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Abstract

In this paper we address the problem of the identification of text in noisy document im-
ages. We are especially focused on segmenting and identifying between handwriting and
machine printed text because: 1) handwriting in a document often indicates corrections,
additions, or other supplemental information that should be treated differently from the
main content, and 2) the segmentation and recognition techniques requested for machine
printed and handwritten text are significantly different. A novel aspect of our approach
is that we treat noise as a separate class and model noise based on selected features.
Trained Fisher classifiers are used to identify machine printed text and handwriting from
noise, and we further exploit context to refine the classification. A Markov Random Field
(MRF) based approach is used to model the geometrical structure of the printed text,
handwriting, and noise to rectify misclassifications. Experimental results show that our
approach is robust and can significantly improve page segmentation in noisy document
collections.
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1 Introduction

Documents are the results of a set of physical processes and conditions, and the resulting
document can be viewed as consisting of layers (letterhead, content, signatures, annota-
tions, noise, etc. in the case of business correspondence for example). Document analysis
reverses these processes to segment a document into layers with different physical and se-
mantic properties. After decades of research, automatic document analysis has advanced
to a point where text segmentation and recognition can be viewed as a solved problem
in clean, well-constrained documents. However, the performance degrades quickly when
a small amount of noise is introduced. For example, a typical bottom-up page segmenta-
tion method starts from the extraction of connected components [1,2]. Based on spatial
proximity and size, connected components are then merged into text lines and zones.
A classification process is then used to identify zone types (text, tables, images, etc.).
These algorithms work well on clean documents where zones with different properties
can be easily separated. However, they often fail on noisy documents where noise mixes
with and/or is spatially close to content regions. For example, Figs. 1(a) and (b) show
segmentation results for an extremely noisy document when we use the Docstrum algo-
rithm [2] and ScanSoft SDK [3]. Text and noise are erroneously segmented into the same
zones by both algorithms.

In this paper we present a novel approach to identifying text in extremely noisy doc-
uments. Instead of simple noise filtering, as used in other work [1,2], we treat noise
as a distinguished class and model it based on selected features. We further identify
handwriting from machine printed text since: 1) handwriting in a document often indi-
cates corrections, additions, or other supplemental information that should be treated
differently from the main content, and 2) segmentation and recognition techniques for
machine printed text and handwriting are significantly different. Based on these consid-
erations, we treat the problem as a three-class (machine printed text, handwriting and
noise) identification problem.

In practice misclassification often happens in an overlapping feature space. This is
especially true for handwriting and noise. To deal with this problem, we exploit contex-
tual information in post-processing and refine the classification. Contextual information
is very useful for improving classification accuracy. It is widely used in many OCR sys-
tems and its effectiveness has been demonstrated in previous work [4,5]. The key is
to model the statistical dependency among neighboring components. The output of an
OCR system is a text stream which is one-dimensional. Therefore, an N-gram language
model, based on an Nth order 1-D Markov chain, is effective for modeling the context.
With assistance from a dictionary, the N-gram approach can correct most recognition
errors. Images, however, are two-dimensional. Generally, 2-D signals are not causal,
and it is much harder to model the dependency among neighboring components in an
image. Among the image models studied so far, Markov Random Fields (MRF) have
been widely studied and successfully used in many applications. MRF's are suitable for
image analysis because the local statistical dependency of an image can be well mod-
eled by Markov properties. MRFs can incorporate a prior: contextual information or
constraints in a quantitative way. The MRF model has been extensively used in various
image analysis applications such as texture synthesis and segmentation, edge detection,
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Figure 1: Page segmentation results for an extremely noisy document using the Docstrum
algorithm and ScanSoft SDK. Noise is segmented into text zones erroneously in both

cases. (a) Docstrum, (b) ScanSoft.

and image restoration [6,7]. In this paper, we use MRF's to model the dependency of seg-
mented neighboring blocks. As post-processing, MRF's can further improve classification
accuracy.

The documents we are processing are extremely noisy with machine printed text,
handwriting, and noise mixed together. We first extract the connected components
and merge them at the word level based on spatial proximity. We then extract several
categories of features and use trained Fisher classifiers to classify each word into machine
printed text, handwriting, or noise. Finally, contextual information is incorporated into
MRF models to refine the classification results further.

The rest of the paper is organized as follows: Section 2 is a literature survey of related
work, followed by a detailed description of our classification method in Section 3. MRF-
based post-processing is presented in Section 4, and experimental results are presented
in Section 5. The paper concludes with a brief summary and a discussion of future work.

2 Related Work

The research presented in this paper is related to previous work on page segmentation,
zone classification, handwriting identification, and document enhancement.



2.1 Page Segmentation

Previous work on page segmentation can be broadly divided into three categories: bottom-
up [1, 2], top-down [8], and hybrid [9]. In a typical bottom-up approach such as the
Docstrum algorithm proposed by O’Gorman [2]|, connected components are extracted
first and then merged into words, lines, zones, and columns hierarchically based on size
and spatial proximity. Bottom-up methods can handle documents with complex layouts.
However, this is time consuming and sensitive to noise.

A typical top-down method, such as the X-Y cuts proposed by Nagy [8], starts from
the whole document and splits it recursively into columns, zones, lines, words and char-
acters. Top-down methods are effective for documents with regular layouts, but fails
when the documents have a non-Manhattan structure.

Another problem with X-Y cuts is that the global parameters for optimal segmenta-
tion are often difficult to find if prior knowledge is not available. Sylwester et al. proposed
a hybrid method which starts from the top [9]. First, they over-segment a document into
small zones using the X-Y cut algorithm. Then they use the bottom-up method which
groups over-segmented small zones with the same properties into a single zone.

All of the above methods are based on the analysis of foreground (black pixels).
As an alternative, white stream methods based on the analysis of background (white
pixels) are presented in [10,11]. In these methods, rectangles covering white gaps (white
pixels) between foreground are extracted. Foreground regions surrounded by these white
rectangles are extracted as zones. A more comprehensive survey is presented in [12].

2.2 Zone Classification

Zone classification labels the content of each segmented zone as one of a set of pre-
defined types [1,11,13], such as text, images, graphics, and tables. Pavlidis et al. used
correlations of horizontal scan lines as features to distinguish text and diagrams from
half-tone images. The black pixel density is used to further distinguish diagrams from
text [11]. Wang et al. used 69 features, such as run length mean and variance, spatial
mean and variance, fraction of the total number of black pixels in the zone, width ratio
of the zone, and number of text glyphs in the zone, to classify each zone into nine classes.
They did experiments on ground-truthed zones of the UW III database, and achieved
an accuracy as high as 98.52% [13]. Jain et al. directly performed classification on the
generalized lines (GTLs) extracted using a bottom-up approach [1]. If the height of a
GTL is less than a threshold and the connected components in it are horizontally aligned,
it is classified as a text line. Text lines and non-text lines are merged into text regions
and non-text regions respectively. They further classify non-text regions into images,
tables, and drawings. This works well for long text lines, but may fail when the text lines
are short.

Some other approaches treat text, images, and figures as different textures, and use
trained classifiers to segment and identify them [14-16]. They often work directly on gray
scale images, and need classification of each pixel. To reduce the computation complexity,
multi-resolution techniques are often used.



2.3 Handwriting Identification

Some work has been done on handwriting/machine printed text identification. The classi-
fication is typically performed at the text line [17-20], word [21], or character level [22,23].
At the line level, machine printed text lines are typically arranged regularly with a straight
baseline, while handwritten text lines are irregular with a varying baseline. Srihari et
al. implemented a text line based approach using this characteristic and achieved a
classification accuracy of 95% [20]. One advantage of this approach is that it can be
used in different scripts (Chinese, English, etc.) with little or no modification. Guo
et al. proposed an approach based on the vertical projection profile of the segmented
words [21]. They used a Hidden Markov Model (HMM) as the classifier and achieved a
classification accuracy of 97.2%. Although at the character level less information is avail-
able, humans can still identify the handwritten and machine printed characters easily,
inspiring researchers to pursue classification at the character level. Kuhnke proposed a
neural network-based approach with straightness and symmetry as features [22]. Zheng
et al. used run-length histogram features to identify handwritten and printed Chinese
characters and achieved promising results [23]. In previous work, we implemented a
handwriting identification method based on several categories of features and a trained
Fisher classifier [24]. However, the problems introduced by noise are not addressed.

2.4 Document Enhancement

There are two types of degradation in document images: 1) physical degradation of the
hardcopy documents during creation, and/or storage, and 2) degradation introduced by
digitization. If severe enough, either of them can reduce the performance of a document
analysis system significantly. Several document degradation models [25-27], methods
for document quality assessment [28,29], and document enhancement algorithms [30-32]
have been presented in previous work. One common enhancement approach is window-
based morphological filtering [30-32]. Morphological filtering performs a look up table
procedure to determinate an output of ON (black pixel) or OFF (white pixel) for each
entry of the table, based on a windowed observation of its neighbors. These algorithms
can be further categorized as manually designed, semi-manually designed, or automati-
cally trained approaches. The kFill algorithm, proposed by O’Gorman [32], is a manually
designed approach and has been used by several other researchers [28,33]. Experiments
show it is effective for removing salt-and-pepper noise. Liang et al. proposed a semi-
manually designed approach with a 3 x 3 window size [34]. They manually determine
some entries to output ON or OFF based on a priori observations. The remaining entries
are trained to select the optimal output. It is difficult to manually design a filter with a
large window size, and success depends on experience. If both ideal and degraded images
are available, optimal filters can be designed by training [31]. After registering the ideal
and degraded images at the pixel level, an optimal look-up table, based on observation of
the outputs of each specific windowed context, can be designed. However it is difficult to
train, store, and retrieve the look-up table when the window size is large. This approach
requires both the original and the corresponding degraded images for training. Loce
used artificially degraded images generated by models for training [31], while Kanungo



et al. proposed methods for validation and parameter estimation of degradation mod-
els [35-37]. Though the uniformity and sensitivity of his approach has been tested by
other researchers [27,38], no degradation model has been declared to pass the validation.
Another problem with morphological approaches is the small window sizes. The most
commonly used window size is no larger than 5 x 5, which is too small to contain enough
information for enhancement.

Ideally image quality should be estimated first so the appropriate enhancement al-
gorithms can be applied automatically. Cannon et al. proposed a document quality
assessment algorithm based on five factors: small speckle, white speckle, touching char-
acters, broken characters, and font size [28]. They used a linear classifier to select the best
one out of four enhancement algorithms, and reduced the OCR error rate from 20.27%
to 12.60% on their database. Li el al. proposed an approach for quality estimation of
color video text, which classifies the video text quality into six levels [29].

A majority of the above approaches are focused on improving OCR accuracy in noisy
documents. As shown in Fig. 1, degradation will not only deteriorate OCR, performance,
but other document processing tasks, such as page segmentation as well. Little work
has been done in this area. The difference between our approach and previous work is
that we perform classification to identify noise, and exploit contextual information of
neighboring blocks as a post-processing to refine the identification. Experiments show
that our noise removal algorithm can increase page segmentation accuracy significantly.

3 Text Identification

In this section we present our text (machine printed or handwritten) extraction and
classification method.

3.1 Pattern Unit

Special consideration must be given to the size of the region being segmented before
we can perform any classification. We call the smallest unit for classification a pattern
unit. If the unit is too small, the information contained in it may not be sufficient for
classification; if it is too large, however, different types of components may be mixed
in the same region. In previous work we conducted a performance evaluation for the
classification accuracy of machine printed text and handwriting at the character, word,
and zone levels, and showed that a reliable classification can be achieved at the word level
[24]. We therefore segment images at the the word level and then perform classification.
Since noise has no concept of word, we use the terminology block and word interchangeably
in the following presentation.

We first extract connected components, and then merge them into words based on
geometric proximity and size. Those extremely large word blocks or blocks with very
large or small aspect ratios are filtered out. However, noise with size similar to text
cannot be filtered out. Our focus is to distinguish text from this type of noise.



Table 1: Features used for machine printed text/handwriting/noise classification

| Feature set | Feature description | # of features | # of features selected |
Structural Region size, connected components 18 9
Gabor filter Stroke orientation 16 4
Run-length histogram Stroke length 20 5
Crossing count histogram Stroke complexity 10 6
Bi-level co-occurrence Texture 16 2
2x2 gram Texture 60 5
Total 140 31

Histogram counts
Weight windows =

Length of black pixel run-length

(a) (b)

<—d—>

0/1| --- |o/1

—

A 0/1 --- |o/1
(c) (d)

Figure 2: Illustration of feature extraction. (a) The overlap area of the connected compo-
nents inside a pattern unit is extracted as a structural feature. (b) Run-length histogram
features. (c) Crossing count features. The crossing counts of the top and bottom hori-
zontal scan lines are 1 and 2 respectively. (d) Bi-level 2 x 2 gram features.




3.2 Feature Extraction

Several sets of features are extracted for classification. The descriptions and sizes of the
feature sets are listed in Table 1. Machine printed text, handwriting, and noise have
different visual appearances and physical structures. Structural features are extracted
to reflect these differences. Gabor filter features and run-length histogram features can
capture the difference in stroke orientation and stroke length between handwriting and
printed text. Compared with text, noise blocks often have simple stroke complexity.
Therefore, crossing count histogram features are exploited to model such differences. We
further take regions of machine printed text, handwriting, and noise blocks as different
textures. Two sets of bi-level texture features (bi-level co-occurrence features and bi-level
2x2 gram features) are used for classification. In the following subsections we present
these features in detail.

3.2.1 Structural Features

We extract two sets of structural features. The first set includes features related to the
physical sizes of the blocks such as density of black pixels, width, height, aspect ratio,
and area. Suppose the image of the block is I(z,y),0 <z <w, 0 <y < h, and w, h are
its width and height respectively. Each pixel in the block has two values: 0 representing
background (a white pixel) and 1 representing content (a black pixel). Then the density

of the black pixels d is
w—1h—1
X X I(z,y)

z=0 y=0
d=2v=___ 1
w X h (1)

The sizes of machine printed words are more consistent than those of handwriting and
noise on the same page. However, machine printed words on different pages may vary
significantly. Therefore, we use a histogram technique to estimate the dominant font
size [2], and then use the dominant font size to normalize the width (w), height (h),
aspect ratio (1), and area (a) of the block.

The second set of structural features are based on the connected components inside
the block, such as the mean and variance of the width (m,, and o,), height (m;, and
on), aspect ratio (m, and o,), and area (m, and o,) of connected components. The sizes
of connected components inside a machine printed word are more consistent, leading
to smaller o, and oj,. For a handwritten word or noise block, the bounding boxes of
the connected components tend to overlap with each other, as shown in Fig. 2(a). For
machine printed English words, however, each character forms a connected component
not overlapping with others. The overlapping area (the sum of the areas of the gray
rectangles in Fig. 2(a)) normalized by the total area of the block is calculated as a
feature. Another feature we use is the variance of the vertical projection. In a machine
printed text block, the vertical projection profile has obvious valleys and peaks since
neighboring characters do not touch each other. However, for a handwritten word or
noise block, the vertical projections are much smoother, resulting in smaller variance.



3.2.2 Gabor Filter Features

Gabor filters can represent signals in both the frequency and time domains with minimum
uncertainty [39] and have been widely used for texture analysis and segmentation [15].
Researchers found that they match the mammalian visual system very well, which pro-
vides further evidence that we can use it in our classification tasks. In the spatial and
frequency domains, the two-dimensional Gabor filter is defined as

g(z,y) = exp {—w [i—j + Z—;] } % cos{2m (uox + voy) } 2)

G(u,v) = 2moy0,(eap{—7[(u' — up)’o’ + (V' — v))’oL]} +

eap{ (v’ +up)’oy + (v +vp) oy]}) (3)
where 2/ = —zsinf+ycosb, y' = —xcost —ysinf, u' = usinf —vcosf, v' = —ucosf —
vsinf, ug = —ugsinf + vy cos b, vy = —ugcosf — vysinb, ug = fcosf, and vy = fsinb.

Here f and 6 are two parameters, representing the central frequency and orientation of
the Gabor filter.

The variances of the filtered images are taken as features. In our experiments 16
Gabor filters with different orientations 6, = k x 180/N,k = 1,2,...16, are used, which
generate 16 features.

3.2.3 Run-length Histogram Features

Run-length histogram features are proposed in [23] for machine printed/ handwritten
Chinese character classification. These features are used in our case to capture the
difference between the stroke lengths of machine printed text, handwriting, and noise
blocks. First, black pixel run-lengths in four directions, including horizontal, vertical,
major diagonal, and minor diagonal, are extracted. We then calculate four histograms
of run-lengths for these four directions, as shown in Fig. 2(b). To get scale-invariant
features, we normalize the histograms. Suppose Cy, k = 1,2, ..., N, is the number of runs
with length k, and N is the maximal length of all possible runs, then the normalized
histogram Cj, is

C
N
> Ci
1=1

We then divide the histogram into five bins with equal width and use five Gaussian-shaped
weight windows to get the final features (Fig. 2(b)). Taking the horizontal run-length
histogram as an example, the run-length histogram feature Rh; is calculated as

= (4)

Rh; =Y G(k;u,0)Ch, i=1,2,3,4,5 (5)

k=1

where w is the width of the block (the maximal length of all possible horizontal run-
lengths) and G(k; u;,0) is a Gaussian-shaped function:

ki) = eap { -2 (0

202

9



As shown in Figure 2(b), o is chosen so the weight on each bin border is 0.5. Another
alternative is to use rectangular windows without overlap between neighboring bins.
Experiments show that the extracted features with Gaussian weighted windows are more
robust. Five features are extracted in each direction, leading to 20 features.

3.2.4 Crossing Count Histogram Features

A crossing count is the number of times the pixel value changes from 0 (white pixel) to
1 (black pixel) along a horizontal or vertical raster scan line. As shown in Figure 2(c),
the crossing counts of the top and bottom horizontal scan lines are 1 and 2 respectively.
Crossing counts can be used to measure stroke complexity [24,40]. In our approach, first
the crossing count for each horizontal and vertical scan line is calculated. Similarly we
get two histograms for the horizontal and vertical crossing counts respectively. The same
technique (as in extracting the run-length histogram features) is exploited to get the final
features from the histograms. A total of 10 features are extracted.

3.2.5 Bi-level Co-occurrence Features

A co-occurrence count is the number of times a given pair of pixels occurs at a fixed dis-
tance and orientation [41]. In the case of binary images, the possible co-occurrence pairs
are white-white, black-white, white-black and black-black. In our case, we are concerned
primarily with the foreground. Since the white background region often accounts for
up to 80% of a document page, the occurrence frequency of white-white or white-black
pixel pairs will always be much higher than that of black-black pairs. The black-black
pairs carry most of the information. To eliminate the redundancy and reduce the effects
of over-emphasizing the background, we consider only black-black pairs. Four different
orientations (horizontal, vertical, major diagonal and minor diagonal) and four distance
levels (1, 2, 4, and 8 pixels) are used for classification (16 features total). The horizontal
co-occurrence count Cy(d), for example, is defined as

C’h(d):ZZI(x,y)I(x—i-d,y),d:1,2,4,8 (7)

I(x,y) = 0 for white pixels; therefore only black-black pixel pairs contribute. For a fixed
distance d we normalize the occurrence by dividing by the sum of the occurrences in all
four directions.

3.2.6 Bi-level 2x2 gram Features

The NxM grams were first introduced in the context of image classification and retrieval
[42]. An NxM gram extends the one-dimensional co-occurrence feature to the two-
dimensional case. We only consider 2 x 2 grams, which count the numbers of occurrences
of the patterns shown in Figure 2(d). The cells labeled 0/1 should take specific values,
and the values of other cells are irrelevant. Therefore there are 2* = 16 patterns for each
distance d. Like the co-occurrence features, the all white patterns are removed to reduce
over-emphasis on the background. For a fixed distance, the occurrences are normalized

10



by dividing by the sum of all occurrences. Four distances (1, 2, 4, and 8 pixels) are
chosen, generating 4 x 15 = 60 features.

3.3 Feature Selection

There are two purposes for feature selection. First, reducing the computation needed
for feature extraction and classification. As shown in Table 1 we extract a total of 140
features from the segmented blocks. Though these features are designed to distinguish
between different types of blocks, some features may contain more information than oth-
ers. Using only a small set of the most powerful features reduces the time for feature
extraction and classification. The second purpose is to alleviate the curse of dimension-
ality. When the number of training samples is limited, using a large feature set may
decrease the generality of a classifier [43]. The larger the feature set, the more training
samples are needed. Therefore, we perform feature selection before feeding the features
to the classifier.

We use a forward search algorithm to perform feature selection [44]. We first divide
the whole feature set F into a currently selected feature set F; and an un-selected feature
set F, which satisty

FsNFy,=2 (8)
FsUF,=F 9)
The selection procedure can then be described as
1. Set Fy = @, and F, = F.
2. Label all features in F, as un-tested.
3. Select one un-tested feature f € F, and label it as tested.
4. Put f and F; together, and generate a temporary selected feature set Fr.

5. Estimate the classification accuracy with feature set F! using a 1-NN classifier and
leave-one-out cross validation technique. The basic idea is that at each iteration
only one sample is used for testing, while the others have been used for training.
We repeat this process until all samples have been used as testing samples once.
The average accuracy for all iterations is taken as the estimated accuracy for the
current feature set. The leave-one-out cross validation technique can estimate the
accuracy of a classifier with small variation [43].

6. If there are un-tested features in F,, goto step 3.

7. Find a feature f € F., such that the corresponding temporary feature set F. has
the highest classification accuracy:

~ _ A f 1
[ =arg max ccuracy(Fy) (10)

then move f from F, to F;.
11
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Figure 3: Feature analysis. (a) Feature selection: the best classification result is achieved
when 31 features are selected. (b) PCA: the best classification result is achieved when
64 principal components are used.

8. If F, # P, go to step 2; otherwise exit.

We use LNKnet pattern classification software to conduct our feature selection experi-
ments [45]. LNKnet provides several classifiers, such as likelihood classifiers, k-NN clas-
sifiers, and Neural Network classifiers, and several feature selection algorithms such as
forward search, backward search, and forward and backward search. Feature selection
can be an extremely expensive task. Considering the large number of feature sets to
evaluate, and the number of classifiers to train, the lightweight forward feature selec-
tion algorithm and 1-NN classifier, which does not need training, are used in our feature
selection experiment.

We collected about 1,500 blocks for each class. As shown in Fig. 3(a), when the
number of selected features increases the error rate decreases sharply at first. The trend
reverses at some point. The best classification is achieved when only 31 features are
selected, with an error rate of 5.7%. When all features are used, the error rate increases
to 9.2% due to the limited number of training samples and large feature set. The last
column in Table 1 lists the number of features selected in each set. It shows that texture
features, such as bi-level co-occurrence and 2 x 2 grams, are less discriminating than other
feature sets, mainly due to the small region size. Only 1/8 of the bi-level co-occurrence
features and 1/12 of the 2 x 2 gram features are selected. Crossing count histogram
features and structural features are very effective, with more than half of the original
features in both sets selected in the final feature set.

Principal Component Analysis (PCA) is another technique for reducing feature di-
mension [43]. To extract the first n principal components, we need to search a subspace
of dimension n with basis w. Suppose the mean is already removed from the feature
vector X, and let the projection of X onto this subspace be X

X = (' X)w, + (wl X)ws + ... + (W' X)w, (11)

n

PCA finds the optimal subspace @ such that the energy contained in X is maximized:

n

W= arg max Var [X]

- gw1,...,wn 2; =
1=

12



r 1 iti=]
s.t. wiw]—{o ifi (12)

The optimal basis is the first n eigenvectors of the covariance matrix of X, correspond-
ing to the first n eigenvalues [43]. The first n principal components are P; = w! X, i =
1,...,n. The idea of PCA is to concentrate the energy into the first several principal
components. Assuming the classification information is contained in the energy, the first
several principal components are more powerful than the remaining components. Fur-
thermore, PCA analysis can remove the correlation among features. As in the feature
selection experiment, the 1-NN classifier and the leave-one-out technique are used to
estimate the classification accuracy. Figure 3(b) shows the classification error rate ver-
sus the number of principal components used. As in feature selection, the error rate
downs quickly at first until 16 principal components added. The minimal error rate,
8.5%, is achieved when 64 principal components are used. Compared with the minimum
error rate of 5.7% achieved by the feature selection technique, PCA is not as powerful
as feature selection in this problem. Furthermore, to perform PCA, all features must
be extracted first. However, for feature selection, we only need to extract the desired
features, which would increase the feature extraction speed. Therefore, in the following,
we do classification on the 31 selected features.

3.4 Classification

Compared with the Neural Network (NN) and the Support Vector Machine (SVM), the
Fisher classifier is easier to train, faster for classification, needs fewer training samples,
and does not suffer from over-training problems. According to the comparison experiment
in Subsection 5.2, the SVM classifier performs slightly better than the Fisher classifier,
but the latter is much faster; we therefore use it for classification.
For a feature vector X, the Fisher classifier projects X onto one dimension Y in
direction W
Y =WT'X (13)

The Fisher criterion finds the optimal projection direction W, by maximizing the ratio
of the between-class scatter to the within-class scatter, which benefits the classification.
Let S,, and S, be the within- and between-class scatter matrices respectively,

Sp=> > (z—u)lz—u)" (14)

k=1geclass &

Sy = kz_:(ﬂk — up) (uy, — HO)T (15)
_ 1 3 16
uy = Ekglﬂk (16)

where wu, is the mean vector of the kth class, u, is the global mean vector, and K is
the number of classes. The optimal projection direction is the eigenvector of S, 'S,
corresponding to its largest eigenvalue [43]. For a two-class classification problem, we do
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not need to calculate the eigenvectors of S,'S,. It is shown that the optimal projection
direction is
W, = 51;1(@1 — Uy) (17)

Let Y] and Y3 be the projections of two classes and let E[Y]] and E[Y5] be the means of
Y) and Y5 respectively. Suppose E[Y]] > E[Y3], then the decision can be made as

class 1 IfY > (E[Y1] + E[Y2])/2

class 2 Otherwise (18)

aﬁz{
It is known that if the feature vector X is jointly Gaussian distributed, and the two classes
have the same covariance matrices, then the Fisher classifier is optimal in a minimum
classification error sense [43].

The Fisher classifier is often used for two-class classification problems. Although it
can be extended to multi-class classification (three classes in our case), the classification
accuracy decreases due to the overlap between neighboring classes. Therefore, we use
three Fisher classifiers, each optimized for a two-class classification problem (machine
printed text/handwriting, machine printed text/noise, and handwriting/noise). Each
classifier outputs a confidence in the classification and the final decision is made by
fusing the outputs of all three classifiers.

3.5 Classification Confidence

In a Fisher classifier, the feature vector is projected onto an axis on which the ratio
of between-class scatter to within-class scatter is maximized. According to the central
limit theorem [46], the distribution of the projection can be approximated by a Gaussian
distribution, if no feature has dominant variance over the others, as follows:

fr(y) = ——exp l—% (y_mﬂ (19)

2o o

where fy (y) is the probability density function of the projection. The parameters m and
o can be estimated from training samples. The classification confidence C;; of class i
using classifier j is defined as

fy (y/Xeclass i) .. ) ) .
Oy =14 Fri/xeclass i+fy (y/xeanother class) If 7 is applicable for classifier j.
0 Otherwise

(20)
where 7 is the class label and j represents the trained classifiers. If a classifier is trained
to classes 1 and 2, its output is not applicable to estimating the classification confidence
of class 3. Therefore, C3 ; = 0. The final classification confidence is defined as

1
Ci=53Ci (21)

C;; € [0, 1] for the two applicable classifiers and C; ; = 0 for the third classifier, C; € [0, 1].
However, C; is not a good estimate of the a posteriori probability since >3, C; = 1.5
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instead of 1. We can take C; as an estimate of a non-decreasing function of the a posterior:
probability, which is a kind of generalized classification confidence [47].

Fig. 4 shows the word segmentation and classification results (with the Fisher classi-
fier) for the whole and parts of a document image, with blue, red, and green rectangles
representing machine printed text, handwriting, and noise respectively. We can see that
most of the blocks are correctly classified. However some blocks are misclassified due
to overlap in the feature space. For example, some noise blocks are classified as hand-
writing in Fig. 4(b), and some small printed words are classified as noise in Fig. 4(c).
Since very little information is available in such small areas, it is very hard to get good
results. In next section, we present a method of Markov Random Field (MRF) based
post-processing to refine the classification by incorporating contextual information.

4 MRF-Based Post-Processing

4.1 Background

Let X denote the random field defined on 2 and let I' denote the set of all possible
configurations of X on 2. X is an MRF with respect to the neighborhood 7 if it has the
following Markov property

Pr(X=2)>0 forall zel (22)
Playfaer € Qr #5) = Playfaer € 1) (23)

Compared with Markov chains, one difficulty with MRF's is that there is no chain
rule for MRF's. The joint probability P(X = xz) cannot be recursively written in terms of
local conditional probabilities P(x;/x,,r € n). Therefore it is difficult to get an optimal
estimate of the MRF X which maximizes the a posteriori probability

~

X = arg mpx PX/Y) (24)

The establishment of the connection between the MRF and Gibbs distribution provides
a way to optimize of the MRF. To maximize the a posteriori probability of the MRF, we
need to minimize the total energy of the corresponding Gibbs distribution

X =argmin ) V (X 25

X = argmi CEE; (X) (25)
Here, a clique c is defined as a subset of sites in which every pair of distinct sites are
neighbors. The clique potential V,(X) is the energy associated with a clique, and de-
pends on the local configuration on clique ¢. Therefore, the optimization problem (24) is
converted to another optimization problem (25). The information about the observation
Y is contained in the clique system.

In the study of MRF's, the problems are often posed as labeling problems in which a
set of labels are assigned to sites of an MRF [7]. In our problem, each block constitutes
a site of an MRF. A label (as one of machine-printed text, handwriting, and noise) is
assigned to each block, and context information (encoded by the MRF model) is used
to flip the labels so that the total energy of the corresponding Gibbs distribution is
minimized. Relaxation algorithms are often used for MRF optimization [7].
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Figure 4: Word block segmentation and classification results. Blue, red, and green rep-

resent machine printed text, handwriting, and noise, respectively. (a) A whole document
image, (b) and (c¢) two parts of the image in (a).

T
gi

13
2
2

—~

16



Oy

_’I Ph_ (enterl l
Left | Center | Right
T 3 _
D,

(a) (b)

Figure 5: Clique definition. (a) C, for horizontally arranged machine printed words. (b)
C,, for noise blocks.

4.2 Clique Definition

As shown in (25), the MRF is totally determined by clique ¢ and clique potential V,(X).
The design of the clique and its potential is crucial, but a systematic method is not yet
available. In our case, machine printed text, handwriting, and noise exhibit different
patterns of geometric relationships. Our definition of cliques reflects these differences.

Printed words often form horizontal (or vertical) text lines. Clique C), is defined in
Fig. 5(a), which models contextual constraints on neighboring machine printed words.
We first define the connection between word blocks i and j. As shown in Fig. 5(a), O, is
the vertical overlap between two blocks, and Dy, is the horizontal distance between two
blocks. The distance between block 7 and j is

D(i, j) = |Dn(i, ) = G| + [Hi — Hj| + [Chi — Chy] (26)

where Dj(i,7) is the horizontal distances between words i and j, G, is the estimated
average word gap in the whole document, H; and H; are the heights of blocks 7 and j
respectively, and C'h; and Ch; are the vertical centers of the two blocks. Two blocks are
connected if they satisfy

2. 0< Dy, <2Gy,
3. D(i,j) < T,, where T, is a threshold, which is not sensitive to post-processing.

After defining the connection between two blocks we can construct a graph in which
nodes represent blocks and edges link two connected nodes. The property of an edge can
be measured by the distance D(i, j) between two blocks. If a node is connected with more
than one node on one side (left or right), we only keep the edge with the smallest distance.
Clique C), can be represented by nodes together with their left and right neighbors. If we
cannot find neighbors on the left or/and right sides, the corresponding neighbor is set to
NULL.

Noise blocks exhibit rather random patterns in geometric relationships and tend to
overlap or be very close to each other. As shown in Fig. 5(b), the noise block labeled
“Center” is overlapped with block 1, 2, 3, and is very close to block 4. Clique C, is

17



defined primarily for noise blocks. Similarly, the distance between two blocks is defined
as
D(Z,j) :maX(Dh(laJ)aDv(laJ)) (27)
where Dy, (i, j) = max(L;, Lj) —min(R;, R;), D,(i, j) = max(7;, T;) —min(B;, B;), and L,
R, T, B are the left, right, top, and bottom coordinates of the corresponding blocks. If
two blocks overlap in the horizontal or vertical direction, then Dy (7, j) < 0 or D, (4, j) < 0.
Blocks ¢ and j are connected if and only if D(i,j) < T,,, where T, is a threshold. If T,
is too big, incorrect label flips of noise and handwriting between two printed text lines
may happen. If T}, is too small, the contextual constraints on the noise blocks cannot be
fully used. We set T;, as half of the dominant character height (about 10 pixels in our
experiments). Each node, together with all nodes connected to it, defines clique C,,. The
number of connected nodes may vary from 0 to about 10, depending on the size of the
block. As an approximation, we consider only the first four nearest connected neighbors.
If the number of neighbors is less than four, we set the corresponding neighbors to NULL.
The geometric constraint on handwriting has weaker horizontal or vertical structure
than machine printed words, thus is partially reflected in both cliques C), and C;,. There-
fore we do not define a specific clique for handwriting.

4.3 Clique Potential

Clique potential is the energy associated with a clique. Generally, we assign high energy
to an undesirable configuration of the clique and low energy to a preferred configuration.
For example, an undesired configuration of clique C, (as shown in Figure 5 (a)) is that the
left and right blocks are labeled as printed text and the center block as noise. Flipping
the label of the center block from noise to printed text would achieve a more preferred
configuration, and reduce the total energy. Another undesirable configuration is that
all blocks are labeled as printed text for the clique C), in Figure 5 (b). It should have
higher energy than the configuration in which all blocks are labeled as noise. In many
applications the clique potentials are defined in ad hoc ways. One systematic way is
to define clique potential as the occurrence frequency of each clique in the training set,
which can be expressed as a function of local conditional probabilities. Based on this
idea, we define two clique potentials V,(c) and V,,(¢) for cliques C, and C,, as

B P(X), X., X,)
) =~ ) PG PO (28)
Vo) = P X0, X, Xy Xo) 29)

(P(Xe)P(X1)P(X2) P(X3)P(Xy))"
where X;, X. and X, are labels for the left, center, and right blocks of clique ¢, w is a
constant, and X;, 1 = 1,2,3,4, is the label of the ith nearest block. The energy of the
corresponding Gibbs distribution is

U(X/Y) = w, Y [=P(@s/ys)] +wp D Vile) +wn 3 Valo) (30)

sEQ ceCyp ceCp

where wg, w,, and w, are weights which adjust the relative importance of classification
confidence and contextual information for cliques C}, and C,. If w, = 1, w, = 0, and
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w, = 0, no contextual information is used; with increase in w, and w,, more contex-
tual information is emphasized. If we set w, = w, = oo, or equivalently w; = 0, no
classification confidence is used.

In the following experiments, we want to use MRFs for word block labeling. The
number of handwritten words is much smaller than that of the other two types, leading
to a lower estimated frequency of cliques with handwriting. As a result, the optimization
tends to label handwritten words as machine printed text or noise. Therefore, we regular-
ize the estimated clique frequency P (X, X., X,) and P(X., X, Xy, X3, X4) by dividing
by the product of the probabilities of the word block labels which compose the clique.
The above regularization is very similar to the previous approach [48], where w is set to 1.
In our case, w is changeable; increasing w will emphasize handwritten words. Our clique
potential definition is very systematic, and can be optimized for different applications.

After defining the cliques and the corresponding clique potential, we can search the
optimal configuration of the labels of all blocks, so that the total energy of the corre-
sponding Gibbs distribution is minimized. Relaxation algorithms are often used for MRF
optimization. There are two types of relaxation algorithms: stochastic and determinis-
tic [7]. Stochastic algorithms can always converge to the global optimal solution if some
constraints are satisfied. They are, however, computationally demanding. Deterministic
algorithms are simpler, but only converge to local optimal solutions depending on the
initial value. In our experiments, Highest Confidence First (HCF), a deterministic ap-
proach, is used for MRF optimization due to its fast speed and good performance [49].
The HCF algorithm finds a block such that the flipping of its label to another label would
reduce the total energy largest, and then flips its label to the desired one. It repeats this
procedure until no single flipping can further reduce the total energy. Since each flipping
would reduce the energy and the energy is bounded below, the HCF algorithm converges
in a finite number of steps. Fig. 6 is an example of the refined classification results after
post-processing. Compared with Fig. 4, we can see in Figs. 6(a) and (b) that most
misclassified noise blocks are corrected, with a few exceptions due to their having fewer
constraints. The misclassified small machine printed words are all corrected in Fig. 6(c).

5 Experiments

5.1 Data Set

We collected a total of 318 business letters from the tobacco industry litigation archives.
These document images are noisy with a lot of handwritten annotations and signatures,
few logos, and no figures or tables. Currently, we identify three classes: machine printed
text, handwriting, and noise. Since the groundtruthing of each word block in the images
of the entire database would be time consuming, we only did it for 94 extremely noisy
document images. These 94 images are used for testing, and the other 224 images for
training. All handwritten words (about 1,500) in the training set are groundtruthed.
Since there is much more machine printed text and noise, we randomly selected and
groundtruthed about the same number of samples of each type in the training set. We
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Table 2: Performance comparison of three different classifiers: the k-NN classifier, the
Fisher classifier, and the SVM classifier. In the table, Acc means for accuracy, and Var
means variance.

the k-NN classifier the Fisher classifier the SVM classifier
# of blocks
Correct | Acc | Var | Correct | Acc | Var | Correct [ Acc [ Var
Printed text 1,519 1,489 98.0% 1.4% 1,473 97.0% 1.1% 1,480 97.4% 1.2%
Handwriting 1,518 1,390 91.6% 2.3% 1,410 92.9% 2.2% 1,435 94.5% 2.1%
Noise 1,612 1,406 93.0% 2.0% 1,451 96.0% 1.5% 1,453 96.1% 1.2%
Overall 4,549 4,285 94.2% 1.3% 4,344 95.5% 0.9% 4,368 96.0% 0.9%

Table 3: Single word block classification

Percentage # of correctly # of misclassified Accurac, Precision
# of blocks & classified blocks blocks Y
Printed text 19,227 66.9% 18,446 781 95.9% 99.5%
Handwriting 701 2.4% 653 48 93.2% 62.9%
Noise 8,802 30.7% 8,522 280 96.8% 93.0%
Overall 28,730 100.0% 27,621 1,109 96.1% N/A

use accuracy and precision as metrics to evaluate the result:

# of correctly classified blocks of type i
# of blocks of type i

Accuracy of type i = (31)

# of correctly classified blocks of type i

Precision of type i = (32)

# of blocks classified as type i

5.2 Classifier Comparison

In this section, we compare the performance of three different classifiers: the k-NN
classifier, the Fisher classifier, and the SVM classifier. The SVM classifier is based on
VC dimension theory and structural risk minimization theory of statistical learning [50].
A public domain SVM tool, LibSVM, is used in the following experiment [51]. The N-fold
verification technique, a variation of the leave-one-out technique, is used to estimate the
classification accuracy. Instead of holding one sample for testing at each iteration, it first
divides the data set into N groups (N = 10 in our experiment), and then holds one group
of samples for testing and the remaining groups for training. The classification accuracies
of all the classifiers are shown in Table 2. We can see that the SVM classifier achieved
the highest accuracy. Considering the large variance, the improvement is not significant.
The variance of the classification accuracy of all classifiers is the smallest for printed
text, and the largest for handwriting, indicating that the printed text is more compact
in the feature space. Among all three classifiers, the Fisher classifier is the fastest since
only one vector multiplication is needed to perform a classification. Therefore, we use
the Fisher classifier for the rest of experiments.

The classification result on the test set of 94 images, using the Fisher classifier, is
shown in Table 3. The accuracies on all three classes range from 93.2% to 96.8%, with
the overall accuracy 96.1%. While this overall accuracy is very high, we notice that the
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Figure 7: MRF-based post-processing. (a) Number of corrected blocks using clique C,,.
(b) Number of corrected blocks using clique Cy,. (¢) Number of corrected blocks using
clique C, and classification confidence.

precision for handwriting is very low (63.9%). This is mainly because of the small number
of handwritten words in the testing set. Even small percentages of misclassification of
machine printed text and noise as handwriting will significantly decrease the precision of
handwriting.

5.3 Post-processing Using MRF's

In the following experiments we investigate how MRFs can improve classification accu-
racy. In the first run, we set wy = 0, w, = 0 and w, = 1 to show the effectiveness of
clique C,. Fig. 7(a) shows the number of corrected blocks, which were previously mis-
classified, with change in w. As expected, C), is very effective for machine printed words,
but not so effective for handwriting and noise. When w = 0.3 (under this condition, the
classification accuracy of all three classes increases), 355 (46%) of the previously mis-
classified machine printed words are corrected. When w increases, handwriting is more
emphasized, leading to higher classification accuracy of handwriting, and lower accuracy
of machine printed words and noise. In practice, w can be adjusted to optimize the
overall accuracy.

In the second run, we test the effectiveness of clique C,, by setting w, = 0, w, = 0,
and w, = 1. As shown in Fig. 7(b), clique C,, is very effective in correcting classification
errors of noise blocks. The classification error of noise blocks is greatly reduced when
w is small. For w = 0.6 (under this condition, the classification accuracy of all classes
increases), the number of misclassified noise blocks is reduced by 99 (35%). C,, can also
correct some classification errors of machine printed words, but is less effective than C,
as shown in Fig. 7(a).

The third run tests the effectiveness of classification confidence for post-processing.
Fig. 7(c) shows post-processing results by adjusting w, when w = 0.3, w, = 0, and
ws = 1. Adjusting w, will change the total flip number greatly. When w, = 0, the
energy reaches the minimum with the initial labels, and the total flip number is 0. When
w, increases, more emphasis is put on the contextual information, and the flip number
increases. When w, — +o00, it converges to the case of w, = 1 and wy; = 0, the setting
of the first run. The maximal overall classification accuracy is achieved when w, = 6.
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Table 4: Word block classification after MRF based post-processing

# of . Reduction
# of | correctly | # of mis- of mis- Error ..
blocks | classified | classified | classified | reduction Accuracy | Precision
blocks blocks blocks rate
Printed text | 19,227 | 18,835 392 389 49.8% 98.0% 99.7%
Handwriting 701 652 49 -1 -2.1% 93.0% 83.3%
Noise 8,802 8,682 120 160 57.1% 98.6% 96.0%
Total 28,730 | 28,169 561 548 49.4% 98.1% N/A

Compared with the first run, the total number of corrected blocks increases from 389 to
424 by incorporating classification confidence. Similar results are achieved by combining
classification confidence with clique C,.

In the last run, we fix w, = 1 and manually adjust w, w,, and w, to optimize the
overall classification accuracy. The final parameters we chose are w = 0.39, w, = 5, and
w, = 4. Table 4 shows the results after post-processing. The “Error Reduction Rate” in
Table 4 is defined as follows:

Error # of Errors Before Post-Processing — # of Errors After Post-Processing
Re%gctgon N # of Error Before Post-Processing

(33)

The error rate reduces to about half of the original for both machine printed text
and noise, but increases slightly for handwriting. However, compared with Table 3, the
precision of handwriting increases from 62.9% to 83.3% due to fewer machine printed text
and noise misclassifications as handwriting. The overall accuracy increases from 96.1%
to 98.1%.

Fig. 8 shows another example of machine printed text and handwriting identification
from noisy documents. To display the classification results clearly, we decompose the
classified image into three layers, representing machine printed text (Fig. 8(b)), hand-
writing (Fig. 8(c)), and noise (Fig. 8(d)) respectively. The result is good with very few
misclassifications.

Our approach is very general, and can be extended to other languages with minor
modification. Fig. 9 shows identification results for a Chinese document. In Chinese,
there is no clear definition of words and no spaces between neighboring words. Therefore,
the parameters of our word segmentation module are adjusted to get characters. We only
need to retrain the classifiers; the post-processing module is intact. We can see that most
handwriting and noise blocks are classified correctly, but several machine printed digits
are misclassified as handwriting. On the right margin of the document, some machine
printed text is identified as noise due to touching.

Our approach is fast; the averaging processing time for a business letter scanned at
300 DPI is about 2-3 seconds on a PC with 1.7 GHZ CPU and 1.0 GMB memory.
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Figure 9: An example of machine printed text and handwriting identification from Chi-
nese documents. (a) Original Chinese document image, (b) machine printed text, (c)
handwriting, (d) noise.

25



5.4 Page Segmentation in Noisy Images

In this experiment we show that our method can improve general page segmentation
results after removing identified noise. We evaluated two widely used zone segmentation
algorithms: the Docstrum algorithm [2] and ScanSoft SDK, a commercial OCR software
package [3]. Many different zone segmentation evaluation metrics have been proposed in
previous work. Kanai et al. [52] evaluated zone segmentation accuracy from the OCR
aspect. Any zone splitting and merging, if it does not affect the reading order of the
text, is not penalized. The approach of Mao et al. is based on text lines, which penalizes
only horizontal text line splitting and merging, since it will change the reading order
of text [53]. Randriamasy et al. [54] proposed an evaluation method based on multiple
ground truth, which is very expensive. Liang’s approach is performed at the zone level
[30]. After finding the correspondence between the segmented and groundtruthed zones,
any large enough difference is penalized. We use Liang’s scheme in our experiment since
we focus more on zone segmentation. From the OCR perspective, vertical splitting or
merging of different zones should not be penalized even when these zones have different
physical and semantic properties, but from the point view of zone segmentation, it should
be penalized.

There are 1,374 machine printed text zones in 94 noisy document images. The ex-
perimental results are shown in Table 5. All merging and splitting errors are counted as
partially correct in the table. Before noise removal, ScanSoft gets very poor results, with
an accuracy of 15.9%, on noisy documents under this metric. After analyzing the seg-
mentation results, we found that ScanSoft tends to merge horizontally arrayed zones into
one zone, which is suitable for documents with simple layouts such as technical articles,
but not suitable for other document types such as business letters. The Docstrum algo-
rithm outputs many more zones than ScanSoft, resulting in a higher accuracy (53.0%),
but also a higher false alarm rate (114.1%). After noise removal, the accuracy of both
algorithms increases significantly, from 15.9% to 48.4% for ScanSoft and from 53.0% to
78.0% for the Docstrum algorithm. The false alarm rate is reduced from 32.5% to 1.3%
for ScanSoft and from 114.1% to 7.9% for Docstrum.

Fig. 10 shows the zone segmentation results for two noisy documents with the Doc-
strum algorithm before and after noise removal. The handwriting is output to another
layer which is not shown here. We can see that after noise removal, there are many
fewer splitting and merging errors, and overall the segmentation results are significantly
improved.

6 Summary

In this paper, we have presented an approach to segmenting and identifying text from
extremely noisy document images. Instead of using simple filtering rules, we treat noise
as a distinct class, and use statistical classification techniques to classify each block into
machine printed text, handwriting, and noise. We then use Markov Random Fields to
incorporate contextual information for post-processing. Experiments show that MRF's
are a very effective tool for modeling local dependency among neighboring image com-
ponents. After post-processing, the classification error rate is reduced by approximately
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Figure 10: Zone segmentation before and after noise removal using the Docstrum algo-
rithm. (a) and (c) show the results before noise removal. (b) and (d) are the results after
noise removal.
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Table 5: Machine printed zone segmentation experimental results on 94 noisy document

images (totally 1,374 zones), before and after noise removal.

Before noise removal After noise removal
Fal Partially Fal Partially
Correctl};1 aersrfl correctly | Missed COYreCtl}(’i alzrﬁ correctly | Missed
segzrélgélste ZOnes segmented | #4018 segzrélgélste zones | segmented | ZO1€S
zones zones
ScanSoft 219 446 1148 7 665 18 671 38
(15.9%) (32.5%) (83.7%) (0.5%) (48.4%) (1.3%) (48.8%) (2.8%)
Docstrum 728 1568 646 0 1071 109 270 33
(53.0%) (114.1%) (47.0%) (0.0%) (78.0%) (7.9%) (19.7%) (2.4%)

50%. Our method is general enough to be extended to documents in other languages.
The technique presented in this paper can be used for image enhancement to improve
page segmentation accuracy of noisy documents. After noise identification and removal,
the zone segmentation accuracy increase from 53% to 78% using the Docstrum algorithm.

Currently our clique potential definition considers only the labels of each block in-
side the clique, which may lose useful information. For example, for clique C), a clique
of three printed words with roughly the same height is quite different from one with
different heights. In the latter case, it is possible that one of the blocks is erroneously
identified. Another potential improvement is to integrate high-level contextual informa-
tion in addition to the local contextual information that we used. For example, the text
line and zone segmentation results can be fed back to our classification module to refine
the classification. Effective use of contextual information is one of our future research
directions.
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