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Chapter 1

Introduction

The purpose of Data Compression is to represent a source by a rate lower than
the original rate. The rate is defined as the average number of binary digits or
bits needed for the representation. There are two kinds of data compression. The
first one is noiseless or lossless compression in which the original information can
be retrieved pertectly from the compressed data. Huffman coding, arithmetic
coding and Ziv-Lempel coding are examples of noiseless coding systems. We
define the compression ratio as % where Ropigina 18 the number of bits
in the original signal and Reompressed 18 the number of bits in the compressed
version. Due to Shannon’s source coding theorem, the compression ratio for
noiseless coding systems is limited. To get higher compression ratios, we have no
choice but to use lossy compression methods in which a perfect reconstruction of
the source is impossible. The purpose of lossy compression is to obtain the “best
possible quality” for a given rate. The best possible quality may have different
meanings to different people. A quantitative measure of closeness is needed to
compare different methods of data compression. This distortion measure should

have some properties to be useful. It should be (i) mathematically tractable so as



to lend itself to analysis and (ii) subjectively meaningful so that large and small
average distortion values correspond, respectively, to poor and good subjective
qualities as perceived by the user of the data compression system. The smallest
average distortion for a given rate is given by the source distortion-rate function
[Ber71].

The most popular distortion measure is the squared-error distortion mea-
sure. The mean squared-error (MSE) between the source sequence {z;} and its

reproduction {;} is defined by
| M
MSE = -M ;(ll - fi)2

where M is the number of samples in the sequence. Although the squared-error
criterion is not always perceptually meaningtul, it has been used extensively for
designing image compression systems. Using MSE for speech compression does
not make sense because MSE is not invariant to shifts in time or space; however,
delayed speech would sound as good as the original. The Itakura-Saito distortion
measure [[ta68] is well behaved for speech compression applications. The same
problem is valid for images; but, there is no good substitution available.
Digital image storage systems and digital image transmission are two grow-
ing applications of data compression. Some specific applications are the storage
of medical images, digital video recording, video-phone, teleconferencing and
the transmission of still pictures over telephéne lines. The general problem is
addressed by the field of image coding. Different image coding systems are avail-
able. Subband coding and transform coding are two popular techniques and have
advantages and disadvantages compared to each other. The transform coding
approach usually suffers from blockiness; however, it achieves higher compres-

sion ratios for the same amount of MSE. On the other hand, the subband coding

o



approach naturally gives some nice properties like spectral shaping of the quanti-
zation noise and progressive transmission of images in which increasingly better
reproductions of the transmitted image can be reconstructed by the decoder.
In this thesis, we consider the effects of adaptation on the performance of
transform and subband coding systems. Chapter 2 provides a brief description
of subband coding and discrete wavelet transform. In Chapter 3, the problem of
classification is considered and several solutions to the problem are suggested.
An application of these methods in adaptive DCT of images is considered in
Chapter 4. An efficient wavelet based image coding system using classification
for adaptation is developed in Chapter 5 and practical considerations concern-
ing overhead, complexity and performance are discussed. Chapter 6 consists of

conclusions and suggestions for future research.



Chapter 2

Subband Coding and Discrete
Wavelet Transform(DWT)

The idea of subband coding is to decompose the source into its different frequency
subbands and encode each subband using a suitable coding system [Cro76a].
Because there is little correlation between the decomposed subbands, they can
be coded separately [Mal89], [Ant92], [Tan92]. The separate coding of different
subbands provides three desirable features. First, by allocating the available
bits for encoding among the subbands and using an appropriate quantizer for
each of them, the encoding process can be tailored to the statistics of each
subband. Second, spectral shaping of the quantization noise is possible. This
feature can be used to take advantage of the noise perception of the human
auditory system for speech or the human visual system for images. Third, the
subband decomposition of the signal spectrum leads naturally to multiresolution
signal decomposition - a feature that is becoming increasingly important for the

seamless communication networks of the future. This is also useful for progressive
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transmission of images in which an increasingly higher resolution and quality
image can be reconstructed by the decoder.

Using a bank of n band-pass filters, each associated with a separate frequency
channel, n different subbands of the source will be created. A dual set of filters is
needed to reconstruct the original source from its subbands. Quadrature Mirror
Filters (QMF’s) can be used to have a perfect reconstruction [Cro76b]. A mul-
tiresolution representation using wavelet orthonormal [Mal89] or biorthogonal
[Ant92] bases is another approach which is the subject of this chapter.

In a subband coding system, after decomposition, the subbands are quantized
and encoded. Therefore, it is not clear that the subband filters need to be pertect
reconstruction filters. However, since no definitive techniques for combining the
filter design and quantization are known, the filters used for decomposition are
usually perfect reconstruction filters. Good coding results have been reported

based on these filters.

2.1 Multiresolution Signal Decomposition

Defining L2(IR) as the vector space of measurable and square-integrable one-
dimensional (1-D) functions, wavelets are functions ¢(z) whose translations and
dilations (3, n(2) = 27™/2p(27™2 — n)) can be used for the expansion of func-
tions in L2(IR) [Mey85]. The class of functions (x) € L*(IR) that generate
an orthonormal basis for L?(IR) can be described using the multiresolution ap-
proach to wavelets [Mal89]. In what follows, the model is first described for 1-D
functions and then extended to two dimensions for image processing applications.

Let A,, be a linear operator used to approximate a signal at resolution m.



Clearly, if A, f(z) is the approximation of f(z) € L*(IR) at resolution m, then
An(Anf(z)) = Anf(z). Thus, A, is a projection operator on a particular
vector space V,,, C L?(IR). The vector space V,, can be interpreted as the set
of all possible approximations at resolution m of functions in L*(R). Any set
of vector spaces {V,,}, for all m in Z, which satisfies the following properties is

called a multiresolution approximation of L*(IR) [Mal89]:

Vin C Vier, Ym € %, (2.1)

f(z) € Vo & f(22) € Voo, Ym € Z, (2.2)
d¢ € Vp such that ¢(z —n) € Vg, Vn, (2.3)
va = {0}, (2.4)

Vi = L}(R). (2.5)

Mallat has shown that for a multiresolution approximation of L?(IR), there
exists a unique function ¢(z) € L*(IR), called a scaling function, such that
bmn(z) =2"24(27™x —n), n € % forms an orthonormal basis for V,, [Mal89].
The orthogonal projection of f(z) on V,, can be computed by decomposing the

signal f(z) with the above orthonormal basis:

o

Amf(:l') - Z < fa ¢m,n > ¢m,n(w)~ (26)

n=—0o
A discrete approximation of f(z) at resolution m can be defined as

amyn(f) = Asz =< f> (bm,n >, Vn € Z. (27)

Equation (2.7) can be interpreted as a convolution product evaluated at point

2™n

amnlf) = Ay [ = (fu) * dpol—u))(2"n), Vn €. (2.

SV
o
~



Figure 2.1: Multiresolution Approximation of L*(IR)

The above equation is also equivalent to low-pass filtering of f(2) followed by a
uniform sampling at the rate 2. To follow rapid changes of the signal in space
domain as well as the frequency domain using finite number of coefficients, the
transform used must accept nonstationarity and be well localized in both space
and frequency domains [Ant92].

Let H be a discrete filter with impulse response

h(n) =< ¢1,0, Pon >, (2.9)

and let H be the mirror filter with impulse response hA(n) = 71,(—71,). [t can be



shown that [Mal89]

malf) = i h(2n — k)am—1(f). (2.10)

k=—c0
Equation (2.10) implies that a,, .(f) can be computed by convolving a,,—1x( f)
with H and sub-sampling by 2. All the discrete approximations a, ,(f), for
m > 0 can be computed from a,(f) by repeating this process. Usually a
regularity condition is imposed on the scaling function requiring that ¢(z) be
continuously differentiable and that the asymptotic decay of ¢(x) and ¢/(z)

satisfy

and
| ¢1(z) | = O(272). (2.12)

Having the above conditions on ¢(a), the filter H will satisfy the following prop-

erties:
h(n) = O(n™?), (2.13)
|H(0) | = 1, (2.14)

and
|H(w) > + | H(w+7) ’=1, (2.15)

The orthogonal complement subspace of V,, in V,,_y is denoted by W,,, i.e.
W @ Vi, = Viner and W, L V,,. (2.16)

The orthogonal projection of a signal on W, is called the detail signal at reso-

lution m.



Denoting the Fourier transform of f(z) by f(w) and the conjugate of a com-

plex number z by %, ¥(2) is a function defined by

Pw) = G(w/2)d(w/2), (2.17)

where

Gw) = e ™H(w+ 7). (2.18)

Then t,, (), for all n in Z, is an orthonormal basis of W, and 1, »(2), for
all (m,n) in Z*, is an orthonormal basis of L?(IR). Here, 9 (x) is called an
orthogonal mother wavelet. The orthogonal projection of f(a) on W, (detail

signal) can be characterized by the following set of inner products:
emn(f) = Dnf =< fithmn >, Yn€EZ. (2.19)

Upon defining a filter G with impulse response §(n) given by

g(n) =< 10,000 >, Vn€Z, (2.20)
it can be shown that
Cnn(f) = D 920 — k)am_1i(f), (2.21)
k=—00

where g(n) = g(—n). The detail signal ¢, n(f) can be computed by convolving
am-1,(f) with the filter g and sub-sampling by 2. Using (2.18), ¢(n) and h(n)

are related by the following equation:
g(n) = (=1)"k(1 — n). (2.22)

The two filters G and H are referred to as QMF’s and are high-pass and low-pass

filters respectively.
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In practice, a physical measuring device can only measure a signal at a finite
resolution. For normalization purposes, we suppose that this resolution is equal
to 1. The original discrete a; ,(f) measured at resolution 1 is represented by
ama(f), {emn(f)}, 1 < m < M. This set of discrete signals is called an
orthogonal wavelet representation. If the discrete approximation of the original
signal at resolution 1 has N samples, then the discrete signals ¢, », and a,, , each
will have 2™ N samples. Therefore, the wavelet representation has the same
total number of samples as the original one. This is because of orthogonality.

Reconstruction can be achieved by upsampling (placing zeros between neigh-
boring samples) a,, »(f) and ¢, »(f) and passing them through H and & respec-
tively:

(o)

am—l,l(f) = Z [7l(l - ?‘n)am,N(f) + gl — 272)Cn1,n(f)]' (2.

n=—o

o
[
(%)
-~

A = hin) {2 A ()

mel

Y

| o0

Wavelet Decomposition

A h(n) j

ﬁ v
= g

Wavelet Reconstruction

Figure 2.2: Implementation of the Biorthogonal Wavelet Scheme
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2.2 Biorthogonal Wavelet Bases

Most of the orthonormal wavelet bases have infinitely supported 1, correspond-
ing to filters h and ¢ with infinitely many taps. Having finite number of taps
(using FIR filters) is required in practice and can be achieved when the support
of ¥ is finite. It is desirable that the FIR filters used be linear-phase, since such
filters can be easily cascaded in a pyramidal filter structure without the need for
phase compensation [Ant92].

Unfortunately, there are no nontrivial orthonormal linear-phase FIR filters
with the exact reconstruction property. The only symmetric exact reconstruction
filters are those corresponding to the Haar basis, i.e. hg = hy = 21/2 and
go = —¢1 = 242, with all other g,, h, = 0 [Mal89).

By preserving the linear-phase property of the FIR filters and relaxing the
orthonormality requirement, and using biorthogonal bases, it 1s possible to have
perfect reconstruction and arbitrarily high regularity [Ant92]. In such a scheme
(Fig. 2.2), the decomposition is the same as before

Cm,n(f) = Z 9(272 - ]i")am—l,k(f), (224)

k=—co

amn(f) = f: h(2n — k)apm—14(f). (2.25)

k=—c0
However, reconstruction becomes
o0

am—l.l(f) = Z [71(2” - Z)(Lm,n(f) + .(7(271 - l)cm,n(f)]) (226)

n=—0oo

where the filters & and g may be different from h and ¢g. Perfect reconstruction

is possible when

g(n) = (=1)*h(1 —n), (2.

o
o
-3

=

L



g(n) = (—17"h(1 = ),
and

Z h(n)iz(n + 2k) = bk 0.

n=-—oo

The interpretation of the biorthogonal scheme in terms of the bases can be done

as follows. Define the functions ¢ and ¢~> by

h(n)é(2z — n),

M3 ZMs

h(n)¢(2z — n).

K oo

Also define

ba) = 3 g(m)e(2e —n),

ble) = 3 gn)g(2e —n).

Then apm o (f) and ¢y n(f) can be rewritten as

am,n(f) = < (bm,naf >,

Cm,n(f) = < ¢'m,n7f >

Reconstruction is done by

7‘ = < "/)m ns f > "Z’m n.
> <thm, ,

m,n

Equation (2.36) is very similar to the orthonormal case. The only difference

is that the expansion of f with respect to the basis 'L[Jm,n uses the coeflicients

computed via the dual basis 1, ,.



2.3 Extension to Two-dimensional Signals

A simple way for extending the 1-D transform of the previous section to a 2-D
case is by separating the horizontal and vertical orientations. A scaling function

can be defined by
o(z,y) = d(2)d(y), (2.37)

where ¢(z) is a 1-D scaling function. Let t(z) be the wavelet associated with

the scaling function ¢(x). Then, the three 2-D wavelets are defined as

$(a,y) = da)ly), (2.38)
$ley) = b)), (2.39)
$P(2,y) = Pla)bly). (2.40)

The implementation is the same as before. Practically, rows will be decom-
posed by using the 1-D decomposition filters and then the columns of the output
will be decomposed using the same system.

When an M x N image is processed, after the first stage of decomposition,
two M x % images will be created. Each of them will go through the same

M., N

process for the columns and resulting in four 5~ x 5

images. Clearly, the total
number of samples is the same as the original one. Thus, to prevent using extra
memory, these four sub-images can be placed in the memory location of the
original image as in Figure 2.3. The original image can be replicated by first
performing the reconstruction operations on columns and then doing the same
process on rows.

Each sub-image can be decomposed into new subbands using the same set of

filters. The result for two levels of decomposition for the 512 x 512 monochrome

13



H for Rows H for Rows

H for Columus |G for Columns

( for Rows G for Rows

H for Columns |G for Columns

Figure 2.3: Decomposing an Image into IFour Subbands.

Lenna image using the No. 2 7-9 spline filters in [Ant92] is shown in Figure 2.5.

Also, we enumerate the subbands in Figure 2.6 for {future use.

14



Figure 2.4: 512 x 512 LENNA
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Figure 2.5: Decomposed 512 x 512 LENNA

-

Figure 2.6: Enumerating Subbands of an Image.
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Chapter 3

Image Block Classification

In general, mapping a high-dimensional event space onto a low-dimensional fea-
ture space is called classification. A classified quantizer has separate codebooks
for each of a set of classes [Ram86]. The motivation behind classified quantiza-
tion is to design a separate codebook for specific events to do a belter overall
job of coding the source. Due to the apparent nonstationary behavior of the
image blocks, classifying these blocks into more uniform regions provides the
opportunity of using stationary probabilistic models for them. An example in
image coding would be to have separate codebooks for edge areas and for shaded
regions. Because the edge codebook is designed using only edges, it should better
reproduce other edges. Additionally, using a nonuniform bit allocation among
the different activity regions of the image, more bits can be assigned to the more
important parts of the image. In this manner, the coding system captures the
nonstationary behavior of the source and results in better performance.

The classification can be performed using a variety of methods such as deci-
sion trees, edge detection or vector quantization (VQ). Different approaches to

the problem of iiage block classification are investigated below.
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3.1 Gain-Based Classification

A suitable parameter for block classification is the gain (the square root of ac-
energy) of image blocks. To compute the gains, the image is divided into I x L
nonoverlapping blocks of pixels. If the L x L matrix which contains the pixels

in the k** block is denoted by Ay, its gain, g, is given by

| L L
9k =\ Tz 2= . [Ax(2,7) — mu]?, (3.1)
=1 =1
where
L o g
me =73, 1 z; Ai(2,7). (3.2)
1= ]:

This gain is a good measure of the level of activity in the block. Ior example,
if the block only consists of one grey level, the corresponding gain is zero. On
the other hand, when grey levels change rapidly in a block, its gain is relatively
high. The extreme case is when half of the pixels are white (grey level 255) and
the other half are black (grey level 0) and the corresponding gain is 127.5.

In gain-bhased classification schemes, blocks are classified into a prescribed
number of classes according to their gain values. In this manner, blocks with
close gain values are gathered in the same class. The classification procedure
therefore assigns a class index to each block. A matrix whose entries are these
class indices is referred to as the classification table. Needless to say, different
criteria for classification result in different classification tables. In this section,
we consider different criteria for classilying the blocks of an image based on their

gain values.

—_
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3.1.1 Chen-Smith Approach

Chen and Smith [CheT77] suggested a simple method to perform the classifica-
tion, or, equivalently, to choose thresholds between the gain values of different
classes. In this approach, thresholds are chosen such that all classes have the
same number of blocks. If there are N blocks to be classified to & classes, the
% blocks with highest gain values fall into the first class. The % blocks with
highest gain values among the remaining blocks fall into the second class and so
on. These class indices specify the classification table and can be coded using
log, k£ bits/block. The classification table using four classes for the 512 x 512
Lenna image and blocks of size 16 x 16 is shown in Figure 3.1 in the form of
an image. This image is constructed by assigning a different grey level to each
class in order to visualize the classification table. Class 0 (low activity class) is
represented by a grey value equal to 0. Classes I, 2 and 3 are represented by
grey levels 100, 150 and 255, respectively.

The Chen-Smith classification procedure is an easy way to classify blocks
into different regions of activity. Although we have not defined a measurable
quantity to compare classification schemes with each other, intuitively, there
are situations in which this simple approach does not work well. For example,
an image containing a large area with constant grey levels has a lot of blocks
with zero (or very small) gains. If the number of such blocks exceeds £, the
Chen-Smith procedure will put some of them into other classes although it is
expected to have all of them in one class. The capability of allowing a different
number of blocks in each class can potentially improve the classification. Also,
as a gain-based classification method, Chen-Smith scheme pays no attention to

the spectral shape of the blocks. This issue is considered in depth in Section 3.3.

19



3.1.2 Equal-Normalized-Standard Deviation Approach

In what follows we propose a different method in which after sorting the gain val-
ues, they are split into the given number of classes such that the mean-normalized
standard deviation of the resulting classes are the same. The idea behind this
approach is to allow the possibility of having a different number of blocks in
each class and to have similar statistical properties within each class such that
the representation of the blocks as one class is meaningful from a coding stand
point. For a stationary source, standard deviation is a measure of dispersion of
samples and the smaller is the standard deviation of a source, the denser will be
the samples about the mean. When one of the classes has a higher dispersion
than others, the blocks in that particular class do not have the same level of ac-
tivity. Having the same density for different classes is considered as being more
uniform inside classes.

Because of the discrete nature of the problem an exact solution for the prob-
lem may not be possible and there is no guarantee that a solution, if one exists,
is unique. However, for practical purposes we try to make the mean-normalized
standard deviation of the classes as close to each other as possible. For sim-
plicity, for the moment, we consider the case with two classes. When there are
N blocks sorted in an increasing order of their gain values ¢,, ¢ = 1,2,..., N,
we look for an integer N’ such that blocks | to N’ belong to the first class and

the remaining blocks belong to the second class. The mean m and standard




deviation o of each class is defined by

my = % ZQ’_—IJ Gn
ma = N__lN'? ZQI—_—N%l In (3.3)
7 = AN (g m)? |
U% = W_IT\/’I ZZLN'-H (gn — ma2)?.
Here, N’ is chosen such that
==y, (3.4)
my My

An iterative algorithm to find N’ satisfying (3.4) is provided below. If there is

no integer N’ which solves (3.4), the algorithm finds the N’ which minimizes

|1 — a2 |-
o Algorithm:

1. Choose an initial value for N’ (e.g. N’ = N/2) and set the iteration
number 2 = 0. Also choose 7,,,, as an upper limit on the number of

iterations.
2. Compute ¢; and ¢, using (3.4) and set i = ¢ + 1.
3. If _lg_lq—l_qzl < 6 0r 1> iy, stop. Otherwise,
it ¢y < q2,8et N' = N+ AN’
if ¢ > ¢2,5et N'=N'"— AN’

and go to (2).

To have a fast convergence, a large AN’ can be chosen at the beginning of the
algorithm and as the iteration number increases AN’ must be decreased to one

gradually.



The same algorithm can be generalized for a larger number of classes. For the
case of M classes, M ratios ¢; = 2-, ¢ =1,2,..., M and (M — 1) thresholds are
max, ¢,

max g M ® o~ § or when the number
min, g,

needed. The algorithm is stopped when
of iteration exceeds its maximum. At each step of the algorithm, the threshold
corresponding to the class with maximum or minimum ¢; is adjusted one after
the other. The resulting classification image using four classes for the 512 x 512
Lenna (6 = 0.01) is illustrated in Figure 3.2. In Figure 3.2, we have used the same
grey levels as in Figure 3.1. Although it is not conclusive by itself, comparing
Figures 3.1 and 3.2 shows that the equal-normalized-standard deviation (ENSD)
classification is more successful than the Chen-Smith classification in separating
high activity regions {from other parts of the image. For example, using the
Chen-Smith scheme results in putting the blocks corresponding to the strong
edges and most of the blocks corresponding to the texture in the feather in the
same class. On the other hand, using ENSD approach has placed these blocks

into different classes.

3.2 Combined Classification and Bit Alloca-
tion

In this section, we will consider the possibility of approaching the problem of
classification in a more general setup. One of the purposes of classification is
to allocate bits nonuniformly among the different portions of a nonstationary
source so as to best utilize the bit rate budget. A suitable encoder is designed
for each class to minimize the distortion between the source and its quantized

version. If a k-dimensional VQ is used for encoding each class, the rate-distortion

o
o



performance of the quantizer for high rates using the squared-error criterion can

be formulated as [Ger79]
d,(r;) = 02272 || p] Il (3.5)

where o? is the variance of blocks in class 7, p;(z) is the k-dimensional pdf
of blocks in class 7, pi(z) is the variance normalized version of p,(2) and r, is
the rate of quantization in bits/vector. The ultimate purpose of bit allocation
is to optimally assign bits among quantizers such that the overall distortion
i1s minimized. The problem of bit allocation is considered in Section 4.1. In
this section, we consider classification and bit allocation problems together and
suggest a locally optimum algorithm to solve the combined problem. When the
pmf of classes is denoted by {P;}, we are interested in the classifier which solves

the following problem:

M

min D =Y Po? 27" || p, Hh_i?, (3.6a)
=1 -
M

subject toEPiri = R. (3.6b)
=1

Our objective is to find the best set of thresholds for classification and the best
values for rates, r;’s, simultaneously. The problem can be solved iteratively using

the following steps:
1. For fixed thresholds, find the best rates, r,’s.
2. For fixed rates, find the best thresholds.

The algorithm is stopped when the relative change of D is less than a prescribed

small value.



The constrained problem, in the first step of the algorithm, can be converted

to an unconstrained one using a Lagrange multiplier as follows
M M
— 2 -2, / .
J(/\) - Z;Piaz 27 “ Pi Hﬁ:; +/\Z;PL71'
= =
Taking derivative with respect to r; and setting it to zero yields
—2In2 Po? 27 || pl |I% +AP;, =0, 1= 1,2,..., M.
T
Solving for r,’s implies
2In2 o? || p || &

1 T
7'i=§log2[ 3 211 =1,2,..., M,

or,

1 :
= )\'+log20i+§log2 | »; ”ﬁz’ v=1,2,.... M,

where V' = 7 log, &/‘\‘2 Using the constraint, A’ can be calculated by
M M 1
ZPﬂ'i =R=)+ ZP,[log2 o t3 logy || p; ”ki‘q]»
=1 =1 = -
or,
M 1
N=R- ZPi[logz o, + 310g2 | v, ”%]
=1 = -

Substituting for A’ gives the final solution for r;’s:

= R-— ?il Pj[log2 g, + %logz I P_/j |

k]+

F+3

log, o; + 2 log, || 1! ||k:»?7 i=1,2,..., M.

(3.7)

(3.10)

(3.11)

(3.13)

(3.14)

Assuming fixed || p}||_«_ for all classes makes the computations much simpler:
k42
M
r,=R— ZPj log, 0, +logy0,, 2=1,2,..., M.
1=1

However since the allocated rates must be nonnegative, it may not always be

possible to find a solution of this form. Although the rate-distortion model in



(3.5) works for high rates and therefore it is expected to get nonnegative rates
from (3.14), even if some of the ris in (3.14) are negative using Kuhn-Tucker
conditions we still can solve the problem [Ort70]. The solution contains rates
such that
r; = (v+log,o))t, i=1,2,...,M, (3.15)
where v is chosen so that
M
> Pi(v+logya:)t = R. (3.16)

=1

Here (2)* denotes the positive part of 2, i.e.

B (3.17)
0 a2<0.

The process of finding v is called “water filling” process in which after sorting
all (log, 0y)’s, we pick the largest one and by putting the (v + log, 7,)* = 0 for
other classes, we find the v which solves (3.16). If the resulting v gives negative
values for other (v + log, o;) quantities, it is the solution. Otherwise, we need to
consider the second rate nonnegative and repeat the same procedure. Increasing
the number of nonzero rates, the solution is achieved when the assumption of
having zero rates is consistent with nonpositive values for (v + log, o;) [Ort70].
In the second step of the algorithm, by assigning r, bits/vector to class z,
we want to choose a set of thresholds to minimize D. This is an unconstrained
minimization problem and can be solved using methods like Steepest-Descent or

simulated annealing.
There is no simulation result available at the moment. At each step of the al-
gorithm, the overall distortion, D, is decreased. Since D is a nonnegative number
and a lower bounded nonincreasing sequence of numbers converges to a nonneg-

ative number, the algorithm achieves a locally minimum D. In other words, the

Q)
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algorithm 1is locally optimum and should outperform other schemes discussed
in previous sections following an optimal bit allocation procedure. There is no
proof for the uniqueness of the result and the goodness of the local optimum
usually depends on the initial values. A full study of the tradeoffs between the
complexity of the system and the amount of the improvement is needed to justify

the use of the combined system.

3.3 Linear Prediction and Spectral Classifica-
tion of Images

Gain-based classification uses the ac-energy level of each block as a measure
of block activity. Based on this measure, the classifier divides the blocks into
different activity regions. Although the performance of gain-based classifiers are
usually good, there are some dissimilar cases which are not separable using this
approach. For example, Figure 3.3 shows three blocks containing white and black
strips. In two of them the strips are horizontal and in the other one vertical.
The gain value of these blocks are the same and hence the gain-based classifier
puts them in the same class although {rom a spectral point of view they are
completely different.

Spectral properties of the signal is another feature which can, and perhaps
must, be used for classification. For the example of Figure 3.3, the spectrum of
the blocks in horizontal and vertical directions are different. In spectral classi-
fication, segments of a signal are classified into different classes based on their
spectrum. Linear prediction coefficients are a good measure for representing

spectral behavior of a signal. VQ can be used to split the spectral space into a



finite number of regions. An appropriate distortion measure for designing a VQ
for this application is described below. This approach was first developed for

quantization of speech spectral parameters [Buz80].

3.3.1 LPC Coding in Speech

A sequence of fixed-length segments of speech waveform called frames might
be modeled as an autoregressive (AR) process. As a result, the coefficients of
the all-pole filter and the corresponding input of the filter, called the excitation
sequence, can be transmitted instead of quantizing and transferring the speech
waveform. In practice, some information about the input of the filter is sent
and the required excitation sequence is generated at the receiver. The speech
waveform can be synthesized by constructing the same all-pole filter and applying
the generated input to the filter [Mar76].
Suppose an M -order filter, H(z), is given by

M
H(z) = 0/A(z) where A(z)=) aiz™" with ay=1. (3.18)

7
=0

Coeflicients «!, 7 = 1,..., M are called the linear prediction coefficients (LPC’s).
These coeflicients are chosen such that the squared-error a between the original
sequence z(n) and the predicted signal y(n) = Z(n) is minimized. The best
autoregressive model using the above criterion can be found by solving the fol-

lowing system of M simultaneous equations known as Wiener-Hopf equations

[Hay91]:
M
Ydr(i=j) =0, j=12....M, (3.19)
=0

where (1) is the {** autocorrelation coeflicient of x(n). There is also a simple

iterative algorithm known as the Levinson-Durbin algorithm or the partial cor-



relation coefficients (PARCOR) algorithm to compute the parameters [Hay91].

The corresponding squared-error is
2 . Qs
ay =0 = E a;r(1), (3.20)

where aps shows the minimum squared-error corresponding to an optimal A/*"-
order filter and «;, ¢ = 1,..., M are the optimum LPC’s.

If the input of the filter e(n) is an excitation sequence with autocorrelation
re(n) = 6(n), the first M autocorrelations of y(n) are the same as those of z(n).
This observation implies that the power spectrum of H(z) defined by IA—’)UIZ—:;
is the same as the power spectrum of z(n) (defined by Sx(w) =| X(2) [*__.)
[Mar76].

In a derivation of linear prediction based on the concept of maximum likeli-

hood, Itakura and Saito showed that finding the optimum predictor is equivalent

to minimizing the quantity D =d(| X || HI|?) = [7.[p(0) — Inp(8) — 1]d0/2x

where p(0) = [Ita68]. In other words, the problem at hand is equivalent

to finding the filter A(z) which minimizes the Itakura-Saito distortion measure.
The Itakura-Saito distortion has some nice properties and can be computed in
the time-domain as

o?

= 0227 (n)ry(n -I—lna———l (3.21)

[o.e]
where r,(n) = ¥ ararsn and oo, is the squared-error resulting from the opti-
mum infinite-order filter.
Like other known distortion measures, d(| X |*,| H |*) is zero if and only
if Hw) = X(w). Usually distortion measures satisfy the “triangular inequal-

ity.” However, a very interesting property of the Itakura-Saito distortion is the



“triangular equality”:
A X3 HIY) = d(| X 2, | Hyr |2) + d(| Har )%, | H ), (3.22)

where Hy is the optimal M!"-order autoregression filter for X and H is any
arbitrary all-pole filter [Buz80]. The triangular equality enables us to combine
the LPC computation procedure with the quantization of the LPC parameters.
Traditionally, speech coding systems are based on a two-step process (Fig. 3.4).
The first step is an identification process which computes the LPC’s for each
frame of speech; the second step quantizes the LPC’s. The identification step
uses the Itakura-Saito distortion (implicitly), so it is wise to use this distortion
for the quantization step as well. Using the Itakura-Saito distortion, the overall

distortion d(| X |%,| H |*) can be minimized directly in one step instead of first

obtaining Hps(z) and then minimizing d(| Hps |?,] H |?). This property is be-
cause of the triangular equality (3.22). The corresponding design procedure is

described in the following section.

3.3.2 Codebook Generation (VQ Design)

The Generalized Lloyd algorithm is an iterative algorithm for designing a locally
optimal VQ [Lin80]. The basic idea is to start from an initial codebook and
iteratively improve the codebook in terms of a given distortion measure. The
first step of the algorithm consists of finding the best partition of the space for a
given codebook (Generalized Nearest Neighbor Rule). The second step obtains
the best codebook for a given partition of the space (Generalized Centroid Rule).
Because at each step of the algorithm the average distortion could not be larger

than the previous one, convergence to a locally optimum quantizer is guaranteed.



The process will be terminated when the rate of improvement is less than a
prescribed small value.
Generalized Nearest Neighbor Distortion Calculations

Since ao depends only on the speech frame, minimizing d(| X |2,| H |?) is

equivalent to finding the H(z) = ;1—‘(;—) which minimizes
d(|X|2,|H|2)+ l+Inae, = %—}—ln o2, (3.23)
o

For each single frame of speech, the residual energy o must be computed as

follows:
o] M
a = Z ro(n)ry(n) = r,(0)r,(0) + 2 Z ro(n)r.(n), (3.24)
n=—00 n=1
where
M—n
ro(n) = Z Aplhgn, n=0,1,..., M. (3.25)
k=0

For computational efficiency, the transmitter codebook should probably contain
the normalized sequence {“;#, n=20,1,...,M} as well as the value of In o2

For a data sequence which is truncated to n = 0,1,..., N — | samples, the

standard short-term autocorrelation sequence, r,(n), is given by

N-1-n
ro(n) = Z TpXpgn, n=0,1,...,M < N. (3.26)

k=0
Here, =% +1n a? must be evaluated for each entry in the codebook and the vector
with the smallest & + In o2 is chosen as the codevector.

Generalized Centroid Calculations

The sum of frame distortions can be calculated by

L
D=>"d(| Xs|* | H?). (3.27)

k=1
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Using the definition of [takura-Saito distortion, (3.21) implies

k
d(| Xe|* | H ) = —Ciz— +Ino? —Inaf, -1
o

1 g7 10 & 10
:—2/ |Xk|2|/l]2—(——+11102~ In | X, [25———1 (3.28)
0?2 Jx 2m

-
where o is the error corresponding to the k** frame. By summing from & = 1

to k = L, we get

5 db
D:%/ | X 2| A? do—}—Llna - Zln]X zd) (3.29)
T k=1
where
s 1 S Ny
| X 2= LZ | X% (3.30)
k=1
Therefore, D is given by
D=Ld(|X%]G) +u, (3.31)
where
Loy (10 ' (l() ,
'3 = ;/_ 2 +lna — /_ In | X |Z (3.32)
and
r — 1 & 10
= L/ I [ X2 == 3 In | X ]‘— (3.33)
— L=

Equation (3.33) shows that u is a constant which is independent of H(z). There-

fore, finding a filter which minimizes D is equivalent to minimizing

D —u
L

= d(| X% ]G]). (3.34)

This is the problem of minimizing the Itakura-Saito distortion and as it was
claimed in Section 3.3.1, we have a standard linear prediction problem for mod-

e]ing the averavse SPG(‘tI‘Unl.
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The autocorrelation sequences for all speech frames can be averaged to find

an average autocorrelation sequence and then by solving the Wiener-Hopf equa-

tions for this sequence the coeflicients of H(z) = A‘(’z) can be calculated. These

coefficients represent the generalized centroid of the frames.

3.3.3 Application in Image Classification

A VQ based on the Itakura-Saito distortion measure can be used to classify
image blocks. We refer to this approach as spectral classification because spectral
contents of the blocks are used to divide them into different classes. An image is
a 2-D signal and the VQ developed in Section 3.3.2 works for 1-D signals. Zigzag
scanning can be used to convert the 2-D blocks of an image into [-D sequences
[Pea90].

In spectral classification, the image is divided into 2-D blocks and each block
is zigzag scanned to create a 1-D version of the signal. Using a large training
sequence of monochrome images, a VQ is designed as was described in Section
3.3.2. The resulting codebook is used to classily blocks of an image outside the
training sequence. The classification image for the 512 x 512 Lenna using 16 x 16
blocks and a 10*-order filter is shown in Figure 3.5. In Figure 3.5, we have used
the same grey levels as Figures 3.1 and 3.2. It is clear from Figure 3.5 that
spectral classification is successful in separating regions with different levels of
activity from each other. Making a reasonable conclusion as to the efficacy of the
classification scheme should be based on the final results of the coding system.
At this point, we can only consider the capability of a classification scheme in
separating active regions from smooth regions of an image. Irom this point

of view, spectral classification seems to perform better than other classification
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schemes. In the next chapter, we design an image compression system based on
the idea of block classification and compare the performance of the classification
schemes with each other.

Also a combination of gain-based classification and spectral classification can
be used. Figure 3.6 shows a block diagram of such a scheme. In Figure 3.6, K}
gain classes and K, spectral classes are used to classify N? blocks of an image.
Therefore, the image blocks are divided into I K5 classes. In this scheme, first,
we classify the blocks of an image based on the gain values. Then, each gain class
is further classified based on the spectral characteristics of the blocks. A separate
VQ is designed for each gain class and as it is shown in the block diagram the

gain index is used to select the appropriate VQ.



Figure 3.1: Chen-Smith Classification Image for the 512 x 512 LENNA.
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Figure 3.2: ENSD Classification Image for the 512 x 512 LENNA.

35



(a) (b)

Figure 3.3: Sample Blocks.
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IFigure 3.4: LPC Analysis as a Two-step Process.
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Figure 3.5: Spectral Classification Image for the 512 x 512 LENNA.
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Chapter 4

Image Coding Using Adaptive

Discrete Cosine Transform

A 1-D signal can be represented by an orthogonal series of basis [unctions. Using
the same idea, an image can be expanded in terms of a discrete set of basis arrays
called basis images. These basis images form a vector space and can be generated
by unitary matrices [Jai86].

Unitary transforms have nice properties that make them suitable for coding
applications. A unitary transform is invertible and preserves the signal energy.
Most unitary transforms pack a large fraction of the average energy of the signal
into a few components of the transform coeflicients. Since the total energy
is preserved, some of the coefficients will contain very little energy and their
contribution in reconstructing the original image is less than the contribution
of other coefficients. The transform coeflicients are almost uncorrelated and

thus can be encoded efficiently using quantizers designed for memoryless sources

[Jais6).
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It is a well-known result that the Karhunen-Loeve transform (KLT) coef-
ficients are uncorrelated. Also, the KLT is known to be optimal (from the
energy-packing point of view [Jai86]). These properties are desirable in data
compression applications. The KLT has some shortcomings which make it im-
practical. Especially, it depends on the statistics as well as the size of the image.
Therefore, in general, its basis vectors must be computed for each image and are
not known analytically. Also, a fast algorithm for the KLT is not available and
therefore the number of operations for performing the transformation are quite
large for images.

The Discrete Cosine Transform (DCT) is a unitary transform which is very
close to the KLT of a first-order stationary Markov sequence when the correlation
parameter (p) is close to 1 [Jai86]. This property together with the availability
of a fast DCT algorithm make the DCT a good alternative for practical image

coding systems. The 1-D DCT of a sequence {u(n), 0 <n < N — 1} is defined

as
s w(2n + 1)k
. ;] __ /
nzou n)cos =, 0<k<N-—-1. (4.1)
where

/1 [2
=\ c(k) = NtorlﬁkSN—l. (4.2)

The only basis vector with nonzero mean is the first one and the corresponding

coefficient is called the DC coefficient. The inverse transformation is given by

= o+ 1)k
X_: ) cos L;;—), 0<n<N-—-1]. (4.3)

Using fast algorithms, the DCT can be computed in O(N log N) operations
[Jai86].

2-D DCT can be achieved by a separable [-D DCT in the horizontal and
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vertical directions. The complexity of DCT increases with increasing the size
of the image. To reduce the complexity, an N x N image can be segmented
into L x L blocks and then 2-D DCT is used for each block. Not only does this
segmentation reduce the complexity, but also it gives the opportunity to allocate
bits nonuniformly among the different activity regions of the image.

An adaptive DCT (ADCT) coding system segments the image into L x L
blocks and separately encodes each block. In this manner, blocks can be en-
coded with different rates corresponding to the spatial activity of each block as
well as different quantizers corresponding to the statistics of each block. The
nonstationarity among the blocks leads us to use classification to separate the
image into more homogeneous clusters. Each class contains blocks with close
levels of activity if classification is only based on the activity of blocks. This
can be achieved using classification schemes in Chapter 3. The variance of coef-
ficients for each class is computed and the required bit rate for each coefficient
in each class is defined using an optimal bit allocation procedure [Sho88]. After
subtracting the mean of the DC coefficient, all coeflicients are divided by their
standard deviations (the mean of other coeflicients are assumed to be zero).

The normalized coeflicients are quantized using scalar quantizers. The quan-
tization scheme used in this work is a modified version [Lee93] of the entropy-
constrained trellis-coded quantizer (ECTCQ) first reported in [Fis92]. The
ECTCQ exploits the space-filling efficiency of the trellis codes and can realize a
significant portion of the so-called space-filling advantage [Loo89]. The ECTCQ
has been demonstrated to provide an excellent rate-distortion performance for
a large variety of memoryless sources. The ECTCQ proposed in [Lee93] places

a symmetry constraint upon the reproduction codebook. This symmetry con-



straint, while essentially costing no performance loss, can be used to reduce the
memory requirement in entropy coding of the ECTCQ output. The quantizers
are designed for the so-called Generalized Gaussian Distributions (GGD) [Far84].

The probability density function associated with the GGD is given by:

pl) = [%]exp(—[n(a,ﬂ) [ 1), (4.4
where
2, B) = ﬂ-l[%{f‘f}”% (15)

and a > 0 is a shape parameter describing the exponential rate of decay, /3 is
the standard deviation of the distribution and I'(.) is the gamma function. The
shape parameter a can be determined {from a test sequence obtained [rom typical
images using the Kolmogorov-Smirnov test [ConT71].

The classification table, the variances, the mean of the DC coefficients and
the design rate are sent to the receiver as side information. The mean of the other
coefficients are assumed to be zero. The assigned bit rate for some coefficients
might be zero in which case their variance will not be transmitted. The allocated
bit rates can be found at the receiver using the same bit allocation procedure.

A more efficient way to transmit the side information can be found in [Ran92].

4.1 Bit Allocation

The problem of bit allocation is that of optimally distributing available bits
among the different quantizers in a coding system. The objective of bit allocation
is to achieve the smallest possible average distortion. Each quantizer is capahle

of operating at one of a fixed number of rates. The performance of such a



quantizer is characterized by its quantizer function (QF), defined by the average
quantization distortion as a function of the rate [Ber71].
Suppose we have M sequences of data samples to encode and r,, the average

' sequence, can be chosen from a discrete set of available

rate for coding the £
rates. For the above ADCT scheme, there are M = L2C sequences where C' is
the number of classes. Defining X as the reconstructed version of the encoded
X in the i** sequence, D;(r;) = E;[(X — i’)2] 1s the mean square error for coding

the i* sequence as a function of the rate where E; is the expectation in the 7%

sequence. It is a well-known fact that [Ber71]

Dz-(r,-) = U?d,'(?’g) (4.6)

' sequence respectively.

where o? and d,(r,) are the variance and the QF of the %
If P, is defined as the probability of having a block in class 7, the problem is that

of determining

M
n}in D= Z Pta?di(v-,), (4.7a)
! =1
M
subject to Z Pir; = R. (4.7h)
=1

In practice, P, and o? are computed empirically {rom the data.
There are different methods to solve the problem [Tru8!], [Sho88], [Ris91].
When all QF’s are convex and nonincreasing, which is the case for our quantizers,

the following simple Steepest-Descent algorithm is optimal:
1. Set r;, =00forz=1,2,..., M.

2. Compute the index ¢’ which satisfies

di(ri) = di(r. + Ary)
Ar;

|3

" 2
= arg max o
8 199\1{ !
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where Ar, is the difference between r; and the next available rate for the

" sequence.

3. Set ry =1y + AT‘,’/.

4. If R > ZL’] Pir;, stop; otherwise go to 2.

4.2 Comparing Adaptation Schemes

Any of the classification schemes we developed in Chapter 3 can be used for
2-D ADCT coding of images. The sequence of DC coefficients is modeled by
a Gaussian distribution and all other sequences are modeled by a generalized
Gaussian distribution with parameter 0.6. The simulation results for the 512 x
512 monochrome Lenna image is shown in Figure 4.1. For an M x N image, the

peak signal-to-noise ratio (PSNR) is defined by

(255)?2
1 M N

PSNR = 10log,,
MN =1 1=1 (“l'i.l -

(4.8)

where z;; and I;; are the pixels of original and reconstructed images respectively.
The encoding rates in these results include all required bits for transmitting the
side information as overhead. The variance ol coefficients and the mean of the
DC coefficients are assumed to be quantized with high precision (using 8-bit
scalar quantizers). The classification table and the design rate are sent losslessly.
In the process of bit allocation, some of the coefficients are assigned zero bits.
To avoid sending the variance of these coefficients which are not needed at the
receiver and can be considered as zero, first we zigzag scan the allocated bits.
Starting from the last allocated bit (which is usually zero) we go through the

list until we find a nonzero variance. The location of the first nonzero element
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and all variances after that are transmitted to the receiver. We repeat the
same procedure for all classes. Using this simple algorithm, we save about 50
percent in overhead for rate » = 0.25 bits/pixel. Another useful idea for reducing
the overhead is suggested in [Ran92] which works both for high and low rates.
Saving in overhead is a general reduction for all schemes in Figure 4.1 and will
not change the comparison. Using the spectral classification improves the results
by about 0.7 dB for rate r = 0.25 bits/pixel and a block size of 16. The results
based on the spectral classification are better than the results based on the
other classification schemes; however, the results for gain-based classifications
are more-or-less the same. The perceptual comparison of the results shows that
the ENSD classification outperforms the Chen-Smith classification. We have
conducted informal subjective tests in Communications and Signal Processing
Laboratory on the relative performances of the three different techniques that we
have considered. We asked students to compare the reconstructed images for the
512 x 512 Lenna for a rate of 0.25 bits/pixel (Fig. 4.1). Among 50 students who
were asked, 43 of them preferred the spectral classification over the gain-based
classifications. Also, 46 students liked the ENSD classification result better than
the Chen-Smith classification result.

Table 4.1 shows the effects of block size on the PSNR. Best performance
is achieved by using a block size of 16. Reconstructed images for rate=0.25
bits/pixel are presented in Figure 4.2.

Another important issue is the effect of quantizers on the performance of the
system. Using quantizers designed for the Laplacian distribution for the non-
adaptive system degrades the result by about 0.5 dB for rate »=0.25 bits/pixel.

On the other hand, our primary results show that the effect of changing quan-



Design Rate = 0.25 Bits/Pixel

Nonadaptive Spectral

Block Size | Operating Rate | PSNR(dB) | Operating Rate | PSNR(dB)

8 0.244 31.79 0.262 32.61
16 0.239 32.69 0.246 33.47
Chen-Smith ENSD
Block Size | Operating Rate | PSNR(dB) | Operating Rate | PSNR(dB)
4 0.248 24.08 0.247 24.11
8 0.261 32.53 0.266 32.65
16 0.253 33.42 0.251 33.39
32 0.251 32.70 0.251 32.73

Table 4.1: ADCT Simulation Results for the 512 x 512 LENNA.

tizers for the ADCT system is negligible. As a result, the difference between the
performance of the nonadaptive system and the adaptive systems in Figure 4.1
will increase by using Laplacian quantizers. The simulation results indicate that

the ADCT system is more robust with respect to the choice of quantizers.
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Figure 4.2: Reconstructed Images for the 512 x 512 LENNA (Rate = 0.25
Bits/Pixel): (a)Nonadaptive, (b)Spectral Classification, (c¢)Chen-Smith Classifi-

cation and (d)ENSD Classification.




Chapter 5

Wavelet Coding of Images

Image coding based on subband or discrete wavelet transform (DWT) ideas has
received much attention in recent years [Woo86], [Mal89], [Ant92]. Not only do
these coding techniques provide good compression results (in a rate-distortion
sense), but also they are suitable for progressive transmission and provide a
multi-resolution capability — a feature that is becoming increasingly important
for the seamless communication networks of the future. As discussed in Chapter
2, the basic idea behind the DWT is to decompose the input signal into two
components: (i) a low-resolution approximation and (ii) a delail signal. This
results in a decomposition of the input signal into two components which can
be considered as low-pass and high-pass versions of the original signal, generally
referred to as subbands. Fach of the resulting subbands can be further decom-
posed using the same approach. In this manner, the DW'T decomposes a given
input signal into a number of frequency bands.

The DWT can be easily implemented using linear phase [inite impulse re-
sponse filter banks [Ant92]. Two-dimensional (2-D) extensions of the DWT can

be obtained by a separable decomposition in the horizontal and vertical direc-



tions [Woo086], [Mal89]. Using a 2-D separable DWT based on the No. 2 7-9 spline
filters in [Ant92], an image is decomposed into 16 subbands. The statistics of
the subbands for the 512 x 512 Lenna is given in Table 5.1.

The statistical properties of the low frequency subband (LFS) are similar to
those of the original image and therefore well-established techniques for image
compression such as 2-D DPCM and transform coding are suitable for encoding
the LFS [Tan92]. Furthermore, the LEF'S exhibits a nonstationary behavior, as
in the original image, and some type of nonuniform bit allocation among the
different activity regions of the LFS should be useful. It is also observed in
[Tan92] that all other subbands, hereafter referred to as high frequency subbands
(HFS’s), have small intraband correlation coefficients and thus can be encoded
efficiently using quantizers designed for memoryless sources. However, a simple
inspection of the 16 subbands reveals that in fact the bulk of the energy in the
15 HFS’s is concentrated more-or-less in the vicinity of areas which correspond
to edge activity in the original image. A similar observation on the dependency
of HFS’s is also made in [Nav93]. This implies that those areas of the HES’s
that contain most of the information must be encoded more finely than the rest.
Not only is this classification important from a rate-distortion point of view, hut
also it perceptually improves the qualily of the encoded image.

The above two observations constitute the motivation for the coding system
developed in this chapter. Here, we concentrate on the problem of classifying the
blocks of the different subbands (the LFS and a set of the HFS’s) into a number
of classes and using an appropriate bit allocation scheme [Wo0092] followed by
quantization to efficiently encode the subbands. The classilication schemes used

here are those designed in Chapter 3. The block diagram of the proposed system
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is illustrated in Figure 5.1.
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Figure 5.1: System Block Diagram.

5.1 Quantization of Low Frequency Subbands

The similarity between statistical properties of the LFS and the original image

suggests using a conventional image coding technique for the LI'S. Therefore,

we use the ADCT schemes developed in Chapter 4 to encode the LIS (Fig.

5.1). The LI'S is a low-resolution version of the original image and therefore it

is not needed to use large block sizes. On the other hand, using smaller block



sizes reduces the complexity of the DCT computations. In this work, the block
size is 4 X 4 and the LIS blocks are split into one of four classes unless stated
otherwise. The same quantizers as those used in Chapter 4 are used for the DCT
coefficients of the LI'S. However, bits are allocated to all subbands together using

the procedure described in Section 4.1.

5.2 Quantization of High Frequency Subbands

High- and low-energy portions of HFS’s are separated into two energy classes.
Clearly, the higher is the variance of a subband, the more significant will be its
influence on the final results. Table 5.1 shows that most of HI'S’s have very
low variances and will not need high bit rates. Because classifying a subband
costs an overhead for the transmission of the corresponding classification table,
it would be inefficient to classily all HI'S’s. Therefore, we usually perform the
classification only on the four HFS’s with highest variances. As an alternative, to
reduce the complexity of the system and the overhead due to the classification
tables, we may only classify the HFS with the highest variance and use its
classification table for encoding the other subbands. This will not degrade the
overall performance of the system too much because as cau be seen in Figure
5.2, the high-energy portion of different subbands are almost located in the same
area and the saving in the overhead will compensate for the inaccuracies of the
classification tables. Also, different combinations of the classification tables can

be used to reduce the overhead. This issue is discussed in the following sections.
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5.3 System Overhead

To reconstruct a replica of the original image at the receiver, in addition to
quantized samples of the decomposed image, some overhead information also
need to be transmitted. Specifically, the overhead includes: the classification
table of each subband, the variance of each sequence, the design rate and the
mean of the DC coeflicients of the LFS. The allocated rate for each sequence
can be recomputed when the design rate, the variances and the number of co-
efficients in each class are known by performing the bit allocation procedure at
the receiver. Therefore, instead of transmitting the allocated rates, the design
rate is sent to the receiver. The knowledge of the variances and the mean of the
DC coeflicients is crucial in the process of renormalizing the quantized samples.
They are transmitted with small distortion using 8-bit quantizers.

The classification tables constitute a significant portion of the overhead.
There are 1024 blocks of 4 x 4 samples in each of the 16 subbands of a 512 x 512
image. Using four classes for the LIS, 2048 bits or 0.0078 bits/pixel is needed
to be transmitted for the classification table of the LF'S. HI'S’s are split into
two classes and the classification of each HFS costs 0.0039 bits/pixel. The over-
head is a significant portion of the bit rate for low rates. For example, when
four HFS’s are classified, for an encoding rate of 0.25 bits/pixel, more than 10
percent of the bit rate is used to send the side information.

Figure 5.2 shows that the high-energy portion of different subbands are al-
most located in the same area. To reduce the complexity of the system and the
overhead due to the classification tables, we have only classified the HF'S with
the highest variance and use its classification table for the other three classes.

This will not degrade the overall performance of the system too much and the



saving in the overhead will compensate for the inaccuracies of the classification
tables. Also, different combinations of the classification tables can be used to
reduce the overhead. For example, the two HI'S’s with highest variances can be
classified separately and a combination of the resulting classilication tables used
for all subbands. The relative merits of these different alternatives are carefully
investigated and will be reported in the following section.

Another way to reduce the overhead is by using lossless coding schemes for
transmitting the classification tables. We have used adaptive Huffman coding to

compress the classification tables.

5.4 Simulation Results and Comparison

To compare the dilferent classification strategies in a meaningful way, the quan-
tizers that have been used in the system are fixed. Let us stick with an ECTCQ
designed for the GGD with « = 0.6 for all sequences except the DC coefficients
of the DCT in which an ECTCQ designed for the Gaussian distribution is used.
We have used arithmetic coding for ECTCQ’s to achieve a rate closed to the
ECTCQ output entropy. In what follows we consider a number of different con-
figurations. The base system considered includes the classification of the LFS
into four classes and the classification of four HI'S’s with highest variances into
two classes (System A). System A is used to compare the Chen-Smith and the
equal-normalized-standard deviation classifications in Table 5.2 and Figure 5.3.
It is clear that the results using the Chen-Smith classification are about 0.3 dB
inferior for low bit rates. This is because the high-energy part of each subband

usually consists of about 20 percent of the blocks instead of 50 percent assumed
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by the Chen-Smith algorithm (Fig. 2.5). In fact, our experiments indicate that
at low rates (less than 0.35 bits/pixel for Lenna) the optimal bit allocation pro-
cedure only assigns nonzero bit rates to the high-energy classes of the HFS’s.
This implies that for this range of rates, only a small portion of each subband
is important enough to be encoded and using an equi-populous classification
scheme will (i) waste the available bits to code less important parts and (ii) not
allocate enough bits to the important portions.

Now, using the equal-normalized-standard deviation criterion, we study the
tradeoff between classifying more subbands and saving in overhead. The follow-

ing systems which all use four classes for the LFS are considered:

o System A: Classify four HFS’s with highest variances.

e System B: Classify the HFS with highest variance and use its classification

table for the four subbands with highest variances.

e System C: Classify the two HFS’s with highest variances. Construct a
classification table which is the logical OR of the classification tables and

use it for the four subbands.

e System D: The same as System B except using the classification table for

all subbands.

e System E: The same as System C except using the classification table for

all subbands.
e System F: The system without any classification.

e System G: The system with classification only for the LFS.
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Figure 5.4 compares the simulation results of Systems A, B and F for the
512x 512 Lenna. It is clear that classification improves the performance by about
0.7 dB for a rate of 0.25 bits/pixel. System A outperforms System B for a large
range of rates. This improvement is achieved because the HFS’s are classified
more accurately in System A. On the other hand, System B outperforms System
A for very low bit rates. Here, the reduced overhead due to the classification
tables in System B compensates for the degraded classification.

The two HFS’s with highest variances are usually the HF'S’s neighboring the
LFS (Table 5.1). Table 5.1 shows that Subbands 2 and 5 have large column and
row correlations respectively. There is a dependency between Subband 2 and
Subbands 3, 4, 7 and 8 which all have large column correlations [Nav93]. Also,
Subband 5 and Subbands 9, A, D and E are dependent and their row correlations
are large. Therefore, it is more reasonable to use Subbands 2 and 5 to construct
a unique classification table than to use one of them as the classification table.
Figures 5.5 and 5.7 confirm the above fact.

Figure 5.6 shows that using the adaptation for all HFS’s improves the per-
formance of the system for high rates. At low rates the optimal bit allocation
procedure assigns zero (or very low) bit rates to the HFS’s with low variances.
Therefore, the effect of these subbands in the final result is not important.

Figure 5.9 shows the effects of classifying the LFS alone. For a bit rate of
0.25 bits/pixel, using adaptation for the LF'S improves the performance by about
0.2 dB.

System II is our best system in the sense that not only does it achieve the
best peak signal-to-noise ratio, but also its complexity is less than Svstem A and

comparable with other systems. In Figure 5.10 we compare our results for the
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512 x 512 monochrome Lenna image with, to our knowledge, some of the best
results reported in the literature [Tan92], [Nav93], [Kim92], [Sha93]. Clearly our
proposed System E exhibits a superior rate-distortion performance. We must
mention that our System I° i1s essentially the same as the system described in
[Sri92] with the exception of the ECTCQ’s which are designed based on a training
sequence approach in [Sri92]. The results in [Sri92] are about 0.5 dB better than
our results for System F. At this point, we can attribute this difference only
to the different quantizers. Although we have not tried it, it is conceivable
that a training sequence approach for the quantizer design can lead to similar
improvements for other mentioned systems. In other words, using the adaptation

described here may improve the results in [Sri92] as well.
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Subband | Mean | Variance | Row Correlation | Column Correlation
Image | 124.05 2290 0.971 0.985
1 124.00 2153 0.881 0.948
2 0.004 10.63 -0.128 -0.424
3 -0.004 0.70 0.010 -0.208
4 0.008 1.50 -0.100 0.223
5 -0.031 27.67 0.292 0.197
6 0.019 7.24 -0.071 0.242
7 0.004 0.68 0.145 -0.260
8 0.001 1.63 0.071 0.249
9 -0.023 1.99 -0.337 0.121
A 0.010 1.124 0.256 0.006
B 0.003 0.464 -0.131 -0.151
C -0.002 0.53 -0.150 0.064
D -0.005 5.71 0.209 0.128
E -0.024 2.26 0.235 -0.090
F -0.002 0.47 0.056 -0.181
G -0.006 0.80 0.145 0.219

Table 5.1: Statistics of 16 Subbands of the 512 x 512 LENNA.




Figure 5.2: Classification Image for the 512 x 512 LENNA Subbands.
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LENNA.

Chen-Smith NSD

Design Rate | Operating Rate | PSNR(dB) | Operating Rate | PSNR(dB)

0.25 0.268 33.57 0.268 33.87
0.50 0.518 36.98 0.523 37.13
0.75 0.734 38.67 0.743 38.72

Table 5.2: Simulation Results of Different ("lassification Schemes for the 512x512

LIENNA.
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Design Rate = 0.25 Bits/Pixel

Chen-Smith ENSD
Block Size | Operating Rate | PSNR(dB) | Operating Rate | PSNR(dB)
2 0.250 31.09 0.232 31.70
4 0.268 33.57 0.268 33.87
8 0.263 33.65 0.265 33.74

Table 5.3: Comparing Different Block Sizes for the 512 x 512 LENNA.
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Figure 5.4: Comparing Systems A, B and F for the 512 x 512 LIENNA.
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Chapter 6

Conclusion

We now present a summary of image coding systems we developed in this thesis
and comment on the performance of these systems. We finish this chapter by
giving some ideas for future work.

In Chapter 3, we developed two new classification schemes and the results
of Chapter 4 shows that both of them outperform the well-known Chen-Smith
classification scheme for an ADCT image coding system. Also, the results in
Chapter 5 show that using the ENSD classification scheme for our new proposed
image coding system has some advantages over using the Chen-Smith classifica-
tion scheme.

A new method to combine classification and bit allocation was introduced in
Section 3.2. An algorithm to solve the problem was given although the imple-
mentation of this algorithm is left as a [uture work.

In Chapter 5, we developed a new adaptive wavelet based image coding sys-
tem. Simulation results show that the proposed system exhibits a superior rate-
distortion performance over, to the best of our knowledge, all wavelet based 1in-

age coding systems reported in the literatures. Different versious of the proposed
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system are considered and a discussion of the tradeoff between the complexity
and the performance of the systems is given in Chapter 5.

One of the classification schemes we developed is the spectral classification.
The proposed spectral classification scheme uses 1-D spectral characteristics of
the blocks to classify them. An open problem is how to design a 2-D version
of the spectral classification. Such a system should outperform the existing 1-D
version of the spectral classification.

In Chapter 5, we have used ADCT to encode the LFS of the image. A
block size of 4 is used and the complexity is small. However, to reduce the
complexity, we are working on developing an encoder for the LFS which does

not use transform coding.
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