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;(1)subject to suitable boundary conditions on @
, where 
 is an open bounded domain inIR2 or IR3. The vector �eld u represents the velocity in 
, p represents pressure, andthe scalar � is the viscosity, which is inversely proportional to the Reynolds number.We will develop the preconditioners for the linearized version of (1) known as theOseen equations, which can be written as���u+ (w � grad)u+ grad p = f�div u = 0(2)where w is given such that divw = 0. These equations arise from a nonlinear iterationessentially of the form ���u(m)+(u(m�1) �grad)u(m)+grad p(m) = f ; �div u(m) = 0,see [17].Discretization of (2) yields a linear system of equations F BTB 0 ! up ! =  f0 ! ;(3)where u and p now represent discrete versions of velocity and pressure, respectively.Here F = �A +N where A consists of a set of uncoupled discrete Laplace operators,corresponding to di�usion, and N is a discrete convection operator. We are inter-ested in convergence behavior of iterative methods applied to (3) as either � or thediscretization mesh width h tend to zero. For small � it is necessary for the discretiza-tion to be �ne enough to resolve features such as boundary layers [13]; typically when� is decreased, h will also be reduced proportionally. We are concerned only with� Department of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742, e-mail: elman@cs.umd.edu. This work was supported by U. S.National Science Foundation under grant DMS-9423133.1



values of � for which stable steady-state solutions exist; for example, it is shown in[12] that values of 1=� on the order of 1000 to several thousand are feasible.Let A denote the coe�cient matrix of (3). We will consider preconditioners ofthe form Q =  F BT0 �X ! :(4)It is easily con�rmed thatAQ�1 =  I 0BF�1 BF�1BTX�1 ! ;(5)so that the eigenvalues of AQ�1 aref1g [ �(BF�1BTX�1):LetM denote the diagonal of the pressure mass matrix associated with the discretiza-tion; for �nite di�erences, a natural analogue is M = hdI for a uniform grid of widthh in d dimensions. It was shown in [5] that for the choice X = 1�M , the eigenvalues ofBF�1BTX�1 are bounded independent of h. (See [2, 22, 25, 29] for analogous resultsfor the Stokes equations.) Therefore, use of this preconditioner in conjunction withKrylov subspace methods such as GMRES [24] leads to asymptotic convergence ratesthat are independent of the mesh size. Similar asymptotic bounds were also obtainedin [11] for a di�erent class of preconditioners based on the symmetric part ofA, wherethe preconditioning entails solution of the Stokes equations.The convergence properties of these approaches depend on the viscosity �, and ingeneral convergence rates deteriorate as � decreases. For example, the results in [5]yield eigenvalues that are contained in a box in the complex plane of the form[c1�2; c2]� i [c3; c4]where fcjg are independent of h and �, and in experimental results iteration countsincrease roughly like 1=�. (See also x4.)Our concern here is to develop alternative choices for X for which the sensitivityto � is less pronounced. Our starting point is an observation derived from [6]. Let Gand K be two matrices of dimensions np � nu with nu � np and such that both areof full rank np. The matrix KT (GKT )�1G can then be viewed as an operator fromrange(KT ) to itself, and it is trivial to see that this is in fact the identity operator.To apply this to (3), �rst assume for simplicity that B is of full rank (this assumptionwill be eliminated below) and let G = BF�1 and K = B. Our observation is thenBT (BF�1BT )�1BF�1 = I on range(BT )or, equivalently, BT (BF�1BT )�1B = F on range(F�1BT ):(6)Suppose for the moment thatrange(BT) � range(F�1BT ):(7) 2



Then the equality of (6) can be postmultiplied by BT , and premultiplying the resultby B yields (BBT ) (BF�1BT )�1(BBT ) = BFBT :Equivalently, (BF�1BT )�1 = (BBT )�1(BFBT ) (BBT)�1:That is, for the choice X = (BBT ) (BFBT)�1(BBT );(8)the eigenvalues of the preconditioned operator (5) are identically 1 and one step ofGMRES will produce the solution.In the rest of this paper, we examine the use of the preconditioner (4) for solvingthe discrete two-dimensional Oseen equations, using X de�ned by (8) as well as somecomputationally less expensive variants. Because of the presence of the high-orderdiscrete operator BFBT in (8), we will refer to the combination of (4) and (8) as the\BFBt preconditioner." Cf. [20] for other approaches to the problem of approximatingthe action of the inverse of BF�1BT . For our analysis, we restrict our attention toa \marker-and-cell" (MAC) �nite-di�erence operator [15], which we outline in x2. Inx3, we show that in the case where (2) is given with constant \wind" w and periodicboundary conditions, (7) holds. (In fact the two spaces are identical.) Consequently,in this case the discussion of the previous paragraph represents a complete analysis.In x4, we examine through a series of numerical experiments the extent to whichthese results re
ect the behavior of the preconditioner in more realistic scenarios,that is, for Dirichlet boundary conditions or non-constant wind. Our observationsare that the convergence behavior of Krylov subspace methods is independent of �for the Dirichlet problem with constant wind and mildly dependent on � for variablewind; convergence also depends mildly on the mesh size h, with iteration countsincreasing in proportion to h�1=2. These conclusions also hold for variants of theBFBt preconditioner designed to keep computational costs low. In particular, use ofQ with (8) in an iteration entails two Poisson solves on the pressure space and (for anyX) the solution of a set of convection-di�usion equations on the velocity space. Weshow that these computations can be approximated using inner iterations with littledegradation of performance of the outer iteration. In x5 we make some summarizingremarks, and in an appendix we present a partial analysis of the behavior of the BFBtpreconditioner for the Stokes problem.2. Finite di�erence discretization. We brie
y describe the MAC �nite dif-ference scheme. Assume that 
 is the rectangular region (0; 1)� (0; 1), divided intoa uniform n � n grid of cells of width h = 1=n. Let u = (u; v)T denote the velocity�eld and w = (a; b)T the wind. The discrete velocities and pressures are de�ned on astaggered grid in which the discrete values of u lie in the centers of the cell boundariesorthogonal to the x-axis, the discrete values of v lie in the center of the cell boundariesorthogonal to the y-axis, and the discrete pressures lie in the cell centers. An exampleis shown in Fig. 1.The matrix of (3) contains three block rows, the �rst two of which come from themomentum equations for the individual components of the discrete velocity �eld and3
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Fig. 1. Staggered grid for the MAC �nite di�erence discretization.the last to the incompressibility constraint. F and B have the formF =  F1 00 F2 ! ; B = (B1 B2);where Fi = �Ai + Ni. The submatrices are de�ned as follows. Let �jk denote thevalue of a mesh function � at the point (jh; kh) 2 �
. The form of the indices (j; k)depends on the mesh function to which they correspond; in particular, they need notbe integers. The �rst block row of (3) is de�ned by[��u]jk � [A1u]jk � 1h2 (4ujk � uj�1;k � uj+1;k � uj;k+1 � uj;k�1)[aux]jk � [N (x)1 u]jk � 12h �aj+1=2;kuj+1;k � aj�1=2;kuj�1;k�[buy]jk � [N (y)1 u]jk � 12h �bj;k+1=2uj;k+1 � bj;k�1=2uj;k�1�[px]jk � [BT1 p]jk � 1h �pj+1=2;k � pj�1=2;k� :(9)The second block row (associated with v) is de�ned analogously. The discrete convec-tion operator N1 = N (x)1 +N (y)1 represents a second-order approximation to12 [w � gradu+ div (uw)] ;this is a skew-self-adjoint version of the �rst convection term of (2).1 The second termis treated analogously, and the resulting matrix N is skew-symmetric. The discreteincompressibility constraint is� [ux + vy ]jk � [Bu]jk = � �1h �uj+1=2;k � uj�1=2;k�+ 1h �vj;k+1=2 � vj;k�1=2�� :(10)We will discuss the treatment of boundary conditions in Sections 3 and 4.3. Fourier analysis. Suppose (2) is posed with constant wind w and periodicboundary conditions u(x; 0) = u(x; 1); u(0; y) = u(1; y):For the discretization, indexing in (9) and (10) is done in mod n arithmetic. Inparticular, mesh points on the left and right (or top and bottom) boundaries are1 This form of the convection operator leads to the skew-self-adjoint weak form used, for example,in [14, p. 53], [26, p. 205]. 4



identi�ed, and if (j; k) corresponds to a pressure mesh point next to the boundary(e.g., j = 1=2) then one of its \neighboring" points is next to the opposite boundary(j = n � 1=2). The discrete versions of u, v and p each contain n2 components, andtherefore each of F1; F2; B1; B2; BT1 ; BT2(11)is a square matrix of order n2. We also de�ne a discrete convection-di�usion operatorFp on the pressure space using the �rst three terms of (9). That is,Fp � �A+Nwhere A andN = N (x)+N (y) are speci�ed exactly as in (9) and (j; k) now correspondsto indices for grid functions in the pressure space. An analogous idea is used in thede�nition of \distributive relaxation" schemes for multigrid methods applied to theStokes and Navier-Stokes equations, see [3, 30]. Fp is also de�ned using periodicboundary conditions for the discrete pressures. It is then straightforward to prove thefollowing lemma by direct calculation.Lemma 3.1. If w is a constant vector then FBT = BTFp.We will assume for the rest of this section that the wind w is constant on 
. Thepreconditioned operator can then be analyzed using Fourier techniques of the typedescribed in [4]. It turns out that F1 = F2 = Fp in this case and in some of thediscussion we will refer to them collectively as F�. Consider the discrete exponentialmesh functions f (s;t) j 0 � s; t < ng whereh (s;t)ijk = e2�isxje2�ityk ; xj = j=n; yk = k=n; 0 � j; k < n:(12)These make up an orthogonal basis for ICn2 . The matrices associated with the periodicproblem satisfyF� (s;t) =  � 4 �sin2(�sh) + sin2(�th)�h2 + i w1 sin(2�sh) + w2 sin(2�th)h ! (s;t) ;B1 (s;t) = 1h �1� e2�ish� (s;t) ; BT1  (s;t) = 1h �1� e�2�ish� (s;t) ;B2 (s;t) = 1h �1� e2�ith� (s;t) ; BT2  (s;t) = 1h �1� e�2�ith� (s;t) :(13)That is, the mesh functions of (12) constitute an orthogonal basis of eigenvectors foreach of these matrices. The particular choice s = t = 0 leads to  (0;0) � 1, with anassociated eigenvalue equal to 0 for all the matrices of (11). Let S0 denote the spacegenerated by  (0;0) and let S?0 denote the orthogonal complement of S0. It can beveri�ed that all eigenvalues of F� are nonzero for other combinations of s and t, so thatthis matrix represents a nonsingular operator from S?0 to itself. We can also extendF�1� to an operator on all of ICn2 by de�ning it to be 0 on S?0 . Therefore, it makessense to consider the operatorsF�1BT ; BTF�1p ; BF�1BT = B1F�11 BT1 +B2F�12 BT2 :(14)Lemma 3.2. The Schur complement BF�1BT of (14) is a nonsingular operatorfrom S?0 to itself. 5



Proof. It follows immediately from (13) thatBF�1BT (s;t) = �st (s;t)where �st = 4 �sin2(�sh) + sin2(�th)�� �4 �sin2(�sh) + sin2(�th)��+ i h (w1 sin(2�sh) + w2 sin(2�th)) :This eigenvalue is nonzero if s 6= 0 or t 6= 0.Theorem 3.3. Let X be given by (8). If BF�1BT , X and (the identity) I areviewed as operators from S?0 to itself, then X is simply an alternative representationof BF�1BT , and BF�1BT X�1 = I .Proof. It follows from Lemma 3.1 that F�1BT = BTF�1p . Consequently,range(BT) = range(BTF�1p ) = range(F�1BT );so that (7) holds. The assertion follows from the discussion of x1.4. Experiments on Dirichlet problems. The results of x3 show that (8) de-�nes a perfect preconditioner for constant wind and periodic boundary conditions.In this section, we examine the performance of the BFBt preconditioner and somevariants on more realistic problems with Dirichlet boundary conditions u = g on @
.For most of the experiments, the Oseen equations are posed on 
 = (0; 1)� (0; 1)and discretized with the MAC scheme. This is de�ned as in x2 except when thediscrete operators refer to grid indices outside �
 (for example, in components of the�rst discrete momentum equation centered at the values of u next to the bottom of@
). Linear extrapolation is used in these cases; see the de�nition of TE in xA.2 fordetails. We consider two sets of coe�cients, constant w = (1; 2) and w = a circularvortex. In the latter case w is the image of(2y(1� x2);�2x(1� y2))(15)under the linear mapping from (�1; 1)� (�1; 1) to 
. Rather than impose explicitboundary conditions, we eliminate the discrete velocities on the boundary from thesystem and use a normally distributed random vector with mean 0 and variance 1for the right hand side f of (3). We also demonstrate that the BFBt methodologyis not restricted to �nite di�erences with a set of experiments for a �nite elementdiscretization of the driven cavity problem. Both discretizations satisfy an inf-supcondition [14].Our results are in the form of iteration counts for various combinations of � and h.We restrict our attention to values of � such that for the smallest mesh size considered,wh2� is of order 1, so that the discretizations are reasonably accurate. Unless other-wise indicated, the iterative solver is GMRES with right-oriented preconditioning; theinitial guess for all tests is u0 = 0, p0 = 0, and the stopping criterion iskf �Axkk2kfk2 � 10�6where f and xk denote the right hand side and iterate for the block system (3).We now present the results for the BFBt preconditioner. For comparison we showanalogous iteration counts for the preconditioner (4) where X = 1�M is the diagonal6



Table 1Iterations of GMRES for constant wind w = (1; 2) with �nite di�erence discretization.X = XBFBt X = 1�Mh 1/16 1/32 1/64 1/16 1/32 1/64� = 1 9 10 12 12 10 10� = 1=10 8 11 15 34 34 33� = 1=30 9 10 13 88 87 83� = 1=50 9 10 11 144 145 139Table 2Iterations of GMRES for w = circular vortex with �nite di�erence discretization.X = XBFBt X = 1�Mh 1/16 1/32 1/64 1/16 1/32 1/64� = 1 8 10 12 10 10 10� = 1=10 11 14 18 19 19 18� = 1=30 14 17 21 47 46 43� = 1=50 16 18 23 79 77 73of the scaled mass matrix as described in [5]; X = 1� (h2I) for the MAC scheme. Forthe moment we are ignoring any issues of cost.2We present four sets of results. For the MAC discretization, Table 1 shows thenumber of iterations for convergence of GMRES for constant wind, and Table 2 showsthe results for the circular vortex. Table 3 shows analogous statistics for one exampleof a di�erent discretization consisting of bilinear �nite elements for both velocitiesand pressures, with the pressure grid of width 2h and streamline upwinding for thevelocities.3 To show the e�ects of a suboptimal Krylov subspace iteration, Table 4shows the iteration counts when the BFBt preconditioner is combined with quasi-minimum residual (QMR) iteration without look-ahead [10], which (in contrast toGMRES) has a �xed cost per step.As de�ned, the BFBt preconditioner requires several costly subsidiary computa-tions. For each step of GMRES, the preconditioning entails the action of Q�1 whereQ is given by (4). It can be seen from the factorizationQ�1 =  F�1 00 I ! I BT0 �I ! I 00 X�1 !that computing the action of Q�1 entails� computing the action of X�1;� performing a matrix-vector product by BT ; and2 All computations were performed in MATLAB on either a Sun SPARC-20 workstation or aDEC-Alpha 2100 4/275 workstation. For both preconditioners, the action of F�1 was computedusing Gaussian elimination. For the BFBt preconditioner the action of (BBT )�1 was computed bydirect methods using the pseudo-inverse of BBT , except when h = 1=64 for the MAC discretization;in that case, this computation was done using a multigrid iteration in which the relative residual isforced to be less than 10�8.3 The test problem is slightly di�erent here. It is posed on 
 = (�1; 1)� (�1; 1) with w as in (15),f = 0 in (1), and boundary conditions u = v = 0 when x = �1 or y = �1, and u = 1, v = 0 wheny = 1. See [5] for more details. Some of the entries in Table 3 are taken from [5].7



Table 3Iterations of GMRES for w = circular vortex with bilinear �nite element discretization.X = XBFBt X = 1�Mh 2/16 2/32 2/64 2/16 2/32 2/64� = 1 7 9 11 21 22 21� = 1=10 10 12 15 32 36 35� = 1=30 13 15 17 44 56 64� = 1=50 15 17 19 48 72 97Table 4Iterations of QMR with �nite di�erence discretization and BFBt preconditioning.w = (1; 2) w = circular vortexh 1/16 1/32 1/64 1/16 1/32 1/64� = 1 9 13 15 9 12 15� = 1=10 9 13 17 12 17 21� = 1=30 10 11 14 14 20 27� = 1=50 10 12 13 16 21 28� computing the action of F�1.BBT is a discrete Poisson operator on the pressure space (see xA.2 for a derivation forthe MAC scheme), so that for the BFBt preconditioner, computing the action of X�1entails solving two discrete Poisson equations. These together with the convection-di�usion solves are potentially expensive operations, and the BFBt preconditioner issigni�cantly more costly than when X = 1�M , a diagonal matrix. We now examinewhat happens when less costly computations based on inner iteration are used inplace of these three operations. We consider only �nite di�erences here althoughthe same methodologies are applicable to other discretizations. These versions of thepreconditioner also require less storage, and in particular this enabled us to furtherexplore some trends in the data with a �ner mesh size h = 1=128 and smaller viscosityparameter � = 1=100 (used only with this �ne mesh).We �rst consider the e�ect of replacing the Poisson solves with approximationsderived from one step of V-cycle multigrid [19, Ch. 1].4 That is, the modi�ed BFBtpreconditioner uses X = SMG (BFBT )SMG ;where SMG is the multigrid approximation to (BBT )�1. The computational costs ofthis algorithm are of the same order of magnitude as when X = 1�M . (We are stillsolving the convection-di�usion equations exactly except when h = 1=128; in this case,we use an iterative method based on relaxation and force the relative residual normto be less than 10�8.) The iteration counts for the two sets of benchmark problemsare shown in Tables 5 and 6.Next, we consider the e�ect of also replacing the convection-di�usion solves withapproximate solutions derived from iterative methods. We will comment on the choiceof method below. The performance of any such method will depend on the relative4 The multigrid computation used damped Jacobi smoothing with optimal smoothing parameter! = 4=5, one pre-smoothing and one post-smoothing step, and bilinear interpolation for prolongation.8



Table 5Iterations of GMRES with modi�ed BFBt preconditioning using multigrid for the Poisson equa-tion. Wind w = (1; 2), �nite di�erence discretization.X = XBFBt=MGh 1/16 1/32 1/64 1/128� = 1 11 12 15 19� = 1=10 12 13 17 22� = 1=30 12 12 15 20� = 1=50 13 13 14 18� = 1=100 14Table 6Iterations of GMRES with modi�ed BFBt preconditioning using multigrid for the Poisson equa-tion. Wind w = circular vortex, �nite di�erence discretization.X = XBFBt=MGh 1/16 1/32 1/64� = 1 11 12 15� = 1=10 14 16 20� = 1=30 19 21 24� = 1=50 21 24 27amount of convection and di�usion in the problem, i.e., the value of � [7]. Therefore,rather than use a �xed number of iterations, we perform the inner iteration until thestopping criterion kw� Fvkk2kwk2 � � = 10�2(16)is satis�ed, where w represents the right hand side for each convection-di�usion equa-tion and v0 = 0 is the initial guess. The number of these iterations may vary fromstep to step of the outer GMRES iteration, so that we are no longer using a �xedpreconditioner Q; instead we have a series of operators Qk that vary with the GM-RES step. This may cause di�culties for GMRES, but these can be avoided with a\
exible" variant of GMRES (FGMRES) designed for this situation [23], which weuse in these tests. The two algorithms are mathematically equivalent when Qk is�xed. The results for constant wind are shown in Table 7, and for the circular vortexin Table 8. We also present the performance using the scaled mass matrix. A dash\{" indicates failure to converge; this was due to divergence of the iteration for theconvection-di�usion equation and is an artifact of inaccuracy of the discretization.We highlight some trends displayed by these data as follows:1. In all tests with the constant coe�cient problem (Tables 1, 4, and 7, left, andTable 5), iteration counts with the BFBt preconditioner are independent ofthe viscosity �; indeed, in some cases they actually decrease with �. For thecircular vortex, however, the iteration counts appear not to be independent of�, instead exhibiting some growth as � decreases (Tables 2 and 8, left, Table4, right, and Table 6).2. In all cases, the counts with BFBt preconditioning increase slowly with h�1.3. The iteration counts for X = 1�M are independent of h�1 but they growroughly linearly with 1=�; these trends are consistent with the analysis of [5].9



Table 7Iterations of FGMRES with modi�ed BFBt preconditioning using multigrid for the Poisson equa-tion and iteration for the convection-di�usion equation. Wind w = (1; 2), �nite di�erence discretiza-tion. X = XBFBt=MG=Iter X = 1�Mh 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128� = 1 11 13 16 20 12 11 12 12� = 1=10 12 14 17 22 35 34 33 32� = 1=30 12 13 15 20 111 88 85 85� = 1=50 { 13 14 18 { 185 141 142� = 1=100 15Table 8Iterations of FGMRES with modi�ed BFBt preconditioning using multigrid for the Poisson equa-tion and iteration for the convection-di�usion equation. Wind w = circular vortex, �nite di�erencediscretization. X = XBFBt=MG=Iter X = 1�Mh 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128� = 1 11 13 16 19 11 12 12 12� = 1=10 14 16 20 25 19 19 19 18� = 1=30 19 21 24 31 51 45 44 43� = 1=50 { 28 27 34 { 95 73 73� = 1=100 37 155The counts are smaller for the circular vortex than for the constant wind;we have no explanation for this. However, the same qualitative patterns arepresent for both problems. In practical situations it is often desired to computesolutions of a �xed accuracy for a variety of values of � by letting h! 0 and� ! 0 simultaneously; with respect to this criterion, the BFBt preconditionerrequires signi�cantly fewer iterations as the viscosity decreases.4. The results for bilinear �nite elements (Table 3) are qualitatively the same asfor �nite di�erences.5. The iteration counts of QMR (Table 4) are only slightly higher than those ofGMRES and they display the same patterns. This was also true for X = 1�M(results not shown).6. Comparison of Tables 5 and 6 with Tables 1 and 2 shows that replacing theexact Poisson solve with one multigrid step leads to little increase in iterationcounts (less than 25% for h = 1=64). The same trends with respect to � andh are evident, and these carry over to h = 1=128. Note that the multigridmethod used here is not necessarily an optimal choice, just a simple one.7. Approximate solution of the convection-di�usion problem produces little de-gradation in performance of either preconditioner, even though the tolerance� in (16) is very mild.We return to the �rst two items on this list, the dependence of iteration countswith BFBt preconditioning on the parameters � (for the circular vortex) and h. Totry to get a feeling for this dependence, we plot the behavior of the solver along withgraphs of functions that might model this behavior. In particular, Figure 2 plotsiteration counts as a function of ��1 using the entries of Table 8 for h = 1=128,10



Fig. 2. Comparison of iteration counts with various functions of �, for h = 1=128.
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1/nutogether with graphs of the functions ��1 and ��1=2; the latter curves were shiftedto make the �gure easy to view. These results suggest that dependence on � is likeO(��1=2), although it is di�cult to make a precise statement with this limited amountof data. Similarly, Figure 3 plots iteration counts as a function of h�1 using the entriesfrom Table 8 for � = 1=30, and these are compared with h�1 and h�1=2. These resultstypify the behavior for all the values � in the table and suggest that the dependenceon h is of order h�1=2; see also xA.2.We comment brie
y on the convection-di�usion solvers. For simple 
ows, it isfairly easy to construct relaxation strategies that follow the 
ow and converge rapidly[7], but for more complex 
ows, especially with recirculations, this is a more di�culttask. In these tests, we used a horizontal 1-line SOR iteration with relaxation param-eter given by the optimal choice for the constant coe�cient problem, which can becomputed analytically [8]. We used this for the circular wind only for convenience ofcoding, and convergence was slow for these problems. Many other options for solvingthis problem (such as multigrid) are available. We also ran some tests with anotherinner iteration (using a \multidirectional relaxation") and found the number of outeriterations not to depend signi�cantly on the choice of the method used here. Thispoints to the importance of the convection-di�usion problem for the BFBt precondi-tioner; it is critical that that the approximate solution to this subproblem be computede�ciently for the complete computation to be inexpensive.5. Concluding remarks. We summarize this study as follows. The main newresult is that the performance of the BFBt preconditioner for solving the steady-state Oseen equations with Dirichlet boundary conditions depends very mildly onthe viscosity �. This stands in contrast to other preconditioning methods, whereperformance deteriorates more dramatically as � ! 0. Its performance depends onthe mesh size h with iterations apparently growing in proportion to h�1=2. If a seriesof Dirichlet problems with decreasing viscosity are to be solved in such a way that his proportional to �, then we expect the iteration counts to grow like O(��1=2).This conclusion also appears to hold for \inexact" versions of the BFBt precondi-tioner in which the expensive subsidiary computations, solution of the Poisson equation11



Fig. 3. Comparison of iteration counts with various functions of h, for � = 1=30.
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1/hand convection-di�usion equation, are replaced by iterative solves with mild stoppingcriteria. The e�ectiveness of these variants of the BFBt preconditioner depends onhaving e�cient methods for the convection-di�usion equation.This issue is also a critical one for multigrid methods for the Navier-Stokes equa-tions [3, 27, 28, 30]. It is di�cult to make a simple comparison between the methodsproposed here and multigrid; most reported studies show a dependence on viscosity(or Reynolds number) but not on mesh size [27, 28, 30]. An advantage of the BFBtpreconditioner is that it can be applied easily to systems arising from mixed �niteelements with di�erent grids for velocities and pressure (as shown in Table 3).If the goal is to solve a �xed Dirichlet problem on a sequence of �ner meshes, thenthere are other methods whose performance is less dependent on the mesh size [5, 11].This is true in particular for the Stokes equations, where several methods exist whoseconvergence rate is independent of h [1, 2, 22, 25].Finally, we note that the boundary conditions are very important here. Fourieranalysis is often used as a guideline in behavior of numerical methods [21], and thereare numerous examples of cases where the results for periodic boundary conditionsare predictive of performance for Dirichlet conditions [4]. However, here there is aqualitative di�erence in the two types of problems. See [18] for other examples of thee�ects of boundary conditions on iterative methods.A. Appendix: Partial analysis for the preconditioned Stokes problem.We show that the minimum eigenvalue for the BFBt-preconditioned Stokes operatoris no smaller than one and give a partial analysis that suggests why its maximumeigenvalue is proportional to h�1.A.1. Lower bound. Suppose the coe�cient matrix of (3) is a discrete Stokes op-erator, i.e., it is derived from � = 1, w = 0 in (2), with Dirichlet boundary conditions.Therefore, F = A. Let the singular value decomposition of B be denotedB = U�V T = [U1; u0]���100 0� 0 � V T1V T2 ! = U1�1V T1 :12



The columns of U1 span range(B), the columns of V1 span range(BT ), and u0 isparallel to the discrete hydrostatic pressure p � 1, which determines the null space S0of BT . It follows that BBT = U1�21UT1 :As in x3, we will treatBT as an operator de�ned on S?0 ; on this space BBT and BABTrepresent nonsingular operators whose inverses are given by the matrix pseudo-inverses(BBT )�1 = U1��21 UT1 ;(BABT )�1 = U1��11 (V T1 AV1)�1��11 UT1 :We are interested in the minimum eigenvalue of the generalized eigenvalue problem(BA�1BT )p = � (BBT) (BABT)�1(BBT )p:(17)The Schur complement matrix on the left isS � BA�1BT = U1�1V T1 A�1V1�1UT1 ;and the preconditioning matrix on the right isX = U1�1(V T1 AV1)�1�1UT1 :Consequently, S = X + U1�1 hV T1 A�1V1 � (V T1 AV1)�1i�1UT1 :(18)Using this splitting of S, we can prove the following result.Theorem A.1. The minimum eigenvalue of the preconditioned generalized Stokesoperator with Dirichlet boundary conditions is � = 1.Proof. We will show that V T1 A�1V1 � (V T1 AV1)�1 is positive semi-de�nite. LetD = V TAV =  D11 D12D21 D22 !where Dij = V Ti AVj . D is symmetric positive-de�nite and standard analysis givesD =  I 0D21D�111 I ! D11 00 D22 �D21D�111 D12 ! I D�111 D120 I ! :Letting CD � D22 �D21D�111 D12, this in turn implies thatD�1 =  D�111 +D�111 D12C�1D D21D�111 �D�111 D12C�1D�C�1D D21D�111 C�1D ! :But D�1 = V TA�1V , so thatV T1 A�1V1 = [D�1]11 = D�111 +D�111 D12C�1D D21D�111 :13



Fig. 4. Maximum eigenvalue for the Stokes problem with BFBt preconditioner.
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Therefore, infx6=0 (x; V T1 A�1V1x)(x; (V1AV1)�1x) = infx6=0 (x;D�111 +D�111 D12C�1D D21D�111 x)(x;D�111 x)= infx6=0 (x;D11+D12C�1D D21x)(x;D11x) � 1:It follows that V T1 A�1V1 � (V T1 AV1)�1 is positive semi-de�nite, so that (18) yieldsinfq2S?0 (q; Sq)(q;Xq) � 1:A.2. Largest eigenvalue. The experiments described in x4 show that conver-gence rates for the BFBt preconditioner depend on the mesh size. Figure 4 plots themaximum eigenvalue of (17) as a function of h�1, where the computations were forh = 1=4, 1=8, 1=16 and 1=32. The results indicate that the maximum eigenvalue is ofmagnitude O(h�1). By analogy with the standard convergence bounds for symmet-ric positive de�nite problems, this suggests that the iteration counts will increase inproportion to h�1=2, which is consistent with the results of x4.To provide some insight into this maximum eigenvalue, we write(q; Sq)(q;Xq) = (q; Sq)(q; (h2I)q) (q; (h2I)q)(q;Xq) ;where h2I is playing the role of the mass matrix for the �nite di�erence discretization.It is well-known [9] that the �rst quotient on the right is bounded by a constant� � p2. We would like a bound for the second quotient of the formsupq2S?0 (q; (h2I)q)(q; (BBT) (BABT)�1(BBT)q) � ch;or equivalently, supq2S?0 (q; BABTq)(q; (BBT)2q) � ch3 :(19) 14



The matrices comprising (19) have a tensor product structure derived from one-dimensional operators. Let the interval [0; 1] be divided into n equally spaced subinter-vals of width h = 1=n, where the jth interval is [xj�1; xj ] with xj = jh and midpointx̂j = (j � 1=2)h. An example with n = 8 is shown below.x0 x1 x2 x3 x4 x5 x6 x7 x8x̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7 x̂8Consider the following three (scaled) �nite di�erence approximations to the one-dimensional Laplace operator �u00:TD = 0BBBB@ 2 �1�1 2 �1. . .�1 2 �1�1 2 1CCCCA ; TE = 0BBBBB@ 3 �1�1 2 �1.. .�1 2 �1�1 3 1CCCCCA ; TN = 0BBBBB@ 1 �1�1 2 �1.. .�1 2 �1�1 1 1CCCCCA :TD and TE are derived from Dirichlet boundary conditions (u(0), u(1) given), andTN is derived from Neumann conditions (u0(0), u0(1) given). TD is de�ned at the cellboundaries fxjgn�1j=1 and is of order n � 1; TE and TN are de�ned at the cell centersfx̂jgnj=1 and are of order n. In all cases, the discrete Laplace operator at points nextto the boundaries depends on the boundary conditions. TE uses linear extrapolationu(x̂0) = �u(x1) + 2u(0); u(x̂n+1) = �u(xn) + 2u(1);TN approximates the Neumann boundary conditions asu0(0) � [u(x̂1)� u(x̂0)]=h; u0(1) � [u(x̂n+1)� u(x̂n)]=h:Note that TE = TN + 2E0; E0 = 0B@1 0 . .. 0 11CA :(20)We will also use the di�erence operatorBD = 0BBBB@�11 �1.. . . . .1 �111CCCCA ;which has dimensions n � (n � 1) and can be viewed as mapping cell boundary gridfunctions to cell centered functions. It is easily veri�ed thatBDBTD = TN ; BDTDBTD = T 2N :(21)Recall that for matricesX and Y whereX has dimensions r�s, the tensor productof X and Y is [16, pp. 239�]X 
 Y = 0B@ x11Y � � � x1;sY... . . . ...xr;1Y � � � xr;sY 1CA :15



Letting Ir denote the identity matrix of order r, it is straightforward to show thatA =  In 
 TD + TE 
 In�1 00 In�1 
 TE + TD 
 In! ;B = [In 
 hBD; hBD 
 In] :The identities (21) then implyBBT = h2(In 
 TN + TN 
 In);(BBT )2 = h4(In 
 T 2N + 2TN 
 TN + T 2N 
 In);BABT = h2(In 
 T 2N + TE 
 TN + TN 
 TE + T 2N 
 In):Consequently, relation (19) is equivalent tosupq2S?0 (q; (In 
 T 2N + TE 
 TN + TN 
 TE + T 2N 
 In)q)(q; (In 
 T 2N + 2TN 
 TN + T 2N 
 In)q) � ch :(22)Remark. This derivation shows that BBT is a scaled discrete Poisson operatoron the pressure space with Neuman boundary conditions.The matrices in (22) di�er only by the presence of TE in the cross-terms of thenumerator, i.e., the numerator contains submatrices derived from Dirichlet conditionswhereas the denominator comes exclusively from Neumann conditions. To get a feelingfor why this di�erence in boundary conditions leads to an inequality of the form (22),consider the generalized eigenvalue problem for the one-dimensional operators,TNx = �TEx:(23)It is evident from (20) that there is an eigenvalue � = 1 of multiplicity n� 2 for whichevery eigenvector x satis�es x1 = xn = 0. Moreover, TNx = 0 for the constant vectorx � 1, so that 0 is also an eigenvalue. If any x satis�es (23) with � 6= 0 and at leastone of x1 6= 0 or xn 6= 0, then the �rst and last equations (of (23)) imply � 6= 1. Fromthe �rst equation we have x2 � x1 = 2��� 1 x1:(24)The assumption � 6= 1 together with the (interior) equations k = 2; : : : ; n� 1 implyxk+1 � xk = xk � xk�1 = 2��� 1 x1; 2 � k � n;where the second equality comes from (24). An inductive argument then yieldsxk = (2k � 1)�� 1�� 1 x1; 2 � k � n:(25)Finally, the last equation of (23) impliesxn = 1� �2� (xn � xn�1) = �x1:Equating this expression for xn with the one from (25) yields � = 1=n = h. Therefore,we have the following result. 16
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