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Abstract

A system for neural spike detection and classification is presented, which does
not require a priori assumptions about spike presence or spike templates, and
assumes only that the background noise has a Gaussian distribution. The sys-
tem is divided into two parts: a learning subsystem and a real-time detection
and classification subsystem. The former extracts templates of spikes for every
class, which includes a feature learning phase and a template learning phase.
The latter picks up spikes in the noisy trace and sorts them out into classes,
based on the templates that the learning subsystem provides and the statistics
of the background noise. Performance of the system is illustrated by using it
to classify spikes in a segment of neural activity recorded from monkey motor
cortex. The system is implemented without human supervision so that it can

be extended for multi-channel recording without loss of real-time property.
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I Introduction

For studying nervous system organization at the cellular level, the analysis of extracellularly
recorded neural spikes is essential [13], [14]. An extracellular electrode often records elec-
trical activity from several adjacent neurons simultaneously. To analyze the contribution of
each individual unit, one needs to distinguish the signals of each unit from the rest. Signals
from different neurons can be classified by characteristic spike shapes, which are unpre-
dictable functions of the neuron type, electrode construction, placement, and the electrical
characteristics of the intervening tissue [6]. In addition, multiunit recordings are always
contaminated by noise, which comes both from external sources and from weaker neural
signals of distant units.

There are several techniques for classification of multiunit neural signals [1], [3]-[7], [9]-
[12], [15], [16], [18]—[20]. Apart from their usefulness in particular situation, there are some
common limitations. Some techniques require some information about spikes and epoches
[3]-[7], which is often not available; some methods employ time consuming computations
[1], [5], [7], (9], [11], [12], [15], [16], [18]-[20], making real*time implementation impossible
except with specialized hardware; others, involve some human supervision (3], [4], [10].
Among them, the techniques using hardware equipment such as window discriminators,
work only in low noise environments.

This paper proposes an efficient and convenient on-line multispike separation system
which is totally automated from detection to classification, without presupposing knowledge
of spike shapes. It is assumed that there are several classes of spikes in the Gaussian noise
background on the neuron activity trace. First the Haar transformation is performed to
locate the occurrence of the spikes in time. Then a two dimensional histogram is made to
determine how many classes there are on the trace, based on two particular features of spikes:
peak-to-peak amplitude and peak-to-peak time interval. Classifying each spike according
to its features, templates of spikes of each class are generated by means of averaging. Once
templates are ready, an optimal multi-threshold spike sorting algorithm is developed which
minimizes minimum error probabilities while performing both detection and classification.
The optimal thresholds are updated regularly thereafter to follow the slow variation of the
spike template for oach class estimated previously and the background noise level estimated

by its statistics. An example of multiunit extracellular recording from primate motor cortex



is used to test the system.

The following section describes the whole system. The principle underlying the use of
the Haar transformation to detect spikes in noise is given in section III. Section IV presents
the feature selection and classification criteria. The multi-threshold sorting is detailed in

section V.

I System Description

The system is divided into two parts as indicated in the block diagram Figure 1 . The
first part is a learning subsystem which extracts templates of spikes for every class. This
subsystem includes a feature learning phase and a template learning phase. The second
part is a real-time detection and classification subsystem which picks up spikes in the noisy
trace and sorts them out into classes, based on the templates that the learning subsystem
provides and the statistics of the background noise.

Assume that a segment of the sampled data which contains spikes from several neurons
corrupted noise is stored in a memory buffer. The algorithm begins with the detection of
spikes from noise, using the discrete environment transformation (DHT). Then the extrac-
tion of features is performed on these detected spikes, to construct the feature histogram.
The typical features for each class are selected according to the histogram, finishing the
feature learning phase. In the template learning phase, the same DHT detection scheme
is applied to detect spikes. Then they are sorted into classes by comparing them with the
typical features. As a result, the typical templates for each class are averaged using all the
templates of spikes within the class, which completes the learning subsystem.

The real-time detection and classification subsystem is supported by the the multi-
threshold sorting scheme. Once the optimal multi-thresholds for every class are derived

from the templates and the background noise, the real-time on-line implementation begins.

111 Detection by Haar Transformation

The discrete Haar transform detection scheme plays the key role in the learning subsystem.
Because its inherent characteristic of the transform basis is spike-like, the Haar transform is

a powerful tool for detecting neural spikes. In transforming the original time function, there
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Figure 1: Schematic Diagram of the System



will be a large component in the Haar-transformed domain if the basis for that component
is similar in width and phase to the spike in the time trace. By detecting these outstanding
components, spikes are detected in the corresponding time trace.
To elaborate, let N be a positive integer that is a power of two, the Haar function is
defined in [ 0,1 ) as [§]
h(0,0,t) =1, te[0, 1)

272, (m-1)/2"r <t < (m~—1/2)/2"
har(r, m, t) = 22 (m—1/2)/2" <t < m/2" (1)
0, otherwise
where r =0, 1, ---, logagN,and m = 1, 2, ---, 2". It is shown that the Haar function
har(n,m,t) is orthogonal and complete for any N which is a power of two. If har(n,m,t)

is sampled at rate N, then an NxN orthogonal matrix is obtained [2]

wo(0)  wo(l) -+ wo(N-1) |

wi wy cee wo(N —
0w ey (2

| wy-1(0) wy-1(1) - wy-1(N 1) ]

where each element is a sample of the Haar function

wo(d) = A(0,0,d) =1, ¢ =0,1,--+, N—1

w(f) = wamin-1() (3)
0, i =0, N(n—1)/2™ -1
2m/2  { = N(n-—1)/2™, .-+, N(n—1/2)/2™ ~1
— hm, ) = ‘ (n—1)/ ( /2)/ (4)
—2m/2 §{ = N(n-1/2)/2™, ---, Nn/2™ —1
0, { = Nn/2™, -, N —1

fork=1,2,--+, N—1, where theranges of mand nare 0 < m < logzN—1land 1 < n < 2™,
respectively. Every row of the transform matrix is a basis of the Haar transform.

Denote the sampled time trace as x = [zg, zy, -, zn_1] and the discrete Haar
transformed sequence as y = [y, ¥1, *°*, Yn—1|, they are related by y = Wx. The

following simple cases shows how the Haar transform locates a spike.



Case 1: suppose that
a, 1 =201
T = —-a, t = 2,3
0, otherwise

there is a pulse corresponding to the spike in the transform domain

an , k= N/4
Y =
0, otherwise

where ay = 2av/N.
Case 2 : suppose that

asin2m(f—3)/5], ¢ = 4,5,6, 7
z; =
0, otherwise

the resulting transformed sequence is

1.540ay , k = N/4+1
0.363ay , k= N/2+2
-0.363ay , kK = N/2+3

Ye =

0, otherwise

where, again, ay = 2av/N. The above examples correspond to the case where no noise
is present. It is seen that the outstanding components occur in the transform domain
when there is a spike in the time domain. Experimentally, there is always an additive
noise process in the background of neural recordings. The noise may be removed by a
”threshold filtering” method, using a properly selected threshold in the transform domain.
To perform the threshold filtering, set every component below the threshold equal to zero
and leave components above the threshold unchanged. Then the threshold filtered sequence
is transformed back to the original time domain, resulting in noise-free step-like spikes at
their original positions in the trace. Time of occurrence is defined by the zero-crossing of
the step-like spike. We continue to use Case 2 as an example to illustrate how this process
work. The threshold ¢ in the transform domain is set to be |t| = 0.5ay, so the filtered

transformed sequence ¥ = [go, ¥1, *--, yn—1] is expressed as

154ay , k = N/d+1
0

=
, otherwise



which is transformed back to the time domain by X = W~1§, yielding the reconstructed

spike X = [510, 5:1, ey, 52N_1] as

154ay , i =4,5
# = ~154ay , i =6, 7

o, otherwise

The threshold for the filter is selected by variance estimation of the noise. Assume
that the noise sequence {n; : ¢« = 0, 1, ---, N —1}isi. i. d. with common Gaus-
sian distribution N (0, 0?) , it can be easily show that the component of the transformed
sequence { yy : k = 0,1, ---, N —1 } is identical distributed with common Gaus-
sian distribution N (0, No?) . It is known that P,o[|yk| > 3.004/N] < 0.0028, and that
Prob[lye] > 410N ] = 0.000042. A nonlinear transform domain threshold is set to be
t = C(0)o/N, where C(o) is between 3.0 and 4.15 and is dependent on the value of o.
If { yx } is the transformation of the noise only, then the probability that |yx| exceeds
the threshold t is very small. That is the reason that we filter the noise by setting every
component below the threshold to be zero. At this stage, the HT detection picks reliable
spikes but may miss some. Our goal at this stage is simply to accumulate enough reliable
spikes to construct the histogram and templates, and not to detect all spikes. Figure 2
demonstrates the HT detection.

In practice, C(o) is chosen as

3.00, o =0.0
3.10, 0 =0.8

C(o) = 3.90, 0 =4.0 (5)
4.00, 0=86.0
4.15, o =10.0

A polynomial of ¢ may be formed to approach the nonlinearity C(¢) = Sk o ciot, with

coefficients ¢g = 3.00, ¢y = 0.0329, ¢y = 0.1370, ¢z = —0.0284, ¢4 = 0.001557.

v Feature Extraction and Classification

In order to classify spikes, one may either use the complete templates, or instead base 1t

on selected unique features of those spikes. In principle, spikes belonging to the same class
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Figure 2: Spikers Detected by the Haar Transform: a) The origional trance. b) The trans-
form domain equivalence, large components imply that there are spikes. c¢) Reconstructed
spikes in the time domain, the noise is filled out, the spikes are detected by zero-crossing

detection.



are supposed to be relatively close in features. To simplify the algorithm, two features are
considered for spikes here. One is peak-to-peak amplitude, the other is the peak-to-peak
time interval.

A two-dimensional feature histogram h(f, j) is generated with index ¢ as the ordered
bin number for one feature and with index j for the other. If the resolution of the bins is
high enough, then the histogram essentially reflects the joint probability density function
f(&1, &) of the two features §; and {; . By the motivation of the maximum likelihood
estimation, we pick the particular values of & and £; at which f(£;, &;) has a peak as the
typical features for some class. Of course, we only consider those peaks that are mutually
apart from one another, 1. e., the relative distance of each pair of peaks is larger than a
specific value. For illustration, suppose f(&) has peaks at &' and £&". If

1 "
e e

or equivalently,
€-¢ e
maz (@17 ~ T4e

where € > 0 is a specific value, then we say that the relative distance between the peak at

(7)

¢ and the peak at £" is legal.

The question which naturally arises now is how accurate are the typical feature values
determined in this way, assuming that there is no misclassification problem? Consider
following example. For simplicity, only one feature is considered. Suppose that there are S
classes with a prior probability P;, 1t =1, 2,---, S, and that the histogram is made from
n observations of feature £ , of which approximately n; = nF; observations belong to class

1. The feature has a p. d. f.

s

1) = 2_Pifuléli) (8)

=1
where f;(£]7), is the p. d. f. of £ under class 1. In the Gaussian case, let £ have a Gaussian
distribution with unknown mean p; and variance o? under class . Thus f;(£]7) has the
peak at £ = p; . According to the feature selecting criterion, therefore, p; is chosen as
the typical feature value for class 1. The maximum likelihood estimator of u; is the sample
mean of class 7, and it can be written as

=Y a (9)

§xeCy



If one uses the confidence interval estimation argument, it is easy to see that

o R o
to < Wi £ i+ ——

v v

In words, one has (1 — «)100 percent confidence that the true value p; is in the interval

Prob[ﬁi - ta] =1-« ( 10)

[ - ﬁta, fi + V%Eta ]. The length of the interval is 20t,/\/n;, where t, is chosen
so that P[|N(0,1)] < t,] = 1-—- a, where N(0,1) is a normalized Gaussian random
variable. To obtain high confidence, choose & > 0 small enough while increasing sample
size n; sufficiently large, still, the length of the interval can be made arbitrary small. Hence
[i; 1s a consistent estimator of u; . The final step is to show that fi; is the value at which
fi(€|?) has a peak with probability 1. This is true because E(j;) = p; and Var(i;) = o2 /n;
, the strong law of large numbers says that P,o[lim,, o0 i = pi] = 1 and it is apparently
that Prop[limy, 0o Var(f;) =0] =1, 1. e., f; will approach to p; with no variation so that
fi(£:|f) is definitely the peak as n; goes to infinity.

Thus the question is answered in partial. It is in confirmation of Gaussian cases that
one can make the typical feature values as accurate as one wants providing that the sample
size n is sufficiently large. It is difficult to give an answer in general, but as long as the
confidence interval estimation is possible to make and if the length of the interval shrinks
as n increases, then we should arrive at the same conclusion.

In the case of insufficient sample size, the local averaging is used to smooth the his-
togram. The resulting histogram is revised by

Ri,7) = = S wigsh(k, D) (11)
(k)eNs([(3,7), 7]
where W = Z(k,l)er[(0,0), r] Wk and N[(7, 7), ] is defined as the r-neighborhood of (1, 7).

Consider now the misclassification problem. S classes are assumed to have a prior

probabilities P;, ¢ = 1,2,---,S. Using the risk function concept [17], we associate a risk ry;

with choosing class 1 when the correct classification is class 7. The average risk is given by

s 8
R =Y Y ri;PP(Dil5) (12)

i=1j=1
where P(D;]7) is the probability of choosing class ¢ when class 7 is true. The feature space

C is partitioned into exhaustive and mutually exclusive subset C;,¢ = 1,2,---, 5, so that

2

spikes with feature £ are classified to be in class 1 if £ € C;. Noting that &; = C — U#f C;



and [o fi(€l7)d€ = 1, 7 =1,2,---, 8, the average risk can be expressed as

s S
R =32 rb; [ fi(eli)ae (13)

i=135=1

S S S
= YRy [ Yl i) Piss(elidg (14)

r
S S
= Yokt Y [ d(ede (15)
i=1 i=1"Ci

where d;(§) = Ef#(r,'j —r;;)P;fi(€l7) (¢ =1,2,---,..., S ) are the decision variables.
In order to minimize the risk R, we like to minimize d;(£) for every fixed £ for each class.
The classification strategy is simple, the observed value ¢ is claimed to be in class 1, if
¢ = argmin;{d;(£)}.

For performance measurement, it is mathematically convenient to derive first the prob-
ability that the classifier makes a correct decision. This is the probability that d;(¢) is

exceeded by all other decision variables d;(€) under class ¢, and it may be expressed as
P,(?) = Prop[di(€) < d;(£), forall j| Class ] (16)

= [ sutelira (17)
where A; = {€ : d;(&) < d;(€), forall 5},(1=1,2,---,S) are measurable subsets in the
feature space. So the total probability of correct classification is P, = Z;g:l P;P,(¢), and
the probability of erroris P, = 1 - F, .

Of particular interest is the case where r;; = 1 for ¢ # 7 and r; = O for all 4 and 7, then

di(€) reduces to

(&) = P = 3 PUIOE) = [1- PESIAE) (18)

i i
The criterion becomes to be the minimum probability of error.

v Multi-threshold Sorting

The multi-threshold method is a fast real-time on-line spike detection scheme. Unlike the
one-threshold detection that is commonly used, the multi-threshold technique provides more

reliable detection, especially when the signal-to-noise ratio is low. To see the effectiveness

10



of the scheme, a comparison is made with the one-threshold scheme by an example later in
this section.

The method can be described as a hypothesis test problem. The underlying assumption
is that the observed data trace is an additive combination of spike and noise. Denote
observation, spike and noise as z(t), s(t) and n(t), respectively. The hypotheses are stated
as follows.

Hy @ z(t) = n(t), t=12 .., M

Hy: z(t) = s(t)+n(t), t=12 .., M

The null hypothesis, Hy, is that there is no spike in the observation and the alternative
hypothesis, Hy, means that there is a spike in the observation. The decision as to whether
there is a spike is made by M comparisons with the following rule. If z(t) > #;, forallt =
1, 2, ..., M, then we assume that H; is true, otherwise Hy is true, where 7, ’s are M
independent thresholds. Our aim is to optimize the thresholds according to some criterion.
There are two types of error in a statistical hypothesis test. The false alarm is the first
type of incorrect decision, rejecting the hypothesis Hy when that hypothesis is true. The
second type of error, accepting Hy when Hj is false, is called the missing detection. Under
the assumption that the noise is white Gaussian distributed with zero-mean and variance

o?, the probability of the false alarm Pp can be expressed as
Pr = Prob(DllHO) = ,-ob[:l?(l) > M, x(2) > N2y ey :Z:(M) > anHQ] (19)

Because n(t) is white, z(t)’s are mutually independent and with identical Gaussian dis-

tribution N(0, o), therefore, Py can be further expressed in terms of the error function

o().

Pr = ﬁPmb[x(t) > ny|Ho) = ﬁ@(- e ( 20)
t=1 t=1 ¢
where ®(y) = [Y —\/12—;8—12/2(127. Similarly, the probability of the missing Pys can be
written
Py = Prop(DolH1) = Proslz(t) < ne, for somet |Hy) { 21)

For the mathematical manipulation, we write it in terms of the probability of the comple-

ment of the missing

PM' = 1 Proh(Dlg}[l) = 1 - P,-Ob{fl:(1) >4, :1:(2) > 12y ey :Zi(i‘\/f) > 77},_{!}]1} (22)

i1



By the same token, in terms of the error function ®(.), Prps may be written
M
s{t) —
Py = 1_H<1>(_(_)_(;_’_7£) (23)
=1

It is not difficult to see that if one likes Pr to be small, then one chooses thresholds n, to
be large, thus increasing Pys. Conversely, by choosing 7; to be small, Pys decreases while

Pr increases. This implies that minimizing both Pp and Py is a conflicting objective. One

may compromise them by constructing an objective function J,
J = 0Pr+ Py, for somef >0 (24)

the goal is now to minimize J.
The necessary condition for achieving a minimum of J is to set

aJ

3—7:];:0’ k=1,2,...,M (25)

This results in M simultaneous equations

M n 2 M 8(1) — M
oI &(- 1) = el2nx—s(k))s(k)/20 [Te(———=), k=1,2,., M (26)
£k 01 Ik i

The possible optimal set of thresholds 7 ’s yields upon solving those equations.

The significance of § may be explained as follows. If the false alarm is as costly as
the missing detection, one sets § = 1. And & > 1 means that the false alarm is more
costly than the missing, and 6 < 1 otherwise. If the a priori probability P(Hj) is known,
then the total error probability is P, = P{Ho)Pr + P(H1)Par and the objective function
becomes J = P./P(H;) with 8 = P(H,)/P(H1). Thus minimizing J is equivalent to
the minimum probability of error criterion. Obviously, the higher the signal to noise ratio
s(t)/o, the smaller the error probabilities Pp and Pyy.

Proposition : There exists a unique minimum of the objective function J if spike is
detected and if the false alarm is more costly than the missing.

A proof of the proposition is given in appendix. The existence and uniqueness minimum
of J guarantees the risk-free solution of the M simultaneous equations.

Only partial information about the template of spikes s(t),t = 1, 2, ..., M is needed
to generate the optimal multi-thresholds. The real time on-line implementation is simple:
Compare the datum at every instant ¢ with the corresponding threshold »:, we announce

that there is a spike if all thresholds are exceeded by the data.



Example: Suppose that the spike with template s.(r) = 8sin(2x fr) is contaminated
by white Gaussian noise with zero-mean and variance 0% = 3.52. The data is sampled at
frequence 12f Hz. Let M = 3,1i. e., only three points are taken from the template, s(1) = 8,
s(2) = 6.9282, and s(3) = 8. Choose § = 1, the optimal threshold values are calculated to
be 5y = 1.47, ng = —0.215, and 53 = 1.45, resulting in the error probabilities Pr < 0.0599
and Pps < 0.0802. While the one-threshold detection ( M = 1) with s(1) = 8, 0 = 3.5 and
the optimal threshold n; = s(1)/2 = 4 gives Pr = Pys = 0.1265.

Thus for each class of spikes we recognized in the earlier sections, we shall compute the
optimal thresholds. This proceeds by first ranking the classes according to the amplitude
of their spikes if the peak-to-peak time interval are similar. Thus, spikes in class 1 are those
with the largest amplitude and those of class 2 are the second largest, and so forth, and by
taking the template value of class ¢+ as the noise level of class 1 — 1. For classes of spikes
with unique peak-to-peak time interval, the background noise in the trace is taken as the

noise level.

vl A Testing Example

An epoch of extracellular recording from monkey motor cortex was used to test the system.
The data were stored on cassette tape and sampled by a MASSCOMP minicomputer at 10
kHz, guaranteeing that a spike was represented by at least 8 samples, necessary for accurate
thresholding.

The first 60,000 samples (corresponding to 6 s of data) were used to generate templates
for each class. The whole algorithm was written in a programming language, it took 5 min
to complete the extraction of templates and 3 min to finish the calculation of the optimal
multi-thresholds.

Five peaks appeared in the two-dimensional histogram. One of them was very small,
which meant that the number of spikes in that region was less than one percent of the
total; another peak failed the distance test. Therefore, these two peaks were disregarded,
resulting in three classes of neural spikes.

A display routine has been implemented as part of the real-time sorting subsystem in
which different classes of spikes are highlighted in different colors on the neural activity

trace as shown in fig 3 . A comparison of the performance of the automatic system with

13



Neural Spike Trace in 200 ms
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Figure 3: Spikers Classified by the System: a) The origional trance. b) Class 1. c) Class
2. d) Rest of spikes.
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that of experienced human observers indicates that most larger spikes are detected and the

discrepancies between classifications done by human observers and the recognition system

are small.

vii Conclusion

A preliminary software neural spike sorting system has been developed to implement detec-
tion and classification of signals from multiple neurons without human supervision. After
the spike templates for each class are estimated from original data and the optimal multi-
thresholds are selected based on the templates and the noise level, a process which requires
several minutes, the real-time subsystem starts spike sorting. A testing example shows the
potential of the system. Further improvements under consideration include expanding the
dimension of the feature space by using template matching techniques in the template learn-
ing subsystem and changing from multi-threshold to multi-window criteria in the real-time

sorting subsystem.



Appendix

In this appendix, we prove the following

Proposition : There exists a unique minimum of the objective function J = 0 Pp + Py,
if not all s(k) are zero and if § > 1.

Proof: Since Pr = [IM_; ®(~zm), and Par = 1 — [IM | ®(ctm, — zpn), where ®(y) =
Y. #6—32/2&5, T = Nm/0, and o, = s(m)/o. Set

_——:0 == « e o
amn » 1’27 ,M (27)

we have
M M
06(—zn) [ ®(—2m) = ¢(an — 24) [[ ®(@m —zm), n=1,2,---,M  (28)
m#n m#£n

and since § > 0, 0 < ®(z) < 1, and ¢(z) = #e’zz/ 2, therefore, the M simultaneous

equations are equivalent to
pe "0l = e_(z"_"")z/z, for somev, >0, n=1,2,--- M (29)

Suppose that s(n) # O, hence a, # 0, then (2.3) has one and only one solution, which
implied that there is only one extremum for J.

To see the extremum is the minimum, notice that

zli_rpooJ =1, forallm ( 30)
and
Iim lim <« lim J = 8 (31)
Ti——00 Tg-+—00 Zp,—00

It suffices to show that there exists an z*, such that J(z*) < 1. It is easy to see that for

fixed zg,x3,-+,Zprr, J can be expressed as
J:07/_1¢(x)dx+1—ﬂ[ " b(2)de (32)
—T) a3 —a)
— (67 - B) f $(z)dz — B (z)dz + 1 (33)
) -2z

where 0 < v < f# < 1, and o > 0. Because ®(—z) < e~ 2%° for x> 0, hence we have
J < {#vy— ,B)e_z‘cf - /ﬂ%l:e“z?/z +1 < 1) for zy; > @} { 34)
n

This completes the proof.
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