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An investigation of the structure of Fe isotopes up to neutron number 40 has
been carried out at Argonne National Laboratory with the application of a thick-
target deep-inelastic reaction experiment. A beam of 450 MeV %‘Ni was incident on
a 55 mg/cm? target of enriched ?*U located at the center of the Gammasphere spec-
trometer. Triple coincidence data obtained from the experiment were sorted into
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four time-correlated cubes and used to identify new levels in
relations were used to both confirm previously-assigned spin and parity assignments
and to assign values to excited states established in this work for the first time. The
effect of g9/ neutron excitations on the structure of low-lying yrast states in these
isotopes was studied with a comparison of experimental levels with the results from
shell model calculations within both pf and truncated pfg configuration spaces. The
effective interactions used in this work were derived from the N3LO nucleon-nucleon

potential. These calculations indicate a strong influence from the gg/5 orbital, be-

ginning at moderate energy and spin in %°Fe and extending to the low-lying states of



4Fe. New levels identified above a 239-ns, 9/2T isomer in %' Fe appear to be consis-
tent within a rotation-aligned coupling scheme, with prolate deformation 8 ~ 0.24,
a value supported with both the shell model and Particle-triaxial rotor model. The
data from this work mark a significant achievement in terms of understanding the
evolution of nuclear structure in this region and the possible onset of deformation
near N = 40. Still, more theoretical work is needed in order to better characterize
experimentally observed features of this region. In addition to the Fe experiments
described in the body of this thesis, another measurement was carried out in which
the structure of 22Cd was investigated. This nucleus, like *Fe, can be viewed as
two proton and two neutron holes in a double-magic system. The identification of

isomeric decay, and a confirmation of 2% and 4% level energies is described.
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Education, I fear, is learning to see one thing by going blind to another.

Aldo Leopold, A Sand County Almanac
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Chapter 1

Background and Motivation

1.1 Shell structure in nuclei

One of the most important developments in the history of nuclear structure
research was the recognition that nucleons occupy discrete orbitals, which themselves
make up shells and are, in turn, distinguishable by many observable properties. Of
these properties, one of the most easily recognizable is the energy of the first excited
27 state in a nucleus with even neutron and proton numbers, as illustrated in Figure
1.1a. Here, the 27 energy, plotted as a function of neutron number, exhibits clear
peaks at N = 2, 8, 20, 28, 50, and 82 (an additional peak at 126 is not shown in this
plot). A similar trend could be demonstrated if the data were plotted as a function of
proton number, or if other quantities were plotted such as transition rates, nucleon
separation energies, nuclear radii, neutron absorption cross sections or gross number
of stable isotopes (or isotones). All of this rings with a tone similar to that of atomic

physics, where some elements exhibit increased ionization energies due to the shell



structure which characterizes the filling of electronic orbitals, as depicted in Fig.
1.1b. In spite of the similarity between the two cases, it is clear that the shells differ
since the peaks in Fig. 1.1a and b are, for the most part, different. The challenge of
reproducing what became known as the “magic numbers” puzzled scientists for years
until Maria Goeppert-Mayer [1] and, independently, J. Hans D. Jensen et al. [2],
proposed a shell model based on strong spin-orbit coupling. Not only was this new
model able to reproduce the magic numbers, it provided the foundation necessary

for the development of much of what is understood about nuclear physics today.
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Figure 1.1: (a) Systematics of 2% energies in known nuclei, adapted from Ref. [3],
and (b) atomic ionization energies, from Ref. [4]. Both give a clear indication of
shell structure in the respective systems.



1.1.1 Shell model formalism

Any quantum mechanical problem will generally involve some kind of solution
to the Schrodinger equation. As such, one of the most important steps is to deter-
mine a proper Hamiltonian. In a many-body problem such as the one faced with
in nuclear physics, it is useful to begin with the assumption of independent particle
motion, so that the Hamiltonian is written as the sum of individual components

from each particle in the nucleus,

A

HO =3I, + U(r:)]. (1.1)

=1

Since the Pauli Exclusion Principle mandates that the wave functions for identical
particles be antisymmetric, the eigenfunctions to the above equation are given by
the Slater determinant which, for a two-particle system, is written,

1| D) ¢a®
V2 6l) 6ma(2)

where ¢, are the single-particle wave functions, given by the product of radial

(I)oa,az = (1)¢a2 (2) - ¢a1 (2)¢a2(1)]7 (12)

1
= ﬁ[qﬁal

and angular components. This leads to a rather complex expression which includes
Clebsch-Gordon coefficients, spherical harmonics, and the radial component. How-
ever, the only part of this expression that is not explicitly defined is the radial part,
R, (). The details of this function depend on the form of the potential U(r) of
eqn. (1.1). It turns out that the choice of this potential is not straightforward. It
must reproduce the known features of the nuclear force, namely short-range, strong,
and relatively constant within the bounds of the nuclear radius (ie: a flat bottom).

The potential used most often in this case is the harmonic oscillator, although it is



neither short-range nor constant within the bounds of the nuclear radius (although
one typically uses a modified HO potential, which includes the addition of an ¢
terms which “flattens” the bottom of the potential). Still, the choice of a harmonic
oscillator potential is beneficial since the eigenfunctions ¢,, are well-known and
integrable. On the other hand, a more realistic potential given by Woods-Saxon

vanishes at large r, and possesses a flat bottom, but is not integrable.

1
Ulr) = imw2r2 harmonic oscillator (1.3)

1 + exp(==Lo)

a

U(r) Woods-Saxon. (1.4)

Inserting either of these equations into the Schrédinger equation does not
reproduce the shell gaps observed from nuclear data. To properly account for these
“magic numbers” necessitates the introduction of a strong spin-orbit component.

The concept of spin-orbit coupling is somewhat abstract. It arises from the fact
that, from the perspective of a single nucleon moving about the nucleus, the intrinsic
nucleon spin causes an apparent motion of the nucleus around the nucleon. This
apparent motion produces a magnetic field that interacts with the magnetic moment
of the nucleon. The interaction energy of a magnetic moment with a magnetic field
is given by the dot product of the two. Since the magnetic moment of the nucleon is
proportional its spin, and the magnetic field arising from the apparent motion of the
nucleus is proportional to the orbital angular momentum, the spin-orbit interaction

energy must be proportional to the dot product (-7 [5],

Uso = f(r)l-, (1.5)



where the function f(r) contains the dependence on the radial coordinate r and can
be related to the central potential.

Based on experimental observations the expectation value < f(r) >, is esti-
mated to be of the order —20A4~2/3 MeV [6]. Within the harmonic oscillator picture,
the shell gaps are given by the oscillator frequency fiwy ~ 414~/ MeV. Hence, from
these relations and eqn. (1.5), it is apparent why the spin-orbit force becomes im-
portant at higher mass and angular momentum, and in particular why the harmonic
oscillator shell gaps persist up to nucleon number 20 but no further. It should be
emphasized that a microscopic understanding of the quantitative features of the
spin-orbit force are as yet not well understood, although its presence as a strong
force is clearly required in order to reproduce the observed magic numbers.

The Slater determinant of eqn. (1.2) gave the normalized, antisymmetrized
wave functions of a two-particle system of identical fermions. Since the nucleus
contains both protons and neutrons that interact with one another, these wave
functions cannot be used in their present form. Instead, it is useful to introduce a
new quantum number, the isospin 7 (referred to later as 7"), which facilitates the
distinction between protons and neutrons. Note that this formalism can only be
introduced here because of the similarity between protons and neutrons, namely
that pp, nn, and pn interactions are identical except for the Coulomb interaction
between protons. This is an experimental observation, most evident in the nearly
identical level structures observed in mirror nuclei (ie: nuclei for which proton and
neutron numbers are exchanged). In the isospin formalism, protons and neutrons

are viewed as different manifestations of the same particle, protons having m, = —%



and neutrons m, = —i—%. The choice of i% is arbitrary but the adopted values were
chosen so that most nuclei would have positive isospin, since most nuclei have more
neutrons than protons.

Up to this point, the focus of this discussion has been exclusively on the two-
particle system. It is easy to see that the complexity of the wave function increases
dramatically with the number of particles in a system. As noted above, this can
be illustrated by calculating the Slater determinant of eqn. (1.2) for 3-particle, 4-
particle, etc. systems. This growing complexity quickly challenges the practicality
of carrying out shell model calculations for anything but the lightest nuclei. To
address this problem, any medium or heavy nucleus is typically viewed with respect
to the nearest double-closed shell. The aptly termed core is then taken to be an

inert system and the valence nucleons are treated independently,
@J,T ~ (1)8,077_"6 X @J,T(al, Qo, )] (16)

Returning to the independent-particle Hamiltonian given by eqn. (1.1), it is
now possible to choose a potential U(r) so that the problem can be solved. A caveat
here is that the assumption of independent-particle motion is unrealistic, since the
orbiting particles must surely interact with one another. Hence, the independent-
particle Hamiltonian of an A-particle system can be written in terms two-particle

interactions as,
A A A
H=Y T+, >, W) (17)
k=1 k=1 t=k+1

where W (7%, 77) is the two-body interaction between the k' and ¢** nucleons. Choos-



ing an average potential U(ry), the Hamiltonian becomes,

H=) [T+ U]+ >, W) =) U, (1.8)

where the first term is identical to the independent-particle Hamiltonian given by
eqn. (1.1), and the second and third account for the deviation from independent
particle motion, known as the residual interaction. Separating the summations into

core and valence contributions, eqn. (1.8) can be re-written,

H =H.y.+ H + Hy + V(r1,73). (1.9)

In the above equation, H,,,. contains all of the interactions of nucleons making up
the core, H; and H, are the single-particle contributions from particles 1 and 2,
and V(77,73) is the residual interaction describing all interactions between particles
1 and 2, as well as any interaction with core nucleons. Inserting this form of the
Hamiltonian into the Schrédinger equation yields an analogous expression for the
energy,

E = Ecore + El + E2 + <CI)J,T ‘V(TITTQ)‘ (I)J,T> - (110)

Here, E,,.. is the binding energy of the core nucleus, F; and E5 are defined as the
single-particle energies of orbitals outside the core, and (®; . |V (r1,72)| ®;,) is the
residual interaction which needs to be defined by theory.

It is important to note that the energy given by eqn. (1.10) is for pure con-
figurations only. In principle, any close-lying state with the same total angular

momentum J and total isospin 7 will mix. The mixed eigenstates are given by



linear combinations of the unperturbed wave functions,

g9
(\IIJ,T)p = Z a'kp(q)J,T)ka
k=1

where g is the number of configurations that mix and the label p =1, 2,

coefficients ay, fulfill the condition,

9
D lagl* = 1.
k=1
Inserting eqn. (1.11) into the Schréodinger equation gives,
H(Ws7)p = Ep(Vir)yp,

which leads to a system of linear equations,

( Hy Hy --- ng ( Q1p \ ( Q1p

Hy Hy --- HQg A2y A2p

KHgl Hgp --- Hgg) \agp/ K%p)

(1.11)

.., g. The

(1.12)

(1.13)

(1.14)

where Hy, are given by the summations of all single-particle and residual interaction

terms for particles £ and k. Equation (1.14) represents a classic eigenvalue problem,

which is solved by setting the determinant equal to zero,

Hll _Ep H12 ng
Hy, Hjy — Ep Tt H2g
=0.
Hgl Hg? Hgg - Ep

(1.15)

The result is a polynomial of order g in E,, which has g solutions corresponding to

the perturbed energies of each state involved in the mixing. Each state

8

possesses a



unique set of coefficients ay, which must be determined to obtain the wave functions
V.. Thus, for each of the g solutions to E,, eqn. (1.14) must be solved to obtain

the coefficients ay, and therefore the perturbed wave functions ¥ ;.

1.1.2 Model space

The complexity of the problem outlined by eqns. (1.14) and (1.15) above
clearly scales with the number of states that mix. The number of states of a given
J and 7 that can mix largely depends on the model space used for the calculation,
and for realistic calculations this can be quite large, even with the assumption of an
inert core. For example, in the relatively small pf model space built upon a *8Ca
core and consisting of f7/2, p3j2, P12, and fs5/2 proton orbitals and ps/2, pi/2, f5/2
neutron orbitals, there are nearly 3 x 10° 2% states that can be formed. The total
m-scheme dimension refers to the total number of states of all J that can be formed
in a given nucleus within a particular model space. This is illustrated in the upper
panel of Figure 1.2 for Ca, Ti, Cr, and Fe isotopes within the pf model space. What
is immediately clear from this picture is the parabolic shape of the dimension curve,
indicating that the most complex calculations will occur at mid-shell. Displayed in
the lower panel of Fig. 1.2 are the exact dimension as a function of J for different
isotopes of Fe. This gives a more realistic depiction of the the matrices that need
to be diagonalized, as each value of J must be solved according to eqn. (1.15).

As disconcerting as the data in Figure 1.2 are, they are somewhat misleading

since most shell model codes do not require full diagonalization to obtain reasonable
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Figure 1.2: (Upper panel) The total m-scheme dimension of different nuclei assum-
ing a *®Ca core and pf model space (see text), and (lower panel) a breakdown of
dimensionality as a function of J for the Fe isotopes.

results. Instead, the standard procedure, known as the Lanczos method, uses an
iterative tri-diagonalization procedure to numerically obtain approximate values for
a given set of eigenvalues [7]. A detailed discussion of this method is beyond the
scope of this thesis, but it is worthwhile to note that some practical limitation
nevertheless exists, which will be encountered later in the discussions of shell model
calculations, that relates to the storage of temporary files during the calculation.
For the calculations reported in this work, the limitation is manifested in the 2-

Gigabyte file size limitation in the Linux operating system. This can, of course, be

10



surmounted but work in that direction was not undertaken here.

To facilitate more efficient and practicable calculations in large configuration
spaces, it is necessary to apply truncations beyond the assumption of an inert core.
There are a number of different strategies that one can adopt here, and when prop-
erly applied they can vastly simplify the calculation and still produce excellent
results. One strategy is similar to the idea of treating the core as inert: by disal-
lowing excitations from a particular orbital (ie: “freezing” the orbital), the size of
the core can be effectively enlarged and the configuration space thus reduced. This
procedure is useful if the model space covers more than one major shell gap, or if the
existence of a subshell gap lends credence to this assumption. A second possibility is
to restrict the total number of particles allowed in a particular orbital. For instance,
if an orbital has a large single-particle energy then it could be reasonable to expect
multi-particle excitations beyond a certain level to exist at very high energy only,
so these states would have negligible admixtures in the low-lying states sought in a
particular calculation. In a similar vein, one can restrict multi-particle excitations
from and into all orbitals, assuming that anything beyond, say, 3-particle excitations
can be neglected. Each of the truncation methods described here has its merits, but
a note of caution should be expressed for their unmitigated use, as the temptation
to use such methods as a free parameter to fit to data can be high; such a procedure
would seem to, in some way, undermine the role of the two-body matrix elements

to be described in the next section.
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1.1.3 Effective interactions

Recall from eqn. (1.10) that the energy of a particular state is given by the sum
of core, single-particle, and two-body interaction energies. Of these terms, only the
last cannot be trivially determined. In fact, the problem of obtaining realistic values
for this term is one of the fundamental goals of nuclear structure research. Since the
microscopic properties of this interaction can only be established with consideration
of the quark structure of the nucleon and the application of QCD, a successful
quantitative approach has not yet been attained. However, the microscopic nature of
this force is not necessarily needed since semi-empirical approaches have seen much
success in this arena. The three main categories of the semi-empirical approach,
as defined by Brown [8], are: 1) the potential model fit, in which data are fit to
some pre-defined model that is then used to compute two-body matrix elements; 2)
the model-independent fit, whereby a selected group of linear combinations of well-
determined two-body matrix elements are fit to data, and for the remaining matrix
elements the results from some bare nucleon-nucleon interaction are used; and 3)
the G plus monopole method, in which the matrix elements are computed from some
bare nucleon-nucleon force and then adjusted to fit observed monopole behavior (the
monopole interaction will be described in section 1.2.1). In the latter two, the bare
nucleon-nucleon interaction is generally adopted from a fit to the phase-shift analyses
of nucleon scattering experiments, assuming some meson exchange potential. Since
these methods are becoming increasingly sophisticated, there is a fourth category

that can be added to the list above, in which the effective interaction is derived from

12



some bare nucleon-nucleon force without further empirical modification. This will
be termed the G-matriz method, although other techniques do exist.

The phase shift analyses alluded to above show a strong repulsion at higher
energy which is interpreted as the effect of a hard core, on the order of 0.5 fm. This
means that the residual interaction V' (1,2) cannot be treated in terms of perturba-
tion theory; instead, the bare interaction must be renormalized before it can be used
in a straightforward manner in shell model calculations. The resulting effective in-
teraction, then, comes from the accumulation of these short-range correlations and,
as such, will be very dependent on the model space used for the renormalization
procedure. The most commonly used procedure for this is currently the G-matrix
method, which is mathematically quite cumbersome and will not be discussed in
any detail here. Further information can be found in Refs. [9-11]. Described below
are some examples of pf-shell effective interactions from each of the three empirical

approaches denoted above plus the fourth category of pure G-matrix interactions.

Potential model fit: FPD6 interaction

The principle behind the potential model fit is that the effective interaction
can be derived from some empirical potential consisting of parameters determined
from experimental data. The main idea is to obtain an empirical interaction with a
minimal number of parameters which can be applied to different mass regions. Most
of this type of interaction currently in use assumes central, spin-orbit, and tensor

components, each of which is expressed in terms of one-boson-exchange potentials.
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For example, the FPD6 effective interaction was derived in this manner by fitting to
61 experimental levels, binding energies, and single-particle energies [12]. The fitting
procedure included 22 parameters, 10 of which were fixed to values determined from
a similar fit to levels in the sd shell [13]. The empirical data used in the fitting
procedure came from Ca, Sc, and Ti isotopes with A = 41 —49. A mass dependence
TBME(A) = TBME(A = 42) x (%)70'35 was introduced so that the resulting
matrix elements could be applied to a broader mass range, and a modified version

of the Kuo-Brown matrix elements (discussed below) was used as a starting point

in the fitting procedure [14].

Model-independent fit: GXPF1 and GXPF1A interactions

In the model-independent fit, matrix elements are calculated directly during
the fitting procedure; that is, each matrix element is treated as a free parameter.
To cope with troublesome parameter-to-data ratios, then, the fit is made to linear
combinations of matrix elements. For example, in the GXPF'1 effective interaction,
70 well-determined linear combinations of matrix elements were fit to 699 empirical
levels and binding energies from 87 nuclei from 9Ca to 32Ge [15]. The starting
values for the matrix elements were adopted from a G-matrix calculation and the
Bonn-C bare nucleon-nucleon interaction potential. A mass dependence A7%3 is
assumed for the matrix elements.

The GXPF1 interaction was later adjusted to form the GXPF1A interaction

[16]. Specifically, five individual matrix elements were adjusted, a move spawned
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by a lack of data for N > 32 nuclides in the original fit and hence, the resulting
uncertainty associated with p,/, and f5/, matrix elements. Additionally, a general
feature of the GXPF1 interaction was that it tended to over-predict 2% energies,
which was apparently an artifact of the Finite Dimension Basis Approximation used
to diagonalize matrices during the fitting procedure. It was contested that this
procedure does not, properly treat pairing correlations, thus over-compensating the
pairing strength which results in higher 2% energies (or, rather lower 0 energies). To
address this latter issue, three J = 0, 7" = 1 matrix elements were weakened by 200
keV. For the former, two of the three matrix elements just addressed were weakened
by an additional 300 keV, and the (f5/2p1/2)%221’3 matrix elements were adjusted
by -350 and 4250 keV, respectively. These particular values were chosen so as to
maintain a constant monopole centroid (see section 1.2.1 for further discussion of

this).

G plus monopole: KB3 and KB3G interactions

The last example of an empirical interaction listed above was, compared with
the examples given in the two previous sections, actually initiated much earlier.
It is also historically quite interesting since it uses as its basis the results of a G-
matrix calculation by Kuo and Brown (KB) [17-20], which itself is based on the
bare nucleon-nucleon potential of Hamada and Johnston [21]. Thus, the K B effec-
tive interaction was the first large-scale attempt to adapt a general nucleon-nucleon

interaction to calculations in nuclear matter. Of course, there were sharp deficien-
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cies in the results of this interaction, which were especially evident as experimental
studies extended further beyond the closed-shell systems. Because of these deficien-
cies, a series of modifications to the original K B matrix elements was undertaken,
resulting in the KB3 [22-24] and KB3G [25] effective interactions.

In arriving at the monopole-adjusted interaction KB3, the authors argued that
an inherent limitation in every G-matrix effective interaction is a failure to reproduce
saturation properties in nuclear matter, se: binding energy ~ -16 MeV/A and p ~
0.17 fm 3 . It was further proposed that the source of these problems lies in the
monopole part of the nuclear Hamiltonian, and that specific adjustments to matrix
elements important to this term would absolve a large part of the discrepancies seen
in G-matrix-derived effective interactions [23, 26] (Note that the issue here is not
with the G-matrix methodology but rather with the nucleon potentials; see below).
Later, after some specific deficiencies were identified in the KB3 interaction, further
adjustments were made to the matrix elements which gave rise to the KB3G effective
interaction.

Whereas the arguments in support of these adjustments are based on well-
founded theoretical concepts, it appears that the actual changes to the matrix ele-
ments were guided by agreement to empirical data and not calculated from theory.
For instance, the primary modification defining the KB3 interaction was a gross
shift in the T" = 1, (f7/or) (where r=p;/ops/2,f5/2 orbitals) matrix elements by +300
keV, adopted because of a desired shift in several experimental levels [22]. Similar
arguments are conveyed for most of the other changes, although no specific reasons

are given for the changes adopted in KB3(G. This distinction is made not to take
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away from any validity that the results might hold, but to emphasize the empirical

nature of the resulting interactions.

Modern G-matrix interactions

The inherent flaw in the monopole component of Hamiltonians derived from
bare nucleon-nucleon interactions is a serious one, but modern approaches have
sought to improve on this. Machleidt, Sammarruca, and Song [27] describe a similar
phenomenon in terms of so-called “off the energy shell” effects that arise from the
fact that energy is conserved within the multi-nucleon system but not necessarily
within the two nucleons that interact. This effect understandably does not manifest
itself in two-nucleon scattering experiments and, therefore, an important component
of nuclear matter calculations is missing in the scattering data. To address this
problem, those authors introduced a more rigorous meson exchange term to the
usual high-precision fit (to 4301 scattering data; x? = 1.02), so that these off-shell
components would be accounted for. The result gave rise to a 44% improvement in
the binding energy of the triton compared to purely “on the energy shell” potentials
and, ultimately, the CD-Bonn nucleon-nucleon potential [28].

More recently, the attention of the theoretical community has focused on a
chiral perturbation theory-based derivation of the nuclear force, which is favored to
the above approach because it is rooted more deeply in fundamental theory [29].
The next-to next-to next-to leading order (N3LO) solution has attained nearly as

much success as high-precision fits like CD-Bonn but with fewer parameters (ie:
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24 parameters compared to 38 in CD-Bonn, and x? = 1.1 and 1.5 for np and pp
potentials, respectively) [30]. However, this potential has not yet seen broad use in

nuclear structure applications.

1.1.4 Deformed shell model

Up to this point, all of the formalism has operated under the assumption of a
spherical potential. If, instead, the potential is assumed to be deformed but axially

symmetric, eqn. (1.3) can be rewritten,
1 2(,.2 2 2.2
V= 5m(wm(ac +y7) + wiz), (1.16)

where the angular frequencies w are defined in terms of deformation parameter ¢,

w?=wi(l+ g(5)
3 (1.17)

4
2 = wi(1 - =6).
wz “‘)0( 3)

Substitution of eqns. (1.17) into eqn. (1.16) yields (after some work) the expression,

1 4
V= 5mw§r2 — gmwgr%\/ngo(@, b),

[ 5 322 —1r?
where }/2()(0, QS) = ET

Equation (1.18) is just the spherical harmonic oscillator potential plus a term pro-

(1.18)

portional to deformation 4. So, at the limit § — 0, this expression becomes the
familiar harmonic oscillator potential of eqn. (1.3). Furthermore, the deviation
from spherical behavior is determined almost entirely from the second term of this
equation, assuming that the effects of deformation on spin-orbit and ¢? terms of
the nuclear Hamiltonian can be neglected [6]. The consequence of this expression,
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Figure 1.3: The substates of orbital j split up as a function of projection quantum
number K for an axially deformed nucleus.

illustrated in Figure 1.3, is that the different substates (ie: states with the same j
but different projection, m;, onto the z-axis), diverge as a function of deformation.
Specifically, the low-m substates are lowered in energy under prolate (ie: football-
shaped, positive 3) deformation, and the high-m substates are raised. The opposite
occurs under oblate (ie: doorknob-shaped, negative ) deformation.

Note that the deformation here is given in terms of [, instead of & which
was defined above. This convention was adopted because most nuclear structure
applications tend to use this parameter, which will be defined later. For the purposes

of this discussion, one need only consider the relation between 3 and ¢ [31],

m4
Ry [—=0. L1
B2 (119)

Now that the shape assumed for the nucleus is nonspherical, a new degree of
freedom must be considered that previously could be neglected: collective rotation.
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Since rotation is indistinguishable in a spherical quantum system, this degree of
freedom could be neglected in the spherical shell model formalism. However, in the

deformed shell model, the Hamiltonian must be written,
H=H,+ H,4. (1.20)

The rotational kinetic energy is given by,

B,
— 1.21

where & is the moment of inertia of the rotating system and R is the rotation

quantum number. One of the important consequences of this equation is that, for a
rigid-rotational system (ie: constant ), the ratio of level sequences gives a telltale

signature. For example, the ratio,

Ry,  4(4+1)
R2,  2(2+1)

Eyt o+ = = 3.33. (1.22)

The rotation quantum number, R, is the difference between total angular
momentum, I, of the rotating nucleus, and total angular momentum, j, of the non-
rotating nucleus,

R=1-j. (1.23)
Thus, the rotational Hamiltonian can be represented by,

o I.CC_ .w 2 I — i 2

203 [( Jz)" + (Iy — Jy) ] (1.24)
=A[(I? = K?) + (7 = Q%) = 2(Lojo + Iyjy) ]

where K = I,, {2 = j,, and the rotational constant A = % Note that, for axially

deformed systems, K = €. The last term in brackets in eqn. (1.24) is the Coriolis
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term. Substitution of eqns. (1.18) and (1.24) into eqn. (1.20) leads to,
H=e;+AI(I+1)+j(+1)]+(C—24)Q"+ H,. (1.25)
The diagonal energies of eqn. (1.25) are given by [32],

E(IjQ)=e;+A|[II+1)+j(G+1)+ ba1/2(—1)" (I + %)(j + %) +(C—24)92,

(1.26)
where the term absent in the previous equation comes from symmetrization of the
wave function [33]. Stephens showed that the diagonal energies of eqn. (1.25) can
be alternatively written as a function of the projection, «, of j along the rotation

axis [32],

E(ljo)=¢ej+A|(I—-—a)l—a+1)+ (%-ﬁ-ﬁ) (]'(]'+1)—a2)}.

(1.27)
This gives the energies in the so-called rotation-aligned coupling picture. Simple
numerical solutions to Eqns. (1.26) and (1.27) can be obtained with the use of

empirical relations derived from Grodzin’s Rule [32],

1225
E2_|_ = 6A = WMGV
a2ﬁ3
2A=0. —_ 1.28
c/ 0 379j(j — (1.28)
p

1
2

and a = % Here

The numerical solutions are illustrated in Figure 1.4 for 2 =
the mass, a, is taken to be 130 and j = 11/2 has been used, in accordance with
similar calculations presented in Ref. [32]. The important consequence depicted

here is that, up to moderate deformation, the state with @ = % is lower in energy
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Figure 1.4: Comparison of level energies calculated with {2 or o assumed to be a
good quantum number. The former is computed from eqn. (1.26), and the latter
from eqn. (1.27). This shows that, for a nucleus characterized by rotation-aligned
coupling, the o = j,,,0. state can occur below the 2 = % state.

than the state with 2 = % Hence, whereas Fig. 1.3 seemed to indicate that prolate
deformation always produces the lowest possible {2-value at the lowest energy, Fig.
1.4 shows that this contention is not always true.

A conceptual picture of the rotation-aligned coupling scheme described above
is of a cross-shell excitation of a single nucleon coupling weakly to the rotation of a
deformed system. Thus, one would expect on top of the state with 7 = «, a band
consisting of states whose energies closely match those of the A — 1 core. For a
rigid rotor, this would likely resemble the trends described in eqn. (1.22). However,
Stephens [32] points out that, since the phenomenon is exhibited at small deforma-
tion, rotational energy spacings are not necessarily prerequisite to the manifestation

of this phenomenon. In that work, it is also noted that the so-called “favored” states
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which form the excitation band on top of the rotation-aligned state follow a pattern
of E2 multipoles. The converse phenomenon, which occurs for oblate deformation,
is known as strong coupling. The distinguishing feature of this is a sequence of M1
multipole transitions, forming a pattern that does not resemble that of the A — 1
core nucleus. Further details of the strong coupling picture will not be discussed

here but can be found in Ref. [32].

1.2 Motivation

1.2.1 Evolution of Shell Structure

One of the most intriguing aspects of nuclear structure research has been
the recognition that shell structure is not absolute. Rather, the magic numbers
predicted by the conventional spin-orbit shell model will tend to evolve as a function
of neutron-to-proton ratio. One particularly elegant depiction of the gradual changes
in structure predicted to exist in the hitherto unknown regions of the nuclear chart
comes from the monopole Hamiltonian,

a b - 3 bij T, 3 I [
HPT =Y [%ﬁk(ﬁk +1)+ % (T,f - Zﬁk)] + aijiin + < [(T,- +15)* =17 — Tf] ;

(Y]
>, +1) (i5|V]ig) 5,
> (2T +1) '

1
a;j = 1(31/;5-1) + Vig-o)), bij = VZ-E-” - Vi§-°), Vij =

(1.29)
This equation is a generalization of the work of Bansal and French [34], which
was used as the basis for the monopole-adjusted interactions KB3 and KB3G, as

mentioned in section 1.1.3. The principle behind this formulation is that the angular
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components of the interaction are averaged out in the monopole matrix element, V7,
and the interaction therefore depends on occupation and isospin only [35]. Of course,
this formulation is entirely model-dependent since its success relies ultimately on
an effective interaction that is valid over a range of nuclear data. On the other
hand, it is also useful for testing new effective interactions. But, the main utility
of the monopole Hamiltonian is that it allows one to paint a simple picture of the
migration of single-particle levels over the span of a nuclear shell. The monopole
matrix elements act on the single-particle energies as they appear outside a magic
core, and cause them to shift as a function of the occupation of various orbitals
within the model space. The result is a property analogous to the average energy
of all states of a given J weighted by their respective spectroscopic factors, known
as the effective single-particle energy (ESPE).

Poves and Zuker have argued that the gross features of nuclei across regions
of the nuclear chart are delegated by the monopole part of the nuclear interaction,
and they have demonstrated a rigorous separation of monopole and multipole com-
ponents [26, 36]. More recently, Otsuka et al. showed that the tensor component of
the nuclear force is most influential on the properties of the monopole interaction
(37].

The term “tensor force” is used to describe any interaction that is non-central
in character. So, whereas a central force depends only on the distance between
particles, a tensor force is dependent on the angle which the spins of particles make
relative to inter-particle separation [38]. The presence of a tensor component to the

nuclear force was proposed as a result of the non-zero quadrupole moment measured
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for the deuteron. Since the deuteron is composed of two non-identical particles, a
pure central force would result in both particles occupying a spherical s state, and
therefore zero quadrupole moment. For the tensor operator, Sis, the following semi-
quantitative relation is used [39],

Sio = 3(6% - 8)(% - &) — (1 - 63), (1.30)
where €is a unit vector in the direction of inter-particle separation and & are the unit
spin vectors for each particle. Assuming two particles of spin g7 and g3, separated
in the direction €, four scenarios can be surmised, as depicted in Figure 1.5a. Using
the law of cosines, where the dot product is proportional to the cosine of the angle
between vectors, it can be shown that the tensor force is most attractive for two
particles of anti-parallel spin whose separation is parallel to the spin axis (upper
left panel of Fig. 1.5a). In the realistic picture, the former would correspond to
two particles of opposite intrinsic spin, ze: s; = +3 and s, = —1 or, stated another
way, j> = ¢+ % and jo = /¢ — % A similar argument can be made for the isospin
quantum number, so that 7 = 0 interactions are stronger than 7 = 1. The strongest
repulsion is attained for two particles with parallel spin whose separation is parallel
to the spin axis (lower left panel of Fig. 1.5a). The inter-particle separation is less
intuitive, but one could argue that the separation would be most parallel to the
spin axis for two particles of the same orbital angular momentum, ¢, and oscillator
number, N [37]. Thus, the radial distribution of the particles is narrower, and the
wave functions overlap more in the direction parallel to the spin axis. In contrast,
two particles with vastly different orbital angular momentum will exhibit a wave
function stretched in the radial direction.
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Figure 1.5: (a) Schematic depiction of the tensor force, with the relative interaction
strength calculated according to eqn. (1.30), and (b) shell model diagram containing
orbitals of interest to this work.

In practice, these basic principles can be applied to a number of regions of the
nuclear chart. For instance, Otsuka et al. [37] describe a new magic number at N
= 16, owing to the removal of protons from the ds/, orbital from §3Si;6 to 3*O16 and
the consequent loss of interaction energy between mds/, and vds), orbitals. Indeed,
recent empirical data on binding energy systematics seems to corroborate this [40].
Second, a new magic number was predicted to exist at N = 34 in Ca, Ti and Cr,
owing to a loss in interaction energy between 7 f7/3 and v f5, orbitals caused by the
lowered occupation of the 7 f7/; in these lower-pf shell nuclei. In fact, reduced 2*
energies [41, 42] and higher B(E2) [43] values with respect to neighbors tend not
to support this contention for 35Tizs and 58Crs,, and efforts are still underway to
identify the 27 energy of 3;Cagzs. Instead, a new subshell closure has been discovered
at N = 32 in this region.

The argument for the existence of a semi-magic number at N = 34 focused on

a significant energy gap between the filled v(f7/2, p3/2, p1/2) subshell and the empty
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[f5/2 orbital, induced by the loss of 7 = 0 interaction energy once the 7 f7/; orbital was
no longer filled (see Fig. 1.5b for a schematic of these orbitals). The argument for
a semi-magic number instead at N = 32 would consist of an analogous contention,
fueled by a large separation between ps/, and p;, spin-orbit partners. Although the
former contention was supported quantitatively by the GXPF'1 effective interaction,
the data for neutron-rich Ti and Cr isotopes partly stimulated the modification of
GXPF1 to GXPF1A. The ad hoc maneuver to solve the problem faced here was
to weaken the attraction of the <p1 120172 |V 1201 /2>Zf matrix element, which has
the consequence of increasing the separation of ESPE between ps /2 and p/» orbitals
at N > 32 once the p; /5 orbit begins to fill. The resulting calculations compare well
with experiment to the effect that an N = 32 subshell is described and an N = 34 is
not, at least for Ti and Cr. The GXPF1A interaction still predicts a high 2" energy
for *Ca [16].

With the above arguments for a subshell closure at N = 32 now established,
it is interesting to study the evolution of this gap as the f7/, orbit is filled. For
instance, Figure 1.6 illustrates the 2% energy trends in Ca, Ti, Cr, and Fe, so that
the gradual disappearance of the N = 32 subshell gap is readily observed. Also
depicted in this figure is the shell gap at N = 28, which remains robust for all of
these nuclei.

Another interesting facet of the structure in this region is manifested in the lev-
els up to moderate spin in 5%:5254Tj [44]. In these isotopes, a large energy gap begin-
ning at 3-4 MeV represents a unique signature of the subshell, spanning N = 28—32.
The states below this energy gap are dominated by ps/, neutron configurations,
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Figure 1.6: The N = 32 subshell gap becomes less pronounced as the f7/, orbital is
filled until it is completely absent in ®Fe. In contrast, the N = 28 shell gap remains
robust in all cases.

whereas the states above this gap require excitations beyond the N = 32 subshell.
This case is a classic example of why it is important to study the structure of even-
even nuclei beyond the first excited 271 states.

The so-called “island of inversion” cannot be explained in such simple terms.
Here, the magic number N = 20 disappears for Ne, Na, and Mg nuclei. Its discovery
can be traced back to 1975 when Thibault et al. [45] reported anomalously high
binding energy in 332Na. The region of anomaly was later expanded to include
80-32Ne, 31733Na, and 273 Mg and termed the “island of inversion” [46]. Unlike the
cases above, this phenomenon cannot be explained by a difference in the occupation
of a single orbital. Instead, Warburton et al. proposed the root cause to be a
culmination of three important factors: (1) a somewhat reduced shell gap, (2) an
increase in neutron pairing energy, and (3) an increase in pn interaction energy

[46]. Factor (1) simply reflects the migration of ESPE’s as a function of Z. Here,
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Warburton et al. did not find an overwhelming trend, although their calculations
did posit a somewhat smaller gap than in neighboring nuclei. The neutron pairing
energy does not vary appreciably as a function of Z, and can be computed with
Enn = E(0) — 2E,,p, where E(0F) is the excitation energy of the 2p-2h intruder
state in 3*Og calculated from theory, and E,q, is the single-particle gap at 22Oq.
Last, the pn interaction energy is dependent on Z, and can be computed from (1)
and (2) and the excitation energy of the intruder state of said species: E,,(Z) =
Ey(Z) — 2Eyp — Eppn. It turns out that E,, ~ —3.5 to — 3.9 MeV within the
“island of inversion” and > —2.1 MeV outside, according to the calculations of
Warburton et al. [46]. Here, the pn interaction is dominated by higher multipole
components, which is why (a) it cannot be anticipated by the effective single-particle
energies, which are calculated from the monopole Hamiltonian, and (b) the region
is characterized by strong deformation. Thus, there is a fundamental difference
between this case and those denoted above.

Another case that should not escape mention is the study of Dobaczewski et al.
[47] in which the results of a series of mean field calculations were reported on the A
= 100 isobars from proton dripline to neutron dripline. These calculations pointed
toward an increasingly diffuse system as the neutron dripline was approached. In
such a case, one would expect the shell model potential to become more rounded
and thus more harmonic oscillator-like. This would have important consequences in
the N = 40 region, since N = 40 is a harmonic oscillator shell closure. Hence, one

might predict the onset of a sustained shell closure here in very neutron-rich nuclei.

29



1.2.2 N =40

Research in the N = 40 region has in general been buoyed by the presence of
a subshell closure in §§Niyy, marked by an elevated 2 energy relative to its nearest
neighbors [48] and complemented by a low B(E2) value [49]. However, interest in
this region has in particular been piqued by the immediate disappearance of this
subshell gap in $¢Fe4q in favor of a possible new region of deformation [50]. Although
the structure of $;Cr is not yet known, 2% energy trends appear to tell a similar story
for these isotopes [51]. All of this, of course, gives rise to questions of the role of the
vgy2 orbital in these nuclei.

One way to probe this problem, as proposed by Mueller et al. [52], is to
compare the known Ni isotopes with the “valence mirror” N = 50 isotones. Since
the Ni isotopes have magic number 28 protons, they can be viewed as a closed
proton shell with valence neutrons filling the N = 28 — 50 shell. On the other hand,
the N = 50 isotones present a closed neutron shell with valence protons filling the
Z = 28 — 50 shell. Hence, these two systems are denoted “valence mirrors” of one
another. With this in mind, a comparison of the 2] and 2 states in these nuclei,
illustrated in Figure 1.7, shows a marked consistency in the general trend of these
states, except for a marked contrast in the 2 states beyond N = 38. Because of
this discrepancy, Mueller et al. speculate that the vgg/o orbital must therefore have
“a larger influence on the collectivity of Ni isotopes than the mgg/o orbital has on
N = 50 isotones.” This would imply that there is an isospin dependence to the
interaction which promotes the onset of deformation, possibly something analogous
to the role of E,, and E,, as discussed for the “island of inversion” species.

30



6000 i i

* Filled symbols are Ni isotopes

5000~

* Open symbols are N = 50 isotones

Energy (keV)
w 'S
S S
S S
S =
\ \

[\

S

S

=}
I

1000 -

28 32 36 40 44 48
NorZ

Figure 1.7: The 2] and 2] states in the Ni isotopes compare well with those of
the N = 50 isotones up to N or Z = 38, where a large deviation occurs. This figure
adapted from Ref. [52].

Drawing from the previous discussion on the tensor force and monopole Hamil-
tonian, one could also postulate that the sharp change in structure from $$Ni to §¢Fe
comes from the loss of 7 f7/5 - v f5/2 interaction strength owing to the lowered occu-
pancy of the 7 f7/, orbital in Fe [53]. In this scenario, the ESPE of the f5/, neutron
orbital would rise into and effectively dissolve the already small N = 40 subshell gap
of §8Ni. What is more, this phenomenon would fight against the further development
of this harmonic oscillator shell gap in the very neutron-rich nucleus ®Ca.

To understand the evolution of the N = 40 shell gap, it is important to ob-
tain a realistic and reliable estimate of the magnitude of the single-particle gap
between pf and gg/, orbitals, and how it changes as a function of Z. Additionally,
the monopole shift of the v f5/; orbital as a function of 7 f7/5 occupation must be

properly understood. The latter can be quantitatively estimated with the GXPF1
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and GXPF1A effective interactions, as evidenced by their success in reproducing
structure related to the N = 32 subshell closure [15, 16]. The former is not well es-
tablished owing to (1) the sparse data for pf shell nuclei related to the vgq/, orbital
and (2) the size of the model space needed to fully assess the role of this orbital
in semi-empirical interactions like GXPF1 and GXPF1A. Even so, there have been
attempts to determine the matrix elements associated with the vgg/ orbital.

Sorlin et al. [49] have used an effective interaction based on the KB8G matrix
elements plus some components related the vgg/, orbital that were based on an old
G-matrix calculation. The result proved very optimistic in that it could reproduce
the B(E2) values for Ni isotopes with reasonable accuracy [49]. Results from this
interaction have also successfully reproduced 2% energy trends in the Fe and Cr
isotopes [51] in a very qualitative fashion; namely, the larger model space promoted
the lowering of the 2 energy at N = 40 rather than a peak which is an artifact of
the smaller pf model space. Those authors also pointedly note that a comparison
with experiment is further improved by the introduction of vds;, configurations, a
contention raised earlier by Caurier et al. [54].

The argument for introducing the vds/, orbital into the model space was to
account for the phenomenon of “quadrupole coherence” a term that is not defined
by the authors, but seems to ring a tone similar to Warburton’s [46] residual @ - @
interactions that were purported to have a strong influence on E,,, and the onset of
deformation in the “island of inversion”.

It is clear by now that the situation at N = 40 is liable to be very complicated,

and could very well involve a mixture of several important phenomena. It is also
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clear that theoretical speculation on the matter would greatly benefit from additional
data in this region. For example, new data relating to states beyond the 2] level
and especially those involving the g9/, neutron orbital will provide much-needed data
points to test and to improve empirical shell model interactions, which can lead to
better predictions and hopefully a more complete understanding of the structural
trends near N = 40. The scarcity of data necessarily limit the reliability and detail
that can be gleaned from current theoretical assessments of the region. To address
these issues, the work presented in this thesis has focused on expanding the spectrum
of data currently available for the Fe isotopes up to $¢Feso. The purpose of this work,

then, is to evaluate the gradual evolution of these isotopes as the vpf orbitals are

filled.
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Chapter 2

Experimental Methods and Analysis

2.1 Gamma-ray spectroscopy

Radioactive nuclei can emit excess energy through several mechanisms. Some
of these mechanisms involve particle emission such as a decay, 3 decay, neutron or
proton emission, and fission, each of which will convert a nucleus into an entirely
different system. Alternatively, a radioactive nuclide can decay through the emission
of electromagnetic radiation, a process by which excess energy is given off that does
not change N or Z of the system. Instead, the nucleus transitions into a less excited
state or the ground state.

A photon emitted from an excited nucleus will carry with it a discrete energy
and angular momentum, related to the difference in these properties exhibited by
the two states that are connected via the transition. The angular momentum, L,

carried away by the photon can take on any value represented by the vector sum of
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angular momenta of the initial and final states,
|J; — Jf| < L < J; + Jy. (2.1)

Following the nomenclature 2X-pole, these are referred to as, for example, dipole for
L =1, quadrupole for L. = 2, etc. In practice only the lowest multipole component
contributes significantly to the transition rate for reasons that will be discussed
below, although exceptions to this rule are seen in low-multipole transitions.

A ~-ray transition may or may not be characterized by a change in parity ()
of the state from which it originated. Electric (FL) and magnetic (ML) multipole

transitions differ in this property via the rule,

Am = (—1)* for EL radiation
(2.2)

= (-1)F'  for ML radiation,

The primary goal of most v-ray spectroscopic studies is to construct a level
scheme which depicts the excited states in a particular nucleus. Once the level
scheme is established, the character and spacing of levels can be quite telling. For
example, the ratio of 4] to 2] states in an even-even nucleus can provide important
information regarding the rotational motion of a deformed system, as discussed
in section 1.1.4. Moreover, the level scheme can be compared with theoretical
predictions, thus providing an indirect, model-dependent method for interpreting
structural information. In spite of the model dependency, this is one of the most
fruitful discourses following the establishment of a nuclear level scheme. This comes
from the supposition that a model which can simultaneously reproduce a detailed
level scheme and any number of additional observables must do an adequate job
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of representing the complex web of nuclear interactions. Among the “additional
observables” is the rate of transition between excited states, which can be related

to the quadrupole moment and deformation, as described below.

2.2 Rate of y-ray emission

The probability of a 7-ray transition from some initial state, |7 >, to final
state, |f >, depends on energy, multipolarity, and the overlap of wave functions for
these states. For a proper derivation of the operator connecting these two states one
must consider Maxwell’s equations and the electromagnetic interaction Hamiltonian
[7]. With these formulae the Helmholtz equation is derived, which bears as solutions

the electric and magnetic transition operators,

—1

O(M LM) = T+D

/j(r) [r x yrtYoaldr
(2.3)

O(F LM) = /p(r)rLYLMdr,
where j(r) is the current density, p(r) is the charge density, and Y7, are spherical
harmonics. These equations provide the basis for the derivation of single-particle
transition rates known as the Weisskopf estimates, as well as an intimate connection
between transition rates, quadrupole moment, and deformation. The probability,
P, for a transition from state |J;M; > to |J;M; > is given in terms of the transition

operators as,

E
ke

8r(L+1)
P(X LM; JiM; — JyMy) = RL[(2L + 1)1]2 (

2L+1
) G o0 o) s,

(2.4)
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Here, the terms outside of the transition matrix element come from spherical Bessel
functions as a part of the solution to the Helmholtz equation alluded to above [39].
The transition rate, then, is given by the summation of eqn. (2.4) over all M;, M,
and My, normalized to 2.J;+1. To average out M it is useful to consider the reduced

matrix element which is defined by the Wigner-Eckart theorem,

(JZ-MZ-LM|Jfo)
2Jf +1

(JrMp|O(A LM|J; M;) = (Jl[OAD)Ti) - (2.5)

Then, the transition rate is written in terms of the reduced matrix element,

. _ 8n(L+1) EN (T |OL)|] ;)
TA L= Jy) = RL[(2L + 1)!1]? (%) : 2, +1 (26)

The transition rate is an observable quantity, related to the mean lifetime 7 and

t1/2
0.693 °

half-life, ¢,/o by 7 = % = However, most nuclear physics applications tend to
use instead the reduced transition probability, defined as the square of the reduced

matrix element normalized to 2.J;+1, so eqn. (2.6) can be rewritten,

T\ L Js — Jp) = nLTE;(LL:))u]Z (%) BOL Ji— 7). (2.7)

For a transition of F2 multipolarity, eqn. (2.7) can be simplified with & = 6.58 x
1072 MeV - s, he = 197.327 MeV - fm, and €? = 1.44 MeV - fm, noting that the

units for EL reduced transition rates are e” - fm?. Thus, eqn. (2.7) simplifies to,

T(E2;J; — Jg) =1.225 x 10° - EY - B(E2; J; — Jp), (2.8)

where F, is the y-ray energy in MeV and the transition rate is given in s™1.

In a similar vein, single-particle estimates to the transition rate expression (2.6)
are determined with the application of some crude approximations to the integrals
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of eqns. (2.3) (For details, see section 9.6 of Ref. [7]). First deduced by Victor
Weisskopf [55], this set of equations has been termed the “Weisskopf estimates.”

Simplified expressions based on the Weisskopf estimates are,

4.4(L+1 2 b
T(BL) ~ AL+ D) ( 5 ) ( f ) x R x 1020571

LIL+ )2 \L+3) \197 MeV 0
L9(L+1) 3\’ hw 2 2L—2 21 —1 ‘
T(ML) ~ 1
WP~ Tier+ o (L+3) (197 MeV) x R 10%s7,

where R = 1.2AY3 fm. The importance of eqns. (2.9) is in the specific approxima-
tion of a single particle transition from one state to the next. Hence, the Weisskopf
estimates are alternatively termed the single-particle estimates, and can be used
to gauge the single-particle nature of a transition. This is particularly relevant
where reduced transition rates are concerned, as they are often quoted in terms
of “Weisskopf units” meaning that the measured value has been normalized to the
single-particle estimate. A transition rate much larger than this value generally
signifies collectivity, and “hindered” values are often encountered in isomeric states.
Either way, such comparisons can be quite telling in regard to the intrinsic structure
of the nucleus.

Equations (2.9) also allow one to compare the expected lifetime for different
multipole transitions. Simplification of these equations yields the expressions given
in Table 2.1. Here, it is seen that, for a transition of energy E in a nucleus of mass
A, the expected lifetimes for different multipoles differ by orders of magnitude,
thus proving the supposition alluded to above whereby only the lowest-multipole

transitions will typically contribute to the transition rate.
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Table 2.1: Weisskopf estimates for transition rates of different multipolarity. Tran-

sition rates are given in units of s~

AL T(AL)

El 1.0 x 10 E3 A3
E2 7.4 x 107 ES As
E3 3.5 x 10t E] As
E4 1.1x107° EY A3
E5 2.5 x 10712 Bl AT
M1 3.1 x 10 E3 A
M2 2.2 x 107 ES A3
M3 1.0 x 10! ET As
M4 3.3 x 1076 E9 A3
M5 7.4 x 1071 Bl A3

2.2.1 Relation to quadrupole moment

Once the transition rate is measured or calculated from theory, it can be related
to the quadrupole moment with the use of an analytical expression. The quadrupole
moment is a mathematical entity derived from the Taylor series expansion of the
external potential which acts on a nucleus. This expansion, given in numerous

textbooks, results in an expression for the quadrupole moment tensor,

Qij = /(3Tirj — T25ij)p(T)dT, (210)

where ¢ and j are indexes denoting the coordinate axes. This expression can be

re-written in terms of the spherical harmonic Yy and thus related to the electric
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transition operator of eqn. (2.3) so that,

1
=4/ 67T/ )r 2Y,odr

16w (J;M;LM|J; M) .
_\/? T o) o

167 Ji L Jf
=4/ (JrlO(E2)||J3)

5
~M; M M,

where the definition of the 3-j symbol was used in the last step. Using the orthog-
onality relations of 3-j symbols (eqn. 13.59 of Ref. [56]) and the definition of the
reduced transition rate, eqn. (2.11) can be rearranged so as to give the B(E2) value

as a function of the intrinsic quadrupole moment,

5 Ji L Jg
B(E2) = m—ﬁQg(wf +1) : (2.12)
-M; M My

The nomenclature associated with quadrupole moments can be confusing:
there is the intrinsic quadrupole moment, )y, which represents the moment in the
body-fixed frame of reference; the measured value, Q(JM), in the lab frame; and
the spectroscopic quadrupole moment, (), defined as the moment with J = M.
Confusion arises because the latter two are often used interchangeably. Indeed, it
is often the case that J = M and therefore the measured value is equivalent to
the spectroscopic value. Using geometrical arguments, the relation between Q(JM)
and (g can be derived (See section 11.4 of Ref. [7], section 4-3b of Ref. [6], or sec-

tion 7.A of Ref. [39] for detailed accounts of intrinsic and spectroscopic quadrupole

moments),

QM) = Qo (2.13)



2.2.2 Relation to deformation

The quadrupole moment is intimately related to the deformation of the nu-
cleus. However, the exact relation depends on the definition of the deformation
parameter [31]. One commonly used convention comes from an expansion of the

radius, R, in terms of spherical harmonics,
R = Ry [1 + agoYoo + oY) , (2.14)

where R, is the spherical radius (Ry ~ 1.2A4%/%), and a constant volume condition
is assumed (ée: the volume is assumed to remain constant under deformation). If
the charge density is assumed to be constant over the nuclear volume, the term p(r)
?;TZ eRy®. After integration, eqn. (2.11) can be expressed in terms

will be equal to

of the deformation parameter 35 [31, 57, 58|,

167 3
Qo = ?EZeRgﬁz. (2.15)

The deformation parameter [, is identical to the coefficient g of eqn. (2.14) [31].

2.3 Angular correlation of v rays

Since excited states in nuclei tend to be very short-lived, the time required
for the emission of coincident 7 rays is generally very short when compared to the
physical motions of a stopped nucleus. Therefore, a proper assessment of the angu-
lar correlation of v rays emitted from a given system can be a powerful tool for the

determination of characteristics of specific nuclear transitions. The directional cor-
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relation of coincident v rays can be expressed in terms of the LeGendre polynomial,

W(0) = > AwPi(cos 0). (2.16)

k even

For pure multipole radiation, the index k is limited by the selection rule,
0< k< Min(2J,2L,,2L,), (2.17)

which arises specifically from the triangular relation of 6-j symbols contained in the
expression for Ay [59]. By convention, the terms of eqn. (2.16) are normalized to

the value Agg, so that,

oo A AL i) Ag(LoLaldp)) _
bk = AOO AO(LILIJ'LJ) Ao(LgLQJfJ)

Fi(Li L1 JiJ) - Fy(LaLoJpJ). (2.18)

The normalized Fy-factors are given by a collection of angular momentum coupling

coefficients,

. | L L & L L k

Fo(LLJJ) = (=)%Y 2L +1)(2J +1)2(2k+1)2 :
1 -1 0 J J Ji

(2.19)

where the last term in brackets is the 6-j symbol.

With the above formalism, one can compute theoretical values for the coef-
ficients and therefore the form of the curves representing different combinations of
multipole transitions. The result is illustrated in Figure 2.1 for E2-E2, M1-M1,
and M1-E2 decay sequences. The normalized correlation coefficients a for these
cascades are ags = 0.10, agq = 0.01; age = 0.05; and age = -0.07, respectively. The
two latter do not possess ass-coefficients due to the selection rule of eqn. (2.17).
It should be emphasized that, without a measurement of the polarization of the
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Figure 2.1: Theoretical angular correlation curves for pure E2-E2, M1-M1, and
M1-E2 cascades. Sequences used in the calculation of these curves were 4 — 2 —
0,2 —=1—=0,and 3 = 2 — 0, respectively.

detected vy-radiation, the parity of the transition cannot be determined, so that the
above might instead be represented by @-@Q, D-D, and D-(@) symbols, where ) de-
notes a quadrupole transition and D denotes a dipole transition. Note that ()-Q
and D-D cascades show qualitatively similar angular correlation curves, but quan-
titatively different coefficients. These are not always discernable from experiment
since the uncertainties associated with experimental values are often large enough
to make this distinction ambiguous. However, one often begins an experimental
analysis with transitions of known multipolarity, so that it is, in most cases, trivial
to distinguish whether a cascade is @-@ or D-D.

The possibility of mixed-multipole transitions represents an added difficulty
for any angular correlation analysis. This can be addressed with the introduction

of the mixing amplitude, §, which is defined as the ratio of reduced matrix elements
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Figure 2.2: Variation of asy coefficient as a function of mixing amplitude, §. Cal-
culations are based on eqns. (2.18), (2.19), and (2.20).

for each multipole. This leads to an expression for the correlation coefficient [59],

Fo(Ly Ly J;J) + 26, F (L Ly J; ) + 62 Fp (L Ly J;J)
1+ 62

Ap(Ly Ly J;J) = : (2.20)

Since the Weisskopf estimates of Table 2.1 pointed to a very small likelihood of
anything other than transitions of the smallest possible multipole, the question
of mixed transitions is not often an issue. However, numerous cases of M1(E2)
mixing have been identified, so this is by no means something that can be ignored
completely. The effect of eqn. (2.20) on the asy coefficient is plotted in Figure 2.2
as a function of the mixing amplitude for M1(E2)-E2 and M1(E2)-M1 cases. Here,
it is seen that the advent of multipole mixing has the effect of increasing the ag

coefficient up to § ~ 1.0.
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2.4 Detection and measurement of v rays

2.4.1 Interactions with matter

~ rays interact with matter primarily through the processes of photoelectric
absorption, Compton scattering, and pair production. Of these, photoelectric ab-
sorption is the most important for assessing the quantitative features of detected
radiation, since it involves the complete absorption of photon energy by an electron
or electrons. Thus, the energy transferred to an electron is proportional to the en-
ergy of the photon or, alternatively, the number of electrons excited is proportional
to the photon energy. The process of Compton scattering, on the other hand, in-
volves incomplete absorption of the photon energy and the consequent scattering
of the original photon at some angle . The energy of the electron can be related
to the initial energy of the photon through its relationship with the angle #, but in
most cases the scattered photon is not detected, so the information is lost. The last
mechanism, pair production, is important at higher energies, where the energy of the
photon is more than twice the rest mass energy of an electron (2 x 0.511 MeV/c?).
It is therefore possible for the photon to convert its energy to the production of
an electron-positron pair, whose kinetic energy reflects the difference between the
photon energy and 1.022 MeV.

The relative importance of each mechanism is dependent on the energy of the
photon and on Z of the absorbing material. This is reflected in Figure 2.3, over the

region of interest to most nuclear structure applications. It is seen that Compton
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Figure 2.3: The interaction of 7 radiation with matter depends on both the Z of
the absorbing material and the energy of the radiation [60].

scattering dominates much of this region, enough so that it could represent a problem
for some ~-ray spectroscopy experiments. One solution to this problem is addressed
in the next section, where a method to suppress Compton scattered events from the
recorded data is described.

When it comes to a quantitative measurement of the energy of v radiation,
semiconductors are far and away the best materials. The reason for this comes
from the relatively small but important energy gap between so-called valence and
conduction bands in these materials. An insulating material can be characterized by
a large such gap, so that electrons are tightly bound and do not move freely about in
a material. Conductors are the opposite, as the electrons tend to flow freely about
in the conduction band. In semiconductors, electrons generally occupy the valence
band, where they form the bonds that hold the material together in a crystalline

structure. However, the energy required to excite an electron into the conduction
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band is relatively small, so thermal excitations can easily surmount this energy
gap. For ~-ray spectroscopy, high-purity Ge detectors are most often used, since
the energy gap is ~0.7 eV, compared to ~1.1 eV for the well-known semiconductor
Si [60]. A smaller gap means a higher probability for thermal noise, but this can
be suppressed by cooling the material with liquid nitrogen. Since the number of
electrons promoted from the valence band to the conduction band is proportional
to the energy of the photon, the smaller gap exhibited for Ge translates to better
energy resolution in the detected signal, once thermal noise is suppressed.

Another important characteristic of semiconductor detectors is the very short
charge-collection time stimulated by a high electron mobility in the material which
translates into fast timing signals. This feature enables the measurement of coinci-
dences, a reduction in signal pile-up, and better detector resolution.

Note that the principles of y-ray detection are far more complex than has been

represented here. For a more detailed summary of such methods, see Ref. [60].

2.4.2 Compton suppression

As mentioned above, the dominant interaction mechanism of y radiation through-
out most of the energy region of interest to nuclear structure studies is, unfortu-
nately, Compton scattering. This has a large effect on the observed spectrum as
many of the detected v rays are recorded with an energy much lower than the
actual energy of the photon, the result being an accumulation of low-energy back-

ground that can obscure real peaks. To ameliorate this problem, many applications
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have adopted the use of high-Z materials as scintillators to serve as anti-coincidence
shields, in order to suppress events in which ~y rays are scattered out of the detector.
Most often, the material Bismuth Germanate (BiyGezO;9, referred to as “BGO”) is
used for which it is well suited because of its scintillating properties, high Z and high
matter density (7.13 g/cm?). Because of the latter two characteristics, BGO forms
a highly efficient detection medium, but since the detection mechanism is based
on scintillation, the energy resolution is rather poor. Nevertheless, this material is
ideal for the rejection of Compton-scattered events, where the exact energy of the
scattered photon is unimportant.

The effect of Compton suppression on the resultant spectrum from a %°Co
source is illustrated in Figure 2.4. Here, many artifacts can be seen not just from
Compton scattering, but from the many phenomena encountered in a real experi-
ment. For example, a cluster of sharp peaks is evident at low energy, which arises
from x-rays emitted from the BGO scintillators. Second, a fairly small peak at
~200 keV comes from the backward scattering of « rays from materials behind the
detector. Third, a sharp peak at 511 keV comes from positron annihilation as a re-
sult of pair production, which is most likely induced in the high-Z BGO detectors.
The overall shape of the background in the unsuppressed spectrum results from the
continuum of energies exhibited by Compton scattered photons. The edge of this,
termed the “Compton edge”, is generally located at an energy ~256 keV below that
of the incident 7 ray, or half the rest mass energy of an electron [60]. Two such
edges are seen in the spectrum of Fig. 2.4 since there are two strong peaks in °Co

decay, at 1173 and 1332 keV, respectively.
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Figure 2.4: Comparison of spectra obtained with and without Compton suppres-
sion.

2.4.3 Gammasphere

Gammasphere [61] is an array of Ge and BGO detectors spanning the complete
41 geometry around a focal point, where the target chamber or source material is
mounted. The complete array can fit up to 110 detector modules, each mounted
to a fixed position on the frame, so that the exact location of each is constant and
reproducible in case the detectors need to be removed. Each module consists of a
cylindrical, 7 cm diameter x 7.5 ¢m long Ge crystal surrounded by a BGO shield
optically separated into six components plus a backplug. The six BGO components
are flat and wedge-shaped, as depicted in Figure 2.5, shaped to a hexagon so that
each detector module can be efficiently set into position. The backplug covers the
rear of the Ge crystal except for the space required for the cold finger, which extends

into the crystal from the liquid nitrogen dewar in order to keep the detector cool.
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The full array consisting of 110 detector modules provides an effective coverage of
46% of the solid angle, since each Ge detector covers 0.418% [62].

For the experiment described in this thesis, each detector was fitted with a
3-cm-thick tungsten alloy material known as a Hevimet shield, which covers the
BGO face so as to reduce the probability for false vetoes resulting from direct hits
in the BGO detectors by v rays originating at the target. In addition, a sequence
of Ta, Cd, and Cu absorber foils were installed across the face of each detector in
order to reduce the flux of x-rays entering the Ge crystals.

~v-ray detector performace is often gauged by the resolving power, which is
proportional to the ratio,

(P/T)

— 2.21
Roc g (221)

where (P/T) is the peak-to-total, a ratio of total photopeak events to total events,
and AFE, is the peak width, determined from the intrinsic resolution of the detec-
tor. In an escape-suppressed array like Gammasphere, the former is dramatically
increased due to the reduction of Compton scattered events, such that improvements
from ~25% for unsuppressed to ~60% for suppressed detectors have been measured
[63]. The total efficiency of the complete array is reported to be 9.4% at 1.3 MeV
[62], although this value is highly dependent on the y-ray energy. An efficiency curve

specifically tailored for this experiment will be calculated later.
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Figure 2.5: Schematic depiction of the layout of Gammasphere detector modules

and of the types of interactions between v rays and the detector material.
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2.5 Spectroscopy with deep-inelastic reactions

The production and subsequent investigation of neutron-rich exotic nuclei can
be particularly challenging, as most traditional techniques must necessarily make
use of stable beam-target combinations or, otherwise, do not yet have sufficient re-
solving power to permit the analysis of prompt de-excitations. For example, much
can be gleaned from fusion-evaporation and particle-transfer experiments, but these
necessitate the use of relatively intense beams, of which only stable species are cur-
rently available. Alternatively, one can turn to the use of fragmentation, spallation,
or fission experiments, where very exotic species can be produced, but the prompt
analysis of such species is negated by a need to separate and isolate the desired prod-
ucts. In this work, where the focus is on the prompt decay properties of moderately
neutron-rich Fe isotopes, one must turn to the use of deep-inelastic reactions.

The microscopic details of deep-inelastic reactions have been the subject of
extensive study [64], but there is, at present, no adequate theoretical tools available
to guide experimental pursuits of nuclear spectroscopy with these reactions; never-
theless, the application of such experiments to nuclear structure studies has led to
a number of new discoveries in recent years. For example, the identification of an
elevated 27 state in %8Ni, as discussed in section 1.2.2, was the result of an early
application of deep-inelastic reactions [65]. A schematic illustration comparing the
deep-inelastic collision process with other nuclear reaction mechanisms is given in
Figure 2.6. The distinguishing feature in this schematic is the “neck” that forms

between projectile and target species. This differs from a complete fusion experi-
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Figure 2.6: Schematic diagram of nuclear reaction mechanisms. The interaction
energy increases toward the bottom of the figure.

ment in that the colliding systems maintain projectile- and target-like properties,
but are unlike simple particle-transfer reactions in that they can potentially involve
the transfer of a large number of nucleons.

Another unique feature of this kind of reaction is the tendency toward N/Z
equilibration [64, 66]. It has been noted that the reaction products in deep-inelastic
experiments tend to equilibrate toward the N/Z ratio of the composite system, al-
though this is only a tendency and not a concrete rule, possibly attributed to the
dynamic shape of the colliding system [66], or possibly due to a relatively short inter-
action time. Nevertheless, this empirical rule is useful for the design of experiments
when the goal is to study weakly-produced nuclei.

An important question that remains is how to successfully identify v-ray tran-

sitions associated with specific reaction products, since a broad array of nuclei are
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produced in these experiments. To do this would seem to require some correlation of
detected radiation with particle recoils detected downstream from the target posi-
tion. With the current setup at Argonne National Laboratory, where Gammasphere
is positioned in front of the Fragment Mass Analyzer (FMA), the small acceptance of
this instrument makes this method forbiddingly inefficient. Although experiments
with the Chico charged particle detector in conjunction with Gammasphere have
been carried out, a simpler approach is to use a thick target, so that the reaction
products are stopped within the target chamber. Here, the high resolving power
of Gammasphere can be used to identify reaction products based on coincidence
relationships with previously-known transitions. Furthermore, depending on the
nature of the target nucleus, the cross-correlation of target-like and projectile-like
product transitions can assist in isotopic identification [67]. However, in the pursuit
of neutron-rich nuclei, the principle of N/Z equilibration often leads to a need for
neutron-rich target nuclei that happen to undergo spontaneous and beam-induced
fission. In such cases, the method of cross-correlations does not work, since the
complex array of fission products washes out any correlations, which are weak to
begin with. Hence, the primary weakness of any deep-inelastic reaction experiment
lies in a sometimes ambiguous method of isotope identification. The removal of this
ambiguity often depends on the identification of at least two ~-ray transitions with
the use of a different technique such as § decay.

A final point regarding experimental design relates to the energy required to
induce a deep-inelastic collision. Initial studies of deep-inelastic reactions showed
that they become important for heavy ions colliding at energies ~10% above the
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Coulomb barrier [64]. However, in thick-target deep-inelastic reaction experiments,
one always uses an energy closer to ~25% above this barrier. This way, the slowdown
due to peripheral Coulomb interactions does not immediately eliminate the chance
that a deep-inelastic collision takes place. Instead, the effective thickness of the
target is maximized and the probability for the desired reaction to take place is
larger (with reaction taking place roughly in 1/2 target thickness).

Because of the nature of the mechanism of deep-inelastic reactions, the product
nuclei are generally populated at high angular momenta, and the prompt decay
follows primarily through the yrast levels (the lowest energy of a given spin, J).
This follows from the energy dependence of y-ray transitions, as detailed in Table
2.1, namely that the transition rate scales with energy raised to some power, which
depends on the multipolarity of the transition. However, in a typical experiment
only the levels up to J ~10 can usually be identified, since many of the higher-lying

transitions proceed faster than the stopping time in the target.

2.6 Experiment and Data Analysis

2.6.1 Experimental details

Ion beams are produced and accelerated with the Argonne Tandem Linear
Accelerator System (ATLAS). This system is composed of an Electron Cyclotron
Resonance (ECR) ion source, in which neutral atoms are ionized by plasma electrons

accelerated in a bath of microwave radiation. The ionized particles are injected into a
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booster linac and finally into the main ATLAS beamline, where they are accelerated
in a series of 62 superconducting niobium resonators, while focus is maintained by
superconducting solenoids. Particle velocity is controlled by adjusting the relative
phases of each resonator, and beam energies up to 17 MeV/u can be attained for
ions from hydrogen to uranium.

For this experiment (ANL experiment 1104, gsfmal66), a Ni source material
was used to produce an ion beam of ®‘Ni accelerated at a charge state 157 to
an energy of 430 MeV. Beams are generally produced in bunches separated by
82 ns, but for this experiment only one of every five bursts was allowed to enter
the experimental area, so that an effective separation of 410 ns between bursts
was achieved. The beam was incident on a 55 mg/cm? thick target of isotopically
enriched 2**U mounted in a position at the center of Gammasphere. For the duration
of the experiment, ~100 detector modules were present (during the experiment
one of the detectors was switched off to reduce noise originating from that module
which had the effect of increasing dead time in the acquisition system). A beam
current between 3 and 7 enA was maintained for five days (3-7 October, 2005). For
most of this time the acquisition trigger was three coincident v rays, although ~14
hours of data were collected under a two-fold coincidence requirement. The data
were recorded to Sony QG-112M 8mm data tapes, and later transferred to disk for

analysis.
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2.6.2 Data collection and analysis

As noted above, there was a three-fold coincidence threshold maintained for
most of the experiment. A three-fold coincidence is defined here as three successive
signals recorded within 1 us of the first signal. Once this condition is met, these
data and any additional Compton-suppressed 7 rays detected within the 1 us time
window are recorded as an event. In addition to the energy signals, the time relative
to an RF pulse is recorded for each of the detected v rays, yielding the time spectrum
illustrated in Figure 2.7. Here, two additional peaks are evident, which correspond
to subsequent beam bursts, separated by 410 ns. The slow exponential decay of
background radiation following the initial burst is also evident in this spectrum
(note that, due to the nature of experimental setup, time increments backwards in
this picture).

The analysis of data from this experiment was carried out primarily within
the Radware software package, which includes an array of programs tailored to the
analysis of high-fold y-ray coincidence experiments. For organizational purposes,
a flow chart of the analysis is depicted in Figure 2.8. Here, the programs used
to generate coincidence cubes and angular correlation curves, as described in the
following sections, is presented. In this figure, programs suffixed with * are a part of
the Radware package, *.cc are custom codes, root refers to the software developed
at CERN [68], and GSSORT is a program written specifically to sort Gammasphere

data.
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Figure 2.7: The time with respect to an RF pulse for a selected group of v-ray
signals. Shaded region 1 depicts the “prompt” flash of radiation arriving with the
beam pulse. Regions 2 and 3 indicate “delayed” transitions which arrive between
beam pulses. Note that time increments backwards in this spectrum.

Coincidence cubes

Three regions are labeled on the time spectrum of Figure 2.7. These regions
have been used in order to classify a recorded 7 ray as “prompt” or “delayed.”
Prompt events are defined as those which arrive within the initial flash of radiation
that is emitted during a beam pulse, and delayed events are those which arrive be-
tween subsequent beam bursts. Since y-ray events are recorded for a full microsecond
after an initial signal is detected, radiation emitted over a span of several hundred
nanoseconds can be correlated. Thus, four different classes of triple-coincidence
events are defined: (1) prompt-prompt-prompt (PPP), in which all three associated

~ rays arrive within region 1 of Fig. 2.7, (2) prompt-prompt-delayed (PPD), whereby
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Data Tapes [ GSSORT —>| Compressed
data files
lufwhm* coincidence cubes angular correlations ] e
(*.tab) (*.mat) x 12
J7 56CO ]82Ta 47
incubSr* 152, 24350  escl8rt
(*.cub) J7 (*.edk) x 12
PPP, PPD, 47
PDD, DDD of3*
escl8r*
* sto) -
J7 ( (*.spe) x 12
e’ J7 select gates
(*.cal Source* 47
* o
J7 (*.sin) .
__ pro3d* icleeds*data (poak fi0) x 12
* ¢ rom *.sou
(. Tpe) (create *.inp)
projections J7 47
effir e
J7 x100 | comee
gf3* (*.aef) ;D (* root)
(*.spe) 47
bkgd. subtr. n
J7 run legft.cpp
to fit data
levit8Sr*
(*.lev, *.gls)
requires:
*.cub, *.d2p,
* tab, *.cal,
*.aef, *.spe,
*.spe

Figure 2.8: A flowchart illustrating the programs used in sequential order for the
analysis. Programs suffixed with * are a part of the Radware package, *.cc are
custom codes, GSSORT is a program written to sort Gammasphere data, and root
is a data analysis program written at CERN [68].

99



two 7 rays are recorded in region 1 and a third in region 2 or 3, (3) prompt-delayed-
delayed (PDD), where one 7 ray is observed in region 1 and the others in region 2
or 3, but in prompt coincidence with one another, and (4) delayed-delayed-delayed
(DDD), in which all three associated v rays arrive in region 2 or 3, but in prompt
coincidence with one another. In this scheme, “prompt coincidence” means that
the events must come within ~40 ns of one another. Note that the peak intensity
of the second beam burst in Fig. 2.7 is roughly two orders of magnitude less than
that of the principal burst; this means that only one of one hundred beam bursts
produces a reaction and, thus, only a remote possibility exists for contamination of
v rays detected in region 3 of that figure. Based on the above classification, four
symmetric coincidence cubes were constructed with the incub8r3 program of the

Radware package [69].

Energy and efficiency calibration

An energy calibration was performed prior to the experiment so that all 100
detectors could be properly aligned. This was monitored periodically throughout
the experiment in case of gain shifts. Offline, a raw calibration was carried out with
a %2Eu source.

The relative efficiency of Gammasphere was measured by placing, separately,
four radioactive sources (**Co, 1%2Eu, 82Ta, and ?*3Am) at the target position and
acquiring data until sufficient statistics were achieved. In each case, peak areas

were determined for several known v-ray transitions, and the measured values were
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Figure 2.9: The efficiency curve derived from a fit to equation (2.22); parameters
used for this fit are provided on the figure. Data points are from **Co, %?Eu, 82Ta,
and 2*3Am sources.

compared to the known relative intensities. To compare the results from each case, a

scaling factor was introduced so as to minimize the x? value for a fit to the equation,
2—G 2 -G =a
e:exp{[(A+Bx+Cx)_ +(D+Ey+Fy)_}‘G}, (2.22)

where z = In (%) and y = In (fg%). Once the results from all sources were

combined to a single dataset spanning an energy range from 67.8 to 3451 keV, the
curve depicted in Figure 2.9 could be obtained with the parameters indicated. The
coefficient C' was fixed to zero, leaving six variable parameters from which a x? =

4.7 was achieved.
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Angular correlation analysis

The procedure followed in this work to determine angular correlation coeffi-
cients was to (1) sort the data into coincidence matrices, each representing a range
of angles between emitted radiation; (2) gate on the  ray of interest and find the
peak area of the appropriate coincident transition or transitions for each angular
bin; and (3) fit the efficiency-corrected data to eqn. (2.16) in order to obtain ag
and a44 angular correlation coefficients. The details of this analysis are given below.

The angle between v rays emitted from a point at the center of Gammasphere

to detectors at positions ¢ and j can be computed from the law of cosines,
’IIZ' : ’Uj = |’LLZ| |’U]" COS@,']', (223)

where @; and ¥; are the vectors depicting the emission of vy rays from the target
position to 7 and j, respectively, and ©;; is the angle between these vectors. Since
each detector is fixed at a position along a sphere, the magnitude of these vectors is
the same and |u;| and |v;| can be arbitrarily normalized to 1. Spherical coordinates

are defined by,

x =1 sin 0 cos ¢
y=r sin 0 sin ¢ (2.24)

z=r1 cos 0,
where the polar angle, 6, is measured with respect to the downstream beam axis,

and the azimuth angle, ¢, is measured from the downward vertical axis. Combining

eqns. (2.24) with the explicit form of the dot product and eqn. (2.23), the angle
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between two emitted v rays can be derived,
O;; = cos™" (sinb; sinb; cos(¢; — ¢;) + cosb; cosb;) . (2.25)

Since the position of each detector module in Gammasphere is known, the
determination of ©;; is easily computed with eqn. (2.25) once the specific detectors
are identified. Under these auspices, the data were sorted into twelve matrices
depending on the angle derived between the modules in which the signals were
detected. The total number of 2-fold detector combinations can be computed with

the binomial coefficient,

R (2.26)

For the current experiment, eqn. (2.26) gives 4950 possible combinations. By omit-
ting detectors 1-6, 10, 53, 58, and 67, the distribution of ©;; is presented in Figure
2.10. In this picture, angles greater than 90° have been represented by 180° - ©;;,
since all correlation curves are symmetric about 90°.

It is clear from Fig. 2.10 that each of the twelve angular matrices derived in
this work are characterized by varying degrees of statistics, since the distribution of
angular data is not uniform. Specifically, the bins with the fewest possible detector
combinations contained the fewest events and therefore the highest relative error
(for this reason, two of the bins, labeled 4 and 7 in Fig. 2.10, were omitted from
the analysis). With this in mind, the data from each bin could only be compared
after the fitted peak areas were corrected for the relative efficiency of that bin. To
determine this, a curve similar to that illustrated in Fig. 2.9 had to be constructed
for each detector, and the relative efficiency of measuring a ~-ray coincidence of
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Figure 2.10: The distribution of possible angles between detectors with the 100-
detector setup used for this experiment. Horizontal lines depict the angular bins
used for the construction of correlation curves. Bins 4 and 7 exhibited very low
statistics and were omitted from the analysis reported in this work.

energies e; and e in angular bin n is given by,

enler, e2) = Zeij(el, e2) = €;(e1)ej(e2) + €i(ex)ej(er), (2.27)

where the labels 7 and j indicate the modules in which the radiation was detected.

To compare different bins, the value from eqn. (2.27) must be normalized to,

Zen(el, €2). (2.28)

Peak fitting and error analysis

Finding the area under a 7-ray peak can be somewhat complex. The reasons
for this are numerous, but what is of most immediate concern is the possibility of
incomplete charge collection which is typically caused by neutron damage or by the
presence of detector impurities. This will tend to produce a more gradual slope on
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the low-energy side of the peak curve and, as a result, the data for a given peak
may appear somewhat asymmetric which can be problematic for simple peak-fitting
routines. Instead, a skewed Gaussian function may be used, which can reproduce
this asymmetry quite well. In spite of this, all peak areas derived from this work

have been carried out with a symmetric Gaussian function,

G(z) = yo exp [—M] : (2.29)

202

where yq is the height at the centroid position, zy. The standard deviation of the
Gaussian, o, is related to the peak area by A = v/27ryoo = 1.064y,T", where T is
the full width at half maximum. To show that this simple curve is sufficient for the
current dataset, a peak from '»?Eu source data is reproduced in Figure 2.11. Here,
the simple Gaussian function adequately reproduces the observed peak produced
from a 964-keV v ray. Fitting parameters included a constant background of 2976
counts, and I' = 7.621.

Under normal circumstances, counting statistics obey a Poisson distribution,
and the standard deviation of any peak area is the square route of that area. How-
ever, in an experiment such as the one described here, the spectra undergo significant
modification, particularly from background subtraction, and the uncertainties are
more complicated to evaluate. For instance, a v ray of interest might overlap with
another very intense v ray in the total projection spectrum, whereas a different ~
ray might be comparatively clean. It is then reasonable to postulate that the in-
tensity determined for the former transition should be regarded as less certain than

that of the latter. Hence, a proper evaluation of the uncertainty associated with
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Figure 2.11: Sample Gaussian fit to the 964-keV peak of a *2Eu source spectrum.

each channel number in a background-subtracted spectrum is given by the sum of

variances of each spectrum,

O-?pe = 0(2) + O-I?kgd’ (230)

where oy, is the standard deviation obtained from the background-subtracted spec-

trum, oy is from the original spectrum, and o4 is from the background spectrum.

2

The variance being the square of the standard deviation means that ¢° is simply

the number of counts, C'(n), in a given channel, n, of a particular spectrum so,

Oupe = 3 1/Co(n) + Chrga(n)- (2.31)

In some cases, the fitting procedure carried out by the program gf3 is less
consistent for repeated fits to the same peak, so instead of the above method, the
variation in successive attempts at fitting the peak gives a more realistic indication
of the peak area uncertainty. This method is applied where peak areas are very
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large, or when the background is very complex even in the background-subtracted
spectrum. In these cases, the standard deviation of three successive attempts at
fitting the peak is larger than that the value computed with equation (2.31), so the

latter method is adopted.
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Chapter 3

Results

3.1 Total projection spectra

Each of the four coincidence cubes is projected into a 1D histogram in Figure
3.1. In these spectra, one can identify the main contaminants as well as the most
strongly-produced species for each analysis technique. The PPP, PPD and to a lesser
extent, the PDD cubes, show a strong effect from neutron-induced reactions on the
detector apparatus. The most obvious feature comes from (n, n'y) reactions in the
germanium crystal itself, which are visible from the 2 energy peaks for all of the
naturally-occurring isotopes of Ge, each with a high-energy tail that represents the
recoil energy gained after collision with a neutron. These are labeled in Fig. 3.1a:
563 (Ge; 7.83% abundance), 596 (“Ge; 36.73%), 834 ("Ge; 27.31%), and 1039
keV (Ge; 20.37%). The PPD spectrum, plotted in Fig. 3.1b, yields an additional
peak of this nature at 691 keV, which is attributed to decay of a 444-ns isomeric

state in "2QGe.
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Neutron interactions with other elements of the detector apparatus besides
the germanium crystals are also visible. For instance, peaks arising from the pres-
ence of 27Al, 1¥2W, and 2%Bi are labeled in Fig 3.1a. These materials come from
the aluminum casing that holds the germanium, the Hevimet absorbers, and the
BGO Compton-suppressors, respectively. A detailed analysis of neutron-induced
background radiation has been carried out in Ref. [70].

A significant contribution to the PPP data comes from v-ray transitions in
the beam and target materials. These arise from Coulomb excitation in the absence
of a reaction. Also, the 1425-keV v ray from the 2% state of ®Ni is evident in this
spectrum, which probably comes from two-nucleon transfer from the target. Lastly,
the positron annihilation peak at 511 keV is present in all of the spectra.

In Figure 3.1c and d, where the total number of counts is relatively small,
one can begin to see real reaction products. This is especially true for the PDD
spectrum, where the selectivity of correlated prompt and delayed data is evident.
Here, four specific cases of isomeric decay can be picked out: (1) ®'Fe, which has a
half-life of 250 ns and is characterized by a cascade of 655 — 207 keV v rays; (2)
%Cu, with t,/2 = 600 ns, and a cascade 563 — 315 — 89 — 186 keV; (3) *Cu, with
t1/2 = 360 ns, and a cascade 75 — 486 — 470 — 1711 keV; and (4) '**Ce, with t1 o
= 70 ns, and a cascade 270 — 1608 keV. This last example comes from fission of
the target or target-like product, as do each of the transitions labeled in the DDD

spectrum of Fig. 3.1d.
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3.2 BFe

Since the structure of stable *®Fe has been the subject of a number of detailed
and thorough studies, the presentation of **Fe data here exists primarily for illustra-
tive and demonstrative purposes. The level schemes depicted in Figure 3.2a and b,
provide the levels and v rays that could be identified from PPP and DDD spectra,
respectively, and the relative intensity of each transition, as determined from the
current experiment, are represented by the widths of the transition arrows. Spin
and parity assignments are adopted from the accumulated literature, as given in
Ref. [71].

One of the important characteristics to note from these data, illustrated in the
level schemes of Figure 3.2, as well as in the spectra of Figure 3.3, is the general
pattern of excited states that can be identified from the reaction. For instance, the

prompt data indicate a preference toward yrast and near-yrast states, whereas the
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Figure 3.2: Partial level scheme for ®Fe derived from (a) PPP and (b) DDD coin-
cidence cubes.
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delayed data yield a completely different population of states which focuses instead
on low-spin levels. The latter trend is simply a signatory that the off-beam data
consist almost entirely of [-delayed v rays, whereas the former reflects the large
amount of energy and angular momentum that is exchanged during a deep-inelastic
reaction.

Another interesting, albeit somewhat disconcerting, feature of the current
dataset is the rather large discrepancy in the relative intensities and branching ratios
of some transitions compared with previous 3 decay work [72]. For example, the ~y
ray branching ratio of the 2134-keV, 37 state has been purported to proceed roughly
75% via the 1323-keV transition, whereas in the current work a value just under
45% is deduced. Similarly, the 1675-keV, 27 state reportedly decays directly to the
ground state with a 44% branch compared to the current dataset where nearly all
of the decay appears to pass through the 2{ state. Both of these cases can be easily
attributed to the threefold coincidence requirement adopted in this experiment. For
any direct population of the 31 state, the decay through a 1323-811 keV sequence
would not be recorded owing to the multiplicity of this cascade. Nor would the
459-1675 keV sequence be recorded for the same reason.

An analysis of the angular correlation of y-ray transitions in the prompt data
did not produce adequate results owing to the high background present in 811- and
1266-keV coincidence gates. In contrast, the delayed data did present a good test
case for such an analysis. Here, peaks fit from a single coincidence gate on the
811-keV, 27 — 0" transition yielded as = 0.11(9), a4y = 0.07(12) for the 1266-keV
4% — 27 transition, and negative ay coefficients for 459- and 1323-keV transitions,
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Table 3.1: Levels observed in *Fe from the PPP data.

Eiever (keV) J E, (keV) L,
811 2+ 811.0(1) 100
2077 At 1266.2(1) 100
2134 3+ 1323.1(2) 26(4)
2601 A+ 466.9(2)
524.1(2) 21(3)
1790.1(1) 8(1)
3235 2+ 1157.4(2) 5(2)
3598 6+ 1520.9(1) 32(4)
3888 6 289.6(2) 12(2)
1810.5(2) 29(4)
4214 5- 1614.3(4) 9(1)
4671 7" 455.3(2) 4(2)
783.1(1) 21(3)
1072.6(3) 13(3)
5345 8 1457.1(2) 16(3)
5833 9- 1162.6(4) 14(3)

consistent with the adopted J™ assignments for these states (see Table 3.2 for the
correlation coefficients determined in this work).

As a final note, two transitions are depicted in Fig. 3.2b that are not included
in the current nuclear database [71]. These transitions, at 1100 and 1824 keV,
are included in the level scheme because (1) they are present in the very clean
DDD coincidence gates, (2) coincidence gates involving these weak transitions return
the expected spectrum consistent with their location in the level scheme, and (3)

their energies imply levels which are already known to exist, and which are marked
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Table 3.2: Levels observed in *®Fe from the DDD data.

Eiever (keV) J7 E, (keV) I, ag ay
811 2+ 810.9(1) 100
1675 9t 864.2(1) 100  0.47(6)  0.09(8)
2077 AT 1266.0(1) 46(2)  0.11(9)  0.07(12)
2134 3t 450.3(1)  74(2)  -0.13(6)  0.09(8)
1323.4(1)  57(2)  -0.49(3)  -0.07(5)
2601 At 466.4(1)  22(1)
524.1(2)  30(2)
925.8(1)  8(1)
1789.8(5)  6(1)
3235 2t 632.9(3)
1100.4(5)
1156.9(2)  12(3)
3755 1677.9(5)  3(2)
3903 1302.2(3)  4(3)
1768.3(2)  22(1)
(1824)
4089 (4%)  1488.4(1)  1(1)
2012.5(4)  2(1)
4315 2t 2179.7(5)  5(1)
2237.4(6)  2(1)
4592 2515.0(3)  1(1)
4836 2700.2  1(1)

2759.3(3) < 3
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by other known transitions in the spectra. The scant evidence for an 1824-keV
transition is provided in the form of a few counts in the inset of Fig. 3.3d, and
evidence for the 1100-keV transition is not explicitly shown but can be seen in the
811-1323 keV coincidence gate. The latter transition is somewhat more intense than
the former and, as such, the peak could be fit, although the relative intensity could

not be reliably extracted.

3.3 OFe

The nucleus %°Fe has been extensively studied with a wide array of techniques,
ranging from transfer reactions [73-75] to fusion-evaporation [73, 76] to 8 decay [77—
79] and deep-inelastic reactions [80] (additional deep-inelastic work, carried out in

parallel with the current project was recently reported in Ref. [81]).
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Figure 3.4: Partial level scheme for %°Fe derived from (a) PPP and (b) DDD coin-

cidence data.
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The current experiment differs only slightly from Ref. [80], where a 360 MeV
%4Ni beam was incident on a 2°®Pb target, and Gammasphere, then at Lawrence
Berkeley National Laboratory, consisted of 83 detector modules. Thus in principle,
the current experiment, with more detectors, a more neutron-rich colliding system
and a longer run time (5 days compared to 48 hours), should yield superior results.
In fact, the results from the prompt data of this experiment, illustrated in Figure
3.4a, reveal several new transitions beyond what could be seen in that experiment.
This is illustrated in Figure 3.5a and b, in which the spectra are presented from co-
incidence gates on 824- and 824-1291-keV v-ray transitions, respectively. The single
coincidence gate in Fig. 3.5a produces a complex assortment of small peaks below
~850 keV, but some of the more intense transitions can nevertheless be identified
in this range, including the 781-keV transition that was not reported in Ref. [80].
This is puzzling since this v ray is quite prominent in the double-coincidence gate
of Fig. 3.5b, with a relative intensity at least as much as a few of the transitions
that were identified in that work (unfortunately, the spectra from Ref. [80] are
not available for comparison). Additional new 7 rays have been identified at 349,
365, 715, 765, 1170, and 1818 keV. These results are corroborated by an extensive
analysis of high-spin states in this nucleus reported recently by Deacon et al. [76].
In that work, all of these transitions were reported and more, far exceeding what
could be identified here. However, one important result arises from this work in
that the distinction could be made between 1402- and 1406-keV transitions in the
angular correlation analysis, whereas this doublet could not be easily separated in
the Doppler-corrected data of Ref. [76]. The correlation coefficients determined in
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this work, from a coincidence gate on the 1291-keV transition are as = -0.07(3), a4
= -0.02(4) and ay = 0.21(6), a4 = 0.03(9) for 1402 and 1406 keV, implying dipole
and quadrupole character, respectively. Thus, the spin assignments for the states at
3517 (J = 5h) and 3521 (J = 6h) keV proposed by Wilson et al. [80] are confirmed.
However, the angular correlations measured here cannot distinguish the parity of the
transition and hence this remains uncertain. Whereas Wilson et al. [80] proposed
a positive parity for the state at 3517 keV (without an accompanying explanation),
Deacon et al. [76] have proposed a negative parity based on (1) the absence of an
analagous state in shell model calculations which employed the pf model space, and
(2) the fact that the band was observed to extend up to J = 17A, consistent with a
proposed configuration vgg s ( f5/203/2P1/2)°

The results from an analysis of delayed coincidence spectra is summarized in
Fig. 3.4b. A coincidence gate on the 824-keV transition, illustrated in Figure 3.5c,
yields several contaminant 7 rays which belong to nuclei other than %°Fe, in addition
to a number of strong lines associated with this nucleus. The spectrum of Figure 3.5d
shows the results of a double-coincidence gate on 824- and 1291-keV v rays. Most
prominent in this very clean spectrum is the known 678-keV line which deexcites
the level at 2792 keV into the 4 state at 2115 keV. In addition to this, three more
strong lines are observed at 958, 1079, and 1372 keV. As none of these appears in
coincidence with one another, these v rays are determined to independently feed the
47 state at 2115 keV. The v ray at 958 keV was reported previously by Warburton et
al. [73] from %Fe(t,py) reactions, and the 1079- and 1372-keV + rays were previously
identified by Runte et al. 78] following the 3 decay of “Mn but could not be placed
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in the level scheme. Closer inspection shows additional lines at 1239, 1385, and
some trace of the lines at 1402 and 1405 keV. Among these, only the 1239-keV line
is unique to this experiment. The level implied by the 1385-keV ~ ray was identified
previously from (¢,p) reaction data in Ref. [75], whereas the 1402- and 1405-keV ~y
rays are among the yrast transitions that could be easily distinguished in the prompt
data, and were consequently identified in a previous deep-inelastic experiment [80].
In fact, the possibility that these two transitions are present as merely leak-through
from the prompt data could not be ruled out, owing to the extremely low intensities
associated with these peaks, but this is unlikely (for a further discussion on this
matter see section 3.5).

Previously, the level at 2793 keV, which partially deexcites via the 1969-keV
7 ray, was proposed to possess spin and parity J™ = 3T [77]. The basis for this
assignment was that the logft value from decay of the parent °Mn implied an
allowed transition, and the absence of this level in (¢,p) reaction data may be an
indication that it is of unnatural parity. Although recent findings [79] show that
Norman et al. [77] assumed an incorrect spin for the S-decaying state in “*Mn, this
does not affect the basis for their assignment. Curiously, Wilson et al. [80] suggest a
spin and parity of 47 for this level and, whereas they offer no evidence in support of
this assignment, this is the value which has been accepted into the current nuclear
database of Ref. [71]. However, a measurement of the angular correlation of the
1969-keV ~ ray, determined from a coincidence gate on 824 keV, gives coeflicients
as = -0.22(4), as = -0.02(5), consistent with dipole character which confirms the
assignment J™ = 37,
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Table 3.3: Levels observed in ¢°Fe from the PPP data.

Eiever (keV) JT E, (keV) L, ao ay
824 2t 823.9(1) 100 0.11(1) 0.04(2)
2115 4+ 1291.0(1) 100
3517 5(=) 1402.0(1) 41(3) -0.07(3) -0.02(4)
3521 6" 1405.7(2) 19(2) 0.21(6) 0.03(9)
3583 6" 1467.8(1) 21(2) 0.11(4) 0.02(6)
3933 6+ 349.1(6) 1(1)

1818.0(2) 5(2) 0.33(18) 0.02(26)
3959 (7%) 376.4(2) 5(2) 0.23(11) -0.05(15)
438.7(2) 15(2) 0.14(5) -0.09(7)
442.3(2) 8(1) 0.15(8) -0.07(12)
4298 339.1(2) 8(1) -0.22(9) -0.03(12)
365.4(5) 4(1)
715.3(2) 4(1)
781.2(3) 6(1) 0.01(13) -0.23(19)
4359 842.5(3) 21(2)
5007 1047.9( ) 13(1)
5530 1171.0(2) 2(1)
5551 1968.4(5) 2(1)
6316 765.3(1) 2(1)
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Table 3.4: Levels observed in %°Fe from the DDD data.

Eiever (keV) J7 E, (keV) I, ay ay
824 2+ 823.8(1) 100
2115 4+ 1291.0(1) 100 0.17(7) 0.05(9)
2300 2t 1476.1(1)  101(4)  -0.18(7)  0.40(10)
2793 3+ 493.0(1) 81(3)
678.3(2) 18(2)
1969.2(1) 91(5) 0.22(4)  -0.02(5)
3073 957.7(3) A(1)
3194 1079.0(5) 13(2)
3354 1238.5(7) 2(2)
3486 1371.6(2) 16(3)
3500 1385.4(4) 3(2)
3.4 Y'Fe

The structure of %' Fe was previously investigated using 3-decay [78], fragmen-
tation [82], and, to some extent, deep-inelastic [83] reactions. From these studies,
a 239(5)-ns isomeric state has been established at 861 keV [82, 84]. This state has
been determined to represent the 9/2% level associated with the occupation of the
gg/2 neutron orbital by a single neutron [85]. Above this isomer, a  ray at 789
keV has been reported, deduced from the prompt-delayed coincidence matrix ob-
tained in a deep-inelastic reaction with 54Ni and '39Te [83]. In the present study,
triple-coincidence data are used to establish several new transitions above this 239-
ns isomer, starting from the previously known 207- and 655-keV ~ rays associated

with the isomeric decay [82]. The resulting level scheme is depicted in Fig. 3.6.

82



4675 _(2112%)

4292 (19/2*,17/2%)
(19/2%) 4144

3714 1683 764
(1300) (17/2+,15/2%)

536
93y 17124y f

1879
42

132+

(527,912
S 189
B decay 172 9/2+
239(5) ns
238 \ 752

Figure 3.6: Partial level scheme for ®'Fe derived from correlated prompt and de-
layed coincidence cubes. Arrow width reflect the relative intensity of each peak and
were not corrected for the presence of the isomer.

Figure 3.7a presents the result of a double-gate set on these two transitions in the
PPP coincidence cube. The 789-keV transition is clearly present in this spectrum
together with a weak peak at 1342 keV. Note also two other weak transitions at
1040 and 1222 keV. Accompanying these is a similar weak (hardly visible in Figure
3.7a) v ray at 842 keV. These most likely correspond to neutrons interacting with
elements within the detectors, as discussed in section 3.1.

A similar double-gate on the 207-655 keV ~ rays in the PDD cube, displayed
in Fig. 3.7b, indicates a dramatic enhancement of all of the peaks that could be
identified in the prompt spectrum, as well as the presence of several new transitions.
Most prominent in this spectrum are the peaks at 1014, 1040, 1222, 1342, and 1879

keV, all of which are appreciably weaker than the very intense 789-keV ~ ray. Of
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these, three can be eliminated as candidates for y-ray transitions in ®! Fe with a quick
glance back at Fig. 3.1b, and the accompanying discussion, as the lines at 1014,
1040, and 1222 keV correspond to neutron-induced activity. A close inspection of
Fig. 3.7b reveals five transitions that cannot be attributed to such reactions: 1184,
1309, 1342, 1683, and 1879 keV.

Figure 3.8 presents the coincidence spectrum resulting from the summation

of double gates on the 207-789 keV and 655-789 keV v rays. Again, 7 rays from
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Figure 3.7: Gamma-ray spectra from the 207-655 keV coincidence gate in a) PPP
and b) PDD cubes. Peaks marked with an n indicate v rays arising from (n,n'y)

reactions with elements in the detectors and auxiliary equipment, and ¢ denotes
unresolved contaminant transitions from a nucleus other than °'Fe.
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Figure 3.8: Spectrum produced from the sum of 207-789 and 655-789 keV coin-
cidence gates in the PPD cube. In the spectrum, n denotes peaks that arise from
(n, n"y) reactions with elements in the detectors and auxiliary equipment and c indi-
cates peaks that are associated with unresolved contaminants from a nucleus other
than 5!Fe.

neutron-induced reactions are widespread (this is primarily an effect of the location
in energy of the gating transitions). Among the strong lines that could not be
attributed to neutrons are: 520, 536, 764, 1152, 1184, 1309, 1342, 1683, 1879, 1891,
and 2064 keV. Further inspection indicated that the 1342-keV peak is in coincidence
with 536-, 1152-, and 1683-keV v rays. Close scrutiny reveals a possible peak at
1300 keV in the 207-1342 keV double gate, but this transition does not appear above
background in the 655-1342 keV double gate. Still, all of the gates involving this
transition appear to produce consistent results, and the level implied at 4293 keV
is supported by a coincidence relationship between the 1879- and 764-keV + rays.
Thus, each of the lines above is placed in the level scheme of Figure 3.6, although

the assignment of the transition at 1300 keV remains tentative.
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The analysis of the v ray at 1309 keV indicates that it is in coincidence with
the 520-keV transition. However, additional coincidence relationships with ~y rays at
192, 333, and 369 keV indicate that this cascade belongs to a different nucleus. This
leaves the 1184-, 1891-, and 2064-keV lines as the remaining candidate transitions.
The 1184-keV + ray returns 223- and 488-keV lines in coincidence and is, similarly,
assumed to belong to a different nucleus. Analyses of the  rays at 1891 and 2064
keV do not indicate any further coincidence relationships beyond those already
established with 207-, 655-, and 789-keV transitions. Thus, these lines are included
in the level scheme of Figure 3.6 directly populating the 13/27 state.

In an independent investigation conducted in parallel with this work, the same
reaction was studied, but with a thin target and recoil mass gating [81, 86]. An
additional v ray at 752 keV was reported in that work, which is found to directly
populate the level at 207 keV. Data from the prompt cube in the present experiment
clearly support this observation, and an additional transition at 517 keV is also
observed to feed this new level.

An angular correlation analysis was performed for the strongest lines that
could be identified in the data. As a proof-of-principle, the 655-207 keV sequence,
which is known to be of M2-M1 character, was analyzed. The resulting as and a4
angular correlation coefficients are —0.03(4) and 0.07(5), respectively, supporting
a quadrupole-dipole character in agreement with the literature. In spite of the
fact that the 789-keV transition lies above the isomer, its intensity allows for a
determination of its angular correlation, which is determined from a gate on the 655-
keV 7 ray to possess quadrupole character (as = 0.18(4), a4 = 0.05(6)). Similarly,
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an analysis of the 1342-keV transition supports quadrupole character as well (ay =
0.12(11), a4 = 0.00(16), from a gate on the 789-keV ~ ray), whereas the 752-207 keV
correlation indicates a dipole-dipole cascade (as = 0.26(4), as = 0.07(6)).

On the basis of the angular correlation fits described above, the level at 1650
keV is determined to have spin and parity 13/27, consistent with previous sugges-
tions [83]. The most intense transition above the level at 1650 keV is the 1342-keV
line of quadrupole character which most likely represents the next excitation of this
sequence. Thus, a 17/2" spin and parity are adopted for the state at 2993 keV.
Similarly, the level at 4675 keV is tentatively assigned 21/2%. From feeding pat-
terns, the sequence of levels at 3529 and 4293 keV could have J™=17/2% and 19/27,
respectively. This assignment also appears to be supported by the shell model cal-
culations discussed below, but alternate respective assignments of 15/2% and 17/27"
cannot be rigorously ruled out.

The level at 960 keV implied by the 752-keV + ray is assigned a spin of 7/2 on
the basis of its dipole character determined from angular correlations. A negative
parity is assigned, primarily from systematics.

In addition to the levels described above, Fig. 3.6 shows two additional states
at 391 and 629 keV that were previously identified from § decay [78]. Transitions
associated with the de-excitation of these levels were not observed in this experiment,
most likely due to the low multiplicity of these events. The ~ rays, level energies,
and proposed spins and parities that were established from this measurement are

summarized in Table 3.5.
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Table 3.5: Levels identified from the present experiment for ' Fe. Relative intensi-
ties have not been corrected for the presence of an isomer.

Eiever (keV) J7 E, (keV) I, (rel.)
207.0 5/2- 207.0(1) 100.0
861.8 9/2% 654.8(1) 100.0
959.5 7/2" 752.5(2) 72.9(105)
1476.6 (5/2-,9/27) 517.1(2) 17.5(29)
1650.3 13/2+ 788.5(1) 85.6(107)
2992.6 17/2+ 1342.3(3) 18.0(24)
3528.9 (17/2+,15/2+) 1878.6(4) 9.2(13)

536.1(3) 2.0(3)
3541.4 1891.1(6) 2.1(5)
3714.4 2064.1(6) 2.9(6)
41445 (19/2*) 1151.9(2) 0.5(1)
4292.5 (19/2+,17/2+) 763.6(2) 1.1(2)

(1300) <05
4675.3 (21/2+) 1682.7(3) 2.7(6)

3.5 %Fe

Some information regarding the 8 decay of 2Mn was previously reported by
Runte et al. [87], which contributed to the establishment of the 2 and 4] states
in %2Fe. The level scheme was extended to medium spin from two deep-inelastic
experiments [65, 80], but these reports contain some ambiguity in their spin assign-
ments above J=4. In this work, the proposed assignments of Ref. [65] are supported
with angular correlation data, as presented in the level scheme of Figure 3.9a. In

particular, the assignment of dipole character is adopted for the 839-keV v ray, and
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Figure 3.9: Partial level scheme for ?Fe derived from (a) PPP and (b) DDD coin-
cidence cubes.

quadrupole character is supported for the 833-, 1211-, 589- and 864-keV transitions
(for a complete summary of the correlation coefficients, relative intensities, and -ray
energies, see to Table 3.8).

The spectrum of Figure 3.10a, produced from a coincidence gate on the 877-
keV ~ ray in the prompt data, yields a relatively clean spectrum with intense peaks
associated with ~-ray transitions in 2Fe. A double-coincidence gate on 877- and
1299-keV transitions (Fig. 3.10b) gives rise to an even cleaner spectrum, and close
inspection reveals a weak peak at 1297 keV. This ~ ray, although weak, probably
eluded previous investigators since it has an energy similar to the established 4™
— 27 transition. From its coincidence relationships this line is placed above the
proposed 7 level at 3604 keV, making it a strong candidate for the 9~ state.

A coincidence gate on the 877-keV transition in the delayed cube, presented
in Figure 3.10c, yields several very intense lines associated with the fission product

128Te, which unfortunately has a +-ray transition with an energy 878 keV. In spite
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Figure 3.10: Representative spectra from coincidence gates on 2 — 0% and 47 —
2% transitions in ®?Fe in prompt and delayed cubes.
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of this, many of the + rays reported by Runte et al. [87], from the § decay of
62Mn, can be identified in this spectrum. However, the contamination vanishes with
the implementation of a double-coincidence gate on 877- and 1299-keV + rays, as
depicted in Figure 3.10d, and the resulting spectrum turns out to reveal a number
of intriguing features.

The presence of some peaks that were observed in the prompt cube, identified
in Refs. [65] and [80], but not in the previous S-decay measurement by Runte et
al. [87], gave rise to the suspicion of leak-through from the prompt ~-ray flash that
occurs during the beam burst. Recall that the presence of two weak lines at 1402 and
1406 keV in the delayed spectrum for ®*Fe sparked a similar concern. To test this
hypothesis, a new coincidence cube was constructed in which the requirement for
delayed events was re-defined so as to restrict the possibility for such contamination;
namely, the minimum time with respect to the prompt beam burst was increased in
the new cube. In the case of leak-through, any prompt lines leaking into the delayed
data would be expected to disappear or substantially reduce in intensity compared
to the v rays that are known to arise from [ decay. The subsequent analysis did
not indicate the presence of leak-through, as each peak in the spectrum maintained
a constant intensity relative to the 1457-keV peak which is known to be populated
in 8 decay. A second explanation for the presence of these peaks could be the
existence of an isomeric state in ®2Fe. If the isomer had a long enough lifetime then
it would elude identification via the method described above. In this case, a series of
gates in the PPD or PDD cubes would likely reveal correlated prompt and delayed
transitions, which was not the case here (although this method is dependent on the
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lifetime of the isomer). Last, the lines could simply arise from weak population via
[ decay that was below the detection limit of the experiment reported by Runte
et al. [87]. Such a case would probably necessitate the existence of a S-decaying
isomer in %?Mn in order to explain the direct population of high-spin states and,
indeed, Gaudefroy et al. [88] recently proposed the presence of a S-decaying isomer
in that nucleus.

Another unexpected result arising from the spectrum of Fig. 3.10d is the pres-
ence of a small 942-keV peak. Prior to this work the 942-keV ~ ray was proposed to
deexcite a level at 1820 keV which is, itself, fed directly by an 1814-keV transition
from the level at 3634 keV [87]. In this configuration, the 942-keV transition should
not present a coincidence relationship with the 1299-keV ~ ray since it runs parallel
to this line in the level scheme. One possible explanation for this ambiguity could
be the presence of a doublet at 942 keV. However, the centroid energies determined
by fitting the peaks in different coincidence gates indicated identical energies within
experimental uncertainty, which is an unlikely but not impossible scenario. It is
important to note, as well, that in both experiments, the relative intensity of 942-
and 1814-keV ~ rays is identical, making the ordering of these two coincident tran-
sitions somewhat ambiguous. If, instead, the 942-keV transition decays from the
3634-keV state, a new level might be proposed at 2692 keV, which decays to the
27" state via the 1814-keV transition. This interpretation is supported with another
new y-ray transition present in Fig. 3.10d, at 515 keV, since this coincidence would,
similarly, imply a new level at 2692 keV. Further support is provided in Figure 3.11
with a double-coincidence gate on 877- and 942-keV transitions, which reveals a
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Figure 3.11: Double-coincidence gate on 877- and 942-keV ~ rays in the DDD
cube.

coincidence with 675 and 1140 keV, so that a cascade through the known level at
2017 keV is established.

By focusing attention once again on the spectrum of Figure 3.10d, it is clear
that a pronounced 674-keV transition is present here. Note the 1-keV difference
in the centroid energy of this v ray from that which is present in the 877-942-keV
double gate (Fig. 3.11). This is rather significant, and an additional coincidence
with the v ray at 1202 keV implies a new level at 4052 keV. A weak transition at
1539 keV may also be present in Fig. 3.10d and two more 7y rays are present at 1184
and 1487 keV.

To complement this work, the results are compared to the unpublished results
of an experiment carried out at ISOLDE/CERN. That experiment previously gave
rise to Ref. [50], in which the data for 3 decay of +5¢Mn were reported. For details

on how the analysis of the data reported here was carried out, see Appendix B.
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Figure 3.12: Decay spectrum for ?Mn to levels in %2Fe.

The spectrum of Figure 3.12 presents a rather thorough picture of the y-ray
transitions populated in the 8 decay of ®>Mn to levels in %2Fe. Most of the levels
reported above can be identified in this spectrum in addition to a few that could not
due to low multiplicity cascades. For example, the two new levels at 2850 and 4052
keV, implied by 674- and 1202-keV coincident « rays, are supported by the presence
of a direct transition to the 2] state via a 3172-keV transition. A similar line extends
from the 3634-keV level directly to the 2] state via a 2756-keV 7 ray. The 2017-keV
~ ray reported by Runte et al. [87] but missing from the triple coincidence data is
also seen in this spectrum. Among the peaks that could not be identified in Fig.
3.12 are 515, 301, 1211, and 241 keV, each of which gave a relative intensity < 1 in
the analysis of triple-coincidence data. Additionally, the doublet at ~675 keV could
not be distinguished in this spectrum.

In their report, Runte et al. [87] proposed that %2Mn has a ground-state spin

and parity J™ = 3%, since they observed allowed 3 transitions to 2+ and 4" states.
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However, this interpretation has come into question in a more recent report [88] in
which the 17 state of 2 Mn was selectively populated through 3 decay of 2Cr. Those
authors also report a 7y ray at 815 keV, which they attribute to the g decay of this
apparently isomeric state (a - ray which was not seen in this work). This presents
somewhat of a conundrum since, even with a small energy difference, it is difficult
to reconcile a S-decaying isomer in which the isomeric path exhibits a AJ = 2 (ie: a
100-keV, E2 transition has a ~5 us mean lifetime based on the Weisskopf estimate,
contrasted to tens of ms for the S-decay lifetime). A similar scenario was recently
presented for the decay of ®®Mn, where Liddick et al. [79] populated **Mn?*(17) via
B decay of °Cr?(0%). In that work, the authors argued that the ground state must
possess J™ = 17 and the isomer therefore J™ = 47, since the spin change had been
measured previously. It is therefore not unreasonable to assume a similar situation
in %2Mn, where the 3-decaying isomer is 47 and the ground state is 1, or vice versa.
Since neither of the experiments described here nor the report of Runte et al. [87]
gave any indication of an 815-keV transition, the most likely scenario appears to
favor a 47 isomer and 11 ground state. Then, the heavy population of the state
at 3634 keV from S decay might imply J™ = 47, as opposed to the 2% assignment
of Runte et al. which was based on the observed decay to the 4™ state and to
the 1820-keV state that was eliminated above. This raises questions, then, about
direct feeding of the 2] state, purported by Runte et al. to be 42%, which is not
consistent with the proposed 4 assignment of ?Mn™. However, a close inspection
of the data from this work paints a very different picture, in which ~10% direct

feeding is observed (and this is close to the margin of error for this value).
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More concerns are raised with the presence of weak population of medium-spin
states in both datasets reported here. The presence of several of these transitions in
the ISOLDE data indicate a population via 8 decay and not through the decay of a
high-spin isomer in %2Fe. Based on intensity balances, it appears that direct feeding
populates medium-spin levels at 3629, 3311, and possibly 3009 keV. Unfortunately,
the spins of the two former states have not been unambiguously determined. The
3311-keV state is tentatively assigned J = 7, and the level at 3009 keV, with J = 6,
may or may not experience direct feeding. Because of these uncertainties, little can

be concluded in regard to how these levels are populated in the 3 decay of %2Mn.

Table 3.6: Levels observed in %2Fe from the PPP data.

Eiever (keV) JT E, (keV) I, ao ay
877 2t 877.3(1) 0.12(1) 0.03(2)
2177 4+ 1299.2(1) 100
3010 6 833.0(2) 13(2) 0.18(10) 0.00(15)
3016 5(-) 839.2(2) 58(3) -0.07(2) 0.05(3)
3311 (7) 294.2(6) 1

301.2(2) 3(1)
3388 6+ 1211.3(1) 27(2) 0.12(4) 0.01(6)
3605 7(=) 295.0(6) !

589.2(1) 22(2) 0.14(4) 0.05(6)
3629 241.1(2) 6(1)
4252 8+ 863.9(1) 16(2) 0.14(5) 0.07(8)
5320 (10%) 1067.8(3) 6(2)

! The relative intensity of the 294/295 keV doublet is 19(1). There is no reliable
way to extract the individual intensities with the current data set.
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Table 3.7: Levels observed in %2Fe from the DDD data and from 3 decay of 2Mn.

Eiwa (keV) J°  E, (keV) L, (DL B) ay a4
877 2t 877.3(2) - 100(2)
2016 (2%)  1139.8(4) 37(4)* 11(1)
2016.1(3) - 3(1)

2176 4T 1299.2(2) 40 38(2)  0.06(7)  0.10(10)
2691 515.2(2) 1(1) -
674.9(2) 3(1)  15(1)

1814.5(2)  22(5)  29(2) -0.38(9) -0.14(12)
2850 673.7(3) 2(1) -
3009 6t  831.6(3) 1(1) 3(1)
3015 5(7)  838.0(9) 1(1) 2(1)
3309 (7t)  295.2(2) 1(1) 2(1)
301.5(2) <1 -
3387 6t 1211.3(4) <1 -

3634 942.0(2)  19(3)  29(2)  0.23(7)  0.00(11)
1457.5(2)  12(4)  17(1)

1617.0(2)  3(1)  6(1)

2755.8(6) - 10(1)
3628 241.0(2) <1
3713 1538.8(15) <1 3(1)
4052 1201.5(4)  2(1)  3(1)
3172.3(9) - 2(1)

! Some artificial enhancement of this intensity is expected from overlap with 12Te
7 rays.
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3.6 %Fe

The structure of %3Fe has been rather elusive as far as spectroscopic studies
go. Several authors have reported a 356-keV 7 ray populated in the 3 decay of ®*Mn
[81, 89-92] and Gaudefroy [91] has proposed a decay scheme containing proposed
levels in %3Fe, but little is known beyond this. In the recent work of Lunardi et al.
[81], two additional y rays are reported in addition to this one at 819 and 1404 keV.
In an attempt to establish coincidence relationships between these transitions, and
to possibly identify new v rays, various combinations of double-coincidence gates
were attempted in each of the four cubes, as depicted in Figure 3.13. No coincidence

relationship could be established for these transitions in any of the cubes.

3.7 %Fe

Excited states in 5Fe, prior to this work, had been studied only through the
B decay of %*Mn and, as such, only the 746-keV, 2+ — 07T transition had been
published, first by Hannawald et al. [50], and later confirmed by Sorlin et al. [89]
and Matea [90]. Several transitions associated with this 5 decay have been reported
in the PhD. thesis of M. Hannawald [93], in which a tentative decay scheme was
proposed, and some of those lines were identified, as well, in the PhD. thesis of L.
Gaudefroy [91]. Since this work was carried out [94], there has been further work
on the Fe isotopes in the form of a thin-target deep-inelastic reaction experiment

reported by Lunardi et al. [81], which has been alluded to in previous sections. That
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Figure 3.14: Partial level scheme for *Fe derived from the PPP coincidence cube.
work confirms most of the new y-ray transitions identified here which are presented
in Figure 3.14 and will be described below.

As has been reiterated several times in previous sections, the difference in levels
populated directly during the deep-inelastic process compared with those populated
in 3 decay, cast doubt on whether any transitions beyond the established 746-keV,
27 — 0" line would be easily identified in the prompt data. Thus, the starting point
of the search for new prompt v rays in %*Fe was a single coincidence gate on the
746-keV ~ ray, presented in Figure 3.15a. In this spectrum, four distinct lines rise
above a rather complex background typical of such a simple coincidence requirement.
Upon further investigation, two of these y rays could be easily associated with known
transitions in °Ga, where a 746-keV y ray is known to be present, in coincidence with
914- and 635-keV transitions. The two remaining peaks could not be placed in any

other known ~ cascade and were, therefore, assumed to be candidates for higher-
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Figure 3.15: Representative spectra from coincidence gates on 2 — 0% and 4T —
2% transitions in **Fe in prompt cube. The insets illustrate a systematic shift in the
centroid position of the 1078-keV peak.

lying transitions in %*Fe. In fact, the peak at 1017 keV could be retrospectively
identified in a spectrum measured at ISOLDE following the 3 decay of %Mn [95].
Furthermore, a double-coincidence gate placed on the 746- and 1017-keV transitions
in the data from a previous experiment with *Ca and 2°®Pb produced weak, but
discernable, lines corresponding to yrast transitions in the Os isotopes, as shown
in Figure 3.16. This is a clear indication that the v rays belong to Fe because, for
this particular colliding system, Fe and Os are produced simultaneously as reaction
partners. Therefore, transitions in the Fe and Os isotopes will appear in coincidence

with one another. The assignment to %*Fe then follows because the 746-keV, 2+
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— 0T transition has been measured previously. A similar cross-correlation analysis
could not be performed with the current data because the target-like nuclei are
expected to mostly undergo prompt fission.

The spectrum from a double-coincidence gate on the 746- and 1017-keV tran-
sitions is presented in Figure 3.15b. New lines are observed at 781, 1005, and 1078
keV. These are found to be in mutual coincidence with each other and with the 746-
and 1017-keV v rays. Additional lines are observed at 582 and 687 keV that are
in mutual coincidence with the 746-, 1017- and 1078-keV lines, but not with each
other. A noticeable energy broadening of the 1078-keV + line gave indication for a
possible doublet consisting of similar intensity components with an energy difference
in the range of 1 keV. Indeed, the double-coincidence gates placed on the 746-keV
line and correspondingly lower- and higher-energy parts of the 1078-keV peak re-

sulted in clearly different spectra. Careful examination confirmed the presence of

gate: 746-1017 keV; PPP a  a 80
401 (#Ca+205pb) b b R b 1805
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Figure 3.16: Coincidence gate on 746- and 1017-keV ~ rays in the prompt data
from the reaction “*Ca + 208Pb. The presence of 7 rays from '#+86Qs confirms that
the 1017-keV v ray belongs to an isotope of Fe, since Os is the complement of Fe in
this reaction.
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two closely spaced transitions with the lower-energy component being in coincidence
with the 582-keV line and the higher-energy component forming an yrast cascade
with the upper 781- and 1005-keV transitions. This is illustrated in the inset of Fig-
ure 3.15b, where selected portions of the 582-746 (upper panel) and 781-746 (lower
panel) double-gated spectra are given. Besides the 1005-keV line appearing only in
the lower spectrum, one observes a shift in the position of the 1078-keV peak. The
centroids obtained from these spectra determined the 1077.8- and 1078.9-keV ener-
gies for the corresponding components of the doublet. The proposed level scheme
obtained from this data is provided in Figure 3.14.

An angular correlation analysis performed on these data indicated quadrupole
character for the 1017-keV ~ ray, confirming it to be the 47 — 2% transition, and it
is noted that the two members of the 1077.8/1078.9 doublet exhibit a stark contrast
in their respective angular correlations, depending on which 7 ray is measured in
conjunction with the 746- or 1017-keV transition. This deviation is an indication
that the two components of the doublet represent transitions of different multipole
character. In particular, the lower-energy component is determined from correla-
tion coefficients as = -0.13(6), ay = 0.22(8), to possess dipole character, and the
higher-energy component, with coefficients as = 0.31(5), a4 = -0.11(7), to possess
quadrupole character. Given the quadrupole nature of the 746- and 1017-keV tran-
sitions, this supports J = 5 and J = 6 assignments for the 1078- and 1079-keV
components, respectively. Although parity assignments cannot be unambiguously
made from this type of angular correlation analysis, a positive parity is assigned
to the J = 6 level at 2842 keV since it seems to be naturally part of the main
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Table 3.8: Levels observed in ®“Fe from the PPP data.

Eiever (keV) J7 E, (keV) L, (rel.) ap ay
746 2+ 746.4(1) 0.14(3) 0.01(4)
1763 4+ 1016.7 (1) 100 0.14(3) -0.09(3)
2841 5(-) 1077.8(2) 12(3)* -0.13(6) 0.22(8)
2842 6+ 1078.9(3) 50(7)* 0.31(5) -0.11(7)
3423 (77) 582.0(2) 12(1)

3528 >6 686.9(2) 20(2)
3623 (8%) 781.0(1) 30(2) 0.11(3) -0.06(5)

4628 (10+)  1005.4(5) 6(1)

! The values 12(3) and 50(7) are estimated from coincidence relationships and feed-
ing and decay intensity patterns. The value 58(3) was measured from the spectra.

yrast cascade. The 781-keV peak is too weak in intensity to obtain a reliable fit in
any single coincidence gate, but the summation of 1017- and 1078.9-keV gates does
produce a curve which supports a quadrupole character and, therefore, the level at
3623 keV is tentatively assigned J™ = 8", with the parity assignment following the
same argument that was used for the 6% level. The level at 4628 keV is tentatively
assigned a spin and parity of 10", since it appears to represent the extension of the
yrast cascade toward higher angular momentum. All relevant as and a4 coefficients
are given in Table 3.8.

The new level at 3529 keV appears to feed the 61 yrast level, and not the
lower-energy 4% state, and, therefore, is assigned a spin of 6 or greater. As the new
level at 3423 keV depopulates only to the spin 5 level at 2841 keV, and not to the
67 level at 2842 keV, a negative parity assignment for the 2841-keV level is favored

and a tentative spin and parity of 7~ is favored for the 3423-keV state.
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A coincidence gate on the 746-keV ~ ray in the delayed spectrum did not give
any indication for new transitions populated in the 8 decay of **Mn. If the data were
present, one would expect the most intense transitions to occur at the same energy
as those reported in the theses of Hannawald [93] and Gaudefroy [91], but none of
these v rays could be unambiguously identified, nor did coincidence gates with these
transitions reveal any apparent new cascades. The absence of any strong feeding to
the 4 state, as had been observed in the lighter isotopes, gave an a priori indication
that a double-coincidence gate on 746- and 1017-keV ~ rays would be fruitless and,

indeed, this spectrum did not yield anything beyond a weak background.

3.8 Relative yields

The effect of different reaction systems on the relative yields of each Fe isotope
is summarized in Figure 3.17. Here, the relative yield is evaluated in a somewhat
rudimentary manner by (1) fitting the peak areas of all transitions that directly feed
the 2% state in a coincidence gate on the 2+ — 0% ~-ray transition and (2) fitting the
peak areas of all transitions that directly feed the 47 state in a double-coincidence
gate on the 47 — 27 and 27 — 07 ~ rays in the prompt cube. The total efficiency-
corrected peak areas are normalized to °Fe and the results from each method are

plotted in Fig. 3.17.
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Figure 3.17: Relative yields for %4Ni, Ca, and 82Se beams on 2**U in deep-inelastic
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gate on 47 — 2% and 27 — 0T transitions.
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Chapter 4

Discussion

4.1 Shell model calculations

Since the main issue to be addressed in this work relates to the role of the gg/o
neutron orbital in the structure of Fe isotopes near N = 40, it is important that
these results be illuminated by shell model calculations which include this orbital in
the model spaces under consideration. One preliminary interaction was alluded to
in section 1.2.2, in which the matrix elements from the KB3G effective interaction
were complemented with gg/; matrix elements in calculations for Cr and Fe isotopes
[49, 51, 54]. The results of those studies appeared to reproduce the 2% energy trends
of these nuclei fairly well and, furthermore, seemed to indicate a need for g9/, and
possibly ds/; orbitals in the model space. More recently, Matea et al. [85] and
Vermeulen et al. [96] used the same interaction (per reference to [49]) to compute
the energy, quadrupole moment, and g-factor of the 9/2% isomer in ®'Fe. Likewise,

this interaction was used to compute the levels of several Fe isotopes in the work of
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Lunardi et al. [81]. However, the details of this effective interaction have not been
published and, consequently, it was not possible to evaluate the results from this
interaction in the present study. Furthermore, the authors of Refs. [81] and [85]
cite different results for the 9/2% energy in %' Fe. Presumably, this is an artifact of
different truncation methods used in the calculations, a point which will be discussed
later.

There are also efforts to expand the GXPF1A interaction to allow for explicit
excitations into the gq/o neutron orbital, but at present only preliminary results are
available [97].

In the current work, shell model calculations are carried out with an effective
interaction derived from the N3LO NN potential using the G-matrix methodology
detailed in Ref. [9]. A *Ca core is assumed with a model space including the
7(fz/2: D3/2, P12, f52) and v(psja, P12, f5/2, goy2) orbitals. The single-particle ener-
gies adopted in this work were obtained from the spectra for *°Sc (for protons) and
49Ca (for neutrons) and are listed in Table 4.1 along with those typically used for
KB3G and GXPF1 interactions. No empirical modifications to the effective in-
teraction were made, so the results presented here are based on a pure G-matriz
calculation. All shell model calculations reported here were carried out with the
Oslo shell model code [98].

A basic comparison of the results from the interaction mentioned in the pre-
vious paragraph with several interactions that have seen broad use in the literature
is illustrated in Figure 4.1. The matrix elements for KB3G, GXPF1, and GXPF1A

interactions were obtained from the Oxbash [99] package and converted to the Oslo
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Figure 4.1: Results of shell model calculations for the 2 states of even-A Fe iso-
topes from A = 54 to 66.

format so that calculations could be carried out with the Oslo code. To allow for a
full diagonalization of all the even-A Fe isotopes from A = 54 to 66, an “effective”
8Ca core was used for KB3G, GXPF1, and GXPF1A calculations by disallowing
excitations from the v f7/, orbital. As a result, the calculations may differ somewhat
from those reported in the literature. For example, calculations for 56:5860Cr with
GXPF1A yielded 27" energies 1010, 818, and 883 keV, whereas in Ref. [100] these
are presented as 1071, 906, and 958 keV, respectively, a difference of less than 100
keV in each case.

Some interesting features are revealed in Fig. 4.1. For instance, all of the
GXPF1 calculations appear to overpredict the 2% energies, whereas the GXPF1A
results are, in comparison, quite good. This is interpreted as a direct consequence of

the fitting method used in the derivation of GXPF'1, a point noted in section 1.1.3
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Table 4.1: Single-particle energies adopted for several shell model effective interac-
tions. Energies are in MeV.

Orbital pf(g) KB3G GXPF1(A)

TD1/2 4.493 4.000 4.487
7 f5/2 4.072 6.500 7.241
TP3/2 3.087 2.000 2.945
T f1/2 0.000 0.000 0.000
Vg9 /2 4.072

vp1/2 2.023 4.000 4.487
v f5/2 3.585 6.500 7.241
UP3/2 0.000 2.000 2.945
vfr/2 0.000 0.000

and detailed in Ref. [16]. The KB3G interaction gives very poor results in Fig. 4.1;
this fact is intriguing since Caurier et al. [54] presented similar calculations which
indicated quite good agreement with experiment. For example, those calculations
were able to reproduce a slight downward trend in 2% energy from %2Fess to 54Fess,
whereas in Fig. 4.1, only the pf and pf(g) interactions are able to reproduce this
characteristic. These latter two exhibit the most success in reproducing the exper-
imental 2% energy trends. Note that, in Fig. 4.1, pf and pf(g) are identical except
that excitations into the vgg/; orbital are blocked in pf. The parenthetical g in the
latter indicates that a truncated gy, orbital is available; namely, a maximum of 2
neutron excitations are allowed into this orbital. This truncation was required in
order to keep the calculations tractable throughout the range A = 54 - 66 with the

available resources. In the larger model space, the artificial rise in 2% energy is gone

110



and, in fact, the shell model result for N = 40 agrees quite well with the empirical
result. However, the value for N = 38 is now considerably lower than experiment.
It was remarked earlier that shell model comparisons with 2 energy trends,
while important, do not necessarily provide a rigorous means of determining nuclear
structure characteristics. To this end, it is useful to compare several excited levels to
shell model calculations and, only then, might the possibility of spurious agreement
be ruled out or at least perceived as negligible. Hence, some “beyond the 2* energy”

comparisons are summarized below.

4.1.1 Even-A Fe isotopes

Since the results for 27 energy calculations appeared in good agreement with
experiment, it was of interest to expand the shell model comparisons up to higher
spin. In Figure 4.2, the first few yrast states of 6:6264Fe are compared with pf and
pf(g) shell model calculations. This figure also provides the predicted values for ®Fe
along with the 2" energy measured by Hannawald et al. [50] as well as tentative 41
and 67 states based on Refs. [101, 102]. The average occupation of the gy/, neutron
orbital produced from the pf(g) calculations is indicated in the figure as well. This
gives some indication that the model space used in these calculations is likely too
small, since the gg/o occupation number quickly reaches the maximum value allowed
in the truncated model space. Whereas the 07, 2+, 4%, and 6T states in **Fe show a
negligible contribution from this orbital, these states have a moderate contribution

in %2Fe and the maximum allowed contribution in %*Fe.
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Figure 4.2: Shell model calculations for even-A Fe isotopes. The gg/2 neutron oc-
cupation number is denoted in parentheses for each level from the pf(g) calculation,
where a maximum occupancy of two neutrons was allowed. Tentative excited states
from Refs. [101, 102] are included in %°Fe.

In general, these calculations demonstrate quite convincingly the significance
of the go/» neutron orbital for the yrast structure of Fe isotopes beyond ®Fe. In
that isotope, the larger configuration space gave nearly identical results to those of
the smaller but, for instance, in the 47 and 67 states of 2Fe, a noticeable effect on
the excitation energy begins to emerge. In %‘Fe, the difference is even more pro-
nounced, and extends to the 2% energy, which deviates by nearly 300 keV below
the experimental value. Thus, it might be speculated that the calculation predicts
too significant a contribution from the gq/; orbital in this state. In contrast, the 2%
energy for %°Fe compares well with experiment, and this appears to extend to 4t
and 67 states when the values of Refs. [81, 102] are adopted. Finally, it should be
emphasized that the 67 states are predicted too high for nearly all of the nuclei dis-
played in Fig. 4.2. The larger configuration space does provide some improvement,

but the results are still somewhat unsatisfactory.
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The negative-parity states of the even-A Fe isotopes can be characterized in
terms of a neutron excitation into the gg/, orbital. Unfortunately, the parity of a
nuclear state is not determined in a trivial manner, and the experiments described
in this work could only lead to tentative assignments, based mostly on systematic
comparisons with lighter isotopes for which more information is available. With this
in mind, it is noted that any agreement between experiment and theory exhibited
in the yrast states of Fig. 4.2 quickly deteriorates for the negative-parity states. In
a comparison between proposed 5~ and 7~ states with their respective shell model
values, neither the excitation energy, relative spacing, nor the systematic trends of
the proposed 5~ and 7~ states could be reproduced in the calculation. In fact, the
computed values fluctuated considerably for A = 60, 62 and 64, varying from 5.7
MeV down to 1.9 MeV and back up to 6.2 MeV for the 5~ state. This compares to
the measured values 3.5, 3.0, and 2.8 MeV, respectively. The computed 51 states
appear to exhibit somewhat better agreement, but any conclusions drawn from this

would be presumptive as this positive relationship could very well be accidental.

4.1.2 0Odd-A Fe isotopes

Efforts to compute the 9/2% states of odd-A Fe isotopes suffered a similarly
disconcerting fate as those for the negative-parity states described above. In this
case, the 9/2% energy for *Fe is grossly overpredicted, but the value for *Fe is
nearly half the empirical value, and the shell model value is further reduced to 247

keV in 3Fe, for which an experimental value is as yet undetermined.
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Driven by recent attempts at computing the measured properties of the 9/2%
isomer in ®'Fe, a considerable effort was spent on shell model calculations for this
nucleus. In Ref. [85], a truncation scheme allowing “up to 6p—6h excitations for
both protons and neutrons” gave rise to an excitation energy of 720 keV for this
state. In Ref. [81], a different scheme yielded a value of 308 keV with the same
interaction. In the present work, implementation of the truncation scheme used in
Ref. [85] gave an energy of 632 keV for the 9/2% state, whereas the truncation
used in the preceding section gave a value of 427 keV. Clearly, this value is largely
dependent on the truncation scheme that is implemented and a full model space
calculation would be ideal. What is not mentioned in Ref. [85] are the details of the
other states in ' Fe, which also tend to vary from one truncation scheme to another.
In Ref. [81], some additional excited states are presented which compare fairly well
with the levels identified in that work.

In the present work, a much simpler truncation method is adopted for the
calculation of states in 5'Fe: protons are “frozen” in the f; /2 orbital, and neutrons
are allowed to distribute throughout the available model space, with a maximum
of two neutrons allowed in the gg/o orbital. Surprisingly, the resulting calculation
reproduced the negative-parity states and the relative energy spacing of the positive-
parity states fairly well, as depicted in Figure 4.3, although the 9/2% energy was
computed nearly 1.3 MeV too high. This state, along with the positive-parity band
built on top, could be lowered in energy by lowering the vgy/, single-particle energy,
a move that had a negligible effect on all other computed states in the nucleus.
Upon lowering this value by 1.7 MeV, the 9/2% state rested at a value 897 keV.
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Figure 4.3: Comparison of the level scheme adopted for 5'Fe and the results of
shell model and PTR model calculations. For simplicity, only calculated yrast and
near-yrast levels are given. The arrows linking the calculated levels are presented
to highlight the agreement between theory and experiment.

Using the wave functions from the calculation detailed above, the intrinsic
quadrupole moment could be derived. To this effect, the reduced transition rate
was computed with the 9/27% state designated as both the initial and final state.
The result, with eqn. (2.12), gave the result @y = +116 e fm?. Note that a factor 2*
was included since an oscillator length 1 fm is “hardwired” into the code, whereas
a length 2 fm is more realistic for a *®Ca core [103]; the exponent comes from the
units of B(E2). This result converts readily to a spectroscopic quadrupole moment
Q; = -42 e fm? if K = 1/2 is assumed, or Q, = 63 e fm? if K = 9/2 is assumed (per
eqn. (2.13)). Hence, the results from the shell model calculation appear to compare
well with the measured value Q, = |42] e fm?, if K = 1/2 and, consequently, prolate

deformation is assumed.
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4.1.3 Summary

Clearly, the biggest impedance to the success of these shell model calculations
is the necessity to use a truncated model space. The large dependence of 5'Fe
results on the method of truncation speaks volumes to this end. Thus, it would be
of interest to pursue a more rigorous theoretical investigation in order to see how
the results summarized here are affected. However, it is also of interest to pursue an
effective interaction that would be expected to agree with experimental data on a
larger scale. The interaction used here, based on the N3LO NN potential without
empirical modification of the matrix elements, appears to reproduce many of the
systematic features of the Fe isotopes within a reasonable error. This agreement
was manifested in the even-A yrast calculations of Fig. 4.2, but seemed to break

down for most calculations involving the gg/2 neutron orbital.

4.2 Rotation-aligned coupling and prolate shape
in % Fe

One of the striking features brought to light by the new data in %!'Fe is the
strong correlation between the first few yrast levels in ®'Fe and those of the 9/2%
band in ' Fe, as displayed in Figure 4.4. This phenomenon is not new, but rather a
continuation of a trend extending back to the *°"Fe and °®°?Fe pairs. As described
in section 1.1.4, this is the primary signature of a phenomenon called rotation-

aligned coupling, where the band associated with an excitation into a unique-parity
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Figure 4.4: The yrast levels in even-A Fe isotopes are compared with 9/2% band
excitations in the associated A—1 isotope. For the odd-A isotopes, energies are
given relative to the 9/27 state. Tentative levels in %*Fe are also depicted [81].

orbital decouples from the structure of the odd-A nucleus and resembles rather
closely that of the neighboring A — 1 system. In this case, the decoupled band is
formed by a neutron excitation into the gg/o orbital. Since this is an intruder orbital
possessing a parity opposite to that of the other pf-shell orbitals, the configurations
can remain relatively pure and this weak coupling scheme can be expected to remain
valid. Other textbook examples of rotation-aligned coupling have been presented,
for example, in the Ba/La nuclei [32, 33], in which case an odd proton excited
into the unique-parity hy1/, orbital creates a similar decoupling, resulting in a band
that closely parallels the yrast levels of the neighboring even Ba isotopes. One
of the important consequences of this phenomenon is the implication of a prolate
shape. Whereas the formalism associated with rotation-aligned coupling rests on the
assumption of a rotational structure for the A — 1 system, Stephens [32] points out
that this phenomenon is present only for moderately-deformed systems with £, ~

0.2; consequently, the rigid-rotational signature may be absent in the respective A—1
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nuclei. This is, in fact, the case for °Fe, where Deacon et al. [76] recently presented
new results and gave no indication of a rotational structure in their interpretation of
this nucleus. It is worth noting, as well, that new results from deep-inelastic work at
Legnaro [81] indicate that this trend may extend to ®3Fe, as the tentatively-assigned
17/2% — 13/2% and 13/27 — 9/27 transition energies appear to closely resemble
those of %2Fe yrast transitions (see Fig. 4.4).

In an attempt to reproduce the decoupled band structure in %' Fe, calculations
were carried out within the Particle-triaxial-rotor (PTR) model [104]. For these
calculations, standard parameters x and p of the modified oscillator potential were
used, as defined in Ref. [105]. Pairing was treated in the standard BCS approxima-
tion with parameters GNO = 22.0 and GN1 = 8.0 [106], and the core was taken to be
80Fe. The calculations for negative- and positive-parity levels had to be carried out
separately and, as such, the relative energy of the 9/2% isomer could not be assessed.
Nevertheless, the results of these separate calculations, displayed in Fig. 4.3, appear
to be in agreement with experiment. The negative-parity results were obtained un-
der an assumed ground-state deformation 3y = 0.22, and the positive-parity results
were obtained under an assumed deformation 8 = 0.25. Thus, the PTR model pre-
dicts a similar prolate shape for both the ground state and the 9/2% isomer. This
is consistent with several recent predictions of ground-state deformation in this nu-
cleus calculated from mean-field models including FRDM, ETFSI-1, and RMF, for
which the results were 0.20, 0.17, and 0.21 (°°Fe), respectively [107-109].

The PTR model was also applied in a calculation of spectroscopic quadrupole

and magnetic dipole moments for the 9/27 state as a function of deformation. The
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Figure 4.5: Results from the PTR calculations for the cases of prolate (K=1/2)
and oblate (K=9/2) deformation. Calculated data points are labeled with the [,
deformation used in the calculation. The experimental values are consistent with a
prolate deformation of By ~ 0.24.

results of this calculation, illustrated in Figure 4.5, favor a prolate deformation with
B2 ~ 0.24. Only in this region do the computed values simultaneously lie within the
experimental error bars established in Refs. [85] and [96]. For an assumed oblate
deformation no such region exists.

To assess the practical feasibility of the interpretation of a prolate band, it is
important to consider the lifetimes of excited states within this band with respect to
the stopping time of product nuclides in the target. Of primary concern is whether
stretched quadrupole transitions in a prolate band would proceed faster than the
time it takes for 5'Fe to stop in the target. If this were the case, the transitions
would be Doppler broadened sufficiently that it would be impossible to observe them

in a thick-target deep-inelastic reaction experiment. Given @y = +115 e fm?, one
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can estimate the mean lifetime of the 1342-keV, 17/2% — 13/2" transition to be
T & 0.4 ps according to eqns. (2.8) and (2.12). This compares to a stopping time of
61Fe in 238U on the order of 1 ps. As the two values are comparable in magnitude,
one would expect some degree of broadening in the 1342-keV peak. In fact, some
Doppler broadening is evident in the spectra of Figs. 3.7 and 3.8, so the contention
of a deformed band with stretched quadrupole transitions is not unreasonable. Not
only that, but the absence of any transitions beyond J™ = 21/2" might be attributed
to the fact that the transition rate increases further up the band rendering all higher
spin transitions impossible to observe due to severe Doppler broadening.

To summarize, the shell model, PTR model and the rotation-aligned coupling
scheme all appear to favor the interpretation of a prolate shape for the 9/27% isomer
in 6'Fe. Shell model calculations indicated a deformation 3, = 0.23 and the PTR
model B = 0.24. These values are in agreement with the value 5, = 0.24, derived
from the measured quadrupole moment of Ref. [96] if K = 1/2 is assumed. However,
all this is particularly intriguing in view of the recent interpretation of mild oblate
shapes characterizing °Cr [110] and ®Cr [100], derived from comparisons with total
routhian surface (TRS) calculations. Since %'Fe and *Cr are isotones separated by
only two protons, it is surprising that such a change in structure would occur for two
nuclei so close. To better address this issue, a further elucidation of excited states
in %Cr is necessary so that characteristics of the band built on top of the 9/2% state
can be determined. It may also prove important to identify additional levels on top
of the 9/2" isomer in %'Fe; for example, a weakly-populated 11/2% state between
9/2% and 13/2" states would provide further confirmation of the rotation-aligned
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coupling scheme. More sophisticated “beyond the mean field” calculations might

also shed some light on this issue.

4.3 Parallel trends and systematics

It is often useful to compare the systematic behavior of nuclei spanning across
shells or entire regions of the nuclear chart. Such a global approach can often reveal
subtle features and structural similarities in nuclei. With this in mind, the 2%
energies of several nuclei on both sides of the Z = 28 magic number are plotted in
Figure 4.6a. It is remarkable to note the similar trends of Cr/Kr, Fe/Se, and Zn/Ge
isotopic chains that are emphasized in this picture. An ad hoc explanation for this
might relate the interaction between the respective valence proton orbitals and the
go/2 neutron orbital. In this spirit, one would propose that the 2* energies in the
30Zn and 3,Ge nuclides reflect the filling of the p3/; proton orbital, and, therefore,
the trends of Fig. 4.6a reflect the interaction between p3/, protons and g2 neutrons.
Similarly, the presence of two holes in the f7/, and two particles in the f5/; proton
orbitals manifests itself in the 96Fe and 34,Se nuclei, respectively, while the o,Cr and
36Kr nuclides represent four holes in the f7/, and four particles in the f5/, orbitals.

The above interpretation may appear somewhat whimsical, but with the ap-
plication of new data obtained in this work, it is revealed that the 2, 4% 6T, 8*,
and 107 level sequence of ®*Fess appears to compare rather well to that of "?Sess,
with only the difference in 61 energies exceeding 200 keV. This energy difference

might be explained, at least qualitatively, as arising from the fact that the 6 state
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Figure 4.6: (a) The 27 energy trends for selected nuclides around ®Ni exhibit
intriguing parallels. This comparison is extended to higher spin in (b) Fe/Se and
(c) Zn/Ge isotopes.

122



in %4Fe is likely dominated by the maximally aligned two-proton hole configuration
from the f7/, orbital, whereas the analogous configuration with fs5/» protons in Se
can only reach 4%. Despite this single nonconcurrence, the rather extensive similar-
ity between the yrast states of these two nuclei can be viewed as an indication that
the underlying configuration and structural characteristics are comparable, at least
to first order. An extension to this idea is depicted in Figure 4.6b where a similar
agreement appears in ®2Fe/™Se, but a breakdown of this scheme is presented in the
higher-lying states of ®*Fe/%®Se. A comparison of the Zn and Ge isotopes in Fig.
4.6¢ gives a striking result for the 27, 4%, 6 and 8" levels at N = 40, which differ
by only 51, 58, 123, and 6 keV, respectively.

In an effort to extract some predictability out of the above trends, one can
estimate the anticipated energies for ®Fe beyond the 2% state. In fact, the recent
results of Refs. [101, 102] have indicated two new - rays in this nucleus at 834 and
957 keV which likely belong to the 67 — 47 and 47 — 2% transitions (actually, the
834-keV transition was previously reported in Ref. [50]). The corresponding energies
in ™Se imply a deviation of the order 50 keV if the 834-keV v ray depopulates the
4" state and the 957-keV v ray the 6*. It should also be noted that these energies

compare favorably with the shell model calculation depicted in Fig. 4.2.

4.4 On the issue of deformation

The 27 energy trends for Fe isotopes provided one of the primary motivations

for this work. In particular, the downward trend exhibited for *Fess and %6Fey,
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stimulated much discussion about a possible new region of deformation. As this
speculation has been almost exclusively based on 2% energy trends, the main fo-
cus of this project was to expand the known level schemes for Fe isotopes near N
= 40 with the idea that this data would be sufficient to firmly characterize the
structures of these isotopes. Unfortunately, the theoretical work presented here is
somewhat limited so that a thorough assessment of deformation in the Fe isotopes
cannot be presented with rigor. In principle, one can draw upon the success of shell
model calculations by applying the computed wave functions to the determination of
transition rates and, consequently, the deformation similar to the manner in which
the quadrupole moment was computed for the 9/2% state in 5'Fe. It would then
be important to compare these values with experimental measurements, which are
currently unavailable (although there are currently plans to carry out such mea-
surements [111]). This being said, the experimental data made available in this
work, along with an array of complementary work carried out prior to, in parallel
with, and subsequently to this work, should provide the data necessary for a proper
theoretical assessment in terms of the shell model. With a semi-empirical effective
interaction derived in the spirit of successful interactions like GXPF1, the issue of
monopole shift can be reliably addressed; namely, one can test the hypothesis that
a reduced occupation of the 7 f7/5 orbital results in a weakened tensor interaction
with the v f5/; which then lessens the N = 40 subshell gap. The ESPE for this
orbital can already be traced with the GXPF1 interaction, but it is important to
expand this to include also the vgg/o orbital so that the features of the V = 40 gap
can be characterized.
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Figure 4.7: The 4" to 2" energy ratios for Fe and Cr isotopes do not approach
the rigid rotational limit 3.33. Rather, these ratios appear to trend in the opposite
direction up to N = 38. Additional data points at N = 40 and 42 are proposed on
the basis of data from Refs. [101, 102].

One important feature that can be addressed directly with the data obtained
in this work is the progression of 4% to 2% energy ratios which can provide a signature
for the presence of deformed rotational nuclei, as discussed in section 1.1.4. With
the 4% state in *Fe now established at 1763 keV, this ratio turns out to be 2.36,
which is significantly lower than the value 3.33 expected for a rigid rotor. In fact, the
systematic trajectory exhibited by the Fe isotopes up to NV = 38 shows a downward
trend in this ratio away from the rigid rotational limit, as illustrated in Figure 4.7.
This appears to be in direct contrast with what might be expected if the neutron-rich
Fe isotopes were members of a new region of deformation as N approaches 40. An

initial report of new ~ rays in %-%Fe from the group at Legnaro [101] was recently
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confirmed in two-proton transfer experiments performed at the NSCL [102]. Based
on these data, tentative ratios for these isotopes are also included in this figure,

where the trend now appears to be rising.

4.5 Conclusion

The influence of the gg/2 neutron orbital on the structure of even-A Fe isotopes
has been uniquely traced by comparison of new data obtained in this work with shell
model calculations within both pf and truncated pfg configuration spaces. Although
the shell model interaction applied in this work should be viewed as somewhat
preliminary, the results paint a clear picture of the growing importance of the gg/;
orbital as neutron number 40 is approached. New levels identified on top of the
isomeric 9/27 state in %' Fe complement previous measurements of the magnetic
and quadrupole moments for this state. Comparisons within the rotation-aligned
coupling scheme, and calculations within the scope of the shell model and Particle
triaxial rotor model each support the assignment of prolate shape to this state and
the band built on top of it, with 8 =~ 0.24.

One should not lose sight of the importance of data obtained from this exper-
iment which have not received a great deal of discussion in the present chapter. For
instance, the confirmation of numerous spin assignments described in Chapter 3 has
provided a small, but crucial contribution to the accumulated data in this region of
the nuclear chart, which is absolutely necessary for testing new shell model interac-

tions. In addition, much new data obtained from the off-beam coincidence spectra
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has been used to confirm and to expand known [-decay level schemes. The best
example of this comes from the greatly expanded decay scheme deduced for 6?Mn
to levels in %2Fe. Most of the transitions identified in the triple coincidence data
were, subsequently, confirmed in the analysis of an older dataset from an experi-
ment carried out at ISOLDE. The few peaks that could not be confirmed in that
dataset were either doublet transitions or very weak even in the coincidence data.
The presence of many of the states implied by these data indicate the presence of a
B-decaying isomer in 52Mn.

One of the primary objectives of this work was to shed further light on the
contention of a growing nuclear deformation in the Fe isotopes near N = 40. It
was demonstrated that the 4T to 27 energy ratios do not conform to the rigid
rotational limit often seen in deformed nuclei, although this is certainly not the last
word on the matter. On the other hand, strong evidence has been provided for
the rotation-aligned coupling scheme and small deformation in the 9/2% bands of
odd-A Fe isotopes. Still, the question of how and why the structures of these nuclei
exhibit the observed behavior is not entirely resolved. To reach this goal, further

experimentation and more sophisticated calculations will be necessary.
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Appendix A

Isomeric decay of °Cd

In addition to the experiment described in the main part of this thesis, another
was carried out at the National Superconducting Cyclotron Laboratory (NSCL) at
Michigan State University in an effort to study isomeric decay of 12Cd. This nucleus,
like %*Fe, can be viewed as two proton holes and two neutron holes in a double-magic
system, except that in this case the double-magic system,'32Sn, has magic number 50
protons and magic number 82 neutrons. In contrast, the double-magic nucleus %8Ni
has semi-magic number 40 neutrons, which might be expected to be less robust once
the proton magic number is removed. Surprisingly, a somewhat similar weakening
of the N = 82 magic number was recently postulated for the Cd isotopes [112].

Whereas the primary goal of the experiment described in this section was to
study ?8Cd, this project is a part of a larger campaign to study the neutron-rich
Cd isotopes at the NSCL. This includes an experiment which employed a similar
setup and which gave rise to new data for 12>126:127Cd isomeric decay. Thus, the

experimental details have already been described in Ref. [113] and the discussion
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here will focus primarily on the analysis and results obtained specifically for '2Cd,

and the experiment will be described only very briefly.

A.1 Motivation

Interest in nuclei around closed shells generally focuses on whether or not the
magic numbers persist away from stability. In the study of Fe isotopes described in
the body of this thesis, the N = 40 subshell closure clearly dissolved when the magic
proton number was changed. Since '32Sn possesses two rigid magic numbers, such
a sudden weakening in the shell closures is not expected. However, the reported 2+
and 4% energies of ?%128Cdzg 4y indicated lower values at N = 80 [112], contrary
to the standard notion that these energies would rise as magic number N = 82 is
approached. Hence, this was interpreted as a possible sign that the N = 82 shell
closure had weakened.

These notions have been accompanied by specific failures in shell model cal-
culations for this region of nuclei. For example, Korgul et al. [114] noted that
shell model calculations for **Sn and '*Te using the Kuo-Herling interaction [115]
produced energies 40% higher than experimental observations; hence, the authors
emphasized the need to apply a reduction factor of 0.6 to the calculated level energies
in order to achieve better agreement with their data even after six 7" = 1 diagonal
matrix elements had already been reduced by the same factor. Similarly, Terasaki
et al. [116, 117] proposed a weakened neutron pairing interaction (again, reduced

by a factor of 0.6) as the source of anomalous B(E2) and E(2") trends in 327136 Te.
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Below the Z = 50 gap, Dillmann et al. [118] attribute the large discrepancy between
the experimentally determined 1% level and the shell model calculations for *°In to
a weakened proton-neutron interaction.

The failures of shell model calculations could be a sign of unusual structural
behavior, complementary to the puzzling 2% and 4™ energy trends in the Cd isotopes,
or it could simply reflect a deficiency in available shell model effective interactions
in this region. In any case, the study of levels in ?22Cd is important to both con-
firm the previous measurement of the 2 energy and to provide additional levels for
comparison with theoretical predictions. This nucleus is particularly important to
the latter since it represents only four holes in double-magic '32Sn, so dimension-
ality problems are less likely to affect the results (ie: there would be no need for
truncations). However, if the N = 82 shell closure is found to be weakened, then

the validity of 32Sn as a shell model core could come into question.

A.2 Experimental setup

Neutron-rich Cd isotopes were produced in the fragmentation of a 120 MeV /u
136Xe beam at the NSCL. The primary beam was made incident on a 188 mg/cm?
Be target at the object position of the A1900 fragment separator [119], with primary
focus on 12Cd. A plastic scintillator was located at the intermediate image position
of the A1900 separator and was used to correct the fragment time-of-flight.

The “cocktail” beam that reached the final counting position included both

fully stripped fragments and fragments with one electron. Therefore, the typical
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energy-loss versus time-of-flight spectrum used for particle identification will have
charge ambiguities; specifically, nuclei with one electron and mass A — 3 have ap-
proximately the same time-of-flight and energy loss values as their fully stripped
counterparts with mass A. These species are separated by total kinetic energy as
demonstrated in Ref. [120].

The final counting position was composed of a stack of Si detectors: three
Si PIN detectors of thickness 991, 997, and 309 pm, a 979-um thick double-sided
(40 x 40 strips) Si detector (DSSD), and six single-sided (16 strips) Si detectors of
1 mm nominal thickness [121]. v rays emitted by fragments reaching the Si stack
were measured with 16 detectors from the MSU Segmented Germanium Array [122]
arranged in two concentric rings around the vacuum beam line surrounding the stack.
The ~-ray peak detection efficiency was ~7% at 1 MeV, and the energy resolution

for each of the Ge detectors was ~ 3.5 keV for the 1.3 MeV y-ray transition in ¢°Co.

A.3 Data analysis

Data were sorted and analyzed in an event-by-event basis within the program
root [68]. For the analysis of isomeric transitions, an event was required to produce
a signal in the PIN detector directly in front of the DSSD and in both the front
and back of the DSSD. This type of event was labeled an implant, and any 7 rays
detected within 15 us of an implant were presumed to arise from isomeric decay.

Particle identification (PID) was obtained with a plot of energy loss versus

time-of-flight, as depicted in the upper panel of Figure A.1. Here, the energy loss
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Figure A.1: (Upper panel) Particle identification plot with the 2Cd region de-
picted, and (lower panel) the projection of energy loss within the ?Cd region. The

dotted line in the latter represents the charge-state cutoff to separate 22Cd***+ and
125 Y47+

is the signal from the first PIN detector, and the time-of-flight is determined from
an RF pulse that starts and stops according to signals in the first PIN detector and
the scintillator, respectively (note that the RF pulse from the scintillator is delayed
so that it provides the stop signal). The PID plot thus produces discrete regions

which correspond to specific nuclides and their A — 3 charge-state contaminants.
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Each region could be identified on the basis of the vy rays correlated with the events
within that region, and charge-state separation was obtained by dividing the nuclide-
gated energy loss projection into two regions (lower panel of Fig. A.1). The 7-ray
background is further reduced by gating on the Cd region of a PINO1 versus PIN02

plot. The result is presented in Figure A.2.

A.4 Results

The five v rays observed in Figure A.2 are arranged into two proposed level
schemes depicted in Figure A.3. The two ~ rays at 645 and 783 keV were reported
previously by Kautszch et al. [112, 123] from the 3 decay of '?*Ag and proposed as
the 27 — 0" and 47 — 2" transitions, respectively, based on the relative intensities
of Ref. [124]. The remaining 7 rays identified in this work were not seen in

decay, and are arranged in Fig. A.3 according to comparisons with 26Cd, which is
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Figure A.2: The isomeric 7 ray spectrum for ?8Cd obtained from this work.
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also depicted in this figure along with partial level schemes for ?%12¢Cd. Whereas
isomeric decay in 2Cd exhibits two pathways to the 4 level, only one such pathway
appears to be present in 2Cd. With only five observed v rays, the decay path of
the isomer appears to be limited either to the negative-parity path (arrangement
A) that could include a low-energy 7~ — 5~ transition that does not appear in the
spectrum of Fig. A.2 or through a positive-parity path (arrangement B) including
8" and 6T levels. For arrangement A, the 434-keV + ray is placed as the 5= — 4%
transition in order to bring the 5 state close to that proposed in 2Cd. Likewise,
in arrangement B, the 540-keV ~ ray is assigned as the 67 — 4" transition to bring
the position of the 6 state close to the positions of the 61 states in the lighter Cd
isotopes. In both cases the 237-keV ~-ray transition has been placed in a position
depopulating a proposed 10" level, similar to the transitions in that energy range
in 122124126Cdq. The relative intensities for the four highest-energy transitions are
approximately equal to within one standard deviation. For the 237-keV transition
the relative intensity is somewhat lower than the other four transitions and the

possibility of other isomeric decays cannot be ruled out.

A.5 Discussion

The observation of 27 and 4* states in 2Cd confirm the values proposed in
Ref. [112]. A similar confirmation of these states in **Cd was given from isomeric
decay reported in Ref. [113]. Scherillo et al. [125] were not able to identify these

isomers from neutron-induced fission, but did report some shell model calculations
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Figure A.3: Two possible level schemes are proposed for 12Cd, based primarily on
systematic comparisons with 122124126(Cq.

for 126122Cd, which are compared to the experimental results in Figure A.4. The
authors of Ref. [125] noted the overestimated values for 2% and 4% states, but
remarked that the 4t — 2% separation was reproduced quite well. In Fig. A.4, a
similar trend can be seen for the relative spacing of higher-lying states in 2Cd. With
the new states proposed here, it is noted that the shell model results for ?*Cd appear
to compare fairly well to arrangement B proposed in this work, although those
authors did not report their results for the negative-parity states. Also included
with Fig. A.4 are more recent shell model results [126], which exhibit somewhat
better agreement with 126Cd, but do not fare well for '?8Cd.

In a similar experiment recently reported by Jungclaus et al. [127], ~-ray
transitions arising from isomeric decay of *°Cd have led to the identification of
several excited states in that nucleus. The adopted 2% energy of 1325 keV would

seem to imply a persistent shell closure at N = 82, and shell model calculations in
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Figure A.4: Shell model calculations for ?%2Cd. In the figure, SM-1 were ob-
tained from Ref. [125] and SM-2 from Ref. [126]. Arrangement B is included for
128Cd for convenience since negative-parity states were not reported in Ref. [125].

that report reproduce the results quite well (although those calculations have been
explicitly “tuned” for use around '32Sn).

In light of the results from Ref. [127], it is clear that the shell closure at N
= 82 has not weakened substantially in *°Cd. A similar conclusion appears to be
unfolding in terms of the B(E2) values, where a downward trend up to '?Cd has
been observed [128-130]. However, the intriguing downward turn in the 2 and 4%
energies of 22Cd with respect to 126Cd, which was confirmed here, remains to be
sufficiently explained (although one possible interpretation of weakened nn and pn

interactions was recently proposed in Ref. [131]).
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Appendix B

Analysis of 2Mn decay

In an experiment carried out prior to the work described here, the 8 decay of
neutron-rich isotopes of Mn was studied using the ISOLDE facility at CERN. In this
experiment, exotic nuclides were produced in reactions from a high-energy proton
beam impingent on a thick uranium carbide target. The nuclides of interest were
selectively ionized by applying a laser ionization scheme specifically tailored to Mn,
and the ionized species were accelerated down a mass separator. The experimental
setup included a moving tape collector, onto which the radioactive nuclides were
implanted, and four Ge detectors for the identification of S-delayed ~ rays. Further
details pertaining to the experimental setup can be found in Refs. [50, 93]. However,
it should be noted that, in spite of their being four detectors used for the experiment,
the analysis carried out here has been applied to the spectra from a single detector
only.

Whereas Refs. [50, 93] have described in detail the analysis in regards to

decay of 6466Mn, the same experimental run provided data for ®*Mn and %2Mn that
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were never reported in the literature. Since the data at mass 62 is complementary
to the coincidence data analyzed from the off-beam spectra for ®?Fe in the current
experiment, it was of interest to complete the analysis of the older experiment so
that the results could be compared with those of the present work.

The data obtained from the older experiment were available as raw spectrum
files distinguished by the mass setting and run number. Energy and efficiency cal-
ibrations were performed by comparing spectra obtained at mass setting A = 58
with data from Ref. [72]. In that work, a rather complete assessment of S-delayed
~ radiation from ®Mn was described, and suitable calibrations could be determined
by comparison to those data. In particular, the energy calibration involved a four-
point fit to ~y rays at 459, 811, 1323, and 1675 keV whereas the efficiency calibration
included a fit to ten y-ray peaks ranging in energy from 459 to 1790 keV. A com-
parison of energy centroids and efficiency-corrected relative intensities with known

data from the literature for both *®Fe and %?Fe data is given in Tables B.1 and B.2.
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Table B.1: y-ray energies and relative intensities determined for °®Fe from the
ISOLDE data compared with data available in the literature.

This work Ref. [72]

E, (keV) I, E, (keV) I,
459.2 2627(50) 459.2 2430(70)
524.0 454(30) 523.9 420(13)
632.9 38(17) 632.7 64(6)
810.8 10000(121) 810.8 10000(300)
864.0 1654(45) 863.9 1680(50)
925.7 156(23) 925.7 191(7)
1156.4 78(21) 1156.8 119(5)
1265.4 943(37) 1265.7 1030(30)
1323.1 6541(96) 1323.1 6730(200)
1674.7 1379(44) 1674.7 1320(40)
1767.8 377(28) 1767.7 360(15)
1789.5 290(25) 1789.6 325(10)
2421.1 107(20) 2422.5 127(3)
2637.7 215(21) 2638.2 151(4)
2818.0 59(14) 2818.5 96(3)

139



Table B.2: y-ray energies and relative intensities determined for %2Fe from the
ISOLDE data compared with data available in the literature.

This work Ref. [87]
E, (keV) I, E, (keV) L

295.2 261(96)

673.6 1406(117)

831.6 289(71)

838.0 146(71)

877.1 10000(314) 876.8 10000
941.9 2868(155) 942.1 2560
1139.2 1072(108)

1201.6 322(88)

1299.0 3702(181) 1299.0 2780
1457.3 1633(125) 1457.4 1560
1538.8 262(94)

1616.7 581(94)

1814.2 2562(158) 1815.0 2560
2016.1 217(71) 2016.0 1110
2755.8 689(98)

3172.3 104(51)
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Appendix C

Sample output from Oslo shell model

code

\* Shell model calculation of proton/neutron system —— title: 62Fe_Op

<The basic shell data:>

\* The proton number: 6

\* The neutron number: 8

\* Total angular momentum J is (even, odd): even

\* Twice total projection of angular momentum: 0

\* Total parity (4, —): +

\* The number of proton particle j—orbits: 4

<n 1 2xj min_part max_part energy:>
\* Orbit_Z: 0 3 5 0 2 4.072
\* Orbit_Z: 1 1 3 0 4 3.087
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\* Orbit_Z: 1 1 1 0 2 4.493

\* Orbit_Z: 0 3 7 0 6 0.000

\* The number of neutron particle j—orbits: 4

<n 1 2xj min_part max_part energy:>
\* Orbit_N: 0 4 9 0 2 4.072
\* Orbit_N: 0 3 5 0 6 3.585
\* Orbit_N: 1 1 3 4 4 0.000
\* Orbit_N: 1 1 1 0 2 2.023

<The data files>
\* Input proton—proton v_effective in J—scheme: v_pp-48Ca_pfg.dat
\* Input neutron—neutron v_effective in J—scheme: v_nn_48Ca_pfg.dat

\* Input proton—mneutron v_effective in J—scheme: v_pn_48Ca_pfg.dat

<Memory and file limitations — set >= ZERO>
wildenthal .pn
\* Memory to store nondiag <SD(Z)SD(N)|OP|SD(Z)SD(N)>(in Kb): 1000

\* File size to store nondiag <SD(Z)SD(N)|OP|SD(Z)SD(N)>(in Mb); 200

<Energy eigenvalue parameters>
\* Maximum Lanczos iterations: 95

\* Wanted number of converged eigenstates: 8

* Type of process Symbol

%+ Lanczos iteration based on random initial

*+ vector with global orthogonalization ——>random—start

* Continue a previous random—start process ——>random—continue
%+ Lanczos iteration based on generalized seniority

* initial vector with global orthogonalization ——> fixed—J—start

* Continue a previous fixed—start process ——> fixed—J—continue

\* Type of calculation process: random—start
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<In case of fixed—J the following data must be specified>

\* Total 2J value:

\* Init vector file:

\* Number of start vectors:

\* List of vector no:

\* END_OFINPUTFILE:

————— Results ——

Proton single—particle orbits for m >= 1/2 (symmetric

m_orb j_orb osc 1 par 2%j 2%m energy % m_orb j_orb osc

0 0 0o 3 - 7 7 0.00 =* 5 2 1
1 0 0o 3 - 7 5 0.00 =* 6 0 0
2 1 0o 3 - 5 5 4.07 x 7 1 0
3 0 0o 3 - 7 3 0.00 =* 8 2 1
4 1 0o 3 - 5 3 4.07 x 9 3 1

around zero)

1 par 2%j 2xm energy

1 - 3 3 3.09
3 - 7 1 0.00
3 - 5 1 4.07
1 - 3 1 3.09
1 - 1 1 4.49

Neutron single—particle orbits for m >= 1/2 (symmetric around zero)

m_orb j_orb osc 1 par 2%j 2%m energy * m._orb j_orb osc

0 0 0 4 + 9 9 4.07 =* 6 2 1
1 0 0 4 + 9 7 4.07 * 7 0 0
2 0 0 4 + 9 5 4.07 = 8 1 0
3 1 0o 3 - 5 5 3.58 * 9 2 1
4 0 0 4 + 9 3 4.07 x 10 3 1
5 1 0 3 - 5 3 3.58 x
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1 par 2%j 2xm energy

1 - 3 3 0.00

3 - 5 1 3.58
1 — 3 1 0.00
1 - 1 1 2.02



Number of proton
Number of neutron

Total number of proton—neutron

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

sk k k% Group data sxxxxkx

parZ parN

+ + + + 4+ + 4+ + 4+ + 4+ + + + + + + + + + o+ 4+ + 4+ o+ 4+ o+

+

+ + 4+ + 4+ + 4+ + 4+ + 4+ + + + 4+ + + + + + + + o+ 4+ o+ 4+

|SD> configurations = 30028

|SD> configurations = 1330

2xM_Z

26

24

22

20

18

16

14

12

10

—10

—12

—14

—16

—18

—20

—22

—24

—26

2xMN

—26

—24

—22

—20

—18

—16

—14

—12

—10

10

12

14

16

18

20

22

24

26

|SD> configurations = 2739128

numSD_Z num_SD_N
0 0

10 1
32 3
90 8
194 14
376 25
633 35
991 50
1402 63
1869 82
2301 94
2685 111
2920 117
3022 124
2920 117
2685 111
2301 94
1869 82
1402 63
991 50
633 35
376 25
194 14
90 8
32 3
10 1

0 0
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tot_SD sect

0

10

96

720

2716

9400

22155

49550

88326

153258

216294

298035

341640

374728

341640

298035

216294

153258

88326

49550

22155

9400

2716

720

96

10

0



The Lanczos iteration process has reached maximum

= 95 — specified in input data

Final Eigenvalues

The total parity is positive

E(0)= —48.9856 <J*x2> = 0.0000

Proton single—part. distrib. : /2 5/2 3/2

iterations

N(j): 3.505 0.349 1.778 0.368

Neutron single—part. distrib. : 9/2 5/2 3/2 1/2
N(j): 0.693 1.893 4.000 1.413

E(1)= —48.1580 <J*x2> = 6.0000

Proton single—part. distrib. : 7/2 5/2 3/2 1/2
N(j): 3.524 0.382 1.702 0.391

Neutron single—part. distrib. : 9/2 5/2 3/2 1/2
N(j): 0.890 1.799 4.000 1.312

E(2)= —47.7733 <J*x2> = 6.0000

Proton single—part. distrib. : 7/2 5/2 3/2 1/2

N(j): 3.523 0.384 1.714 0.378

Neutron single—part. distrib. : 9/2 5/2 3/2 1/2
N(j): 0.882 1.808 4.000 1.310

E(3)= —47.4935 <J*%2> = 0.0000

Proton single—part. distrib. : 7/2 5/2 3/2 1/2

N(j): 3.410 0.464 1.680 0.446

Neutron single—part. distrib. : 9/2 5/2 3/2 1/2
N(j): 1.319 1.562 4.000 1.119

E(4)= —47.0709 <J*#2> = 11.9999

Proton single—part. distrib. : 7/2 5/2 3/2 1/2
N(j): 3.572 0.428 1.619 0.380
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Neutron single—part. distrib.
N(j):
E(5)= —46.8909 <J*x2> = 6.0069
Proton single—part. distrib.
N(i):
Neutron single—part. distrib.
N(j):
E(6)= —46.8096 <Jxx2> = 19.9982
Proton single—part. distrib.
NG
Neutron single—part. distrib.
N(j):
E(7)= —46.4029 <J*%2> = 7.0914
Proton single—part. distrib.
N(j):
Neutron single—part. distrib.
N(j):

9/2

1.103

7/2
3.460
9/2

1.164

7/2
3.537
9/2

1.420

7/2
3.280
9/2

0.751

5/2

1.699

5/2
0.434
5/2

1.641

5/2
0.460
5/2

1.519

5/2
0.268
5/2

1.789

3/2

4.000

3/2
1.673
3/2

4.000

3/2
1.542
3/2

4.000

3/2
1.868
3/2

4.000

1.198

1/2

0.461

1.061
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