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 A comprehensive theoretical and experimental study of the fundamentals and 

the underlying phenomena governing the operation of piezoelectric vibration energy 

harvesting from coupled structural-acoustic systems is presented. Analytical and 

finite element models are developed based on variational formulations to describe the 

energy harvesting from uncoupled structural elements as well as structural elements 

coupled with acoustic cavities. The models enable the predictions of the structural 

displacement, output electric voltage, and fluid pressure for various loading 

conditions on the energy harvesting system. The developed models also include 

dynamic magnification means to enhance the energy harvesting capabilities and 

enable harnessing of the vibration energy over a broader operating frequency range. 

 The predictions of all the models are experimentally validated by using 

structural elements varying from beams to plates. Close agreements are demonstrated 

between the theoretical predictions and the obtained experimental results. 



 

The theoretical and experimental tools developed, in this dissertation, provide 

invaluable means for designing a wide variety of efficient energy harvesters for 

harnessing the vibrational energy inside automobiles, helicopters, aircrafts, and other 

types of structures that interact internally or externally with a fluid medium. With 

such harnessed energy, a slew of on-board sensors can be powered to enable the 

continuous monitoring of the condition and health of these structures without the need 

for external power sources.  
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Chapter 1  

1. Introduction 
 

1.1. Energy Harvesting using Piezoelectric Vibration 

 Harnessing of energy from ambient vibration using piezoelectric materials has 

been recognized as a viable means for powering small electronic devices and remote 

sensors in order to eliminate their dependence on external power sources [2-4]. 

Piezoelectricity is a form of mechanical-to-electrical or electrical-to-mechanical 

coupling where piezoelectric materials are used to achieve this goal through the direct 

or the converse piezoelectric effects. With such self-powered capabilities, these 

devices and sensors can operate in an uninterrupted fashion over prolonged periods of 

time. In fact, there are three vibration based energy harvesting techniques as 

described by Williams and Yates [5]. These include electromagnetic, electrostatic, 

and piezoelectric transductions. However, the latter received more attention from 

researchers in the last decade. In the open literature, piezoelectric energy harvester 

models range from simple lumped parameter models to fairly sophisticated 

distributed parameter models [6-15]. These include both, deterministic and 

undeterministic models. 

 Most of the exerted efforts place a particular emphasis on maximizing the 

harvested power transmitted to the output load by using various innovative 

approaches.  On the top of the list of these approaches is the exploitation of the 

concept of impedance matching between the piezoelectric energy harvester and the 
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electrical load as reported, for example, by Kong et al. [16], Liang and Liao [17], 

Stephen [18], and Chen et al [19].  However, several other concepts have also been 

considered. Among these concepts is the use of a tunable resonant frequency power 

harvesting device to continuously match the time-varying frequency of the external 

vibration in real time as reported by Wu et al. [20]. Another concept developed by 

Badel et al. [21] relies on the use of a harvester augmented with an electrical 

switching device in which the switch is triggered to maximize the output voltage of 

the harvester. Other approaches are devised by duToit [7] and duToit et al. [8] where 

the optimal parameters of single degree of freedom harvesters are selected to 

maximize the extracted power when mechanical damping is neglected. Daqaq et al. 

[6] and Renno et al. [22] extended the work of duToit [7] and duToit et al. [8] to 

include the effects of damping and electromechanical coupling when optimizing the 

harvester output power.  These attempts have been extended to theoretically optimize 

and experimentally evaluate the performance of cantilevered piezoelectric harvesters 

by Erturk and Inman [10,11] and DeMarqui et al. [14]. El-Sabbagh and Baz [15] used 

topology optimization techniques to maximize the power output of a circular bimorph 

energy harvester by assuming that the capacitances attached to the electrodes are 

controllable and can be optimized to maximize the power output at a given excitation 

frequency. In their work, they changed the topology of the energy harvester by 

making its thickness vary with the radius of the bimorph. 

 In the above studies, the interest has been focused on harvesters that are 

primarily linear systems. However, recent efforts are now considering maximizing the 
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harvested power over broad frequency range using multi-harvesters as in Xue et al. 

[23] or by exploiting different sources of nonlinearities [12,24-25]. 

 On the other hand, problems related to fluid-structure interaction can be found 

in many engineering applications and is considered a relatively old and well 

established field as reported for example by Morand and Ohayon [27], Olson and 

Bathe [28], Everstine [29], and de Souza and Pedroso [30]. The field of structural-

acoustic problems is an example which appears in cases of cavities containing fluid, 

limited by flexible and/or rigid walls [30-31]. However, most of the work done in this 

field over the past decade was devoted to the development, testing and modeling of 

noise reduction techniques using passive and/or active means [31-38]. It is well 

known that passive noise reduction methods are more effective at high frequencies 

and can be achieved by using sound absorbing materials. In the low frequency range, 

active techniques using piezoelectric materials are found to be more attractive. 

 In the open literature, most of the exerted research in energy harvesting has 

focused on vibration-based methods in which a piezoelectric structure is vibrated by 

attaching it to a vibrating base-structure [4]. However, more complex types of 

excitations, e.g. pressure, wind, or fluid flow have not seen as much attention so far. 

Recently, DeMarqui et al. [39] presented a frequency domain piezoaeroelastic 

analysis of a generator wing with continuous electrodes. The piezoaeroelastic model, 

they proposed, is obtained by combining an unsteady aerodynamic model with an 

electromechanically coupled finite element model. The subsonic unsteady 

aerodynamic model is based on the doublet lattice method. It was observed from their 
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presented work that increased electrical power output of the resistive-inductive case 

can be achieved with increased flutter speed. 

 In the present work, focus is placed on developing a comprehensive finite 

element modeling of energy harvesting from the structural-acoustic coupled 

problems. This goal is achieved by first considering a relatively simple two-

dimensional model which is then generalized to the more realistic case of three-

dimensional systems. The objective and scope of this thesis is explained in the 

following in more details. 

1.2. Objective and Scope of Dissertation 

 The main objectives of this dissertation are to develop a comprehensive 

theoretical and experimental study of the fundamentals and the underlying 

phenomena governing the operation of piezoelectric vibration energy harvesting from 

coupled fluid-structure systems. With the development of theoretical and 

experimental tools to be presented in this dissertation, it would be possible to design a 

wide variety of efficient energy harvesters for harnessing the vibrational energy 

inside automobiles, helicopters, aircrafts, and other types of structures that interact 

internally and/or externally with a fluid medium. With such harnessed energy, a slew 

of on-board sensors can be powered to enable the continuous monitoring of the 

condition and health of these structures without the need for external power sources.  

In order to achieve these objectives, first, a brief review is presented in 

Chapter 1 on the literature of energy harvesting from vibrating structures and in 

particular from structures interacting internally or externally with a fluid medium. 

Chapter 2 presents analytical and numerical analyses of piezoelectric energy 
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harvesters with dynamic magnification capabilities for vibrating beams. Chapter 3 

includes experimental demonstration of the feasibility of the concept of energy 

harvesting with dynamic magnification as well as detailed comparisons between the 

obtained experimental results and the theoretical predictions of the models introduced 

in Chapter 2. In Chapter 4, 2-D and 3-D finite element modeling of piezoelectric 

vibration energy harvesting from coupled structural-acoustic systems is presented 

with and without dynamic magnification capabilities.  The model enables the 

predictions of the energy harvesting power and efficiency at various loading 

conditions in an attempt to determine the optimal performance of the harvesters.  

Details of the modal characteristics of the uncoupled structure and the uncoupled 

acoustic cavity are presented along with the effect of the fluid-structure interaction 

when the structure is coupled with the cavity. Chapter 5 includes the experimental 

validation of the 3-D finite element model developed in Chapter 4. Chapter 6 

summarizes the main conclusions reached at this dissertation and includes also the 

recommendations for future studies. 
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Chapter 2  

2. Piezoelectric Energy Harvester with a Dynamic Magnifier: 

Analytical and Numerical Analysis 
 

2.1. Introduction 

 Conventional energy harvesters typically consist of a cantilevered composite 

piezoelectric beam which has a proof mass at its free end while its fixed end is 

mounted on a vibrating base structure. The resulting relative motion between the 

beam and the base structure produces a mechanical strain in the piezoelectric layers 

which is converted into electric power by virtue of the direct piezoelectric effect. In 

this chapter, a radically different approach is considered whereby a conventional 

energy harvester is provided with a dynamic magnifier which consists of a spring-

mass system that is placed between the fixed-end of the composite piezoelectric beam 

and the vibrating base structure. The main function of the dynamic magnifier, as the 

name implies, is to magnify the strain induced in the piezoelectric layers in order to 

amplify the electric power output. With proper selection of the design parameters of 

the dynamic magnifier, the harvested electric power can be significantly enhanced 

and the effective frequency bandwidth can be improved. 

2.2. Concept of Energy Harvester with a Dynamic Magnifier 

 Figure  2.1 shows a schematic drawing of a conventional piezoelectric energy 

harvester (CPEH). Generally, the CPEH consists of a cantilevered composite 

piezoelectric beam that has an end mass M  connected to its free end while its fixed 

end is mounted on a vibrating base structure. The resulting relative motion between 
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the beam and the base structure produces a mechanical strain 1S  in the piezoelectric 

patches which is converted to electric power by virtue of the direct piezoelectric 

effect. The generated power can be used to drive the resistive load 
L

R . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure  2.2 shows the proposed CPEHDM system which consists of a CPEH 

augmented with a dynamic magnifier. The magnifier is basically a spring 
f

k  - mass 

f
M  system placed between the fixed end of the composite piezoelectric beam and the 

base structure. The main purpose of the dynamic magnifier is to magnify the strain 

induced in the piezoelectric layers in order to amplify the electric power output. The 

obtained results demonstrate the feasibility of the CPEHDM as a simple and effective 

means for enhancing the magnitude and spectral characteristics of the CPEH. 

 

 

 

Electric Load 

Beam          Piezo-patches End Mass 

L 

Base Structure 

2 

1 

3 

         Poling direction 

RL 

                                                   

M 

Figure  2.1: CPEH with series connection of piezoelectric patches 
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2.3. Analytical Modeling of Energy Harvester with a Dynamic Magnifier 

 In this section, an analytical model is developed to simulate the vibrations of 

the CPEHDM during its transverse oscillation around the original position as outlined 

in Figure  2.3. Two coordinate systems are considered here to clearly explain the 

kinematics of the problem. These systems are the inertial frame of reference X Z−  

(fixed in space) and the base-fixed coordinate system x z−  (moving with the base). 

 Let ( ),bw x t  denote the displacement of the base relative to the inertial frame 

of reference X Z−  and ( ),relw x t  denote the transverse deflection of the beam 

relative to the base-fixed coordinate system x z−  at any location x . Accordingly, one 

can write 

 ( ) ( ) ( ), , ,rel bw x t w x t w x t= +  (2.1) 

where ( ),w x t  is the transverse deflection of the beam relative to the inertial frame of 

reference X Z−  at the same location x  where ( ),relw x t  was defined. In addition, 

Electric Load 

L 

RL 

Base Structure 

              

Mf                                                         

kf 

                                              

M 

Dynamic 

Magnifier 

2 

1 

3 

End Mass Beam         Piezo-patches 

         Poling direction 

Figure  2.2: CPEHDM with series connection of piezoelectric patches 
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( )0,relw t  and ( ),relw L t  denote, respectively, the transverse deflection of the 

magnifier mass 
f

M  and the end mass M  relative to the moving coordinate system 

x z− . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.1. Kinetic Energy (T ) 

 The kinetic energy of the CPEHDM system is given by 

 
( ) ( )

2 22

0

0, ,1 1 1

2 2 2

L

t f

w t w L tw
T m dx M M

t t t

∂ ∂   ∂ 
= + +    

∂ ∂ ∂     
∫  (2.2) 

where 2
t b p

m m m= +  with 
b

m  and 
p

m  denoting the mass per unit length of the beam 

and a single piezoelectric patch, respectively. 

                                                                       

kf 

                                              

M 

              

Mf                                                         

Original Position 

Original 

Position 

x 

z 

tp 

tb 

2 
3 

1 

wrel (L,t) 

              

Mf                                                         

L 

Displaced Position 

X 

Z 

                                              

M 

                                              

M 

wb(x,t) 

                                              

Mf 

wrel(x,t) 

wrel(0,t) 

tp 

Deflected 

Position 

Figure  2.3: Original and deflected positions of the cantilevered piezoelectric energy 

harvester with dynamic magnifier 
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 On substituting Equation (2.1) into Equation (2.2), gives 

 

( ) ( )

( ) ( )

22

0

2

0, 0,1 1

2 2

, ,1

2

L

rel brel b
t f

rel b

w t w tw w
T m dx M

t t t t

w L t w L t
M

t t

∂ ∂ ∂ ∂ 
= + + +  

∂ ∂ ∂ ∂   

∂ ∂ 
+ + 

∂ ∂ 

∫
 (2.3) 

2.3.2. Potential Energy (U ) 

 The potential energy of the CPEHDM system is given by 

 ( )
2

2
2

1 12

0

1 1 1
0,

2 2 2
p

L

rel
b b P f rel

w
U E I dx T S d k w t

x
Ω

 ∂
= + Ω + 

∂ 
∫ ∫  (2.4) 

where 
b b

E I  is the flexural rigidity of the beam, 1T  is the stress in the piezoelectric 

layers, 1S  is the strain in the piezoelectric layers, and 
P

Ω  is the volume of the 

piezoelectric layers. 

 After using the constitutive equations of piezoelectric materials (ANSI/IEEE 

STD 176-1987), we have 

 ( )1 11 1 31 3

E
T c S d E= −  (2.5) 

where 11

E
c  is the Young's modulus at constant electric field, 31d  is the piezoelectric 

strain coefficient, ( )2 2

1 /
rel

S z w x= − ∂ ∂ , and 3 / 2
T p

E V t= −  is the electric field for 

series connection of piezoelectric layers where 
T

V  denotes the respective electric 

voltage across the resistive electric load 
L

R . 

 On substituting Equation (2.5) into Equation (2.4), it reduces to 

 ( ) ( )
2

2
2

11 1 31 3 12

0

1 1 1
0,

2 2 2
p

L

Erel
b b P f rel

w
U E I dx c S d E S d k w t

x
Ω

 ∂
= + − Ω + 

∂ 
∫ ∫  (2.6) 
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 Equation (2.6) can be further expanded to 

 

( )

2
2

2

0

2 2

11 312 2

0

2

1

2

1
2

2 2

1
0,

2

p

L

rel
b b

h tL

E rel relT

ph

f rel

w
U E I dx

x

w wV
c b z d z dz dx

x t x

k w t

+

 ∂
=  

∂ 

       ∂ ∂ 
 + − + −       ∂ ∂         

+

∫

∫ ∫  (2.7) 

where / 2
b

h t= . 

 Performing the integrations, Equation (2.7) reduces to 

 ( ) ( )
2

2 2
2

11 312 2

0

1 1
/ 2 0,

2 2

L

Erel rel
t t T p f rel

w w
U E I bc d V h t dx k w t

x x

    ∂ ∂
 = − + +   

∂ ∂     
∫  (2.8) 

where ( )2 2 3

11

2
3 3

3

E

t t b b p p p
E I E I c b h t ht t= + + + . 

 As the electric voltage is related to the electric charge by 

 
T L

dQ
V R

dt
=  (2.9) 

 On substituting Equation (2.9) into Equation (2.8), it reduces to 

 

( )

( )

2
2 2

11 312 2

0

2

1
/ 2

2

1
0,

2

L

Erel rel

t t L p

f rel

w wdQ
U E I bc d R h t dx

x dt x

k w t

    ∂ ∂ 
 = − +    

∂ ∂      

+

∫
 (2.10) 

2.3.3. Electric Energy (
e

W ) 

 The electric energy of the CPEHDM system is given by 

 3 3

1

2
p

e P
W E D d

Ω

= Ω∫  (2.11) 
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where 3D  is the electric displacement. 

 Now, from the constitutive equations of piezoelectric materials (ANSI/IEEE 

STD 176-1987), we have 

 3 31 1 33 3

T
D d T E= + ∈  (2.12) 

where 33

T∈  is the permittivity at constant stress. 

 On substituting Equations (2.5) and (2.12) into Equation (2.11), the result is 

 

2

31 11 2

0

2 2

2

31 11 33

1
2

2 2

2 2

ph tL

E rel T
e

ph

E TT T

p p

w V
W b d c z

x t

V V
d c dz dx

t t

+      ∂ −= −        ∂     

     − + ∈               

∫ ∫
 (2.13) 

 Evaluating the integrals in Equation (2.13) and utilizing Equation (2.9), we get 

 

( )

( ) ( )

2

11 31 2

0

2 2

2 2 2

31 11 33

1
/ 2

2

/ 4 / 4

L

E rel

e L p

E T

L p L p

wdQ
W bc d R h t dx

dt x

dQ dQ
bLd c R t bL R t

dt dt

  ∂ 
= +   

∂    

   
− + ∈   

   

∫
 (2.14) 

 The permittivity component at constant strain is related to the permittivity at 

constant stress by 

 2

33 33 31 11

S T E

d
d c∈ =∈ −  (2.15) 

 On substituting Equation (2.15) into Equation (2.14), we get 

 ( ) ( )
22

2

11 31 332

0

1
/ 2 / 4

2

L

E Srel
e L p L p

wdQ dQ
W bc d R h t dx bL R t

dt x dt

  ∂   
= + + ∈     

∂     
∫ (2.16) 
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2.3.4. Undamped Equations of Motion 

 The generalized Hamilton's principle will be used to derive the undamped 

electromechanical equations of motion associated with the mechanical and electrical 

degrees of freedom ( ),relw x t  and ( )Q t  as 

 

( )

( ) ( )

2

1

1 2

0,

, 0, 0,

0 , ,

t

e

t

rel

T U W W dt

w x t Q t

x L t t t

δ δ δ δ

δ δ

− + + =

= =

≤ ≤ =

∫

 (2.17) 

where Wδ  is the variation of the electrically extracted work. It is given by 

 
L

dQ
W R Q

dt
δ δ= −  (2.18) 

 The variations of the kinetic energy, the potential energy, and the electric 

energy are given by 

 
( ) ( ) ( )

( ) ( ) ( )

0

0, 0, 0,

, , ,

L

rel b rel
t

rel b rel

f

rel b rel

w w w
T m dx

t t t

w t w t w t
M

t t t

w L t w L t w L t
M

t t t

δ δ

δ

δ

∂ ∂ ∂   
= +   

∂ ∂ ∂   

∂ ∂ ∂   
+ +   

∂ ∂ ∂   

∂ ∂ ∂   
+ +   

∂ ∂ ∂   

∫

 (2.19) 

 

( )

( ) ( ) ( )

( ) ( )

2 2

11 31 ,2 2

0

11 31 ,

1
/ 2

2

1
/ 2

2

0, 0,

L

Erel rel
t t p L rel xx

E

p L rel xx

f rel rel

w w dQ
U E I bc d h t R w

x x dt

dQ
bc d h t R H x H x L w dx

dt

k w t w t

δ δ δ

δ

δ

    ∂ ∂  
= − +      

∂ ∂     

 
− + − −    

  

+

∫

 (2.20) 



 

 14 

 

 

( )

( ) ( ) ( )

( )

11 31 ,

0

11 31 ,

2

33

1
/ 2

2

1
/ 2

2

2 / 4

L

E

e p L rel xx

E

p L rel xx

S

L p

dQ
W bc d h t R w

dt

dQ
bc d h t R H x H x L w dx

dt

dQ dQ
bL R t

dt dt

δ δ

δ

δ

  
= +    

 
+ + − −    

  

   
+ ∈    

   

∫

 (2.21) 

where ( )H x  is the Heaviside function. 

 The different integrations in Equation (2.17) are evaluated separately as 

follows 

 

( )
( )

( )
( )

( )

( )

2 2

1 1

22 2

2 2 2

0

22

2 2

2

2

0,
0,

,
,

t t L

relrel b
t rel f rel

t t

relb
f rel rel

b
rel

w tw w
Tdt m w dx M w t

t t t

w L tw
M x w M w L t

t t

w
M x L w dt

t

δ δ δ

δ δ δ

δ δ

  ∂ ∂ ∂
= − + +    

∂ ∂ ∂   

 ∂ ∂
+ +   

∂ ∂   

 ∂
+ −  

∂  

∫ ∫ ∫

 (2.22) 

 
( )

( ) ( )

2 2

1 1

2 3

2 3

0 0

4 3

11 314 2

0 0

11 31

0

1
/ 2

2

1
/ 2

2

x Lx Lt t

rel rel rel
t t t t rel

t t x x

L L

Erel rel
t t rel p L

L

E

p L

w w w
Udt E I E I w

x x x

w w
E I w dx bc d h t R Qdx

x x t

d x ddQ
bc d h t R

dt dx

δ δ δ

δ δ

δ

==

= =

    ∂ ∂ ∂ 
= −     

∂ ∂ ∂    

   ∂ ∂
+ + +   

∂ ∂ ∂   

 
− + − 

 

∫ ∫

∫ ∫

∫
( )

( ) ( )0, 0,

rel

f rel rel

x L
w dx

dx

k w t w t dt

δ
δ

δ

− 
 
 

+ 

 (2.23) 

 

( )

( ) ( ) ( )

( )

2 2

1 1

3

11 31 2

0

11 31

0

2
2

33 2

1
/ 2

2

1
/ 2

2

2 / 4

t t L

E rel
e L p

t t

L

E

p L rel

S

L p

w
W dt bc d R h t Qdx

x t

d x d x LdQ
bc d h t R w dx

dt dx dx

d Q
bL R t Q dt

dt

δ δ

δ δ
δ

δ

  ∂
= − +  

∂ ∂ 

−  
+ + −  

   

 
− ∈  

  

∫ ∫ ∫

∫  (2.24) 



 

 15 

 

where ( )xδ  is the Dirac delta function. It satisfies the following relation 

 
( )

( ) ( )
( )0 0

1

n n
n

n n

d x x df x
f x dx

dx dx

δ∞

−∞

−
= −∫  (2.25) 

 Substituting Equation (2.18) and Equations (2.22)-(2.24) into Equation (2.17) 

and collecting terms, we get 

 

( ) ( )

( ) ( )

2

1

2 2 2 2

2 2 2 2

0

4

4

2 2

2 2

t L

rel b b b
t t f

t

rel

t t rel

rel rel rel
t t t t

x L

w w w w
m m M x M x L

t t t t

d x d x Lw dQ
E I w dx

x dt dx dx

w w w
E I E I

x x x

δ δ

δ δ
δ

δ
=

         ∂ ∂ ∂ ∂
− − − − −         

∂ ∂ ∂ ∂        

−  ∂
− + Γ −    

∂    

  ∂ ∂ ∂ 
− +    

∂ ∂ ∂   

∫ ∫

( )

( )

0

2 3

2 3

2 3

2 3

0

3

11 31 2

0

2

33

/ 2

2 / 4

rel

x

rel rel
t t rel

x L

rel rel
f t t f rel rel

x

L

E rel
p L

S

L p

w

x

w w
M E I w

t x

w w
M E I k w w

t x

w
bc d h t R dx

x t

d
bL R t

δ

δ

δ

=

=

=

   ∂ 
    

∂   

    ∂ ∂
+ − +    

∂ ∂    

    ∂ ∂
+ − − −    

∂ ∂    

  ∂
+ − +  

∂ ∂ 

− ∈

∫

2

2
0

L

Q dQ
R Q dt

dt dt
δ

   
− =   

    
 (2.26) 

 The resulting distributed parameter undamped electromechanical equations of 

the CPEHDM system are obtained by invoking the arbitrariness of the virtual 

displacement 
rel

wδ  and the virtual electric charge Qδ  as 

 

( ) ( )

( ) ( )

2 4

2 4

2

2

rel rel
t t t

b
t f

d x d x Lw w dQ
m E I

t x dt dx dx

w
m M x M x L

t

δ δ

δ δ

−    ∂ ∂  
+ − Γ −      

∂ ∂       

 ∂
 = − + + −    ∂ 

 (2.27) 
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3 2

2

2 2

0
2

L

rel P
L L

w C d Q dQ
dx R R

x t dt dt

   ∂  
Γ + = −     

∂ ∂    
∫  (2.28) 

where ( )11 31 / 2E

p L
bc d h t RΓ = +  and 33 /S

P pC bL t= ∈  is the internal capacitance of a 

single piezoelectric layer. 

 The corresponding boundary conditions for the relative motion of the 

undamped composite piezoelectric beam are 

 

2 3

2 3

0
0

2 2 3

2 2 3

0, 0,

0, 0

rel rel rel
f t t f rel

x
x

rel rel rel
t t t t

x L x L

w w w
M E I k w

x t x

w w w
E I M E I

x t x

= =

= =

    ∂ ∂ ∂
= + + =    

∂ ∂ ∂    

      ∂ ∂ ∂
= − + =      

∂ ∂ ∂      

 (2.29) 

 Now, the relative vibration response of the undamped composite piezoelectric 

beam can be assumed in the following series form of eigenfunctions 

 ( ) ( ) ( )
1

,rel r r

r

w x t W x tη
∞

=

=∑  (2.30) 

where ( )rW x  is the mass normalized eigenfunction of the r
th

 mode of vibration and 

( )r tη  is the corresponding modal mechanical response. 

 The eigenfunctions ( )rW x  can be obtained using Equations (2.27) and (2.29) 

as 

 

( ) ( ){ ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) }

cosh sin sinh

sin sinh cosh

cosh cos cos cosh

r r r r r

r r r

r r r r r

W x A L x x

L L x

L x L x

β β β

β β β

β β β β

= −  

+ +  

+Λ +  

 (2.31) 

where 
r

A  is a modal amplitude constant and 
r

Λ  is given by 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 sin sinh cos cosh

2 sin cosh

sin cosh cos sinh

2 cos cosh

r r r r

r r r

t

r

r r r r

r r r

t

L L L L

M
L L L

m L

L L L L

M
L L L

m L

β β β β

β β β

β β β β

β β β

− +

 
−  

 Λ =
+

 
+  

 

 (2.32) 

 The modal amplitude constant 
r

A  should be determined so as to satisfy the 

following orthogonality relations for the CPEHDM system 

 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( ) ( )

0

4 3

4 3

0

3

2

3

0

0 0 ,

0 0

L

s t r s r s f r rs

L

r r

s t t s t t

x L

r

s t t f s r r rs

x

W x mW x dx W L MW L W M W

d W x d W x
W x E I dx W x E I

dx dx

d W x
W x E I k W W

dx

δ

ω δ

=

=

+ + =

 
−  
 

 
+ + = 
 

∫

∫  (2.33) 

 The r
th

 natural frequency of the CPEHDM system is obtained under short-

circuit conditions as 

 ( )
2

4

t t
r r

t

E I
L

m L
ω β=  (2.34) 

where 
r
Lβ  is the corresponding r

th
 eigenvalue which can be obtained from the 

following characteristic equation of the CPEHDM system 

 
( ) ( ) ( ){

( ) ( ) } ( ) ( )

3
4

3

sin sinh

cos cosh 2 cosh 0

f f

r r r

t t t

r r r r r

k L M
L L L

E I m L

L L L L

β β β

β β β β

  
− +  

   

+Λ + − =  

 (2.35) 
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2.3.5. Damped Equations of Motion 

 Two types of mechanical damping are used in the analysis of the CPEHDM 

system. The first is referred to as the viscous air damping whereas the second is 

known as the strain rate damping due to structural viscoelasticity. In fact, the viscous 

air damping acts on the absolute velocity whereas the strain rate damping acts on the 

relative velocity of the composite piezoelectric beam [10]. 

 Accordingly, Equation (2.27) can be written for the damped composite 

piezoelectric beam as 

 
( ) ( )

( ) ( )

2 4 5

2 4 4

2

2

rel rel rel rel
t t t a s t

b b
t f a

w w w w
m E I c c I

t x t x t

d x d x LdQ

dt dx dx

w w
m M x M x L c

t t

δ δ

δ δ

     ∂ ∂ ∂ ∂ 
+ + +      

∂ ∂ ∂ ∂ ∂      

−  
−Γ −  

   

 ∂ ∂ 
 = − + + − −     ∂ ∂  

 (2.36) 

where 
a

c  is the viscous air damping coefficient and 
s t

c I  is the equivalent damping 

term of the beam cross-section due to structural viscoelasticity. 

 The mechanical damping ratio 
r

ζ  of the r
th

 mode of vibration which includes 

the effect of both viscous air damping and strain rate damping is given by [10,11] 

 
ˆ

ˆ2 2

a s a s t r
r r r

t r t t

c c I

m E I

ω
ζ ζ ζ

ω
= + = +  (2.37) 

where a

r
ζ  is the viscous air damping component of the damping ratio, s

r
ζ  is the strain 

rate damping component of the damping ratio, and ˆ
r

ω  is the r
th

 natural frequency of 

the composite piezoelectric beam in the absence of the dynamic magnifier and the 

end mass M . 
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 Equation (2.37) indicates that the viscous air damping is assumed to be 

proportional to the mass per unit length whereas strain rate damping is assumed to be 

proportional to the flexural stiffness of the beam. This idealized modeling assumption 

allows the use of a standard modal analysis approach. 

 Experimental modal analysis under short circuit conditions is required to 

determine any two modal damping ratios so as to calculate the constants 
a

c  and 
s t

c I  

using Equation (2.37). Once these proportionality constants are known, Equation 

(2.37) can be used again to find the rest of the modal damping ratios. 

 Substituting Equation (2.30) into Equations (2.28) and (2.36), and utilizing 

Equation (2.33), we get 

 
( ) ( )

( )
( )

( )
2

2

2
2

r r

r r r r r r

d t d t dQ t
t f t

dt dt dt

η η
ζ ω ω η+ + − Ψ =  (2.38) 

 
( ) ( ) ( )2

2

2
1

0
2

r P
r L L

r

d t d Q t dQ tC
R R

dt dt dt

η∞

=

Ψ + + =∑  (2.39) 

where 
r

Ψ  is denoted as the r
th

 mode electromechanical coupling term. It is given by 

 
( )r

r

x L

dW x

dx
=

Ψ = Γ  (2.40) 

and the modal mechanical forcing function ( )rf t  for a harmonic translating base can 

be written as follows 

 

( )
( )

( ) ( ) ( )

( )
( )

2

2

0

0

, L

b

r t r f r r

L

b

a r

d w x t
f t m W x dx M W L MW L

dt

dw t
c W x dx

dt

 
= − + + 

 

−

∫

∫

 (2.41) 
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 For harmonic base excitations at a frequency ω  such that 

 ( ), j t

b bw x t W e
ω=  (2.42) 

 Then, the corresponding solutions can be assumed to be 

 ( ) 0,j t j t

r rt e Q Q e
ω ωη = Π =  (2.43) 

 Substituting Equations (2.42) and (2.43) into Equations (2.38) and (2.39), 

gives 

 ( )2 2

02
r r r r r r

j j Q Fω ω ζ ω ω ω− + Π − Ψ =  (2.44) 

 2 2

0

1

0
2

P
r r L L

r

C
j j R R Qω ω ω

∞

=

 
Ψ Π + − = 

 
∑  (2.45) 

where 
r

F  denotes the amplitude of the modal mechanical forcing function. It is given 

by 

 ( ) ( ) ( ) ( )2

0 0

0

L L

r b t r f r r b a rF W m W x dx M W MW L j W c W x dxω ω
 

= + + − 
 
∫ ∫  (2.46) 

 Equations (2.44) and (2.45) can be solved for the steady-state electric charge 

and the modal mechanical response as follows 

 ( )
2 2

1

2
2

2 2
1

2

2 2

r r

r j tr r r

P r
L L

r r r r

j F

j
Q t e

C
R jR

j

ωω ω ζ ω ω

ω
ω

ω ω ζ ω ω

∞

=

∞

=

Ψ

− +
=

Ψ
− +

− +

∑

∑
 (2.47) 

 ( ) 0

2 2 2

j tr r
r

r r r

F j Q
t e

j

ωω
η

ω ω ζ ω ω

+ Ψ
=

− +
 (2.48) 

 The steady-state relative vibration response of the composite piezoelectric 

beam can be found from Equation (2.30) as 
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 ( ) ( )0

2 2
1

,
2

j tr r
rel r

r r r r

F j Q
w x t W x e

j

ωω

ω ω ζ ω ω

∞

=

 + Ψ
=  

− + 
∑  (2.49) 

 Equations (2.47) and (2.49) will be used to predict the performance of the 

CPEHDM system as function of its design and load parameters. 

2.4. Finite Element Modeling of Energy Harvester with a Dynamic Magnifier 

 In this section, a finite element model is developed to simulate the vibrations 

of the CPEHDM during its transverse oscillation around the original position as 

outlined in Figure  2.4. Three coordinate systems are considered here to clearly 

explain the kinematics of the CPEHDM. These systems are the inertial frame of 

reference X Z−  (fixed in space), the base-fixed coordinate system x z−  (moving 

with the base), and the element local coordinate system ' 'x z−  (moving with the base) 

which is needed to carry out the required integrations as we will see later. 

 Let 
b

w  denote the displacement of the base relative to the inertial frame of 

reference X Z−  and 
'xe

w  denote the transverse deflection of the e
th

 beam element 

relative to the base-fixed coordinate system x z−  at any location 'x . Accordingly, 

one can write 

 
0 '0 , ,

x Le b e e b L e b
w w w w w w w w w= + = + = +  (2.50) 

where 
e

w  is the transverse deflection of the e
th

 beam element relative to the inertial 

frame of reference X Z−  at the same location 'x  where 
'xe

w  was defined. In 

addition, 
0e

w  and 
Le

w  denote, respectively, the transverse deflection of the magnifier 

mass 
f

M  and the end mass M  relative to the moving coordinate system x z− . If the 

beam is divided into N  finite elements, then 
Le

w  is denoted as 
Ne

w . 
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2.4.1. Kinetic Energy (T ) 

 The different components of the kinetic energy of the CPEHDM system are 

given by 

 2 2 2

0 0

0

1 1 1
', ,

2 2 2

eL

e t e f L LT m w dx T M w T Mw= = =∫ � � �  (2.51) 

where 
e

T  is the kinetic energy of the e
th

 element of the beam, 0T  is the kinetic energy 

of the magnifier mass 
f

M , and 
L

T  is the kinetic energy of the end mass M . Also, 

2
t b p

m m m= +  with 
b

m  and 
p

m  denoting the mass per unit length of the beam and a 

single piezoelectric patch, respectively. 

 Hence, the total kinetic energy of the CPEHDM system is given by 

0ew  

Lew  
'xew  

                                                                       

kf 

                                              

M 

              

Mf                                                         

Original Position 

Original 

Position 

x 

z 

tp 

tb 

2 3 
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       N Elements 

              

Mf                                                         

Element e 

L 

Displaced Position 

X 

Z 

                                              

M 

                                              

M 

wb 

                                              

Mf 

x' 

z' 

w0 

wL 

tp 

Node #           0       1       2             ...           i        j   ...  N-1  N 

Deflected 

Position 

Figure  2.4: CPEHDM with series connection of piezoelectric patches 
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 0

1

N

e L

e

T T T T
=

= + +∑  (2.52) 

 For the beam element, consider the following finite element interpolation 

relationship 

 
'xe e

w = NU  (2.53) 

where N  is an appropriate interpolating vector and 
e

U  is the element nodal 

deflection vector relative to the base-fixed coordinate system x z− . It is given by 

 { }, ' , 'i i j j

T

e e e x e e x
w w w w=U  (2.54) 

where 
ie

w  and , 'ie x
w  are the transverse deflection and slope at node i  whereas 

je
w  

and , 'je x
w  are the transverse deflection and slope of the beam element e at node j , 

respectively. 

 Hence, from Equations (2.50) and (2.53), the transverse deflection 
e

w  of the 

e
th

 beam element relative to the inertial frame of reference X Z−  can be written as 

 ( )
'xe e b e bw w w= + = +N U U  (2.55) 

where j t

b b
e

ω=U ∆  is the element nodal displacement vector for a harmonic base 

motion with { }0 0
T

b b b
w w=∆  in the case of a translating base. The convenient 

form of Equation (2.55) is made possible because of the special structure of the 

interpolating vector N . 

 Substituting Equations (2.50) and (2.51) into Equation (2.52), the total kinetic 

energy of the CPEHDM system reduces to 

 ( ) ( ) ( )
' 0

2 2 2

1 0

1 1 1
'

2 2 2

e

x L

LN

t e b f e b e b

e

T m w w dx M w w M w w
=

 
= + + + + +  

 
∑ ∫ � � � � � �  (2.56) 
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 Substituting Equation (2.55) into Equation (2.56), it reduces to 

 

( ) ( )

( ) ( )

( ) ( )

1

1

2

1

2

1

2

N
T

e b e e b

e

T

e b F e b

T

e b L e b

T
=

 = + +  

+ + +

+ + +

∑ U U M U U

U U M U U

U U M U U

� � � �

� � � �

� � � �

 (2.57) 

where 
0

'
eL

T

e tm dx= ∫M N N , 1 1

T

F fM=M a a  with ( ){ }1 1 2 1
1

N× +
=a 0 , and 2 2

T

L
M=M a a  

with { }2 1 2 1 0N×=a 0 . 

 After assembly of all the beam elements, Equation (2.57) reduces to 

 ( ) [ ]( )1

2

T

base b F L base
T = + + + +U U M M M U U� � � �  (2.58) 

where 
b

M  is the global mass matrix of the composite piezoelectric beam, 
base

U  is the 

global nodal displacement vector of the base, and U  is the global nodal deflection 

vector of the CPEHDM system given by 

 { }
0 0 1 1, ' , ' , 'N N

T

e e x e e x e e x
w w w w w w=U …  (2.59) 

2.4.2. Potential Energy (U ) 

 The different components of the potential energy of the CPEHDM system are 

given by 

 
' 0

2 2

, ' ' 1 1 0

0

1 1 1
' ,

2 2 2

e

x

P

L

e b b e x x P f e
U E I w dx T S d U k w

Ω

= + Ω =∫ ∫  (2.60) 

where 
e

U  is the potential energy of the e
th

 element of the beam, 0U  is the potential 

energy of the magnifier spring 
f

k , 
b b

E I  is the flexural rigidity of the beam, 1T  is the 
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stress in the piezoelectric layers, 1S  is the strain in the piezoelectric layers, and 
P

Ω  is 

the volume of the piezoelectric layers of element e. 

 Hence, the total potential energy of the CPEHDM system is given by 

 0

1

N

e

e

U U U
=

= +∑  (2.61) 

 Using the constitutive equations of piezoelectric materials (ANSI/IEEE STD 

176-1987), we have 

 ( )1 11 1 31 3

E
T c S d E= −  (2.62) 

where 11

E
c  is the Young's modulus at constant electric field, 31d  is the piezoelectric 

strain coefficient, 
'1 , ' ''

xe x x
S z w= − , and 3 / 2

T p
E V t= −  is the electric field for series 

connection of piezoelectric layers where 
T

V  denotes the respective electric voltage 

across the resistive electric load 
L

R . 

 Substituting Equations (2.60) and (2.62) into Equation (2.61), it reduces to 

 ( )
, ' ' 0'

2 2

11 1 31 3 1

1 0

1 1 1
'

2 2 2

e

e x xx

p

LN
E

b b P f e

e

U E I w dx c S d E S d k w
= Ω

 
 = + − Ω +
 
 

∑ ∫ ∫  (2.63) 

 Equation (2.63) can be further expanded to 

 ( )

, ' ''

, ' ' , ' '' '

0

2

1 0

11 31

0

2

1
'

2

1
2 ' ' ' '

2 2

1

2

e

e x xx

pe

e x x e x xx x

LN

b b

e

h tL

E T

ph

f e

U E I w dx

V
c b z w d z w dz dx

t

k w

=

+


= 



      + − + −          

+

∑ ∫

∫ ∫  (2.64) 

where / 2
b

h t= . 

 Performing the integrations, Equation (2.64) reduces to 
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 ( )
, ' ' , ' ' 0' '

2 2

11 31

1 0

1 1
/ 2 '

2 2

e

e x x e x xx x

LN
E

t t T p f e

e

U E I w bc d V h t w dx k w
=

 
 = − + +   

 
∑ ∫  (2.65) 

where ( )2 2 3

11

2
3 3

3

E

t t b b p p p
E I E I c b h t ht t= + + + . 

 As the electric voltage is related to the electric charge by 

 
T L

V R Q= �  (2.66) 

 Substituting Equations (2.53) and (2.66) into Equation (2.65), it reduces to 

 ( )( )11 31

1

1 1
/ 2

2 2

N
T E T T

e e e L p e e F

e

U bc d R Q h t
=

 = − + +
 ∑ U K U B U U K U�  (2.67) 

where , ' ' , ' '

0

'
eL

T

e t t x x x xE I dx= ∫K N N , 3 3

T

F fk=K a a  with ( ){ }3 1 2 1
1

N× +
=a 0 , and 

, ' '

0

' .
e

T
L

e x x
dx

 
=  
  
∫B N  

 After assembly of all the beam elements, Equation (2.67) reduces to 

 ( ) ( )( )11 31

1 1
/ 2

2 2

T E T

b F L p
U bc d R Q h t= + − +U K K U B U�  (2.68) 

where 
b

K  is the global stiffness matrix of the composite piezoelectric beam and B  is 

the global vector of piezoelectric action. 

2.4.3. Electric Energy (
e

W ) 

 The expression of electric energy of the CPEHDM system is given by 

 3 3

1

1

2
P

N

e P

e

W E D d
= Ω

 
= Ω 

 
 

∑ ∫  (2.69) 

where 3D  is the electric displacement. 
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 Now, from the constitutive equations of piezoelectric materials (ANSI/IEEE 

STD 176-1987), we have 

 3 31 1 33 3

T
D d T E= + ∈  (2.70) 

where 33

T∈  is the permittivity at constant stress. 

 Substituting Equations (2.62) and (2.70) into Equation (2.69), gives 

 

( )
, ' ''

31 11

1 0

2 2

2

31 11 33

1
2 '

2 2

' '
2 2

pe

e x xx

h tLN
E T

e

e ph

E TT T

p p

V
W b d c z w

t

V V
d c dz dx

t t

+

=

     − = −        

     − + ∈                

∑ ∫ ∫
 (2.71) 

 Evaluating the integrals in Equation (2.71) and utilizing Equations (2.53) and 

(2.66), we get 

 
( )( )

( ) ( ) )

11 31

1

2 2 2 2 2

31 11 33

1
/ 2

2

/ 4 / 4

N
E T

e L p e e

e

E T

e L p e L p

W bc d R Q h t

bL d c R t Q bL R t Q

=


= +



− + ∈

∑ B U�

� �

 (2.72) 

 The permittivity component at constant strain is related to the permittivity at 

constant stress by 

 2

33 33 31 11

S T E
d c∈ =∈ −  (2.73) 

 Substituting Equation (2.73) into Equation (2.72), gives 

 ( )( ) ( )2 2

11 31 33

1

1
/ 2 / 4

2

N
E T S

e L p e e e L p

e

W bc d R Q h t bL R t Q
=

 
= + + ∈ 

 
∑ B U� �  (2.74) 

 After assembly of all the beam elements, Equation (2.74) reduces to 

 ( )( ) ( )2 2

11 31 33

1
/ 2 / 4

2

E T S

e L p L p
W bc d R Q h t bL R t Q= + + ∈B U� �  (2.75) 
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2.4.4. Undamped Equations of Motion 

 The Lagrange's undamped electromechanical equations of motion associated 

with the mechanical and electric degrees of freedom U  and Q  are derived as 

 
L L

nc

d

dt

∂ ∂ 
− = 

∂ ∂  U
Q

U U�
 (2.76) 

 
L L

Qnc

d
Q

dt Q Q

 ∂ ∂
− = 

∂ ∂ �
 (2.77) 

where 
nc

=
U

Q 0  is the nonconservative mechanical load vector associated with the 

deflection vector U , and 
Qnc L

Q R Q= − �  is the nonconservative electric load associated 

with the electric charge Q . 

 The Lagrangian L is given by 

 L
e

T U W= − +  (2.78) 

 Substituting Equations (2.58), (2.68), and (2.75) into Equation (2.78), gives 

 

( ) [ ]( )

[ ] 2 2

1
L=

2

1

2 4

T

base b F L base

T T P
b F L

C
Q R Q

+ + + +

− + + Γ +

U U M M M U U

U K K U B U

� � � �

� �

 (2.79) 

where ( )11 31 / 2E

p L
bc d h t RΓ = +  and 33 /S

P pC bL t= ∈  is the internal capacitance of a 

single piezoelectric layer. 

 Accordingly, the resulting Lagrange's undamped electromechanical equations 

of the CPEHDM system are 

 
uu uu uu base

Q+ − Γ = −M U K U B M U��� ��  (2.80) 

 2

2

T P
L L

C
R Q R QΓ + = −B U �� ��  (2.81) 



 

 29 

 

where 
uu b F L

= + +M M M M  is the total global mass matrix and 
uu b F

= +K K K  is 

the total global stiffness matrix. 

 Now, the relative vibration response of the undamped composite piezoelectric 

beam can be found using the following linear transformation 

 
u

=U Φ η  (2.82) 

where 
u

Φ  is the mass normalized modal matrix and η  is the global nodal vector of 

modal mechanical response. 

 The r
th

 natural frequency 
r

ω  and the corresponding eigenvector 
r
∆  of the 

CPEHDM system are obtained under short-circuit conditions using the following 

standard algebraic eigenvalue problem 

 2

uu r r uu r
ω=K ∆ M ∆  (2.83) 

2.4.5. Damped Equations of Motion 

 Two types of mechanical damping are used in the analysis of the CPEHDM 

system. The first is referred to as the viscous air damping whereas the second is 

known as the strain rate damping due to structural viscoelasticity. In fact, the viscous 

air damping acts on the absolute velocity whereas the strain rate damping acts on the 

relative velocity of the composite piezoelectric beam [10]. 

 Accordingly, Equation (2.80) can be written for the damped composite 

piezoelectric beam as 

 ( )uu a s uu uu base a baseQ+ + + − Γ = − −M U D D U K U B M U D U��� � �� �  (2.84) 
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where 
a

D  is the global damping matrix due to viscous air damping and 
s

D  is the 

global damping matrix due to structural viscoelasticity. Therefore, the total global 

damping matrix of the composite piezoelectric beam is 

 
uu a s

= +D D D  (2.85) 

 The mechanical damping ratio 
r

ζ  of the r
th

 mode of vibration which includes 

the effect of both viscous air damping and strain rate damping is given by [10,11] 

 
ˆ

ˆ2 2

a s a s t r
r r r

t r t t

c c I

m E I

ω
ζ ζ ζ

ω
= + = +  (2.86) 

where a

r
ζ  is the viscous air damping component of the damping ratio, s

r
ζ  is the strain 

rate damping component of the damping ratio, 
a

c  is the viscous air damping 

coefficient, 
s t

c I  is the equivalent damping term of the beam cross-section due to 

structural viscoelasticity, and ˆ
r

ω  is the r
th

 natural frequency of the composite 

piezoelectric beam in the absence of the dynamic magnifier and the end mass M . 

 Equation (2.86) indicates that the viscous air damping is assumed to be 

proportional to the mass per unit length whereas strain rate damping is assumed to be 

proportional to the flexural stiffness of the beam. This idealized modeling assumption 

allows the use of a standard modal analysis approach. 

 Equations (2.81) and (2.84) can also be written as follows 

 
uu uu uu uu base a base

Q+ + − Γ = − −M U D U K U B M U D U��� � �� �  (2.87) 

 2 0
2

T P
L L

C
R Q R QΓ + + =B U �� ��  (2.88) 

 Substituting Equation (2.82) into Equations (2.87) and (2.88), and 

premultiplying Equation (2.87) by T

u
Φ , we get 
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uu uu uu

Q+ + − =M η D η K η Ψ F��� �  (2.89) 

 2 0
2

T P
L L

C
R Q R Q+ + =Ψ η �� ��  (2.90) 

where T

uu u uu u
=M Φ M Φ  is the total global mass normalized mass matrix, 

T

uu u uu u
=D Φ D Φ  is the total global mass normalized damping matrix, 

T

uu u uu u
=K Φ K Φ  is the total global mass normalized stiffness matrix, and = ΓΨ B  is 

the electromechanical coupling vector with T

u
=B Φ B . 

 The modal mechanical forcing vector F  for a harmonic translating base can 

be written as follows 

 T T

u uu base u a base
= − −F Φ M U Φ D U�� �  (2.91) 

 For harmonic base excitations at a frequency ω  such that 

 j t

base base
e

ω=U ∆  (2.92) 

 Then, the corresponding solutions can be assumed to be 

 0,j t j t
e Q Q e

ω ω= =η Π  (2.93) 

 Substituting Equations (2.92) and (2.93) into Equations (2.89) and (2.90), 

gives 

 ( )2

0 0uu uu uu
j j Qω ω ω− + − =K M D Π Ψ F  (2.94) 

 2 2

0 0
2

T P
L L

C
j j R R Qω ω ω

 
+ − = 
 

Ψ Π  (2.95) 

where 0F  denotes the nodal amplitude of the modal mechanical forcing vector. It is 

given by 

 2

0

T T

u uu base u a base
jω ω= −F Φ M ∆ Φ D ∆  (2.96) 
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 Equations (2.94) and (2.95) can be solved for the steady-state electric charge 

and the global nodal vector of modal mechanical response as follows 

 ( )
1

0

2 1

2

T
j tu

TP
L L u

j
Q t e

C
R jR

ω

ω ω

−

−

=

− +

Ψ Z F

Ψ Z Ψ

 (2.97) 

 ( ) ( )1

0 0

j t

u
t j Q e ωω−= +η Z F Ψ  (2.98) 

 Using Equation (2.82), the steady-state global nodal deflection vector of the 

composite piezoelectric beam is given by 

 ( ) ( )1

0 0

j t

u u
t j Q e ωω−= +U Φ Z F Ψ  (2.99) 

where 2

u uu uu uu
jω ω= − +Z K M D  is the total global mass normalized impedance 

matrix. 

 Equations (2.97) and (2.99) will be used to predict the performance of the 

CPEHDM system as function of its design and load parameters. 

2.5. Performance of the cantilevered piezoelectric energy harvester 

 In this section, numerical examples are presented to illustrate the performance 

characteristics of the CPEHDM in comparison with the conventional piezoelectric 

energy harvester (CPEH). The different geometric and material parameters of the 

system are listed in Table  2.1 [40]. 

2.5.1. Performance of the CPEH 

 Figure  2.5 shows the effect of the load resistance on the peak amplitude of the 

electric power output of the CPEH. The displayed characteristics are obtained for 

base excitations at the short-circuit and open-circuit resonant frequencies of the first 
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vibration mode. The base excitation considered, in all this study, is a sinusoidal 

excitation that has an acceleration of 1g  which is maintained constant over the entire 

frequency range. 

 The figure shows also comparisons between the predictions using both, the 

analytical and finite element models. The displayed results indicate close agreement 

between the two models. 

 Note that the short-circuit ( 1

sc
f ) and open-circuit ( 1

oc
f ) resonant frequencies 

occur at 1 70.135sc
f Hz=  and 1 73.925oc

f Hz= , respectively. The corresponding 

maximum electric powers of the energy harvester are both equal to 

max max 5.5sc oc
P P mW= =  and are attained at load resistances of 8,700sc

L
R = Ω  and 

69,000oc

L
R = Ω , respectively. Because of the similarity of the performance under 

short-circuit and open-circuit conditions, the remaining part of the results will 

concentrate only on the short-circuit conditions. 
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Table  2.1: Geometric and material properties of the energy harvester [40] 

 

Overall Properties              Value 

 

/
t

m L  Total mass of the composite beam per unit length        96 g/m 

M   End mass             1.5 g 

 b   Beam width             20 mm 

L   Beam length             50 mm 

1ζ   Damping ratio for the first mode of vibration         0.02 

2ζ   Damping ratio for the second mode of vibration        0.026 

 

Beam Properties                          Value 

 

11

b
s   Compliance of the beam           5 x 10

-11
 m

2
/N 

b
t   Beam thickness            0.2 mm 

 

Piezoelectric Properties                         Value 

 

11

E
s   Compliance of the piezoelectric material                    1.64 x 10

-11
 m

2
/N 

31d   Piezoelectric strain coefficient                     -320 x 10
-12

 C/N 

33

Tε   Permittivity at constant stress                 3.98 x 10
-8

 F/m 

p
t   Thickness of each piezoelectric patch          0.2 mm 

 

Magnifier Properties              Value 

 

f
M  Magnifier mass            M, 5M, 10M, 15M 

f
k   Magnifier stiffness            2

1f fk M ω= *
 

 

* 1ω  is the fundamental natural frequency of the beam when 0
f

M =  and 
f

k → ∞ . 

 

 The effect of the excitation frequency on the peak amplitude of the electric 

power output of the CPEH is shown in Figure  2.6 at the optimal resistive load, 

8,700sc

L
R = Ω , corresponding to the short-circuit condition. 
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 The figure also shows comparisons between the predictions using the 

distributed parameter and finite element models which also shows excellent 

agreement as expected. 

2.5.2. Performance of the CPEHDM 

 Figure  2.7(a) shows the effect of the load resistance on the peak amplitude of 

the electric power output of the CPEHDM as compared with the corresponding 

characteristics of the CPEH. The displayed curves are obtained for base excitations at 

the short-circuit resonant frequency of the first vibration mode when 2

1f fk M ω=  and 

f
M M= . For the first vibration mode, it is found that 1 29.160sc

f Hz=  and 

1 29.300oc
f Hz=  with peak powers of max max 10.2sc oc

P P mW= =  occurring at 

10
3
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4

10
5

10
6

10
-1

10
0

10
1

10
2

R
L
, ΩΩΩΩ

P
, 

m
W

 

 

Figure  2.5: Effect of the load resistance on the peak amplitude of the electric power output of 

the CPEH for base excitations at the short-circuit (  ▬▬▬  distributed parameter, ○ 

finite element) and open-circuit (  ▪▪▪▪▪▪▪▪▪  distributed parameter, □ finite element) 

resonant frequencies of the first vibration mode 
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54,000sc

L
R = Ω  and 57,000oc

L
R = Ω , respectively. Accordingly, the use of the 

CPEHDM has resulted in about doubling the peak harvested power of the CPEH. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The corresponding frequency response of the peak amplitude of the electric 

power output of the CPEHDM in comparison with that of the CPEH is shown in 

Figure  2.7(b) for the optimal resistive load corresponding to the short-circuit 

condition. The figure indicates also that the CPEHDM has an additional mode of 

vibration appearing at a frequency of 113 Hz  in the considered frequency band. 

However, the electric power harvested at this second mode is about 34.77 Wµ , i.e. 

about three orders of magnitude lower than that of the first vibration mode. Note also 

that the frequency band between the first and second modes is about 84 Hz . 
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Figure  2.6: Effect of the excitation frequency on the peak amplitude of the electric power 

output of the CPEH for the short-circuit resonant condition ( ▬▬▬  distributed parameter, 

○ finite element) 
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 Increasing the mass of the dynamic magnifier with respect to the end mass to 

5, i.e. 5
f

M M= , yields the characteristics shown in Figure  2.8 for the effect of load 

resistance and excitation frequency on the output power of the CPEHDM in 

comparison with that of the CPEH at the short-circuit condition. For the first 

vibration mode, it is found that 1 46.485sc
f Hz=  and 1 47.035oc

f Hz=  with peak 

powers of max max 18.2sc oc
P P mW= =  occurring at 30,000sc

L
R = Ω  and 40,000oc

L
R = Ω , 

respectively. Accordingly, the use of the CPEHDM has resulted in magnifying the 

peak harvested power of the CPEH by about 330% . 

 In Figure  2.8(b), the second mode of vibration of the CPEHDM appears now 

at 97.7 Hz  resulting in a frequency band between the first and second modes of about 

52.2 Hz  which is narrower than that observed for the case when 
f

M M= . Moreover, 

the electric power harvested at this second mode has increased considerably to 

718.88 Wµ  as compared to the case when 
f

M M= . Now, it is about 3.9%  of the 

magnitude of the first mode. 

 Figure  2.9 and Figure  2.10 display the corresponding characteristics of the 

CPEHDM in comparison with those of the CPEH when 10
f

M M=  and 15
f

M M= , 

respectively. When 10
f

M M= , it is found that 1 52.610sc
f Hz=  and 

1 53.385oc
f Hz=  with peak powers of max max 25.35sc oc

P P mW= =  occurring at 

24,000sc

L
R = Ω  and 37,000oc

L
R = Ω , respectively. This indicates that the use of the 

CPEHDM has resulted in magnifying the peak harvested power of the CPEH by 

460% . Increasing 
f

M  to become equal to 15M  makes 1 55.590sc
f Hz=  and 
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1 56.485oc
f Hz=  with peak powers of max max 32.05sc oc

P P mW= =  OCcurring at 

22,000sc

L
R = Ω  and 36,000oc

L
R = Ω , respectively. In this case, the magnification 

resulting from the use of the CPEHDM is 583% . 

 It is important to note that the magnified power of the CPEHDM becomes 

higher than that of the CPEH over a broader frequency range particularly as the 

/
f

M M  ratio increases. For example, when / 10
f

M M = , the electric power 

harvested at the second mode is about 2.22 mW . It also increases to 4.06 mW  when 

/ 15
f

M M = , i.e. comparable to the case of the CPEH. This suggests clearly that the 

CPEHDM can be an effective means for harvesting the vibration energy over a 

broader frequency range than that of the CPEH.  

 Note that the effective bandwidth of the piezoelectric energy harvester is 

about 36.29 Hz when / 10
f

M M =  and becomes 30 Hz  when /
f

M M  increases to 

15. 
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Figure  2.7: Effect of the load resistance (a) and excitation frequency (b) on the peak amplitude of the 

electric power output for the CPEHDM (  ▬▬▬  distributed parameter, ○ finite element) with 

Mf=M and the CPEH (  ▪▪▪▪▪▪▪▪▪  distributed parameter,  □  finite element) at the short-circuit 

condition of the first vibration mode 
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Figure  2.8: Effect of the load resistance (a) and excitation frequency (b) on the peak amplitude of the 

electric power output for the CPEHDM (  ▬▬▬  distributed parameter, ○ finite element) with 

Mf=5M and the CPEH (  ▪▪▪▪▪▪▪▪▪  distributed parameter,  □  finite element) at the short-circuit 

condition of the first vibration mode 
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Figure  2.9: Effect of the load resistance (a) and excitation frequency (b) on the peak amplitude of the 

electric power output for the CPEHDM (  ▬▬▬  distributed parameter, ○ finite element) with 

Mf=10M and the CPEH (  ▪▪▪▪▪▪▪▪▪  distributed parameter,  □  finite element) at the short-circuit 

condition of the first vibration mode 
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Figure  2.10: Effect of the load resistance (a) and excitation frequency (b) on the peak amplitude of 

the electric power output for the CPEHDM (  ▬▬▬  distributed parameter, ○ finite element) 

with Mf=15M and the CPEH (  ▪▪▪▪▪▪▪▪▪  distributed parameter,  □  finite element) at the short-

circuit condition of the first vibration mode 
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2.6. Conclusions 

 This chapter has presented a class of cantilevered piezoelectric energy 

harvesters which is augmented with a dynamic magnifier (CPEHDM) to dynamically 

amplify the harnessed electric power output. The theory governing the operation of 

this class of energy harvesters has been introduced using distributed parameter and 

finite element methods. Numerical examples are presented to illustrate the merits of 

the CPEHDM in comparison with the conventional piezoelectric energy harvesters 

(CPEH). It was shown that with proper selection of the design parameters of the 

CPEHDM, the harvested electric power can be amplified by a factor of 5 (i.e., 500 

percent) as compared to the CPEH and the effective bandwidth of the energy 

harvester can be widened to cover side bands that are about 21%±  of the resonant 

frequency of the CPEH. The predictions of the distributed parameter model are 

compared with those obtained using the finite element approach and excellent 

agreement of the two models is observed for all the considered examples. The 

obtained results demonstrate the feasibility of the CPEHDM as a simple and effective 

means for enhancing the magnitude and spectral characteristics of the CPEH. 
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Chapter 3  

3. Experimental Implementation of a Piezoelectric Energy 

Harvester with a Dynamic Magnifier 
 

3.1. Introduction 

 The enhancement of the electric power output from piezoelectric vibration 

energy harvesters by using the concept of dynamic magnifiers has been proposed in 

Chapter 2. There, it was shown that the analytical results agree very well with the 

numerical ones and that with proper selection of the design parameters of the 

CPEHDM, the harvested electric power can be amplified significantly and the 

effective bandwidth of the energy harvester can be greatly widened. In this chapter, 

experimental investigations are performed to validate these results where a preferred 

implementation of the CPEHDM system can be done by using the setup shown in 

Figure  3.1. In this case, the dynamic magnifier takes the form of a cantilever beam to 

enable the adjustment of the stiffness by changing the beam length. The magnifier 

beam is anchored from its left end to an electromechanical shaker whereas the right 

end is attached to a piezoelectric energy harvester. At the left anchoring point, an 

accelerometer is mounted to monitor the input base acceleration whereas the right 

anchoring point is attached to the magnifier mass. The bimorph energy harvester used 

in this experiment has its two piezoelectric patches connected in parallel to the 

electric resistive load. 
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3.2. Finite Element Modeling 

 The details of the finite element modeling of piezoelectric energy harvesters 

augmented with dynamic magnifiers were documented in Chapter 2. However, since 

the experimental setup used here differs slightly from Figure  2.2, it is therefore 

worthwhile to briefly indicate where these differences occur. In doing so, the kinetic, 

potential, and electric energies associated with the new model can be analyzed in the 

following discussion. 

 The different components of the kinetic energy of the new CPEHDM system 

are given by 

 2 2 2 2

1 2 0 0

0 0

1 1 1 1
, , ,

2 2 2 2

e eL L

e f e e t e f L LT m w dx T m w dx T M w T Mw= = = =∫ ∫� � � �  (3.1) 

Accelerometer

Magnifier Spring

PZT harvester

Proof mass

Magnifier mass

Shaker

Clamping bolts

Figure  3.1: A photograph showing the experimental setup of the CPEHDM system 



 

 46 

 

where 1e
T  is the kinetic energy of the e

th
 element of the magnifier beam, 2e

T  is the 

kinetic energy of the e
th

 element of the energy harvester, 0T  is the kinetic energy of 

the magnifier mass 
f

M , and 
L

T  is the kinetic energy of the end mass M . Also, 
f

m  is 

the mass per unit length of the magnifier beam, and 2
t b p

m m m= +  with 
b

m  and 
p

m  

denoting the mass per unit length of the energy harvester substructure and a single 

piezoelectric patch, respectively. 

 The different components of the potential energy of the new CPEHDM 

system are given by 

 2 2

1 , 2 , 1 1

0 0

1 1 1
,

2 2 2

e e

x x

P

L L

e f f e xx e b b e xx P
U E I w dx U E I w dx T S d

Ω

= = + Ω∫ ∫ ∫  (3.2) 

where 1e
U  is the potential energy of the e

th
 element of the magnifier beam, 2e

U  is the 

potential energy of the e
th

 element of the energy harvester, 
f f

E I  is the flexural 

rigidity of the magnifier beam, 
b b

E I  is the flexural rigidity of the energy harvester 

substructure, 1T  is the stress in the piezoelectric layers, 1S  is the strain in the 

piezoelectric layers, and 
P

Ω  is the volume of the piezoelectric layers of element e. 

 The expression of electric energy of the new CPEHDM system is given by 

 3 3

1

1

2
P

N

e P

e

W E D d
= Ω

 
= Ω 

 
 

∑ ∫  (3.3) 

where 3E  is the electric field and 3D  is the electric displacement. 

 Following a procedure similar to the one used in the finite element model of 

Chapter 2, the discretized equations of motion for this system can be written as 

 
uu uu uu

Q+ + − =M η D η K η Ψ F��� �  (3.4) 
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 2 0
2

T P
L L

C
R Q R Q+ + =Ψ η �� ��  (3.5) 

where T

uu u uu u
=M Φ M Φ  is the total global mass normalized mass matrix, 

T

uu u uu u
=D Φ D Φ  is the total global mass normalized damping matrix, 

T

uu u uu u
=K Φ K Φ  is the total global mass normalized stiffness matrix, and = ΓΨ B  is 

the electromechanical coupling vector with T

u
=B Φ B . 

 The steady-state electric charge and the global nodal vector of modal 

mechanical response can therefore be written as 

 ( )
1

0

2 1

2

T
j tu

TP
L L u

j
Q t e

C
R jR

ω

ω ω

−

−

=

− +

Ψ Z F

Ψ Z Ψ

 (3.6) 

 ( ) ( )1

0 0

j t

u
t j Q e ωω−= +η Z F Ψ  (3.7) 

where 2

u uu uu uu
jω ω= − +Z K M D  is the total global mass normalized impedance 

matrix. 

3.3. Experimental and Numerical Results 

 Three arrangements were tested to experimentally validate the proposed finite 

element model. These arrangements include a cantilevered piezoelectric bimorph, a 

cantilevered piezoelectric bimorph with end mass, and a cantilevered piezoelectric 

bimorph with end mass mounted on a dynamic magnifier as shown in Figure  3.2. 

 For all test arrangements, the piezoelectric energy harvester geometric and 

material properties are as listed in Table  2.1. However, the test arrangement shown in 

Figure  3.2(c) is augmented with a dynamic magnifier in the form of a cantilever beam 

to enable the adjustment of the stiffness by changing the beam length. The properties 
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of the magnifier beam are such that its mass density is 37800 /f kg mρ = , its Young's 

modulus is 11 200f
c GPa= , and its thickness is 25

f
h mm= . The magnifier beam 

length L  is changed for a parametric study of the harvester performance. The two 

piezoelectric patches are connected in parallel to an electric load resistance and the 

voltage induced by the vibratory motion is measured as a consequence. 

 

 

 

(a) 

 

 

 

(b) 

 

 

 

(c) 

 

 Figure  3.3 shows the experimental vs. numerical output voltage of the test 

arrangement shown in Figure  3.2(a) for different electric load resistances. It can be 

seen from the plots that the proposed numerical model very well captures the 

experimental behavior of the energy harvester. 

 

52 mm

Piezo

52 mm

2.08 g
Piezo

52 mmL

11.72 g 2.08 g
PiezoSteel

Figure  3.2: Test arrangements of the CPEH and CPEHDM systems 
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                                 (a)              (b) 

 

 

 

 

 

 

 

                                 (c)                                                                    (d) 

 

 

 
 Figure  3.4 shows the experimental and numerical output voltage of the test 

arrangement shown in Figure  3.2(b) for different electric load resistances. The end 

mass used here has a value of 2.08M g= . The obtained plots again show that the 

proposed numerical model results agree with the experimental performance 

characteristics of the energy harvester. 
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Figure  3.3: Experimental  ○  vs. numerical  ▬▬▬  output voltage of the test arrangement shown 

in Figure 3.2(a) for: (a) RL=100 kohm, (b) RL=40 kohm, (c) RL=10 kohm, and (d) RL=4 kohm 
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                                 (a)                    (b) 

 

 

 

 

 

 

  

                                  (c)                                                              (d) 

  

 
  

Figure  3.5 and Figure  3.6 show the experimental vs. numerical output voltage 

of the test arrangement shown in Figure  3.2(c) when 40L mm=  and 60L mm= , 

respectively, for different electric load resistances. The magnifier mass used here has 

a value of 11.72
f

M g= . It can be seen that when the energy harvester is provided 

Figure  3.4: Experimental  ○  vs. numerical  ▬▬▬  output voltage of the test arrangement shown 

in Figure 3.2(b) for: (a) RL=100 kohm, (b) RL=40 kohm, (c) RL=10 kohm, and (d) RL=4 kohm 
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with a dynamic magnifier, the corresponding voltage/ms
-2

 can be improved 

significantly. 

 

 

 

 

 

 

 

         (a)                                                                   (b) 
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Figure  3.5: Experimental  ○  vs. numerical  ▬▬▬  output voltage of the test arrangement shown 

in Figure 3.2(c) for: (a) RL=40 kohm, and (b) RL=4 kohm, when L=40 mm 
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Figure  3.6: Experimental  ○  vs. numerical  ▬▬▬  output voltage of the test arrangement shown 

in Figure 3.2(c) for: (a) RL=40 kohm, and (b) RL=4 kohm, when L=60 mm 
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 More precise comparison analysis can be done by looking at the peak voltage 

produced by each of the test arrangements shown in Figure  3.2 for a specified value 

of the electric load resistance of the first vibration mode. For example, when 

40
L

R kohm=  and 40L mm= , the peak voltages produced from the different test 

arrangements of Figure  3.2 (from top to bottom) are 0.476 V/ms
-2

, 0.766 V/ms
-2

, and 

1.829 V/ms
-2

, respectively. When 4
L

R kohm=  and 40L mm= , the peak voltages 

produced from the different test arrangements of Figure  3.2 (from top to bottom) are 

0.163 V/ms
-2

, 0.189 V/ms
-2

, and 0.345 V/ms
-2

, respectively. 

3.4. Conclusions 

 

 This chapter has presented an experimental demonstration of the feasibility of 

the concept of cantilevered piezoelectric energy harvesters with dynamic magnifier 

(CPEHDM). The performance characteristics are validated against the predictions of 

a finite element model developed in Chapter 2. The obtained results illustrate the 

metrics of the CPEHDM in comparison with the conventional piezoelectric energy 

harvester (CPEH). Also, it is shown that the CPEHDM is a simple and effective 

means for enhancing the magnitude and spectral characteristics of the CPEH. 
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Chapter 4  

4. Finite Element Modeling of Piezoelectric Vibration Energy 

Harvesting from Coupled Structural-Acoustic Systems 
 

4.1. Introduction 

 This chapter deals with the finite element modeling of piezoelectric vibration 

energy harvesting from coupled structural-acoustic systems. The modeling is based 

on a generic variational formulation which utilizes as its unknown variables, the 

mechanical displacement, electric voltage, and fluid pressure. This formulation is 

used to analyze a two-dimensional energy harvesting system which is composed of a 

rigid acoustic cavity coupled, at one end, with a flexible bimorph piezoelectric energy 

harvester attached on a vibrating base structure. The other end of the cavity is 

subjected to a persistent harmonic pressure input excitation.  

 The previously proposed and validated idea of attaching a dynamic magnifier 

is used again to enhance the electric power harvested from the coupled structural-

acoustic system. The presented model is then extended and applied to a more 

complex structural-acoustic system consisting of a plate-harvester coupled to a three-

dimensional acoustic cavity. 

 In all this study, the cavity under consideration is assumed to be rigid, filled 

with a homogeneous, inviscid, and compressible fluid. Also, the piezoelectric energy 

harvester utilizes piezoelectric patches which are connected in series to a resistive 

electric load. The developed model is used to predict the coupled mechanical 

response, electric power, and fluid pressure output for excitations around the modal 
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frequencies. Numerical examples are presented to illustrate the behavior of the energy 

harvester at short-circuit (SC) and open-circuit (OC) resonant conditions. Conditions 

for extracting the maximum electric power output of the energy harvester are also 

presented. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Theoretical Formulation 

 In this formulation, the domains occupying the piezoelectric-structure and the 

interior-fluid are denoted as 
S

Ω  and 
F

Ω , respectively, and the interface between 

them by Σ . Figure  4.1 shows a typical coupled system of general geometry. 

uΓ  

ψ
Γ  or  

D
Γ  

du  

uΓ  

Σ  

F
Ω  

S
Ω  

σΓ  

dF  

P
V  

pΓ  

S
i
n  

S
i
n  

i
n  

P
I Q= �  

Figure  4.1: A general interior-fluid/piezoelectric-structure coupled problem 
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 The mechanical boundary conditions constitute of the part 
u

Γ  of the 

piezoelectric-structure exterior boundary that is subjected to a prescribed mechanical 

displacement d

i
u  whereas the remaining part σΓ  is that which corresponds to a 

prescribed force density d

i
F . 

 The electric boundary conditions constitute of the part ψΓ  of the 

piezoelectric-structure exterior boundary that is subjected to a prescribed electric 

potential dψ  whereas the remaining part 
D

Γ  is that which corresponds to a 

prescribed electric charge density dQ . 

 The fluid boundary conditions constitute of the part 
p

Γ  of the interior-fluid 

exterior boundary that is subjected to a prescribed fluid pressure dp  whereas the 

remaining part Σ  is that which defines the fluid-structure interface. 

 The local equations of the coupled problem are given by [37] 

 
2

, 2
in ,i

ij j S S

u

t
σ ρ

∂
= Ω

∂
 (4.1) 

 , 0 in ,
i i S

D = Ω  (4.2) 

 
2

, 2 2

1
in

ii F

F

p
p

c t

∂
= Ω

∂
 (4.3) 

 Equations (4.1)-(4.3) are the well-known elastodynamic, electrostatic, and 

Helmholtz equations, respectively (subscript " "i  can take ,x y  or z  directions 

whereas ", "i  denotes partial differentiation). These equations are supplemented by 

the following mechanical, electric, and fluid boundary conditions 

 on ,S d

ij j in F σσ = Γ  (4.4) 
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 on ,d

i i u
u u= Γ  (4.5) 

 on ,S

ij j in pnσ = Σ  (4.6) 

 on ,S d

i i D
D n Q= − Γ  (4.7) 

 on ,d

ψψ ψ= Γ  (4.8) 

 on ,d

pp p= Γ  (4.9) 

 
2

, 2
oni

i i F i

u
p n n

t
ρ

∂
= − Σ

∂
 (4.10) 

where 
ij

σ  denote the stress tensor components, 
i

D  denote the electric displacement 

vector components, p  is the interior-fluid pressure, 
S

ρ  is the structure mass density, 

F
ρ  is the fluid mass density, and 

F
c  is the speed of sound in the fluid. In addition, 

S

i
n  is the unit normal external to 

S
Ω  whereas 

i
n  is the unit normal external to 

F
Ω . 

Moreover, in order to set a well-posed coupled problem, Equations (4.1)-(4.10) must 

be supplemented by appropriate initial conditions. 

 The constitutive equations of a piezoelectric-structure can be expressed as 

 ,
ij ijkl kl kij k

c e Eσ ε= −  (4.11) 

 
i ikl kl ik k

D e Eε= + ∈  (4.12) 

where 
kl

ε  denote the strain tensor components, and 
k

E  denote the electric field vector 

components. In addition,
ijkl

c , 
kij

e , and 
ik

∈  denote, respectively, the elastic, 

piezoelectric, and dielectric material constants. 

 The strain tensor and the electric field are related to the mechanical 

displacement and electric potential, respectively, by the following gradient relations 
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 ( ), ,

1
,

2
kl k l l k

u uε = +  (4.13) 

 ,k k
E ψ= −  (4.14) 

 It can be seen from Equations (4.1)-(4.10) that the unknown variables of the 

coupled problem are chosen as the mechanical displacement 
i

u , electric potential ψ , 

and fluid pressure p . 

 Multiplying Equation (4.1) by 
i

uδ , Equation (4.2) by δψ , Equation (4.3) by 

pδ , then applying Green's formula, and utilizing the boundary conditions (Equations 

(4.4)-(4.10)) and constitutive equations (Equations (4.11)-(4.12)), leads to the 

following generic representation of the variational equations 

 
2

2
,

S S S

di
ijkl kl ij kij k ij S i i i i i

u
c dv e E dv u dv pn u ds F u ds

t
σ

ε δε δε ρ δ δ δ
Ω Ω Ω Σ Γ

∂
− + − =

∂∫ ∫ ∫ ∫ ∫  (4.15) 

 ,

S S D

d

ikl kl i ik k ie E dv E E dv Q dsε δ δ δψ
Ω Ω Γ

+ ∈ =∫ ∫ ∫  (4.16) 

 
22

, , 2 2 2

1 1
0

F F

i
i i i

F F F

up
p p dv pdv n pds

c t t
δ δ δ

ρ ρ
Ω Ω Σ

∂∂
+ + =

∂ ∂∫ ∫ ∫  (4.17) 

4.3. A Two-Dimensional Energy Harvesting System 

 The generalized variational equations (Equations (4.15)-(4.17)) are utilized to 

analyze a two-dimensional square cavity that is completely filled with air as shown in 

Figure  4.2(a). The cavity is assumed to be rigid at its boundaries described by 
R
Σ , 

but flexible at its boundary described by Σ . Moreover, a persistent harmonic pressure 

input excitation is applied at the end of the cavity described by 
p

Γ . 

 



 

 58 

 

 

 

 

 

 

 

 

(a) 

 

(a) 

 

 

 

 

   

 

(b) 

 

  

 The continually vibrating flexible end of the cavity is made of a bimorph 

piezoelectric energy harvester attached to an isotropic base structure. For simplicity, 

the slender composite structure is assumed to be in a state of plane-stress and is 

modeled using the Euler-Bernoulli beam assumptions. 

dp  

Σ  

R
Σ  

R
Σ  

pΓ  

F
Ω  

L
R  

I Q= �  

T
V  

z  

x  

Figure  4.2: The two-dimensional coupled system: (a) square cavity filled with air,               

(b) bimorph energy harvester with series connection of piezoelectric patches 



 

 59 

 

 The two piezoelectric patches are fully covered with continuous electrodes of 

negligible thickness at their top and bottom surfaces, polarized in their transverse 

directions opposite to each other, and connected in series to a resistive electric load 

L
R  which together with their internal capacitance form an electric circuit that is 

suitable for energy harvesting purposes [10]. The electric potential in the piezoelectric 

patches is assumed to be varying linearly in the z -direction (across their thickness) 

but considered uniform along the x  and y  coordinates. The fluid pressure inside the 

cavity is assumed to be varying spatially along the x  and z  coordinates but 

considered uniform in the y -direction (along the width of the composite beam).  

 Based on the above assumptions, the reduced piezoelectric-structure 

constitutive equations can be simplified in matrix-form as 

 
1 111 31

3 331 33

E
c e

D Ee
ε

σ ε −   
=    

∈    
 (4.18) 

where the one-dimensional (1-D) plane-stress constants in Equation (4.18) can be 

obtained in terms of the three-dimensional (3-D) constants as [14] 

 
( )

2
2

13 13 33
11 11 31 31 33 33 33

33 33 33

, , and

E E
E E

E E E

c c e
c c e e e

c c c

ε ε= − = − ∈ =∈ +  (4.19) 

 Moreover, the longitudinal strain 1ε  and the transverse electric field 3E  are 

related to the transverse mechanical displacement 3u  and the electric potential ψ  by 

 
2

3
1 2

,
u

z
x

ε
∂

=
∂

 (4.20) 

 3
P

P

V
E

z h

ψ∂
= − = −

∂
 (4.21) 
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where 
P

V  ( 1, 2P = ) denotes the voltage between the upper and lower electrodes of 

the thP  piezoelectric patch with thickness 
P

h . 

4.4. Finite Element Discretization 

 The structure domain is discretized using one-dimensional two-node finite 

elements. Each node has two degrees of freedom which are the transverse mechanical 

displacement and its derivative (rotation). On the other hand, the fluid domain is 

discretized using quadrilateral four-node finite elements where the nodal pressure is 

the only degree of freedom. Hence, the structure element transverse mechanical 

displacement and the fluid element pressure can be expressed, respectively, in terms 

of their nodal values as 

 3 1 1 2 1 3 2 4 2 ,e e

S S S S S
u N w N N w Nθ θ= + + + = N U  (4.22) 

 1 1 2 2 3 3 4 4

e e

F F F F F
p N p N p N p N p= + + + = N P  (4.23) 

where 
m

w  and 
m

θ  ( 1, 2m = ) denote the nodal transverse mechanical displacements 

and their corresponding rotations whereas 
n

p  ( 1, 2,3, 4n = ) denote the nodal pressure 

values. The shape functions 
r

N  ( 1,2,3,4r = ) and their corresponding matrices N  are 

supplemented with additional subscripts (" "S  or " "F ) to differentiate between 

structure and fluid domains. Equations (4.20)-(4.23) can be substituted into the 

variational equations (Equations (4.15)-(4.17)), and the electric potential ψ  is 

replaced by the electric voltage 
P

V  to obtain the mass, stiffness, and coupling 

matrices of the coupled energy harvesting system [37]. 
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 Introducing the global vectors U , V , and P  of mechanical, electric, and fluid 

degrees of freedom, respectively, the following discretized variational equations of 

the coupled problem can be written in matrix-form 

 

uu uu uV up

T

uV VV

T

up pp pp

    −    
        

+ − = −        
                

M 0 0 U K C C U F

0 0 0 V C K 0 V Q

C 0 M P 0 0 K P 0

��

��

��

 (4.24) 

where 
uu

M  and 
uu

K  are the mechanical mass and stiffness matrices, 
pp

M  and 
pp

K  

are the fluid mass and stiffness matrices, 
uV

C  is the electromechanical coupling 

matrix, 
VV

K  is the electric stiffness matrix, and 
up

C  is the fluid-structure coupling 

matrix. Moreover, F  and Q  denote the applied mechanical load and charge vectors, 

respectively. 

 In addition to the above matrix equation (Equation (4.24)), the electric circuit 

(see Figure  4.2) imposes one additional relation which results from the application of 

Kirchhoff's voltage law. This relation can be simply written as 

 
T L

V R Q= − �  (4.25) 

where 1 2T
V V V= +  is the voltage across the resistive electric load 

L
R . 

 Combining Equations (4.24)-(4.25), and noting that the piezoelectric patches 

are connected in series (i.e. 1 2Q Q Q= = ), a more convenient form for energy 

harvesting applications can be obtained for the coupled problem as [13] 
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ˆ ˆ

0

ˆ ˆˆ

ˆ ˆˆ

ˆ 2 / 0

ˆ

uu uu

L

T

ppup pp

uu uV up

T

uV P

pp

Q R Q

C Q

      
      

+      
      

       

 −    
     

+ =     
     

     

M 0 0 U D 0 0 U

0 0 0 0

P P0 0 DC 0 M

K C C U F

C 0

P 00 0 K

�� �

�� �

�� �

 (4.26) 

where 

 ˆ ˆ, ,uu uu pp pp= =M M M M  (4.27) 

 

2

1ˆ ˆ, ,

T

j j

j

uu uu pp pp

P
C

=
= + =

∑C C

K K K K  (4.28) 

 

2

1ˆ ˆ,

j

j

up up uV

P
C

=
= =

∑C

C C C  (4.29) 

 It should be noted that 1C  and 2C  in Equations (4.28)-(4.29) are the 

submatrices which constitute the electromechanical coupling matrix 
uV

C . Moreover, 

the matrices ˆ
uu

D  and ˆ
ppD  have been added in Equation (4.26) in order to account for 

structure and fluid damping which are essential components for the accuracy of 

subsequent energy harvesting results. 

 The internal capacitance 
P

C  ( 1, 2P = ) of each piezoelectric patch is 

 33 P
P

P

bL
C

h

ε∈
=  (4.30) 

where b  and 
P

L  are the width and length of the thP  piezoelectric patch, respectively. 
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 Since the cavity end described by 
p

Γ  is subjected to persistent harmonic 

pressure excitations, the vector of nodal pressures can be decomposed into the 

subvectors: dP  of prescribed pressure values, and P  of unknown pressure values 

[35]. Hence, Equation (4.26) can be rearranged to get 

 T T T Tc c c
+ + =M X D X K X F�� �  (4.31) 

where 

 

T T

ˆ

00
, , ,

ˆ ˆ ˆ
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ˆ ˆ ˆˆˆ

ˆ 2 /
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ˆ ˆˆ

ˆ ˆ

uu

c T

up pp pp

d T

up pp pp

uu uV up up
uu

T

uV PL

c c

pp pppp

pp pp

Q

CR

    
    
    

= = =     
     
          

 − − 
 
 = =  

 
   

M 0 0 0U F

0 0 0
X F M

P 0 C 0 M M

P 0 C 0 M M

K C C CD 0 0 0

C 0 00 0 0
D K

0 0 K K0 0 D 0

0 0 0 0 0 0 K K






 
 



 (4.32) 

 Eliminating the last row and moving the vector of prescribed pressure values 

dP  to the right hand side of Equation (4.31) yields 

 

ˆ ˆ

0

ˆ ˆˆ

ˆ ˆˆ

ˆ 2 / 0

ˆ

uu uu

L

T

ppup pp

uu uV up u
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uV P

ppp

Q R Q

C Q

      
      

+      
      

       

 −   
    

+ =     
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K C C U F

C 0

P F0 0 K

�� �

�� �

�� �

 (4.33) 

where 
u

F  and 
p

F  are given by 

 ˆ ,d

u up= +F F C P  (4.34) 
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 ˆ ˆd d

p pp pp= − −F M P K P��  (4.35) 

 Introducing the transformations 
u u

=U Φ h  and 
p p

=P Φ h  into Equations 

(4.33)-(4.35), and premultiplying the first and third rows of Equation (4.33) by T

u
Φ  

and T

pΦ , respectively, yields 
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2 / 0

uu u uu u
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up pp p pp p
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 (4.36) 

where 
u

Φ  and 
p

Φ  are the mass normalized modal matrices associated with the 

structure (in SC conditions) and fluid (with open cavity), respectively, 
u

h  and 
p

h  are 

their corresponding vectors of modal coordinates. 

 The different mass normalized vectors and matrices given in Equation (4.36) 

can be expressed in terms of those in Equation (4.33) as 

 ˆ ˆ, ,T T

uu u uu u uu p pp p= =M Φ M Φ M Φ M Φ  (4.37) 

 ˆ ˆ, ,T T

uu u uu u pp p pp p= =K Φ K Φ K Φ K Φ  (4.38) 

 ˆ ˆ, ,T T

uV u uV up u up p= =C Φ C C Φ C Φ  (4.39) 

 ,T T

u u u p p p= =F Φ F F Φ F  (4.40) 

 For a harmonic input pressure excitation at a frequency ω  such that 

0

d d j t
e

ω=P P , 0

j t

u u
e

ω=F F , and 0

j t

p pe
ω=F F , the output solution is assumed also in 

harmonic form as 
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 0 0 0, ,j t j t j t

u u p pe e Q Q e
ω ω ω= = =h H h H  (4.41) 

 Defining the structure and fluid impedance matrices, respectively, as 

2

u uu uu uu
jω ω= + −Z K D M  and 2

p pp pp ppjω ω= + −Z K D M , substituting Equation 

(4.41) into Equation (4.36), and carrying out some manipulations, we arrive at the 

following relations for the output modal amplitudes 

 
( )1 1

0 0

0 1
,

2 /

T

uV u up p p

T

uV uV L P

Q
j R Cω

− −

−

+
=

− −

C Θ F C Z F

C Θ C
 (4.42) 

 ( )1 1

0 0 0 0 ,
u u up p p uV

Q− −= + −H Θ F C Z F C  (4.43) 

 ( )1 2

0 0 0

T

p p p up u
ω−= +H Z F C H  (4.44) 

where the matrix Θ  is given by 

 ( )2 1 T

u up p up
ω −= −Θ Z C Z C  (4.45) 

4.5. Structure and Fluid Damping 

 The proposed model must take into account the different damping 

mechanisms that can affect the accuracy of subsequent desirable results from the 

coupled energy harvesting system. In fact, each of the piezoelectric-structure and the 

interior-fluid contribute its own damping to the total system where each coupled-

mode is associated with a specific damping factor. Here, the piezoelectric-structure 

and the interior-fluid can be analyzed independently because of the mass 

normalization procedure used in Equation (4.36) to simplify the analysis. 

 For the structure, two types of mechanical damping are considered. The first is 

referred to as the viscous air damping whereas the second is known as the strain rate 

damping due to structural viscoelasticity [10]. The mechanical damping ratio 
r

ζ  of 
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the r
th

 structure mode of vibration which includes the effect of both viscous air 

damping and strain rate damping is given by  

 
2 2

a s a s t r
r r r

r t t

c c I

m E I

ω
ζ ζ ζ

ω
= + = +  (4.46) 

where a

r
ζ  is the viscous air damping component of the damping ratio, s

r
ζ  is the strain 

rate damping component of the damping ratio, 
a

c  is the viscous air damping 

coefficient, 
s t

c I  is the equivalent damping term of the cross section due to structural 

viscoelasticity, and 
r

ω  is the r
th

 natural frequency of the composite beam under SC 

conditions. Experimental modal analysis under SC conditions is required to determine 

any two modal damping ratios so as to calculate 
a

c  and 
s t

c I  using Equation (4.46). 

Once these proportionality constants are known, Equation (4.46) can be used again to 

find the rest of the modal damping ratios. 

 For the fluid, a proportional damping is used where the fluid damping matrix 

is composed of a weighted sum of the fluid mass and stiffness matrices expressed as 

 pp pp ppα β= +D M K  (4.47) 

where α  and β  are the constants of proportionality. Again, experimental modal 

analysis is needed to determine these constants for a square rigid cavity which is open 

from one of its four sides. 

4.6. Numerical Results 

 This section presents some numerical results of the proposed finite element 

model. Table  4.1 lists the geometric, structure, fluid, and electromechanical 
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parameters of the coupled problem. Note that the piezoelectric material used here is 

PZT-5A. 

 

Table  4.1: Geometric, structure, fluid, and electromechanical properties of the coupled system 

 

Geometric Properties          Value 

 
 

Length of substructure 
S

L  and each piezoelectric patch 
P

L                 200 mm 

Width of substructure 
S

b  and each piezoelectric patch 
P

b      30 mm 

Thickness of substructure 
S

h          0.4 mm 

Thickness of each piezoelectric patch 
P

h         0.8 mm 

Size of square cavity 
X Y

L L×          200 mm×200 mm 

 

Structure Properties          Value 

 

Young's Modulus of substructure 11

S
c         100 GPa 

Young's Modulus of each piezoelectric patch 11

E
c       120.3 GPa 

Young's Modulus of each piezoelectric patch 13

E
c       75.1 GPa 

Young's Modulus of each piezoelectric patch 33

E
c       110.9 GPa 

Mass density of substructure 
S

ρ          7165 kg/m
3 

Mass density of each piezoelectric patch 
P

ρ        7800 kg/m
3 

 

Fluid and Electromechanical Properties       Value 

 
Mass density of air 

F
ρ           1.2 kg/m

3 

Piezoelectric constant 31e           -5.2 C/m
2 

Piezoelectric constant 33e           15.9 C/m
2 

Permittivity 33

ε∈ *           1800 0×∈  pF/m 

Speed of sound for air 
F

c           340 m/s 

 

 

 

 

 

0
 * Permittivity of free space = 8.854 /pF m∈  
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 Table  4.2 lists the first six natural frequencies of the composite beam alone 

when the piezoelectric patches are in SC and OC electric boundary conditions. Figure 

 4.3 shows the corresponding mode shapes of the composite beam alone. 

Table  4.2: First six natural frequencies (Hz) of the composite beam alone 

MODE SHORT-CIRCUIT OPEN-CIRCUIT 

1 68.33 72.83 

2 273.31 273.31 

3 614.97 619.68 

4 1093.36 1093.36 

5 1708.63 1713.38 

6 2461.10 2461.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table  4.3 lists the first six natural frequencies of the cavity alone for all-rigid 

and one-side open fluid boundary conditions. Figure  4.4 and Figure  4.5 show the 

corresponding mode shapes of the cavity alone. 
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Figure  4.3: First six mode shapes of the composite beam alone 
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Table  4.3: First six natural frequencies (Hz) of the cavity alone 

MODE ALL-RIGID ONE-SIDE OPEN 

1 850.87 425.11 

2 850.87 951.16 

3 1203.32 1277.95 

4 1706.70 1535.30 

5 1706.70 1759.14 

6 1907.31 2132.37 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table  4.4 and Table  4.5 list the first six natural frequencies of the coupled 

system with rigid cavity and open cavity fluid boundary conditions when the 

piezoelectric patches are subjected to SC and OC electric boundary conditions, 

respectively. Figure  4.6 and Figure  4.7 show the corresponding mode shapes of the 

coupled system. 

Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 Mode 6 

Figure  4.4: First six mode shapes of the rigid cavity alone 
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Table  4.4: First six natural frequencies (Hz) of the coupled system                                                 
for all-rigid fluid boundary condition 

 

MODE SHORT-CIRCUIT OPEN-CIRCUIT 

1 74.65 78.74 

2 272.73 272.73 

3 614.22 618.92 

4 851.29 851.29 

5 852.21 852.21 

6 1092.10 1092.10 

 

Table  4.5: First six natural frequencies (Hz) of the coupled system                                                 

for one-side open fluid boundary condition 
 

MODE SHORT-CIRCUIT OPEN-CIRCUIT 

1 67.87 72.35 

2 272.74 272.74 

3 427.11 427.11 

4 614.60 619.31 

5 951.65 951.65 

6 1092.92 1092.92 

Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 Mode 6 

Figure  4.5: First six mode shapes of the one-side open cavity alone 
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Figure  4.6: First six mode shapes of the coupled system with rigid cavity at the short-circuit condition 
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Figure  4.7: First six mode shapes of the coupled system with open cavity at the short-circuit condition 
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 Figure  4.8, Figure  4.9, and Figure  4.10 show, respectively, the electric 

voltage, current, and power FRFs of the piezoelectric energy harvester for different 

resistive loads when 1dp Pa= . It can be seen from the electric voltage FRF that the 

amplitude of the voltage increases with increasing the load resistance and that the 

behavior is monotonic. On the other hand, the electric current FRF shows that the 

amplitude of the current decreases with increasing the load resistance but the behavior 

is still monotonic. Since the electric power FRF is the product of the electric voltage 

and current FRFs, the behavior is not monotonic. Figure  4.11 shows the variation of 

the electric power amplitude with load resistance for excitations at the short-circuit 

and open-circuit resonant frequencies of the first coupled vibration mode. 
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Figure  4.8: Voltage FRF of the piezoelectric energy harvester for different resistive loads 
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Figure  4.9: Current FRF of the piezoelectric energy harvester for different resistive loads 
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Figure  4.10: Power FRF of the piezoelectric energy harvester for different resistive loads 
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 From Figure  4.11, it is found that the optimal resistances at the short-circuit 

and open-circuit resonant conditions are 12SC

L
R k= Ω  and 80OC

L
R k= Ω , respectively. 

The corresponding output electric power for both cases is about 3.52 /W Paµ .  

4.7. A Two-Dimensional Energy Harvester with a Dynamic Magnifier 

 The idea of attaching a dynamic magnifier to a structural system for 

enhancing the electric power output of piezoelectric energy harvesters was proposed 

and validated in Chapter 2. Here, we extend this idea for the modeling of structural-

acoustic coupled systems. A modified version of Figure  4.2 where the coupled system 

is augmented with a dynamic magnifier is shown in Figure  4.12. 
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Figure  4.11: Variation of electric power with load resistance at the SC and OC resonant 

conditions of the first coupled vibration mode 
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Figure  4.12: The two-dimensional coupled system with a dynamic magnifier: (a) square 

cavity filled with air, (b) bimorph energy harvester with series connection of piezoelectric 

patches and attached to a dynamic magnifier 
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 In Figure  4.12, a dynamic magnifier consisting of a simply-supported beam 

and a discrete spring is attached to a bimorph piezoelectric energy harvester. The 

discrete spring connecting the two vibrating structures is located in the midpoint 

between them. For simplicity, the Euler-Bernoulli beam assumptions are used to 

model the dynamic magnifier as well as the piezoelectric energy harvester. The 

variational equations of the combined system are identical to Equations (4.15)-(4.17). 

 In order to formulate a finite element model for the combined system which 

takes into account the effect of the attached dynamic magnifier, we introduce the 

global vectors hU , fU , V , and P  of mechanical, electric, and fluid degrees of 

freedom (the superscript h  in hU  denotes harvester, whereas the superscript f  in 

fU  denotes magnifier). The following discretized variational equations of the 

combined system can be written in matrix-form 

 

h hh h h
uu uu s uV

f T ff f b
uu s uu up

T

uV VV

T

up pp pp

        
        

−        + =        − −        
                

M 0 0 0 K K C 0U U F

0 M 0 0 K K 0 CU U F

0 0 0 0 C 0 K 0V V Q

0 C 0 M 0 0 0 KP P 0

��

��

��

��

(4.48) 

where h

uu
M  and h

uu
K  are the mechanical mass and stiffness matrices of the harvester, 

f

uu
M  and f

uu
K  are the mechanical mass and stiffness matrices of the magnifier, 

pp
M  

and 
pp

K  are the fluid mass and stiffness matrices, 
s

K  is the mechanical discrete 

spring matrix, 
uV

C  is the electromechanical coupling matrix, 
VV

K  is the electric 

stiffness matrix, and 
up

C  is the fluid-structure coupling matrix. Moreover, hF , fF  

and Q  denote the applied mechanical load and charge vectors. 
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 Knowing that the two piezoelectric patches are connected in series (i.e. 

1 2Q Q Q= = ), a more convenient form for energy harvesting applications can be 

obtained for the combined system as [13] 

 

ˆ ˆ
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ˆ 2 /
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 (4.49) 

where 

 ˆ ˆ ˆ, , ,h h f f

uu uu uu uu pp pp= = =M M M M M M  (4.50) 

 

2

1ˆ ˆ ˆ ˆ, , , ,

T

j j

jh h f f

uu uu uu uu pp pp s s

P
C

=
= + = = =

∑C C

K K K K K K K K  (4.51) 

 

2

1ˆ ˆ,

j

j

up up uV

P
C

=
= =

∑C

C C C  (4.52) 

 Since the cavity end described by 
p

Γ  is subjected to persistent harmonic 

pressure excitations, the vector of nodal pressures can be decomposed into the 

subvectors: dP  of prescribed pressure values, and P  of unknown pressure values 

[35]. Hence, Equation (4.49) can be rearranged to get 

 T T T Tc c c
+ + =M X D X K X F�� �  (4.53) 
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where 
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 Eliminating the last row and moving the vector of prescribed pressure values 

dP  to the right hand side of Equation (4.53) yields 
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 (4.55) 

where f

u
F , h

u
F , and 

p
F  are given by 

 ,h h

u
=F F  (4.56) 

 ˆ ,f f d

u up= +F F C P  (4.57) 

 ˆ ˆd d

p pp pp= − −F M P K P��  (4.58) 

 



 

 80 

 

 Introducing the transformations h

h h
=U Φ h , f

f f=U Φ h , and 
p p

=P Φ h  into 

Equations (4.55)-(4.58), and premultiplying the first, second, and fourth rows of 

Equation (4.55) by T

h
Φ , T

fΦ , and T

pΦ , respectively, yields 
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where 
h

Φ , 
f

Φ , and 
p

Φ  are the mass normalized modal matrices associated with the 

harvester (in SC conditions), magnifier, and fluid (with open cavity), respectively, 
h

h , 

f
h  and 

p
h  are their corresponding vectors of modal coordinates. 

 The different mass normalized vectors and matrices given in Equation (4.59) 

can be expressed in terms of those in Equation (4.55) as 

 ˆ ˆ ˆ, , ,h T h f T f T

uu h uu h uu f uu f uu p pp p= = =M Φ M Φ M Φ M Φ M Φ M Φ  (4.60) 

 ˆ ˆ ˆ ˆ, , ,h T h f T f T T

uu h uu h uu f uu f pp p pp p s h s f= = = =K Φ K Φ K Φ K Φ K Φ K Φ K Φ K Φ  (4.61) 

 ˆ ˆ, ,T T

uV h uV up f up p= =C Φ C C Φ C Φ  (4.62) 

 , ,h T h f T f T

u h u u f u p p p= = =F Φ F F Φ F F Φ F  (4.63) 

 For a harmonic input pressure excitation at a frequency ω  such that 

0

d d j t
e

ω=P P , 0

h h j t

u u
e

ω=F F , 0

f f j t

u u
e

ω=F F , and 0

j t

p pe
ω=F F , the output solution is 

assumed also in harmonic form as 
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 0 0 0 0, , ,j t j t j t j t

h h f f p pe e e Q Q e
ω ω ω ω= = = =h H h H h H  (4.64) 

 Defining the harvester impedance matrix as 2h h h

h uu uu uu
jω ω= + −Z K D M ,      

the dynamic magnifier impedance matrix as 2f f f

f uu uu uujω ω= + −Z K D M , and the fluid 

impedance matrix as 2

p pp pp ppjω ω= + −Z K D M , substituting Equation (4.64) into 

Equation (4.59), and carrying out some manipulations, we arrive at the following 

relations for the output modal amplitudes 

 
( )1 1 1 1

0 0 0

0 1
,

2 /

T h f

uV h u s f u s f up p p

T

uV h uV L P

Q
j R Cω

− − − −

−

− −
=

− −

C Θ F K Θ F K Θ C Z F

C Θ C
 (4.65) 

 ( )1 1 1 1

0 0 0 0 0 ,h f

h h u s f u s f up p p uV
Q− − − −= − − −H Θ F K Θ F K Θ C Z F C  (4.66) 

 ( )1 1

0 0 0 0 ,f T

f f u up p p s h

− −= + −H Θ F C Z F K H  (4.67) 

 ( )1 2

0 0 0

T

p p p up f
ω−= +H Z F C H  (4.68) 

where the matrices 
h

Θ  and 
f

Θ  are given by 

 ( )1 ,T

h h s f s

−= −Θ Z K Θ K  (4.69) 

 ( )2 1 T

f f up p up
ω −= −Θ Z C Z C  (4.70) 

 In order to illustrate the performance of the combined system which includes 

the effect of the dynamic magnifier, we consider a numerical example where the 

properties shown in Table  4.1 are used again for comparison purposes. The dynamic 

magnifier beam has the same geometric and material parameters as those of the 

harvester substructure (see Table  4.1), except for its thickness which is chosen to be 

equal to 0.8
f

h mm= . The dynamic magnifier discrete spring stiffness is 

2.5
f

k kPa= . 
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 Figure  4.13 shows the electric power FRF of the piezoelectric energy 

harvester for different resistive loads when 1dp Pa= . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure  4.14 shows the variation of the electric power amplitude with load 

resistance for excitations at the short-circuit resonant frequencies of the first coupled 

vibration mode of the combined system (including the effect of the dynamic 

magnifier) as compared to that of the coupled system without attaching the dynamic 

magnifier. It is found that the peak electric power harvested from the combined 

system is max 10.3 /sc
P W Paµ=  with 12sc

L
R k= Ω , whereas the peak electric power 

harvested from the coupled system without attaching the dynamic magnifier is found 

to be equal to max 3.5 /sc
P W Paµ=  with 31sc

L
R k= Ω . Accordingly, the use of the 
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Figure  4.13: Power FRF of the piezoelectric energy harvester for different resistive loads 
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dynamic magnifier has resulted in magnifying the peak harvested power of the 

coupled system by about 300% . 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8. A Three-Dimensional Energy Harvesting System 

 Thus far, the considered examples give a good insight into the behavior and 

performance characteristics of piezoelectric energy harvesting devices coupled to an 

acoustic cavity. Yet, these examples are only good for theoretical study since a two-

dimensional structural-acoustic coupled system is not a practical problem. A more 

realistic case would be the three-dimensional extension of the structural-acoustic 

coupled system considered previously. Figure  4.15 shows a schematic drawing of 
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Figure  4.14: Variation of electric power with load resistance at the SC resonant conditions of the 

first coupled vibration mode (  ▬▬▬  with magnifier,  ▪▪▪▪▪▪▪▪▪  without magnifier) 
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such systems where a three-dimensional rigid acoustic cavity is coupled with a 

bimorph piezoelectric energy harvester plate. 
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Figure  4.15: The three-dimensional structural-acoustic coupled energy harvesting system 

 

 Since the variational equations (Equations (4.15)-(4.17)) were derived for 

systems of general geometry, they can be used here again. The three-dimensional 

rigid acoustic cavity is completely filled with air and the cavity is assumed to be open 

from one side where a persistent harmonic pressure input excitation is applied. The 

continually vibrating flexible end of the cavity is made of a bimorph piezoelectric 

energy harvester plate. For simplicity, the thin composite structure is assumed to be in 

a state of plane-stress and is modeled using the Kirchhoff plate assumptions. 
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 The two piezoelectric patches are fully covered with continuous electrodes of 

negligible thickness at their top and bottom surfaces, polarized in their transverse 

directions opposite to each other, and connected in series to a resistive electric load 

L
R  which together with their internal capacitance form an electric circuit that is 

suitable for energy harvesting purposes [10]. The electric potential in the piezoelectric 

patches is assumed to be varying linearly in the z -direction (across their thickness) 

but considered uniform along the x  and y  coordinates. The fluid pressure inside the 

cavity is assumed to be varying spatially along the x , y , and z  coordinates.  

 Based on the above assumptions, the reduced piezoelectric-structure 

constitutive equations can be simplified in matrix-form as 

 

1 111 12 31

2 212 22 32

6 666

3 331 32 33

0

0

0 0 0

0

E E

E E

E

c c e

c c e

c

D Ee e
ε

σ ε

σ ε

σ ε

 −   
    

−    =           ∈     

 (4.71) 

where the two-dimensional (2-D) plane-stress constants in Equation (4.71) can be 

obtained in terms of the three-dimensional (3-D) constants as [14] 

 

( ) ( )
2 2

13 2313 23
11 11 12 12 22 22 66 66

33 33 33

2

13 23 33
31 31 33 32 32 33 33 33

33 33 33

, , , ,

,

E EE E
E E E E E E E E

E E E

E E

E E E

c cc c
c c c c c c c c

c c c

c c e
e e e e e e

c c c

ε ε

= − = − = − =

= − = − ∈ =∈ +

 (4.72) 

 Moreover, the in-plane strains ( 1ε , 2ε , and 6ε ) and the transverse electric 

field 3E  are related to the transverse mechanical displacement 3u  and the electric 

potential ψ  by 
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3 3 3
1 2 62 2

, , 2 ,
u u u

z z z
x y x y

ε ε ε
∂ ∂ ∂

= = =
∂ ∂ ∂ ∂

 (4.73) 

 3
P

P

V
E

z h

ψ∂
= − = −

∂
 (4.74) 

where 
P

V  ( 1, 2P = ) denotes the voltage between the upper and lower electrodes of 

the thP  piezoelectric patch with thickness 
P

h . 

 The structure domain is discretized using two-dimensional quadrilateral four-

node finite elements. Each node has three degrees of freedom which are the 

transverse mechanical displacement and its derivatives (rotations). On the other hand, 

the fluid domain is discretized using three-dimensional hexagonal eight-node finite 

elements where the nodal pressure is the only degree of freedom. Hence, the structure 

element transverse mechanical displacement and the fluid element pressure can be 

expressed, respectively, in terms of their nodal values as 

 
3 1 1 2 1 3 1 4 2 5 2 6 2

7 3 8 3 9 3 10 4 11 4 12 4 ,

e

S S x S y S S x S y

e

S S x S y S S x S y S

u N w N N N w N N

N w N N N w N N

θ θ θ θ

θ θ θ θ

= + + + + +

+ + + + + + = N U
 (4.75) 

 
1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8

e

F F F F

e

F F F F F

p N p N p N p N p

N p N p N p N p

= + + +

+ + + + = N P
 (4.76) 

where 
m

w , 
mx

θ , and 
my

θ  ( 1, 2,3m = ) denote the nodal transverse mechanical 

displacements and their corresponding rotations whereas 
n

p  ( 1, 2,...,8n = ) denote the 

nodal pressure values. 

 Equations (4.42)-(4.44) can be used here again to compute the output modal 

amplitudes of the harmonically pressure-driven three-dimensional coupled energy 

harvesting system. In order to illustrate its performance, we consider a numerical 
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example where the geometric, structure, fluid, and electromechanical parameters of 

the coupled problem are listed in Table  4.8. Note that the piezoelectric material used 

here is PZT-5A. 

 Table  4.6 lists the first six natural frequencies of the composite plate alone 

when the piezoelectric patches are in SC and OC electric boundary conditions. Figure 

 4.16 shows the corresponding mode shapes of the composite plate alone. 

 Table  4.7 lists the first six natural frequencies of the cavity alone for all-rigid 

and one-side open fluid boundary conditions. Figure  4.17 and Figure  4.18 show the 

corresponding mode shapes of the cavity alone. 

 

Table  4.6: First six natural frequencies (Hz) of the composite plate alone 

MODE SHORT-CIRCUIT OPEN-CIRCUIT 

1 152.21 153.93 

2 278.71 278.71 

3 349.90 349.90 

4 460.57 460.57 

5 483.82 484.11 

6 649.16 649.16 

 

 Table  4.7: First six natural frequencies (Hz) of the cavity alone 

MODE ALL-RIGID ONE-SIDE OPEN 

1 284.14 212.84 

2 341.40 355.02 

3 427.74 402.31 

4 444.18 492.54 

5 513.51 611.40 

6 547.28 646.75 
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Table  4.8: Geometric, structure, fluid, and electromechanical properties of the coupled system 

 

Geometric Properties         Value 

 

Size of plate substructure
X Y

L L×            0.6 m×0.5 m 

Size of each piezoelectric patch
PX PY

L L×           0.3 m×0.2 m 
 

Thickness of plate substructure 
S

h        6.0 mm 

Thickness of each piezoelectric patch 
P

h        0.6 mm 

Cavity size 
X Y Z

L L L× ×             0.6 m×0.5 m×0.4 m 

 

Structure Properties         Value 

 

Young's Modulus of plate substructure 11

S
c       144 GPa 

Young's Modulus of each piezoelectric patch 11

E
c                 120.3 GPa 

Young's Modulus of each piezoelectric patch 22

E
c                 120.3 GPa 

Young's Modulus of each piezoelectric patch 33

E
c                 110.9 GPa 

Young's Modulus of each piezoelectric patch 12

E
c                 75.2 GPa 

Young's Modulus of each piezoelectric patch 23

E
c                 75.1 GPa 

Young's Modulus of each piezoelectric patch 13

E
c                 75.1 GPa 

Young's Modulus of each piezoelectric patch 66

E
c                 22.7 GPa 

Mass density of plate substructure 
S

ρ                   7700 kg/m
3 

Mass density of each piezoelectric patch 
P

ρ                  7800 kg/m
3 

Poisson's ratio of plate substructure       0.35 

 

Fluid and Electromechanical Properties      Value 

 
Mass density of air 

F
ρ          1.0 kg/m

3 

Piezoelectric constant 31e          -5.2 C/m
2 

Piezoelectric constant 32e          -5.2 C/m
2 

Piezoelectric constant 33e          15.9 C/m
2 

Permittivity 33

ε∈ *          1800 0×∈  pF/m 

Speed of sound for air 
F

c          340 m/s 

 

 

 

 

0
 * Permittivity of free space = 8.854 /pF m∈  
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Figure  4.16: First six mode shapes of the composite plate alone 

Figure  4.17: First six mode shapes of the rigid cavity alone 

Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 Mode 6 

Mode 4 Mode 5 Mode 6 

Mode 1 Mode 3 Mode 2 
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 Table  4.9 and Table  4.10 list the first six natural frequencies of the coupled 

system with rigid cavity and open cavity fluid boundary conditions when the 

piezoelectric patches are subjected to SC and OC electric boundary conditions, 

respectively. Figure  4.19 and Figure  4.20 show the corresponding mode shapes of the 

coupled system. 

 
Table  4.9: First six natural frequencies (Hz) of the coupled system                                                 

for all-rigid fluid boundary condition 
 

MODE SHORT-CIRCUIT OPEN-CIRCUIT 

1 152.27 153.99 

2 276.56 276.56 

3 286.08 286.08 

4 339.86 339.86 

5 351.15 351.15 

6 427.76 427.76 

Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 Mode 6 

Figure  4.18: First six mode shapes of the one-side open cavity alone 
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 Table  4.10: First six natural frequencies (Hz) of the coupled system                                                 

for one-side open fluid boundary condition 
 

MODE SHORT-CIRCUIT OPEN-CIRCUIT 

1 151.62 153.33 

2 213.47 213.49 

3 278.18 278.18 

4 349.13 349.13 

5 355.42 355.42 

6 402.89 402.89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.19: First six mode shapes of the coupled system with rigid cavity at the short-circuit condition 

Mode 5 Mode 4 Mode 6 

Mode 2 Mode 3 Mode 1 
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 Figure  4.8, Figure  4.9, and Figure  4.10 show, respectively, the electric 

voltage, current, and power FRFs of the piezoelectric energy harvester plate (showing 

only the first coupled resonant frequency) for different resistive loads when 

Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 Mode 6 

Figure  4.20: First six mode shapes of the coupled system with open cavity at the short-circuit condition 
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1dp Pa= . It can be seen from these electric behaviors that they go in parallel with 

those obtained earlier for the two-dimensional energy harvesting problem. 

 

 

 

 

 

 

 

 

 

 

Figure  4.21: Voltage FRF of the piezoelectric energy harvester plate for different resistive loads 
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Figure  4.22: Current FRF of the piezoelectric energy harvester plate for different resistive loads 
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Figure  4.23: Power FRF of the piezoelectric energy harvester plate for different resistive loads 

 

 

4.9. Conclusions 

 

 This chapter has presented a generic finite element modeling of piezoelectric 

energy harvesters which can harness the vibration energy propagating through a rigid 

acoustic cavity. The model predicts the mechanical displacement and electric power 

output of the harvester when the cavity is subjected to persistent harmonic pressure 

input excitations. Detailed analysis is presented of the modal frequencies and the 

mode shapes of the coupled piezoelectric energy harvester and acoustic cavity 

system. 

 The effectiveness of the energy harvester in capturing the vibrational energy 

resulting from the interaction between the oscillating fluid, filling the cavity, and the 

piezoelectric harvesting structure is demonstrated when the harvester is connected to 
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different resistive loads. It was found that the amplitude of the harvester electric 

voltage increases with increasing the load resistance and that the behavior is 

monotonic. On the other hand, the amplitude of the harvester electric current 

decreases with increasing the load resistance but the behavior is still monotonic. 

 The numerical examples presented to illustrate the behavior of the harvester at 

short-circuit (SC) and open-circuit (OC) resonant conditions indicate that the 

maximum electric power output of the harvester is approximately the same under 

both conditions. 

 The presented finite element model can be readily extended and applied to 

more complex fluid-structure systems where vibrational energy can be harnessed to 

potentially power various vibration, noise, and health monitoring instrumentation. 
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Chapter 5  

5. Experimental Implementation of Piezoelectric Vibration 

Energy Harvesting from Coupled Structural-Acoustic 

Systems 

 

5.1. Introduction 

 In the context of energy harvesting techniques by using piezoelectric 

materials, this chapter presents the experimental investigations of the specific 

problem representing a piezoelectric composite plate coupled with a rectangular 

acoustic cavity. In Chapter 4, a finite element model was developed to study this kind 

of problems where the electric power output from the piezoelectric patches is 

predicted for harmonic pressure input excitations. As a consequence, an experiment 

has been conducted to validate the previous results. The only difference here is that 

instead of having an acoustic source to excite the structural-acoustic coupled system 

from the open end of the cavity, a uniformly distributed load is applied on the outer 

surface (front surface) of the plate to excite the system mechanically. Figure  5.1 

shows the experimental setup needed to predict and validate the previous finite 

element results. The all-fixed plate substructure is made of aluminum where a 

piezoelectric patch is attached right in the middle of each side of the plate as shown in 

Figure  5.2. A speaker is placed a small distance from the outer surface of the plate as 

the source of excitation to the system. The piezoelectric patches are connected in 

series to an electric resistive load and the electric power output is measured and 

compared with the electric power output obtained using the finite element model. 
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Figure  5.1: A photograph showing the experimental setup of the structural-acoustic coupled system 

Figure  5.2: Piezoelectric patches connected to the front side (a) and back side (b) of the all-

fixed aluminum plate substructure 
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5.2. Finite Element Modeling 

 The details of the finite element modeling of piezoelectric energy harvesters 

from coupled structural-acoustic systems were documented in Chapter 4. However, 

since the experimental setup used here differs slightly from the one used previously, it 

is therefore worthwhile to briefly indicate where these differences occur in the 

mathematical model. The following discussion explains the main differences between 

the two models. 

 The following discretized variational equations (Equation (4.33)) of the 

coupled problem can be written in matrix-form 
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ˆ ˆˆ

ˆ 2 / 0

ˆ

uu uu

L

T

ppup pp

uu uV up u

T

uV P

pp

Q R Q

C Q

      
      

+      
      

       

 −    
     

+ =     
     

     

M 0 0 U D 0 0 U

0 0 0 0

P P0 0 DC 0 M

K C C U F

C 0

P 00 0 K

�� �

�� �

�� �

 (5.1) 

where ˆ
uu

M  and ˆ
uu

K  are the mechanical mass and stiffness matrices, ˆ
ppM  and ˆ

ppK  

are the fluid mass and stiffness matrices, ˆ
uV

C  is the electromechanical coupling 

matrix, ˆ
VV

K  is the electric stiffness matrix, and ˆ
upC  is the fluid-structure coupling 

matrix. Moreover, 
u

=F F  and Q  denote the applied mechanical load and charge 

vectors, respectively. 

 Introducing the transformations 
u u

=U Φ h  and 
p p

=P Φ h  into Equation (5.1), 

and premultiplying the first and third rows of Equation (5.1) by T

u
Φ  and T

pΦ , 

respectively, yields 
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where 
u

Φ  and 
p

Φ  are the mass normalized modal matrices associated with the 

structure (in SC conditions) and fluid (with open cavity), respectively, 
u

h  and 
p

h  are 

their corresponding vectors of modal coordinates. 

 For a harmonic input excitation at a frequency ω  such that 0

j t

u u
e

ω=F F , the 

output solution is assumed also in harmonic form as 

 0 0 0, ,j t j t j t

u u p pe e Q Q e
ω ω ω= = =h H h H  (5.3) 

 Defining the structure and fluid impedance matrices, respectively, as 

2

u uu uu uu
jω ω= + −Z K D M  and 2

p pp pp ppjω ω= + −Z K D M , substituting Equation 

(5.3) into Equation (5.2), and carrying out some manipulations, we arrive at the 

following relations for the output modal amplitudes 
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,
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uV u up p p
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 ( )1 1

0 0 0 0 ,
u u up p p uV

Q− −= + −H Θ F C Z F C  (5.5) 

 ( )1 2

0 0 0

T

p p p up u
ω−= +H Z F C H  (5.6) 

where the matrix Θ  is given by 

 ( )2 1 T

u up p up
ω −= −Θ Z C Z C  (5.7) 
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5.3. Experimental and Numerical Results 

 

 The geometric, structure, fluid, and electromechanical parameters of the 

experimental setup shown in Figure  5.1 are listed in Table  5.1. The aluminum plate 

substructure is fixed from its four sides and the rectangular acoustic cavity is assumed 

to be rigid and filled completely with air. 

 Before going through an energy harvesting analysis, the fundamental natural 

frequency is obtained from the experiment and is compared with the one obtained 

numerically using the finite element model. The experiment shows that this frequency 

has a value of f1=61.61 Hz whereas the one obtained numerically has a value of 

f1=61.40 Hz. The fundamental natural mode is the focus of the subsequent energy 

harvesting results. 

 The fundamental mode shape of the composite plate is also compared for the 

experiment vs. numerical model. Here, a scanning laser vibrometer is used for this 

purpose where the frequency of excitation is set at the obtained fundamental natural 

frequency of the coupled system. Figure  5.3 shows such comparison and a good 

agreement is observed. The corresponding mode shape of the acoustic cavity is also 

included to show the internal pressure distribution. 

 Figure  5.4 shows the experimental vs. numerical output voltage of the coupled 

system for different electric load resistances. It can be seen from the plots that the 

proposed numerical model very well captures the experimental behavior of the energy 

harvester. 
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Table  5.1: Geometric, structure, fluid, and electromechanical properties of the experimental 

setup shown in Figure 5.1 

 

Geometric Properties      Value 

 

Size of plate substructure
X Y

L L×      0.34 m×0.34 m 

Size of each piezoelectric patch
PX PY

L L×    64 mm×64 mm 
 

Thickness of plate substructure 
S

h     0.83 mm 

Thickness of each piezoelectric patch 
P

h     0.51 mm 

Cavity size 
X Y Z

L L L× ×       0.34 m×0.34 m×0.762 m 

 

Structure Properties      Value 

 

Young's Modulus of plate substructure 11

S
c    69 GPa 

Young's Modulus of each piezoelectric patch 11

E
c   120.3 GPa 

Young's Modulus of each piezoelectric patch 22

E
c   120.3 GPa 

Young's Modulus of each piezoelectric patch 33

E
c   110.9 GPa 

Young's Modulus of each piezoelectric patch 12

E
c    75.2 GPa 

Young's Modulus of each piezoelectric patch 23

E
c    75.1 GPa 

Young's Modulus of each piezoelectric patch 13

E
c    75.1 GPa 

Young's Modulus of each piezoelectric patch 66

E
c    22.7 GPa 

Mass density of plate substructure 
S

ρ      2700 kg/m
3 

Mass density of each piezoelectric patch 
P

ρ     7800 kg/m
3 

Poisson's ratio of plate substructure     0.33 

 

Fluid and Electromechanical Properties    Value 

 
Mass density of air 

F
ρ        1.0 kg/m

3 

Piezoelectric constant 31e        -5.2 C/m
2 

Piezoelectric constant 32e        -5.2 C/m
2 

Piezoelectric constant 33e        15.9 C/m
2 

Permittivity 33

ε∈ *        1800 0×∈  pF/m 

Speed of sound for air 
F

c        340 m/s 

 

 

 
0

 * Permittivity of free space = 8.854 /pF m∈  
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Figure  5.5 shows the variation of the experimental vs. numerical power output 

of the coupled system with electric load resistance at the SC resonant conditions of 

the first coupled vibration mode. Here, it can also be seen that the proposed finite 

element model captures the experimental behavior for the maximum power output 

achieved from the energy harvester as well as the optimal resistance needed to 

maintain that maximum power value. The optimal resistance is found to be RL=30 KΩ 

and the corresponding electric power has a value of Pmax=39.58 µW. 

 

 

 

 

(a) (b) 

Figure  5.3: Fundamental mode shape of the coupled system: (a) Experimental (plate), (b) Numerical (plate 

and acoustic cavity) 
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Figure  5.4: Experimental  ○  vs. numerical  ▬▬▬  output voltage of the coupled system for:  

(a) RL=1 kohm, (b) RL=10 kohm, (c) RL=100 kohm, and (d) RL=1 Mohm 
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5.4. Summary 

This chapter has presented an experimental validation of the theoretical model 

developed in Chapter 4 to predict the energy harvesting from a plate coupled with a 

rectangular acoustic cavity. In the experimental set-up, the energy associated with the 

vibration of the plate is harvested using piezoelectric patches connected in series to an 

electric resistive load and the electric power output is measured and compared with 

the electric power output obtained using the finite element model at the SC resonant 

conditions of the first coupled vibration mode.  

The obtained experimental results agree closely with the predictions of the 

finite element model. In particular, the developed finite element model captures the 
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Figure  5.5: Variation of electric power with load resistance at the SC resonant conditions of the 

first coupled vibration mode (  Experimental  ○  vs. numerical  ▬▬▬  ) 
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experimental behavior for the maximum power output achieved from the energy 

harvester as well as the optimal resistance needed to maintain that maximum power 

value. It is found that the optimal resistance is RL=30 KΩ and the corresponding 

electric power has a value of Pmax=39.58 µW. 

Further work is needed to provide the experimental energy harvesting system 

with dynamic magnification capabilities and utilize the obtained results to validate the 

prediction of a modified finite element model that would account for the behavior of 

the dynamic magnifier system. 
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Chapter 6 

6. Conclusions and Future Work 
 

6.1. Summary 

This dissertation has presented a comprehensive theoretical and experimental 

study of the fundamentals and the underlying phenomena governing the operation of 

piezoelectric vibration energy harvesting from coupled fluid-structure systems. 

Analytical and finite element models are developed based on variational formulations 

to describe the energy harvesting from uncoupled structural elements as well as 

structural elements coupled with acoustic cavities. The developed models are 

augmented also with dynamic magnification means to enhance the energy harvesting 

capabilities and enable harnessing the vibration energy over a broader operating 

frequency range. 

 The predictions of all the models are validated experimentally using beam and 

plate like structural elements. Close agreements are demonstrated between the 

theoretical predictions and the obtained experimental results. 

In Chapter 2, a class of cantilevered piezoelectric energy harvesters is 

considered. The theory governing the operation of this class of energy harvesters has 

been developed using distributed parameter and finite element methods. Numerical 

examples are presented to illustrate the merits of the CPEHDM in comparison with 

the conventional piezoelectric energy harvesters (CPEH). It was shown that with 
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proper selection of the design parameters of the CPEHDM, the harvested electric 

power can be amplified by a factor of 5 (i.e., 500 percent) as compared to the CPEH 

and the effective bandwidth of the energy harvester can be widened to cover side 

bands that are about 21%±  of the resonant frequency of the CPEH. The predictions 

of the distributed parameter model are compared with those obtained using the finite 

element approach and excellent agreement of the two models is observed for all the 

considered examples. The obtained results demonstrate the feasibility of the 

CPEHDM as a simple and effective means for enhancing the magnitude and spectral 

characteristics of the CPEH. 

In Chapter 3, the feasibility of the concept of cantilevered piezoelectric energy 

harvesters with dynamic magnifier (CPEHDM) is demonstrated experimentally. The 

performance characteristics are validated against the predictions of a finite element 

model developed in Chapter 2. The obtained results illustrate the metrics of the 

CPEHDM in comparison with the conventional piezoelectric energy harvester 

(CPEH). Also, it is shown that the CPEHDM is a simple and effective means for 

enhancing the magnitude and spectral characteristics of the CPEH. 

In Chapter 4, a finite element modeling is developed to model piezoelectric 

energy harvesters which can harness the vibration energy propagating through a rigid 

acoustic cavity. The model predicts the mechanical displacement and electric power 

output of the harvester when the cavity is subjected to persistent harmonic pressure 

input excitations.  Detailed analysis is presented of the modal frequencies and the 

mode shapes of the coupled piezoelectric energy harvester and acoustic cavity system 

both in the 2-D and 3-D configurations. 
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 The effectiveness of the energy harvester in capturing the vibrational energy 

resulting from the interaction between the oscillating fluid, filling the cavity, and the 

piezoelectric harvesting structure is demonstrated when the harvester is connected to 

different resistive loads. It was found that the amplitude of the harvester electric 

voltage increases with increasing the load resistance and that the behavior is 

monotonic. On the other hand, the amplitude of the harvester electric current 

decreases with increasing the load resistance but the behavior is still monotonic. 

 In Chapter 5, the experimental investigation of energy harvesting from a plate 

coupled with a rectangular acoustic cavity is considered. The energy associated with 

the vibration of the plate is harvested using piezoelectric patches that are bonded to it.  

A finite element model that differs slightly from the one developed in Chapter 4 is 

considered here. The predictions of the model are validated experimentally and the 

comparisons show excellent agreement between the two outputs. 

It is important to note that the theoretical and experimental tools developed, in 

this dissertation, provide invaluable means for designing a wide variety of efficient 

energy harvesters for harnessing the vibrational energy inside automobiles, 

helicopters, aircraft, and other types of structures that interact internally or externally 

with a fluid medium. With such harnessed energy, a slew of on-board sensors can be 

powered to enable the continuous monitoring of the condition and health of these 

structures without the need for external power sources.  

6.2. Recommendations and Future Work 

 In spite of the fact that this dissertation has presented a comprehensive 

theoretical and experimental study of the fundamentals and the underlying 
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phenomena governing the operation of piezoelectric vibration energy harvesting from 

coupled fluid-structure systems, it has opened also the door for many problems that 

can be considered as a natural extension to the presented study.  For example, this 

dissertation has been limited to the study of basic structural elements such as beams 

and plates interacting with generic rectangular acoustic cavities.  Therefore a natural 

extension of this work is to consider more complex structures interacting with 

acoustic cavities that are of more general configurations. This will enable the study of 

a wide variety of efficient energy harvesters for harnessing the vibrational energy 

inside automobiles, helicopters, aircraft, and other types of structures that interact 

internally or externally with a fluid medium. 

Also, the presented study has also been limited to structures and/or fluid 

media which are excited tonally with sinusoidal excitations. A natural extension of 

this work can deal with structures and/or fluid media which are subjected to random 

excitation to closely emulate many practical situations. 

 Further studies are needed to consider more realistic harvesting circuitry other 

than resistively loaded systems. For example, the effect of resistive and inductive 

loading should be considered. Furthermore, the effect of including energy 

conditioning circuitry such as rectifiers, DC-to-DC converters, switching and non-

switching circuitry should be accounted for. 

 Practical implementations of the proposed concepts are also essential to be 

considered for future studies where the dynamics of the energy storage and 

management systems should be included along with the structure and interacting 

fluids. 
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Appendices 

 

Electromechanical Model Analogy: 

 

1. Analytical Model: 

 

Equations of Motion: 
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2. Finite Element Model: 

 

Equations of Motion: 
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