : Interprocedural placement of preprocessing stmts.V 3 : Interprocedural placement of comm. stmts alsoFigure 11: E�ect of Optimizations on Euler solver (53K mesh, 20 iterations) on Intel Paragon.of gather operations is performed, this results in some more reduction in the communication time.The last version also includes coalescing of scatter operations, a marginal further reduction incommunication time is noticed.In Figure 11, we show the result of optimizations when this program is run on a largerdata set, i.e. a 53000 node mesh. Interprocedural placement of communication preprocessingstatements results in signi�cant reduction in the time required by the program. When the numberof processors is large, the communication time becomes signi�cant in total execution time of theprogram and interprocedural optimizations on communication statements also lead to substantialimprovement in the performance of the code.The second code we considered was a template taken from a molecular dynamics codeCharmm [9, 27]. The templates we worked with comprised of just 2 procedures, one procedurewhich computed non-bonded forces between the atoms of the molecules and the other procedureenclosed this procedure in a time step loop. Computation of non-bonded forces involed multiplelevels of indirection and we used the methods described in Section 4 for performing interprocedu-ral code motion. We used data from water molecules, which comprised of 648 atoms and nearly100K interations between the atoms. 26

V 1

V 2

Timings (sec.)

No. of Proc.0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00V 1 : Performance before interprocedural optimizationsV 2 : Interprocedural placement of preprocessing stmts.Figure 12: E�ect of Optimizations on Charmm template (20 iterations) on Intel Paragon.In Figure 12, we show the result of optimizations. The sequential program took 34.8 sec-onds on the single processor of Intel Paragon. In the �rst version (V 1), no interproceduralplacement of communication preprocessing statements is done. In the second version (V 2),placement of communication preprocessing statements is optimized interprocedurally. Since thiswas a relatively small template, no further improvement in performance can be achieved by in-terprocedural optimization of communication statements. Experiments on hand-parallelizationof the entire Charmm code [27, 35] have shown a nearly 20% reduction in the communicationtime, by using coalescing communication routines.7 Related WorkThe only other e�ort on interprocedural analysis for distributed memory compilation is by Hallet al. [21]. They have concentrated on ow-insensitive analysis for regular applications, includingmanagement of bu�er space and propagation of data distribution and data alignment informationacross procedure boundaries. In this work, the Augmented Call Graph (ACG) was introducedas a new program abstraction. This abstraction records any loop(s) enclosing a procedure call.Again, this abstraction does not allow to look for redundant communication preprocessing callsor communication calls in adjacent procedures.27

Framework for Interprocedural Analysis and Transforms (FIAT) [20] has recently been pro-posed as a general environment for interprocedural analysis. This is based upon Call Graphprogram abstraction and is targeted more towards ow-insensitive interprocedural analysis. Ourimplementation uses several facilities available from FIAT as part of the Fortran D infrastructure.Partial redundancy elimination was used interprocedurally by Gupta et al. [18] for perform-ing communication optimizations. An interesting feature of their work is the available sectiondescriptor, which facilitates many other optimizations for regular codes. Hanxleden [24] has de-veloped Give-N-Take, a new communication placement framework. This framework extends PREin several ways, including a notion of early and lazy problems, which is used for performing earli-est possible placement of sends and latest possible placement of receive operations. Allowing suchasynchronous communication can reduce communication latencies. Our work di�ers signi�cantlysince we consider interprocedural optimizations and present several new optimizations.Several di�erent program representations have been used for di�erent ow-sensitive interpro-cedural problems. Myer has suggested the concept of the SuperGraph [33] which is constructedby linking control ow graphs of procedures by inserting edges from call site in the caller tostart node in callee. The total number of nodes in the SuperGraph can get very large and con-sequently the solution may take much longer time to converge. Several ideas in the design ofour representation are similar to the ideas used in Callahan's Program Summary Graph [10] andInterprocedural Flow Graph used by So�a et al. [25].8 ConclusionsIn this paper, we have presented interprocedural optimizations for the compilation of irregu-lar applications on distributed memory machines. In such applications, runtime preprocessingis used to determine the communication required between the processors. We have developedand used Interprocedural Partial Redundancy Elimination for optimizing placement of commu-nication preprocessing and communication statements. We have further presented several otheroptimizations which are useful in the compilation of irregular applications. These optimizationsinclude placement of scatter operations, deletion of runtime data structures and placement ofincremental schedules and coalesced schedules. We have also presented how IPRE can be appliedin more complex scenarios, this includes the use of slicing and ordering of the application of IPREon di�erent candidates.We have carried out a preliminary implementation of the schemes presented in this paper, us-ing the existing Fortran D compilation system as the necessary infrastructure. We have presentedexperimental results to demonstrate the e�cacy of our schemes.AcknowledgementsWe have implemented our techniques using the existing Fortran D system. Without this essentialinfrastructure, this work would not have been possible. We gratefully acknowledge our debt to theimplementers of the interprocedural infrastructure (FIAT) and the existing Fortran D compiler.28

We are grateful to the members of the CHAOS team for providing us the library and helping usnumerous times during our experiments. The authors will like to acknowledge extremely usefuldiscussions with Bill Pugh, Anurag Acharya, Raja Das and Paul Havlak.This work was supported by NSF under grant No. ASC 9213821, by ONR under contractNo. N00014-93-1-0158, by ARPA under Scalable I/O Project (Caltech Subcontract 9503) and byNASA/ARPA contract No. NAG-1-1485. The authors assume all responsibility for the contentsof the paper.References[1] Gagan Agrawal and Joel Saltz. Interprocedural communication optimizations for distributed memorycompilation. In Proceedings of the 7th Workshop on Languages and Compilers for Parallel Computing,pages 283{299, August 1994. Also available as University of Maryland Technical Report CS-TR-3264.[2] Gagan Agrawal, Joel Saltz, and Raja Das. Interprocedural partial redundancy elimination and itsapplication to distributed memory compilation. In Proceedings of the SIGPLAN '95 Conference onProgramming Language Design and Implementation, pages 258{269. ACM Press, June 1995. ACMSIGPLAN Notices, Vol. 30, No. 6. Also available as University of Maryland Technical Report CS-TR-3446 and UMIACS-TR-95-42.[3] Gagan Agrawal, Alan Sussman, and Joel Saltz. Compiler and runtime support for structured andblock structured applications. In Proceedings Supercomputing '93, pages 578{587. IEEE ComputerSociety Press, November 1993.[4] Gagan Agrawal, Alan Sussman, and Joel Saltz. E�cient runtime support for parallelizing blockstructured applications. In Proceedings of the Scalable High Performance Computing Conference(SHPCC-94), pages 158{167. IEEE Computer Society Press, May 1994.[5] Gagan Agrawal, Alan Sussman, and Joel Saltz. An integrated runtime and compile-time approachfor parallelizing structured and block structured applications. IEEE Transactions on Parallel andDistributed Systems, 1995. To appear. Also available as University of Maryland Technical ReportCS-TR-3143 and UMIACS-TR-93-94.[6] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, and Tools.Addison-Wesley, 1986.[7] Aart J. C. Bik and Harry A. G. Wijsho�. Annotations for a sparse compiler. In Proceedings of the8th Workshop on Languages and Compilers for Parallel Computing, August 1995.[8] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M.-Y. Wu. Compiling Fortran 90D/HPFfor distributed memory MIMD computers. Journal of Parallel and Distributed Computing, 21(1):15{26, April 1994.[9] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.Charmm: A program for macromolecular energy, minimization, and dy namics calculations. Journalof Computational Chemistry, 4:187, 1983.[10] D. Callahan. The program summary graph and ow-sensitive interprocedural data ow analysis.In Proceedings of the SIGPLAN '88 Conference on Program Language Design and Implementation,Atlanta, GA, June 1988.[11] A. Choudhary, G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka, and J. Saltz. Softwaresupport for irregular and loosely synchronous problems. Computing Systems in Engineering, 3(1{4):43{52, 1992. Papers presented at the Symposium on High-Performance Computing for FlightVehicles, December 1992. 29

[12] K. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural analysis and optimizationin the rn programming environment. ACM Transactions on Programming Languages and Systems,8(4):491{523, October 1986.[13] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and implementation ofa parallel unstructured Euler solver using software primitives. AIAA Journal, 32(3):489{496, March1994.[14] Raja Das, Joel Saltz, and Reinhard von Hanxleden. Slicing analysis and indirect access to distributedarrays. In Proceedings of the 6th Workshop on Languages and Compilers for Parallel Computing,pages 152{168. Springer-Verlag, August 1993. Also available as University of Maryland TechnicalReport CS-TR-3076 and UMIACS-TR-93-42.[15] Raja Das, Joel Saltz, Ken Kennedy, and Paul Havlak. Index array attening through programtransformation. Submitted to PLDI '95, November 1994.[16] D.M. Dhamdhere and H. Patil. An elimination algorithm for bidirectional data ow problems usingedge placement. ACM Transactions on Programming Languages and Systems, 15(2):312{336, April1993.[17] Guy Edjlali, Gagan Agrawal, Alan Sussman, and Joel Saltz. Data parallel programming in an adaptiveenvironment. In Proceedings of the Ninth International Parallel Processing Symposium, pages 827{832. IEEE Computer Society Press, April 1995.[18] Manish Gupta, Edith Schonberg, and Harini Srinivasan. A uni�ed data ow framework for optimizingcommunication. In Proceedings of Languages and Compilers for Parallel Computing, August 1994.[19] Mary Hall. Managing Interprocedural Optimization. PhD thesis, Rice University, October 1990.[20] Mary Hall, John M Mellor Crummey, Alan Carle, and Rene G Rodriguez. FIAT: A framework forinterprocedural analysis and transformations. In Proceedings of the 6th Workshop on Languages andCompilers for Parallel Computing, pages 522{545. Springer-Verlag, August 1993.[21] M.W. Hall, S. Hiranandani, K. Kennedy, and C.-W. Tseng. Interprocedural compilation of Fortran Dfor MIMD distributed-memory machines. In Proceedings Supercomputing '92, pages 522{534. IEEEComputer Society Press, November 1992.[22] R. v. Hanxleden, K. Kennedy, and J. Saltz. Value-based distributions in Fortran D { a preliminaryreport. Technical Report CRPC-TR93365-S, Center for Research on Parallel Computation, RiceUniversity, December 1993. Submitted to Journal of Programming Languages - Special Issue onCompiling and Run-Time Issues for Distributed Address Space Machines.[23] Reinhard v. Hanxleden. Handling irregular problems with Fortran D - a preliminary report. InProceedings of the Fourth Workshop on Compilers for Parallel Computers, Delft, The Netherlands,December 1993. Also available as CRPC Technical Report CRPC-TR93339-S.[24] Reinhard von Hanxleden and Ken Kennedy. Give-n-take { a balanced code placement framework. InProceedings of the SIGPLAN '94 Conference on Programming Language Design and Implementation,pages 107{120. ACM Press, June 1994. ACM SIGPLAN Notices, Vol. 29, No. 6.[25] Mary Jean Harrold and Mary Lou So�a. E�cient computation of interprocedural de�nition-usechains. ACM Transactions on Programming Languages and Systems, 16(2):175{204, March 1994.[26] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMDdistributed-memory machines. Communications of the ACM, 35(8):66{80, August 1992.[27] Yuan-Shin Hwang, Raja Das, Joel Saltz, Bernard Brooks, and Milan Hodoscek. Parallelizing molec-ular dynamics programs for distributed memory machines: An application of the CHAOS runtimesupport library. Technical Report CS-TR-3374 and UMIACS-TR-94-125, University of Maryland,Department of Computer Science and UMIACS, November 1994.[28] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance FortranHandbook. MIT Press, 1994. 30

[29] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed execution.IEEE Transactions on Parallel and Distributed Systems, 2(4):440{451, October 1991.[30] V. Kotlyar, K. Pingali, and P. Stodghill. Automatic parallelization of sparse conjugate gradient code:A progress report. In Proceedings of the 8th Workshop on Languages and Compilers for ParallelComputing, August 1995.[31] Antonio Lain and Prithviraj Banerjee. Exploiting spatial regularity in irregular iterative applica-tions. In Proceedings of the Ninth International Parallel Processing Symposium, pages 820{826. IEEEComputer Society Press, April 1995.[32] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies. Communica-tions of the ACM, 22(2):96{103, February 1979.[33] E. Myers. A precise interprocedural data ow algorithm. In Conference Record of the Eighth ACMSymposium on the Principles of Programming Languages, pages 219{230, January 1981.[34] Ravi Ponnusamy, Joel Saltz, and Alok Choudhary. Runtime-compilation techniques for data parti-tioning and communication schedule reuse. In Proceedings Supercomputing '93, pages 361{370. IEEEComputer Society Press, November 1993. Also available as University of Maryland Technical ReportCS-TR-3055 and UMIACS-TR-93-32.[35] Shamik D. Sharma, Ravi Ponnusamy, Bongki Moon, Yuan-Shin Hwang, Raja Das, and Joel Saltz.Run-time and compile-time support for adaptive irregular problems. In Proceedings Supercomputing'94, pages 97{106. IEEE Computer Society Press, November 1994.[36] Alan Sussman, Gagan Agrawal, and Joel Saltz. A manual for the multiblock PARTI runtime primi-tives, revision 4.1. Technical Report CS-TR-3070.1 and UMIACS-TR-93-36.1, University of Maryland,Department of Computer Science and UMIACS, December 1993.[37] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, 10:352{357, 1984.[38] Janet Wu, Raja Das, Joel Saltz, Harry Berryman, and Seema Hiranandani. Distributed memorycompiler design for sparse problems. IEEE Transactions on Computers, 44(6):737{753, June 1995.

31

