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Abstract

In this paper, we introduce a new and innovative concept for the con-
trol of backlash in gear-coupled robotic mechanisms. The concept utilizes
redundant unidirectional drives to assure positive coupling of gear meshes
at all times. Based on this concept, a methodology for the enumeration of
admissible redundant-drive backlash-free robotic mechanisms has been estab-
lished. Some typical two- and three-DOF mechanisms have been sketched.
Furthermore, actuator torques have been derived as functions of either joint
torques or end-effector dynamic performance requirements. A redundantly
driven manipulator has the fail-safe advantage in that, except of the loss of
backlash control, it can continue to function when one of its actuators fails.
It does not have the compliance problem associated with tendon-driven ma-
nipulators. A two-DOF backlash-free experimental arm is currently under

construction to demonstrate the principle.






1. Introduction

The position and orientation errors of a manipulator are primarily caused
by deviations of geometric and non-geometric parameters from their nominal
dimensions. Geometric errors arise from machining and assembling of me-
chanical parts. Non-geometric errors come from joint angle deviations caused
by inaccurate encoder readings, mechanical clearances, compliance, backlash,
and link deflection due to loading. Various studies on improving position-
ing accuracy have been published recently by Ahmad (1985), Broderick and
Cipra (1988), Chao and Yang (1986), Chen and Chao (1986), Veitschegger
and Wu (1986), etc. However, gear backlash control seems to be the topic
with least effort because of the difficulty involved with discontinuity and

nonlinearity.

Most industrial robots use gear trains for power transmission to allow
actuators to be located in some desirable positions. Gear trains are also used
for torque amplification. backlash is a persistent problem in such machines
due to tooth clearances provided for prevention of jamming of gear teeth
due to manufacturing errors or thermal expansion. Backlash introduces dis-
continuity, uncertainty and impact in mechanical systems which, in turn,
makes accurate control of a manipulator difficult. End-effector positioning
accuracy is also compromised due to backlash. Precision gears, spring-loaded
split gear assemblies, and precise mechanical adjustment are often used to
overcome these difficulties. However, these techniques do not completely
eliminate the backlash and can increase the cost of manufacturing and as-
sembling. Therefore, further study on reducing or eliminating the backlash

problem is urgently needed.

In this paper, we will introduce an innovative concept for the control of
gear backlash in robotic mechanisms. Fundamental rules governing the func-
tion of redundant-drive backlash-free robotic mechanisms will be presented.

Based on these fundamental rules, a number of geared robotic mechanisms



will be enumerated, and actuator torque requirement for this class of robotic

mechanisms will be studied.

2. Basic Principle

It is well-known that conventional gears have certain amount of backlash
to ensure proper meshing. Backlash can cause momentary loss of coupling
between two mating gears whenever there is a torque reversal. This results in
positional error and impact in mechanical systems. To overcome the problem,
a new technique based on the concept of redundant unidirectional drives is

introduced.

Figure 1 shows a one-DOF (degree of freedom) gear train with two unidi-
rectional drives, where Dy and D, are the driving gears and F' is the follower.
The backlash in this mechanism can be controlled by applying torque to D,
in a clockwise sense and D, in a counter-clockwise sense at all times. The
resultant torque acting on F will be in the counter-clockwise or clockwise
sense depending on whether torque contributed by D, is greater or less than
that contributed by D,. Since no torque reversal is required to drive F', the

effects of gear backlash are completely eliminated.

The controllability can be analyzed from kinematic and static points of
view. The kinematic equation for the mechanism shown in Fig.1 can be

written as:
1 ] [ —(N¢/Ny) ] |
= 8, 1
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where ¢1, ¢, and 6 denote the angular displacements of gears Dy, D, and F,
respectively, and, Ny, N2 and N; represent their tooth numbers. Note that

the negative sign stands for an external gear mesh. It can be shown that the

input and output torques are related by the following equation:



o= [ =y~ ][ 8], @)

where ¢; and §; are the torques applied to D; and D, respectively, and, 7y is
the output torque of the follower F. For a desired output torque, the applied

torques can be expressed as:
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where A is an arbitrary real number. The first term on the right-hand-side
of Eq. (3) is referred to as the particular solution and the second term the
homogenous solution. From Eq. (3), it is clear that by selecting a large
positive A, the sense of input torques [ £, &, |7 can be maintained in the
[ + — T direction at all times regardless of the value of 7¢. Similarly, the
sense of input torques can also be maintained in the [ — + ]T direction
by selecting a proper negative A. We conclude that the mechanism can be
controlled by two unidirectional drives which can be designed either in the

[+ —]T direction or in the [ — + |7 direction.

The principle illustrated in the above simple example can be extended
to the case of n-DOF gear-coupled robotic mechanisms with k-unidirectional
drives. For an n-DOF articulated mechanism, it can be shown that the
input angular displacements and joint angles are related by the following

linear transformation:

$=BY, (4)
where 0 =1[6,,02,---,0,]7 is the joint angular displacement vector,
¢ = [¢1,$2,---, ¢i)7 is the input angular displacement vector,
and B = [b;;] is a k by n matrix.

Note that the word ”joint” refers to the joint in the equivalent open-loop

chain of a gear-coupled robotic mechanism. See Tsai (1988) for the definition
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of an equivalent open-loop chain. It can also be shown that the equation

relating the resultant joint torques to the input torques is given by:

r=BT{=A¢, (5)
where 7 = [ 71,72, ++,T, |7 denotes the resultant joint torques, and £ =
[ &6, ,&)T denotes the input actuator torques. The matrix, A, known

as the structure matrix, is a function of the structural topology and gear
ratios. For a given set of joint torques, Eq. (5) constitutes n linear equations
in k unknowns. In order to maintain unidirectional torques in the actuators,
k should be greater than n. Thus, the solution for actuator torques consists
of a particular solution plus a (k—n) dimensional homogenous solution. The
homogenous solution corresponds to certain sets of actuator torques that
result in no net joint torques. The homogenous solution can be expressed as
a sum of (k—n) basis vectors, each of them being multiplied by an arbitrary
constant. Hence, by adjusting the constants, unidirectional actuator torques
can be maintained. Furthermore, if ¥ = n + 1, then every element in the
null vector should be non-zero, and the direction of input torques can be

controlled either in the direction of the null vector or in the opposite direction.

3. Enumeration of Redundant-Drive Backlash-Free Robotic Mech-

anisms

Recently a new methodology, based on the concept of transmission lines,
has been developed for the enumeration of gear-coupled robotic mechanisms
(Chang and Tsai, 1989). According to the methodology, gear-coupled robotic
mechanisms can be created in two steps: (1) enumeration of admissible struc-
ture matrices, and (2) construction of mechanisms from the structure matri-
ces. In this paper, we assume that the number of transmission lines is greater

than the number of DOF by one, i.e. k = n+ 1. Hence, the structure matrix
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obeys the following fundamental rules:

R1. The structure matrix is an n x (n+ 1) matrix and each row must contain

at least two non-zero elements.

R2. The sub-matrix obtained by removing any column from a structure

matrix is non-singular.

R3. Since actuator torque is transmitted to various joints in a consecutive
manner, non-zero elements in a column of the structure matrix must

be consecutive.

R4. Switching any two columns of a structure matrix results in a renum-
bering of the two corresponding input actuators. Hence, two kinematic
structures are said to be isomorphic if their corresponding structure
matrices become identical after one or repeated operation of column

exchanges.

Rules 1 and 2 ensure the unidirectional controllability of a mechanism.
Applying the aboves rules, all the admissible structure matrices suitable for
redundant-drive backlash-free robotic mechanisms have been enumerated.
Table 1 lists four admissible structure matrices for two-DOF mechanisms,

where the "#” sign denotes the existence of a non-zero element in the matrix.

Table 2 lists all the admissible 3-DOF structure matrices. In Table 2,
the matrices are arranged according to the distribution of actuators. It is
assumed that each transmission line has its actuator located on the joint axis
nearest to the ground. The letters g, s and e denote that the actuators are
to be located on the 1%, 2" and 3"¢ joint axes, respectively, and the power
stands for the number of actuators to be installed on that joint axis. There
are five families listed in Table 2 : g%, ¢°s, ¢3¢, g%s? and g?se. For example,
the g* family allows all the actuators to be ground-connected. The selection
of structure matrix is a compromise between mechanical complexity, inertia

load, and the coupling, and is not the subject of this study.
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The construction of mechanisms from a structure matrix can be accom-
plished by the method outlined by Chang and Tsai (1989). For example,
we can construct a mechanism from structure matrix ¢g%s — 2 listed in Ta-
ble 1 as follows. First, a transmission line is constructed for each column
of the structure matrix as shown in Figs. 2(a), (b) and (c). Then, these
transmission lines are combined to form a basic mechanism as depicted in
Fig. 2(d). Finally, idler gears can be added to increase the offset distance
between two joint axes and/or to achieve greater gear reduction. A derived
mechanism is shown in Fig. 3. Note that, many mechanisms can be derived
from a basic mechanism. See Chang and Tsai (1989) for the definitions of

basic mechanism and derived mechanism.

Figure 4 shows a 3-DOF basic mechanism constructed from the structure
matrix of g’se — 6. Figure 5 shows a spatial 3-DOF robot arm derived
from the basic mechanism shown in Fig. 4. Figure 6 shows some additional
mechanisms constructed from the structure matrices listed in Table 2 where
A; denotes the i** actuator. These mechanisms are judged to be less coupled

among each of the five families.

4. Resultant Joint Torques as Functions of Dynamics Performance

Criteria

The resultant joint torques as shown in Eq. (5) can be thought of as a
set of physical torques acting on the joints of an equivalent open-loop chain.
This can be illustrated from the dynamical equations of the system. The

Lagrange’s equations of motion for a gear-coupled robotic system can be

written as:
d (0L oL
_ — 0 ; — e 6
dt (aq-t) aqt QI’ ? 1,27 7n ( )
L=T-YV, (7)



where the ¢’s denote the generalized coordinates, @’s the generalized active
forces and where T and V are the kinetic and potential energies of the system,
respectively. Using the joint angles as the generalized coordinates, ¢; = 6;,

the generalized active forces can be expressed as:

k ;
Qizz%ﬁj, 1=1,2,---,n. (8)
=1 aqt

Taking partial derivatives of Eq. (4) and substituting them into (8), we

obtain

k
Qi:ijié.ja i:1)27""n' (9)

Jj=1
Comparing Eqgs. (5) and (9), we conclude that the resultant joint torques

are the generalized active forces, i.e.
Qi:Ti7 1=1,2,--+,n. (10)

The same dynamical equations would be obtained if we assume the mecha-
nism is made up of an open-loop chain having 7; acting on joint z. Hence,
the dynamic response of the system can be completely characterized by the

resultant joint torques.

For a given set of joint torques, actuator torques can be obtained by

solving Eq. (5):
E=ATr+Ap (11)

where po=(p1,p2, -, pin)T is the null vector of A, i.e. A =0,

At = AT(A AT)™! is the pseudo inverse of 4,

and where XA is an arbitrary real number (Klein and Huang, 1983). The

first term on the right-hand-side of Eq. (11) is called the particular solution
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and the second term, which results in no net joint torques, is called the

homogenous solution. The orthogonality property between these two terms

can be shown as follows:
(AT A p=2{(AA) T} Ap=0 (12)

Equation (12) implies that the particular solution is a hyperplane passing
through the origin and perpendicular to the null vector. To control back-
lash, actuator torques should be kept in a predetermined direction at all
times. This can be achieved by adjusting the arbitrary constant A. Equation
(11) implies that the direction of actuator torques can be kept either in the

direction of the null vector or in the opposite direction.

In the design of a manipulator, sometimes it is desirable to specify the
performance in terms of its velocities and accelerations at the end-effector.
For this purpose, the joint velocities and joint accelerations in Eq. (6) can
be replaced by the end-effector velocities and accelerations. Using the in-
verse kinematic transformation, the resulting equation can be written in the

following form (Thomas and Tesar, 1982):
7 =Gi a+v P+ fi 1=1,2,---,m, (13)

where v and « are velocity and acceleration vectors of the end-effector, G;
and P; are n X 1 and n X n coeflicient matrices relating the motion state
to joint torques, and f; is the contribution due to cohsérvative forces. Note
that v and a contain both linear and angular components, and G; and F; are

position dependent.

Hence, joint torques can be calculated from a set of velocity and accelera-
tion specifications. Since the maximum achievable velocity and acceleration
are position dependent, the performance of a manipulator can only be spec-

ified at certain position(s) of the end-effector. Since, at a given position, the
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maximum velocity and acceleration are also direction dependent, we may

specify the performance of a manipulator in terms of its ability to reach

v W = v,

and ofW,oa = d° (14)

s?

for all directions of motion, where v; and a; are the desired magnitudes for the
velocity and acceleration, and where W, and W, are n xn symmetric matrices
used as weighting functions. If W, and W, are chosen to be identity matrices,
then Eq. (14) implies that the end-effector can achieve a maximum velocity
and acceleration of v, and a,, respectively at the specified location. Thomas,
et al. (1985) studied the minimum joint torque requirement for optimal
actuator sizing based on local dynamic criteria. The study of Thomas, et
al. can be applied to individual joint-drive manipulators. However, for gear-
coupled mechanisms with unidirectional drives, the theory for actuator sizing

is still unexplored. In what follows, the actuator sizing requirement will be

studied.

5. Actuator Sizing in Terms of Joint Torques Requirement

Let D; be the joint torque working domain, in which a manipulator is
intended to operate. This working domain must be transformed into the
actuator torque domain, D, in order to size the actuators properly. The
transformation from joint torques to input torques can be accomplished in
two steps, namely a transformation from the joint torque domain, D;, to a
particular solution hyperplane, D,, followed by a transformation from the
particular solution domain to the actuator torque domain, D¢. Figures 7(a)
and (b) show the transformation between D;, D,, and D; in grapherical form.
Note that the transformation from D; to D, is unique and Dg is obtained by
extending D, along the null vector to plus and minus infinity. For a given
set of joint torques 7" in D;, there is a particular solution é; in D,, and

the required motor torques can be any point on the line passing through é:
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and parallel to the null vector. To eliminate backlash effects, motor torques
must lie in a predetermined quadrant. The actuator sizes can be determined
by selecting a proper multiplier, A, such that corresponding to every point
in the joint torque domain, D,, the required motor torque falls within the
predetermined quadrant. Unfortunately, both domains of the working joint
torques, D;, and the particular solution hyperplane, D,, cannot be descirbed
in concise mathematical forms. This method is, therefore, judged to be
impractical for actuator sizing. In what follows, we describe an alternate

approach.

We propose to size the actuators in a reverse manner. This can be illus-
trated by taking the 2-DOF mechanism shown in Fig. 3 as an example. The

structure matrix of the mechanism shown in Fig. 3 is given by:

Ni7Nis NiaNis 0
Ni1sNao NigNig
A= : (15)
N17N19 Ny Ng 0 _NiNeNy
NigNag N3 N5 NgNjyo N2

Substituting N3 = 64:, N4 = N14 = N16 = ng = N20 = 16, N5 = le = 24,
Ng = 12, N7 = N10 = 20, Ng = 10, Ng = 48, Nn = 120, and, N13 = N15 =
Ny7 = Nyg = 96 into Eq. (15), yields

(16)

A= 40.96 4096 0
T 512 0 24|

The null vector of this structure matrix is [75,—75,16]7. To simplify the
analysis, we redefine the positive direction of the 2" motor axis so that the
structure matrix becomes

(17)

A [ 1096 —1096 0
“ls12 0 24

and the null vector becomes [75,75,16]7. Assuming that the actuators chosen
for the mechanism have available torque range of | +&, &, :i:fg]T , then

the domain of actuator torques, Dg, will be a rectangular solid in the first
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quadrant as shown in Fig. 8. Projecting Dg along the direction of the null
vector results in a domain, Bp, in the particular solution hyperplane. The
corresponding available joint torque domain, ﬁj, can then be obtained by
a transformation using Eq. (5). The domain of available joint torques, Dj
should contain the domain of desired joint torques, D;, as a subset. To obtain
bp, all 12 edges of the rectangular solid are projected onto the particular
solution hyperplane along the direction of the null vector. But, six of them
fall inside the boundary of the others. Hence, only six edges constitute the
boundary of Dp as shown in Fig. 8. Each of them can be expressed as the
intersection of two planes as shown below:
i =&, =1
A A N 08

Substituting Eqs. (17) and (18) into (5) for each combination of (z, j), we ob-
tain two equations linear in &k, k # ¢ # j. We then eliminate & from the two
equations. This results in one equation which serves as one of the boundary
lines for the D]‘ domain. Repeating the above process for all combinations
of (¢,7), we obtain the boundary of the available joint torque domain, ﬁj, as

shown below:

> —40.96 &,

1 < 40.96 &,

Ty > —24 és

2 <512 6
n—81<192§

1 —8 1 > —40.96 52

(19)

This domain is sketched in Fig. 9 for the purpose of illustration. Note that

we have used a hat, ", to denote the available torques from a set of actuators.

The above methodology can be extended to a general n-DOF robot arm.

For the reason of simplicity, we assign the directions of actuator axes in such

a way that all elements in the null vector are positive. Thus, the domain of
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available motor torques, Dg, can be represented by an (n + 1)-dimentional
rectangular solid in the first quadrant. There are 2n(n + 1) edges in an
(n + 1)-dimentional rectangular solid. After transformation, only n(n 4 1)
edges form the boundary of D,,, and each of them can be represented as the

intersection of two planes:

1 = U, = ,27"'a
{5 0 i=1 n+1 (20)

§j=£j3 j=1,2$"'an+1a .7742,

where é ; is the maximum available torque from the j** actuator. Substituting

Eq. (20) into (5) for each combination of (7, ), we obtain:
T= Ayl + & 4 (21)

where A;; is the matrix obtained by deleting the i** and j** columns from
matrix A, é.j is the column matrix obtained by deleting the :** and ji*

elements from ¢, and A; denotes the j™* column of matrix A.

Equation (21) represents n linear equations in (n — 1) unknowns, £, and

the compatibility condition for non-trivial solutions to exist is:

|I_ —§iA; Aijl =Y (1) (n - &ayy) IAi'j‘ =0, (22)

=1
where |( )| denotes the determinant of (), a;; denotes the (I, 7) element of A,
and Af-j denotes a sub-matrix of A;; with the ** row omitted. Rearranging

Eq. (22) yields the following boundary hyperplanes:

={; i(—l)'”lau |4,] = &(-1)

=1

> (-1)n |4 A, (23)
=1

where /i,- denotes a sub-matrix of A with the i** column omitted, and where

(24)

s=j3—1, if i>]
s=j, if i<j.
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Hence, the actuator torque requirements can be written as:

¢ > (—1)327.:1(—‘151” lAf'jl, (25)

where 2 = 1,2,---,n+1; 5 =1,2,--- ;n+ 1; and j # i. There are n(n + 1)
such equations. Hence, corresponding to a set of joint torques, Eq. (25)

yields the minimum torque requirement for each actuator.

6. Actuator Sizing in Terms of End-Effector Performance Criteria

The actuator torque requirements can be written as functions of end-

effector performance criteria. Substituting Eq. (13) into (25), yields:

T (1) |4y (GTa + o7 Pw + £i)

£ > (-1) l"iil ; (26)
or
§>Fld +v"Hu+g, j=12--,n (27)
where
P (_1)32?;1(—1)1;:[ Ayl GT (28)
= (o Z U ] P 9)
A;
RS )
and i=1,2,---.n+1,  i#j
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The actuators should be selected to satisfy Eq. (14), i.e.

v W,u = v?

2

and o' W,oa = a;

Since the maximum value of the three terms in the right-hand-side of Eq.
(27) can occur simultaneously, actuators should be chosen such that their
available torques, é , are equal to the sum of the maximum value of each

term. The maximum value of each term can be obtained as follows:

(a) 1% term:

Maz (¢=FTq

J J =

subject to oI Woa = a’ (31)

where £ denotes the maximum torque required to produce a desired accel-

eration, a. Define J as

J=Fla+h (&' Wea —dd), (32)
where h is a Lagrange multiplier. Equating % and % to zero, yields:

Fj +2h Woa=0, (33)
and

oI Woa = az, (34)

Premutiplying Eq. (33) by o and substitutting (34) into the resulting equa-

tion, we obtain
Fla+2hal=0. (35)
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Thus, the maximum value of (£ occurs at

FTq &2
- S
h= 2a2 2a?’ (36)
Substituting Eq. (36) into (33) and simplifying, yields:
WoLE.
o= ﬁ_s;._ar_i (37)
&

Premultiplying Eq. (37) by F¥ and simplifying, we obtain the maximum

value of {7,
€ = a,(FTW F))z. (38)

(b) 2" term:

Maz £ = v' Hv, subject to  vT W, =’ (39)
Define J as
J=v"Hjp+h (" Wyp —v?), (40)

where h is a Lagrange mutiplier. By the same method, equating %ﬂ- and -‘g—%

to zero, yields:

(H; + HN) v+2 h Wou =0, (41)
and

v Wy = v} (42)

From Eq. (41), it can be shown that & = —1 eigenvalue of W, *(H; + H}),
and v = eigenvector of W, *(H; + H} ). Premultiplying Eq. (41) by v” and
substituting (42) into the resulting equation, yields

17



QT(HJ' + H]T) v+2h vf = 0. (43)
Thus, £ has a maximum value of

¢ = v Hyv = — h vl (44)

J
(c) 3 term:

The third term is position dependent and can be obtained directly from

Eq. (30). Finally, the actuactor sizes can be determined by summing Eqs.
(38), (44) and (30).

7. Summary

We have introduced a new and innovative concept for the control of back-
lash in gear-coupled robotic systems. The concept utilizes redundant unidi-

rectional drives to assure positive coupling of gear meshes at all times.

Based on the concept, we have established a systematic methodology for
the enumeration of a class of unidirectional-drive gear-coupled robotic mech-
anisms. Some typical two- and three-DOF robot manipulators have been
sketched for the purpose of demonstration. Actuator sizes have been derived
as functions of either joint torques or end-effector dynamic performance re-

quirements.

The main purpose of this concept is the elimination of gear backlash in a
manipulator. One of the necessary conditions for the controllability of such
a mechanism is that a sub-matrix obtained by deleting any column from the
structure matrix is non-singular. Physically, this means that a redundantly
driven manipulator has the fail-safe advantage in that, except for the loss of
backlash control, it can continue to function when one of its actuators fails
to work. Furthermore, if high accuracy is not important between precision

points, then it is possible to control the actuators in such a way that no
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antagonism exist among the actuators so as to achieve optimal dynamic

performance.

Elimination of gear backlash reduces noise and vibration associated with
gear trains and, at the same time, improves the accuracy and stability of a
manipulator. Since gear trains are structurally much more rigid than cables
and tendons, the compliance problem associated with tendon-driven manipu-
lators is also eliminated. The result is a high precision and high performance

manipulator.

In order to demonstrate the principle, we have designed a planar two-
DOF backlash-free arm as shown in Fig. 3. A controller based on computed
position and computed torque tenique is currently being designed. This shall

be the subject of a future article.
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Table 2  Admissible 3-DOF structure matrices




Fig.1 One-DOF mechanism with redundant unidirectional drives
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Fig. 2 Construction of the g 2s-2 basic mechanism
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Fig. 3 An experimental 2-DOF manipulator derived from Fig. 2
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Fig. 4 Construction of the gZse-6 basic mechanism
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Fig. 5 A spatial 3-DOF arm derived from Fig. 4




Fig. 6 Less coupled 3-DOF robotic mechanisms
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Fig. 7 The relationship between joint torques and input torques
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Fig. 8§ Available actuator torque domain projected on the particular solution hyperplane
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Fig. 9 Domain of available joint torque




