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Long duration human exploration of Mars will pose demands on spacesuits that

current designs are unable to overcome, including the need for in-situ replacement

and repair of suit components. Advancements in additive manufacturing (AM)

technologies provide capabilities to repair or replace rigid pressure garments on-site

and on-need. This thesis focuses on a potential application for in-situ hard suit

manufacturing: the integration of AM components into a functional spacesuit arm.

Material tests were conducted and top candidates were selected for the joint segment

components. AM bearing configurations were tested under operational loads and

seals were incorporated for pressure retention. Selected components were integrated

into a hard suit arm, which was compared to the Shuttle-era EMU arm through

human tests in a pressurized glove-box. The results indicate that further refinement

of hard suits has the potential to match the performance of operational EMU models

while reducing the logistical issues with current spacesuits.
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Chapter 1: Introduction

It has been over 50 years since the first human ventured outside the protective

walls of a spacecraft and into the vacuum of space. Since that historic first extrave-

hicular activity (EVA), humans have logged over 1,000 EVA hours [1]. The EVA,

or spacewalk as it is colloquially known, has since taken on a major role in human

space exploration, with cumulative EVA hours increasing exponentially from the

first spacewalk in 1965 (Figure 1.1). EVAs allow astronauts to accomplish a wide

variety of tasks, from the geological studies conducted on the lunar surface during

the Apollo missions to maintenance and repair work on the International Space

Station (ISS) and Hubble Space Telescope [1].

To keep astronauts safe while performing EVAs, spacesuits must provide ade-

quate protection from the hazards of space. Potential threats to the astronaut that

must be considered include extreme changes in temperature, micrometeoroid im-

pact, radiation, suit pressurization, and loads applied to the suit while completing

tasks on EVA [2]. A typical spacesuit, therefore, must contain many different layers

to provide cooling, pressurization, and protection from the external environment.

Each layer of protection, however, comes at the cost of restricting the astronauts

ability to move to some degree. The most problematic of these are the layers that
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Figure 1.1: Illustration of EVA hours over time, showing various U.S. and So-
viet/Russian programs [1]. Dark blue, pink, and yellow lines provide annual data,
light blue represents cumulative EVA time.

provide pressurization, as soft pressure envelopes exhibit elastic properties in a vac-

uum, which cause them to resist bending [3].

Already, significant progress has been made in combating the loss of mobility

caused by suit pressurization. During the first spacewalk in 1965, Alexei Leonov

wore a suit that was not designed to promote mobility, resulting in the inability

to move his fingers. He was only able to re-enter the spacecraft after partially

deflating his suit to reduce the pressure differential [4]. For the first American EVA

later that year, Edward White wore a suit similar to an inner tube tire. The suit

featured a layer of netting slightly smaller than the pressure layer it covered to

prevent the expansion suffered by Leonov and promote mobility [1]. This design,
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incorporating what is known as a restraint layer, became the standard of spacesuit

design through the present. The addition of features like rolling convolute joints

and rotating bearings helped to further reduce the change in volume of the pressure

envelope during movement, further improving mobility [1].

Additive manufacturing (AM) (or 3D printing) can be used to create a hard

spacesuit that can be used on long-distance, long-duration, and potentially open-

ended Mars exploration and settlement missions. This suit will not only weigh

significantly less, but will increase astronauts’ mobility and their ability to work.

Furthermore, the use of additive manufacturing will allow the suit to be easily and

cheaply repaired or replaced while in space, enabling longer-duration missions than

would otherwise be possible. The goal for this project, then, was to determine

whether a rigid-element spacesuit can be constructed using additive manufacturing

that will improve on current state-of-the-art spacesuit design. The research question

addressed is: Can a 3D-printed hard suit be created that has at least as much

maneuverability as current (soft or hybrid) spacesuits but at a lower weight?
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Chapter 2: Literature Review

2.1 Overview

This section describes the current research on spacesuit design as it applies

to the project. A general background on the basic principles of spacesuit design, a

comparison between different types of spacesuits, and an overview seals are used in

spacesuit design are presented. Current literature on spacesuit design supports the

claim that a 3D-printed hard suit can improve on current spacesuits.

2.2 Current Spacesuits

2.2.1 Overview

This section reviews basic spacesuit functions, anatomy, and design require-

ments currently in use by NASA. Although there are three different types of space-

suits, the focus will primarily be on EVA suits – those used for planetary exploration

and spacewalks – as these are the kind we intend to improve upon.
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2.2.2 The Extravehicular Mobility Unit (EMU)

An EVA suit protects the human body from the severe conditions of outer

space, keeping astronauts safe from the extreme temperatures, radiation, and vac-

uum to which they are exposed during EVAs. The spacesuit currently in use by

the ISS is the EMU [2]. The EMU provides the following functions, among oth-

ers: pressure retention, oxygen pressure regulation, atmosphere revitalization (CO2

removal), temperature control, and radiation protection [5]. It consists of several

parts, displayed in Figure 2.1.

Figure 2.1: Diagram showing the many small but necessary components that make
up a spacesuit [2].

The helmet’s Extravehicular Visor Assembly, comprised of a clear, polycar-

bonate bubble and visors, protects the wearer from sun and impact. This helmet

connects to the Hard Upper Torso (HUT), a shell that covers the chest and serves
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as the main structural support for other elements of the EMU. The arm assembly is

attached at both shoulders to the HUT and contains two mobility bearings, one at

the shoulder and one at the wrist. The bottom half of the EMU is the Lower Torso

Assembly and covers the astronaut’s legs and feet. The Primary Life Support Sub-

system (PLSS) on the back of the spacesuit connects to the HUT, providing power,

oxygen, and water for temperature control [2]. The EMU consists of 14 different

layers in three assemblies that will be discussed in detail in the following section.

2.2.3 Layers of the EMU

The EMU’s layer assemblies, illustrated in Figure 2.2, perform three main func-

tions: temperature control, pressure regulation, and protection from space particles

and radiation [6]. Each of these layers keeps the crew member safe by creating con-

ditions inside the suit similar to those on Earth through temperature and pressure

regulation.

The innermost layer assembly is the Liquid Cooling and Ventilation Garment

(LCVG). The LCVG is a tight-fitting bodysuit with flexible tubing that circulates

cold water, removing excess body heat to maintain a comfortable temperature. It

contains larger tubes that transport the suit’s oxygen back to the PLSS for purifi-

cation. The second layer assembly is the pressure garment bladder, which enclosses

and maintains the suit’s atmosphere. The pressure bladder maintains an O2 partial

pressure comparable to that of the Earth’s atmosphere [7]. A pressure garment

cover made of polyurethane-coated nylon works to keep it in place. The third layer
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Figure 2.2: Detailed depiction of the many different layers inside the LCVG, Pressure
Bladder, and the TMG [6].

assembly is called the Thermal Micrometeoroid Garment (TMG) and consists of

a rip-resistant material, thermal layers, and an outermost layer. Space particles

traveling at high speeds can potentially rip the suit and harm the astronaut. The

micrometeoroid garment layer blocks incoming micrometeoroids and spreads the

impact to avoid puncturing the pressure garment. Additionally, the micromete-

oroid garment reduces the astronaut’s exposure to nominal levels of solar radiation.

The thermal layers serve to keep the suit at a comfortable temperature so that the

astronaut does not experience the extreme conditions of space [2].

2.2.4 Spacesuit Limitations and Considerations for Future Design

Although the multiple EMU components allow for safe exposure to outer space,

their added load and thickness compromise astronaut mobility, causing considerable
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fatigue during EVA. As human operations in space increase in frequency and com-

plexity, the need to provide “shirtsleeve” mobility and reduce the strain associated

with repetitive physical tasks inside a spacesuit has become a priority for NASA

and other organizations pursuing space exploration.

The limited mobility of the EMU causes considerable fatigue for an astronaut

during EVA. Areas that experience this sort of fatigue include the thighs, knees

and the arms [7]. Currently, 75% of the energy that an astronaut exerts during

EVA is spent moving the spacesuit while only 25% is used to perform the required

extravehicular task [8]. The metabolic cost of walking nearly doubles in a suit

when compared to an unsuited configuration [7]. In addition to fatigue, astronauts

often sustain injuries from using the EMU, such as blisters, abrasions, and fingernail

delamination, some of which require surgical repair. Data shows that 45.7% of EVA

suit tests resulted in injuries [9]. This presents considerable risk to astronauts who

may have limited access to medical care.

2.3 Comparison of Soft or Hybrid Suits and Hard Suits

2.3.1 Soft and Hybrid Suits

Spacesuit designs can be divided into two basic categories: hard suits and

soft or hybrid suits. Since typically hybrid suits employ fabric joints just like those

used in fully soft suits, the two types of suit are treated as interchangeable when

compared to hard suits. Soft or hybrid suits have been flown on missions from the

Apollo era to the present. As described in Section 2.2.2, these suits are primarily
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composed of soft materials and have three main layers: the bladder, restraint, and

TMG. The bladder layer serves to maintain a pressurized environment, while the

restraint layer bears pressure and loads generated in movement. The outermost

TMG layer protects from thermal transfer from space and puncture caused by high

velocity microparticles [9].

Soft and hybrid suits must maintain sufficient internal pressure at all times,

which limits flexibility. Stiffness and stress can occur at the joints because bending

changes internal volume and consequently internal pressure [10]. To minimize this,

the EMU uses flat pattern joints formed by sewing fabric pleats to the outer side of

the joint, as shown in Figure 2.3. The pleats expand during bending, allowing the

suit to maintain nearly constant volume, which reduces workload [11].

Figure 2.3: Sketch of the upper arm convolute joint from a Shuttle era spacesuit [12].

In flat pattern joints, axial restraints are attached to the sides of a membrane

cylinder, several flat gores are connected to enclose the outer side of the joint, and
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restraint cables are attached to the enclosure [10]. The restraint cables run down the

sides of the arms and legs and bear the axial loads induced by pressurization. They

are necessary to prevent the arms and legs of the suit from lengthening when pres-

surized [11]. If these cables were not present, the gloves and boots of the spacesuit

would extend away from the hands and feet under pressure, making most motions

impossible.

While the joint architecture of the EMU combats some of the challenges asso-

ciated with mobility, it has its disadvantages. It is very difficult to bend the joints

perpendicular to the axial restraint cables. Flat pattern joints are single-axis joints

that do not allow a full range of motion (ROM) in multiple degrees of freedom [11].

Multiple axis bending requires additional rotary bearings in joints such as the shoul-

ders and hips. Additionally, because most work done on an EVA is done in front

of the suited person, restraint cables are adjusted so the arms extend forward in a

relaxed position rather than outward [11]. This limits the ability of the astronaut to

extend the arms outward without causing stress. These restraint cables also make

gripping motion more difficult, and can cause fingernail delamination, one of the

most commonly reported EVA injuries [9].

2.3.2 Hard Suits

Hard suits have the potential to reduce instances of EVA injury and energy

demands on astronauts. Hard suits do not require a bladder layer to maintain a

pressurized environment and maintain constant volume, nor do they require axial
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restraint cables. They are rigid bodies that use sealed rotary bearings to provide

joint articulations.

Hubert Vykukal designed and incorporated such joints into NASA’s experi-

mental hard spacesuit design, the Ames Experimental Suit 5 (AX-5) [13]. The el-

bow joint consists of three serially-connected, truncated, spherical wedges, as shown

in Figure 2.4. These wedges rotate against each other to change the angle of the

joint [13]. Rotational movement is accomplished using airtight ball bearings at the

ends of these sections. The two outer wedges rotate in unison, while the center

wedge rotates independently and in the opposite direction [13]. To prevent lock

up, a continuous rotable bead chain is integrated into the joint. This allows the

outer wedges to track each other in rotation. The design maintains an airtight seal

between the suit and the environment while allowing for easy mobility [13].

Figure 2.4: Diagram of the hard-joint design used in the AX-5 spacesuit [13].

Though limited data is available on this spacesuit, the AX-5 outperformed soft
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and hybrid suits on many quantitative and qualitative tests [14]. This indicates that

hard suits have the potential to allow more flexibility and mobility while requiring

less torque and energy than soft or hybrid suits.

Despite their potential advantages over current spacesuits, hard suits have

some considerable disadvantages. Most significantly, due to their all-metal con-

struction, they occupy more volume and typically weigh more than soft or hybrid

suits. This is largely why hard suit designs have never been flown. However, de-

velopment of a maneuverable and easily fabricated EVA suit is critical for potential

future missions to Mars and the Moon. Crew members may have to spend extended

periods of time on these missions, from six months to one year on the Moon and

fifteen months or more on Mars [14]. The EVA requirements of long duration mis-

sions are not compatible with the current method of fabricating spacesuits. Current

soft and hybrid suits are crafted by a small number of highly skilled technicians [14].

This means that these suits cannot be repaired in-situ, and require delivery of pre-

fabricated parts, which would be both costly and infeasible in remote locations.

Hard suits may be easier and quicker to fabricate and maintain, making them

a viable alternative to current soft or hybrid suits. Innovations in 3D printing

technology can assist with fabricating new and replacement parts for hard suits.
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2.4 3D Printing Materials and Processes

2.4.1 Overview

Additive manufacturing has become an essential tool in the engineering indus-

try for its ability to turn a computer-aided design (CAD) model into a physical model

with relative ease. This technology has facilitated the systems design process by en-

abling the frequent and inexpensive creation of proof-of-concept models and allowing

the production of complex parts that are difficult to manufacture with conventional

methods [15]. Particularly in the aerospace industry, 3D printing has proven use-

ful in reducing the cost and complexity of manufacturing components such as air

ducts, engine compartments, brackets, suspension parts, and door handles. Unlike

traditional subtractive manufacturing methods, such as drilling, cutting, grinding,

or forging, additive manufacturing involves an additive, layer-by-layer fusion of the

desired material into a desired shape [15]. To print an object with additive manu-

facturing, a CAD model is converted to a format compatible with the printer, and

then fabricated using the desired modeling material and technique. Four main 3D

printing techniques are investigated here as they pertain to the spacesuit design

effort.

2.4.2 Fused Deposition Modeling

Fused Deposition Modeling (FDM) is a commonly used solid-based additive

manufacturing method in which a thermoplastic filament is melted and deposited
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onto a bed to create a three-dimensional object. Common FDM materials include

polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). The fabrication

process is facilitated using support material that serves as a scaffolding to support

a part as it is printed [15]. FDM is a useful prototyping technique as it enables

the rapid fabrication of conceptual designs in the preliminary design process. While

FDM is widely used for fabricating mock-up designs or performing fit-checks within

an assembly, material limitations of FDM thermoplastics make this 3D printing

technique unsuitable for aerospace applications which require precision.

2.4.3 PolyJet

PolyJet is an additive manufacturing process commonly used for modeling

and prototyping applications which offers high-precision and surface smoothness

[16]. This manufacturing technique is unique in that it may be used to create

parts with variable rigidity and flexibility using multiple materials simultaneously,

as well as achieve ±0.1 mm tolerances [16]. PolyJet 3D printers deposit droplets

of photopolymer resins onto a printing bed, which are cured into three-dimensional

objects using UV light [16]. Due to PolyJet’s ability to produce high-resolution

flexible parts, the process is useful for fabricating O-ring and X-ring bearing seals.

2.4.4 Selective Laser Sintering

Selective Laser Sintering (SLS) is a more sophisticated additive manufacturing

technique whereby particulates of plastic, ceramic, or glass are fused by a high-
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power laser to create a three-dimensional object. The fabrication process involves

distributing a thin layer of a powdered material onto a printing bed and heating it

with a laser just below its boiling point, which fuses the powder into a solid. The

printing bed then descends slightly, exposing a new layer of powder for the laser to

trace and fuse [15]. This additive manufacturing technique is ideal for a range of

engineering applications from functional prototyping to small batch manufacturing,

and offers ±0.1 mm tolerances [17]. Unlike FDM materials, which have severe

material, thermal, and structural limitations, there exist SLS materials which have

been certified for spaceflight. A common example is Windform XT, a carbon fiber-

reinforced composite 3D printing material used in small satellites and spacecraft

components [8].

2.4.5 Direct Metal Laser Sintering

Direct Metal Laser Sintering (DMLS), a sub-category of SLS, is an additive

manufacturing technique that uses a high-power laser to melt and fuse a powder,

with the added distinction that the powder is metallic. A variety of materials, such

as stainless steel, aluminum, or nickel-based alloys, may be used to create functional

spacecraft hardware. DMLS printing is suitable to the complex lattice-type geome-

tries and thin-walled structures so commonly found in aerospace components [18].

This paper, however, does not employ DMLS printing as the prohibitive costs asso-

ciated with it are outside the program budget.
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2.5 Seal Design and Sealing Surfaces

2.5.1 Overview

Rigid spacesuits contain airtight rotary seals to allow the elements to rotate

while maintaining a livable atmosphere inside the suit [13]. Previous American

spacesuits have used two main types of rotary seals – pressure-energized lip seals

and X-ring seals [8]. For rigid spacesuits, friction between these elements must be

kept low, as the torque required for rotation is only generated by the bending motion

of the human body. Seals are responsible for 99% of rotary friction in space suit

bearings [19], so their design is highly critical.

2.5.2 Pressure-Energized Lip Seals

Pressure-energized lip seals, as shown in Figure 2.5, use the internal pressure

of the suit to press the lip against a smooth sealing surface, resulting in an airtight

seal. When engaged, friction is created between the seals and sealing surfaces during

rotation, which must be overcome with sufficient torque [13]. This friction is usually

minimal because the cross sections of these lip seals have a theoretical single point

of contact with the sealing surface. However, such rotary friction can become a

problem in locations where torque availability is limited [19]. Additionally, pressure-

energized seals have a tendency to leak at low operating pressures which must be

overcome to allow for their use in spacesuits [20].
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Figure 2.5: A pressure energized lip seal (yellow), attached to one rotary element
(blue), is forced against the sealing surface of another rotary element (purple) by
the vessel’s internal pressure.

2.5.3 X-Ring Seals

X-ring seals are a variation of traditional O-ring seals with a rounded, X-

shaped cross section. These seals require less compression than traditional O-rings,

reducing the friction they create in rotary applications. X-ring seals theoretically

have two points of contact with the rotating sealing surface, which results in a higher

theoretical minimum friction than a pressure-energized lip seal. However, this design

provides redundancy as the seal will be maintained despite a leak at either point of

contact. These seals have been used in various low and high pressure applications.

Further research is necessary to determine if 3D printing processes will be capable

of meeting the specified tolerances for such seals [21,22]. An X-ring seal integrated

into a rotary bearing is shown in Figure 2.6.
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Figure 2.6: An X-ring seal (green) creates an airtight seal between the blue and
purple surfaces. The rounded X-shaped cross section and two points of contact are
visible.

2.6 Conclusion

The basic soft or hybrid suit design has seen only minor changes since the

Apollo program through today. Although the ISS EMU suit offers significant im-

provements over early suits in terms of mobility and flexibility, it is still far more

restrictive than a “shirtsleeve” environment [5]. While metal hard suits have been

shown to offer significant improvements in mobility and ROM over modern soft

and hybrid suits, they offer additional challenges in increased weight and bulk [14].

These challenges have led to the rejection of these designs in operational spacesuits

through the present day.

The development of advanced AM technologies may allow for a new hard suit

design that would sufficiently address these concerns. 3D printing allows for the

design of a lightweight, modular, hard suit that can be manufactured in-situ rather

than on Earth, eliminating the transportation challenges caused by bulkier, heavier
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suits.

A wide variety of both quantitative and qualitative tests are required to defini-

tively prove that such a suit is more effective than a traditional soft or hybrid suit,

as most individual methods are insufficient by themselves to conclusively compare

two suits due to their inherent inaccuracies [23, 24]. The research described above

suggests, however, that a hard suit can significantly outperform a traditional soft

or hybrid suit in terms of both ROM and energy required for movement.
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Chapter 3: In-Situ Fabricated Space Suits for Extended Exploration

and Settlement1

3.1 Joint Design

The elbow joint was chosen for this project because it serves as a proof of con-

cept because it only has two degrees of freedom and is relatively simple to construct

compared to other joints. The joint prototype is based on the design of the AX-5

elbow joint. The joint is constructed of three serially-connected truncated spherical

sections. The two outer sections are spheres truncated into right triangular wedges,

and the inner section is a sphere truncated into an equilateral triangular wedge. The

hypotenuses of the outer wedges meet with the sides of the inner wedge. A CAD

model of the prototype is shown in Figure 3.1, and a prototype printed in polylactic

acid (PLA) is shown in Figure 3.2.

1Published in full in the 47th International Conference on Environmental Systems. Minor
revisions are included where appropriate.
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Figure 3.1: CAD assembly of prototype in bent and straightened orientations and
with an exploded view.

Figure 3.2: PHASE outer and inner wedges printed using PLA.

The inner angles of the outer wedges are 30 degrees, and the inner angle of

the center wedge is 60 degrees. Rotational movement is accomplished using ball

bearings integrated into the ends of the wedges, shown without the surrounding

wedge elements in Figure 3.3. The outer two wedges rotate together, and the center

wedge rotates independently in the opposite direction. When the long sides of the

inner and outer wedges are aligned, the sum of the inner angles create a 120-degree

bend in the joint. When the long sides of the outer wedges oppose the long side of

the inner wedge, the joint is straightened. Inner bearing races are integrated into

the ends of the outer wedges, and outer bearing races are integrated into the center

wedge. Pressure energized lip seals, shown in Figure 3.4, are attached to the inner
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race and seal against the shelf that the outer race sits on.

Figure 3.3: Bearing assembly with bearing keeper and exploded view. The inner
race (in blue) is integrated into the outer wedges, and the outer race (in violet) is
integrated into the inner wedge. Balls not shown.

Figure 3.4: Cross sections of inner (blue) and outer (violet) wedge and pressure
energized lip seal (green).

3.2 Material Properties Testing

To ensure the structural integrity of the joint, the material properties of differ-

ent additive manufacturing materials and techniques were evaluated. The primary

testing methods were tension tests and hydrostatic tests; these tests were performed

to date on PLA and Stratysys’ Standard Polyjet Material RGD840 Veroblue. Nei-

ther of these materials are certified to use in space, and would not be used in a final
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spacesuit design. They were used them here only as prototyping materials to reduce

costs, and as such have limited testing to tension and hydrostatic tests. These tests

were performed primarily to certify that a prototype made of these materials would

be safe to test with human subjects.

3.2.1 Tension Tests

Tension tests were performed on PLA specimens using a hydraulic universal

testing machine from MTS Systems Corporation to determine the effects of print

orientation on tensile strength. Tests were performed on two groups of test arti-

cles: one with a cross sectional area of 0.1875 in2 (1.20 cm2) and the other with

a cross sectional area of 0.3 in2 (1.94 cm2). Furthermore, each group was divided

into two subgroups based on print orientation (vertical or horizontal). Specimens

printed in a vertical print orientation have strands perpendicular to the long axis,

while those printed in a horizontal orientation have strands parallel to the long axis.

Stress-strain curves (shown in Figure 3.5) were calculated from the test results us-

ing Equations 3.2.1 and 3.2.2. (σ represents stress, F represents force applied, A

represents cross-sectional area, ε represents strain, δ represents deformation, and

L represents initial length.) Average tensile strengths are shown in Table 3.1; the

results indicate an average tensile strength of 7150 psi for horizontally-printed spec-

imens and 5230 psi for vertically-printed specimens.

σ =
F

A
(3.2.1)
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ε =
δ

L
(3.2.2)

(a) (b)

Figure 3.5: Stress-strain curves of PLA specimens with cross-sectional area of (a)
0.3 in2 (1.94 cm2) and (b) 0.1875 in2 (1.201 cm2).

Table 3.1: Tensile test results: tensile strengths.

``````````````̀Orientation
Area 0.3 in2

(1.94 cm2)
0.1875 in2

(1.201 cm2)
Horizontal 6174 psi 8126 psi

Vertical 5027 psi 5446 psi

In both datasets, samples printed with a horizontal orientation show weak

signs of yielding or plastic deformation before breaking, acting as a ductile mate-

rial. Samples printed with a vertical orientation show no sign of yielding or plastic

deformation before breaking, acting like a brittle material. Furthermore, samples

printed horizontally can withstand a higher maximum stress than those printed ver-

tically. This is because the tensile forces acting on samples printed horizontally act

along the layers, rather than perpendicular to them (as they do for samples printed

vertically). The high variation in the results is due to the inconsistent quality of
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materials printed in PLA. In addition, as shown in Figure 3.6, while most of the

specimens broke properly in the center, some 0.3 in2 horizontal specimens broke on

the neck of the specimen, rendering the data from those tests unusable. It would

seem this failure mode is caused by a combination of stress concentration at the

necks of the specimens and misalignment of the strands at the necks. Although the

strands in specimens printed horizontally are generally parallel to the long axis of

the specimen, they become less so along the neck due to its outward curve. Thus,

the strands in the neck are no longer parallel to the applied tensile forces, causing

a weakness in the neck. This explains why no specimens printed vertically showed

this failure mode: as there is no difference in strand orientation between the neck

and the center of specimens printed vertically, there is less inherent weakness in the

neck. The two failure modes are shown in Figure 3.6.

Figure 3.6: Two types of failure modes of PLA specimens.

In addition to performing tests on PLA, tensile tests were also performed on

Veroblue specimens created via the Polyjet process. All test specimens have a cross

section of 0.0491 in2 and have a length of 1.5 in. Stress vs. strain curves (shown

in Figure 3.7) were produced from tests conducted in the same manner as the PLA

tests. There were two groups of tests. The first three tests (as shown in Figure
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3.7a) gave inconsistent strain results. Furthermore, the tensile strengths were far

lower than that reported in the data published by Stratasys (around 7250-8700 psi).

To reconcile these discrepancies, five more tests were performed (shown in Figure

3.7b). Results from these tests match the data published by Stratasys more closely.

Specifically, the peak stresses of the first test group ranged from 5173 to 6405 psi,

with an error relative to the published data of about 26-31%. Meanwhile, the peak

stresses of the second group ranged from ranged from 6110 to 7450 psi with an error

of about 14-16%.

(a) (b)

Figure 3.7: Stress vs. Strain curves of the two different testing groups of RGD840
Veroblue

Based on these experiments, it appears that the Veroblue’s ductile behavior

caused inconsistencies when these specimens failed. Figures 3.7a and 3.7b demon-

strate these inconsistencies by showing multiple points of failure occurring at differ-

ent strains. Despite these inconsistencies, the material has a sufficiently high peak

and yield stress to bear relevant loads, and therefore is a viable material to use in

the initial human testing discussed in Section V [in original publication].
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3.2.2 Hydrostatic Tests

Hydrostatic tests were also employed to assess material properties. The team’s

prototype has an operating pressure of 8.3 psi with a safety factor of 3 (resulting

in a pressurization requirement of 25 psi); hydrostatic tests verified that chosen 3D

printable materials can hold this pressure. Pressure vessels (such as that shown in

Figure 3.8) were printed using PLA (with and without an external West Systems

epoxy coating) and Veroblue to determine the pressure at which the materials leak

and the pressure at which they burst. Vessels were submerged in the University of

Maryland Space Systems Laboratory (SSL) neutral buoyancy tank and pressurized

until they either burst or the maximum pressure of the pump was reached. Table

3.2 shows the results of this test, and specifies the conditions of each test specimen.

(Test 2 is marked as having a “partial” epoxy coating because after the test was

completed, patches of uncovered PLA were discovered near the lip of the bottle. It

is unclear whether this affected test results.)

Figure 3.8: A Pressure vessel made of PLA (uncoated).

As shown in Table 3.2, coating the pressure vessels in epoxy significantly im-
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Table 3.2: Hydrostatic Test Results and Observations

Test Material
Wall

Thickness
Epoxy

Coating
Pressure at

first leak
Source of

leak
Maximum
Pressure

Cause of test
cessation

1 PLA 1/8 in None <1 psi PLA N/A N/A

2 PLA 1/8 in Partial 90 psi Inconclusive 100 psi
Hose detached

from tap

3 PLA 1/16 in Full 55 psi
Improperly
sealed tap

80 psi To replace tap

4 PLA 1/16 in Full 90 psi Tap 140 psi
Maximum pump

pressure

5 Veroblue 1/16 in None N/A N/A 80 psi
Exceeded safety

limit

6 Veroblue 1/16 in None <1 psi
Crack on the

specimen
N/A N/A

7 Veroblue 1/16 in None N/A N/A 80 psi
Exceeded safety

limit

8 Veroblue 1/16 in None N/A N/A 80 psi
Exceeded safety

limit

pacts the pressure the vessel can hold. Tests 2-4 demonstrate that when an epoxy

coating is used, leaks were observed (if at all) at pressures of 55 psi and up. Mean-

while, with no coating, leaks were observed at less than 1 psi. Furthermore,there

were not any violent failure modes: tests 2 and 3 were terminated because of prob-

lems with the tap used to secure the pump to the pressure vessel, whereas test 4

was terminated because the maximum pressure of the pump was reached. In no test

did the pressure vessel itself burst. Based on these observations, it was concluded

that PLA pressure vessels coated with epoxy can withstand a pressure differential

of at least 25 psi. Veroblue, on the other hand, can hold pressure without a coating,

which makes it a valid material for pressurized parts. The only failure in testing

Veroblue occurred due to a crack in the specimen, believed to be due to damage

to the specimen before testing. The Veroblue specimens in tests 5, 7, and 8 did

not show any signs of failure before exceeding the required safety limit of 80 psi.

Based on these observations, Veroblue can withstand a pressure differential of 25
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psi without the aid of any coating.

To better quantify the material strength under a hydrostatic test, the pressure

data was converted into stress data using Equations 3.2.3 and 3.2.4. (σhoop and σaxial

represent hoop and axial stress, respectively; P represents pressure inside the test

specimen; r represents the radius of the specimen; and t represents the thickness

of the specimen.) The corresponding hoop and axial stresses are displayed in Table

3.3. Converting the data to hoop and axial stresses allows us to compare the tensile

strengths of the materials used in hydrostatic testing to other published data, and

to the experimental results. Experiments reported in Section 3.2.1 above found

an average tensile strength for PLA of 7150 psi for horizontally-printed specimens

and 5240 psi for vertically-printed specimens, both far higher than the maximum

hoop and axial stresses exerted in the hydrostatic tests. This is consistent with

the results of the hydrostatic tests: while several tests failed due to issues with the

tap or pump, none of the PLA test cylinders shattered or fractured. Comparable

results were found during hydrostatic tests of Veroblue samples. Stratasys reports

a tensile strength for the material of 7250-8700 psi [25], significantly higher than

the maximum stresses exerted during hydrostatic testing. This explains why no

Veroblue samples failed during testing. (The one cracked sample likely cracked

before testing began, as mentioned above.)

σhoop =
Pr

t
(3.2.3)
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σaxial =
Pr

2t
(3.2.4)

Table 3.3: Hydrostatic Test Results Hoop and Axial Stresses

Test Material
Hoop stress
at first leak

Axial stress
at first leak

Maximum
hoop stress

reached

Maximum
axial stress

reached
1 PLA <1 psi <1 psi N/A N/A
2 PLA 720 psi 360 psi 800 psi 400 psi
3 PLA 880 psi 440 psi 1280 psi 640 psi
4 PLA 1440 psi 720 psi 2240 psi 1120 psi
5 Veroblue N/A N/A 800 psi 400 psi
6 Veroblue N/A N/A 800 psi 400 psi
7 Veroblue <1 psi <1 psi N/A N/A
8 Veroblue N/A N/A 800 psi 400 psi

3.2.3 Discussion of Results

Based on these results, it was determined that PLA, due to its low print

resolution and inability to hold pressure without a coating, is largely unsuitable for

use in the final prototype. However, it can be used as a cheap substitute for more

expensive materials when prototyping the static elements of the joint (such as the

wedge elements) if pressurization is not needed. As such, future unpressurized tests

of the prototype will employ wedge elements made in PLA. Veroblue, on the other

hand, can likely be used to construct effective seals due to its high print resolution

and ability to hold pressure. (Initial tests of a seal prototype made with Veroblue

are discussed in Section IV [in original publication].) While its material properties

make it a weak candidate for use in a final prototype, it can be used as an analogue

for more expensive materials during design and testing.
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Chapter 4: Developing Technologies and Techniques for Additive

Manufacturing of Spacesuit Bearings and Seals1

4.1 Preliminary Pressure Testing and Seal Design

4.1.1 Glovebox Test Procedure

Sealed bearings were tested in the Space Systems Laboratory glovebox at the

University of Maryland. The purpose of these tests was to determine the sealed

bearings’ ability to withstand a pressure differential of 4.0 psi, and to qualitatively

assess the friction in sealed bearings under pressure loads. A pressure differential of

4.0 psi was chosen because it is the maximum pressure differential achievable in the

UMd glovebox. The target operating pressure of the PHASE prototype is 8.3 psi.

These tests necessitated the design of a modified version of the standard

PHASE bearings that were sized for the glovebox opening and had a solid inner

race. Figure 4.1 shows this test set up in the glovebox with the first design itera-

tion. The modified bearing was fitted into a circular opening in the glovebox, and

the glovebox was pumped down to create a maximum pressure differential of 4.0

psi.

1Published in full in the 48th International Conference on Environmental Systems. Minor
revisions are included where appropriate.
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Figure 4.1: Modified bearing fitted into the SSL glovebox for preliminary pressure
testing.

4.1.2 Design Iteration One: Pressure Energized Lip Seal

The first seal design evaluated was a pressure energized lip seal that was di-

rectly 3D-printed onto the inner bearing race as shown in Figure 4.2a and Figure

4.2b. Note that the modified inner race used for glovebox testing Trials 1 and 2

was printed in Stratasys RGD810 Veroclear material, which has similar material

properties as Stratasys RGD840 Veroblue material, based on availability in the lab-

oratory [25].

Lip seals have a theoretical single point of contact with the sealing surface

which should have minimized friction and been adequate in withstanding a pressure

differential. However, glovebox testing revealed major shortcomings of the design.

The contact area between the seal and sealing surface was larger than expected
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(a) (b)

Figure 4.2: a. CAD of a PHASE inner race (blue) and pressure energized lip seal
(yellow) b. CAD cross section of the lip seal (yellow) in a fully assembled prototype.
The outer bearing race represented in blue, and the inner bearing race is represented
in purple. Note that the actual bearing races are not rendered here.

when pressurized, causing unacceptably high friction. Additionally, since the seal

was printed directly onto or otherwise permanently attached to the inner race, it

could not be replaced independently. If directly printed onto the inner race, it

also needed to be fabricated using a process with multi-material capabilities, such

as MultiJet Fusion. The precision required for lip seals was also too high to be

resolved using currently available printing processes.

Glovebox testing demonstrated that Iteration One, the 3D-printed lip seal,

was not adequate to retain a pressure differential of 4.0 psi. The results of three

glovebox tests conducted with the lip seal design are tabulated in Table 4.1.

The lip seal design experienced various different failure modes in glovebox

testing that highlighted several of its disadvantages. After each failed test of this

sealed bearing design, small corrective adjustments were made to the seal.

Test 1 failed due to improper material choice for the seal. Initial seal designs

were fabricated using Stratasys TangoBlack FLX. This rubber-like material was too
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Table 4.1: Glovebox Test Results using Design Iteration One

Trial
Number

Seal Material/
Manufacturing

Process and
Hardness

Seal Design
and Changes

Maximum
Pressure

Differential
(psi)

Notes

1

Stratysys
Tango Black
FLX (Shore

26-27A)

Lip Seal 2.5

-Seal sucked into gap
between races by
pressure
-Seal was not rigid
enough
-Material was too
soft

2

Stratysys Flexible
Digital Material
(27A-70A; exact

hardness unknown)

Lip Seal
-increased material hardness

by blending rigid and
flexible material

-increased lip seal thickness

< 1

-Incorrect sizing
of seal
-Seal did not have
contact with
sealing surface

3

Stratysys Flexible
Digital Material
(27A-70A; exact

hardness unknown)

Lip Seal
-sizing correction:

increasing seal outer
diameter to increase
contact between seal
and sealing surface

3.0

-too much contact
with sealing surface
-High friction;
difficult to rotate
-Bearing races
began to pull apart
-Inner race failed

soft, causing the seal to be overly flexible. As a result, rather than resisting the

pressure differential, it was pulled into the gap between the inner and outer bearing

races as shown in Figure 4.3.

After observing this failure mode in Trial 1, the thickness of the seal was in-

creased to improve rigidity and fabricated it using a multi-material blend of Strata-

sys’ Polyjet rigid and flexible material, resulting in a harder rubberlike material.

However, the exact hardness of this seal material in Trial 2 and 3 is unknown. This

is because the campus printing service used to fabricate the seal for these tests did

not record the exact ratio of rigid to flexible material.

Test 2 was unable to withstand any pressure differential due to incorrect sizing

of the seal. The diameter of the seal was too small, so it did not achieve an adequate

sealing pressure. In Test 3, the bearing size was corrected by increasing the outer
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Figure 4.3: Lip seal following glovebox test 1. The lip seal was too flexible and was
pulled between the inner and outer bearing race by the pressure differential. This
prevented the bearing from rotating [26].

diameter of the lip seal by 0.01 inch. This sizing correction made the seal’s outer

diameter slightly too large, resulting in too much contact with the sealing surface.

The increased contact area between the seal and sealing surface created a high level

of friction, making the bearing difficult to rotate while pressurized. The pushing

force on the inner race required to rotate the bearing cause the races to separate at

an angle, which led to destructive failure of the inner race as shown in Figure 4.4.

Tests 2 and 3 revealed a major disadvantage of the lip seal design. Due to

the nature of the design, the lip seal sizing required a high level of precision with a

tolerance of less than 0.01 inch. Variations in size larger than this were observed to

either cause the outer diameter of the seal to be too large to fit inside the sealing

surface, or too small to make contact with the sealing surface. This precision and

small tolerance is difficult to achieve, and does not allow for slight variation in sizing

due to environmental factors, such as humidity, in 3D printing. This, along with

the design disadvantages described previously in Section 4.1.2, led to the conclusion

that a 3D-printed lip seal would not be suitable for use in the PHASE bearings.
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The problems mentioned above may have been able to be mitigated by using a com-

mercially manufactured lip seal, but was not tested in favor of alternative additive

manufacturing solutions.

(a) (b)

Figure 4.4: Bearing race began to separate at an angle (left) causing bending forces
to act on the inner race. This caused the inner race to fail by breaking in the
glovebox (right).

4.1.3 Design Iteration Two: X-Ring Seal

Design Iteration Two used an X-ring seal (Figure 4.5 and Figure 4.6), which

mitigated several of the design problems associated with the lip seal. Unlike the

lip seal design, this seal did not need to be permanently attached to either of the

bearing races. This offered the advantage of independent replacement and easy

interchangeability of seals. As shown previously, pressure energized lip seals come

to a fine point, making them delicate and therefore difficult to fabricate using 3D

printing. The X-ring seal has a more robust design, which helped mitigate these
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problems.

The X-ring seal also required significantly less sizing precision than the lip seal.

It only needed to be slightly larger in diameter than the groove it fit into so that

it would be under compression. The results Trial 4 of glovebox tests using Design

Iteration Two indicate that it is capable of withstanding a pressure differential of

at least 4.0 psi while rotating easily under pressure loads. The results of these tests

are displayed in Table 4.2. Based on these results Design Iteration Two was selected

for further testing.

Figure 4.5: CAD of X-Ring seal (yellow) integrated onto a modified solid inner race
(blue) used for glovebox testing

Trial 4 was the first test of the X-Ring seal design. As noted in Table 4.2, the

bearing races were fabricated of Stratasys’ Veroblue material using a Polyjet printing

process, and the seal was commercial Viton. In order to attempt to reduce the

friction of rotation, the sealing surface on the Veroblue bearing races was smoothed

with fine grit sandpaper and the Viton seal was lubricated to reduce friction. The

seal withstood the target pressure differential of 4.0 psi and rotated with minimal

friction. This test was notable because it was the first successful test of a hybrid
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Table 4.2: Glovebox Test Results using Design Iteration Two

Trial
Number

Seal Material/
Manufacturing

Process and
Hardness

Bearing Race
Material/

Manufacturing
Process

Seal
Design

Maximum
Pressure

Differential
(psi)

Notes

4
Commercial

Viton Rubber,
Shore 70A

Stratasys
Standard Polyjet

Material
RGD840
Veroblue

X-Ring 4.0

-Successful test
-Able to rotate
easily
-Lubricated seal
with high
pressure grease
-smoothed
sealing surface
with sandpaper

5

Stratasys
Flexible
Digital

Material,
Shore 70A

Stratasys
Standard Polyjet

Material
RGD840
Veroblue

X-Ring 4.0

-Successful test
-Able to rotate
easily
-Lubricated seal
with high
pressure grease
-smoothed
sealing surface
with sandpaper

6-12
Commercial

Viton Rubber,
Shore 70A

DuraForm PA** X-Ring 4.0*

-DuraForm PA
(SLS) surfaces
are rough
-High friciton

* Leaks Observed
** Edited to correct a typo that was left in the original publication
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Figure 4.6: CAD cross section of the X-ring seal (green) integrated into the PHASE
bearings. The outer race in is in blue, the inner race is in pink, and a ball is in
yellow.

3D-printed seal, and determined that the X-ring seal design was suitable for further

testing.

Trial 5 was the first test of a fully 3D-printed sealed bearing using the X-

ring seal design. As in Trial 1 the seal was lubricated and the Veroblue sealing

surface was sanded. All other conditions were also kept constant except that the

seal was fabricated of Stratasys Flexible Material using a Polyjet Process. This test

was notable because it was the first successful test of a fully 3D-printed spacesuit

bearing and seal.

After completing successful tests of both a hybrid and fully 3D-printed sealed

bearing using Veroblue races, testing proceeded using DuraForm PA races and com-

mercial X-ring seals. These tests revealed major challenges associated with fabricat-

ing sealed bearings from SLS materials. SLS materials have a rough surface finish,

which is not ideal for sealing surfaces. This rough surface introduced unacceptably

high levels of friction in rotation. Unlike with Polyjet materials, sanding of the
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sealing surface did not noticeably improve the surface finish.

Though sealed bearings with DuraForm PA races successfully withstood the

target pressure differential of 4.0 psi for all trials, they leaked noticeably. This

prompted a change in the original test plan because it was necessary to quantify the

severity of the leak in the bearing.

4.2 Leak Rate Quantification

Following Trial 6, a new test procedure was designed to quantify the leak rate

of the DuraForm PA sealed bearings. Before Trial 7, vacuum grease was applied

on all surfaces where the bearing races interfaced with the glovebox to minimize

potential leaks around the bearing edges. As in previous trials, the test bearings were

fitted into a circular opening in the glovebox, and the glovebox was pumped down

to a maximum pressure differential of 4.0 psi. The measured maximum pressure

differential at this point was actually 3.87 psi, which was used to calculate leak

rate. After reaching this maximum pressure differential, the glovebox pump was

turned off and time required for glovebox to completely depressurize to atmospheric

pressure was measured. The results of these tests are shown in Table 4.3.

The results of these trials were used to calculate mass leak rate. This leak rate

was calculated as follows:

(1) The volume of the SSL glovebox was calculated the equation below. The

main section of the glovebox is a cylinder. Its two rounded end caps were also

approximated as cylinders for this calculation. The volume of the glovebox
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Table 4.3: Leak Quantification Test Results (Glovebox Tests Trials 7-12)

Trial
Number

Spinning or Static Bearing
Races During Depressurization?

Time for the Glovebox to
Fully Depressurize

from 3.87 psi (seconds)
7 Static 45
8 Spinning 35
9 Static 40
10 Static 43
11 Spinning 36
12 Spinning 34

was found to be approximately 33,200 in3 or 0.544 m3.

V =

(
πD2

4

)
Lmain section + 2

(
πD2

4
Lend caps

)
(4.2.1)

where Lmain section = 49.75”, Lend caps = 7”, and D = 25.75”.

(2) The number of moles of air in the glovebox at atmospheric pressure (101,320

Pa) and 3.87 psid (74,700 Pa) were then calculated using the ideal gas law.

Room temperature (approximately 293 K) was used for calculations.

n =
PV

RT
(4.2.2)

where P = pressure [Pa], R = universal gas constant [J/mol-K], V = volume

[m3], and T = temperature [K], which gives natmospheric = 22.6 moles and

n3.87 psid = 16.67 moles.

(3) The change in moles, denoted ∆n, was then calculated. Using this change in

moles, change in mass was calculated using the molecular weight of air, 28.0134

g/mol or 0.06176 lb/mol. Mass leak rate was then calculated by dividing this
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leak rate by the average time required for the glovebox to depressurize.

∆n = natmospheric − n3.87 psid = 5.95 moles (4.2.3)

∆mass = MWair ∗ ∆n = 0.3675 lb (4.2.4)

Mass Leak Rate =
∆mass

taverage
= 0.009464

lb

sec
= 34.07

lb

hr
(4.2.5)

This leak rate is more than 1000 times the acceptable published mass rate for

the Apollo Era EMU, 0.0315
lb

hr
[27]. While it was not actually necessary to perform

these calculations to verify that the DuraForm PA sealing surface was unacceptable,

it was beneficial to develop the procedure for future testing of design approaches

which come closer to flight requirements.
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Chapter 5: Development and Testing of a 3D-Printed Spacesuit El-

bow Assembly1

5.1 Existing Research

5.1.1 Kinematics

This project focuses on the elbow joint due to its utility and relative simplicity.

The elbow joint design mimics the kinematics of the AX-5 suit. The Printed Hard

Arm Spacesuit Enhancement (PHASE) prototype consists of three wedge elements

that are connected through integrated ball bearings. The inner wedge element has

a 60 degree angle, while the two outer wedge elements have a 30 degree angle. Arm

rotation is achieved by rotating the outer wedge elements around the inner wedge

element. A forearm segment allows the prototype to interface with the Extravehic-

ular Mobility Unit (EMU) wrist disconnect, and an upper arm segment allows for

integration into the UMd glovebox. A CAD model of the prototype can be seen in

Figure 5.1. All components are additively manufactured with the exception of the

steel balls inside the rotary bearings, the seals, and the rotary sealing surfaces.

1To be published in full later this year in the 49th International Conference on Environmental
Systems. Minor revisions are included where appropriate.
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Figure 5.1: CAD model of the PHASE prototype, showing the wrist (purple), outer
wedge elements (magenta), inner wedge element (blue), upper arm segments (yellow,
green), sealing rings (silver), and bearing plugs (orange).

5.1.2 Seal Development

After testing, it was found that a design using an x-ring seal with races fabri-

cated from DuraForm PA successfully withstood the target pressure differential of

4.3 psi without failure. However, it did not meet minimum performance standards

for pressure retention, due to significant leaking and high friction of rotation [28].

A cross-sectional view of this design is shown in Figure 5.2.

Due to the nature of the printing process used for DuraForm PA and other

SLS materials, the sealing surface in the bearing was rough and imperfect. Through

observations during testing, this was identified as a major cause of friction and

leaks.

Additionally, SLS printing processes are only capable of an average precision

of ±0.005 in [29], which is not tight enough to meet the specified tolerances for
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Figure 5.2: Cross sectional view of the sealed bearing design selected for the PHASE
prototype. An X-ring seal (green) sits in a groove (light blue) and creates an airtight
seal against the sealing surface (purple).The rounded x-shaped cross section and two
points of contact are shown. The seal groove and sealing surface are attached and
rotate with the inner race (blue) and outer race (pink) respectively.

rotary seals [21, 22]. Due to this, variations between prints can result in interfaces

with either too large or too small of a gap between the seal and sealing surface.

A gap that is too large does not provide an adequate seal, which can cause leaks

between the seal and sealing surface. On the other hand, a gap that is too small

creates excessive squeeze on the seal, which increases friction. In tests, this issue

was identified as a potential source of high friction.

5.2 Finalized PHASE Design

5.2.1 Additional Seal Testing

After identifying the roughness of the DuraForm PA sealing surface as a po-

tential source of the high leak rates and high friction of rotation observed in bearing

tests, three potential methods were investigated to mitigate this issue.

First, vacuum grease was applied to the seals and sealing surfaces to reduce

45



friction between them. Qualitatively, this led to a small decrease in friction. This

reduction in friction was not judged to be sufficient for use in the prototype, however.

The second solution investigated was to coat the DuraForm PA sealing surface

with epoxy and then sand it to create a smoother surface. The coated surface was

only marginally smoother than the uncoated DuraForm PA surface. In testing no

notable difference was observed in leak rate or a substantial decrease in friction of

rotation.

Additionally, this solution does not mitigate potential problems related to the

precision of the SLS printing process. The increase in friction observed was likely

due to the addition of the epoxy coating reducing the effective inner diameter of the

sealing ring, thereby increasing the pressure on the X-ring seals. The application and

sanding of the epoxy coating is an imprecise process and the SLS printing process

itself was already outside of the required tolerances. Therefore, it would have been

extremely challenging to size the sealing surface appropriately using this solution.

Another solution that was investigated was replacing the DuraForm sealing

surface, shown in purple in Figure 5.2, with a smooth aluminum ring. This design

is shown in Figure 5.3.

Figure 5.3: CAD rendering of bearing design with aluminum sealing surface (silver).
This sealing surface is attached to the outer bearing race (pink).
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This method solved issues related to the precision of the SLS printing process,

as well as issues related to the roughness of the DuraForm PA. An inner race was

initially printed, as shown in blue in Figure 5.2, and the outer diameter of the sealing

groove, shown in light blue in Figure 5.2, was measured. Based on this measurement,

the aluminum ring was sized appropriately using tolerances recommended for rotary

seals [21, 22]. The aluminum ring was then glued on to the outer race, shown in

purple in Figure 5.2. In testing, this design demonstrated the ability to retain

pressure without significant observable leakage and to rotate with an acceptable

level of friction. This design, however, introduces a considerable number of non-

additively manufactured components into the design of a full suit. In order to

maximize additive manufacturing, the aluminum components in Figure 5.2 were

replicated in Veroblue, which was successfully used in prior sealed bearing tests

[28]. Based on these results, Veroblue sealing rings were incorporated into the final

PHASE design, which was compared to the EMU. This decision, however, was not

without its own challenges. While Veroblue test bearings did successfully seal in the

glovebox, the process’s tolerances still lead to instances of ill-fitting sealing surfaces,

which could cause high friction or leakage.

5.2.2 Interfaces

5.2.2.1 Upper Arm - UMd Glovebox

The PHASE arm is designed for evaluation in the UMd glovebox, a differential

pressure test chamber capable of achieving 4.3 psid. Due to the dimensions of the
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PHASE elbow, the full arm is unable to fit through the glovebox arm port. The

upper arm assembly, therefore, consists of two modules: an upper segment that is

inserted through the glovebox port, and a lower segment, attached to the elbow

wedge elements, that connects to the upper segment. To connect the PHASE arm

to the upper arm upper segment, the arm is inserted through the larger side door

of the glovebox, as shown in Figure 5.4. The upper segment is inserted through the

glovebox port, and four toggle clamps are used to fasten the segments together. The

lower segment of the upper arm contains an O-ring to ensure a good seal between

the two segments. An operational suit would use additional wedge elements and

rotary bearings, as in the PHASE elbow, to connect the upper arm and shoulder to

the torso.

(a) (b)

Figure 5.4: Finalized arm interfaces. (a) Photograph of the PHASE arm separated
into two upper arm segments (b) Picture of integrated arm in the glovebox port, as
viewed from inside the glovebox.
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5.2.2.2 Forearm - EMU Wrist Disconnect

The forearm of the PHASE prototype is designed to interface with the EMU

wrist disconnect, allowing it to operate with any glove that is compatible with

existing interfaces. On the EMU, a seal between the forearm and wrist disconnect

is achieved by tightly pressing the suit’s pressure bladder between a metal plate and

the disconnect, as shown in Figure 5.5. In a hard suit, this setup is not possible,

since pressure retention is accomplished by rigid elements rather than a flexible

bladder. The wrist disconnect’s built-in O-ring seal can, however, be used to form

an airtight seal between the wrist disconnect and a smooth 3D-printed surface. Bolts

are used to hold the wrist disconnect and its integrated O-ring seal firmly against

the forearm, creating an airtight seal. This setup is similar to what would be used

in an operational additively manufactured hard suit.

Due to the size and complicated kinematics of spacesuit gloves, rigid elements

are poorly suited for this component of the suit. A traditional soft-goods glove would

likely be employed, with a quick disconnect mating it to the suit’s rigid forearm.
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(a) (b)

Figure 5.5: (a) Closeup of the EMU wrist disconnect. The pressure bladder (yel-
low) can be seen sealing against the blue metal plate. (b) Picture of forearm with
integrated wrist disconnect

.

5.2.3 Pressurized Glove

An airtight glove was fabricated to enable pressurized testing in the glove box,

due to the lack of an available EMU glove for the extensive testing planned for this

project. The glove consists of a pressure bladder made of silicone rubber inside a

commercially available work glove acting as a restraint layer. The pressure bladder

was created by applying multiple layers of silicone rubber to a 3D-printed hand

model and allowing the material to set before removing it from the model. This

technique had been previously used in the SSL to fabricate a glove prototype.

The pressure bladder has a 0.25 in. lip in order to attach to the EMU wrist

disconnect and provide a smooth sealing surface. The existing EMU wrist disconnect

interface was then used to connect the restraint layer, the pressure bladder, and

the wrist disconnect together. During pressurization testing, the glove failed to

properly seal. Additional fabric was sewn onto the glove before attaching to the

50



wrist disconnect to alleviate this issue. Once properly sealed, the glove’s restraint

layer proved inadequate in preventing the glove from ballooning outward. Tape was

applied around the palm and thumb in order to help restrain the glove.

Unlike the EMU glove, this glove must be pressurized in order to don and doff

it. The glove successfully retained pressure and demonstrated that silicon rubber

molds can be useful for rapidly creating basic glove hardware for glovebox testing.

Figure 5.6: Picture of assembled glove

5.2.4 Final Assembly

The rigid elements for the PHASE arm, wrist disconnect and glovebox inter-

faces, and bearing keepers were fabricated in DuraForm PA by a printing service.

Veroblue sealing rings for each bearing were fabricated on campus at the University

of Maryland. The Veroblue rings were designed with an alignment groove to ensure

they were aligned precisely with the DuraForm wedge elements. The alignment
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groove was filled with cyanoacrylate glue, and the wedge elements were pressed into

place to ensure an airtight seal between the Veroblue rings and the DuraForm wedge

elements.

After integrating the sealing rings and the wedge elements, off-the-self X-ring

seals and Duraform bearing keepers were integrated into the bearings. During this

process, a large amount of friction was observed between the X-ring seals and the

Veroblue rings. To correct this, the Veroblue rings were wet sanded to create a

smooth finish and gradually reduce their inner diameter. This process was repeated

until a snug but low-friction fit was achieved. Off-the-shelf steel ball bearings were

added to the bearings, securing the wedge elements together.

Toggle clamps were attached to the two segments of the upper arm with epoxy.

The EMU wrist disconnect was bolted to the forearm of the PHASE arm, and the

O-ring built into the wrist disconnect was used to create a seal. Following the

integration of these components, the PHASE arm could be inserted into the glovebox

and have a pressurized glove attached for testing. The fully assembled arm is shown

in Figure 5.7.
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Figure 5.7: Picture of assembled arm

5.3 Design Evaluation

5.3.1 Timed Task Completion Testing

In order to evaluate the performance of the PHASE arm, human subjects were

tested to compare it to a Shuttle-era suit arm. Human-subjects testing consisted

of both quantitative and qualitative testing. Fitts’ Law was used to quantitatively

evaluate difficulty of movement while wearing the PHASE arm. Fitts’ Law was first

published in 1954, and has become a standard in physiological research owing to its

robust empirical regularity. The law states that the time required to touch a target

is a function of the ratio between the starting distance from the target and the size

of the target [30]. In the Fitts Reciprocal Tapping Test, subjects are instructed

to repeatedly tap between two plates as fast as possible with a stylus [31]. By

instructing the test subjects to minimize their errors while working against a time

limit, subjects will naturally adjust the speed of their movement, so that more
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difficult movements result in fewer total taps than simpler ones [31]. Fitts’ Law

describes how to analyze the test results:

µT = k1 + k2 × ID (5.3.1)

where µT is movement time from one target to the next, k1 and k2 are constants (in

this case dependant on the suit arm used), and ID is the Index of Difficulty [30].

Calculation of ID varies, but is typically a function of D/W , where D is the distance

between targets and W is the width of a target [30]. log2(
D
W

) is used.

(a) (b)

Figure 5.8: (a) A CAD mockup of the Fitts Reciprocal Tapping Test board. Dimen-
sions are given in inches. (b) Picture of the Fitts Reciprocal Tapping Test board
along with the metal stylus used in testing.

The board used to administer the Fitts test is shown in Figure 5.8. The board

consists of six metal plates arrayed in pairs along an arc. One plate from each pair is

2 in. wide, while the other is 0.5 in. wide. The three pairs of plates are located at 0,

40, and 80 degrees along the arc. This design allows us to vary both the size of the

target (W ) as well as the distance between the targets (D) by instructing subjects
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to tap between different sets of plates. The subjects undergo a set of six tests per

type of arm – EMU pressurized, EMU unpressurized, PHASE unpressurized, and

unsuited – over a range of index of difficulties. The total time required to complete

ten taps between targets was used for µT . A conductive stylus and conductive plates

were connected to an Arduino Uno, which was used to measure the tapping times

for each participant.

5.3.2 Comfort Testing

Even if a suit provides superior range of motion and requires lower torque for

movement than current spacesuits, it will not be effective unless it is comfortable

for the astronaut. If a suit rubs against an astronaut’s skin, not only will it be

uncomfortable to work in, but it can also cause injury during extended-duration

EVAs [32]. In several cases, such injuries and discomfort almost led to the termi-

nation of an EVA mission [33]. Qualitative comfort feedback is therefore critical to

the evaluation of the PHASE design.

Comfort was gauged through a series of questionnaires taken after subjects

perform the Fitts Reciprocal Tapping Test. On the first questionnaire, subjects are

asked to rate their agreement with statements such as “The arm was comfortable”

and “The arm moved the way I wanted it to” on a 6-point Likert scale from “Strongly

Disagree” to “Strongly Agree.” Subjects then filled out NASA’s Task Load Index

[34] and a modified Cooper-Harper Handling Quality flowchart [35].
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5.3.3 Participant Selection

Participants were recruited through advertisements posted throughout the

UMd. campus. Participants were required to be between 5’6” and 6’2” tall, be

right-handed, and have a full range of motion in their right arm. These constraints

were driven by sizing constraints for the EMU arm available in the SSL. In an effort

to minimize the effects of bias and additional experience in the PHASE arm, no

members of the research team developing PHASE participated in the trial. In total,

18 participants were recruited.

5.4 Discussion of Results

5.4.1 Fitts Tapping Test

To complete the Fitts’ Law analysis, the total times for each trial were calcu-

lated, then normalized as a factor of each participant’s fastest unsuited trial. These

terms were normalized to account for differences in ability between different research

participants. These times were then plotted versus Index of Difficulty and fitted to

Fitts’ Law using linear regression. Following this initial fit, outliers were identified

and removed to improve the linear regression. In total, 1 out of 108 unsuited data

points, 4 out of 107 PHASE data points, and 1 out of 36 unpressurized EMU data

points were excluded from the fit. All of these outliers were uncharacteristically

high as compared to other participants at the same Index of Difficulty. A plot of

the data for each testing configuration and the linear regressions performed can be
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seen in Figure 5.9.

(a) (b)

(c) (d)

Figure 5.9: Scatter plots of all Fitts Test data for all configurations (clockwise from
top left: Unsuited, Unpressurized PHASE, Pressurized EMU, Unpressurized EMU).
Linear regressions with Fitts Law constants and R2 values are also displayed.

Overall, significant spread was observed in the data; however, there were clear

clusters of data in enough of the configurations and Indices of Difficultly to allow for

the linear regressions to be meaningful. By plotting the resulting linear regressions

on top of each other, as in Figure 5.10, the relative difficulty of each configuration can

be visualized. At a given Index of Difficulty, points with a higher µT correspond to

more difficult movement. Thus, a higher y-intercept corresponds to a higher overall

difficultly of movement, while a steeper slope indicates that movements become

harder more quickly as Index of Difficulty increases.
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Figure 5.10: Linear regression data for all four test configurations overlaid on one
plot.

.

Based on the regressions in Figure 5.10, the unpressurized PHASE arm was

overall the most difficult configuration to use, however, the PHASE arm becomes

easier to use than the EMU as tasks become more challenging, beginning at an Index

of Difficulty of approximately 3.7. This data is consistent with the expectations

based on the AX-5 suit. Hard suits require the user to adapt their natural movements

to induce rotation into the wedge elements, allowing the suit to bend. Soft suits

do not require this adaptation, so for simple tasks, the user will likely find the soft

suit easier to use. Pressurized soft suits, however, become more difficult to use the

farther they are displaced from their neutral position, and fight the user to return to

this position. A rigid element suit does not have a tendency to return to a neutral

position, and therefore should be easier to use at higher Indices of Difficulty.
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5.4.2 Elapsed Time Analysis

To address concerns that the relatively low R2 values in the Fitts’ Law regres-

sions could be providing inaccurate results, an additional analysis was performed on

the total times required for each participant to complete each trial. In this analysis,

each of the six tests in the PHASE and pressurized and unpressurized EMU were

normalized as a factor of the participant’s time completing the same test unsuited.

It should be noted that this is a different method of normalization from Subsection

5.4.1. This was done to allow each Index of Difficulty to be analyzed in isolation.

The average of these normalized times were computed, both over all trials in each

configuration, and for each Index of Difficulty. The results of this analysis can be

seen in Figures 5.11 and 5.12.

Figure 5.11: Normalized time required to complete one test for each participant.
Quartile ranges are shown, with an x denoting the average across all participants
and outliers shown as single points.
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Figure 5.12: Normalized time required to complete a test at a given Index of Diffi-
cultyfor each participant. Quartile ranges are shown, with an x denoting the average
across all participants and outliers shown as single points.

The results are consistent with the Fitts’ Law analysis, showing that the

PHASE arm required slightly more time to complete the tests, on average, than

the pressurized EMU, with the exception of the trials that had an Index of Diffi-

culty of 4.45. It is unclear why the PHASE arm seemed to slightly outperform the

EMU in this particular trial. The unpressurized EMU test results were similar to

the unsuited tests. Note that the unsuited tests are excluded from these graphs as

they are, by definition, equal to 1.

Noteworthy in both the Fitts’ Law and elapsed time analyses was the signifi-

cant decline in performance between the unpressurized and pressurized EMU trials.

This is an expected characteristic of soft suits that should be reduced by employing a

rigid-element, constant volume design. PHASE was not pressurized for these trials,

however, an ideal constant volume suit should be no more difficult to use pressurized

than unpressurized. The increased friction associated with pressurization will affect

60



primarily k1, therefore, it is expected that a pressurized PHASE prototype should

also outperform a pressurized EMU at high Indices of Difficulty.

5.4.3 Participant Surveys

The PHASE arm scored slightly lower than the pressurized EMU arm for

overall comfort (Figures 5.13 and 5.14). The difference in comfort can be addressed

by including a comfort layer in the PHASE arm, which would minimize pinch-points

and rubbing. The PHASE arm scored lower on ease of movement measures, which

was expected, as the movement of the PHASE arm is not entirely natural and takes

a while to adjust to. The PHASE arm and pressurized EMU arm rated equally

for control and ease of extension. Most importantly, however, the PHASE arm

scored lower than the EMU pressurized arm for the level of fatigue following task

performance.

Figure 5.13: Average responses to questionnaire, where a higher score indicates a
more positive result.

According to the Task Load Index, the PHASE arm was scored as more de-
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Figure 5.14: Average responses to questionnaire questions, where a higher score
indicates a more negative result.

manding on the user than the pressurized EMU arm, though only marginally so

(Figure 5.15). However, perceptions of success were nearly the same (Figure 5.16).

The PHASE arm scored higher on the Cooper-Harper flowchart, as seen in Figure

5.17, again reflecting the learning curve associated with understanding how to ma-

nipulate the arm. Lastly, subjects were asked to identify points of discomfort, if any.

Consistently, subjects noted the wrist and shoulder joints as points of discomfort.

This discomfort is a function of the interfaces with the glovebox and wrist discon-

nect, neither of which are issues specific to the prototype. These concerns would

not be present in a fully AM spacesuit, which would not require this interface. In

the meantime, however, they can easily be addressed by including a comfort layer.

The PHASE arm scored worse than the pressurized EMU arm for most metrics

in the participant surveys. However, most of these faults can be addressed with

simple modifications of the PHASE design. Specifically, including a comfort layer

that would protect the user from the rubbing and pinching that subjects noted in
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Figure 5.15: Average scores on NASA’s Task Load Index.

Figure 5.16: Average scores from NASA’s Task Load Index question regarding per-
ceived success in completion of the task.

their qualitative feedback. Additionally, the majority of the control issues are solved

given more time to get acquainted with the kinematics of the PHASE arm.

Fatigue after use is a metric of interest, as it cannot be solved with a comfort

layer or additional training. In this metric, the PHASE arm outperforms the EMU

arm, which suggests that an AM hard suit can address some of the major concerns

associated with current spacesuits.

63



Figure 5.17: Average Cooper-Harper Handling Quality flowchart scores.

5.4.4 Sources of Error

Due to continued challenges in achieving the necessary tolerances for rotary

seals using additively manufactured components, the PHASE arm was not pressur-

ized during initial evaluation in the glovebox. This lack of pressurization may have

improved the usability of the PHASE arm by reducing axial loads on the ball bear-

ings and, therefore, the friction generated by the rotating wedge elements. PHASE’s

constant-volume design, however, is designed to minimize the effects of pressure dif-

ferential on mobility by eliminating the presence of a single neutral position, as in

the EMU arm. Constant-volume suits are expected to have a lower decline in per-

formance in pressurized tests versus unpressurized, as compared to a traditional soft

suit. As a result, the unpressurized PHASE arm is expected to demonstrate similar

mobility characteristics to a pressurized PHASE arm. Therefore, the comparison

between an unpressurized PHASE and pressurized EMU still provides meaningful

data.
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The silicone rubber glove used for pressurized testing cannot be worn unpres-

surized due to sizing constraints and the risk of damage to the glove created by

its uninflated pressure bladder. As a result, a stand-in, unpressurized glove was

fitted to the PHASE arm for unpressurized testing, while the silicone rubber glove

was used for pressurized EMU tests. This glove lacked the silicone rubber pressure

bladder, and as a result permitted more wrist flexibility. A greater portion of the

motion analyzed by the Fitts’ test could have been accomplished by moving only

the wrist in the PHASE as compared to the EMU as a result. Participants were

instructed to minimize the use of their wrist to complete the tapping task, and an

80 degree tapping arc was also evaluated to help mitigate the effects of the different

gloves on mobility evaluations. Upcoming tests with the PHASE arm pressurized

will allow both arms to use the same gloves, eliminating this potential error source.

5.5 Future Work

While this paper has discussed results to date on this project, at the current

time a wealth of possible future directions are apparent. In the near term, the team

will endeavor to complete the current data collection by getting pressurized data on

the PHASE prototype. While a major source of leakage was identified in the physical

connection to the glovebox, additional leaks were discovered in the rotary bearings

themselves. Additional efforts to pinpoint the locations of these leaks and modify the

existing bearings to provide adequate seals are ongoing. Additionally, traditional

machining techniques can be used in conjunction with additive manufacturing in
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future iterations, providing higher precision and likely improving the quality of the

3D-printed sealing surfaces.

At the end of this academic year, the Gemstone group ”Team SPACE” who

formed the core of this team will be graduating, and the continued development and

testing of the hard suit concept will reside in the UMd Space Systems Laboratory

(SSL). In parallel with the activities described here, the SSL has been developing

a series of different kinematic configurations for wedge-based hardsuit arms, and

testing them in unpressurized applications. The pioneering work of the Gemstone

team will be the basis for the addition of pressurized suit elements to the ongoing

SSL research.

There are several research projects that have been deferred to focus on the

human testing described here. The team designed a single degree-of-freedom robotic

system which can be inserted into a pressurized suit arm and directly measure

the torque required for motion. This system would provide better data than the

“traditional” approach of externally actuating an empty pressurized arm with a force

gauge, particularly in its ability to record torque versus displacement as a function

of velocity. The team also created a test rig to perform life testing on the additive

manufactured bearings and seals, which will require a moderate redesign prior to

operation. Ultimately that data will be critical before assessing the potential of this

approach to the development of full pressure suits for human testing on Earth, and

eventually in space.

66



5.6 Conclusion

The PHASE prototype successfully demonstrated that plastics fabricated us-

ing an SLS additive manufacturing process are able to withstand the loads and

kinematic requirements for a rigid element spacesuit. PHASE successfully repli-

cated the kinematics of the AX-5 suit at a lower mass, and with a higher potential

for in-situ fabrication.

Future research should be conducted to investigate the in-situ production of

spacesuits and spacesuit components based on the successes and lessons learned

from the PHASE prototype. By investigating additional suit components and 3D-

printed materials that have already been used on spacecraft, like Windform XT, the

potential for the use of additive manufacturing to fabricate spacesuit components can

be better understood. Furthermore, as additive manufacturing technology advances,

many of the obstacles identified in the PHASE prototype may be mitigated, further

increasing the potential uses of additive manufacturing in spacesuit production.

In particular, further research needs to be done on high-precision printing

techniques that can support the smooth surface finish needed for additively manu-

factured sealing surfaces and bearings, as well as whether additive manufacturing

can be used to fabricate seals and ball bearings. Additionally, research is needed

on which additive manufacturing techniques can be used in reduced or zero gravity

environments. FDM printing is currently the only technique that has been used in

space; however, our research indicated that untreated FDM products do not seal

and do not meet the precision requirements for rotary seals.
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While the full potential for using additive manufacturing for in-situ spacesuit

fabrication is not yet well understood, the PHASE prototype demonstrates that

this is a technology worthy of further investigation while planning for long-duration

human spaceflight missions.
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Chapter 6: Final Discussion

Current space suit designs are incompatible with increased surface stay times

required for human exploration of the Moon and Mars, bolstering the need for

innovative technologies in the field of spacesuit manufacturing. This thesis has

thoroughly discussed the first steps towards developing hard suit technologies which

satisfy the stringent requirements associated with long-term human planetary set-

tlement.

The present efforts have involved the design, fabrication, and test of a rigid

spacesuit arm opposing the conventional wisdom of fabric “soft-good” used in cur-

rent mission representative designs. A range of pneumatic, tensile, and 4-point

bending tests were conducted to candidate 3D-printed materials with an eye to

identifying top-candidate elements for the prototype. Based on these tests, it was

found that SLS-fabricated materials were most promising for the fabrication of AM

spacesuits, and thus the prototype was developed using DuraForm PA.

The PHASE prototype successfully replicated the kinematics of the AX-5,

using a set of AM truncated spherical wedges and ball bearings. In the PHASE

prototype, only the seals and metal bearings were not additively manufactured.

While further research into AM seals and sealed bearings is required, the PHASE
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prototype successfully replicated all other aspects of the AX-5 design, while reducing

the design’s mass and increasing the potential for in-situ fabrication.

The PHASE prototype did not fully demonstrate a 3D-printed, pressurized,

hard spacesuit arm, however, it served as an effective proof of concept for the use

of 3D printing in spacesuit fabrication. With the extended logistics cycles inherent

to human Mars exploration, independence from Earth is crucial for mission success.

Additive manufacturing, both for spacesuit components and for other aspects of

space exploration, is a promising means of achieving this goal.
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