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Abstract 

 
Computational scientists face many challenges when developing software that runs on 
large-scale parallel machines. However, their software development processes have not 
previously been studied in much detail by software engineering researchers. To better 
understand the nature of software development in this context, we examined five large-
scale computational science software projects, known as the ASC-Alliance centers. We 
conducted interviews with project leads from all five of the centers to gain insight into 
the nature of the development processes of large-scale parallel code projects, and to 
identify issues in the current state-of-the-practice that reduce programmer productivity. 
The results of the interviews are summarized in this report. 

1 Introduction 
“Computational science” refers to the application of computers to advance scientific 
research through the simulation of physical phenomena where experimentation would be 
either prohibitively expensive or simply not possible. Advancement of scientific research 
depends upon the ability of these scientists to develop software productively \, and is 
therefore of interest to software engineering researchers. However, there are many 
differences in software development process in this domain compared to other domains 
such as IT. One major difference is that scientific software can be very computationally 
demanding and may require the use of the most powerful machines available today, 
which are sometimes referred to as high-end computing (HEC) systems or 
supercomputers. These systems present some unique challenges to software development.  
 
To learn more about the process of developing software to run on HEC systems, we 
studied five different software projects that develop such codes1. These projects make up 
a group of research centers known as the ASC-Alliance centers. Each center owns a large 
software project which is focused on addressing a different problem in computational 
science. These centers are provided with access to large-scale HEC systems located at 
various supercomputing centers.  
 
To study these projects, we conducted interviews with high-level members of each 
project. These project members were all involved in project management, software 
architecture, or software integration.  Our goals were to characterize product, project 
organization, and process, both in terms of using the software and developing the 
software, and to identify particular challenges faced by the developers. Note that we use 
the terms “developer”, “scientist”, and “programmer” interchangeably in this report. 

1.1 Background 
The five ASC-Alliance centers were formed around 1997 by the NNSA (an agency 
within the Department of Energy) to develop computational simulation as a credible 
method of scientific research [1]. The major project at each center is focused on solving 

                                                 
1 In the HEC community, scientific computer programs are referred to as “codes”  
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one particular scientific problem by developing multi-physics, coupled applications. This 
refers to the simulation of different aspects of physical phenomena (e.g. solid mechanics, 
fluid mechanics, combustion), which are then “coupled” together to form a single 
simulation. The five centers are: 
 

• Center for Simulating the Dynamic Response of Materials, California Institute of 
Technology 

o Goal: simulate the response of materials to strong shocks 
• Center for Integrated Turbulence Simulations, Stanford University 

o Goal: simulate full-scale jet engines 
• Center for Astrophysical Thermonuclear Flashes, University of Chicago 

o Goal: simulate thermonuclear burn of compact stars 
• Center for the Simulation of Advanced Rockets 

o Goal: simulate solid propellant rockets 
• Center for Simulation of Accidental Fires & Explosions, University of Utah 

o Goal: simulate fires in contained vessels. 

2 Goals and methodology 
Our goals for conducting this study are to characterize which scientific programming 
activities are time-consuming and problematic, common problems that scientific 
programmers face, and the impact of software technologies on developer effort.  
 
We conducted this study within the context of the DARPA High Productivity Computing 
Systems (HPCS) project [2]. The goal of the HPCS project is to improve the productivity 
of computational scientists through the development of technologies such as new 
machine architectures and new parallel programming languages. In our earlier work, we 
ran controlled experiments to evaluate the effect of parallel programming language on 
programmer effort and program performance, using students from graduate-level parallel 
computing courses [3].  However, without empirical data on how scientific codes are 
actually developed, we have no larger context for interpreting our results. In particular, 
we did not know whether a new parallel programming language would address the major 
problems that the developers faced, or whether they would adopt a new language if given 
the opportunity. 
 
To conduct this study, we began by distributing a pre-interview questionnaire to each 
center that asked for some basic information about the project. Next, we conducted a 
telephone interview with one or two of the technical leads on the project. From this 
interview, we generated a summary document, which was sent back to the technical leads 
for review and corrections. Once this document had been corrected, we generated this 
technical report that combines the results across all of the projects. Both the questionnaire 
and interview guide can be found in the appendix  
 

3 Software characteristics 
While our main object of study was the software development process of the scientists, 
we first wanted to characterize the product that they were working on, so we had some 
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context for the software environment that the developers were working in. We asked 
about attributes of the software (information about the size of the codes, degree of code 
reuse via libraries, organizational structure of the code), and the intended machine target 
(what kinds of machines the codes are intended to run on).  

3.1 Attributes 
The size of the codes range from 100-500 KLOC. Most of the codes are written as a 
mixture of C/C++ and Fortran, with one code being a pure Fortran implementation. One 
code uses a Python scripting layer that provides an interface for running the application. 
With one exception, core elements of these projects evolved from pre-existing codes.  
 
All codes make use of the MPI library to achieve parallelism. In addition, each code 
makes use of external libraries, for features such as I/O (HDF, NetCDF, CGNS, Panda), 
mesh operations – including adaptive mesh refinement,  (PARAMESH, Mesquite, Metis, 
MeshSim, SAMRAI), computational geometry (CGAL), linear algebra (BLAS, 
LAPACK), and tools for solving sparse linear systems and systems modeled by partial 
differential equations (PETSc, Hypre, CLAWPACK). 
 
While these codes use parallel libraries which sit atop MPI, developers are still required 
write raw MPI code to achieve desired functionality.  Therefore, they must deal with the 
additional complexities that are well-known in writing message-passing applications. 
Some of the codes use a layered approach which hides the details of message-passing, so 
that a programmer can add additional functionality without writing MPI code. However, 
these abstraction layers had to be written from scratch.  
 
Each code is organized into independent subsystems, and the subsystems are maintained 
by separate individuals or small groups. All codes use a component-based architecture to 
minimize coupling between individual subsystems. In several of the projects, these 
independent subsystems are almost like separate projects: they can run as standalone 
applications and may incorporate new features that are independent of the larger, coupled 
application. Since almost all of the codes involve multiple programming languages, they 
must deal with language interoperability issues. (The one exception, a pure Fortran 
application, once used a Python framework to drive the application but abandoned it 
because of the difficulty in porting a hybrid Python/Fortran application to multiple 
platforms). One project built their component framework around the Common 
Component Architecture (CCA), which is a community effort to simplify the task of 
building such multi-language, coupled codes. In that case, the chief software architect 
was an early adopter of this technology and is actively involved with the larger CCA 
effort. The other projects developed their own communication frameworks.  

3.2 Machine target 
The codes are designed to run on “flat” MPI-based machines (i.e. all communication 
takes place through message-passing, even if some processes share physical memory). 
While all of the codes currently run on clusters of symmetric multiprocessors (SMPs), 
none of them have been explicitly optimized to take advantage of the SMP nodes: the 
developers assume that the vendor MPI implementations are efficient enough that 
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optimizing for SMP nodes would not yield large performance improvements. Tuning for 
a specific architecture is considered a poor use of resources: the investment required to 
gain expertise in a particular architecture is too great given that new architectures appear 
every six months. 
 
Two projects experimented in the past with improving performance on clusters of SMPs 
by using OpenMP to leverage parallelism within nodes and MPI to leverage parallelism 
across nodes. Results were mixed: one project found that a pure MPI implementation was 
competitive with hybrid MPI-OpenMP approach, and the other did observe increased 
performance when incorporating OpenMP but have not had a chance to follow up on this 
work due to other priorities. 

4 Project organization 
Like all software projects that involve more than a single individual, the developers on 
these projects must coordinate their efforts. We wanted to understand the organizational 
structure (how the project was organized), the staff (who the developers were) and their 
configuration management process (how the developers coordinated to make changes to 
the code). We were looking for similarities and differences with software projects in 
other domains, and whether the scientists encountered any domain-specific issues from a 
project management point of view. 

4.1 Organizational structure 
Each project is divided up into groups that focus on different aspects of the problem. This 
division is reflected in the code, where the software is partitioned into independent 
subsystems and each subsystem is owned by one of the groups. Each subsystem has one 
or two chief programmers who understand the subsystem in depth and are responsible for 
it. These chief programmers make the majority of the changes to the code. Each project 
also has either a chief software architect or a group who is responsible for the integration 
code. 
 
Development is compartmentalized, and the groups are relatively independent. There are 
integrated code development meetings once a week where the core developers from each 
of the groups meet to discuss issues such as coordinating code changes that will affect 
more than one module.  

4.2 Staff 
In total, there are about seventy-five people actively involved on a given project. Ten to 
twenty-five of these people are core developers that routinely contribute code to the 
project. The developers consist of professionals, professional staff members with M.S. 
and PhD degrees, postdocs, and graduate students. Their backgrounds are in physics, 
chemistry, applied math, engineering (mechanical, civil, aerospace, chemical), and 
computer science. The experience of the programmers ranges from five to twenty-five 
years of sequential programming, and zero to fifteen years of parallel programming. The 
projects also have graduate students who work on the code as part of their research, 
though they are not core developers.  
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4.3 Configuration management 
The projects use version control systems such as CVS and subversion to coordinate 
changes to the code, and all have integrated version control into their development 
process. No projects have adopted a formal process for approving code before it is 
checked into the repository. Instead, there is general agreement that test cases should pass 
before commits are made to the repository. Developers are individually responsible for 
performing any unit testing, standalone testing, and integration testing that may be 
necessary. On one project, all developers are automatically notified by email whenever 
code is checked in to the repository so that the developers are aware of recent 
modifications that might affect them.  
 
Since all codes are in active use for scientific research and active development, the 
projects must allow the developers to modify the code while ensuring that a stable 
version is always available. Therefore, all projects maintain both stable and development 
versions of the code.  
 
Only one project has a formal bug-tracking system that is in active use. On the other 
projects, defect tracking is accomplished through informal communication among project 
members and through the use of wikis. Some projects have attempted in the past to 
introduce defect tracking systems, but these systems were not adopted by the developers.  

5 Software usage 
Our study focused mainly on issues related to the development of the software. However, 
we also wanted to get a sense of how the software was used, and who was using it. Since 
problems with requirements are a major issue in other domains of software engineering, 
and requirements are often driven by user needs, we wanted to understand the role of the 
user in the software development process in this domain. In addition, we wanted to 
understand what the execution times were like. We did not know just how long these 
types of programs took to run, and we believed going into the study that large execution 
times were a major obstacle to programmer productivity. We wanted to understand the 
entire process of how the software was used, from setting up the input to examining the 
output. 

5.1 Users 
The main users of the codes are research scientists who are the active developers. Some 
of the users are students who are using the software for their own scientific research, and 
are not active in the code development, but these efforts are not the primary concern of 
the Centers. Some codes have found a user base outside of the project. These external 
users may even modify the program to suit their own needs. 

5.2 Execution times 
Characterizing the execution times of the codes is difficult because execution times vary 
enormously depending upon the size of the problem. Typical runs are on the order of ten 
to one hundred hours of execution time.  
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5.3 Setting up the input 
Most projects use configuration files for specifying program parameters, with two 
exceptions: one project uses an interactive Python-based scripting interface, and another 
provides a programmatic Fortran interface for specifying the initial conditions of the 
simulation. Some projects have expressed interest in developing a graphical interface to 
simplify the task of setting up the input for a run. 
 
For some projects, generating the inputs is a very time-consuming task. Some of the 
codes simulate systems with intricate geometries (e.g. the space shuttle), which are 
modeled as unstructured meshes. Generating the mesh for an input can take an 
experienced user from half an hour to weeks or months. In one case, a user spent a year 
generating a mesh for input. Determining whether a given mesh is of sufficient quality is 
an active area of research. 
 
It can also take hours to weeks to retrieve the physics data needed to run the software, 
depending on what type of data is needed and how good the existing documentation is. In 
some cases, determining the correct initial conditions for the simulation is also an active 
area of research. 

5.4 Examining the output 
Users apply visualization tools for examining the output of the simulations. The projects 
use a mix of visualization tools developed in-house (e.g. FLASHVIEW, Rocketeer, 
SCIRun) and third-party tools (e.g. IDL, TecPlot, EnSight, ParaView, OpenDX, 
MATLAB, Iris Explorer, VisIt).  

6 Development activities 
The developers engage in different activities during the course of development. We asked 
for details about the following categories: adding new features to the code base, testing 
the code to verify correctness, tuning the code to improve performance, debugging the 
code to remove defects, and porting the code to new platforms. 

6.1 Adding new features  
Each year, the centers plan on running a major set of simulations. These simulations drive 
an implementation plan which determine what new features need to be added to the 
software. Scientists can explore avenues of research, but the overall direction is set by the 
implementation plan. For centers with larger external user bases, sufficiently strong 
demand from outside users can also drive the addition of new features.  
 
New features added to the codes can be classified into two categories: those that are 
localized within an individual subsystem (low-level change), or those that involve 
changes across sub-systems (high-level change). Low-level changes are administered 
solely by the owners of the subsystem being modified and require no communication 
across groups. High-level changes require some degree of coordination.  
 
Since the projects have been in operation for almost a decade, the code bases are all fairly 
mature and are currently being applied to do real science. Very few new subsystems are 
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planned for development, although there continue to be enhancements to existing 
subsystems. Most modules have satisfactory parallel performance, with the exception of 
very new modules and modules where efficient parallelization is still an open research 
problem (e.g. adaptive mesh refinement).  
 
In some of the projects, the developers do not have to write code explicitly in parallel but 
instead build on top of a parallel infrastructure that abstracts away the parallelization 
details. Other projects require that the developers program directly to the MPI library.  

6.2 Testing 
All projects use a suite of regression tests to catch any errors introduced by programmers 
modifying the code. Some projects have an automated system for running regression 
tests, and others run the regression tests manually. One project requires that new students 
who check out the code are required to run the regression tests as part of their learning 
process. 
 
Testing a new algorithm is a challenging task in this environment. It is not sufficient to 
define simple test cases where modules are fed known inputs and checked against 
expected outputs. Rather, algorithms are evaluated in terms of qualities such as stability, 
accuracy, speed, and linear scalability. A module is considered to be functioning 
correctly if, for the class of inputs that are of interest, the quality of the module’s output 
is sufficient to allow it to be coupled with other modules and produce coupled 
applications. Since the inputs of interests change over time as more complex simulations 
are attempted, an algorithm that is acceptable today may not be acceptable tomorrow.  
Therefore, the testing process is different from other software domains because the focus 
is on identifying algorithmic defects (i.e. evaluating the quality of the algorithm) rather 
than on coding defects (i.e. errors in implementing the algorithm in the source code). 
Finding and fixing algorithmic defects is much more challenging than finding and fixing 
coding defects.  
 
Testing the quality of algorithms involves qualitative analysis about how the algorithm 
behaves. There are different strategies for testing an algorithm, depending upon the 
nature of the problem (e.g. checking if certain quantities are exactly or approximately 
conserved, checking if symmetry properties hold, checking against known analytical 
solutions). Some of the projects work with numerical analysts who can provide 
mathematical guarantees about certain aspects of the code such as stability, or that certain 
positive quantities such as energy cannot diverge.  
 
In general, the developers do not know whether an algorithm solves an equation correctly 
until certain requirements are passed. For example, a module may appear to be 
performing correctly in isolation, but when used in a coupled application it may behave 
in unexpected ways. This testing process is very interactive and requires a substantial 
amount of effort and expertise. Since many of the developers are postdocs and graduate 
students without extensive experience, the testing process involves a lot of guidance from 
senior people who understand the broader scope of the physics and software.  

 8 



6.3 Tuning 
Tuning activity occurs when the developers discover that the software is executing much 
slower than expected. Tuning may be required when the software is being ported to a new 
platform (see also the porting section below), or if there major changes to the software 
architecture have caused performance penalties, or simply because of changes made to a 
particular subsystem create a bottleneck. At least one project uses tuning specialists: 
developers who are skilled at identifying and fixing performance bottlenecks. One 
particular tuner comes from a local computer science group that develops performance 
analysis tools. 
 
Since one of the project goals is to develop algorithms that will last across many machine 
lifetimes, it is not seen as productive to try to maximize the performance on any one 
particular platform. Instead, code changes are made that will improve performance on a 
wide range of platforms. In addition, on at least one project the codes are constantly in a 
state of flux, as new algorithms are continually being evaluated, which involves changing 
the core components of the code. If there were many machine-specific optimizations in 
the code, it would be much more difficult to understand the code, which would increase 
maintenance effort.  
 
For a given application, there is often a considerable amount of tuning that needs to be 
done in order to achieve reasonable performance on a new platform. This tuning process 
is mostly about determining data set size, number of processors, and which processors 
should be assigned which tasks. While the individual projects do not focus on 
maximizing performance on any one system, they are occasionally able to take advantage 
of a team of third-party experts who can achieve a large speedup on a particular system. 
 
Developers do use externally developed profiling tools (e.g. TAU, Jumpshot, SpeedShop, 
Shark). However, on some of the codes, external profiling tools have failed because they 
could not deal with an application written in multiple languages. In addition, some of the 
codes contain their own profiling routines. Some developers find these tools useful, but 
others say that they are familiar enough with the code that these profiling tools do not 
reveal any information that is not already known. 
 
There are ongoing efforts to improve performance through the development of new 
algorithms (e.g. new adaptive mesh refinement algorithms). However, the developers 
view these efforts as new functionality rather than tuning.   

6.4 Debugging 
All projects mentioned make some use of TotalView, which is a popular parallel 
debugger. Sequential debugging tools such as Purify and Ensure are also used, although 
they are only useful if the failure can be reproduced when running the program on a 
single processor. The use of trace statements to debug is common across all projects, 
although these are difficult to interpret when the program is running on a large number of 
processors. The developers also examine the simulation outputs with visualization tools 
to help identify defects. 
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Developers described several usage patterns for applying the tools to localize defects. 
One common pattern is to use a debugger to produce a stack trace, which is then used to 
determine where to insert print statements into the code. Another common debugging 
pattern is to try to reproduce a defect when running the program on a smaller simulation, 
as tools such as TotalView and gdb can used very effectively on a moderate number of 
CPUs. 
 
There are some types of defects for which the existing tools do not provide any additional 
assistance. Most of the debugging time is spent in algorithmic debugging (i.e. dealing 
with algorithmic defects, see the section on testing, above), a process for which typical 
debugging tools are not appropriate.  
 
 
Large machines are generally batch-scheduled, which makes debugging more difficult. 
Since the debugging process typically involves frequent re-running of the code, running 
under a batch queue can become a week-long process where it would be a matter of hours 
on a dedicated machine where jobs could be run interactively. The National Labs make 
available dedicated weekends to the ASC-Alliance centers where a fraction or the entire 
platform of a particular machine is available for interactive use. There are a few of these 
weekends each year, and about 60 hours of total compute time are provided to the center, 
which allows them to run very large jobs and to do large-scale debugging. Debugging 
runs that involve smaller number of processors are done internally.  
 

6.5 Porting 
Porting activity most commonly occurs when the DOE purchases a new machine that 
becomes available for project use. Additionally, porting work may be necessary due to a 
software upgrade on a system that is already in use. The time required to port to a new 
system ranges from a single day to several weeks depending on the individual code and 
the maturity of the development tools on the new platform.  
 
Porting requires a non-trivial amount of effort because, when a new platform is released, 
the code cannot simply be recompiled and run. Much of the porting effort is spent on a 
large number of small details that need to be addressed. For example, the build scripts 
(e.g. makefiles) need to be modified to accommodate the differences in development 
tools on the new system. Immature compilers on new systems are another source of 
porting effort; one project spent a year getting the code to run on one particular machine 
because of C++ issues; while some problems had workarounds, others required that they 
wait for the vendor to fix the compiler. One project completely abandoned the use of 
Python to reduce porting effort.  
 
Although porting is only a small percentage of the total effort, it can involve a great deal 
of work in a very focused time (e.g. several people working for a month). Porting is 
perceived as a task that involves an unwarranted amount of effort. Some projects have 
broken compilers and MPI codes on every platform.  Two projects did not port their code 
to ASCI Red because the Fortran compiler did not support needed features properly, and 

 10 



it was not worth the effort to try and work around these problems to get the code to run 
on the machine. 

6.6 Effort distribution and bottlenecks 
Developers report spending most of their development time (75-95%) on adding new 
features and testing. Tuning and porting take up relatively little of the total development 
time (1-10%). However, the distribution of effort varies depending on the development 
phase of the project. Earlier on in the projects, when new data structures had to be 
designed to handle a particular class of physics problems, effort distribution was different 
than currently where the effort on data structures is oriented towards modifying them for 
new areas. The projects occasionally undergo large-scale re-architecting to better 
incorporate new features, and this also changes the effort distribution.  
 
Verification and validation was reported as a common bottleneck. In particular, 
debugging parallel algorithms was a bottleneck across all projects. Debugging is made 
more challenging because of the defects that only manifest themselves in more complex 
execution environments where it is more difficult for the programmer to observe what is 
happening. For example, a code may run perfectly on 32 processors, but fail on 64 
processors. Or, a subsystem may work well when executing independently, but does not 
behave as expected when interacting with another subsystem. 
 
Other bottlenecks include: 

• Generating input (CAD modeling, mesh generation) 
• Expressing algorithms in parallel 
• Performing production runs (obtaining time to run on large machines) 
• Understanding old code (when re-architecting) 

 

7 General observations 
Based on the interview responses, we made some general observations about software 
engineering in this domain. One surprise to us was the challenging nature of performing 
validation of this type of software. We were also very interested in the role that MPI 
played in these projects, because of the goals of the HPCS project to develop alternative 
parallel programming languages. In particular, we were interested in understanding how 
likely an alternative to MPI, either in the form of a library or framework that 
encapsulates MPI, or in the form of another parallel programming language. Finally, we 
were interested in the scientists’ opinions on what productivity means to them, since one 
of our ultimate goals as software engineering researchers is to help improve programmer 
productivity.  

7.1 Validation 
Validation of the codes (checking the simulation accurately simulates the phenomena of 
interest) is a formidable challenge. A validation study is typically a research project or 
the essence of a thesis. A student will choose a problem that has an interesting set of 
experimental data associated and then identifies to what extent it can be simulated. 
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Because of the effort involved in running such studies, it is not feasible to validate every 
new algorithm with an experiment.  

7.2 MPI 
All projects make extensive use of MPI to achieve parallelism. MPI is a standard library 
that is efficiently implemented on all types of platforms: It is the only technology that can 
run 10,000 processor jobs, and the only technology available that will allow the program 
to be run on a workstation as well as a world-class machine without having to tweak the 
code in significant ways. In addition, the algorithms employed by the projects all lend 
themselves to domain decomposition. 
 
Despite MPI being the most appropriate technology for the job, there was widespread 
dissatisfaction with it: one project member referred to it as “nothing more than high-level 
assembly language”, where the programmer is responsible for all memory management 
and process signaling. The additional work required by MPI was identified as a large 
barrier to productivity for a project starting from scratch. However, one project member 
mentioned that exposing these low-level details to the programmer is an advantage of 
MPI, because it gives the programmers more control over what happens in the code.  
 
One of the advantages of MPI is that it is possible to write MPI code knowing very few 
functions, so it is very easy to teach. While teaching people to use MPI is not particularly 
hard, teaching people to write MPI effectively is extremely difficult: this fact 
distinguishes the first year graduate student from the developers who have been at a 
center for four-to-five years. 
 

7.3 Alternative to MPI: libraries/frameworks 
All of the projects used libraries that were built on top of MPI. However, while such 
libraries can abstract away some of the low-level details of message-passing code, none 
of the projects adopted such libraries to the extent that they could entirely avoid writing 
MPI code. Even the libraries that are used can be problematic: on one project, the most 
troublesome code is the parallel HDF5 I/O library that sits atop MPI. Other projects 
outside of the ASC-Alliance have attempted to reuse existing class libraries to completely 
abstract away the low-level MPI details, but this has led to problems. For example, on 
one such project, some C++ code from a parallel framework was not portable across 
platforms because of differences in compiler implementations. Another obstacle to reuse 
is that these frameworks make assumptions about how the work will be done, and 
violating these assumptions requires that the programmer become deeply involved in 
framework details. The effort to use the framework is roughly the same as the effort 
involved in writing the code using MPI, which eliminates the benefit of use.  Because of 
this, each project chose to develop a custom framework. 
 

7.4 Alternative to MPI: other languages 
There was no alternative to MPI that any of the developers were aware of that could 
better meet their current needs. Some projects had previously looked at High-
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Performance Fortran and hybrid MPI-OpenMP as alternative models, but none felt 
compelled to switch.  
 
Developers mentioned the following desirable features in an alternative parallel 
programming language 

• Hides memory operations from the programmer 
• Provides the programmer with a single memory space 
• Supports remote puts and gets 
• Is easy to use 
• Is efficiently implemented on all types of platforms 
• Can do everything MPI can do plus provide additional useful capabilities 

 
Even if a new language met the above criteria, this would not guarantee adoption by the 
projects. The existing codes are already highly scalable and portable, and have taken 
years to develop and verify. All of the developers would have to be convinced that the 
new language would make their programs much better.  
 
Both technical and sociological issues create obstacles for the adoption of a new 
language. Technical issues include expressiveness, performance, support for large 
projects, and portability. A new language would need to be expressive enough to support 
all of the needed algorithmic features (e.g. grid-based data structures, particle-based data 
structures). A parallel version of C or Fortran would not be considered expressive 
enough, as the code would probably be no cleaner than it is currently. The performance 
would have to be competitive with C. C++ is an appealing language because C++ code 
can be made to look like C to achieve better performance. To support large projects, the 
language must support separation of concerns so that developers can work on isolated 
pieces (some languages assume the programmer has a global view of the system). 
Finally, it must be portable. The developers would have to be convinced that it could be 
ported to anything else in the future. If the developers had to re-design the parallelism 
when a new platform comes out, then it won’t even be considered. Even C++ is 
considered a somewhat risky technology because of the varying levels of support for C++ 
features across vendor compilers. 
 
The main sociological issue is that of market share. The developers would have to be 
confident that the new language would last well into the future. Unfortunately, this 
creates a chicken-and-egg problem for new languages. Some of the current codes are so 
complex that it would be very strenuous to migrate to something else. Even if an ideal 
solution were found, it would not be adopted immediately. The developers would have to 
experiment with the technology first. They would also like to see a number of large 
workhorse applications converted and benchmarked. Being able to use the existing code 
base in some fashion would make the transition easier, although they would still consider 
a new language that did not allow this, if it satisfied their other requirements. 

7.5 Measures of productivity 
The developers suggested several measures of productivity that would be useful in their 
context. One was scientifically useful results over calendar time, where scientifically 
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useful results implies sufficient simulated time and resolution, plus sufficient accuracy of 
the physical models and algorithms. Another was problem size over calendar time, where 
the goal is to run a larger simulation in a smaller calendar time. One developer gave the 
example of running a particular simulation in a calendar week instead of a calendar 
quarter. This is partially related to the speed of the code, and partially to the availability 
of the machine. 
 
Other suggested measures had to do with time to implementation: minimize the time 
between conception of an algorithm and the actual implementation on a parallel 
architecture, or the time to make modifications to the code (minor or substantial). For 
users to be productive, the holy grail is to very quickly go from equations to mapping the 
equations to a parallel model, and then getting an implementation and running it on a 
machine. Even a petascale machine would be too small for some of the problems that are 
being addressed. Most of their time is spent trying to map the solution to what is 
achievable given today’s computing resources, so that the problem is solvable in a 
reasonable period of time. Therefore, they are focused on the development of more 
efficient algorithms. They are more concerned with how long it will take to develop a 
solution than how long a particular run takes. The projects have a much longer-term view 
on performance issues than HEC vendors. 
 
For the professor whose job it is to turn out students, one suggested metric was the length 
of time from when a grad student finishes the second year of coursework to when she is a 
productive researcher in the group. This involves acquiring skills as a developer, as a 
designer of parallel algorithms, understanding the physics and how parallelism applies to 
it. At the university, there are considerably more educational aspects to the notion of 
productivity than in a government or industrial lab.  
 
Each project had to build up a software infrastructure, largely from the ground up. This 
required a substantial amount of effort, and it would be more productive not to have to 
build such infrastructure. One developer related how at Livermore Labs, after a 
computational scientist would design and program an algorithm, the program would be 
handed off to an applications programmer who would then rewrite it so it would run 
quickly on the system. One developer noted that a good test of a productive environment 
is when, in such an environment, the applications programmer does not feel the need to 
rewrite the computational scientists’ programs.  
 
Some productivity issues were only tangentially related to the details of expressing 
parallelism in the code. One developer brought up the importance of doing verification 
and validation to the productivity of the project, especially given the substantial learning 
curve involved in adopting a formal verification and validation process, which was 
pushed by the National Laboratories several years ago. Other productivity issues 
mentioned were the ability to estimate the effort required to implement features and the 
resultant performance of the code, the degree of code reuse by outside users, and the ease 
of which external users can modify the code to suit their own needs. 
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8 Conclusions 
In this paper, we have attempted to capture different aspects of the software development 
process for large-scale HEC applications, focusing on areas that are particularly 
challenging.  These projects face some unique challenges, both because of the nature of 
the problem, and because of the difficulties associated with programming the 
environment.  Note that because all the projects that we examined are based in academic 
environments, it is unclear how much would generalize to computational science projects 
in industry or government. 
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Appendix A HPC Project Questionnaire 

1.  General 
 
What type of problem is your code project trying to solve? 
_______________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 

2.  Activities 
 
Where is most of the team’s time spent when developing the software? 
□   Adding new features (e.g. new algorithms to improve accuracy) 
□   Fixing bugs 
□   Improving performance 
□   Porting to new platforms 
□   Other: ____________________________ 
 
Where is most of the team’s time spent when using the software?  
□   Setting up the input (e.g. setting configuration options) 
□   Executing the code 
□   Analyzing the output (e.g. visualization) 
□   Other: ____________________________ 
 
 
How long is a typical run of the program? (e.g. 20 hours)  
 
________________________________________________________________________ 
 
 

3.  Hardware 
 
What machines do you run your software on?  (e.g. 64-node Linux cluster, 128-processor 
SGI Altix, ASCI Red) 
 
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
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4.  Software 
 
What programming languages are used? (e.g. Fortran, C, C++, Java, Python) 
 
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
  
What is the underlying parallel technology? 
(e.g. MPI, OpenMP, threads, PVM, HPF, Co-Array Fortran) 
 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
 
What libraries or frameworks are used?  (e.g. ScaLAPACK, PETSc, POOMA) 
 
________________________________________________________________________
________________________________________________________________________ 
________________________________________________________________________ 
 
What type of parallelism/communication patterns are involved in the software? 
(e.g. nearest-neighbor, wavefront, all-to-all, embarrassingly parallel) 
 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
 

 

5.  Human 
 
How many people are actively involved with the project?  ________________ 
 
What are their academic backgrounds? (e.g. professor of chemical engineering, PhD 
student in CS, professional programmer with MA in EE) 
 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
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How many years of experience do they have in programming? 
 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
 
 
How many years of experience do they have in parallel programming? 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 

 

6.  Productivity 
 
What software-related issues do you encounter that reduce your productivity?  
(e.g. tasks that consume more programmer time than they should, programs that seem too 
difficult to learn/use) 
 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
 
 
How could we as empirical researchers help you? 
(e.g. help justify a tool purchase by demonstrating how much time is currently spent in 
certain tasks without the use of that tool) 
 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
 
 
Would you be willing to follow-up this questionnaire with an interview?    
□   No 
□   Yes Please give contact information __________________________________ 
          __________________________________  
          __________________________________ 
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Appendix B Interview Questions 
 

1 Product 

1.1 Attributes 
Do you have a name for the software?  
 
How large is the entire codebase, in terms of lines of code (excluding external libraries)? 
 
How many major subsystems are there?  (Is the program one monolithic application or 
are there subsystems that can be used in isolation?) 
 
Roughly speaking, what percentage of the code is: 

• Custom (in-house) 
• Libraries developed and maintained in-house, but also used by external projects 
• Libraries maintained externally 

 
Did any of the external libraries have to be modified at all for use on the existing project? 
 
Did you build the architectural framework for connecting the different subsystems from 
scratch, or did you build upon another framework (e.g. Common Component 
Architecture)? 
 

1.2 Machine target 
Is the code optimized for a particular machine or class of machines? (e.g. cluster of 
SMPs? ) 
 
Do you measuring the scalability of the code (e.g. weak scaling, strong scaling)? How 
well does the code scale? 

1.3 History 
What is the history of the codebase? Was it all written from scratch at the beginning of 
the project, or are some subsystems reused from prior projects? 
 

2 Project organization 

2.1 Organizational structure 
How is the development team structured?  Are developers divided up into groups?  If so, 
how do they coordinate changes? 

2.2 Staff 
How many of the project members are core developers? 
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2.3 Configuration management 
Do you use version control? How do you handle the issue that some users require a stable 
version of the code, while developers are actively modifying the code? What are the rules 
for when code can be checked in to the repository?  
 
Do you use a bug tracking system? If not, how do you communicate information about 
bugs to other project members? 
 
What kinds of documentation exist for the software? (e.g. user guides, design docs, etc.)? 
How often are these updated? 

3 Using the software 

3.1 Users 
Who are the main users of the software? If it is primarily the developers, are there any 
users who are not developers? 

3.2 Setting up the input 
How do you set up the input for the program? 

• GUI interface for setting up input 
• input files 
• other 

 
How much time does it take to set up the input for a run?  

3.3 Examining the output 
What do you use to visualize results? Are the visualization tools developed in-house, or 
are they third-party tools? 

4 Development activities 

4.1 Adding new features 
How do you decide what additions/modifications are made to the code that only affect 
one subsystem?  
 
How do you decide what additions/modifications are made to the code that affect the 
global behavior of the system?  
 
Can you walk us through the stages of modifying the program from the initial step of 
deciding to add a new feature to the final step of the new code being accepted into the 
code-base? 
 
Do you plan on adding any new subsystems?  
 
Do the developers today program directly to MPI or do they program to an interface built 
on top of MPI? If it is an interface on top of MPI, how do they express parallelism? 
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4.2 Testing 
How do you do testing/V&V? Do you do regression testing? 
 
How do you evaluate new algorithms?  

4.3 Tuning 
When do you tune?  
 
Which developers are usually involved in the tuning process? 
 
Can you describe the tuning process you use?  
 
Do you use profiling tools? If so, which ones? 

4.4 Debugging 
Which strategies do you use for debugging? 

• trace statements (e.g. printfs) 
• serial debuggers 
• parallel debuggers on large runs (e.g. hundreds of procs) 
• parallel debuggers on smaller runs (e.g. ~10 procs) 
• other? 

4.5 Porting 
How often do you port the code to a new platform?  
 
How long does this typically take?  
 
Where is most of the porting time spent? 
 
Are there any machines that you considered porting to but decided against it because it 
turned out to be too difficult? 

4.6 Effort distribution and bottlenecks 
How does the development effort break down in terms of: 

• better algorithms (better accuracy, speed) 
• adding new features 
• tuning on existing platform 
• porting to new platform 
• other 

 
Where do you spend the most time?  
 
What is the most difficult? 
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Where are the bottlenecks, if any? 
• generating input 
• adding new features 
• debugging code 
• testing/validation 
• production runs 
• other 

4.7 Achieving performance 
Which is more difficult: 

• identifying parallelism (designing and implementing a correct parallel algorithm) 
• achieving performance (modifying a “naïve” parallel algorithm to achieve 

reasonable performance on a given machine) 

5 Programming models and productivity 

5.1 Choice of parallel programming model 
Given the choice, which programming model or language will you choose to work with? 
Under what conditions?  
 
Why did the developers choose the particular technologies that are being used on this 
project? 

5.2 Adopting a new language 
Are there any circumstances under which you would switch from MPI to a different 
parallel programming language?  
 
What are the obstacles that would keep you from using a new parallel programming 
language in your software?  
 
What would a new parallel programming language have to offer in order to be worth 
adopting? 

5.3 Productivity measures 
What is a meaningful unit of “productivity” to you? 

6 Follow-up 
Is there some subset of the development we could study in real time? Would you be 
willing to let us instrument the computers or let us collect data on forms to get some ideas 
about where you spend your time, what kind of defects you make, or the effects of your 
programming model on you development effort/achieved performance? Would you be 
willing to have a researcher do an observational study on some programmers?  
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