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ABSTRACT

Title of Dissertation: IN-PROCESS MACHINE TOOL VIBRATION
CANCELLATION USING PMN ACTUATORS

Zelalem Eshete, Doctor of Philosophy, 1996

Dissertation directed by: Associate Professor Guangming Zhang, Advisor
Mechanical Engineering Department, and
Institute for Systems Research
Assistant Professor Balakumar Balachandran, Co-advisor
Mechanical Engineering Department

At present, the machine tool technology was in the United States is not in the
state-of-the-art of leading international competitors. Conventional machine tools under
use are being pushed to their machining accuracy limits. Such a pressing need calls for
revitalizing the machine tool industry. In this dissertation, a mechatronic system has been
proposed and developed for reducing tool vibration during machining. It consists of
electrical and mechanical components, and is realized by placing electrically driven
electrostrictive (PMN) actuators in a specially designed tool post mechanical structure.

Analytical and experimental investigations are conducted to characterize the
performance of the developed system. In the analytical investigation, a mathematical
model is developed to describe the turning operation. The control mechanism is

identified using experimental testing for the range of the disturbance frequency.



Investigation using computer simulation is carried out in two phases. In phase 1, a linear
neural network controller with an adaptive control strategy is examined. In phase 2, a
nonlinear neural network

with a learning control strategy is explored.

The linear neural networks, namely, digital filters, are implemented using a signal
processing board. The experimental investigation is conducted in two stages. In the first
stage, a test bed is established to use an electro‘-magnctic shaker to resemble the
excitation of cutting force acting on the tool. In the second stage, experiments were
conducted using a lathe on the shop floor.

In the experimental investigation, in-process vibration cancellation observed. In
the laboratory experiment, a percent reduction in the 90% was possible using a
feedforward scheme. The improvement in surface roughness during the turning operation
was confirmed from measurements of surface roughness profiles. A cantilever machining
operation gave a percent reduction of 30%.

The main contributions of this thesis research are: 1) a successful implementation
of PMN actuators for in-process vibration cancellation in the turning operation; 2) a
successful implementation of linear neural network methodology for active machine tool
vibration cancellation; 3) development of guidelines for identification of the neural

structure for nonlinear neural network control.
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Chapter 1

INTRODUCTION

1.1 Background

In the United States, metal cutting is an important and major activity in every
industrial sector. Historically, the United States’ machine tool industry has maintained
its leadership role in the world. The invention of numerical control (NC) machining at
the Servomechanisms Laboratory at Massachusetts Institute of Technology in 1961
represented the peak of its development. However, things changed in the 1970s. The
downturn of the national economy, the continuous reduction of military spending, and
the loss of domestic and world market share of machine tools have placed the industry
in a disadvantageous position relative to its major foreign competitors. At present, the
state-of-the-art of the manufacturing and production technology of the machine tool
industry is significantly below the state-of-the-art that has been attained by leading
international'competitors. In the United States, conventional machine tools are still
extensively used on shop floors. They are being pushed to their machining accuracy
limits. There is a pressing need to revitalize the machine tool industry.

Apart from installation of new precision machine tools, the need for enhancing
the machining capabilities of the conventional machine tools currently being used on

the shop floor is evident. Considerable effort has gone into updating them. In fact, a



significant number of conventional milling machines have been furnished with digital
controllers. As a result, the machining accuracy related to tool positioning has been
significantly improved. However, the progress in reducing tool vibration that leads to
poor surface finish, accelerated tool wear, and even tool breakage has been slow.
Process control aimed at reducing tool vibration has been the focus of the entire
machine tool industry for decades. But these efforts have met with limited success.
The reason for the slow progress can be attributed to the complexity of the machining
process and the machine tool dynamics, and the lack of systematic approaches

through interdisciplinary research.

1.2 Motivation

There are a number of techniques that can be used to design controllers for
linear systems with uncertainties. However, few techniques for active control of the
machining system are available due to several reasons. First, it is difficult to identify a
model structure suitable for describing the system dynamics. At times, it is very
difficult if not impossible, to adequately represent system characteristics such as time
delay, saturation, time varying parameters, and system complexity in general. The
machining systems under study do not behave as their mathematical models describe
them to be. As in this research work, when active cancellation is sought through
actuators, the actuator dynamics needs to be identified and incorporated into the
control algorithms. There are many sources of nonlinearity, uncertainty, and system

noise, which cause mathematical models to be poor and control algorithms to be



ineffective. Second, there is lack of standard methodology to generate adaptation
laws, which are capable of dealing with uncertainties and nonlinearities in machining
systems. These control laws are essential to perform active vibration compensation
during machining.

In the past, the techniques developed to control the machine tool vibration have
been dominated by passive features with focus on manipulating the cutting parameters
such as feed rate, cutting speed, and depth of cut. Therefore, it appears that there is a
need for new methods for machining system control. To that end, electroactive
actuators and neural network based control algorithms have attributes that make them
potentially effective in addressing most of these problems.

The type of actuator implemented in this research is an electroactive device
made of the electrostrictive ceramic material; namely, Lead-Magnesium-Niobate
(PMN). The actuator produces mechanical displacement by either elongation or
contraction in response to an applied electric field. This displacement can serve as a
compensation mechanism to cancel the undesirable tool motion, or tool vibration,
which is primarily due to the cutting operation.

The control methodology used in this research is based on the requirement that
it should produce successful results within the scope of this thesis, and have neural
room for future advancements in the area of active vibration compensation for
machine tools. To that end neural networks meet the challenging requirements. Neural
networks are increasingly being found as effective tools in control problems [Miller,

Sutton, and Werbos, 1990; Warwick, Irwin, and Hunt, 1992]. The paramount



difference between the neural networks based controllers and conventional controllers
lies in the way the controllers acquire their capabilities. The conventional controllers
are programmed to perform a specific control task, whereas, the neurocontrollers are
trained to learn the control task. This learning capability is an important attribute in
control applications involving neural networks.

The unique learning capabilities of nonlinear neural networks even allows
them to mimic highly complex, nonlinear mappings. As a result, the nonlinear neural
network are effective for nonlinear control applications. Therefore, the nonlinear
neural network is recommended for heavy duty machining where the PMN actuators
are also forced to operate in nonlinear region for future work.

They are also adaptive controllers, since they adapt to the changing state of the
systems or the changing control requirements through learning. Other advantages of
using neural networks over the traditional design and systems tools are also
significant. First, neural networks are naturally massively parallel. This suggests that
they should be able to make decisions at high speed and be fault tolerant. Second,
since the neural networks learn or adapt without time consuming programming, they
save additional time and relieve programming loads considerably. Additionally, they
produce a more accurate or complete response by utilizing sufficient information
extracted from massive training data, therefore, improving their performance with
experience. The most significant benefit of neural networks, however, is the fact that

they do not require an explicit model or limiting assumptions of linearity. Therefore,



they can solve complex problems that can not be tackled with conventional control

schemes.

1.3 Dissertation Objectives

In earlier work, at the Advanced Design and Manufacturing Laboratory, a
smart tool post has been designed and fabricated with vibration attenuation in mind
[Wing, 1995]. The tool post design has fulfilled the design objective of creating a
unique testbed to use PMN actuators to compensate for tool vibration during
machining. Immediately after the mechanical structural design, a microprocessor
based control system was developed and tested for its performance that showed the
promise of controlling the tool motion in laboratory experiments [Dold, 1996]. In
related efforts at the Vibration Laboratory, digital active control of plate vibrations and
enclosed sound fields has been investigated analytically and experimentally
[Padmanabhan, 1995; Park, 1995; Sampath and Balachandran, 1996]. The research
conducted in this thesis work, building on the previous efforts, characterizes a unique
effort in applying the concepts of network control and adaptive filters to compensate
for tool vibration in an active manner. A significant accomplishment of this
dissertation research is the realization of the “smartness” element in the designed tool
post mechanical structure.

The feature that makes the tool post “smart” is the availability of a control
strategy that will use the measured information and manipulate the actions of the
actuators so that they respond in such a way that they cancel the tool variation away

from the equilibrium, or a desired position. This feature characterizes the system



robustness to the primary disturbances. In order to utilize the designed tool post to its

full potential, it is necessary to design this type of controller so that it will be effective

over a wide range of disturbance frequency bandwidth and also be capable of handling
disturbances with multiple frequencies. Also, there is a need to develop an analytical
framework to predict the controller performance through computer simulations. Such

a virtual environment will be useful for designing similar tool posts in the future.

Moreover, an effort should be targeted to cope with the actual machining conditions

that include both random disturbances as well as periodic disturbances. The design

should also pave a way for future improvement as the need arises.
To meet these challenges, the research in this thesis work has the following
objectives:

1. Make a preliminary feasibility study of the control strategy for machine tool
vibration cancellation by performing computer simulation.

2. Investigate the performance of the PMN actuators in attenuating tool vibration
when the tool tip is excited by a dynamic vibrator in a laboratory. Explore both
harmonic and multi-frequency disturbances.

3. Investigate the capability of the PMN actuators to yield better surface finish and
maximum throughput by performing an experiment on the shop floor; thus
verifying the results obtained from the feasibility study and the experimental work

performed in the laboratory.



1.4 Thesis Organization

This thesis is organized into six chapters. A summary for each chapter is
discussed below.

In Chapter 2, a literature review on machining systems and machine tool
vibration control is presented. First, an overview of the turning machining system is
presented. Then the different types of machine tool vibration are treated, and finally, a
summary of machine tool vibration reduction efforts is provided.

In Chapter 3, different adaptive control methodologies are described. First, the
actuator that is used to remedy the vibration problem of the machine tool is discussed.
Then the different adaptive control schemes implemented in the research are
discussed. Since the control structure implemented in this research is based on neural
networks, fundamentals of both linear and nonlinear neural network structures are also
discussed.

In Chapter 4, the conducted modeling and computer simulations are presented.
The developed mathematical model of the machining system is discussed. Moreover,
identification of the control mechanism that is used to cancel the tool vibration is
discussed. In computer simulations, the neural controller is designed for the
machining system in two steps. First, an emulator is developed to emulate the control
mechanism by using a neural network. Then, a neural network based controller is
designed to control the machining system. The application of the linear neural

network based on adaptive signal processing methods, and the application of a



nonlinear neural network in the form of a multilayer time delay neural network are
discussed. Training procedures and results are also detailed.

In Chapter 5, the experimental implementation of adaptive digital filters to
compensate the tool vibration is described. The experimental setup used to perform
the control tests is illustrated. The EZ-ANC digital signal processing board, a
commercially available package from Australia, is discussed and the different design
parameters of this system are explained. The experimentation is performed in two
phases: a) laboratory experiments and b) machine shop experiments.

In Chapter 6, the‘results of this thesis work are summarized. The contributions
of this research in the areas of machine tool vibration compensation are provided along
with the conclusions. Recommendations for future work are also included in this

chapter.



Chapter 2

TURNING MACHINING SYSTEMS

2.1 Introduction

The lathe is probably the oldest machine tool, and possibly the most important
ones among all machine tools [Dowyle, 1953]. Basic operations of a lathe include
turning, facing, boring, drilling, and threading. Occasionally, a lathe can also be used
for milling, shaping, gear cutting, fluting, and grinding. In fact, no other machine tool
can be used for such a variety of operations.

In this dissertation research, the turning operation using a lathe is of interest. A
turning operation is characterized by the use of single point cutting tool for removal of
material from the part being machined. The nature of a single point cutting has made
turning the most commonly used operation in experimental work on metal cutting. As
illustrated in Figure 2.1, a single cutting edge with specified geometry in constant
contact with a workpiece is used to remove material. The workpiece is held in the
chuck and it is rotated at a chosen speed. The tool is held rigidly in a tool post and it
is moved at a constant feed rate along the axis of the workpiece, cutting away a layer

of metal.
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Figure 2. 1: Turning Operation on a Lathe

The cutting speed v is the rate at which the uncut surface of the work passes the
shows cutting edge of the tool. The feed fis the distance through which the tool
moves in an axial direction during each revolution of the workpiece. The depth of cut
w is the thickness of metal removed from the workpiece measured in the radial

direction.

i
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2.2 Turning Machining System Modeling

Merchant proposed the mechanics of the metal cutting praocess in the 1940s
[Merchant, 1940]. His theory indicated that the material removal process can be
explained as a process of shearing. Based on his work, models qf dynamic chip
formation were first established [Merritt, 1965; Tobias, 1965; Kegg, 1965;
Koenigsberger and Tlusty 1971; Wu and Liu, 1985]. Afterwards, linear force models
that relate the inner and outer chip modulations to the dynamic cutting force were
proposed and developed empirically [Srinivasan and Nachtigal, 1978; Weck, 1985;
Minis, Magrab, and Pandelidis, 1990]. Statistical methods have also been introduced
to model machining systems. By fitting linear Auto-Regressive Moving Average
(ARMA) models to cutting force and workpiece acceleration data, statistics-based
models were capable of predicting not only the deterministic part, but also the
stochastic part of the cutting force [Pandit, Subramanian, and Wu, 1975; Eman and
Wu, 1980].

There is an on-going research on machine tool dynamics at the Mechanical
Engineering Department, University of Maryland at College Park. Berger, Minis and
Rokni [1993], established the complex dynamics in orthogonal cutting through the
analysis of experimental cutting data. They developed nonlinear cutting equations
combined with linear structural models resulting in systems which exhibit chaotic
oscillations [Berger, Rokni, and Minis, 1993].

The turning machining system model proposed by Meritt [1965] is based on

control theory. This modeling process gives significant insight into the underlying
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dynamics of the machining process. The modeling strategy adopted in this thesis work
is mainly based on his approach. The machining system modeled by Merritt consists
of three components. These components are the cutting process, structural dynamics,
and a set of feedback paths that represent the interactions between the cutting process
and structural dynamics. In Figure 2.2, the block diagram for the machining system

model is shown.

U(s) 4+ + _u(s)| Cutting Process F(s) | Structure Dynamics | y(s)
Dynamics > = Gm(s) >
+ 4 k. km
Primary Feedback Path

Time Delay,t

ue"™

A

Figure 2. 2: Block Diagram of Machining System Model

As illustrated, the input to the cutting process or the machining system is the
chip load. The output of the cutting process is the cutting force, which serves as an
input to the machine tool structure. The output of the machine tool structure, when
subjected to the cutting force, is the tool vibratory motion. The feedback paths modify
the nominal chip load instantly by sending the tool motion back to the system input.

Next, the three components of the machining system are discussed in detail.

12



2.2.1 Cutting Process Dynamics

Merchant [1940] suggested that a steady state cutting process could be
characterized by a parameter to represent the proportionality between the cutting force
and the chip load. This parameter was later called the unit cutting force k,. The
nominal chip load is given using the previously defined parameters for feed and depth
of cut as

nominal chip load =f *w Eq. 2.1

The instantaneous chip load, which is an input to the machining system, is
defined as the area being removed during machining. The cutting force F is related to
the instantaneous uncut chip thickness u, as shown below.

Fe(t)=k, *u,(t) Eq.2.2
ke=ku*w Eq.2.3
where the parameter k_ is the cutting stiffness. The unit cutting force for a given ‘
workpiece material under certain machining conditions can be found either in
machining data handbooks or experimentally determined [Kalpakjian, 1991].

This cutting process model has been widely accepted by the machine tool
industry despite its limitations in characterizing the machining process due to the
assumption of the linear proportionality. The model’s deviation from accurately
depicting the cutting process is due to the following:

1. The uncut chip thickness depends on the cutting dynamics.

2. The cutting stiffness does not remain constant at varying speeds.

13



Nevertheless, these factors do not significantly weaken the ability of the model
to characterize the cutting process. Rather, it does a fairly good job with acceptable
accuracy. After all, there are very few alternative models that have been developed
from the physics of metal cutting process, nor is there a definitive experimental

validation to prove its superior working accuracy.

2.2.2 The Structural Dynamics

The structural dynamics of the machine tool plays a significant role in the
machine tool vibration. The structural dynamics consists of the lathe machine base and
the tool post which holds the cutting tool. The tool post used in this research is shown

in Figure 2.3.

Figure 2.3: Smart Tool Post Structure

14



The tool post under study consists of four main parts: a cutting tool, a vibration

absorber, membranes, and a case. Figure 2.4 is an assembly drawing of the smart tool
post mechanical structure showing all these components of the tool post mechanical

structure along with the actuators and sensor.

Actuator Mass 2

Tool
Mass 1 Insert

..........
RAJELPPF. P .
PAN S ddad W
—

Displacement
Sensor

Figure 2.4: Assembly Drawing of Smart Tool Post Structure

The cutting force acts on the workpiece so as to displace it as well as the
structure of the machine itself due to the reaction force. Therefore, the structural
dynamics is of interest from the viewpoint of machine tool vibration. As a result, it is
necessary to model the structural dynamics that relates the cutting force to the machine
tool displacement. This dynamic model should include the following three important
parameters: inertia, stiffness, and damping coefficients. The mathematical modeling

of the tool post is covered in Chapter 4.
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2.2.3 Feedback Paths

The two feedback paths shown in Figure 2.2 describe the interaction between
the structural dynamics and the cutting process, thereby a model for the instantaneous
chip thickness can be constructed. The first feedback path is called the primary
feedback path, and it characterizes the relative position of the tool with respect to the
workpiece being machined. Intuitively, the instantaneous thickness of the cut
decreases as the cutting tool moves away from the preset depth of cut relative to the
workpiece.

The second feedback path is called the regenerative path, and it represents how
much material was left over from the previous cutting action. The effective residual
material from the previous action is the product of the percentage of overlap between
two consecutive actions and the amount of residual material left from the first action.
This concept is consistent with the fact that there is no residual material from the
previous revolution in machining a thread. The instantaneous uncut chip thickness is
related to the preset thickness u, by using the following relation.

u, ()= Ly, (=)=, (+ u,1) Eq. 2.4

The above expression states that the chip thickness that produces the feeding
force is due to undulations on the free surface of the chip formed on the previous
revolution, undulations on the workpiece surface being generated, and the
programmed feed. Therefore, the momentary uncut chip thickness is the sum of three

components. The first component ufy_(t-7)] is the amount of residual material from
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Tunits of time ago. The second term y, (2) is the current position of the cutting tool,

and the third term u (z) is the preset feed.

2.3 Machine Tool Vibration

In a perfectly rigid body, the distance between any two points remains constant
in time. In other words, the size and the shape of the body does not change when the
body is subjected to dynamic and/or static forces. If all of the elements of the system
are mounted together to form an ideal rigid body, the different elements will not move
relative to each other and the system performance will not be impaired due to
vibration. However, a turning machine can be represented as a vibrating system made
up of spatially continuous springs, masses, and dampers. Since components of the
machine tool and the workpiece are elastic bodies, they undergo deformation when
they are subjected to static forces. When the acting force varies as a function of time,
the structural dynamics of the machine tool and the workpiece characterize a physical
phenomenon observed during machining known as vibration. Machine tool vibration
may be classified as random, externally forced vibrations, internally forced vibrations,

and self-excited or self-induced vibrations.

2.3.1 Random Vibration

Random vibration is caused by excitations that are characterized by
uncertainty, such as irregular impulsive loading of the machine tool. Random

vibration can happen when a non-determinstic loading is transmitted through the
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machine foundation. The process of tool wear changes the tool geometry. Such a
change can be another source of random vibration. As the tool wears, the cutting force
changes accordingly. The random nature of tool wear results in a random excitation to
the machine tool structure.

Nonhomogenous distribution of the hardness in the workpiece in micro-scale is
another source of random vibration. Due to the nonhomogenous distribution in micro-

hardness, the cutting forces produced during machining vary instantaneously.

2.3.2 Externally Forced Vibration

Forced vibration from sources other than cutting originates from external
forces coming either via the foundations or from acoustic coupling, or resulting from
defective mechanical parts, such as bearings, gearbox, or unbalanced rotating members
like gear drives, motors, or machine tool components. Such forced vibration causes
the machine to vibrate at the excitation frequency, a typical characteristic of forced
vibration.

The amplitude of tool vibration depends on the compliance of the machine at
that particular frequency of the disturbance force. Usually, the externally forced
vibration is periodic because the source is often due to a rotating component of the
machine tool. As a result, the frequency is usually an integer multiple of the rotational
frequency of a drive or a spindle.

Compared with random vibration, it is relatively easy to influence externally
forced vibration. Factors such as faulty machine elements or unbalanced rotating parts

can be eliminated by undertaking well known steps. Strict machine maintenance, on-
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machine diagnostics, and good machine tool or component design are the ways that

this source of vibration can be eliminated.

2.3.3 Internally Forced Vibration

Externally forced vibrations can occur when a machine is not removing
material, whereas internally forced vibrations occur only during the material removal
process. Under certain conditions, the cutting process becomes periodic in character
because of the chip making process.

The first cause of internally forced vibration is built-up eduge (BUE). The
presence of BUE changes the effective cutting geometry. In general, the effective rake
angle increases as the BUE develops and grows as shown in Figure 2.5. It can be seen
that the longer the height of BUE the larger the effective rake angle, and the smaller
the height of the BUE, the smaller the effective rake angle. An increase in the
effective rake angle reduces the cutting force generated during machining. As a result,

a variation in the effective rake angle produces a variation in the cutting force.

Effective Effective
Rake Angle Rake Angle

Built-up Edge

Height Height

(a) large height of built-up edge (b) small height of built-up edge

Figure 2.5 Effect of Built-Up Edge on Rake Angle
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Kuznetsov [1966] in a discussion of the work of Shteinberg [1947] showed that
the frequency of vibration, as measured by recording force on the tool, was essentially
the same as the frequency of BUE fracture determined by counting BUE particles on
the chip. Kuznetsov suggested that fracture of the BUE be controlled by the friction
force between the tool and the BUE and the forces applied by the chip and the
workpiece to BUE. The rate of growth of the built-up layers will be approximately
constant. Thus there will be a natural frequency for BUE formation. This frequency
can be a forcing frequency for the machine system.

The second source of internally forced vibrations is chip segmentation.
Landberg [1956] experimentally investigated the segmentation of the chip and found
that for low speeds the frequency fluctuations in the measured cutting force
corresponded with the frequency of formation of chip segments. The frequency of
chip segments was determined by counting the segments on a measured length of chip.

From this he obtained the average chip segment length €. The chip velocity v_ in

terms of the mean chip thickness w, is given by
v, =— Eq.25

where v is the cutting speed in ft/min and w is the depth of cut in inch. The frequency

of chip segmentation in Hertz is thus
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L. Eq. 2.6

Ferraresi [1960] carried out an investigation similar to Landberg’s
investigation. In order to examine the effect of machine stiffness he performed
comparative experiments on two different lathes. His results showed that the machine
had no effect on chip segmentation.

The third cause of internally forced vibration is discontinuous-chip formation.
An explanation for the physical phenomena of discontinuous-chip formation based on
cutting at very low speeds were presented [Field and Merchant, 1949; Cook, Finnie,
and Shaw, 1954]. In the early stages of chip formation, the chip slides up the tool face
creating a shear zone. Then the chip ceases to flow up the tool face and the plastic
zone spreads ahead of the tool. At this stage a fissure opens up at the tool point. Later
the fissure swings up and meets the free surface to form a free chip particle. The tool
then moves forward to initiate a new cut in the inclined plane left from the previous
chip formation.

The cyclic frequency due to discontinuous-chip formation appears to be largely
determined by cutting conditions, particularly the properties of the work material. The
characteristics of discontinuous-chip formation influence tool vibration amplitudes

significantly when resonance occurs.

2.3.4 Self-Excited Vibration
The last form of machine tool vibration is self-induced vibration. Doi was one

of the first researchers to consider the cutting process as an energy transferring
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mechanism capable of establishing a self-excited system [Doi, 1937]. Such vibration
is caused, built up, and sustained by the interaction or coupling inherent between the
cutting process and the machine tool. Figure 2.6 illustrates the process of self-excited
vibration in turning. It shows that the cutting process and the vibrating system
comprising the machine, the machine tool and the workpiece form a closed loop. The
vibration between the machine tool and the workpiece influences the cutting process
s0 as to cause a variation of the cutting force. This force in turn acts on the machine
structure, resulting in vibration. Under some conditions, the coupling between the
mechanical structure and the cutting process becomes such that the vibration once
started due to any random cause does not die down; it may even build up into a severe

state of vibration called chatter.

r—>| Cutting Process |»—
Time- Time-
dependent <— Coupling dependent
displacement (y,) force (F.)
< Mechanical
Structure

Figure 2.6: Coupling between the Cutting Process and the Mechanical Structure

Self-excited vibrations represent unstable events in a system of the workpiece-
tool-machine-turning process. The main distinguishing feature between self-excited
and forced vibration is time dependency. In case of self-excited vibration, there is a
relationship between the machining time and the development of tool vibration

amplitude. In the case of forced vibration, the amplitudes are more or less
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independent of the machining time. The most important causes of self-excited
vibration are the regenerative effect and the mode coupling effect [Juneja, and Sekhon,
1987].

The regenerative effect can be best depicted as in Figure 2.7. The turning
process produces a new surface by removing material from a surface generated during
a previous workpiece rotation. The surface modulation produced during the previous
revolution is added to the cutting action in such a way that self-excited vibration or

chatter occurs.

e oM Yy FER I, RN P

3
£
=
2

E.
&
E
[e)

=3

B - =~ O e N - T -

VvV — Workpiec/

/Undulations in the
G+ Dtcut

TR

o &M dt
BASIENRS SIS
L

Figure 2.7: Regenerative Effect

The energy imparted by the fluctuating force caused by the variation of uncut
chip thickness to the vibratory system may be sufficient to cover the loss of energy
due to friction and damping present in the system. In this case, vibration in the

subsequent passes does not die out, on the contrary, it may actually increase.
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The mode coupling effect can produce chatter only when the vibratory system
possesses at least two degrees of freedom and can simultaneously vibrate in two
opposing directions as shown in Figure 2.8. In this case, the cutting force opposes the
motion of the vibrating mass in the first half-cycle and assists it in the other half-cycle.
Since the uncut chip thickness is greater in magnitude in the second half-cycle, the
addition of energy is more than its expenditure. This surplus energy may be sufficient

to overcome the damping losses and create a chatter phenomenon.

Figure 2.8: Mode Coupling Effect

The problem caused by vibration and chatter introduces the question of
stability in the machining system. Figure 2.9 the stability chart used by many
researchers when dealing with machining stability. There are three borderlines of
stability in the figure: lobed, tangent, and asymptotic. The lobed borderline of
stability is the exact borderline and may be approximated with the asymptotic

borderline or more closely with the tangent borderline. The three borderlines of
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stability are progressively more difficult to compute. Nevertheless, they are perceived

to be progressively less important from a practical viewpoint.

Lobed Borderline of Stability
Tangent Borderline of Stability
Asymptotic Borderline of Stability

Unstable Region

Width
of Cut

Stable Region

Spindle Speed

Figure 2.9: Typical Stability Chart for a Machine Tool

2.4 Machine Tool Vibration Control

Since the full potential of turning machines often cannot be utilized due to the
occurrence of vibration, it is very desirable to eliminate chatter by taking steps to
reduce its incidence. Since it is not possible to completely eliminate the sources of

vibrational disturbances, the goal is to reduce relative motion between the machine
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tool and the workpiece. The steps the machining industry has taken to reduce or
eliminate tool vibration include the following:

1. Adding stiffness and/or damping to the setup. This is a passive means to
tackle machine tool vibration. - { the critical elements should be
connected together to form a dynamically rigid structure that is designed to
have resonance frequencies far removed from the operating frequencies
and/or significant damping at resonance frequencies.

2. Isolating the system from vibration by operating at speeds that do not cause
cyclical forces whose frequency approaches a resonance of the machine
tool system.

3. Changing the cutting conditions, for example, by reducing the feed rate and
the depth of cut and increasing the rake angle.

4. Changing the design and geometry of the machine tool and changing the
method of clamping the workpiece.

There has been considerable research in the development of adaptive
controllers for machining systems. The main problem addressed in the area of the
manufacturing community is that of controlling the cutting force in metal cutting
operation by controlling the feed rate. The term *adaptive control” is used in
machining literature in a rather misleading way when applied to the control of machine
tools. Adaptive control for machine tools is used to describe a system that employs

feedback from the cutting process to alter cutting conditions. Hence adaptive machine
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tool controller does not have an adaptive control scheme in the control engineering
sense.

Even though adaptive control of machine tools has attracted much academic
and industrial interest for decades, very little progress has been achieved.
Conventional linear control schemes have been shown to be inadequate for regulation
of variables in metal cutting, such as the cutting force generated during machining.

Several ad hoc schemes have been developed [Bedini and Pinotti, 1982;
Wilson and Wilkinson, 1981]. A commercially available adaptive control system is
reported to use gain scheduling, based on measurement of oscillations [Koren and
Masory, 1981]. They implemented parameter Adaptive Control Constraint (ACC) of
cutting force in turning using a microprocessor, neglecting the process time-constant
and without the use of any formal adaptive control design techniques. Ulsoy, Koren,
and Rasmussen [1983] presented simulation results of the same scheme. Stute and
Goetz [1975] used a hardwired model reference adaptive system, based on estimation
of gain and relating time-constant to spindle rpm, for regulating spindle power by
varying feed rate.

Spiewak and Szafarczyk [1978] carried out an analysis of the control of cutting
force using feed as the control input. They judged that the on-line estimation of
process gain was too complex for implementation. Tomizuka, Oh, and Dornfeld
[1983] provided the first comprehensive analysis of parameter adaptive control for a

machine tool based on the theory of adaptive control systems.
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The target of this research is active vibration cancellation using smart material-
made actuators. Here, we explore the possibility of active cancellation of the
vibration using actuators. In this scheme, displacement sensors deliver information
concerning the relative displacements between workpiece and machine tool. This
information is used by the adaptive controller to develop adjusting signals for the
actuators. The actuator forces in turn produce displacements opposing the primary -

disturbance, thus canceling the vibration.
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Chapter 3

CONTROL METHODOLOGY

3.1 Introduction

In this chapter, the focus is on active vibration control. The cutting action
generates a primary disturbance to the tool, which results in tool vibration. The
secondary disturbance which is generated by using “smart” material-made actuators is
used to cancel the unwanted tool vibration. Specifically, these actuators are Lead-
Magnesium-Niobate (PMN) actuators.

As stated in Chapter 2, there are a variety of sources of process variations in
machining operations. The machining process is rather complex, and not well
understood; it is neither possible nor economical to make a through investigation of all
the causes of the process variations. Therefore, an adaptive control strategy is a good
candidate to cancel machine tool vibrations. In this thesis research, a pragmatic
definition is taken in which an adaptive controller is defined as a controller with

adjustable parameters and a mechanism for adjusting the control system parameters.
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3.2 Active Vibration Control Using Smart Material-Made Actuators

The active vibration control implemented in this research employs an external
device to produce a secondary disturbance to cancel the unwanted primary
disturbance. A complete active control system includes actuators to produce and apply
forces to the structure, sensors to measure the response of the system and to deliver the
information to the control circuitry, and a controller to deliver the appropriate control
signals to the actuators so as to achieve the desired system response. This desired
response corresponds to near zero machine tool vibration. The device employed to
serve such a purpose in this research is called a smart tool post because it has the
ability to sense and react to its environment. The actuators are electroactive devices
made of the electrostrictive ceramic material Lead-Magnesium-Niobate (PMN).

An electroactive device is broadly defined as a device that produces a non-
electrical output, given an electrical input, or vice versa. An electromechanical device
produces mechanical displacement by either elongation or contraction in response to
an applied voltage. The two basic categories of electromechanical devices are
electrostrictive and piezoelectric devices. In Table 3.1, the characteristics materials for

these two actuator types are provided.
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Table 3.1 Characteristics of Electrostrictive and Piezoelectric Actuators

Electrostrictive Piezoelectric
[Lead Magnesium Niobate [Lead Zirconate
(PMN)] Titanate (PZT)]
Unit Cell’s Perovskite Structure; Perovskite Structure;
Microstructure | Centro-Symmetric Non Centro-Symmetric.
Net Material Before Usage, No Yes All the Time.
Polarization During Usage, Yes
After Usage, No
Poling before No Yes. Electric field is
Service applied
to the heated sample.
Domains are realigned
from relocation of cell
ions.
Operating The cations and anions are Application of an
Principle displaced in the electric field. | electric field of the same
The net result is a distortion of | polarity as the poling
the unit cell with an unbalanced | field will increase
charge distribution. domain alignment. It
causes a physical
elongation. Contraction
can be caused by
applying opposite
polarity.
Displacement vs. | Quadratic Linear
Applied Field
Displacement High Precision Low Precision
Resolution
Hysteresis* Prominent Not Serious
Creep* Insignificant Significant
Operating Temp. | Narrow range Wide range
Capacitance High Low
Force High Low
*Note: Hysteresis is defined as the difference in device output resulting from

different input conditions.

Creep is defined as the change in displacement over time under constant
electric field.

31



Although not all devices can operate bi-directionally, the type of PMN
actuators is a special kind of electromechanical device that can convert the energy in
both directions. In Figure 3.1, the actuator strains for both electrostrictive and

piezoelectric devices are shown.

4 Displacement (um)

Electrostrictive

7 7 >
e _7  Input Voltage (V)

S
-

Figure 3. 1: Actuator Displacment versus Voltage Input

The actuators used to actively control the tool vibration must fulfill various
requirements among which the following are cited:

1. Displacement resolution with high precision.

2. High mechanical rigidity

3. Compact setup

4. Amenable to control using an electric field

5. Production of large forces
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The actuators based on conventional mechanical and/or hydraulic methods are
not suited because of the time delay in the system response and the low efficiency of
energy conversion. For these reasons, efforts have been made to find new types of
actuators. Certainly, PMN actuators deserve special attention because they have wider
operational range by producing high forces and display precise displacement
capabilities.

An actuator can be either a single-layer device or a multilayer device. The
amount of displacement an actuator can achieve is proportional to the voltage per unit
length of the material, which is expressed as the electric field with the unit of
Volts/micro-meter. For a given actuator length and actuator input voltage, it is
preferable to have an actuator consisting of many thin layers rather than a single thick
layer actuator to realize a large displacement. Therefore, lower voltage operations are
possible with multilayer actuators for a chosen displacement. In order to maximize
total displacement and minimize operating voltage, many single layer devices are
usually stacked together to produce a multilayer device as shown in Figure 3.2.
Hence, the PMN actuators used in this thesis work are in the form of multilayer

ceramic actuators (MCA) .
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(a) Single layer (b) Multi-layer

+ 4+ + o+

Figure 3. 2: Single Layer and Multi-layer Ceramic

The primary physical phenomenon that causes an electromechanical device to
increase in length when an electric field is applied is different for electrostrictive and
piezoelectric materials. The displacement in the ceramic electrostrictive material used
in this research is caused by the elongation of the individual atomic cells as shown in
Figure 3.3. As illustrated, in part (a), the structure is shown before the application of
an electric field, and in part (b), the structure is shown when subjected to an electric
field. The unit cells are made up of positively and negatively charged ions. When
subjected to an electric field, the positively and negatively charged ions are forced in
opposite directions. The net result of this is a distortion of the previously symmetric

unit cell into a nonsymmetric shape with an unbalanced charge distribution called

electric dipole.
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(a) Centro-symmetric structure; before application of electric field
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>

Electric
Dipole
electric field

. Lead (2+ion) ® Magnesium (2+ ion)/ Niobium (5+ ion) O Oxygen (2- ion)

Figure 3. 3: Primary Electrostrictive Response Mechanism

Howeyver, the piezoelectric materials have nonsymmetric unit cells in the

unperturbed state to begin with. Therefore, the unbalanced charge distribution results

in an electric dipole or polarization. Unit cells are grouped in regions of similarly

oriented dipoles called domains. Since the domains are randomly oriented for kinetic

and thermodynamic reasons, it results in no net material polarization.
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During the poling process, the piezoelectric material is heated to facilitate
domain realignment. When an electric field is applied it causes the dipoles in the
nonsymmetric unit cells and the domains to align, resulting in net electrical

polarization of the material as shown in Figure 3.4.

Electric Dipole

O Oxygen (2- ion) . Lead (2+ ion)
® Zirconia or Titanium (4+ ion)

(a) Before application of electric field

Electric
Dipole

Electric FieldT T T

(b) Under electric field

Figure 3. 4: Piezoelectric Poling Mechanisms
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Typical parameters and specifications for a 6 mm diameter, 20 mm length,

cylindrical actuator stack are shown in Table 3.2 [SMS News, 1993].

Table 3.2 Typical Actuator Parameters

Electrostrictive Piezoelectric
Maximum Displacement (um) 18 16
Capacitance (uF) 6 1
Dissipation Factor (%) 4.5 3
Force (N) 3,000 1,300
Hysteresis (%) 2 15
Creep (Max. after 24 hours) 2% 15%
Operating Temperature (°C) 10 to 50 -20 to 80
Thermal Coeff. of Expansion <1 ppm/°C <2 ppm/°C
Modulus (N/m?) 9.6e10. 6.0e10.
Response Time <100us <10ps

3.3 Adaptive Control Schemes

The adaptive control architecture implemented in this research for a single-
input signie-output is shown in Figure 3.5. The architecture has three components:
emulator, controller, and adaptation algorithm. The emulator is used to emulate the
control mechanism. The controller provides control signals for the actuators, and the
adaptation algorithm is used to adjust the weights of the controller for maximum
disturbance attenuation. The adaptive control strategy of machine tool vibration
compensation can take the form of a feedforward scheme, a feedback scheme, or a
hybrid implementation of both schemes. These three schemes are realized by
assigning appropriate values to the forward gain and feedback gain represented in

Figure 3.5 by k, and k,, respectively.
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Figure 3. 5: Block Diagram of an Adaptive Control System

3.3.1 Adaptive Feedforward Control

The application of adaptive feedforward control for active vibration and noise
cancellation problems has been well explored over the past decade [Widrow, 1971;
Nelson and Elliott, 1994]. It is usually implemented through digital finite impulse
response (FIR) filters or infinite impulse response (IIR) filters whose coefficients are
updated by using gradient algorithms.

The adaptive feedforward architecture for vibration compensation takes a form
given by block diagram shown in Figure 3.5 with the feedback gain set to zero. Here,
a measure of the primary disturbance is available to the controller in the form of a

reference signal. The control signal is obtained by systematic modification of the
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weights of the controller. A feedforward control scheme performs well as long as the
reference signal is partially coherent with the primary disturbance, and the controller
causality is ensured.

For a persistent tonal disturbance or a bandlimited disturbance, feedforward
control systems often offer the potential for greater disturbance attenuation than
feedback control systems. In order to implement a feedforward control system, the
disturbance needs to be known a priori. It is also robust in the sense that uncertain
systems or those that have been modeled inaccurately can be handled to some extent.

There is an important difference in the control strategy between the
feedforward and feedback control systems. Heuristically, the feedforward control
system can be viewed as offering prevention of the disturbance, producing an output to
counteract the disturbance upon its arrival, while feedback control systems must wait
until the disturbance has occurred and has been measured by the output sensor before
the controller can use it as a reference signal.

In general both kinds of forced vibration, internal and external vibrations of the
machining system, are excited by a particular harmonic disturbance. Frequency
components of the machine tool vibration are likely to be at the excitation frequency.
Therefore, it is possible to determine the sources of forced vibrations by examining the
tool vibration signal. This way a suitable reference signal can be identified for the

machining operation.
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3.3.2 Adaptive Feedback Control

An adaptive feedback control system is a closed loop control system where the
output is measured and compared to a desired value, and the resulting error is used to
adjust parameters of the controller, thus affecting the output of the entire system. The
classical approach involves feedback of either the system states or system outputs.
The feedback gains can be designed by using methods such as pole-zero placement
and root locus analysis in frequency domain or linear optimal quadratic regulation in
time domain [Kwakernaak and Sivan, 1972; Ogata, 1990]. The most intuitive
approach is feedback of algebraically negative values of position and/or velocities of
the system. In Figure 3.5, if the feedforward gain is set to zero, the resulting block
diagram is for a feedback control scheme.

This control strategy is well suited for the control of transient disturbances,
whereas in the presence of persistent disturbances, an adaptive feedback control
scheme is not as appropriate as a feedforward scheme [Padmanabhan, 1995].
Therefore, it is necessary to combine both schemes to create a hybrid control system to

take advantage of the features of both schemes..

3.3.3 Adaptive Hybrid Control

It is apparent that either a feedback control scheme or a feedforward control
scheme by itself has certain limitations and advantages. An extension of these

schemes, where the benefits of both may be used to full advantage, is a hybrid control
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scheme. Here, both feedforward and feedback control schemes are implemented in an
integrated form to produce a control system that will effectively attenuate the
referenced disturbance to the degree maximally possible, and also provide some
attenuation of the unreferenced component of the disturbance. While the feedback
scheme provides robust disturbance compensation, the feedforward control provides
active vibration cancellation. In Figure 3.5, when the gains are nonzero, the resulting

block diagram is for a hybrid control scheme.

3.4 Neural Network for Control

The study of neural networks in control systems can be seen as a natural step in
the evolution of control methodology to meet new challenges due to the need to
address challenging problems effectively. There is a renewed interest to exploit neural
networks for control applications [Narendra & Mukhopadhyay, 1994; White & Sofge,
1992; Hunt & Sbarbaro, 1991; Levin, Gewirtzman & Inbar, 1991; Miller, Sutton &

Werbos, 1990; Psaltis, Sideris & Yamamura, 1987].

3.4.1 Neural Network Fundamentals

Research has been done in the field of artificial neural networks since the early
1940s. The early neural network research was motivated by the observation that the
human brain can perform very complicated tasks and yet is made of “simple”

processing elements called the neurons, as shown in Figure 3.6 [Hebb, 1949].
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Figure 3. 6: Two Biological Neurons in Synaptic Contact

The soma or nerve cell is the large round central body of the neuron which is
approximately 100 microns in diameter. The axon is attached to the soma and is
electrically active producing the pulse which is emitted by the neuron. Synapse is a
specialized contact that occurs where the dendrites of two different nerve cells meet.
There, the electrically passive dendrites receive inputs from other neurons.

Artificial neurons are analogous to their biological counterparts, as illustrated
in Figure 3.7. Here, the axons and dendrites are in the form of wires, the neurons are
in the -orm of processing elements, and the synapses take the form of variable resistors

carrying weighted inputs that represent data.
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Figure 3. 7: Two Artificial Neurons in Synaptic Contact

The basic node elements employed in neural networks differ in terms of the
type of network considered. Here, the commonly encountered model, a form of the
McCulloch and Pitts neuron, is employed [Aleksander, 1991]. In Figure 3.8, a typical
model of a neuron is illustrated. Each input connection to the neuron unit has a

weighting value associated with it, and the unit produces a single output.

0,

a)“\‘
oza,i\>
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[ 2

L ]

. ®in Neuron i
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Figure 3. 8: Neuron Model
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The input computation for each unit i in the network at time # is given by
H.()= ):1 w, ()0, () Eq. 3.1
j=

where the term H((z) represents the net input signal to the itk unit in the network, O(?)
represents the output from the jth unit in the network, the term w,(#) represents the
weighting value associated with the connection that runs from the jith unit to the ith
unit, and the value n represents the number of other units that are connected to the
input of the ith unit.

The output computation for each unit i in the network at time ¢ is given by

O,(=T(H,(®) Eq.3.2

where I is the activation function of the unit. The activation of a unit is analogous to
the degree of excitation of the unit. The output signal is related to its activation by a
transfer function known as the activation function.

The first activation function employed in this research is the linear function.
The derivative of this transfer function is 1 and it is independent of H. The linear

activation function I'" can be expressed mathematically as
I'(H,0)=H,@®) Eq. 3.3

The second activation function is a sigmoidal unit. The sigmoidal unit
produces an output signal that has two stable states and a transition region. The

sigmoidal unit used in this research is given by

OH(1) _ ,—oH()

. e
*[H®))= tanh(6H (1)) = 55—y Eq. 3.4



A sigmoid unit is defined by a continuous function and it is asymptotic for
both infinitely large positive and negative values of the input sum of each node. This
nonlinear transfer function allows for more complex pattern recognition and for
capturing nonlinearities in the system. The function takes values between -1 and 1. If
the parameter G is made large, then most of the outputs, will come close to the limiting
values of +/-1. The derivative of the function is always positive, and it is close to zero
for either large positive values of H or large negative values of H. In Figure 3.9, the

sigmoid function and its derivative for ¢ = 1 are illustrated. As shown in Figure 3.9,

the derivative attains its maximum value at H equal to zero.

Sigmoid transfer function

1
0 L
-1 1 —
-2 =1 . 0. 1 ,
Derivative of sigmoid transfer function
1
0.5}
-2 -1 0 1 2

Figure 3. 9: Sigmoid Transfer Function and its Derivative

45



The linear and nonlinear neural dynamic models are used for system
identification and control purposes. In system identification applications, it has been
shown that a feedforward network of the multilayer perceptron type can approximate
any continuous function [Cybenko, 1988; Cybenko, 1989; Funahashi, 1989; Hornik,
Stinchcombe, and White, 1989].

The linear neural network is implemented as a two layer feedforward neural
network with a linear activation function and tapped delay inputs. This arrangement
takes the form of the well known recursive filters and nonrecursive filters. For
modeling and controlling complex systems, linear models are extended to nonlinear
dynamic models. The nonlinear neural network is implemented by using a multilayer
feedforward neural network with sigmoidal activation functions and tapped delay
inputs. This includes time-delay neural networks (TDNN), and recurrent neural
networks (RNN). In this research work, the linear models are implemented in both
computer simulations and experiments while the nonlinear models are implemented

only in computer simulations.

3.4.2 Linear Neural Network

The linear neural networks implemented in this research are linear temporal
dynamic models. These dynamic models can be classified into nonrecursive digital
filters and recursive digital filters [Kung, 1993]. They are also referred to as finite

impulse response (FIR) filters and infinite impulse response (IIR) filters, respectively.
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3.4.2.1 Nonrecursive Digital Filters

The nonrecursive digital filters are discrete linear time-invariant systems in
which an output number, representing a sample of the filtered signal, is obtained by
weighted summation of a finite set of input numbers, representing samples of the
signal to be filtered. In Figure 3.10, the neural architecture of nonrecursive digital

filters is shown.

Memory

:

O—y®
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Figure 3. 10: Neural Architecture of FIR Filter

It is a two layer feedforward time delay linear neural network. The first layer

is called an input layer. Here, the current input signal and time delayed input signals
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are applied. The time delay function in all dynamic neural network structures is
performed through the use variables stored in memory. The second layer is called the
output layer with a single neuron representing a single output. In between the two

layers there is a vector of weights & connecting the input neurons with the output

neurons. The activation function is linear.

The net input to the output neuron is given by
H(k)=Sa,(k)yr(k i) Eq. 3.5
i=0

where ¢, is the weight parameter for the connection of the ith input neuron to the

output neuron, (p+1) is the size of the weight vector, and r(k) is the input signal at
instant k. The network has (p+ 1) input neurons with the first neuron for the current
input signal value, and p neurons for the delayed input signal values.

The output of the network is given by
Y(k)=T'[H(k)]= H(k) Eq. 3.6
For a FIR filter, thus the defining relation between the input set r(k) and output
set y(k) is given by
y(k)= Lot (kyr(k =) Eq.37
Using matrix notation, the relation can be written in the form
y(k)=ea" (k) R(k) Eq. 3.8
where

a)=[aotk) (k) ... a,(0)] and RE)=[rk) r(k-1) ... rk-p)
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The training algorithm generally adapted is the least mean square (LMS)
algorithm developed by Widrow [Widrow, 1971; Widrow and Stearns, 1985]. The
filter weights are updated with the objective of minimizing an error energy function.
This error can be defined as

e(k)=y,(k)- y(k) Eq. 3.9
where y, is the desired output and y is the model output. The objective error energy

function at instant k is given by
1, 1 2
J(ky=7 e (k)= [y, (6) - y(k) Eq.3.10

Since the desired signal does not depend on the weight structure, the gradient

of the error energy function with respect to the filter weights is given by

dJ (k) oy(k)
——=—e(k)—= Eq. 3.11
do(k) e )aa(k) q
The gradient of the model output is given by
(k)
——=R(k Eq. 3.12
20:(%) (k) q
Therefore, the weight updating equation can be written as
o(k+D=0oa(k)—ne(k)R(k) Eq. 3.13

where ofk+1) is the new weight vector, ofk) is the old weight vector, and 7 is the

adaptation coefficient.

3.4.2.2 Recursive Digital Filters

Digital filters with an infinite impulse response are discrete linear systems that

are governed by a convolution equation based on an infinite number of terms. In
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principle, - 'y have an infinite memory. This memory is achieved by feeding the
output bacs to the input.

The neural architec -= for recursive digital filters can be realized by applying
delayed output signals and delayed input signals to the input neurons of a two layer

feedforward neural network. The activation function is still a linear function. In

Figure 3.11, the neural architecture of such a filter is illustrated.

o

Memory

— y(k)

O
PLO— 1

1) 1 i)
Input Weight Output
Layer Vector Layer

Figure 3. 11: Neural Architecture of IIR filter

The weight vector can be partitioned into two parts. The first subset & consists

of weights for the connections of the input neurons (with the current and delayed input
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signal values) to the output neuron. The second subset 8 consists of weights for the
connections of input neurons (with delayed recurrent output signal values) to that of
the output neuron.

The net input to the output neuron is given by
H(k)=f(l)a,.r(k—i)+ 3 B,y(k- ) Eq. 3.14
J=! Jj=1

The output of the output neuron and hence the network is given by
y(k)=T'[H(k)]= H(k) Eq. 3.15
Therefore, the dynamic equation that relates the input signal r(k) to the output

signal y(k) is given by
y(k)=ﬁoa,.r(k-i)+_}f]ﬂjy(k—j) Eq. 3.16
= Jj=

Equation 3.16 can be written in terms of delay operators as
y(k)=a(D)r(k)+ B (D)y(k) Eq.3.17

where the delay operators are defined by
aD)=faD  BD)=L£B,D'  Dyk)=yk-i.
i= =

In general, a gradient type algorithm is adopted as a training algorithm. The
filter weights are updated with the objective of minimizing the error energy function J
defined by Equation 3.10.

Thus the gradient of the error energy function is given by

aJ ,
ﬁ__e(k)y . (k) Eq.3.18

H
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aJ
—=—e(k)y (k Eq. 3.19
%, e(k)y p}_( ) q

where the !::cobians are defined by

=20
y . (k)= o,
) 3 Eq. 3.20
y =22
B ﬁj

The Jacobians may be derived directly taking gradients on Eq. 3.17

Y (B)=D'r(k)+ B(D)y,, (k)

. Egq. 3.21
y'p]. (k)=D"y(k)+ ﬁ(D)J"pj (k)

The initial conditions for calculating the gradients are assumed to be zero.
Equation 3.21 can be written in a conventional notation as
Yo, (O=r(k=)+ £ B,y (k=)

Eq. 3.22
Y, ()= y(k= )+ £ B,y | (k=)

3.4.3 Nonlinear Neural Network

Linear filters have limited applications. Most real world applications need
nonlinear dynamic models. Therefore, nonlinear temporal dynamic models are also
investigated in this research. These nonlinear dynamic models are also divided into
two categories. Similar to the nonrecursive filters, there are time delay neural
networks (TDNNs), and similar to the recursive filters, there are recurrent neural
networks (RNNs). These nonlinear models are derived by modifying the standard

multilayer feedforward neural network.
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3.4.3.1 Multilayer Feedforward Neural Network

A multilayer feedforward neural network consists of multiple layers of
neurons. The first layer is the input layer where the external input signals are applied.
The last layer is the output layer that produces the output signals, and the other layers
in between are called the hidden layers. In Figure 3.12, the meso-structure of a four

layers feedforward neural network is shown.

Outputs

SN

= Output Layer

Hidden Layers

@~ Input Layer

Inputs

Figure 3. 12: Meso-Structure of Multilayer Feedforward Neural Network

It is crucial to build a neural network that provides a good dynamic
representation of a system to be controlled. A modification of a feedforward neural

network is devised for system identification and control purposes. A feedforward

53



neural network is characterized by layered architectures + ‘th the following

advantages:

1)
2

3)

4)

5)

6)

7)

They can be used for optimization and control.

Unlike conventional batch algorithms, they are incremental learning algorithms.
The update rule of back propagation for the network is local; that is, the weight
change for a given connection is computed based on quantities available. This
makes the back propagation rule appropriate for parallel computation and the
network best suited for fast computzitions on parallel architectures.

They do not require an a priori knowledge of a mathematical function. Training of
the network is accomplished using data that can be obtained through
experimentation.

They have good generalization capabilities.

The hidden layers perform feature extraction so as to find a correct fit of output
space for the given input space.

They can learn from experience and give acceptable results from noisy and
incomplete data.

Here, the algorithm used for training the nonlinear network is the back

propagation algorithm. The back propagation algorithm was invented independently

several times by Bryson and Ho [1969], Werbos [1974], Parker [1985] and Rumelhart,

* Hinton, and Williams [1986 a, b]. It lends itself to an efficient computational scheme

for training multilayer networks. The objective of the algorithm is to adjust the

weights in such a way so as to minimize the error energy function.

54



Consider a network with L layers 1=1,2,.....L, let Oil be the output of the i
neuron in the I* layer and let O°, be a synonym for the i" input, I. Let Wijl be a
notation for the weight connection from O, to O,. Then, the back propagation
algorithm can be implemented by carrying out the following sequential steps:

1. Initialization of the weights using random numbers.
2. Application of the input signals to the input layer (1=0) so that
0,° =1, forallk Eq.3.23

3. Forward signal propagation through the network using
o' =T{H]= r[Z /A 05-"] Eq. 3.24
J

for each i and [ until the final outputs y=0,"have been calculated.
4. Computation of deltas for the output layer
§t=T[H(y,- ) Eq. 3.25
by comparing the actual outputs y, with the desired outputs y,;
5. Computation of deltas for the preceding layers by propagating the error

backwards
§it=r [H&“])iZW’,-,-af Eq.3.26

forl=L,L-1, ....,2

6. Weight adaptation according to

Wi =Wi+AW; Eq. 3.27
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where
AWwW;=né;0% Eq. 3.28
7. Return to step 2 and repeat the sequence until the error tolerance is achieved.

The drawbacks of a feedforward network is due to the back propagation
algorithm that is used to train the network. The drawbacks of the algorithm are
convergence and existence of local minima. As a result, the algorithm will get stuck
in a local minima and may not reach the global minima. Therefore, proper training is
needed to overcome these drawbacks.

The feedforward neural network structure can take two different forms: static
and dynamic. The static feedforward network discussed so far is best suited for
pattern recognition purposes. In this research work, a dynamic neural network is
implemented for the system under consideration, because the system is dynamic in

nature.

3.4.3.2 Nonrecurrent Nonlinear Neural Network

In the case of dynamic systems, the system outputs depend on the system
inputs through a time-integration rather than a one-to-one instantaneous
correspondence. As a result, the dynamic nonrecurrent nonlinear neural network,
namely, Time Delay Neural Network structure, is preferred to the static one for control
system implementation. In Figure 3.13, the mechanics of time delay nonlinear neural

networks is shown.
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Figure 3. 13: Nonrecurrent Nonlinear Neural Network

The input structure of the time delay nonlinear neural network is similar to that
of FIR filters. However, here nonlinearity is incorporated through multilayer

connections and also through nonlinear activation functions.

3.4.3.3 Recurrent Nonlinear Neural Network

The dynamics of the system can better be realized by using an outer recurrent
feedback loop with a time delay operator. In Figure 3.14, the structure for a recurrent
dynamic neural network is shown. By feeding back past information of the plant
states or outputs, the neural network is expected to better realize the dynamics of linear

or nonlinear systems.
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Figure 3. 14: Recurrent Nonlinear Neural Network
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Chapter 4
SYSTEM MODELING AND COMPUTER SIMULATION

4.1 Introduction

In this thesis work, computer simulation is performed in order to make a
preliminary feasibility study of the control strategy. Tool vibration compensation has
been a challenge to the machine tool industry for decades. Efforts made during the
past have consumed materialized wealth which can be measured in million dollars.
Developing a model that accounts for regeneration phenomenon, and intrinsic
uncertainties in the values of the cutting process parameters is expensive. The
intrinsic uncertainties in the cutting process parameters alone depend on the geometry
of the tool, the properties of the material being cut and the cutting conditions.
Therefore, the Meritt model is found to serve the purpose in creating the primary path.
The mathematical model for the control mechanism is derived through experimental
testing for the secondary path. Using these mathematical models, the feasibility of the
control strategy is ascertained by performing computer simulation.

In this thesis work, the linear neural network is designed to be an adaptive type
controller, and the nonlinear neural network is designed to be a learning type
controller; The learning methods determine the classification of controllers as
adaptive type or learning type [Yabutta and Yamada, 1990]. The adaptive type is
depicted in Figure 4.1 for a disturbance attenuation application. This type of

controller learns at every sampling cycle. The plant output converges on-line to the
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desired value. As aresult, rapid learning convergence is required in order to ensure
that the controller is capable of carrying out the control action in real time. It should
be pointed out that the effect of plant dynamics on the learning rule should be taken

into consideration in advance when the adaptive type neural controllers are realized.
plant output
desired output

’
N A

\V\/UVU

Figure 4.1: Adaptive Type Controllers for Disturbance Attenuation

The learning type controller is depicted in Figure 4.2 for disturbance
attenuation applications. This type of controller learns after several trial periods. The
training is performed off-line. Therefore, it is not necessary to know in advance the
effect of plant dynamics on the learning rule since it can be estimated during the trial

process.

first training second third training
/_ cycle training cycle cycle

f\v/\U/. N e

Figure 4.2: Learning Type Controller for Disturbance Attenuation
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The performance of the system identification and control system in computer
simulations and experiments is evaluated using the following performance indices.
1. Arithmetic Average [AA]

The arithmetic average (AA) is the form of a ], norm and it is defined as

1 X
W'EJZJ Eq. 4.1

where z, is the i" value of the variable for which the norm is sought, and N is the total
number of sampled points. Numerical values of AA characterize the variation relative
to its mean value. For example, in system identification application, z can take the
value of the error between the output predicted by the developed model and the output
actually measured from the experiments. The concept of AA values can also be
applied to characterize the magnitude of tool vibration about the equilibrium position
during machining. Measurements of surface profiles taken from the machined surface
are typical examples where the concept of AA values is applied. The AA profile
measurement is excellent for data that have a small number of isolated wild points and
tends to ignore such isolated wild points.

2. Root Mean Square [RMS]

The root mean square (RMS) performance index is the form of a 1, norm that is

defined as

RMS ={=— Eq. 4.2
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This performance index gives large weighting factors to large deviations.
Consequently, this performance index is best suited to data with errors in a normal or
statistically related distribution where the standard deviation in the error is not large,
and where approximations of the data require at-best comparable accuracy.

3. Peak To Valley [PTV]
The Peak-To-Valley (PTV) performance index is defined as
PTV = max(z;) - min(z;) Eq. 4.3

This profile measurement is ideal for data that are exact and accurate or have
errors in a uniform distribution such as data that have been rounded. The PTV
performance index suffers from a limitation because only two data points are used for
evaluation while the other data are ignored.

a long string of data, the sampled data are divided into sections, and for each
section the perfc ance indices are calculated. The mean and the standard deviation

of the performance indices are then used to evaluate the performance of a network.

4.2 System Identification of the Control Mechanism
The key operation parameters for a typical 6 mm diameter, 20 mm long PMN

type actuator is shown in Table 4.1.

Table 4. 1: Operation Parameters for the PMN Type Actuators

Bias Voltage 53 V(DC)

Control Voltage -53V to 101 V (AQ)
Linearized Transductance 0.179 pm/V
Actuator Stroke Limit +/- 9.25 um
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The actuators are pre-stressed using a DC voltage. Attention has been paid to
avoid saturation and to avoid reversal stroke that may be caused by large voltage
inputs. Although the dynamic behavior of the actuator is not linear over its entire
operation range, the effect of nonlinearities is not pronounced below saturation,
especially for a small voltage variation range. A simple (tangent) linearization is
effective for up to 80% stroke [Wing, 1995]. However, the slope of the linearization
varies with frequency of operation; this fact necessitates system identification. The

system identification process will be discussed in detail in the following sections.

4.2.1 Design of Experiment

A successful identification application requires that the measurement data
contain significant information about the system behavior under excitation. It is
therefore necessary for the data acquisition to be well planned. The experiment is
designed to make it similar to the actual case as much as possible.

The actuators are implemented in place with a series connection and with a
biased DC electric voltage of 26 V. A known magnitude of AC voltage at a certain
frequency is applied to the actuator, and the displacement sensor is used to capture the
displacement of the tool tip. The data are collected first, and a system identification
procedure is performed off-line to get a reliable quel for later use in the computer
simulations.

The sampling interval is coupled to the time constants of the system. Sampling

that is considerably faster than the system dynamics leads to data redundancy.

Sampling that is considerably slower than the system dynamics leads to serious
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difficu;.:zs in determining the parameters that describe the dynamics. Therefore, the
Nyquist frequency is used as a basis, and the selected sampling frequency is selecte:.
to be 2.' :imes the bandwidth of the system. The sampling rate is 1 kHz, assuming

that the upper limit ¢ :he frequency range is 400 Hz.

Tk~ input signal needs to be rich in spectral content within the working range
of operatic::. As a result, a pseudo random signal is selected because this type of
signal contains all frequencies within the specified range. The frequency range of the
pseudo random signal generator is limited to vary from O to 400 Hz. The amplifier for
the PMN actuators is set in such a way that the input signal amplitude in the
neighborhcod of [-1, 1] volt range produces a tool displacement amplitude in the

neighborhood of [-1, 1] micrometer range.

4.2.2 Experimental Setup

Three actuators are arranged in the smart tool post structure so that the loading
produced by the actuators are distributed uniformly along a concentric circle about the
center of the tool. In Figure 4.3, the placement of the three actuators in the smart tool

post structure is shown. The three acutuators are connected to each other in series.

Actuator

Actuator

Case
e —

Tool
Insert

Figure 4.3: Placement of Actuators in the Smart Tool Post Structure
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The machine tool motion in axial direction is the one that is of concern in this
thesis work. In order to capture the relationship between the voltage input and the
displacement of the tool, voltage input is applied to the actuators, and the displacement
of the tool is recorded through the usage of a sensor. A signal generator is used to
generate the random voltage signal. The tool tip is free to vibrate so that the
displacement due to the applied voltage can be identified. The non-contact position
measuring system, namely, a variable impedance transducer, is used as a displacement

sensor. In Figure 4.4, the block diagram of the experimental setup is shown.

Toolpost

Displacement :
P LS

1] Sensor _ Displacement
\ ] [ ] »:1 Sensor
[T Electronics }:
A T B T

B s TRl
=

Actuator

Amplifier [ ]

anaQl O
Source | Ch1 Ch2
HP Signal Analyzer

Figure 4.4: Block Diagram of Experimental Setup for Identification

A series of experiments were conducted and two sets of data were selected

after evaluating the data. The spectral content of the two sets of data is shown in

65



Figure 4.5. As shown in the figure, the data is rich in spectral content within the

specified bandwidth. One set of data is used for modeling arpose, while the other set

is used for validating the model.

10°

10 10' 10°
Frequency (radVs)

a) Modeling Signal; Top: output signal, Bottom: input signal

10°

vy

1 o-l. i i A
10° 10 10 10 10
Frequency (rad/s)

b) Validating Signal, Top: output signal, Bottom: input signal

Figure 4.5: Spectral Analysis of Experimental Data
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4.2.3 Identification Procedure

The models structures chosen for identification purposes in this thesis research
include Auto Regressive X (ARX) model, Output-Error (OE) model, Auto Regressive
and Moving Average X (ARMAX) model, Box-Jerkins (BJ) model, and State Space
(SS) model. In order to identify an appropriate model structure that best describes the
control mechanism, MathWorks SYSTEM IDENTIFICATION TOOLBOX (SITB) is
used. The software package is one of the most used packages in system identification
[Ljung and Glad, 1994]. The identification procedure to produce a model is
summarized in the following sequence.

1. Specification of a model structure.

2. Determination of an appropriate model of this structure.

3. Evaluation of the properties of the established model.

4. Acceptance of the evaluated model structure if meeting specifications.

5. Iteration of the above four steps to test a new structure if not accepted.

In Figure 4.6, a flow chart illustrating these steps involved in the identification
procedure is shown. The experimental data are presented to the algorithm. The
computer algorithm then determines the best model structure. The model is evaluated
through a validation technique. The process is repeated for all of the five models. The
model which shows the best match is selected to serve as the model of the control

mechanism in the computer simulations of the control system.
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The criterion used to select the best model from the five model structures is the
variance of the prediction error for each of the five model structures using the recorded

new data sequences. In statistical terms, this is referred to as cross validation. Cross

accepted?

Figure 4.6: System Identification Cycle

validation is preferred to a method that bases the comparison on data used for

modeling. The use of old data is not sufficient because the performance of a higher
order model in general gives a lower value of the criterion function since it has been
obtained by minimizing over more parameters. Moreover, the limitation of cross

validation is alleviated due to the fact that experimental data measurements are not

scarce.
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The model can exhibit overfit when a number of excessive parameters are
used wazzu to fit the model to the specific disturbance signals in the present data set.
This should be avoided because the model will be used when other disturbances affect
the system. The transition from relevant model fit to over fit is studied. The models
" are compared based on criterion that balance between model fit and the number of
parameters using prediction variances produced by the models. Since cross validation
is performed, the most well-known Final Prediction Error (FPE) is used for a statistical
estimate of the prediction error variance as stated by:

1+ size(8)

i N
FPE‘,‘iE%5‘>1_size(9)

N

oV For Eq. 44

where V is the loss function for the structure in question and 8 is the weight parameter.

The loss function is given by the quadratic fit as

N
1% =%Ze2(i) Eq. 4.5

i=1
where e(i) is the modeling error at instant i.
The first parametric model tested is ARX model that corresponds to the
following equation
A(q@)y(t)= B(q)u(t—nk)+e(t) Eq. 4.6a
where B and A are polynomials in the delay operator g” given by

AQ=1+aiqd '+ +auq ™ Eq. 4.6b

B(@)=bi+bq '+ +buwqg ™" Eq. 4.6
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The parameters na and nb are the orders of the respective polynomials. The
parameter nk is the number of delays from input to output.

First, a suitable value of the delay nk is established by testing a second order
model with delays between 1 and 10. For this structure, a delay nk=3 gives the
smallest loss function. Around this chosen value all combinations of ARX models
with up to 10 na and 10 nb parameters are tested. In Figure 4.7, the loss function as a
function of the number of parameters is shown. From the figure there is no significant
improvement in the loss function beyond 13 parameters. The best fit for the 13

parameters yields na=6, nb=7, and nk=2.
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Figure 4.7: Loss function of ARX model

These selected model parameters are used to model the control mechanism.

The residuals associated with the data and the ARX model is found by evaluating the
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auto-correlation function of the errors and the cross correlation function between the
errors and the input signals. Since the residual is too large, the model is rejected.
The second model structure test is OE structure that corresponds to the

following equation

y(t)= M u(t—nk)+e(t) Eq. 4.7a

F(q)

where the polynomial F(q) is given by
F@=1+f g ++f,q" Eq. 4.7b

where nf is the order of the polynomial.

Around the chosen delay parameter, all combinations of OE models with up to
10 nb and 10 nf parameters are tested. All OE models are tested but yielded higher
FPE, loss function, and residuals than ARX models. Therefore, this model structure is
also rejected.

The third model structure tested is the ARMAX structure that corresponds to
the equation given by

A(q)y(t) = B(q)u(t —nk)+ C(q)e(?) Eq. 4.8a

where the polynomial C(q) of order nc is given by

C(g)=1+aq '+ - +cnd ™ Eq. 4.8b
A series of trials are performed with different values of parameters with the
order ranging from 1 to 10. Even though some ARMAX models give smaller values
of loss function and smaller values of FPE than those obtained from the previous two

models, the residuals remain large. Therefore, this model is also rejected.
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The fourth model structure tested is the Box-Jerkins (BJ) model structure that

corresponds to the equation given by

B Ci
A(g)y(t)= -E% u(t —nk)+7)% e(t) Eq. 4.9a

where the polynomial D(q) of order nd is given by

D(@)=1+diq + - +dwq™ Eq. 4.9b
A series of trials are performed with different values of parameters within the
range specified before. Again, a smaller value of the loss function and a smaller value
of FPE were found for some of the BJ models. However, the residual analysis results
in the rejection of this model.
The last model structure tried out is the State Space model; this model gave the
best results. The model structure is given by |

x(t+1)= Ax(t)+ Bu(r)

¥(t) = Cx(t)+ Du(t)+e(t) Eq. 4.10a

Here, the relationship between the input «(z) and the output y(z) is defined by
the nx-dimensional state vector x(z). In the transfer function form, the above equation
can be given by

G(q)=C(ql,~A)"'B+D Eq. 4.10b

where I, is nx by nx identity matrix, and A, B, C, D are matrices defining the model.

72



The SS model structure is tested for orders that range from 1 to 10. The best
model structure found by the algorithm of the computer is of the order 6 as shown in

Figure 4. 8.

Modet sigular values vs order

Red: Dafault Choice

e i

[ 2 4 6
Mode! order

Fig. 4.8: Model Evaluation for SS Models
In Figure 4.9, the output of the model and the actual validation data is shown.

It shows that the model is in agreement with the experimental data.
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Figure 4.9: Experimental and Simulation Outputs

The residuals obtained for the model is depicted in Figure 4.10.

Autocorrelation of residuals for output 1

Cross corr for input 1and output 1 resids
T T T T T

Figure 4.10: Residuals of the Model
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The frequency response of the state space Model is shown in Figure 4.11.

Fraquency response

10

Frequency (rad/s)

Figure 4.11: Frequency Response
The continuous state space model of the control mechanism model found from
the discrete state space model is in the following form:

() = AX(t) + beu(t)

Eq. 4.11
y(t) = Cx(t)+dou(t)
where the A b,C,, and d _matrices are given by
(1114 2404 1995 -2428 -829 706 | 35762
-1966 -2008 -2149 1874 1098 -8399 -52838
B -1375 -179.6 -1941 1736 1076 -7453 ) —46312
7| 1312 -1265 -137 3074 413 -12748 © 7142828
-294 432 -46 -896 208 —2301 -1074.6
| -646 —946 -974 2257 515 5133 | ~24095
C,=[-05172 05062 04984 04478 0.0802 01442] d =
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where the A b, C,, and d_matrices are given by

[ 1114 2404 1995 -2428 -829 706 | 35762
-1966 -2008 -2149 1874 1098 -8399 -52838
~-1375 -1796 -1941 1736 1076 -7453 —46312
A=l 1312 —1265 137 3074 413 -12748 be=| 42828
294 —432 46 -896 208 2301 -10746
| 646 946 -974 2257 515 5133 {-24095
C.=[-05172 05062 04984 04478 00802 01442) d =0

4.3 System Modeling of the Machining System

The machine tool structure is a vibratory system with a large number, if not
infinite, of degrees of freedom. Mass and flexibility are distributed over the structure
of the machine tool continuously but nonuniformly. From a practical point of view, it
is sufficient to consider a limited number of degrees of freedom corresponding to the
lower modes of natural vibrations that are known to dominate the tool motion during
machining. Therefore, the vibration analysis is performed with the assumption that the
lathe machine is rigid along with the tool post case. As a result, the vibratory system
is limited to a finite number of degrees of freedom of the machine tool with respect to
the tool post case.

The mathematical model of the tool post is formulated based on physical
insights [Wing, 1995]. Machine tool structures are spatially continuous systems,
which can be described by models using partial differential equations. The boundary

conditions and constraints for the machine tool are quite complex. For the feasibility
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study, a lumped-parameter model with concentrated masses and springs is used in this
thesis research. To account for the energy dissipation, viscous dashpots are included.
The actuator stuffiness is represented by k,. In Figure 4.12, the schematic drawing of

the model of the smart tool post structure is shown.

Figure 4.12: Model of Smart Tool Post Structure

The two differential equations of motion for the smart tool post structure can

be derived to be

mi, + (¢, +¢)x, +(k, +k, +k,)x, — ¢, %, —k,x, = F
¢ Eq. 4.12
myx, + c,x, + k,x, — ¢, %, — k,x, =0

where F|_ is the cutting force. The matrix form of the above set of differential

equations of motion is given by

M3+ Cx+ K% = bF, Eq. 4.13
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where,

In Figure 4.13, the block diagram of the structural dynamics of the smart tool

post, the signal flow graph, is shown.
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Figure 4.13: Block Diagram of the Structural Dynamics of the Tool Post
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The transfer function of the system which relates the input cutting force to the

machine tool displacement is given by

x,(s) m,s* +c,s+k,
F(s) [ms®+(c,+c,)s+(k, +k, +k, Y[m,s® +c,5+k, [-(c,5+k,)?

Eq. 4.14
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After some manipulation and substitution of

2 _ k, 2 _ k, 2 _ k, ¢, = 1 & C, =
S W=, W, = » 61 F 2 =
m 2mw1 2m2w2

W,
m, m, 1

the transfer function can be expressed in terms of damping coefficients and natural

frequencies
x,(s) s2 428, w,s+w,”
F.(s) mm,(s*+28,w,s+w>+w 2 )(s*+2{,w,5+w,’ )+’ (28, w,s+w, " )s
Eq4.15
The state space equations of the system are of the form
x = AX+bF,
- Eq. 4.16
y=Cx+dF,
where
[0 0 1 0]
0
bkt k ote, G 0 |
+k,+ agtc, ¢ -
P i L 4™ & B=| 1
m m m m -
o koo o o
L m m m m, |
1 0 0 0 0
C= 0 0 1 0 d=| 0
ktk,tk, k, ctc, ¢ 1
m momm m,
x \
x
- _|*2 -
= X Y= ).C.l
%) )
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Based on equations (2.2) and (2.4), the cutting force is relating to the preset

chip thickness by
F )=k [u,-y(ty+p y(r—p)] Eq4.17
Using Matlab, the third order pade approximation of the delay term is given by

%, =A%, +b,y(t
4T _“y(_) Eq.4.18
y(t-1)=C,x,+d,y(t)

Finally, integration of the equations for the tool post, the cutting process and
the delay term approximation gives a state space equation of the machining system
relating the preset chip thickness u, to the machine tool displacement y_ as:

%, (=A% (1)+bu,(t)

Eq. 4.19
3,()=C,x, ()+d,u(F) q

where the matrices are given by the following equation

A, =Ay+A+A +A,
c,=[1 o ooo o0 0

ol

d, =0

and the variables in the above equations are given by

A—-[ 43] A= -![—1000000]
’ 4 d 1 6—3

A——M{:JL[O'C] A——uk{:}[d 000000]
2 cO3 4 d 3 003 d
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and O, is a zero matrix with i number of rows and j number of columns, whereas 6. is

a zero vector with i number of rows.

The set of values that is shown in Table 4.2 is used here in the computer

simulations.

Table 4.2: Values for Computer Simulations

Variable Value
Preset chip load 0.0001 m
Mass 1 0.9 kg
Mass 2 0.1 kg
Stiffness 1 1 x 10°N/m
Stiffness 2 1 x 10°N/m
Damping factor 0.09
Cutting stiffness 1 x 10° N/m
Time delay 0.001 sec
Overlap factor 0.8

4.4 Computer Simulation of Linear Neural Network Control System

The architecture of the linear NN controller has the following two components:
a) an emulator to emulate the control mechanism and b) a controller with a built-in
adaptive algorithm. During an operation, the controller drives the control signal and
an adaptive algorithm adjusts the controller parameter values via the emulator. The

two modules in this control system are discussed in the following sections.

4.4.1 Linear Emulator Module Development
An emulator is a model representing the control mechanism that is later used

by the adaptation algorithm to update the control weights. The nonrecurrent network
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is used in the linear NN system control application, since is found sufficient in this
thesis work.

In the hardware realization, the emulator is derived from the control
mechanism. For the computer simulations, the parametric model of the control
mechanism identified in Section 4.2 replaces the actual plant.

The NN identification procedure is performed in two phases. First, training
data are collected. The data consists of system inputs and outputs for one second of
time with 10,000 data points collected at 10 kHz. In order to capture the full spectrum
content, the input signal used to excite the control mechanism is a random signal. The
input signal is delayed successively according to the tap length, and a matrix of input
data is stored in an input file. In a similar manner, the corresponding output is stored
in an output file.

Second, the data are used on the corresponding weight structure of the NN, and
the errors between the output of the control mechanism and the emulator are
minimized. The least-mean square (LMS) algorithm that was discussed in Chapter 3
is used. Using this algorithm, the weights of the emulator are adjusted in such a way
that the modeling errors between the control mechanism and the model are minimized.
The basic principle of the LMS algorithm is a gradient descent algorithm. The
algorithm attempts to arrive at a calculation of the optimum set of filter weights by
adding to the present estimate of the optimum weight vector a portion of the negative
gradient of the error surface at the location defined by this estimate. The magnitude of

the portion is governed by a scalar called the adaptation coefficient. In this manner,
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the current value of the mean square error descends down the sides of the error surface

which is a function of the weight vectors.

4.4.1.1 Design of Experiment

Since nonlinear systems cannot be represented by a linear network, using a
linear network to represent nonlinear systems would be valid only for making linear
approximations in a small region. By creating a delayed tap line on the inputs, the
approximation can be as close to a solution as possible for a given structure. The
parameters under investigation during system identification include the tap length that
represents the weight size and the adaptation coefficient in the adaptation algorithm.
A series of levels of tap lengths that are multiples of 20 are investigated in this
research. In order to determine the sufficient tap length for the emulator five levels of

tap lengths are studied, as shown in Table 4.3.

Table 4. 3: Tap Length Levels

Levels Tap Length
1 20
2 40
3 60
4 80
5 100

The identification process is governed by two factors that are regulated by the
adaptation coefficient. A low adaptation coefficient ensures stability but the rate of
convergence is very slow. On the other hand, a high adaptation coefficient can
increase the convergence rate, but would also make the system unstable. Therefore, a

low value is taken as a starting point for the adaptation coefficient. By gradually
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increasing the adaptation coefficient, the maximum value, at which the identification
process is stable, is obtained. The steady state value of the residual error is considered
to ascertair: +he steady state performance of the structure for a given adaptation
coefficient, whereas the number of epochs or number of batches it takes to attain the
steady state would be used to ascertain the transient performance of the training

Process.

4.4.1.2 Results and Analysis

The emulator evaluation process consists of two factors that correspond to the
two types of residual errors. The first type of residual error is determined by finding
the difference between the outputs of the control mechanism when subjected to~
modeling input signals and the modeling output signals. The second type of residual
error is determined by finding the difference between the outputs of the control
mechanism when subjected to validating input signals and the validating output
signals. Since a linear network only has a global minima, a series of trials would give
the same results regardless of different initial weights derived from a random number
within [-1,1] range as expected. Therefore, it is not necessary to make statistical
analysis to account for the random nature of the initial weights.

After making several trials, the adaptation coefficient for all the levels was
found to be 0.0001, and in all the cases the steady state was obtained at about 20
epochs.

The steady state modeling performance of the emulator is evaluated by

calculating the modeling error after the training process settles down. The steady state
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modeling error values for the five levels in terms of the three performance indices are

listed in Table 4.4.

Table 4. 4: Steady State Modeling Error

Level AA | RMS | PTV
0700 | .0885 | .6110
0596 | .0753 | .5553
0313 | .0395 | .3077
0108 | .0136 | .1045
0024 | .0032 | .0948

B W —

In order to visualize the effect of tap length on the modeling error, the
modeling error is plotted as a function of the levels using the three performance

indices as shown in Figure 4.14.

Levels

Figure 4. 14: Steady State Modeling Error

As seen from the above figure, the rate of error reduction with respect to the

increments in tap length is higher for tap length 40 to 80 than for tap length 20 to 40
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and 80 to 100. The variation of the RMS and AA performance indices with respect to
the tap length is lower than for PTV index. This is understandable because few points
are used in calculation of the PTV index unlike the calculation for AA and RMS
indices, which make use of all of the evaluation data.

The five emulator structures are further analyzed for validation error. An input

of the following is used as a source of excitation:
13
u(t)=§_2;sin(27r f.t Eq. 4.20

where f =100 Hz, f,=200 Hz, and f,=300 Hz.

Using the modeled weight structures, the outputs of the control mechanism and
the emulator are noted for this input excitation. The difference between the two yields
the validation error. The validation errors calculated using the three performance

indices for the five levels of emulator are tabulated in Table 4.5.

Table 4. 5: Validation Error

Taplength | AA | RMS | PTV
20 1263 | .1494 | .6011
40 J132 | 1393 | .5794
60 0643 | .0806 | .3315
80 0246 | .0303 | .1164
100 0059 | .0071 | .0269

In order to visualize the effect of tap length on the validation error, the
validation error is plotted as a function of the tap length for the three performance

indices as shown in Figure 4.15.
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Figure 4. 15: Validation Error

The same conclusion can be reached for the validation error as in the case of
the modeling error. The consistency of the model is not unusual because the modeling
signal used is a band limited random signal that has a wide frequency range.
Moreover, the format for the arrangement of nonrecurrent models is in the same for
both modeling process and validation process unlike the format for the arrangement of

recurrent networks.

The required size of the emulator is defined as the minimum size in which the
weights between the neurons are such that the neural network output matches the
output of the control mechanism. The degree to which the network should match the

control mechanism depends on the application.

In order to balance the number of parameters and model fit, the previously
used FPE criterion is applied here. The FPE values for the five levels are shown in
Figure 4.16. From the figure, it is clear that the increase of tap length from level 1 to

level 2 results in small performance improvement which is a reduction of the error
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level by 0.0014. When the increase of tap length reaches level 3, the improvement in
system performance is significan. 'he error level reduction (.0145) is more than the
previous reduction by 90%. Further error reductions are possible with respect to
increases in tap length levels, but they are in lower magnitudes (0.007, 0.002).
Therefore, level 3 is selected as the optimal tap length for the emulator in this thesis

research.

0.025

0.02 -

Levels

Figure 4.16: Final Prediction Error

4.4.2 Linear Control Module Development

The controller is also a nonrecurrent linear NN like the emulator. The
controller is responsible for producing control signals that drive the control
mechanism. Unlike the emulator, the weights of the controller are tuned on-line. The
control weights are adjusted through the adaptation algorithm that attempts to

minimize the displacement of the tool.
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The adaptation schemes developed for an emulator cannot be directly used for
adaptation of the controller weights because there is a transfer function between the
controller and the performance signal. This transfer function is the control
mechanism. Therefore, the basic LMS adaptive filter needs to be modified by adding
a transfer function of the control mechanism, which is actually the emulator. The
complete development was presented independently by Widrow and Burgess and has
come to be known as the filtered-X algorithm [Widrow, Shur, and Shaffer, 1982;
Burgess, 1981]. In Figure 4.17, the block diagram of the adaptation algorithm as it is
implemented in the SIMULINK program is shown.

At the start of the system operation, the switch assigns random values within
the range of [-1,1] to the controller weights. When the reference signal is propagated
through the delay tap of the controller, a vector of reference data is created at each
instant. The dot product of the initial weight vector and the reference data vector
produces the control signal. The control signal in turn excites the control mechanism

to produce a secondary disturbance.
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Figure 4. 17: Adaptation Algorithm
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At the subsequent steps, the reference signal that is filtered though the
emulator is used in calculating new weight values for the controller. The delay tap of
the controller is used to create a vector of data of this filtered signal at each instant
corresponding to the control weight vector. An appropriate value is assigned to the
adaptation coefficient. The product of the filtered reference data vector, adaptation
coefficient and the negative of the error signal at each instant produces the corrections
of the weight values for the controller. The switch assigns this corrections of weight
values instead of the initial weights at this point. The previous weight values of the
controller were stored in the memory. Therefore, the summation of the corrections of
weight values and the old weight values in the memory gives the new weight vector.
The dot product of the reference data vector and the new weight vector produces the
control signal. The control signal produced by the controller excites the control
mechanism in such a way that the primary disturbance is attenuated.
4.4.2.1 Design of Experiment

Here, the effect of the size of the control weight structures on the performance
of the system is investigated. In order to analyze the effect of the size of the control
structure, the five levels listed in Table 4.3 are used.

Two types disturbance signals are considered for analysis. The first type is a
harmonic disturbance with frequencies within the range of the cutting operation while
the second type is a multi-frequency disturbance. The multi-frequency disturbance
components are chosen with one dominant frequency. The amplitudes and frequencies

of the disturbance signal are listed in Table 4.6.
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Table 4.6 Disturbance Signal Characteristics

frequency, Hz | amplitude, V
Non domin:nt 300 2
Dominant 200 S
Non dominant 100 3

4.4.2.2 Results and Analysis
1. Harmonic Disturbance.

The harmonic disturbance is assumed to be known for simulation of the
feedforward control scheme. The tool displacement without the controller, the control
signal, and the tool displacement with the feedforward controller for each level of the

controller structure at one of trial frequencies is shown in Figure 4.18.

no control control signal with control
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a) Level 1, tap length=20
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Figure 4.18: Controller Performance for a Harmonic Disturbance
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A convergence coefficient of 0.001 is used for the 100,80,60, and 40 weight
structures while such a convergence coefficient did not result in a stable scheme for
the 20 weight structure. The convergence coefficient for this case was set at 0.01. As
the weight structure of the controller is increased, the negative part of the disturbance,
or the disturbance leading the tool away from its equilibrium and reducing the depth of
cut, is attenuated more than the positive part of the disturbance. The rate of
attenuation was better for larger control weight structures. The 80 weight structure was
slow in reducing the vibration at the initial cycle compared to the 100 weight structure;

but yielded better attenuation rate after the second cycle.

2. Multi-Frequency Disturbance

Next, a multi-frequency disturbance is simulated. In this category, two
examples are used for demonstration. The first example is to demonstrate the effect on
the system response when a reference signal is correlated to the primary disturbance.
Therefore, an identical signal is used as both the primary signal and the reference
signal. The performance of the controller for the five levels of the control weight
structures is shown in Figure 4.19. First, the tool displacement without the controller
for one second time period is shown. Then the control signal and the vibration

attenuation for the five levels for one second period are shown.
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Figure 4.19: Controller Performance for a Multi-Frequency Disturbance, Example 1
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A look at the transient response shows that tap lengths of 80 and 100
outperform the other three. The vibration settles to near the O value after a 0.2 second
time period. The steady state performance can be evaluated by calculating the
performance measurement indices on the last 0.1 second of the transient response data.

The percent reduction in machine tool vibration is shown in Figure 4.20.

100
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20 4 60 80 100
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Fig. 4.20: Percent Tool Displacement Reduction

As shown in the figure, all structures were able to give percent reduction for
the three profile measurement indices in the order of more than 70%. The weight
structures associated with tap lengths of 60 to 100 in particular show the best
performance; the reduction is in the 90% adaptation percentage range. The control
structure with 40 tap lengths has lower performance indices when compared to the
weight structure with 20 tap lengths. The reason for such a poor performance in
reduction is due to the fact that the process was not yet complete.

The second example is to demonstrate the performance of the controller when

only the dominant frequency signal of the reference signal is available. The control
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weight structe > is varied and five levels are considered as before. The adaptation
coefficient for each case is varied and the one which gives maximum convergence for
a stable system is noted. The performance of the controller for the five levels of
control structure is shown in Figure 4.21. First, the tool displacement without the
controller for one second time period is shown. Then the control signal and the

vibration attenuation for the five levels for one second period are shown.
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Fig. 4.21: Controller Performance for a Multi-Frequency Disturbance, Example 2

The effect on the rate of convergence due to change of convergence coefficient
1s observable for the order of 10. Therefore, the increment of the convergence
coefficient is taken as a multiple of 10. A convergence coefficient of 1.0 brings

instability, 0.1 assures stability, and 0.01 brings about the best performance for the

level 1 control structure
The convergence coefficient for level 2 is the same as that of level 1. Unlike

the first two levels, for level 3, the point of instability is lowered to 0.1 for the
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convergence coefficient. This shows that as the control structure size increases, the
convergence coefficient needs to decrease. Similar to the previous cases, a
convergence coefficient of 0.01 ensures stability, but the best performance is obtained
at a value of 0.001.

The same convergence coefficients that were employed for level 3 are also the
appropriate values for levels 4 and 5. Therefore, the weight structures with tap length
20 and 40 fall in one class, whereas, the ones with tap lengths 60, 80, and 100 fall in
another class.

In order to evaluate the steady state performance quantitatively, data collected
in the final 0.1 seconds are used for calculating the AA, RMS, and PTV indices to
evaluate the vibration levels with and without the controller. The percent reduction in

vibration as a function of the control structure is shown in Figure 4.22.
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Fig. 4.22: Percent Tool Displacement Reduction

The performance of the controller for tap length 40 drops in similar fashion to

the first example. Since the amplitude of the dominant frequency that is used as a

103



The performance of the controller for tap length 40 drops in similar fashion to
the first example. Since the amplitude of the dominant frequency that is used as a
reference signal is one half of the amplitude of the disturbance signal, the vibration
reduction is reduced by half when compared to what was obtained in first example.
This is because the feedforward control scheme compensates only the dominant
frequency that is referenced by a reference signal. Once this frequency component is
compensated quickly, then the scheme makes no effort to compensate for the

unaccounted frequency components.

4.5 Computer Simulation of Nonlinear NN Control System

The nonlinear NN control system is composed of two modules, the emulator
and the controller, which resemble the linear counter part. Similar to the linear NN
control system, the emulator is derived off-line. Unlike the linear NN control system,
the nonlinear NN controller is a learning type controller. The training process is
performed in an off-line fashion. Hardware implementation of the nonlinear NN

controller is left for future work.

4.5.1 Neural Architecture Identification

First, neural architecture for the emulator and controller is identified. In this
thesis work, both recurrent and nonrecurrent nonlinear NN structures are investigated
for the neural architecture identification. The identification process is conducted using

the simpler module, the emulator.
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In the hardware realization, the emulator is derived from the actual plant,
namely, th'e control mechanism. For computer simulation investigation, the
parameteric model of the control mechanism identified in Section 4.2 replaces the
actual plant. Depending on the recurrent signals, the nonlinear recurrent emulator is
capable of taking two different formats as series/parallel and parallel [Narendra, and
Parthasarathy, 1990]. The series/parallel format is where recurrent signals are
obtained from the output of the system, which is the control mechanism, as shown in
Figure 4.23. This arrangement has several advantages over the other format. Since
the plant is assumed to be bounded-input bounded-output (BIBO) stable, all the input
signals to the neural networks are assumed to be bounded. Moreover, since no
feedback loop exists in this arrangement from itself, static back propagation can be
used to adjust the parameters reducing the computational overhead substantially. As a
result, this arrangement, known as series/parallel, is best suited for training the

emulator off-line.

N R Control ¥
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Figure 4.23: Series/Parallel Arrangement
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The delay vectors for the input and output signals shown in Figure 4.23 and

Figure 4.24 are given by
1 z_l
7z 72
z-z
D;= ( Do=y Eq. 4.21
(277 (277

When training the controller, the recurrent signals from the control mechanism
are no longer available for the emulator because they are contaminated with the
primary disturbances. Therefore, recurrent signals from the emulator outputs should
be used, instead of the outputs of the control mechanism. This arrangement is known
as the parallel arrangement as shown in Figure 4.24. Assuming that the output error
tends to be reduced to a small value asymptotically so that y_(k) = y(k), the
series/parallel model can be replaced by a parallel model with accuracy. Since the
emulator is a model of the control mechanism, the output of the emulator is supposed
to match the output of the control mechanism. The difference between the output of
the emulator in parallel format after being trained in series/parallel format and the
output of the control mechanism, is referred to as validation error. Back propagation
of this validation error in the recurrent signals can pose serious problems in the
performance of the control system. Therefore, the emulator that is trained with the
series/parallel arrangement needs to be checked for its performance in parallel
arrangement. As a result, there are two factors to govern the performance of an

emulator. These factors are modeling error based on the series/parallel arrangement in
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the modeling mode, and validating error based on parallel arrangement in the

functional mode.

(VA Control | v
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Figure 4. 24: Parallel Arrangement

The nonlinear emulator has three layers. The nonrecurrent nonlinear network
is a TDNN as shown in Figure 3.13. The recurrent nonlinear network is a RNN as
shown in Figure 3.14 in Chapter 3. Both networks have three layers; namely, an input
layer, a hidden layer, and an output layer. The input layer of the nonrecurrent
emulator has one neuron for the current input signal, p neurons for the delayed input
signals, while the recurrent emulator has, in addition, g neurons for the delayed
recurrent output signals. Therefore, the total number of the input neurons in the input
layer is p+1 for the nonrecurrent emulator and p+g+1 for the recurrent emulator. The

hidden layer has a A number of neurons, while the output layer has only 1 neuron

corresponding to the output of the emulator.
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4.5.1.1 Nonlinear Emulator Dynamics

At time k, a hidden neuron j receives a net input given by
g
H!(k)= 'g(w,, o I(i,k)) + " Eq. 4.22

where
1" are biases [threshold] for hidden neurons.
w; is the weight connecting the j* hidden neuron to the i" input neuron
IC,ky=[uk) uk=1) - wk-p) z(k-1) - 2k=-@T
u(k) is the control signal at instant t=k
zZ(k)=y(k) for parallel emulator arrangement.
z(k)=y. (k) for series/parallel emulator arrangement.
y (k) is the output of the emulator
. (k) is the tool displacement due to the control signal.

The hidden neuron j produces an output which is given by

Of(k)=r“[H?(k)]=I“[qu(w,.' I(i,k))+v';j| Eq. 4.23

i=0
where I’ is a sigmoidal processing function of the hidden neuron. The output neuron

thus receives a net input which is given by

P A q
H°(k)= _Z]v, O'(k)+v°=2v jr“[ﬁ(w,, o I(i,k)) +v'}]+ v° Eq. 4.24
I=

j=l i=0
where
v, is the weight connecting the j* hidden neuron to the output neuron,

A is the number of hidden neurons,
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1’ are biases [threshold] for output neuron.

Finally, the output neuron produces the final output which is given by

Y0 =T'[H®k)]= r‘{}f:lv j r“["zq(w,, o I(i,k)) + v'}]+ v"} Eq. 4.25

+
i=0
where

I is a linear processing function of the outer neuron.

The processing function selected for the first layer is the nonlinear sigmoidal
function which maps y[—oo,ed] = A[-1,1]. This function is chosen to take advantage
of the nonlinear capabilities of the neural network, and also to capture the vibrational
displacement which varies around zero, or the equilibrium position. In order to retain
the mapping capability of any input value to any output value, the pure linear function
is chosen to map h[—l,l] = y[—oo,oo]. Moreover, the complexity of the network
reduces by limiting the nonlinear sigmoid transfer function to one set of the weight
structure.

The modeling error of the NN model can be found by evaluating the difference
of the outputs of the control mechanism and the emulator.

e(k)=y, (k)-y(k) Eq. 4.26

The error energy function is given by
| .
Jiy=7 {e*(k)} Eq. 4.27

The gradient of the error energy function with respect to the weight is back

propagated through the network to modify the weight parameters so as to reduce the
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error energy function of the emulator. The Levenberg-Marquardt Method is
implemente: . this research to adapt the weights of the emulator. This method
balances between the extremes of the inverse-Hessian method and the steepest descent
method.

Let the parameter 6 be used for all the weight structures {w, } and {v, }
arranged in an array. The weight updating equation is thus given by

[T @+nI]86=0e Eq. 4.28
where 7 is adaptation coefficient and ¢ is the Jacobian that is defined as ¢ =———.

Given an initial random guess for the set of fitted weight parameters 6, the

recipe used in emulator training is given as follows [Press, Teukolsky, Vetterling, and
Flannery, 1992]

1. Computing of the performance index J(6).

2. Picking of a modest value for 7, say n=0.001

3. Evaluating Eq. 4.28 for 86 and evaluation of J(6+66)

4. Incrementing of 7 by a factor of 10 if J(6 +86) > J(0), and returning

back to step 3.
5. Decrementing of 7 by a factor of 10, if J(6+66 ) < J(8 ), updating the trial
solution @ « 6 + 66, and returning back to step 3.
Also it is necessary a condition for stopping the scheme be defined. Iterating
to convergence (to machine accuracy or to the round-off limit) is generally wasteful

and unnecessary since the minimum is at best only a statistical estimate of the
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parameters 6. Otherwise, the parameters wander around near the minimum in a flat
valley of complicated topology. Outright failure by a zero pivot when solving for 86 is
possible, but unlikely, because more often a small pivot will generate a large
correction which is then rejected, the value of 77 being then increased. For sufficiently
large 7, the matrix [ @@ + nl ] is positive definite and can have no small pivots.
Thus the method does tend to stay away from zero pivots, but at a cost of a tendency
to wander around doing the steepest descent in very unsteep valleys. These

considerations suggested in actual training to stop iterating on the first occasion that J

decreases by machine accuracy.

4.5.1.2 Training Data

The identification procedure is performed in two phases as before. First,
training data that represent system input and system output for a duration of one
second of time are collected that because the collected data of 1 second can contain
frequency content as low as 1 Hz. In order to capture the full spectrum content, the
input signal used to excite the control mechanism is chosen to be a random signal.
The input signal is delayed according to the tap length of the NN and a matrix of input
signals is stored in an input file. The corresponding array of output signals is stored in
an output file. The memory block size is a function of the tap length.

The devised neural network structure can handle both inputs and outputs in the
range of (—oo,+0). In order to create an environment that best suits the comparison of

different models, a scaling process is performed on both the inputs and outputs so that
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the magnitudes of both signals would lie in the [-1,1] interval. The time step of the
simulation is maintained constant and is set to 0.0001 seconds. That yields a sampling

frequency of 10 kHz.

4.5.1.3 Initial Random Weight

The size of the initial random weights is important. If they aretoo large, the
sigmoidal transfer function will saturate :rom the beginning, and the system will
become stuck in a local minimum (or very flat plateau) near the starting point. The
strategy taken to tackle this problem is to choose random weights so that the
magnitude of the typical net input to the hidden neuron Hj" is a little less than unity to
avoid initial saturation. Since the inputs are limited to lie within [-1,1] range, the
initial weights accordingly need to fall in the same range. As a result, the initial
weight is derived using a random number generator within [-1,1] range. Though the
activation function of the output neuron is linear, the same range of values are used for
all network weights in order to make a fair comparison among the different neural
structures.

Unlike the linear neural network, the initial weights play a role in arriving at
the global or local minima. The randomness of initial weights for different neural
structures makes it difficult to make comparisons among the different neural
structures. Therefore, a statistical approach is devised to control the performance
variation due to this uncontrollable variable. As a result, twenty sets of training data
are collected for each control structure from which a mean and a standard deviation

can be evaluated.
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The required size of a neural network that suites the application needs to be
defined. In order to define the required neural network structure, the nonlinear
emulator has limitations compared to the linear emulator. First, the linear emulator can
be found easily for there is global minima in the case of linear networks. Second, the
nonrecurrent network was sufficient in this thesis research work for the linear case
while recurrent network were required for the nonlinear counterpart. The recurrent
networks introduce two different arrangements for modeling and functional modes and
thereby, increases the complexity. Therefore, the following design of experiments in

two stages are devised to tackle this problem.

4.5.1.4 Design of Experiment 1

The design parameters for the chosen neural structure include the input delay tap
length p, the output recurrent delay tap length g, and the number of hidden neurons A.

The first factor that is analyzed is the required tap length of the network for the

emulator. The levels for the study are tabulated in Table 4.7.

Table 4.7: Tap Length Levels

Cases input delay tap recurrent delay tap
Low 4 4
Medium 9 9
High 19 19

The variation in the weight structure of the emulator is monitored by the total
number of weight parameters. After many initial trials, total weight parameters that
range from 10 to 80 are selected for analysis. The total number of the total weight

parameters is a function of the tap length levels and the number of hidden neurons.
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The number of hidden neuron is varied in such a way that the total number of weight
parameters remains within the range of 10 to 80. The total number of weight
parameters for the three cases as a function of hidden neurons are listed in Table 4.8.
Note that the matches, in total number of parameters, among these cases are shown by

bold figures.

Table 4.8: Weight Parameters

Hidden Neuron | Low | Medium | High |

1 10 20 40

2 20 40 80

3 30 60

4 40 80

5 50

6 60

7 70

8 80

4.5.1.5 Results and Analysis I

The transient response of the training response is evaluated by noting the
number of epochs, or the settling time, required to reach a training error tolerance of
0.1. The maximum number of epochs is selected in such a way that all the neural
structures reach a steady state. A total number of epochs of 20 is found to be
sufficient for all neural structures to reach the steady state. The statistical parameters
calculated based on the 20 samples include the mean, the standard deviation, the
maximum, and the minimum values. In Table 4.9a, the number of epochs, or the
settling time, for Low [L] case is provided, and in Table 4.9b, the number of epochs

for Medium [M] case is provided, and in Table 4.9c, the number of epochs for High

[H] case is provided.
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Table 4.9: Settling Time Parameter

A 1 2 3 4 5 6 7 8
Mean | 136 | 109 | 84 84 |82 73|75 7.7
S.D. | 37 | 45 | 201204 |21 |20 15} 1.1
Max 19 20 12 13 16 13 10 10
Min 7 6 6 6 6 5 5 6
a) Low case

A 1 2 3 4
Mean | 115 | 86 | 75| 7.8
S.D. 37 374123127

Max 19 20 | 14 | 18

Min 6 5 5 6

b) Medium case

A 1 2
Mean | 15.94 | 12.35
S.D. 4.5 53
Max 20 20
Min 6 5

c¢) High case

Note: Number of samples that didn’t meet the specification: *=one, +=three

The mean of the epochs required to attain the error goal for the Low case
stabilizes at the third hidden neuron while for the Medium case the mean stabilizes at
the second hidden neuron. When a comparison is made between the Low and Medium
cases, there is a slight improvement in the Low case for the same weight structures.
The worst case is seen in the High case. Based on the transient response of the

modeling error, the Low and Medium cases give similar results for the same total

number of weight parameters.
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The steady state parameter for the modeling process can be evaluated from the
modeling error where the training process reaches steady state. Since the maximum
number of epochs, 20, is used for training, the modeling error at the 20" epoch is used
as the steady state error. The statistical parameters are calculated for the three cases

and they are listed in Table 4.10.

Table 4.10: Steady State Modeling Error

A 1 2 3 4 5 6 7 8
Mean | 0.413 {0.236 | 0.086 |0.048 |0.037 |0.041 |0.037 |0.0137
S. D. [0.276 |0.211 |0.155 |0.067 |0.085 |0.083 |0.059 }|0.007

Max |1.394 |10.829 }0.662 |0.262 |0.394 |0.317 |0.229 |0.034
Min [0.059 |0.008 |0.008 ]0.008 |0.008 |0.008 |0.008 }|0.008
a) Low case

A 1 2 3 4
Mean | .3686 | .1458 | .0825 | .0402
S. D. | 4197 | .1735 | .0865 | .0989
Max | 1.9901 | .6766 | .2553 | .457

Min 0082 | .0082 | .0092 | .0082
b) Medium case

A 1 2
Mean | 0.6739 | 0.4555
S. D. | 0.5485 | 0.5215
Max | 1.8347 | 1.7145

Min | 0.0219 | 0.0082
¢) High case

The High case again shows in the worst performance. When the other two
cases are compared under the condition of keeping the total weight parameters
constant, the Low case gives much better performance. It yields lower mean values

coupled with lower standard deviations. In almost all cases, the performance improves
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with an additional number of hidden neurons. Before a final decision is made on the
performances of the different cases, the validation error has to be checked.

There is a great discrepancy when it comes to validation error. The validation
error can go beyond the working range of the emulator since the arrangement for the
validation error is different from the modeling error. Since the validation arrangement
is in the format for a control application, the model can be rejected though it appears to
have acceptable modeling errors. Therefore, it is crucial to evaluate the validation error
using the previously identified models.

Since the emulator is identified off-line in this thesis application, a working
model can be found after many trials. Among the twenty samples, a sample is said to
be acceptable if at any time the validation error is bounded below 2. Since the control
mechanism and the emulator have inputs in the range of [-1, 1], the maximum error at
any instant should be below 2. The number of samples accepted for further analysis
are listed in Table 4.11.

Table 4.11: Acceptable Samples
Cases Hidden Neurons | Accepted # of samples
Low 11
11
12
12
12
13
15
15
10
10
17
13
3
6

Medium

High

=Wl ]|—=|]N]n NV j—
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Here, among the twenty samples, the best ten are selected for evaluation. From
previous discussion, the High case yields the worst performance. Moreover, the High
case has fewer number of acceptable samples. Therefore, the High case is excluded
from further investigation. The validation errors are evaluated using the three
performance indices. The performance indices of the ten selected samples for the Low
case are listed in Table 4.12 and those for the Medium case are listed in Table 4.13.

Table 4.12: Validation Error for Low Case

Hidden Neuron = 1 Hidden Neuron = 2
RMS AA PTV RMS AA PTV
0.1439 0.0938 0.6191 0.0658 0.0488 0.1721
0.0796 0.0542 0.1932 0.0937 0.0728 0.3078
0.0409 0.0231 0.1691 0.0205 0.0122 0.0706
0.0168 0.0109 0.0614 0.0881 0.0527 0.3763
0.1045 0.0778 0.3321 0.0939 0.0523 0.3946
0.1529 0.1026 0.6561 0.0493 0.0273 0.1658
0.0899 0.0552 0.3734 0.0587 0.0207 0.2529
0.1738 0.1362 0.5410 0.0378 0.0112 0.1937
0.2078 0.1590 0.7294 0.0904 0.0501 0.3181
0.2289 0.1713 0.6855 0.1066 0.0683 0.4532

Hidden Neuron =3 Hidden Neuron = 4
RMS AA PTV RMS AA PTV
0.0362 0.0216 0.1471 0.0273 0.0146 0.1043
0.0409 0.0193 0.1874 0.0384 0.0117 0.1958
0.0387 0.0116 0.1965 0.0366 0.0112 0.1929
0.0332 0.0194 0.1377 0.0469 0.0270 0.1806
0.0311 0.0135 0.1478 0.0104 0.0068 0.0361
0.0322 0.0116 0.1526 0.0364 0.0108 0.1879
0.0366 0.0108 0.1893 0.0318 0.0187 0.0956
0.0449 0.0148 0.2046 0.0442 0.0258 0.1383
0.0386 0.0116 0.1965 0.0390 0.0119 0.1990
0.0309 0.0173 0.1080 0.0385 0.0117 0.1959
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Hidden Neuron =5

Hidden Neuron = 6

RMS AA PTV RMS AA PTV
0.0529 0.0185 0.2474 0.0379 0.0113 0.1942
0.0382 0.0113 0.1934 0.0378 0.0113 0.1938
0.0342 0.0101 0.1774 0.0370 0.0110 0.1911
0.0388 0.0118 0.1973 0.0311 0.0108 0.1380
0.0489 0.0279 0.1971 0.0194 0.0063 0.0923
0.0376 0.0112 0.1926 0.0230 0.0068 0.1093
0.0343 0.0138 0.1474 0.0457 0.0200_0.2009
0.0286 0.0160 0.1190 0.0135 0.0084 0.0447
0.0390 0.0121 0.1954 0.0383 0.0115 0.1904
0.0373 0.0111 0.1917 0.0370 0.0106 0.2020

Hidden Neuron = 7

Hidden Neuron = 8

RMS AA PTV RMS AA PTV
0.0377 0.0112 0.1899 0.0348 0.0103 0.1732
0.0386 0.0117 0.1964 0.0279 0.0095 0.1253
0.0333 0.0133 0.1478 0.0136 0.0076 0.0519
0.0297 0.0144 0.1203 0.0038 0.0014 0.0173
0.0375 0.0111 0.1922 0.0348 0.0099 0.1939
0.0396 0.0118 0.1999 0.0383 0.0115 0.1974
0.0224 0.0138 0.0673 0.0377 0.0113 0.1890
0.0253 0.0094 0.1180 0.0321 0.0166 0.1134
0.0390 0.0117 0.1974 0.0141 0.0049 0.0653
0.0369 0.0109 0.1922 0.0373 0.0110 0.1925

Table 4.13: Validation Error for Medium Case

Hidden Neuron = 1

Hidden Neuron =2

RMS AA PTV RMS AA PTV
0.0038 0.0024 0.0171 0.0591 0.0339  0.2005
0.0835 0.0507 0.3528 0.0070  0.0028 0.0328
0.0011 0.0007 0.0041 0.0100 0.0032 0.0493
0.0736 _ 0.0540 0.2413 0.0498 0.0149 0.2333
0.0489 0.0272 0.2088 0.0053 0.0020 0.0267
0.0642 0.0357 0.2646 0.0111 0.0077 0.0358
0.0058 0.0037 0.0161 0.1503 0.0968 0.6826
0.0244 0.0158 0.0869 0.0650 0.0354 0.2700
0.2182 0.1198 1.1593 0.1310 0.0650 0.7612
0.0110 0.0074 0.0337 0.0128 0.0068 0.0502
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Hidden Neuron = 3 Hidden Neuron = 4

RMS AA PTV RMS AA PTV

0.0087 0.0055 0.0292 0.0064 0.0024 0.0296
0.0091 0.0030 0.0464 0.0175 0.0058 0.0798
0.0128 0.0061 0.0537 0.0034 0.0023 0.0093
0.0053 0.0021 0.0243 0.0029 0.0009 0.0139
0.0115 0.0040 0.0534 0.0079 0.0026 0.0396
0.0045 0.0030 0.0127 0.0103 0.0045 0.0418
0.0086 0.0053 0.0384 0.0129 0.0044 0.0590
0.0017 0.0006 0.0098 0.0034 0.0019 0.0130
0.0087 0.0032 0.0433 0.0037 0.0021 0.0173
0.0033 0.0015 0.0175 0.0081 0.0024 0.0420

For the ten samples, values of the mean and standard deviation, the maximum,
and the minimum are calculated for the three performance indices. In Figure 4.25, the

statistical measures of the validation errors for the Low case are illustrated.
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Figure 4.25: Statistical Measures of Validation Error for Low Case
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Statistical measures of the validation error for the Medium case are given in

Figure 4.26.
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Figure 4.26: Statistical Measures of Validation Error for Medium Case
In order to select the best model, a criterion that balances model fit and the
number of weight parameters is needed. As a result, the Akaike’s information criterion

(AIC), is used. The AIC criterion is defined by

2 size(8
AIC=min (1 +i%e(—))5fe2(k, 6) Eq. 4.2
=1

where e is the validation error.
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The AIC is calculated for the ten samples of the Low case. The results are
tabulated in Table 4.14. For the M. -iium case, the results are tabulated in Table 4.15.

Table 4.14: AIC Values for Low Case.

A=1 A=2  A=3 A=4 A=5 A=6 A=T7 A=8
10.7824 2.3406 0.7345 0.4345 1.6802 0.8904 09111  0.8004
3.2992 4.7479 0.9395 0.8577 0.8777 0.8883 0.9565  0.5162
0.8712 0.2277 0.8383 0.7774 0.7035 0.8510 0.7123  0.1223
0.1467 4.2020 0.6181 1.2771 0.9041 0.6003 0.5657  0.0095
5.6866 4.7707 0.5432 0.0626 1.4384 0.2328 0.9023 0.8003
12.1832 1.3143 0.5829 0.7691 0.8485 0.3280 1.0028  0.9692
42150 1.8659 0.7532 0.5857 0.7051 1.2991 0.3212 0.9389
15.7366 0.7722 1.1323 1.1342 04901 0.1129 04118 0.6814
22.5003 4.4175 0.8376 0.8849 0.9132 0.9095 0.9736 0.1306
27.2980 6.1510 0.5359 0.8604 0.8365 0.8503 0.8735 0.9188

Table 4.15: AIC Values for Medium Case.

A=1 A=2 A=3 A=4
0.0076 2.0327  0.0470 _ 0.0268
3.7683 0.0283 0.0517  0.2023
0.0006 0.0586  0.1025 0.0075
2.9268 1.4427 0.0174  0.0057
1.2957 0.0161 0.0826 _ 0.0409
2.2317 0.0717 0.0126 _ 0.0705
0.0181 13.1192  0.0462  0.1105
0.3212 24552  0.0017 0.0074
25.7523  9.9665 0.0473  0.0051
0.6600 0.0959  0.0066  0.0437

The mean and standard deviation of the AIC values of the ten samples for both

cases are shown in Figure 4.27.
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Figure 4.27: Statistical Measures of AIC

For the same total number of weight parameters of 60, the Medium case with 3

hidden neurons yields much better performance than the Low case with 6 neurons. The

discrepancy occurs mainly at the initial time as shown in Figure 4.28 and Figure 4.29.
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Figure 4.28: Validation Error for Medium Case with 3 Hidden Neurons
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Figure 4.29: Validation Error for Low Case with 6 Hidden Neurons
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From the results shown in Figures above, the Medium case with 3 hidden
neurons outperforms the other neuron structures. The Medium case is further analyzed
in the next experimental design, before reaching a conclusion on the emulator

selection.

4.5.1.6 Design of Experiment II

Here, the effect of delay variation among the input taps and recurrent taps is
investigated. The nonrecurrent network represents the case where the recurrent tap is
zero. To make the comparisons possible between the different structures, the input
layer is maintained to have 18 neurons as before. The levels listed in Table 4.16 are
designed for recurrent NN models in such a way that the total input neurons is equal to

18.

Table 4.16: Input Neurons

Level Number of Neurons
Low [L] 6
Medium [M] 9
High [H] 12

Accordingly, the study cases listed in Table 4.17 are derived to study the effect
of the forward taps and backward taps on system performance of the recurrent

network.

Table 4.17: Study Cases

Cases forward tap | backward tap
1h-RN L H
hl-RN H L
mm-RN M M
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The case corresponding to the nonrecurrent network is given with 18 forward
taps and zero backward tap represented by TDNN. The five levels corresponding to
the number of hidden neurons determine the total number of weight elements in the
emulator structure as shown in Table 4.18. Accordingly, the weight structure for the

four cases is maintained constant at multiples of 20.

Table 4.18: Weight Structure

A Weight Elements
1 20
2 40
3 60
4 80

In order to study the learning curve of each treatment combination for each
level of hidden neuron, a sample of twenty simulations was considered since each
training is started , with a random weight values between [-1, 1] as before. Data

collected over 1 second at a sampling frequency of 10 kHz is used for the analysis.

4.5.1.7 Results and Analysis II

While the performance index of the recurrent networks at the steady state is
less than 1, which is in the same order of the linear network discussed, the TDNN case
has the order of 100. In Table 4.19, the meanstandard deviation, maximum and
minimum values of the steady state error for the twenty samples of a TDNN neural

structure are listed.
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Table 4.19 Statistical Measures of Steady State Modeling Error

A=1 A=2 A=3 A=4
Mean | 127.7539 | 98.0132 96.4429 | 92.9822
S.D. 109.7069 | 3.5218 0.8389 22.9974
Max 591.1292 | 109.4338 [ 99.156 127.5784
Min 96.4142 96.0343 95.7002 | 95.3493

It is evident that the nonlinear nonrecurrent networks does not perform as well
if compared to the linear counterpart for the same magnitude of weight parameters.
Therefore, in the rest of discussion, we will focus on the recurrent networks.

The first system performance evaluation is the transient response of the
modeling process. An error tolerance of 1.0 is used within the steady state regions of
all the cases to mark the transient response. Such an error tolerance is also used as the
criterion to determine the settling time . The number of maximum epochs, or the
settling time, required to attain this bench mark is what determines the transient
response of the modeling process. The histogram characterizing the settling time for
the modeling error is shown in Figure 4.30. This histogram is useful in determining
the maximum number of epochs to set in training the network for the specified error

tolerance.
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Figure 4. 30: Histogram of Settling Time Parameter

The statistical parameters of the settling time of the modeling error of the

twenty samples are given in Table 4.20. The listed values are at different hidden

neurons for the three cases.

Table 4. 20: Settling Time Parameter

A=1 =2 A=3 =4
mm-RN Mean 11.5 8.6 1.5 7.8
S. D. 3.7 3.7 2.3 2.7
Max. 19 20 14 18
Min. 6 5 5 6
Not achieved once - - -
1h-RN Mean 12.6 10.6 8.1 8.1
S. D. 34 4.5 2.6 1.9
Max. 17 20 14 13
Min. 5 5 5 5
Not achieved - - - -
hl-RN Mean 11.9 10.6 8.6 9.2
S. D. 3.1 4.0 3.3 3.8
Max. 17 17 17 17
Min. 6 4 5 7
Not achieved - - - -
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The characterization parameters of the modeling error at the steady state are
calculated next. The steady state modeling error is defined as the modeling errors of
the maximum epoch, the 20" epoch because all the emulator structures reach steady
state at this point. The histogram of modeling errors for the twenty samples at the
steady state is shown in Figure 4.31. This histogram is useful in determining the

maximum error tolerance value to set in training the given network.
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Figure 4. 31: Histogram of Steady State Modeling Error

The statistical measures of the steady state modeling error are listed in Table
4.21. When the number of neurons in a hidden layer is equal to one, data flow has to
pass the sole neuron. Consequently, a hidden layer structure with neuron equal to 1 is
the poorest in approximating the system. The results indicate, for example, that the
steady state error of mm-RN and hl-RN falls below 0.2 for 10% of the samples and
that of 1h-RN for 5% of the samples. The 1h-RN structure gives the lowest mean

modeling error with the lowest standard deviation for 1 hidden neuron. It also
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consistently gives the lowest maximum modeling error. Additionally, it has been
shown that Ih-RN yields the highest percentage of samples to attain a steady state
modeling error in 0.2 - 0.4 range.

For a hidden layer with two hidden neurons, the steady state modeling error
below 0.2 is achieved by a higher percentage of samples. The improvement for mm-
RN is from 10% to 75%, for Ih-RN is from 5% to 50%, for hl-RN is from 10% to
55%, respectively. That makes the mm-RN achieve the lowest mean value of steady
state modeling errors, but with the highest standard deviation. The hl-RN yields the
minimum values of mean and standard deviation when compared with 1h-RN.

For 3 hidden neurons, mm-RN can achieve a steady state modeling error less
than 0.2 for 85% samples. For the same error range, 1h-RN can achieve for 80%
samples while hl-RN achieves for 80% samples. This time, the mm-RN yields the
minimum standard deviation on top of the minimum mean modeling error. It also
produces the minimum maximum modeling error.

For 4 hidden neurons, the percent of samples that attain less than 0.2 steady
state modeling error improves for mm-RN to 95%, for 1h-RN to 75%, and for hl-RN to
100%. Although the mean error is further reduced for mm-RN, the standard deviation

is increased when the hidden neuron increases from 3 to 4.
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Table 4. 21: Steady State Modeling Error

M=l | A=2 | A=3 | A=4

mm-RN | Mean | .3686 | .1458 | .0825 | .0402
SD. | 4197 |.1735 | .0865 | .0989

Max | 1.9901 | .6766 | 2553 | .457

Min | .0082 | .0082 | .0092 | .0082

1h-RN Mean 3376 | .1978 | .1047 | .0948
S.D. 1341 ] .1625 | .1253 | .1136

Max .6461 | .5901 | .3688 | .3292

Min. 0512 | .0082 | .0085 | .0085

hi-RN |  Mean | .3634 |.1647 | .1444 | 0551
S.D. 359 | .134 | .1195 | 0643

Max. | 1.8298 | 4047 | 4172 | .1815

Min. | .0531 |.0082 | .0084 | .0082

The plots of the statistical measures of the steady state modeling error for each
hidden neuron are given in Figure 4.32. The standard deviation, maximum value, and

minimum value all settle at about the second hidden neuron for the three cases.
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Figure 4. 32: Statistical Measures of Steady State Modeling Error

Once the emulator is modeled, it is used in a different arrangement in the
control architecture. The performance of the emulator in this arrangement is

characterized by the validation error. In a similar manner to the first design of
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experiment, ten best samples that meet the requirement of being bounded below 2 are
selected. In Table 4.22, the number of acceptable sz “iples from the twenty samples
are listed. Since the mm-RN case is discussed in the first design of experiment, it is
not repeated here.

Table 4.22: Acceptable Samples

Cases Hidden Neurons | Accepted # of samples
1h-RN 13
11
13
13
16
16
18
8

hl-RN

HiWINR]—=]~WIN]—

The RMS, PTV, and AA for the best ten of the twenty samples of hl-RN
caseare listed in Table 4.23 and those for the 1h-RN case are listed in Table 4.24. Only
hl-RN case with 4 hidden neurons fails to meet the challenge, and this case is excluded

from analysis.

Table 4.23: Validation Error for h1-RN

Hidden neuron=1 Hidden neuron=2
RMS AA PTV RMS AA PTV
0.0350 0.0229 0.1174 0.0355 0.0234 0.1246
0.0468 0.0261 0.1903 0.0018 0.0006 0.0081
0.0538 0.0271 0.2319 0.0568 0.0305 0.2416
0.0197 0.0108 0.0762 0.0644 0.0367 0.2651
0.0477 0.0271 0.1938 0.0128 0.0061 0.0564
0.0483 0.0289 0.1940 0.0222 0.0131 0.0870
0.0804 0.0596 0.2175 0.0370 0.0238 0.1301
0.0548 0.0325 0.2203 0.0067 0.0046 0.0192
0.0228 0.0142 0.0865 0.0158 0.0048 0.0754
0.0322 0.0189 0.1287 0.0309 0.0122 0.1365
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Hidden neuron=3

RMS AA PTV
0.0140 0.0065 0.0708
0.0094 0.0028 0.0469
0.0154 0.0071 0.0657
0.0197 0.0137 0.0486
0.0072 0.0025 0.0349
0.0309 0.0164 0.1262
0.0248 0.0077 0.1136
0.0092 0.0062 0.0285
0.0081 0.0040 0.0391
0.0185 0.0124 0.0633

Table 4.24: Validation Error for ]h-RN

Hidden neuron=1 Hidden neuron=2

RMS  AA PTV RMS AA PTV

0.0343 0.0134 0.1358 0.0148 0.0253 0.0517

0.0212 0.0134 0.0782 0.0408 0.0253 0.1601

0.0547 0.0318 0.2215 0.0232 0.0139 0.0882

0.0345 0.0213  0.1349 0.0241 0.0143 0.0912

0.0771 0.0484 0.3012 0.0147 0.0075 0.0685

0.0626  0.0343  0.2597 0.0575 0.0339 0.2297

0.0444 0.0256 0.1791 0.0288 0.0131 0.1299

0.0381 0.0224 0.1497 0.0154 0.0093 0.0477

0.0807 0.0556 0.2828 0.0220 0.0115 0.0895

0.0205 0.0124 0.0757 0.0256  0.0153 0.0977

Hidden neuron=3 Hidden neuron=4

RMS AA PTV RMS AA PTV

0.0256 0.0084 0.1155 0.0154 0.0053 0.0705

0.0156 0.0050 0.0750 0.0233  0.0159 0.0787

0.0277 0.0153 0.0853 0.0307 0.0093 0.1443

0.0300 0.0106 0.1349 0.0096 0.0030 0.0446

0.0256 0.0084 0.1155 0.0312 0.0175 0.1116

0.0156 0.0050 0.0750 0.0252 0.0111 0.1293

0.0277 0.0153 0.0853 0.0263 0.0085 0.1182

0.0300 0.0106 0.1349 0.0320 0.0106 0.1438

0.0026 0.0016 0.0145 0.0079  0.0025 0.0406

0.0253 0.0162 0.0776 0.0124 0.0041 0.0587
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The statistical measures are evaluated for the samples. The plots for hl-RN and
1h-RN cases are shown in Figure 4.33 and Figure 4.34, respectively. The values for

mm-RN cases are discussed before, and hence, they are not repeated here.
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Figure 4.33: Statistical Measures of Validation Error for hl-RN
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Figure 4.34: Statistical Measures of Validation Error for Ih-RN

In order to be able to decide on the neural architecture of the emulator,
Akaike’s information criterion AIC is used. The AIC values for the hl-RN case are
listed in Table 4.25 and those of the 1h-RN case are listed in Table 4.26. The statistical

measures of AIC are listed in Figure 4.27

Table 4.25: AIC Values for hl-RN
A=1 A=2 A=3
0.6642 0.7330 0.1213
1.1837 0.0018 0.0552
1.5649 1.8735 0.1476
0.2110 24085 0.2407
1.2299 0.0950 0.0320
1.2634 0.2855 0.5915
3.4985 0.7946 0.3808
1.6271 0.0259 0.0530
0.2816 0.1455 0.0406
0.5626 0.5534 0.2134

142



Table 4.26: AIC Values for lh-RN
A=1 A=2 A=3 A=4
0.6383 0.1267 0.4076 0.1573
0.2435 0.9654 0.1506 0.3599
1.6164 0.3133 04760 0.6210
0.6454 0.3365 0.5590 0.0608
3.2188 0.1263 0.4076 0.6434
2.1229 1.9201 0.1506 0.4203
1.0675 0.4823 04760 0.4562
0.7843 0.1371 0.5590 0.6751
3.5257 0.2824 0.0041 0.0415
0.2267 0.3797 0.3987 0.1023

Table 4.27: Statistical Measures of AIC
Cases Mean S.D. Max. Min.
1h-RN
A=1 1.40089 | 1.1902 | 3.5257 | 0.2267
A=2 0.5070 0.5545 |1.9201 |0.1263
A=3 0.3589 0.1905 }0.5590 |0.0041
A=4 0.3538 0.2491 ]0.6751 |0.0415

A=1 1.2087 0.9497 | 3.4985 [0.2110
A=2 0.6917 0.8242 |2.4085 |0.0018
A=3 0.1876 |0.1799 | 0.5915 |0.0320

The mean and standard deviation of the AIC are shown in Figure 4.35.

143



mean AIC mean AIC

4
3.5
3
25 Bmm-RN Bmm-RN
2 Wih-RN Wth-RN
1.5 Dhi-RN Ohi-AN
1
0.5
0
3 4
Hidden neurons Hidden neurons
S.D. AlIC S.D. AIC
0.25
0.2
Bmm-RN 0.15 Bmm-RN
MIh-RN Hih-RN
Ohi-RN 0.1 1 OhI-RN
0.05 4
0
3 4
Hidden neurons Hidden neurons

Figure 4.35: Statistical Measures of AIC

From Figure 4.35, it is clear that both the 1h-RN and hl-RN cases perform
better for number of hidden neurons equal to 1 and 2. When the number of hidden
neuron is increased to 3 and 4, the mm-RN case performs much better than the other
two neural structures. In the previous analysis, the mm-RN case is found to be the

best. In this second analysis, it is confirmed that an even split of feedforward taps and
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backward taps at the middle level with three hidden neuron is the best candidate for
emulator. Moreover, the general structure of the controller is set as an mm-RN case.
From the discussed analysis, it is apparent that statistical measures of AIC based on
validation error gives more insight into model selection process than any of the

previously attempted methods.

4.5.2 Design of Experiment

Like the linear control module, the adaptation schemes developed for emulator
cannot be directly used for adaptation of the controller weights. This is because there
is a transfer function between the output of wazzu the controller and the performance
criteria formulated as the square of the error at the output of the control mechanism.
Therefore, the error is back propagated through the emulator without adapting the
weights of the emulator. The back propagated error only alter the weights of the
controller.

The emulator used in this study is a mm-RN case with 3 hidden neurons. The
controller is assumed to be a mm-RN case with the number of hidden neurons varying
between 1 and 4. Here a 0.05 second time period is used to train the controller off-
line. Then the controller is used to perform tool vibration cancellation for a long
period of time to test stability. The controller is trained for a harmonic signal at one of
the trial frequencies. When the training period is over, the controller weights are

frozen.
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4.5.3 Results and Analysis

The two parameters that needs to be studied are the modeling error, and the
control error. The modeling error signal is the error of the emulator in emulating the
control mechanism. It is found by determining the difference in the outputs of the
control mechanism and its emulator. The control error is the tool vibration after the
application of the controller. Since the goal of the controller is zero tool vibration, any

tool vibration with the controller is termed as the controller error.

1. Modeling Error

The modeling error discussed here is the error of the emulator after it is trained
off-line and placed in the control architecture. The modeling error for the five learning
cycles for each of the control weight levels is shown in Figure 4.36.

For the control weight level 1, the modeling error remains the same in all the
learning cycles. The same can be said for control weight level 2. A significant change
appears in the modeling error when the weight structure is increased to level 3. For
level 3, the initial two cycles are dominated by a modeling error at high frequency.
Afterwards, the high frequency component of the error is limited to the initial period
of time. The same condition is observed when the control weight structure is
increased to level 4. Therefore, a low-end weight structure gives desirable modeling

error characteristics.
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Figure 4.36: Modeling Error
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2. Control Error.

Finally, the performance of the controller is governed by its ability to attenuate
the disturbance. Therefore, the machine tool vibration with and without the controller
is studied. After five training cycles for which the modeling error is discussed, the
controller weights are frozen. In order to check system stability, the controller is run
for one second period of time. First, the tool vibration without the controller is shown
in Figure 4.37. Then the control error, the tool vibration with the controller, is shown
in Figure 4.37 for the four levels of the controller weight structures. The level of the

controller weight structures is governed by the number of hidden neurons.
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The second half of the collected data is used to calculate the RMS, PTV, and
AA for the five levels of the control weights. The percentage reduction in these
performance indices due to the controller is shown in Figure 4.38. As seen in the
figures, the percentage reduction improves when the tap length is increased from level
1 to level 2. When the level is further increased, the percentage reduction drops.
Further increase in the level of the control weights doesn’t improve the performance
significantly. Such significant performance is obtained after training the controller

over only five cycles.

Hlevel 1
Mievel 2
Olevetl 3

AA PTV

Figure 4.38 Tool Vibration Percent Reduction
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Chapter 5

EXPERIMENTATION VERIFICATION

5.1 Introduction

The machining system under investigation can be viewed as an integration of
four components. These four components are the plant, control mechanism, system
disturbance, and controller. Each of these components in turn can be decomposed into
two parts. The plant system comprises the cutting process along with the tool post
mechanical structure. The control mechanism comprises the PMN actuator along with
the tool post mechanical structure. The system disturbance, or the dynamic chip load
generation, consists of the nominal chip load and the two feedback paths (the primary
and regenerative feedback paths). The controller comprises the sensor and the control
circuitry. The block diagram illustrating this system architecture is presented in
Figure 5.1.

This system decomposition is devised in order to follow the logic of controller
development in this experimentation verification. The verification is performed in two
phases. In the first phase, which is the laboratory experimentation, the system
disturbance considered is limited to the nominal chip load, with the feedback path
being omitted. To resemble the feedback subsystem, which is absent during the

laboratory experimentation, a signal representing the dynamic chip load is fed directly
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to the plant using a signal generator. Such a case corresponds to tapping in the
machining operation. Thus, tool vibration is noted. Then an effort is made to cancel
the observed vibration using the control mechanism driven by the controller. The
design parameters of the controller are used for the second phase application. In the

second phase, the system disturbance is an integral part in the actual machining

operation.
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Figure 5.1: Machining Control System
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Hardware implementation of the active control system is realized by using
digital electronics. The linear neural network control system designed in the computer
simulation is implemented in the experiments by using a digital signal processing
circuit board.

The control system implementation is composed of several parts. The
controller consists of the control filter, adaptive algorithm, and system identification.
The interface part includes sample rate selection, input gains and output attenuations.
The control schemes part includes feedforward, feedback and hybrid schemes.
Sensors and amplifiers make up part of the data collection and conditioning setup.
The smart tool post part consists of the mechanical structure and the actuators that
make up the control mechanism. The integration shown in Figure 5.2 is used in both
laboratory and machine floor experiments. The two phases of experiments will be

discussed in detail in the sections to follow.
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5.2 Laboratory Experiments

In the first phase, the machine tool vibration compensation is studied in a
laboratory environment [Luu, 1996]. There are two main goals to be measuring
achieved. First, the performance of the feedforward control system studied through
computer simulations is compared with the results obtained from the lab experiments.
Second, the design parameters used in the laboratory experiments are validated

through the machine shop experiments.

5.2.1 Experimental Setup

The cutting force is simulated in the lab using a vibration exciter. In this thesis
study, the exciter is a LDS Vibration Generator 400 Series, Model V411. The exciter
is used to excite the tool post. In Figure 5.3, the setup with the exciter and tool post is
illustrated. The tip of the tool and the exciter are connected in a horizontal plane.
Such a setup assures that the force transmitted to and from the tool post is in one
direction; that the axial direction only. The exciter is capable of generating a force
with magnitude of 97.9 N peak to peak. Therefore, the maximum force that can be
generated ranges up to 50 N. To detect the motion of the tool tip during the

experiment, a variable impedance transducer, Kaman Smp-9100 with an output of
zero to one volt over a 25.4 um range, is attached to the tool housing. Therefore, the

sensing system is a precision noncontact position system.
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Figure 5.3: Exciter and Tool Post Arrangement

The adaptive control schemes are implemented using a digital electronic
hardware called EZ-ANC which is designed specifically for active noise cancellation
application. To drive the device, a 600 mA power supply with 12V is attached. The
ground is also designed for noise reduction. The inputs to the EZ-ANC board are
analog signals, including the reference and error signals. The output from the EZ-
ANC board is an analog control signal. The EZ-ANC has PCB-mounted BNC sockets
arranged so that all inputs are on one side of the PCB, and all the outputs on the other

side. The power, serial, and analog signal connections are shown in Figure 5.4.
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Figure 5.4: EZ-ANC Power, Serial, and Analog Signal Connections

The communication protocol between EZ-ANC and its host computer uses
ASCII characters, VT100 escape sequences for text, and TEK4010 escape sequences
for graphics. Communication is handled through a software tool called Kermit which
can emulate both VT100 and TEK4010. The disturbance signal is produced by using

LabVIEW. A HP signal analyzer is used to analyze the signal in the time and
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frequency domains. In Figure 5.5, a picture depicting the whole experimental setup is

shown.

Figure 5.5: Experimental Setup

An adaptive vibration control strategy is applied in order to cancel out the tool
post vibration caused by the vibration exciter. Here, two cases are studied. In the first
case, the system identification is performed on-line, whereas in the second case, the

system identification is performed off-line.
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5.2.2 Control with On-line System Identification

In the first case study of system identification, the system identification and

the adaptation algorithm are performed on-line.

5.2.2.1 Design of Experiment

A harmonic disturbance with the application of feedforward control scheme is
selected for analysis. The same signal is used as a disturbance signal and a reference
signal.

In order to find appropriate values for the weight structures and the adaptation
coefficients of system identification and control processes, a series of experiments
were conducted. In order to arrive at the system parameters that work for the
disturbance within the bandwidth of the cutting process (0-400 Hz), a systematic
approach is designed as shown in Figure 5.6 The approach can be classified into three
parts: determination of the values for the gains, filter types and filter sizes of the
controller and emulator, and determination of the values for the tuning parameters

which refer to the adaptation coefficients.
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1. Gains

The values of the gains for reference signal, error signal, and control signal are
determined and set for the bandwidth of interest. The gains for the reference signal
and the error signal are selected in such a way that the signal inputs to the controller
are kept close to the limits of the working range of the circuit board in order to utilize
the full capacity of the controller. For that the auto-scale feature of the software is
utilized. The attenuation gain for the controller output signal is set to O dB in the
software and an amplifier is used to find the appropriate gain for the working
conditions.

When the amplifier gain is too low, the controller will try to produce a higher
control signal to compensate for the primary disturbance. When the control signal
passes the upper limit of the working range, say 2.8 volts peak to peak, the electronic
circuit becomes saturated and the software terminates the control action accordingly.
Therefore, the amplifier gain should be set in such a way that the control signal will
remain within the working range of the circuit. For the frequency of interest in this
thesis work, an amplification of 14 dB gives the right working range for the control
signal.

2. Filter Types and Sizes
FIR filters are characterized by the number of forward taps, whereas an IIR

filter is characterized by both the number of forward taps and the number of backward
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taps. Figure 3.10 and Figure 3.11 in Chapter 3 are illustrative of the direct realization

of these filters.

It has been said that the gradient of the control mechanism output with respect
to the control signal is required for the adaptive algorithm. This knowledge takes the
form of an emulator. As a result, the error is filtered through the emulator, before it is
used to adjust the weights of the control filter. Here, a FIR filter is used as an
emulator to emulate the control mechanism, and both FIR and IIR filters are
investigated to serve as a control filter. The number of taps required for the emulator
is dependent upon the characteristics of the cancellation path and the modeling signal.
The cancellation path includes the amplifier, the PMN actuators, and the mechanical
structure of the tool post. This cancellation path introduces a time delay between the
sensor and the application of cancellation disturbance. Moreover, the cancellation
path can also introduce a gain and phase change.

When using the control output signal for system identification, the
performance of the controller deteriorates when the frequency of the reference signal is
changed. It also becomes unstable when being operated in wider ranges of
frequencies. This occurred due to the fact that the derived model is valid for the
frequencies contained within the control signal, and hence the reference signal.
Therefore, the modeling signal implemented is a pseudo random signal (PRS) to
capture the characteristic of the control mechanism for a wide range of frequency.

When PRS is used as a modeling signal, a pseudo random noise is added to the control
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signal for the purpose of modeling the control mechanism. Injecting additional noise
into a system targeted for active control at a very low level provides a model of
suitable accuracy over time while not significantly affecting the performance of the
system. The amplitude selected is a compromise between a large amplitude for
modeling accuracy and speed, and a small amplitude which does not significantly
increase the ambient noise level in the targeted system. After conducting several
trials, a tap length of 40 is found to be the right starting point for the emulator.

There are two options for the control filter, FIR and IIR. Where possible, it is
advisable to start with FIR filters rather than IIR filters for two reasons. The first and
most important reason is the inherent stable architecture of FIR filters. The lack of
inherent stability characteristics in the IIR filters, unlike FIR filters, is due to the
presence of the feedback section of the filter. If the feedback loop gain becomes too
great the system becomes unstable, whereas in the case of FIR filters, the output
cannot reinforce itself to drive the system into an unstable mode of operation.

The second reason for selecting FIR filters first, instead of IIR filters, is due to
the behavior of the gradient descent algorithm. There is always a single global
optimal set of weight values for FIR filters. However, if an IIR filter is used, there can
be several local optimal sets of weight values due to the feedback involved. As a
result, the gradient descent algorithm used to adapt the IIR control filter weights could
be trapped in a local minima which may give quite poor performance, compared to

what could have been obtained with the global optimum.
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Nevertheless, FIR filters may not always serve the purpose and IIR becomes
the appropriate choice. FIR filters do not have poles in their transfer function, and as a
result are not good at realizing transfer functions that do have poles. In order to
represent a discrete transfer function with zeros and poles with an FIR filter, it often
requires a very large weight structure. The computational load associated with an
extremely long filter can pose problems for the fastest digital signal processing chips.
Since IIR filters are more efficient for realizing a given transfer function with the
minimum number of total filter weights, IIR filters should be investigated when the
FIR filter weight structure is too high. After several trials, a tap length of 40 was
determined to be a good starting point.
3. Tuning parameters

The parameter that is used to tune the control parameter is the adaptation
algorithm coefficient, while the one used to tune the emulator parameter is the system
identification adaptation coefficient. The adaptation algorithm coefficient for the
control filter, known as convergence coefficient, is the critical determinant factor of
adaptive algorithm stability and convergence speed. For digital implementation, too
small a convergence coefficient will result in an increase of the final value of the error
criterion due to the quantization error inherent in digital systems. On the other hand,
too high a convergence coefficient leads to instability. Therefore, best performance
requires a value that is neither too small nor too large. This necessitates the search for
an optimum value for the convergence coefficient. Factors that can affect the

optimum convergence coefficient include:
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e Reference signal frequency: Systems with a low frequency reference signal require
small values of convergence coefficient than similar implementation with high
frequency reference signals.

e Reference and error signal gains: The convergence coefficient is inversely
proportional to the gains, especially a reference signal gain.

e Control filter tap length: The convergence coefficient is inversely proportional to

the size of the control filter.

5.2.2.2 Result and Analysis

From the series of experiments, the on-line system identification was
determined unstable for lower weight sizes and FIR type control filters. The best
results were obtained for a emulator weight of 120, and an IIR control filter with
forward tap length of 100 and backward tap length of 100. The adaptation coefficient
for the controller was set to 200, the amplitude of the random signal was set at 500,
and the adaptation coefficient for the system identification was set at 500. The
adaptive algorithm of the emulator was more stable than the control filter adaptive
algorithm. The reason for this is the reduction of time delay in the system. The model
filter output signal appears directly in the adaptive algorithm error signal, whereas in
the control filter case, it must propagate through the model before it is used in the
adaptive algorithm.

When the adaptation coefficient for the controller is increased beyond 200, the
system becomes unstable. The following steps can be used to increase the speed of

convergence while ensuring stability. At this stage for increasing the convergence
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speed while maintaining system stability, only two parameter settings need to be
changed. The first parameter is adaptation coefficient for system identification from
the current value of 500. The second parameter is adaptation coefficient for the
controller from the current value of 200. The first run is based on an increment of 100
to both parameter settings, namely, the adaptation coefficient for system identification
equal to 600 and the adaptation coefficient for the controller equal to 300. The control
system is run for an initial frequency of 200 Hz, as indicated in Figure 5.6. The
frequency range is increased by muitiples of 25, once to the lower side and then to the
higher side. The system may be slow to converge at this time, however, maintaining
system stability is the most important outcome desired. After the issue of stability is
dealt with for the whole frequency range of interest, in this case 25 Hz to 400 Hz, then
the issue of convergence is addressed. The search spaces are set for the adaptation
coefficient for system identification (500 - 900) and for the adaptation coefficient for
the controller (200 - 600) with an incremental step set to 100. The previous steps are
repeated starting from 200 Hz frequency until the frequency range of interest is
covered. Slowly, the adaptation coefficients can be raised up to 500 and 800 for
control filter and emulator respectively. The improvement in convergence can be
noticed at this time. The improvement in convergence speed is noticed for the
frequency of bandwidth of interest (0-400 Hz).

At different frequencies two magnitude levels of disturbance were examined to
study the effect of the magnitude level of disturbance on the performance of the

controller. High level -1 1] is applied at frequencies of 50 Hz, 350 Hz, and 400 Hz.
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Low level [-0.5 0.5] is applied at 100 Hz, 150 Hz, 200 Hz, 250 Hz, and 300 Hz. The

normalized steady state machine tool vibration with and without control are shown in

Figure 5.7.
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Figure 5.7: Normalized Machine Tool Displacement with and without Controller

Experiments were performed for a harmonic disturbance with frequencies
ranging from 15 Hz up to 400 Hz at the interval of 5 Hz. In all cases the controller
was able to compensate the machine tool vibration over 70% as shown in Figure 5.8.
The percent reduction of the vibration for the three performance indices, Ra, PTV, and

RMS, seems to be at the same level, which demonstrates that the vibration reduction
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gives the same performance level in all test criteria. The vibration reductions achieved
at different frequencies and at two different levels are also comparable. This indicates
that the controller can handle a wide range of disturbance frequencies, and also can

perform well at different disturbance levels.

BRMS
HAA
OPTV

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hx Hz Hz Hz Hz Hz Hz Hz

rxm«rmmmj

EBRMS
HAA
aPTV

LR

105 110 115 120 125 130 135 14
Hz

170



BRMS
HAA
aopPTV

205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300
Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz

305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400
Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz

Figure 5.8: Steady State Percent Tool Vibration Reduction

5.2.3 Control with Off-line System Identification

In this section, the system identification scheme is run first with the adaptation
coefficient of the control filter set to zero. Once the system identification is
performed, the adaptation coefficient of the system identification algorithm is set to
zero. Therefore, when the system is running with a non-zero convergence coefficient
for control filter adaptation, the emulator weight remains unchanged. In this way, the
coupling between the system identification and control process is eliminated.

The filter types and filter sizes selected are based on the computer simulation.

Accordingly, a FIR filter with 60 tap lengths is selected for the emulator and a FIR
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filter with 100 tap lengths is selected for the controller. The same flow chart that was
employed in Section 5.2.2 was implemented to find the appropriate adaptation
coefficients that work for the entire frequency range. It is found that the adaptation
coefficient for the system identification and the amplitude of the modeling signal can
be raised from the previous values since the identification process is performed off
line. The adaptation coeffient for the control algorithm is found to be 200. Once the
control parameters working condition are validated, then further investigation is

performed as follows.

5.2.3.1 Design of Experiment I

In order to investigate the effect of the tap length at a fixed multiple freqeuncy
disturbance (241 Hz with amplitude of 0.8 V and 185 Hz with amplitude of 0.2 V), the
levels listed in Table 5.1 are selected for the weight structures of the emulator and
control filters. After carrying out the initial tests, the trials listed in Table 5.2 were

selected for trial purposes.

Table 5. 1: Weight Structure Levels

Level Tap Length
Low [L] 60
High [H] | 100
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Table 5. 2: Selected Trials

Trial Emulator Controller Controller
forward tap forward tap | backward tap
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5.2.3.2 Results and Analysis I

Here, feedforward and hybrid schemes are used. The dominant component of
the disturbance frequency is assumed known while the other is left unkown. The
hybrid control scheme has a problem of instability. It was possible to remedy the
stability problem by reducing the adaptation coeffieint on-line from 200 down to 100.

The three performance indices used to measure the effect of weight structure
on system performance for the two control schemes are shown in Figure 5.9. The
steady state performance of the ten trials show that there is no significant difference
between them as far as AA and RMS values are concerned. However, for PTV, trail
10 yields the highest vibration reduction with 73% while trial 6 yields the least

vibration reduction with 64%.
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. The design parameters that work for the desired bandwidth arrived at in the

previous experiment were with trial 2. Again here, the same trial gives no sacrifice in

performance compared to the other trials. Therefore, the design parameters of trial 2

are validated for this dissertation research work.

174




5.2.3.3 Design of Experiment II

Here, the performance of feedforward and hybrid control schemes at different
trial multi-frequency disturbances was tested. The feedforward control scheme can be
obtained by keeping the adaptation coefficient constant at 200. However, the
adaptation coeffient of the hybrid control is lowered on-line from 200 to 100.

The displacement data are collected with the controller turned off, and also
with the controller turned on. The controller is left running for a longer time period
after achieveing steady state to ensure stability. The driving signal consists of two
frequencies with one being the dominant frequency as shown in Table 5.3. The
dominant frequency is used as a reference signal in the feedforward control scheme.
In the hybrid control scheme, the summation of the dominant frequency and the

negative error is used as a reference signal.

Table 5. 3: Frequencies and Amplitudes of Distubance Signal

Trial f, a, f, a,
Hz Vv Hz A\

1 50 .6 27 2

2 100 .6 77 2

3 150 .6 127 2

4 200 .6 177 2

5 250 .6 227 2

6 300 .6 277 2

5.2.3.4 Results and Analysis II

In Figure 5.10, the spectral density of the tool post displacement with no

control, with feedforward control, and with hybrid control are shown.
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Figure 5. 10: Spectral Density of Tool Displacement
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In trial 1, the dominant frequency is completely compensated by the
feedforward control scheme. The nondominant frequency that was missing in the
reference signal is not compensated at all. The dominant frequency is almost
completely compensated by the hybrid control scheme since it is also present in the
reference signal of the hybrid control scheme. Compared to the feedforward control,
however, there is a small portion of the dominant frequency in the tool displacement
which was not compensated with the hybrid control scheme. The major difference
between the two schemes is observed on what happens to the frequency component

that is missing from the reference signal. In the case of a hybrid control, the spectral



density magnitude for this frequency component is reduced from the order of 3 to the
order of 0.8.

In trial 2, the frequency 100 Hz frequency component in the reference signal is
completely compensated by the feedforward control, while the other frequency
component remains unchanged. In the hybrid control scheme, on top of the dominant
frequency, the spectral density magnitude of the other frequency component is
dropped from the order of 2.5 to 0.55.

In trial 3, the hybrid control scheme gives the same response. The hybrid
control results in a reduction of a spectral density magnitude of the unrepresented
frequency from the order of 1.6 to that of 0.55. In trial 4, both control schemes give
consistent results. The unrepresented frequency in the hybrid control case is lower in
its spectral density magnitude from the order of 1.5 to the order of 0.45.

In trials S and 6, the unrepresented frequency showed a slight reduction in the
feedforward control case, whereas in the hybrid control scheme, the same rate of
reduction as before is observed in the unrepresented frequency. With the exception of
trial 6, and possibly trial 1, frequency components other than the driving frequencies
are observed in the hybrid control case. This can be attributed to the feedback part of

the reference signal.

5.2.3.5 Design of Experiment III

Here, the feedback control scheme is analyzed. However, instability was

observed when feedback control is applied in the format of the feedforward control
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scheme. Therefore, the adaptation coefficient is lowered on-line from a value of 200
to a value of 50 to avoid instability.

The displacement data are collected with the controller turned off, and also
with the controller turned on. The sampling frequency is set to 5.21 kHz. The
controller is left running for a longer time period after achieveing steady state to
ensure stability as before. The negative of the error signal is used as a reference signal
in this control implementation. The disturbance signal consists of two frequencies as

shown in Table 5.5.

Table 5. 4: Frequencies and Amplitudes (peak) of Distubance Signal

Trial f, a, f, a,
Hz A4 Hz Vv

1 50 4 27 3

2 100 4 77 3
3 150 4 127 3
4 200 4 177 3

S 250 4 227 3

6 300 4 277 3

5.2.3.6 Results and Analysis III
The spectral density for the machine tool displacement without the controller

and with the controller are given for the six trials in Figure 5.11.
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Figure 5. 11: Spectral Density of Tool Displacement
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From the figures it is clear that both frequency components are reduced by
about one half in most cases. In the previous experiment, the unreferenced signal was
reduced from 67% to 75% in the hybrid control system. Here, in the feedback control
scheme, the reduction achieved is 50%. The reason in this difference in performance
is due to the makeup of the reference signal for the two control schemes. In the hybrid
control case, the reference signal was made of the known dominant frequency and the
negative feedback signal. Here, only the negative feedback is used.

The following can be deduced from the experiments made so far. For
feedforward control, the vibration is almost completely compensated for the frequency
component that is available in the reference signal. The unreferenced frequency
component will not be compensated at all. For hybrid control, the referenced
component is almost completely compensated. In addition, the unreferenced
frequency is compensated upto 75%. The feedback control can reduce the vibration
for all frequencies in the feedback signal upto 50%. Therefore, the usage of the
appropriate control scheme depends on the nature of the problem. Accordingly, the
following is the recommendation based on the results obtained from the experiments.

e Where a reference signal that is correlated to the primary disturbance is

available, feedforward control scheme is the best one among the
alternatives.

e Where only part of the primary disturbance is known as a priori, then

hybrid control scheme is the best one among the alternatives.
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e  When there is no way to determine the signal that is correlated with the

primary disturbance, the feedback scheme becomes the only alternative.

5.2.3.7 Design of Experiment IV

Since hybrid control comprises the other two control schemes, the transient

response of hybrid control is analyzed using disurbance signals listed in Table 5.6.

Table 5. 5: Frequencies and Amplitudes of Distubance Signal

Trial f1 al 2 a2
1 50 .8 27 2
2 100 .8 717 2
3 150 8 127 .2
4 200 .8 177 .2
5 250 .8 227 2
6 300 .8 277 2

5.2.3.8 Results and Analysis IV

In Figure 5.12, the transient response for each trial is shown.
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Figure 5. 12: Transient Response

The transient response shown in the figures above confirm that the selected

adaptation coefficient ensures fast convergence speed while maintaining stability.

5.3 Machine Shop Experiment

The machining experimentation is performed on the shop floor by using a lathe
machine. The experiments are done in two phases. The first case represents a turning
operation in which both ends of the workpiece are fixed. One end is fixed with a
three-jaw chuck, and the other end is supported by a central head, which rotates with
the workpiece during machining. In the wazzu second case, the end supported by the

central head is released. This resembles a situation in which the free end of a
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cantilever is subjected to a force. The direction of the force remains unchanged while
the cantilever is rotating.

In the two types of machining setups, the dynamic characteristics of the
machining system are distinguished from each other. In this thesis work, the system
disturbance characteristics are analyzed first. This is done by analyzing the frequency
content of the machine tool displacement without the application of a controller. This
position variation may introduce variation of the vibration modes that are involved
during machining. Such a time dependency of the tool position is also considered in
this thesis research. Results obtained from this study will form a basis to an

appropriate control strategy for vibration compensation.

5.3.1 Experimental Setup

In Figure 5.13, the experimental setup for the machine shop experiments is
shown. Aluminum bars of two dimensions are used in the experiments. The first test
bar is a round bar with 12 inches length and 3 inches diameter. The second test bar is
long and slender with a diameter of 2 inches and a length of 24 inches. The round bar
is secured in the chuck. In order to avoid the slippage of the workpiece into the chuck
due to the thrust force of the cutting process, the end of the workpiece is grooved and
secured in the chuck in such a way that longitudinal movement is blocked. Depending
on the two types of setup used, one end of the bar is free to vibrate in the cantilever
beam setup, and the other end is fixed by the chuck attached to the spindle. For the
fixed setup, one end of the test bar is supported by the tail stock and the other end is

fixed by the chuck attached to the spindle. In order to avoid over constraining the test
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bar, the moving central part of the tail stock is moved slowly to the end of the test bar
while the spindle is rotating with the test bar. The central part of the tail stock is
locked when it touches the test bar and it rotates with the test bar simultaneously. In
this way, the test bar is well positioned and tightened for the machining tests.

The smart tool post is securely tightened into the tool holder of the lathe
machine. The tool tip of the smart tool post is aligned with the tip of the lathe spindle.
In doing so, the vertical elevation of the tool tip is made at the center line of the
workpiece. The actuators are connected in a series similar to the laboratory
experiments. The two wires from the actuators are connected to the power supply of
the actuators. At the same time the noncontact displacement sensor mounted at the
back of the tool post is connected to the sensor electronics.

The displacement signal from the sensor electronics is connected to the
oscilloscope for visual observation, to the HP35667 signal analyzer for frequency
content analysis and data storage, to the control circuit as an error signal, and as a

reference signal for feedback and hybrid control schemes.
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5.3.2 Turning Operation with hoth Ends Supported

The bo:. ends supported experiment represents the practice of turning
operation in the machining industry. By supporting both ends, the rigidity of the work
piece is increased, and thereby, the machine tool vibration is reduced. After the

-ystem disturbance is analyzed, the appropriate control scheme is applied and the

performance of the controller is ascertained in the next sections.

5.3.2.1 System Disturbance Characterization

In order to study the disturbance nature of the cutting process for this work
piece setup, a round aluminum bar with a diameter of 3 inches and a length of 12
inches is selected. The cutting conditions, namely, the depth of cut, the feed, and the
spindle speed are considered as variables in this study.

The following levels are selected for the three cutting conditions.

Table 5. 6: Levels for Cutting Conditions

Depth of cut, in | Feed, in/rev | Spindle speed, rpm
Low [L] 0.02 0.002 190
High [H] 0.04 0.02 470

Accordingly, the 2 level factorial design for the three parameters gives the

following treatment combinations.
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Table 5. 7: Treatment Combinations

select Treatment | Depth of cut | Feed rate | Spindle speed
combination
0 no cut on on
1 L L L
2 L L H
3 L H L
4 H L L
5 L H H
6 H L H
7 H H L
8 H H H

An additional treatment, referred to as the zero treatment combination, is added

to study the effect of measurement noise. This is the measurement of the tool

vibration with sensor electronics, motor spindle, and feedrate on at the time when the
cutting operation has not started.. This allows the disturbance characteristics due to
the cutting process to be identified and analyzed more effectively. The collected data
are divided into a series of windows of time, and the spectral content of each window
is evaluated to find out the disturbance characteristics as a function of time, more
specifically as a function of the cutting force position on the test bar. The time and

power spectral density of the windows for each treatment combination is shown in

Figure 5.14.
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Figure 5. 14: Disturbance Signal Analysis

Examining the results shown in the above figures, the following
observations can be made:
. The case for no cutting, which represents the measurement noise, has a
frequency characteristic of 60, 120, 180, 240, 300 Hz, etc. These components
can be mainly attributed to the noise and its harmonics.
. The disturbance, or the tool vibration, is mainly characterized by two
frequency peaks which are time dependent. It is to be noted that this

characteristic changes for the both ends support machining tests.
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5.3.2.2 Design of Experiment

Based on the observation, it is clear that the dynamic variation of the cutting
force, or the impending disturbance can not be known well in advance to implement
feedforward controller. Therefore, two cases are investigated; namely, the negative
feedback control scheme and hybrid scheme. The hybrid scheme is implemented with
a reference signal composed of a random signal with frequency content in the
disturbance frequency range and a negative of the error signal.

After noting the displacement range of the cutting process without the
controller, the appropriate gain for the actuator amplifier is determined. This is done
by using a signal generator to produce a sinusoidal signal of 1 V amplitude as a control
signal. The tool post is left free to vibrate while increasing the actuator amplifier gain.
The actuator gain is set at a point where the machine tool vibration is at the same level
as the primary disturbance.

Similar to the laboratory experimentation, the control strategy with on-line
system identification is found to have stability problems. The instability is
pronounced in machining experiments since the shop floor environment is not a
controlled environment like the laboratory environment. Therefore, the control
strategy with off-line system identification is implemented. The weight structures that
were used in the laboratory experiments were implemented. A series of experiments
were performed to determine the adaptation coefficients. Based on the insights given
through the laboratory experiments, the adaptation coefficient were varied in the range

of 50 to 200. Adaptation coefficient reduced on-line from 100 to 50, from 150 to 50,
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from 200 to 50 are investigated. The best result is obtained for adaptation coefficient
reduced on-line from 150 to 50. An adaptation coefficient of more than 200 causes
instability. The vibration reduction due to the controller for this adaptation coefficient
is analyzed using the three performance indices, namely, AA, PTV, and RMS.

Three sets of experiments are designed. In the first set the depth of cut and the
spindle speed are fixed constant. The feedrate is varied in two levels that correspond
to trial 1 and trial 2. In the second set, the spindle speed and the feedrate are kept
constant, and the depth of cut is varied in two levels which correspond to trial 3 and
trial 4. In the third set, the feedrate is kept constant, and the spindle speed and the
depth of cut each assume two levels. Trial 5 and trial 6 pair the low spindle speed
level with the high level of depth of cut and vice versa. The first two sets are
performed on an aluminum test bar 12 inches in length and 3 inches in diameter. The
third set is performed on a long and slender bar measuring 2 inchcs in diameter and 24
inches in length. Negative feedback is implemented in trials 1, 4, 5,6 and hybrid
control scheme is implemented in trial 2 and 3. The values for the cutting conditions

for the six trials are listed in Table 5.8

Table 5. 8: Cutting Conditions

Trial | Spindle speed | Feed rate | Depth of cut
pm in/rev in
1 470 0.003 0.01
2 470 0.002 0.01
3 470 0.002 0.04
4 470 0.002 0.02
5 470 0.002 0.02
6 260 0.002 0.03
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5.3.2.3 Results and Analysis

It has been noticed that the implementation of controller can reduce the
vibration during machining. However, the performance obtained in the shop floor
experiments is not as good as that obtained in the laboratory experiments, because the
laboratory experiments were conducted in a controlled environment.

In order to account for the changing disturbance characteristics, a statistical
approach is taken to evaluate the performance of the controller. Since the lowest
spindle speed selected is 260 rpm, the smallest frequency component in the cutting
process is found by dividing the spindle speed by 60. The result is more than 4 Hz.
Experimental data of 25 seconds are collected where the controller is tuned on at about
half of the time. The data collected during the first 8 seconds are used to represent the
machine tool displacement without the controller, and the data collected during the last
8 seconds are used to represent the machine tool displacement with the application of
the controller. Each data set is further divided into 16 samples, thus each sample is for
the duration of 0.5 second.

The three performance indices, RMS, AA, and PTV are calculated for the
machine tool displacement of each sample of the two sets: one without control and the

other with control, as listed in Table 5.9.
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Table 5.9: Performance Indices for 16 Samples
a) Trial #1

RMS

AA

PTV

w/o ¢

W.C.

w/o. ¢

w. C. w/o C. w. C.

27.1910

20.9230

20.4516

16.6367 215.0000 123.0000

19.7765

21.2975

15.7472

15.9902 113.0000 161.0000

20.0430

16.3241

16.3739

12.7348 108.0000 101.0000

23.6579

17.9846

18.6478

14.5918 142.0000 101.0000

16.6950

21.4043

13.2692

16.7596 101.0000 134.0000

21.3913

15.6078

16.5202

12.1873 151.0000 96.0000

18.9764

18.6661

15.0181

14.7499 118.0000 118.0000

19.5453

21.2277

15.0782

16.7403 128.0000 120.0000

19.3601

18.0737

15.4566

14.2951 114.0000 111.0000

23.8158

18.9885

17.3584

14.9922 199.0000 114.0000

22.2178

19.5858

16.2629

14.8399 171.0000 140.0000

19.1351

18.8329

14.8778

15.0668 119.0000 108.0000

16.8018

17.9011

13.1192

13.9573 103.0000 114.0000

18.7578

15.7823

14.8108

12.7832 116.0000 89.0000

17.9778

17.7515

14.4659

13.9825 95.0000 105.0000

18.2901

18.3607

14.5569

14.8751 106.0000 100.0000

b) Trial #2

RMS

AA

PTV

w/o ¢

Ww.C.

w/o. ¢

W. C. wlo c. w. C.

111.7462 114.5170

89.2422 94.0107 684.0000 695.0000

117.3701

105.6333

95.4312

83.6035 665.0000 702.0000

125.6606

110.8586

100.9692

89.3592 841.0000 595.0000

112.9140

113.5461

91.4096

91.0281 733.0000 697.0000

109.3025

104.0913

88.4746

83.1499 633.0000 623.0000

110.5618

113.1755

88.7446

89.6976 664.0000 719.0000

118.1013

110.6128

93.6081

91.5394 691.0000 574.0000

104.8025

104.7798

83.1292

82.0822 576.0000 594.0000

132.4115

103.1587

108.8172

83.8645 671.0000 539.0000

109.7817

104.1929

89.8250

81.5195 618.0000 661.0000

115.3309

101.2187

93.7101

82.5632 578.0000 536.0000

130.4292

103.6672

106.6370

84.5353 752.0000 553.0000

119.8999

105.3354

95.2830

84.4391 645.0000 603.0000

122.3298

93.6576 101.6581

74.5439 674.0000 551.0000

111.4183

96.6896

92.1605

75.7015 542.0000 654.0000

123.1777

98.2945 100.8296

79.1843 642.0000 531.0000
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¢) Trial #3 (times 1000)

RMS AA PTV

w/o ¢

w. C. wlo.c w.c. w/oc. w.cC

0.1950 0.1586 0.1574 0.1311 1.1560 0.8110

0.1841

0.1621 0.1470 0.1317 0.9550 0.8230

0.1825 0.1652 0.1465 0.1368 0.9350 0.8220

0.1933 0.1985 0.1557 0.1586 1.0470 1.2560

0.2294 0.1607 0.1755 0.1314 1.6310 0.8140

0.1826 0.1559 0.1555 0.1285 0.8680 0.7930

0.1777 _0.1621 0.1506 0.1305 0.7900 0.8520

0.1756 0.1822 0.1504 0.1455 0.8370 1.0570

0.1790 0.1657 0.1502 0.1350 0.9850 0.8490

0.1841

0.1531 0.1567 0.1234 0.9240 0.8730

0.1658 0.1594 0.1400 0.1239 0.7860 0.9500

0.1613 0.1569 0.1353 0.1237 0.8660 0.8950

0.1706 0.1644 0.1448 0.1329 0.8530 0.9180

0.1813 0.1479 0.1512 0.1174 0.9220 0.7740

0.1695 0.1941 0.1396 0.1581 0.8770 1.0910

0.1821

0.1851 0.1482 0.1515 0.9620 0.9880

d) Trial #4

RMS AA PTV

w/o ¢

W. C. wlo.c w.c. w/o cC. W. C.

108.0374

88.8468 87.9120 70.1495 574.0000 553.0000

104.7980

100.0446 83.6640 79.5540 634.0000 605.0000

98.0226 100.0084 79.8162 80.4571 514.0000 636.0000

106.2174

100.5081 86.3106 77.6584 514.0000 631.0000

107.0612

101.4535 86.7209 80.4531 679.0000 535.0000

111.8774

98.3680 90.1798 76.7558 655.0000 526.0000

117.6848

108.9445 94.6643 88.0807 630.0000 621.0000

108.2642

106.5000 89.0256 84.6950 566.0000 623.0000

101.1508

98.8373 82.6660 77.2110 512.0000 577.0000

118.9805

102.2629 94.3629 83.0780 710.0000 573.0000

112.7133

96.0455 92.4687 75.1390 574.0000 628.0000

120.1030

91.7817 98.3396 70.3993 647.0000 700.0000

114.7128

103.0381 90.3396 82.0855 656.0000 556.0000

116.9407

93.3960 90.9909 75.2202 762.0000 490.0000

116.7842

87.9945 94.1721 70.8545 614.0000 545.0000

102.5749

100.3293 82.6620 82.1031 518.0000 592.0000
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e) Trial #5 (times 1000)

RMS

AA

PTV

w/o c

W. C.

w/o.c Ww. C.

w/o c.

Ww. C.

0.2327

0.2015

0.1839

0.1597

1.4970

1.1740

0.1962

0.2014

0.1545

0.1604

1.1280

1.1460

0.2165

0.1777

0.1725

0.1394

1.4470

1.0990

0.1970

0.1942

0.1555

0.1539

1.3080

1.1690

0.2191

0.1840

0.1730

0.1429

1.3890

0.9880

0.2115

0.1945

0.1713

0.1470

1.1900

1.3500

0.1832

0.1981

0.1474

0.1583

1.1410

1.0460

0.2062

0.1792

0.1591

0.1428

1.5400

1.1210

0.1912

0.1690

0.1521

0.1375

1.1490

1.0450

0.2284

0.1538

0.1820

0.1200

1.2960

0.8850

0.1825

0.1841

0.1459

0.1409

1.0860

1.0820

0.1864

0.1909

0.1473

0.1490

1.1180

1.1110

0.1875

0.1901

0.1474

0.1501

1.0470

1.2360

0.2206

0.1896

0.1746

0.1518

1.4400

1.1160

0.1951

0.1729

0.1551

0.1342

1.2270

1.1010

0.2075

0.2084

0.1657

0.1642

1.3360

1.4010

f) Trial 6 (times 1000)

RMS

AA

PTV

w/o ¢

Ww. C.

w/o. ¢

W. C.

w/o C.

Ww. C.

0.1403

0.1323

0.1072

0.1048

0.9000

0.8830

0.1499

0.1352

0.1165

0.1051

0.9170

0.8860

0.1466

0.1316

0.1136

0.1000

0.8870

0.8660

0.1379

0.1324

0.1073

0.0985

1.0160

0.8720

0.1534

0.1361

0.1200

0.1054

1.0280

0.8540

0.1589

0.1223

0.1245

0.0948

1.2930

0.7850

0.1475

0.1252

0.1131

0.0965

1.2040

0.9980

0.1519

0.1277

0.1166

0.0999

1.1140

1.0640

0.1488

0.1208

0.1163

0.0944

0.9990

0.7810

0.1447

0.1299

0.1131

0.1023

1.0600

1.0000

0.1496

0.1386

0.1167

0.1077

1.0050

1.0080

0.1360

0.1352

0.1040

0.1060

0.8460

0.7980

0.1265

0.1285

0.0943

0.0986

0.8850

0.8980

0.1355

0.1351

0.1003

0.1038

0.8940

0.9610

0.1382

0.1230

0.1051

0.0953

0.8930

0.7960

0.1264

0.1173

0.0954

0.0913

0.8860

0.8500

206




The statistical measures—mean, standard deviation, maximum, and minimum
values—are determined for each performance indices for the six trials and are listed in

Table 5.10.

Table 5. 10: Statistical Measures of the Performance Indices

RMS AA PTV
w/o ¢ w.c. wlo.c w.c. wloc. w.c.
mean
0.0202 0.0187 0.0158 0.0147 0.1312 0.1147
0.1172 0.1052 0.0950 0.0844 0.6631 0.6142
0.1821 0.1670 0.1503 0.1350 0.9621 09104
0.1104 0.0986 0.0890 0.0784 0.6099 0.5869
0.2039 0.1868 0.1617 0.1470 1.2712 1.1294
0.1433 0.1295 0.1102 0.1003 0.9892 0.8938
standard deviation
0.0028 0.0019 0.0019 0.0014 0.0357 0.0183
0.0080 0.0061 0.0071 0.0055 0.0726 0.0658
0.0155 0.0148 0.0093 0.0123 0.2017 0.1309
0.0068 0.0058 0.0052 0.0052 0.0755 0.0527
0.0163 0.0140 0.0130 0.0114 0.1574 0.1254
0.0093 0.0062 0.0087 0.0049 0.1279 0.0883
maximum
0.0272 0.0214 0.0205 0.0168 0.2150 0.1610
0.1324 0.1145 0.1088 0.0940 0.8410 0.7190
0.2294 0.1985 0.1755 0.1586 1.6310 1.2560
0.1201 0.1089 0.0983 0.0881 0.7620 0.7000
0.2327 0.2084 0.1839 0.1642 1.5400 1.4010
0.1589 0.1386 0.1245 0.1077 1.2930 1.0640
minimum
0.0167 0.0156 0.0131 0.0122 0.0950 0.0890
0.1048 0.0937 0.0831 0.0745 0.5420 0.5310
0.1613 0.1479 0.1353 0.1174 0.7860 0.7740
0.0980 0.0880 0.0798 0.0701 0.5120 0.4900
0.1825 0.1538 0.1459 0.1200 1.0470 0.8850
0.1264 0.1173 0.0943 0.0913 0.8460 0.7810

207



In Figure 5.15, the percent redv -ion due to the controller in the three

perform.. ..e indices for each of the four statistical measures is shown.

Trial 1

ERMS
HAA
aPTV

Mean St.D. Max Min

Trial 2

25 4
20 4
15 4
10 4
5
0 -

Mean St.D. Max Min

Trial 3

ERMS
HAA
opPTV
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Trial 4

35 -
30 -
25 <
20 4 BRMS
15 4 BAA
10418 ! aetTv
5 4
oLl 12 &
-5<4 Mean St.D. Max Min
Trial 5
ERMS
BAA
aptTv
Mean St.D. Max Min
Trial 6
50 -
40 4
30 - EBIRMS
20 4 HBAA
10 4 aretv
o - m £ oo
-10d Mean St.D. Max Min

Figure 5. 15: Statistical Measures of Tool Vibration Reduction

The percent reduction of the mean level of the tool vibration for all the six
trials is about 10%. The variation is observed in the standard deviation. A close
examination at the results shows that there is no significant advantage of one method

over the other.

209



5.3.2.4 Roughness Measurements

A set of experiments is performed to determine the roughness average of the 3
test bars. A negative feedback control is implemented. The full detail of
experimental results is provided in the Appendix. Here, the four trials that show the

best attenuation are discussed. The cutting conditions for these four trials are listed in

Table 5.11.
Table 5.11 Selected Trials
Trials | Testbar | Spindle speed | Feed rate | Depth of cut
rpm in/rev in
1 long 625 0.002 0.03
2 long 470 0.002 0.02
3 short #1 | 260 0.002 0.03
4 short #1 | 190 0.002 0.04

The surface conditions of the machined test bars, mainly, the surface finish, are
analyzed by using a profilometer at the National Institute of Standards and
Technology, Gaithesburg, Maryland. For each trial, the roughness average Ra is
calculated for the machining performance for the cases either without or with the

controller. The Ra values for the samples taken for each trial are listed in Table 5.12.

Table 5.12 Roughness Average Measurement

Trial 1 Trial 2 Trial 3 Trial 4
wloc w.c. w/o c. w.c. wloc. w.c. w/oc. w.C.
Ra, 1.8600 1.4900 0.6800 0.3900 0.5200 04300 0.3900 0.3400
Ra, 2.2000 1.1700 0.4500 0.4800 0.4300 0.3200 0.3700 0.3500
Ra, 1.7000 1.6300 0.5100 0.3400 0.5400 0.3900 04700 0.3500
Ra, 2.0100 1.5600 0.6800 04700 0.6100 0.3800 0.3500 0.3600
Ra, 1.4300 1.4300 0.7000 0.4600 0.6000 0.3900 0.4400 0.3500
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The test bar is further photographed using a CCD camera instrument available
at the Advanced Design and Manufacturing Laboratory. In Figure 5.16, the
photographic picture of the test bar, the roughness measurement of the test bar, and the

statistical measures of the measured Ra values are shown.

Without control

With control
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where, the machine tool displacement with the control is in box

the machine tool displacement without the control is in the box i

Roughness Average (Ra) | no control | with control
Mean 1.84 1.456
Standard Deviation 0.2944 0.1766
Max. 2.2 1.63
Min. 1.43 1.17

a) Trial #1

Without control
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Roughness Average (Ra)

no control

with control

Mean

0.604

0.428

Standard Deviation

0.1155

0.0606

Max.

0.7

0.48

Min.

0.45

0.34

b) Trial #2
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where, the machine tool displacement with the control is in the box

................

while the machine tool displacement without the control is in the boxi E .
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Roughness Average (Ra) | no control | with control
Mean 0.404 0.35
Standard Deviation 0.0498 0.0071
Max. 0.47 0.36
Min. 0.35 0.34

d) trial #3



where, the machine tool displacement with the control is in the box

while the machine tool displacement without the control is in the box:

Fig. 5.16 Surface Roughness Measurement Data
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Roughness Average (Ra) | no control | with control
Mean 0.54 0.382
Standard Deviation 0.0725 0.0396
Max. 0.61 0.43
Min. 0.43 0.32

d) trial #4




The percentage reduction in the Ra value when the controller was applied is

calculated for the statistical measures and it is shown in Figure 5.17.

Btrial 1
Htrial 2
Ctrial 3
Otrial 4

Mean S.D. Max. Min.

Figure 5.17: Statistical Measures of Tool Vibration Reduction

5.3.3 Turning Operation with one End Supported

In order to explore the capability of the designed controller in compensating
tool vibration, a special case study is carried out in this thesis research. The test bar,
instead of being supported at both ends, is suspended at the tail stock end. This special
setup resembles a cantilever beam structure. When the cutting force is generated and
is acting on the test bar, the test bar will vibrate following the dynamic characteristics
of a cantilever beam. Such an accelerated tool vibration provides a unique
environment to examine the compensation capability. From the previous discussions,
it has been seen that the feedforward control scheme yields the highest reduction of
tool vibration when the disturbance is known. Therefore, this effort opens a door for a
future smart tool post design for machining operations where such a control strategy

can be applied.

216



5.3.3.1 System Disturbance Characterization

As stated in the previous section, a cantilever setup is used to study the
disturbance characteristics. Trials have been conducted for machining conditions with
different settings of spindle speed, feedrate, and depth of cut. The main objective is to
introduce chatter into the system and then compensate for it.

It has been observed that significant tool vibration may not be present when the
spindle speed setting is below 470 rpm. Therefore, a spindle speed of 470 rpm and
625 rpm are selected for the study. The feedrate in the range of 0.0015 to 0.002 in/rev
is selected. The depth of cut is selected between 0.0005 to 0.002 in. The signal
analyzer is used to detect the frequency peaks. The sampling rate is 3.2 kHz.
Examining the associated frequency spectra, a dominant frequency is evident as shown

in Figure 5.18.

SOOGW mk JA ........
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a) s.s=470, fr=0.002, doc=0.001

500| l l I
0
-500
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0
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500 - |
0
-500 ' .
1 1.5 200 400
time, sec freq., Hz

b) s.s. 470, fr. =0.0015; d.0.c=0.001

Figure 5. 18: Disturbance Signal Analysis

5.3.3.2 Design of Experiment

" The design parameters identified in the laboratory experimentation are
implemented in this experiment. A reference signal with the dominant frequency is
used in the feedforward control scheme. The dominant frequency was determined by
using the signal analyzer. Experiments are performed from the cutting conditions
listed in Table 5.13. Some of the cutting conditions are repeated to gain an estimate of

the vibration attenuation while maintaining the cutting condition.
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Table 5. 13: Cutting Conditions

Trials | Spindle speed | Feedrate | Depth of cut
pm in/rev in
1 470 0.002 0.01
2 470 0.002 0.01
3 470 0.002 0.01
4 470 0.002 0.01
5 470 0.0015 0.01
6 470 0.0015 0.015
7 625 0.002 0.01

Trials 1 through 3 are performed by keeping the cutting condition the same to
evaluate the vibration reduction for different initial roughness conditions.

The next four trials are conducted after changing the boundary condition by
resetting the tool bar on the lathe. They are selected in such a way that the two cutting
conditions are kept constant, and the third cutting condition is varied in two levels. In
trials 4 and 5, the spindle speed and the depth of cut is kept constant and the feedrate is
varied. In trials 5 and 6, the spindle speed and the feedrate are kept constant and the
depth of cut assumes two levels. Finally, in trials 4 and 7, the feedrate and the depth

of cut is kept the same while the spindle speed takes two levels of values.

5.3.3.3 Results and Analysis

The tool vibration with and without the controller is normalized to a scaling

range [-1 1], and the results are depicted in Figure 5.19.
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tool vibration with no control

time. sec

a) trial #1

tool vibration with no control

time. sec

b) trial #2
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d) trial #4
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tool vibration without controller

e) trial #5

tool vibration without controfler
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tool vibretion without controller

T

1 r T

time, sec
g) trial #7

Figure 5. 19: Tool Vibration with and without Control

The percentage reduction is calculated using the three performance indices as

shown in Figure 5.20.

BRMS
HAA
OPTV

trail trial trial trial trial trial trial
1 2 3 4 5 6 7

Figure 5.20 Percent Tool Vibration Reduction
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The repetition of trial 1 by trial 2 and 3 shows that the tool vibration reduction
is getting better and better. Take the AA index as an example, the reduction for trial 1
is 23%. The reduction changes to 31% for trial 2, and it changes to 34% for trial 3.
This finding is very important to illustrate that, as long as the cutting condition
remains the same, the performance of the controller is enhanced in time. When the
boundary condition of the test bar varies, for example, the new clamping condition of
the test bar, the reduction magnitude may change.

When the spindle speed is increased in trial 7 from trial 4, reduction of tool
vibration is further improved. When the feedrate is reduced from trial 4 to 5, the
percentage reduction is getting better. When the depth of cut is reduced to a very low

value, the reduction of tool vibration seems not very effective.
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The focus of this thesis research is to introduce the advanced neural network
control methodology to tool vibration compensation. The goals of this thesis research
are successfully met. In all aspects of the studies performed, a significant reduction in
tool vibration during machining was achieved for a variety of machining operations.

Certainly, reduction in tool vibration was not significant for many other machining

settings. This implies the complexity to control tool vibration during machining.

Investigations conducted in this thesis research include mathematical
modeling, computer simulation, system implementation, and experimental
verification. Significant findings are summarized as follows:

1. The two major parts of a mechatronic system are electrical and mechanical
components. The mechanical part lays a foundation for carrying out tool vibration
compensation, and the electrical part provides the intelligence to command the
PMN actuators to function as desired.

2. Three linear neural network control schemes, feedforward, feedback, and hybrid (
a combination of both) have been studied. Results obtained from this thesis

research strongly indicate that the feed forward neural network system represents
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the best choice among the three for tool vibration reduction. The reasons for its
superior performance of the feedforward control are as follows:

a) The zero delay in actuating the control action. It is a prevention control
that generates the system output which counteract the disturbance upon its
arrival.

b) A sizable stability margin. The adaptation coefficient for the feedforward
control scheme can be maintained constant while maintaining stability.
However, the adaptation coefficient should be reduced on-line for the other
two schemes to ensure stability.

3. Experimental results show the reduction of tool vibration during machining. This
indicates that smart material made actuators, such as PMN actuators, are good
candidates to be used by the machine tool industry. In this thesis research,
guidelines to use the linear neural network, namely, digital filters, to drive PMN
actuators are developed. These guidelines are listed as follows:

a) The gain of reference and error signals should be set to the limits of the
circuit board to maximize the cancellation capability of the controller. The
stability issue due to the reference gain can be handled through the use of
the adaptation coefficient. The additional advantage is the reduction of the
control variables to play with. This is important in machining operations
where the complexity of controlling tool vibration poses more difficulties

than what has been encountered in the lab environment.
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b)

c)

d)

Characterization of PMN actuator performance is critical to the success of
control action. Therefore, an off-line system identification for PMN
actuators is essential to define the working range of the power amplifier,
including the driving frequency and the magnitude. By using the off-line
system identification, the stability of the system can be significantly
improved since coupling between the controller adaptation algorithm and
the emulator adaptation algorithm, that cause system instability, will be
eliminated.

The systematic design approach developed in this thesis work should be
used in a controlled environment in order to arrive at the control design
parameters for the machining operation

Since it is found that the Finite Impulse Response (FIR) type filters
perform well in machine tool vibration reduction, they are most suitable for
the control filter for the smart tool post application. The first and most
important feature of FIR filters is their inherent stable architecture. The
lack of inherent stability characteristics in the IIR filters, unlike FIR filters,
is due to the presence of the feedback section of the filter. It creates a way
for the output to reinforce itself with high weight gains, leading to an

unstable control system.
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The main contributions of this thesis research are:
1. A s‘(uccessful implementation of PMN actuators for in-process vibration
cancellation in turning operation.
2. A successful implementation of linear neural network methodology for active
machine tool vibration cancellation.
3. Development of guidelines for identification of the neural structure of nonlinear

neural network.

6.2 Recommendations

The complexity of controlling tool vibration has been well recognized for
centuries. The effort made in this thesis research, although demonstrating the great
promising by using PMN actuators, would be difficult, if not impossible, in
accomplishing the journey to conquer the problem of tool vibration control. The
following list represents recommendations for future work to control tool vibration
and improve machining accuracy:

1. The need to acquire a better sensing system. The sensing system used in this thesis
work is the type of variable impedance transducer. Although the accuracy is good,
a better accuracy is desired. Such accuracy improvement will increase the
accuracy of the control action.

2. When heavy machining duties are required, the tool post is subjected to severe
dynamic loading conditions. Control of tool motion and/or compensation of tool

vibration become more complex. In order to effectively compensate under heavy
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duty machining operations, an optimal working condition for the PMN actuators
should be identified. This may lead to a working range which is not linear
between the voltage and the displacement. Therefore, a nonlinear neural network
control system with parallel processing hardware is highly recommended.

. A modified design of the tool post which accommodates both displacement and
cutting force sensors is desirable to apply the tool post effectively in turning
operation where disturbance is unknown. In doing so, the signal from the force
sensor can be used as a reference signal, whereas, the signal from the displacement
sensors can be used as an error signal. When such capabilities exist, feedforward

control can be applied with the superior performance proven in this research.
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Appendix

SURFACE PROFILE MEASUREMENT

The surface profile of the machined surfaces for different cutting conditions are
shown below. The cutting process is performed with and without the controller. The
controller is not implemented for the first 40% period of the time. The machining is
done on the test bar right to the left. Since the surface profile is measured from left to
the right, the first part of the picture represent the case where the controller is not

applied.

........

conditions for the different trials are given in Table A.1

Table A.1 Cutting Conditions

Trials | Spindle speed | Depth of cut | Feed rate
pm in in/rev
1 350 0.004 0.002
2 470 0.02 0.002
3 625 0.03 0.002
4 190 0.04 0.002
5 260 0.03 0.002
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d) adaptation coefficient reduced on-line from 100 to 50
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h) adaptation coefficient reduced on-line from 150 to 50
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I) adaptation coefficient reduced on-line from 200 to 50

Figure A.1: Surface Profile for Trial 1

b) adaptation coefficient reduced on-line from 150 to 50
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g) adaptation coefficient reduced on-line from 200 to 50

Figure A.2: Surface Profile for Trial 2
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a) adaptation coefficient reduced on-line from 100 to 50
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b) adaptation coefficient reduced on-line from 150 to 50
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d) adaptation coefficient reduced on-line from 100 to 50

Figure A.3: Surface Profile for Trail 3

a) adaptation coefficient reduced on-line from 150 to 50
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c) adaptation coefficient reduced on-line from 200 to 50

Figure A.4: Surface Profile for Trail 4

b) adaptation coefficient reduced on-line from 150 to 50
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c) adaptation coefficient reduced on-line from 200 to 50

Figure A.5: Surface Profile for Trail 5
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