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Nahum Shimkin* and Adam Shwartz*{

Abstract

A user facing a multi-user resource-sharing system considers a vector of performance mea-
sures (e.g. response times to various tasks). Acceptable performance is defined through a
set in the space of performance vectors. Can the user obtain a (time-average) performance
vector which approaches this desired set? We consider the worst-case scenario, where
other users may, for selfish reasons, try to exclude his vector from the desired set. For a
Markovian model of the system, we give a sufficient condition for approachability (which
is also necessary for convex sets), and construct appropriate policies. The mathematical
formulation leads to an approachability theory for stochastic games.

I. Introduction.

Consider entering a multi-user resource-sharing system, for example a compter system. The
objective is to guarantee acceptable service level for yourself, for example a fast response
time of the terminal, adequate computation speed and reasonable delay at the printer
queue. Naturally, a somewhat larger delay at the printer would be acceptable if we could
gain in the response time. This tradeoff is modelled by defining a set in the performance
space—in this example R3—which we wish to approach.

We model the dynamics of the system as a controlled Markov chain, where each user
exerts some control. We make no assumptions on the behavior of the other users. The
question is: for a given set in the performance space, can we guarantee that the observed
performance will (in the long run) fall into this set, even if the other users are doing
their best to obstruct us (worst-case)? Or, can a group of malicious users exclude my
performance from approaching this set?

Since we are considering a worst-case scenario, we may as well assume that we are
facing a single “opponent” where a gain for us is a loss for our opponent. The performance
is captured via a time-average vector (see §2 (iv) and (3.1)), so that we have the setting
of a zero-sum game.

This framework can also be used to model a “worst case” analysis (in terms of a
performance vector) of a system, where any uncertainties or time variations are modeled
as control variables chosen by “nature”. The resulting model is again a zero-sum stochastic
game with vector payoff. We shall henceforth adopt the terminology of game theory, in
order to formulate a precise question and exhibit the answer.
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20742. Research supported in part by NSF Grant ECS-83-51836.
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In a fundamental paper [BL3], Blackwell introduced the so called
approachability—excludability theory for infinitely—repeated games with vector payoffs. Let us
briefly review this theory. Consider a two—person, zero—sum, finite matrix game G4, where the
elements of the payoff matrix A = (a;;) are vectors in the Euclidean m —space R™. Blackwell
addressed the following question: [f this game is repeated infinitely in time, with both players hav-
ing perfect recall, can player 1 force the average payoff to asymptotically approach a preassigned
subset @ of IR™, no matter what the other player may do? Conversely, can player 2 exclude the

average payoff from this set?

For an arbitrary set @ , a sufficient condition for approachability was given, based on the fol-
lowing idea. Player 1 monitors his current average payoff &,. Suppose that for each value of o
outside @ , he has a strategy in G 4 which will push this payoff in the direction of @ irrespective of
player 2's choice. Then by using such a strategy whenever &t g @, the average payoff vector

will converge to @ .

A complete characterization of approachability was given for convex sets: a (closed) convex
set is approachable unless player 2 has a strategy (in G 1) such that the single—stage payoff does
not belong to @ for any strategy of player 1. It follows then that each convex set is either

approachable by player 1, or excludable by player 2.
Further results on approachability for repeated games can be found in [HO11, HO12, SA17].

It should be noted here that approachability theory does not deal directly with a
competitive~game situation, since no assumptions of rationality on the side of the opponent are
made by either player. Rather, each player tries to secure his objective against any possible stra-
tegy of the other, so that actually we are dealing with a worst case, or min—max, analysis. How-
gver, the theory has important implications for pure game—theoretic models —such as repeated
games of incomplete information (see e.g. [AV1, HAQ, SO18]) and multicomponent attrition games
([BL5]). Other applications of the theory include compound (statistical) decision problems — see

[BL4] and, e.qg., {LU13] for a discussion and further references.
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The objective of this paper is to extend Blackwell's results to average payoff stochastic
games. In stochastic games, the game matrix which is played at each stage depends on some
“state” variable, which may change stochastically from stage to stage (over a finite state—space).
The players' choices at each stage control not only the payoffs, but also the game to be played at
the next stage. These games, with the limit average (scalar) payoff, were introduced in [GI]. The
question of existence of a value in the general class of stochastic game with limit average payoff

remained open for many years, until answered in the affirmative in [ME14]. Generally, however,
the players have only e-optimal sirategies, which are moreover non—stationary*.

For certain sub—classes of stochastic games, stronger resuits are available (see [PA15,
RA18] for a survey). Here we shall be interested in the class of irreducible stochastic games, in
which the state process forms an irreducible Markov chain for any pair of stationary strategies. For
these games, it was established in [GI8, HK10] that both players have optimal strategies within
the class of stationary strategies. The recurrence properies implied by the irreducibility assump-

tion are central for the resuits of this paper.

The paper is organized as follows. In Section 2 the game model is formally defined. in
Section 3 approachability and excludability are defined, and the main results are stated; these
are analogous to the results of [BL3] for repeated games, as discussed above. The proofs are

givenin Sections 4 and 5. Finaily some concluding remarks are contained in Section 6.

2. The Model

The stochastic game model we shall study is determined by the following objects:

(i) Two players, P1 and P2.
(ii) S - afinite state space, and z € S, a given initial state.

(i) I,J —finite sets of choices for P1, P2 respectively.

* See Section 2 for a definition of stationary policies.



(iv) A:S xI xJ — R™, avector-valued payoff function.

(v) ?={P(|-,i,j): iel,jed},acollection of transition matrices over S . Thus each

P(l-i,7)=(P(s’'ls,i,j))isan | S| x |S| stochastic matrix.

The game starts at stage 0 in the initial state s, =z. Then at each stage ¢ =0,1,2,...

the following happens:

(vi) The players observe the current state s, € S .

(vi)  P1chooses an element i; € I, and P2 chooses an element j, € J .
(viii) Each player is told the choices i; and j; .

(ix) P1 gets from P2 the payoff vector A (s;, i;, J;).

(x) The game moves to a new state s,.,, = s’ with probability p (s’| s, , i, j,).

We assume that both players have perfect recall, i.e., they do not forget what they knew at

previous stages.

Let us describe the sets of strategies in this game. Let H, = (S xI xJ)! xS be the set
of all possible histories available to the players just before playing at stage ¢; that is, each
h, € H, is a sequence of the form A; =(S,, iy, Jo» « - + 5 St—1s bi—1s Je—1» St ). A behavior stra-

tegy o of P1is a collection

0=(0;)i=; O H;, - P{I) ,

P(I) being the set of all probability vectors over I. Thus at state ¢, P1's choice i; € I is deter-

mined according to the probability vector 6, (h;). A behavior strategy of P2 is similarly defined by:

Y=)izos Y - Hy = P(J)

The set of all behavior strategies of P1 and P2 will be denoted by £ and T, respectively. Note that

since our game is of perfect recall, it follows from the Kuhn—Aumann theorem ([AU1]) that one
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needs to consider only behavior strategies. That is, randomizations at each stage can be made

independently.

A stationary strategy for P1 is a strategy o e X in which all the ¢;'s are determined by the

same function f : S — IP(I) of the current state, i.e.,

oi(he)=f(st) » heH,

The class of stationary strategies of P1 will be denoted by Z(st¢ ), and a typical element of (st ) by

[ . The class of stationary strategies g for P2 is defined similarly and will be denoted by I"(st).

Given the strategies o, ¥ and the initial state z, the above model induces a probability meas-
ure P% . on the product space Q=H,=(S xI xJ)”, endowed the product c-algebra ¥ ..

The corresponding expectation operator will be denoted by E, ().

In this paper we shall make the following assumption regarding the transition structure 2:

Assumption A: The stochastic game determined by the above model is irreducible. That is,

for each pair (f , g ) of stationary strategies, the resulting transition matrix given by:

Prgls’ls)=3 p(s’ls,i.0) f(s)ig(s);
L.J

determines an irreducible (hence positive recurrent) Markov chain.

Note that for the Assumption to hold it is sufficient that Pf . is irreducible for all pure sta-

tionary strategies.

3. Approachability: Definitions and Main Results

For the definition of approachability and excludability, we shall require a notion of a (uniform)
rate of almost sure (a.s.) convergence. Let (x,, n 2 0) be a sequence of real valued random
variables over some probability space (2, ¥, P). It is welknown that: x, — 0 P-as. is

equivalent to either one of the following conditions:
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(i) lim P(sup x; >¢€)=0foreverye >0,
n — o k2n

or:

0) for every € > 0O there exists an n, such that

P(sup x, >g) <€
k2

2 No

Let now (P,, Ae A) be a collection of probability measures on (2, F). We say that

x, — 0 Pj-a.s., uniformly in Ae A, if:

(ii) lim sup Py(sup x;, >¢€)=0foreverye >0,
n o Ae A k2n

or equivalently:

iy’ for every € > 0, there exists an n,, such that

P,(sup x; >€) <€, forevery Le A.

k 2n,

Turning back to our model, define:

&, - the average payoff vector up to stage ¢ :

t-1

&tz-}kgoA(Sk’ik'jk), t 21 (3.1)

d(Q, o) —the Euclidean distance of the point ce R™ from the set @ c R™.

Definition:

A set @ cR™ is approachable by P1, with o* € Z, it d(Q, o) — 0 Pl , —as., uniformly in

ve . Thatis, for every € > O there exists a £, such that, for every ye I':

Pfy*,y{tsggd(Q,&tbe}q 62)

A set Q is excludable by P2, with y* € T, if for some & > 0:
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d(Q§, op) > 0 Pg . — as, unformly in ce X ,

where @ § is the complement of a 8—neighbourhood of @ .

[
It is evident that any set which is approachable by P1 cannot be excludable by P2, and

vice-versa. However, as demonstrated in [BL3], generally there exist (non—convex) sets which
are neither approachable nor excludable. Note that approachability and excludability are the

same for a set @ and its closure, so we may assume that @ is closed.

The definition given above is the original one used by Blackwell in [BL3]. In some applica-
tions (e.g. [HAS], [SO19]), approachability and excludability are defined using (uniform)
L 1-convergence in place of (uniform) a.s. - convergence. Since the variables d (&,, Q) are uni-
formly bounded, L' convergence follows from a.s. convergence so that the L definition is
weaker. It is then easy to see that all the resuits of this section remain valid under the L'

definition.

An important aspect of the definition is the uniform rate of convergence over I'. This
requirement is essential if the infinite stage model is to be considered as an “idealization” of a very

long, but finite, stochastic game model.

Let us now proceed to the formulation of the main results. For any pair of stationary policies
f e Z(st) and g e I'(st), the following limit expected average payoff vector is well defined (see

Proposition 4.1):

R(f.g)= im Ef o] @3

One can then define the following sets:

R(f,*)={R(f.g): geT(sh} , (3.4)

R(».g)={R(f.g): feZXsh} . (3.5)

Namely, R (f, *) is the set of payoffs which P2 can achieve by playing stationary strategies
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against P1's stationary strategy . We note that R (f, *) is a convex polytope in R™, and in
fact equals the convex hull of the finite set { R(f,g): g is a pure stationary strategy of P2} ,

(see [DE7, p. 95]). An analogous relation holds for R (*, g).

The following theorem gives a sufficient condition for approachability, as well as the form of

the “approaching” strategy:

Theorem 1

Let @ cIR™ be a closed set. Assume that for every 0. @, there exists £~ (= f" (o)) € Z (st), a
stationary policy of P1, and y € @ a closest point to o in @, such that the hyperplane through y
perpendicular to (c. —y ) separates a from R (f *, *). Then @ is approachable by P1, with the

strategy o* € X given below:

Let 0=Ty< Ty <T,< ... be the consecutive arrival times’ to the initial state z.
Then:
—attimes 0 < ¢ < T : play anything.
—attimes Tg <t < Tk, K 21 :if &TK ¢ @ play according to f*(&TK).
Else if &qvx € @, play anything.

a
The class of P1's strategies suggested by Theorem 1 may seem somewhat restricted, in

that each of these strategies is adapted to the payoff history only at the recurrence times (T,),
while in-between these times a fixed stationary strategy is played at each stage. However, the
next theorem shows that at least for convex sets this class of strategies is rich enough, in the
sense that any convex set which is approachable can in fact be approached by the strategy c* of

Theorem 1.

In defining the strategy o*, we chose the times (T, ) as the arrival times to the initial state
z. This state was chosen for convenience only, and in fact (7},) can be defined as the arrival

times to any other state s € S without affecting the results of this section.

if z is visited only a finite number N of times, let Ty = oo.
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Let us turn now to the case of convex sets. Theorem 1 can then be strengthened to give a

complete characterization of approachability, as follows:

Theorem 2

Let @ <R™ be a closed convex set. Then:

(a) @ is approachable by P1ifandonlyifforeveryg e I'(st), @ NR(*,g)= O .

(b) The conditionin (a) is equivalent to the condition of Theorem 1.

(c) If @ is not approachable by P1, it is excludable by P2, with any stationary policy g* which

satisfies @ NR(*,g%)= O .

Note that Theorem 2(c) implies that every convex set is either approachable by P1 or
excludable by P2. As noted above, this is not the case for arbitrary sets, even in repeated games

([BL3]).

We now proceed to the proof of Theorems 1 and 2.

4. Preparatory Results

In this section some facts and results are collected, most of which are weil-known. These
will be useful in the proof of the main theorems. The first few are taken from the theory of Markov

decision processes.

Proposition 4.1

Let feZXZ(sty and geT(st) be stationary strategies. Define the stopping time

t=min{¢ >0: s, =2z }, the first time of return to the initial state z. Then:

R(f,g)= im Ef (o)

exists, is independent of the state z, and is equal to:
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T—1
Ef.g(E A sy, g oit))

=0 4.1
R(f.g)=—" @1)

Proof: Recall Assumption A. The claims are then standard results for irreducible, finite Markov

chains, see e.g. [DE7, Appendix B].

O
Proposition 4.2
Letz, Tand f be as above. Then:
-1 o
E/%,Y(E Alsy, it Jt)) »
o yer[ =R(f, ) . 2
Ef 4(v)

That is (recall (4.1) and the definition (3.4) of R (f, *)), for a fixed stationary strategy of P1, the
set of T-averaged payoffs which P2 can attain by playing stationary strategies does not change

evenif he is allowed to play any strategy ye T.

Proof: For a fixed f € Z (st), the game model reduces to a Markov decision process with P2

the only decision maker. The proof then follows from [DE7, pp. 89-90].

i
Proposition 4.3
Let z, T be as above. Then:
(@) T=sup {E% ,(1): ceXl yel} < . (4.3)

(b) % =sup {E%,(1): ceXyel} <o . (4.4)
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Proof: Consider the Markov decision process which results if both players join heads to form a
single controller. Then X x I can be regarded as a subset of I, the set of strategies in this deci-
sion process, and it suffices to show that the suprema in (a) and (b) are finite over II. Note that
for every pure stationary policy in IT, the resulting Markov chain is irreducible by Assumption A.

(a) is then a standard result (e.g. [DE7, p. 50]), and (b) follows from [BO&, p. 74] using (a}.

The following theorem is the basic result for irreducible stochastic games:

Theorem 4.4 ([GI8, HK10])

Consider the zero—sum stochastic game model described above, with scalar payoffs (m=1) and
the limit expected average payoff. Then the game has a value, and the two players have station-

ary optimal strategies. In particular:

min max lim EZ ,(o,)= max min lim E? (o,
gel(st) feXst) L —> o0 f,g( t) feZsygeT(s)t —oo f,g( t) (4.5)

Finally, we shall need the following version of the SLLN for martingales:

Theorem 4.5

Let M =(M,, F,,n 20) be a martingale over some probability space, with M, =0. Let
AM, =M, ~M,_y,n =1, andassume that E (AM, )2 <c,n = 1,forsomec < e.

Then:
(a) —1—Mn -0 as.
n

(b) Moreover, the convergence rate depends only on c¢; that is, for every € > 0 there is an

P M,
kS;lEl)1 2 >Er<KE

n 4 =n(€, c¢), such that



n
Proof: M, is square integrable, since M,2<n? ¥ (AMj,)2 Also,

k=1
= E(AM)? = ¢
2 Y 5 <, (4.6)
e k2 = n?

and (a) then follows by [SH18, p. 471]. ~

To prove (b), define:

n AMk
m, =3, , n=x1
P
(4.7)
AM,
Arn'n =My, —Mp_ =
n
where m, : = 0. Then:
M, {r 12
=— Y AM,=— Y k-Am, (4.8)
nonoga =

We will now show that (m,, ) converges at a uniform rate, and then deduce (b) by (a uniform

strengthening of) Kronecker's Lemma, (cf. [SH18]).

Fix € > 0. Note that for every n =0, { (Myip —Mp )% Fnsk» £ 20} is a non-negative

submartingale. By Doob's inequality:

£ £y-2 2
— 2 —r < (- m -m
P{Ei%'m“k ’”""4}‘(4) p 7 O =)

i E(AM,,)?

—(&y2
_(4) k=n+1 k2

<

8 _ -]
S('Z) 2k§ k2
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Hence we can choose n, = n, (€, ¢) such that:

Foranyn >n,:

=|— mp| =|— m, —my
n L p= n k=0

1 n-1i n—1

= M, +3 (M, —my )+ 3 (M, —mp)
n k=0 k=n,
1 1 n-1

< — anol + lmn —mn,,| +—= > |mk — My,
n n k=n,

2no €
Choose now n.q =n (g, ¢) > n, suchthat — (1+¢) < =.
€n 2
Let
£ 1 £
Qi={w:sup lmp-m, | <— ad —M, <—1},
1= kzg.,| k n°l 4 ny " 2}

and note that P (24) > 1 — € by (4.10) and (4.12). On that set, from (4.11) one gets:

€ € €
—+—+—=
<3 tgtyTE

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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so that (b) is proved.

5. Proofs of the Main Results

Let us introduce first the required notation. Recall the definition of (T},): T, =0, and

T, =inf{t >T,_1: s4 =2}, n=21

From Proposition 4.3 it follows that all the T, 's are a.s.finite for any pair of strategies. We
may therefore concentrate in the following on the subset of 2 for which the T, 's are finite. Define

then:

i1 =Tp =T, n20

Let ¥, =o(h;) < ¥ . be the finite algebra generated by the history up to time ¢. Obviously
each T, is a stopping time with respect to (F;). Define Fp as usual
Fr.={AcF..:ANn(T, <t)cF, }. Note that Proposition 4.3 implies, for any pair of stra-

tegies:

Efs,y('cnﬂlTT,.) <t, (5.1)
E% ., (24l Fr) <t Pi,-as. (5.2)

Since o is in A,, the convex hull of the points { A(s,i,/)}, there exists a finite constant

¢ 1 such that:

Lo | < sup lal <e; (5.3)

and, furthermore, for any @ <A, :

d(Q,o)<cqy, t=21 . (5.4)
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Finally, the following shorthand notation will be useful (for @ cR™ is a given set,

t21,n21):

y, : = aclosest point in @ to o,
O 5=d(Q:&t)= loy ;|

8n:=8Tu
- = 1 .
°‘n5=0’4‘,=T Y, Alstris, Je)
n t=o
Y. :=yr,, aclosest pointin Qto d,
i‘n=TTn
~ Tn+1_1 . . - -
Apiii= Y A1, Jt) =ThitO =Tty (5.5)
t=T,

Proof of Theorem 1:

Suppose the hypotheses of the theorem are satisfied. Since approachability is the same for Q
and @ NA,, we may assume @ CA,, so that (5.4) holds. Let P1 use the specified strategy o,

and P2 use any fixed strategy ye I'. Let P and E () stand for P%: , and EG: (), respectively.

The proof will be divided into three parts. In the first two, we establish the convergence of
the sub—sequence (5, ), which is a “sampling” of the distance sequence (,) at times (T},). The

convergence of (§; ) will then be deduced in the last part of the proof.

(i) Boundson (§,): Ford, >0,one has:

<2 - _
Ons1 S lan+1 —Yn |2

(5.6)
IZ

=[Gy =9 1242 <0 =Fp) Ons1 =0 > +00sy— 12,

where || and <-,- > are the Euclidean norm and inner product, respectively.

We will now get some bounds on each term in the last expression. In fact, since it is easier

to deal with the sequence (T, 82) rather than (§2), these bounds will be constructed accordingly.
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From (5.5) and (5.3):

‘&n "‘&nl_ Tn&'n+zn+1 _&n\_ An+1"'[:n+1&'n
+ Tn+1 Tn+1
(5.7)
S2C1 Tn+1
n+1
So that, using (5.2) and (T, 2n ):
~ ~ 121 2 Tr%+1 -~
E [Touil Gt = G 12151 < @01)E [ o]
n+1
(5.8)
J e e
T on+t T nH
Also,
~ . o~ ~ ~ . Zn+1 _Tn+1&'n
<a-n—ynran+1"an>=<(x'n"n' T
n+1
(5.9)
1 ~ . . 1 ~ . ~ -
= T <Oy =Fns Bt = Tnstdn > — T <0y =Ynr Tns10 — Tp4t¥n >
n+t n+1

However, the first <+, - > on the right hand side is negative 'on the average'. More pre-

cisely, from Proposition 4.2 and the definition of o it follows that:

E (-Anﬂ 1 }n)

meR(f*(an), *) ae.on{g, >0} , (5.10)

while the definition of f* (o) implies that:

<Oy —Fu 7 —Jn > <0 VreR(f*(o,), *) . (5.11)

Therefore:
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E(<&n _Yn!ZnH "Tn+.1y~n > lB‘Trt): <&‘n - ~n»E(Zn+1|?n)_ynE(TnHl?n)>

E@A, %)

=E’C ~°<~—~ns _~><0’
( n+1‘fn) 0y = E(Tn+1|.7:n) Yn (5.12)
ae. on {§, >0}
Using (5.8), (5.9) and (5.12) in (5.6) then gives:
£2 | T 52 52, ©2
E(Tn+18n+1 | -‘fn) Sla(Tn-H | :Fn)Sn "'E(Tn+1 | Tn)sn + ;——1_
(5.13)
x2 Co ~
=Tn6n+n+1 , a.e. on {9, >0}
For §, = 0, we similarly have (take ¥, = o, in (5.6)):
E(Tn+183+1 | §n) SE(Tnﬂl&'nﬂ - &'n ‘2 li:n)
(5.14)
C2
an , ae. on {§,=0}
Combining (5.13) and (5.14) then gives, forn =1
E(T, 52| 7)< T 82+ —2  as (5.15)
n+t¥n+1i/n/ =4n%n n+1 +9-

Another bound on (T}, §2) can be obtained as follows. Since:

Sn+1_'8n < l&'n+‘l_.)7n| - |&'n —y'n‘ < |&n+1—&‘n‘ ’

8 — &1 < L0ty — ¥ i1 — N1 =Fnsi! €l - |,

it follows that:
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18ps1—6n ) SlOppr—anl , nm 21 . (5.16)

Now from (5.4), (5.7) and (5.2):

| T 118201 = T 82! < Ty |82, = 821 +71,,487

< Tn+1|sn+1 + Sn| : IS‘n+1 '"Sn I +Tn+183

(5.17)
< Ty 4120 1] Gyyq — Oy | +Tpp0ef
< 36121n+1 ’
E(T, 82, -T,82121F,)<9c#®:=c5 as., n=1 (5.18a)
and similarly,
E(T8%%<c, . (5.18b)

(i) Convergence of (§,): It remains now to prove the following assertion: Let (6n, T )n 1 be
any sequence of (5“,1 —adapted random variables which satisfy (5.15), (5.18) and (T, Zn ). Then

5, — 0a.s., at a rate depending on ¢, and c3 only. Indeed, letx, :=0, T, :=0and

- noc
x, =T, 82-% _ka : n =1 (5.19)
k=1

Then obviously: E(x,ml}n) <x, a.s. From the Doob decomposition for supermartingales

([SH18)), it follows that (x,, ) is bounded above by the martingale:

M, :=x, +kz bepo1 — E (e | Foo)]
=1

(5.20)

>x, as. , n 20
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Now, for n = 1:

AM,, =%, — E (%, | F,_1)
(5.21)
= Tn 83 - Tn—18r?—1 +E(Tn SE - Tn—153—1 I ?n-1)

so that from (5.18): E(AM2) <4cs. We can then apply Theorem 4.5 to deduce that

% M, — 0 a.s., at a rate which depends on ¢ 3 only.

However,

C2
A (5.22)

M=

~ noc
0<§’= xﬁZ—,ﬂs—;—Mﬂ;‘l—
k=1

1
Tn k=1

and the assertion follows upon noting that the (uniform) convergence of (Sn) and (S,f) are
equivalent. (i) Convergence of (d,): Let € >0 be given. We have just established that:

there exists ann, =n, (€, ¢, ¢3) such that:

P

x £ £
nsggo o, > 2} < 5 - (5.23)

Consider now the whole sequence (&;). Foreachn >0and T, <¢ < T, .4, we have simi-

larly to (5.16) and (5.7):

— - t"Tn T+
18, =87, | < loy — g | <2¢, <2 = (5.24)
so that:
£ = £
— —_ < _ —_
P {ksga r S9P, 18, =87, | > 2} _kzzjnP {Tk sup. |8, — 87| > 2}

(5.25)
2\2 23 o= 1 €
<(—)(2cq)*t — < —
(8)(01) k§nk2 4
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where the last inequality holds for some n =n (€, ¢4, 12) targe enough, which will be chosen to

satisfynqy2n,.

Finally, we have:

E(T,) ng
P(T, >t)s — <1 (5.26)
! 1 ¢ .
so that P (T, > t,) < % for some ¢, =t,(n4, 7). It then follows, in conjunction with (5.23) and
(5.24) that:
€ € €
—+—+-—=€ . .
P(f§25‘>€)<2 2T 1 =¢ (5.27)

Noting that ¢, c3, and therefore ¢, depend only on the constants (c, T 'cz), the theorem fol-
lows.

O
An upperbound on the rate of convergence of (3, ) can in fact be computed by going over the

details of the above proof. Thatis,

p (sgp O >€) <&

can be satisfied with £, = 0 (e7%€5°).

Proof of Theorem 2:

The proof follows from Theorem 1 and Theorem 4.4 along the lines of Theorem 2 of [BL3]. The

argument will be repeated here for sake of completeness.

(a) Assume first that @ "R (*,g*)= @ for some g* e T (st). Since R(*,g*) is
compact, d (@, R(*, g*)) > & for some & > 0. Noting that R (*, g*) is convex, it follows easily
by Theorem 1 that R (*, g*) is approachable by P2 with g% . Hence @ is excludable by P2 with
g*.
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Assume next that @ NR(*,g*)# O for all g* e I (st). Approachability will follow by
establishing the hypotheses of Theorem 1 forthe set @ . Let g @, and y be the closest point
in @ to o. We have to show that the hyperplane {g e R™ :<q¢-y,y —a > =0} separates o

from R (f*, *)for some f* e X(st), i.e.

<qg-y,y—a>20, qeR(f*, *) . (5.28)

Consider the game described by our model, with the scalar payoff function:

d(s,i,j)=<afs,i,j)v,y—-oa> . (5.29)

Obviously, the average payoff in this game, when played with stationary strategies, is:

R(f.g)= <R(f.g)v.,y —o> . (5.30)

From Theorem 4.4, P1 has an optimal stationary strategy /* in this game. So for every

g eI(st):

R(f*,g)= min R(f* g)=
geTi(sy

(5.31)

= min max <R(f,g)v,y —a> 20
gel(sy) feZ(sy

where the last inequality follows from our assumption upon noting that <q—y,y —a > 20 for

allg € Q. But (5.31) reads exactly (5.28) and the proof of (a) is complete.

(b) now follows since we have just proved that the condition in (a) implies the sufficient con-

dition of Theorem 1. (c) follows from (a) and its proof.

6. Concluding Remarks

Approachability results were presented here for the class of irreducible stochastic games.
The recurrence properties of the state process which are implied by the irreducibility assumption

played a central role in the definition of the optimal strategy and in the analysis.
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A slight generalization of the class of games considered is possible. Note that we have used
directly only the recurrence properties of a single, fixed state. Thus the methods and results of
this paper can be extended to the class of games considered in [ST20], where it is only assumed
that there is a state 2z which will eventually be reached from any other state with positive probabil-

ity, no matter what the strategies of the players might be.

For stochastic games which do not possess such recurrence properties, it seems that dif-
ferent methods are required to derive approachability results, if any. Further research in this direc-

tion is required.
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