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On the Convergence ofMultipoint IterationsG. W. StewartABSTRACTThis note gives a new convergence proof for iterations based on mul-tipoint formulas. It rests on the very general assumption that if thedesired �xed point appears as an argument in the formula then thethe formula returns the �xed point.Many useful iterations for �nding a zero x� of a function f generate iteratesaccording to a scheme of the formxk+1 = '(xk; xk�1; : : : ; xk�n+1): (1)For example, the secant method proceeds according to the formulaxk+1 = xk�1f(xk)� xkf(xk�1)f(xk)� f(xk�1) : (2)Since the method uses two previous iterates to generate the next, it is called atwo-point method. Three-point methods are also in common use; e.g., Muller'smethod [3] and the method of inverse quadratic interpolation [2]. More generally,the iteration (1) is called an n-point iteration or generically a multipoint iteration.Proofs of local convergence of multipoint methods usually involve using thespecial form of the iteration function ' to show that the errors ek = xk�x� satisfyan inequality of the form jek+1j � Cjekek�1 � � � ek�n+1j; (3)from which it can be shown that the convergence is at least superlinear of orderp, where p is the positive root of the equationpn � pn�1 � � � � � p � 1 = 0: (4)Only the constant in (3) depends on the particular method; in other words, theorder of convergence depends only on the number of points.There is a simple reason why these di�erent methods have the same rateof convergence: namely, each of the iterative methods named above return the1



2 Multipoint Iterationssolution whenever one of the arguments is the solution. More precisely, in thecase of the secant method'(u; x�) � x� and '(x�; v) � x�;as can easily be seen from (2). The purpose of this note is to show that a generalconvergence proof for multipoint iterations can be based on this property.Throughout we will assume that ' has as many derivatives as is needed forthe analysis. The ideas are su�ciently well illustrated for the general two-pointiteration, and to avoid clutter we will analyze that case. At the end of the note,we will indicate the modi�cations necessary for the general case.The �rst step in the analysis is to observe that since '(u; x�) and '(x�; v) areconstant their derivatives with respect to u and v are zero:'u(u; x�) � 0 and 'v(x�; v) � 0:The same is true of the unmixed second derivatives:'uu(u; x�) � 0 and 'vv(x�; v) � 0:The next step is to derive an error recursion. We begin by expanding ' about(x�; x�) in a Taylor series. Speci�cally,'(x� + p; x� + q) = x� + 'u(x�; x�)p+ 'v(x�; x�)q+ 12['uu(x� + �p; x� + �q)p2+ 2'uv(x� + �p; x� + �q)pq + 'vv(x� + �p; x� + �q)q2];where � 2 [0; 1]. Since 'u(x�; x�) = 'v(x�; x�) = 0,'(x� + p; x� + q) = x� + 12['uu(x� + �p; x� + �q)p2+ 2'uv(x� + �p; x� + �q)pq + 'vv(x� + �p; x� + �q)q2]; (5)We would like to factor the product pq out of this expression to obtain aproduct of errors like (3); however, we must �rst massage the terms in p2 andq2. Since 'uu(x� + �p; x�) = 0, it follows from a Taylor expansion in the secondargument that 'uu(x� + �p; x� + �q) = 'uuv(x� + �p; x� + �q�q)�q;



Multipoint Iterations 3where �q 2 [0; 1]. Similarly,'vv(x� + �p; x� + �q) = 'uvv(x� + �p�p; x� + �q)�p;where �p 2 [0; 1]. Substituting these values in (5) gives'(x� + p; x� + q) = x� + pq2 ['uuv(x� + �p; x� + �q�q)�p+ 2'uv(x� + �p; x� + �q) + 'uvv(x� + �p�p; x� + �q)�q]: (6)Turning now to the iteration itself, let the starting values be x0 and x1, andlet their errors be e0 = x0�x� and e1 = x1�x�. Taking p = e1 and q = e0 in (6),we gete2 = '(x� + e1; x� + e0)= x� + e1e02 ['uuv(x� + �e1; x� + �e0�e0)�e1+ 'uv(x� + �e1; x� + �e0) + 'uvv(x� + �e1�e1; x� + �e0)�e0]� e1e02 r(e1; e0): (7)This is the error recurrence we need.We are now ready to establish the convergence of the method. First note thatr(0; 0) = 2'uv(x�; x�):Hence there is a � > 0 such that if juj; jvj � � thenjvr(u; v)j � C < 1:Now let je0j; je1j � �. From the error recurrence (7) it follows that je2j � Cje1j <je1j � �. Hence je1r(e2; e1)j � C < 1:and je3j � Cje2j � C2je1j. By inductionjekj � Ck�1je1j;and since the right-hand side of this inequality converges to zero, we have ek ! 0;i.e., the general two-point iteration converges from any two starting values whoseerrors are less than � in absolute value.



4 Multipoint IterationsWe now turn to the convergence rate of two point methods. The �rst thing tonote is that since ek+1 = ekek�12 r(ek; ek�1) (8)and r(0; 0) = 2'uv(x�; x�), we havelimk!1 ek+1ekek�1 = 'uv(x�; x�): (9)If 'uv(x�; x�) 6= 0, we shall say that the sequence fxkg exhibits two-point conver-gence.We are going to show that two-point convergence is superlinear of orderp = 1 +p52 = 1:618 : : : :Here p is the largest root of the equationp2 � p� 1 = 0: (10)There are two ways to establish this fact. The �rst is to derive (10) directly from(9), which is the usual approach. However, since we already know the value of p,we can instead set sk = jek+1jjekjp (11)and use (9) to verify that the sk have a nonzero limit, which is usual de�nition ofpth order convergence.From (11) we have jekj = sk�1jek�1jpand jek+1j = skjepkj = skspk�1jek�1jp2:From (8), jrkj � jr(ek; ek�1)j = skspk�1jek�1jp2sk�1jek�1jpjek�1j = sksp�1k�1jek�1jp2�p�1:Since p2 � p� 1 = 0, we have jek�1jp2�p�1 = 1 andjrkj = sksp�1k�1:



Multipoint Iterations 5Let �k = log jrkj and �k = log sk. Then our problem is to show that the sequencede�ned by �k = �k � (p � 1)�k�1has a limit.Let �� = limk!1 �k. Then the limit ��, if it exists, must satisfy�� = �� � (p � 1)��:Thus we must show that the sequence of errors de�ned by(�k � ��) = (�k � ��)� (p � 1)(�k � ��)converges to zero. To do this we use the following easily established result fromthe theory of di�erence equations.If the roots of the equationxm � a1xm�1 � � � � � am = 0all lie in the unit circle and limk!1 �k = 0, then the sequence f�kggenerated by the recursion�k = �k + a1�k�1 + � � � + am�k�mconverges to zero, whatever the starting values �0; : : : ; �n�1.In our application m = 1, �k = (�k � ��), and �k = (�k � ��). The equationwhose roots are to lie in the unit circle is x + (p � 1) = 0. Since p � 1 �= 0:618,the conditions of the above result are satis�ed, and �k ! ��. It follows thatthe numbers sk have a nonzero limit. In other words, two-point convergence issuperlinear convergence of order p=1.618: : : .The generalization of this result to multipoint methods is for the most partroutine. The assumption that the iteration function is identically equal to x�whenever one of its arguments is equal to x� implies that the Taylor series beginswith the term containing (u1 � x�)(u2 � x�) � � � (un � x�). The other terms of thesame order that are introduced by the mean value theorem can be reduced toones containing the product (u1 � x�)(u2 � x�) � � � (un � x�) by additional Taylorexpansions. The result is a recursion of the formek+1 = ekek�1 � � � ek�n+1r(ek; ek�1; : : : ; ek�n+1):



6 Multipoint Iterationswhere r(0; 0; : : : ; 0) is �nite. We can use this recursion as above to establish theconvergence of the method.The only nontrivial di�erence lies in establishing the rate of convergence.Proceeding as above, we obtain the following di�erence equation relating the�k = �k � �� and �k = �k � ��:�k = �k � (p � 1)�k�1 � (p2 � p � 1)�k�2 � � � � � (pn�1 � pn�2 � � � � � 1)�k�n:Here p is the positive root of the equation (4) and is easily seen to be bounded bytwo. If we set bi = pi � pi�1 � � � � � 1;then by the result quoted above on di�erence equations the pth order convergenceof the iteration will be established if we can show that the roots of the equationh(x) = xn�1 + b1xn�2 + : : :+ bn�1 = 0 (12)lie in the interior of the unit circle.Now the coe�cients bi are positive. Moreover, bi � bi+1 = pi(2� p) > 0. Thusthe bi satisfy 1 � b0 > b1 > b2 > � � � > bn�1 > 0: (13)By the Enestr�om{Kakeya theorem (see [1]), the absolute values of the zeros of hare bounded by the largest of the ratios bi+1=bi, which are all less than one.The following is a table of the the values of p and the magnitude q of thelargest root of (12) for n = 2; : : : ; 10.n p q2 1:6180 0:61803 1:8393 0:73744 1:9276 0:81835 1:9659 0:87106 1:9836 0:90627 1:9920 0:93038 1:9960 0:94729 1:9980 0:959310 1:9990 0:9682
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