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ON THE CONVERGENCE OF
MULTIPOINT ITERATIONS

G. W. STEWART

ABSTRACT

This note gives a new convergence proof for iterations based on mul-
tipoint formulas. It rests on the very general assumption that if the
desired fixed point appears as an argument in the formula then the
the formula returns the fixed point.

Many useful iterations for finding a zero z. of a function f generate iterates
according to a scheme of the form

Tt = P(Thy Thot1, - -+ Thont1)- (1)
For example, the secant method proceeds according to the formula

Tpay = Tpo1 f(zr) — 2pf(Te-1)
T ) = flaka)

Since the method uses two previous iterates to generate the next, it is called a
two-point method. Three-point methods are also in common use; e.g., Muller’s
method [3] and the method of inverse quadratic interpolation [2]. More generally,
the iteration (1) is called an n-point iteration or generically a multipoint iteration.

Proofs of local convergence of multipoint methods usually involve using the

(2)

special form of the iteration function ¢ to show that the errors e = xj, — x, satisfy
an inequality of the form

lert1] < Cleperoy - -+ €pmngal, (3)

from which it can be shown that the convergence is at least superlinear of order
p, where p is the positive root of the equation

pr—pt - —p—1=0. (4)

Only the constant in (3) depends on the particular method; in other words, the
order of convergence depends only on the number of points.

There is a simple reason why these different methods have the same rate
of convergence: namely, each of the iterative methods named above return the
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solution whenever one of the arguments is the solution. More precisely, in the
case of the secant method

o(u, ) = . and (4, 0) = 2.,

as can easily be seen from (2). The purpose of this note is to show that a general
convergence proof for multipoint iterations can be based on this property.

Throughout we will assume that ¢ has as many derivatives as is needed for
the analysis. The ideas are sufficiently well illustrated for the general two-point
iteration, and to avoid clutter we will analyze that case. At the end of the note,
we will indicate the modifications necessary for the general case.

The first step in the analysis is to observe that since p(u, z.) and ¢(x.,v) are
constant their derivatives with respect to u and v are zero:

ou(u,2.) =0 and  @,(a.,v) = 0.
The same is true of the unmixed second derivatives:
Cuu(t, ) =0 and (2., v) = 0.

The next step is to derive an error recursion. We begin by expanding ¢ about
(2., x) in a Taylor series. Specifically,

Pt P2 0) = 2 Pules 20+ 9ol22, 2200
+ 20w (Ts + 0p, 2 + 09)pq + up(Ts + Op, 2. + 09)q?],

where 6 € [0,1]. Since @, (s, x.) = @u(2., ) =0,

1
O(Te +p, 2 +q) = 20 + 5[99%(:1;* + Op, z. + 0q)p*

(5)
+ 20w (Ts 4+ 0p, 2 + 09)pq + @uu(Ts + Op, 2. + 09)q?],

We would like to factor the product pg out of this expression to obtain a
product of errors like (3); however, we must first massage the terms in p* and
q*. Since @, (7« + 0p,z.) = 0, it follows from a Taylor expansion in the second
argument that

Gun( e + Op, 2 + 0q) = Puuw (2 + Op, 2. + 7,0q)0q,
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where 7, € [0, 1]. Similarly,
Goo(Tw + 0p, 2 + 0q) = oo (2 + 7,0p, 2. + 0q)0p,

where 7, € [0, 1]. Substituting these values in (5) gives

Ot +p,aa+q)=a.+ %[tpuw(:ﬁ* + 0p, x. + 7,09)0p

Turning now to the iteration itself, let the starting values be z¢ and x4, and
let their errors be eg = 19 — 2. and e; = ¥ — .. Taking p = e; and ¢ = ¢g in (6),
we get

€2 = (T + €1, 7. + €0)
€1€0

=, + T[Lpuw(:p* + feq, x4 Teybeq)leq
‘I’ S«qu(x* —I' 0617 X —I' 060) —I' S«quv(x* —I' T61 0617 X —I' 060)060]
€1€p

= ——r(e1, e0).

2

(7)

This is the error recurrence we need.
We are now ready to establish the convergence of the method. First note that

7(0,0) = 20y, (Ts, ).
Hence there is a 6 > 0 such that if |ul, |v| < é then
lor(u,v)] < C < 1.

Now let |eg|, |e1] < 6. From the error recurrence (7) it follows that |ez| < Cleq| <
ler| < 6. Hence
lerr(ez,e1)] < C < 1.

and |es| < Clea| < C?ey|. By induction
lex] < CF el
and since the right-hand side of this inequality converges to zero, we have e — 0;

i.e., the general two-point iteration converges from any two starting values whose
errors are less than ¢ in absolute value.



4 MULTIPOINT ITERATIONS

We now turn to the convergence rate of two point methods. The first thing to
note is that since

€LEk—

€kl = k; lr(ekaek—l) (8)
and r(0,0) = 2@, (2., 2.), we have

lim = o (). (9)

k—o0 ekek—l

If @uu(@s, 2.) # 0, we shall say that the sequence {x)} exhibits two-point conver-
gence.
We are going to show that two-point convergence is superlinear of order

1+5
9

=1.618....

Here p is the largest root of the equation
pPP—p—1=0. (10)

There are two ways to establish this fact. The first is to derive (10) directly from
(9), which is the usual approach. However, since we already know the value of p,
we can instead set

|€k+1|
— 11

and use (9) to verify that the s; have a nonzero limit, which is usual definition of
pth order convergence.
From (11) we have

lex| = sp—1|er—1|F
and
lexr1] = suleh| = spsh_ylena|”.
From (8),
skshoylexal”

- sksij |ek_1|p2_p_1.

r.| = |rleg, ep_ =
7kl = [r(ex, ex-1))] Sk—1|€x—1]7|€x—1]

Since p? — p — 1 = 0, we have |e;_1|”" 7! =1 and

lri| = Sksij.
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Let pr. = log|rk| and o = log sg. Then our problem is to show that the sequence
defined by
O = Pk — (p - 1)%-1
has a limit.
Let p, = limg_ ., pr. Then the limit o, if it exists, must satisty

0. =pe— (p—1)0..

Thus we must show that the sequence of errors defined by

(o —0u) = (pr — p<) = (p — 1)(0} — 0x)

converges to zero. To do this we use the following easily established result from
the theory of difference equations.

If the roots of the equation

™ —a™ - —a, =0
all lie in the unit circle and limg_..nx = 0, then the sequence {¢;}
generated by the recursion

€k = Nk + A1€p—1 + **+ + UpCrom
converges to zero, whatever the starting values ¢g,...,¢,_1.

In our application m = 1, ¢, = (ox — 0x), and 1, = (pr — p«). The equation
whose roots are to lie in the unit circle is @ + (p — 1) = 0. Since p — 1 = 0.618,
the conditions of the above result are satisfied, and o, — o,. It follows that
the numbers s; have a nonzero limit. In other words, two-point convergence is
superlinear convergence of order p=1.618. ...

The generalization of this result to multipoint methods is for the most part
routine. The assumption that the iteration function is identically equal to .
whenever one of its arguments is equal to x, implies that the Taylor series begins
with the term containing (u; — .)(uz — ) - - - (v, — ). The other terms of the
same order that are introduced by the mean value theorem can be reduced to
ones containing the product (u; — x.)(ug — ) - - (u,, — x.) by additional Taylor
expansions. The result is a recursion of the form

€41 = €kCL—1 """ €k—n+17“(€k7 Ck—1y---, 6k—n+1)-
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where 7(0,0,...,0) is finite. We can use this recursion as above to establish the
convergence of the method.

The only nontrivial difference lies in establishing the rate of convergence.
Proceeding as above, we obtain the following difference equation relating the
€r = 0 — 0y and N = pr — pat

n—1 n—2

op=mk—(p =)ok —(p" =p=Doga = =" =p"F = = Doy,

Here p is the positive root of the equation (4) and is easily seen to be bounded by
two. If we set

bi=p —p 7' ==L,

then by the result quoted above on difference equations the pth order convergence
of the iteration will be established if we can show that the roots of the equation

h(l’) = l’n_l —|— bll’n_z ‘|‘ “e ‘I’ bn—l = 0 (12)

lie in the interior of the unit circle.
Now the coefficients b; are positive. Moreover, b; — b;y; = p(2 — p) > 0. Thus
the b; satisfy

1Ebo>bl>bz>"‘>bn_1>0. (13)

By the Enestrom-Kakeya theorem (see [1]), the absolute values of the zeros of h
are bounded by the largest of the ratios b;41/b;, which are all less than one.

The following is a table of the the values of p and the magnitude ¢ of the
largest root of (12) for n =2,...,10.

3

P q
1.6180 0.6180

1.8393 0.7374
1.9276 0.8183
1.9659 0.8710
1.9836  0.9062
1.9920 0.9303
1.9960 0.9472
1.9980 0.9593
1.9990 0.9682

O O 0 =T O O W

—_
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