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The auditory processing and recognition of speech and other environmental sounds can be
conceptually viewed as consisting of three stages typical of all computational neural systems: (1)
The transformation of the details and objectives of the computational task into a form suitable
for processing with a neural network: In speech processing, this would entail the generation
of new representations that encode the important signal parameters in a spatially distributed
manner. (2) The eztraction of the features that best and most efficiently describe the nature of
the input signal: Non-adaptive neural networks are used to perform standard operations such
as formant extraction, binaural cross-correlations, and phonemic segmentation. (3) The learn-
tng and pattern recognition: Here adaptive neural networks are employed to discover, classify,
and store the unique or invariant features of the speech token. The resulting networks can
subsequently be used in the recognition of these signals.

In this report, we shall outline a specific approach to the analysis and recognition of speech
phonemes based on the fundamental principles of processing in the auditory nervous system.
The system consists of particular implementations of the three conceptual stages mentioned
above: The cochlear transformations of speech sounds into spatiotemporal patterns (stage 1);
the subsequent feature extraction by the central neural networks (stage 2); and the use of various
adaptive nets to identify the acoustic features of speech phonemes (stage 3). We shall illustrate
the utility of this approach in identifying and organizing the invariant features of nine American
English vowels.

1. The cochlear transformation of speech signals

This is the first stage of processing in the auditory nervous system. Its major consequence is
the generation of speech signal representations that are naturally suited for the parallel, spatially
distributed, structure of neural network processing. Our primary justification for adopting the
cochlear representation of speech signals over more traditional representations such as spectro-
grams or LPC parameters is the belief that the apparent ability of human listeners to interpret
speech effortlessly and reliably, is due in part to the unique representation of speech on the
auditory nerve. From a neural network processing point-of-view, the same justification holds,
i.e. that this representation of speech may be particularly suitable for neural network processing
since it is precisely the type of signal that the brain sees at its input from the auditory nerve.
As we shall briefly discuss below, there are immediate advantages that result from adopting this
representation both in noise immunity and in tolerance to large sound-level changes.

A brief outline of the cochlear processing algorithm in one of 128 spatially distributed out-
put channels is shown in Fig.1 (see Appendix Al for more detail) {1,2]. It involves a complex
multi-stage process that is modeled closely upon the mechanics of basilar membrane motion and
the biophysics of hair cell transduction[3]. The one input - multiple output, highly overlapping,
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Figure 1: The processing stages in one of‘i28 filters of the cochlear model

cochlear filters convert the unidimensional signal into intricate spatiotemporal patterns of ac-
tivity that encode the spectral parameters of the input in the interplay of spatial and temporal
cues as described briefly later. There are two important features of cochlear processing that sets
it apart from all other commonly used processing algorithms:

1. The cochlear filters have highly asymmetrical envelopes which peak and rapidly decay
at specific frequencies depending on the spatial location of each filter along the cochlea.
Because of the minimum-phase property of these filters, rapid accumulation of phase also
occurs beyond the point of resonance.

2. The cochlear filters preserve the fine temporal structure of their output waveforms over
much of the speech signal spectrum (< 4KHz). For higher frequencies, only a measure of
the output power is preserved, i.e. as in spectrogram displays.

Fig.2a illustrates the consequences of these two properties in the responses to a simple
two-tone stimulus. When plotted as spatiotemporal patterns, the responses due to each tone
appear as travelling waves that start at the base of the cochlea (bottom of figure), peak and
then decay with rapid phase shift at a specific location along the filter array. These effects
combine to produce visual edges or discontinuities parallel to the temporal axis. The location
of these edges along the spatial axis reflects the frequency of the underlying tone since the
travelling waves due to different frequencies decay at characteristic locations in an ordered
manner resulting in the frequency labeling of the spatial axis. This visual texture of the responses
is completely preserved at much higher sound intensities where, because of their limited dynamic
range, the cochlear channels become saturated (Fig.2b). Consequently, for any subsequent
processing scheme utilizing these spatiotemporal features, e.g the edges (as we discuss below),
no AGC mechanisms are needed [1].

For a complex signal like the speech vowel [I}, the patterns (Fig.3) are surprisingly similar,
i.e. the largest harmonics of the stimulus (those under the two formants) dominate the patterns,
each producing a travelling wave which decays at the location characteristic of its frequency.
Note also the overall periodic nature of the responses and the beating of the high-CF outputs at
the fundamental frequency of the signal - typical features of all voiced stimuli. For the unvoiced
fricative [s|, the psuedo-random nature of the excitation is evident in the irregular pattern of
the travelling waves. Note also the high frequency content and the the sharp spectral edge at ~
3KHz.

II. Feature extraction

Given the spatiotemporal representations illustrated above, neural networks can now be
designed to extract the perceptually significant features of the speech signal. In the case of
vowels, the overall shape of the spectrum [5] and the location (frequency) of its formants [6],
constitute the primary features of the stimulus. They are expressed in the cochlear responses by
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Figure 2: The spatiotemporal responses of the cochlear filters to a two-tone stimulus (600,1400
Hz). The ordinate is the spatial axis of the cochlea. (a) Tones at a moderate intensity. (b)
Tones are at +-40dB higher intensity than in (a). (Adapted from [4]).
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Figure 3: The spatiotemporal responses of the vowel [I] and the fricative [s].

the edges in the spatiotemporal patterns, and can be extracted by networks that perform edge
detection along the spatial axis of the patterns. Such a single-layer network is shown in Fig.4.
Each element in the network is modeled by a first order nonlinear differential equation of the
following form: ®
du,(t
g Hw(t) = omigzi(t) + 30 wisys(2) (1)
J j
where y;(t) = g(u;(t)) is the s** neuron output, g(.) is a nonlinear threshold function, z;(t) is
the neuron’s external input, u;(t) is the neuron’s membrane potential, and the time constant is
assumed unity. The network has two types of interconnectivities, feedforward m,; and feedback
Wy
By careful tailoring of the connectivities, the network function can be altered to perform a
wide range of operations [7-9]!. One specific and particularly useful form of these matrices is

1Gee Appendix A2 for the values and the rational behind choosing the network connectivities used in the
simulations shown in this report.
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Figure 4: Neural network for spectral feature extraction and phonetic segmentation

obtained if we set all off-diagonal elements to be negative (inhibitory) and the diagonal elements
to be zero or positive (self excitatory). This form of connectivities is also known in the biological
literature as the lateral inhibitory network (LIN), where it is found in the retina and in the
somatosensory systems.

The feedforward connections: Spatial edge detection

Consider first the feedforward operation of this LIN net (setting all w;; = 0) The network will
combine the elements of its input vector according to the m;; weights, essentially subtracting
from each element a weighted sum of its neighbors. Therefore, the network will roughly perform
a spatial differentiation on its input patterns x, operating as an edge detector. This is precisely
the way this net can extract the formants and spectral edges of the cochlear speech patterns.
In Figs.2-3 (section I) we saw that the frequencies of tones and vowel formants are marked in
the cochlear patterns by the locations of edges due to the two unique features of the cochlear
filters. Fig.5a illustrates the network feedforward detection of these edges in a series of vowels.
The output peaks correspond approximately to the formants of the different vowels. The same
operation was performed on various other speech phonemes and words, e.g. unvoiced fricatives
(10] and stop consonants [1,2].

The feedback connections: Enhancement and temporal edge detection

The recurrent connectivities add a new range of functional possibilities to the network,
because of the rich dynamic behavior that they facilitate in the network equations. Preliminary
theoretical investigations have already shown that such networks are capable of simulating such
operations as temporary storage and oscillations [7]. In Eq.1, the feedforward outputs (3_, m;;z;)
can be thought of as the input pattern to a purely recurrent net. Again, if lateral inhibitory
connections are used, the resulting net computes a much more enhanced version of its input
patterns, essentially selecting and preserving the maximum peak in each local region of its
input. Fig.5b illustrates the extraction and enhancement of the spectral edges of the series
of vowels. The recurrent network can also highlight the spectral changes in time that often
occur at the boundaries of different phonemes. This is accomplished by introducing appropriate
temporal delays in the path of the recurrent inhibition. Thus, when the spectral pattern at the
network input abruptly changes in any frequency band (i.e. location along the net), no inhibition
is fedback initially, thus allowing for large outputs to mark these instants.

Relationship to articulatory features
An important aspect of the results of Fig.5 is the systematic change along the vowel sequence
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Figure 5: (a) Nonrecurrent processing of a vowel series by a feedforward network; (b) Full
processing of the same series

of the relative amplitudes of the extracted peaks [10]. This reflects a systematic change in
articulation. Thus for the close vowels at either end of the sequence(]i] and [u]), the high-CF
peak is relatively large when the tongue constriction is fronted (as in [i]) and vice versa in the
back vowel [u]. The open vowels [#] and [D] occupy an intermediate position in that the two
peaks are comparable. This spectral-shape change apparently reflects the progressive shift of
the so-called Front Cavity Resonance [11] which, as we argue below, may be used as a reliable
indicator of the vowel identity.

The vowel variability problem

We have also examined the resulting spectra of nine American English vowels from 10 male
and female speakers. It has been postulated earlier that the long observed variability in vowel
spectra across speakers and sexes may be significantly reduced if cochlear-like processing is
employed [5]. In the LIN outputs, however, the variability persists especially across the sexes
[10]. Thus, outputs due to the same vowel may exhibit formant shifts and cancellations while
still perceived (on playback) as the target vowel. Nevertheless, despite the variability in the
patterns of a given vowel, the earlier observation regarding the relative levels of the output
peaks largely holds for all outputs. This has important consequences in the recognition of these
patterns as we discuss in the following section.

IT1. Learning and recognition

The reliable classification of the vowel patterns by human listeners suggests the existence
of unique or invariant features that characterize each vowel, and that a certain measure of
robustness must be associated with these features. In order to isolate these cues, we have em-
ployed supervised algorithms to train a variety of neural networks to classify correctly the vowel
patterns, and then examined the distributed representation of these patterns in the resulting
network connectivities or outputs. For instance, in a preliminary investigation of American
English vowels, we trained two neural networks to recognize 9 vowel spectra generated using
the processing stages discussed earlier. Each pattern was the average of 10 male and female
speakers?. In one case, the backward propagation algorithm [9] for feedforward networks was

3This is a case of supervised learning since the pattern labels are used explicitly to generate the average of
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Figure 6: (a) The average patterns of 9 American English vowels. (b) The recurrent network
representation of the vowel patterns. Note the reverse frequency representation of the spatial
axis

used to associate each vowel with a different unit vector (i.e. a two-layer network - 128 input
and 9 output units - with no hidden units [9]). In the other case, two new algorithms were
developed to train a single-layer recurrent network to orthogonalize its outputs to the different
vowels (a form of competitive learning as described in Appendix A3.). At the end of the learning
phase, we compared the vowel patterns with their network representations which, in the case
in the recurrent net, are the final orthogonalized outputs, and in the case of the feedforward
network, are the vowel patterns as seen by their appropriate output units, i.e. the input patterns
weighted by the network connectivities (see Appendix A3). The final representations in both
networks were quite similar, showing an emphasis on selected features of the vowel patterns.
Specifically, the results indicated an interesting subdivision of the vowel space (Fig.6) - namely
that in front vowels (e.g. [i],[I],[€]), the high-CF peak is heavily overrepresented, while in more
back vowels (e.g. [u],[U],[a]) the first formant is more weighted [10].

The emphesised formants in the final vowel patterns have an important articulatory correlate
in the resonance of the front cavity which appears to determine the energy distribution in the
vowel spectra, and hence their overall shape [10,11]. This is already evident in the relative
heights of the peaks in the input patterns as mentioned earlier. Thus, by forcing a spatial
orthogonalization and categorization, the learning network has accentuated and made apparent
the larger peaks of the input patterns (e.g. [i],[I],[a]). Furthermore, it has de-emphasized the
peaks that overlap heavily with the peaks of other patterns (e.g. in []), thus preserving the
unique features of each pattern®. We are currently examining the ability of these networks to
generalize such a representation to vowels in a variety of contexts.

These results suggest that for the recognition of these vowels, the most reliable feature is
the location (or frequency) of the front cavity resonance. This measure combines efficiently
both frequency (formant) and spectral shape cues. It can be derived using the above described
networks, or simply in hindsight, as approximately the frequency of the high-CF formant of
[i],[1],[€],[] and the low-CF formant of [],[a],[>],{U],[u]. It is interesting to note that recent ex-
tensive examination of vowel spectra have shown that these formants exhibit the least variability

each vowel pattern

3Note that in /burt/, /bit/, and /book/ the low-CF formant peaks heavily overlap. Since this is the largest
peak in the /book/ vowel and since the other two patterns possess unique high-CF formant peaks, the network
assigns this peak to /book/ and largely de-emphasizes it in the others.



across speakers [12].

In summary, we have illustrated the use of various neural networks in conjunction with
a model of cochlear processing. The non-adaptive networks take advantage of the peculiar
properties of the cochlear filters to extract robust estimates of the spectral parameters of speech
signals. In the case of American English vowels, adaptive networks are used both to organize
these features and to recognize them.

Acknowledgment: This work is supported partially through an NSF initiation award (ECE-
85-05581), by NSF Grant (CDR-85-00108), and by the Naval Research Laboratory.

Appendix
Al. The cochlear model:

The cochlear spatiotemporal patterns are computed using digital algorithms based on a
detailed biophysical model of the cochlea [3,13]. At each of 128 location along the basilar
membrane, the transfer function is computed and used in an FFT-based overlap-and-add method
to generate the membrane’s response to the stimulus. This output is then highpass filtered
(yn=2%n-.82y—1; modelling both outer ear and fluid-cilia coupling stages) and compressed by a
sigmoidal function of the form: y = M-(1/(1+ be™%%)), where a, b, and M are parameters of the
nonlinearity, and y, x are the output and input respectively. Finally, a lowpass filter smooths
the output (time constant = .1 msec). The parameters of the compressive nonlinearity should
be such that approximately 30 dB of linear gain is available between threshold and saturation
(defined as .1 - .9 of maximum output level, M) and that the output is saturated at moderate
sound levels (approximately 60 dB SPL).

A2. The lateral inhibitory networks:

The cochlear outputs are processed by a single-layer Lateral Inhibitory Network (LIN), which
effectively operates as a nonrecurrsive stage followed by a recurrent net.

LIN.I - The first stage (which can be thought of as dendritic) is implemented by a homogeneous
inhibitory profile which effectively operates as a highpass, linear phase, FIR filter (symmetric
coefficients my; : .02, .08,-.3, .4,-.3, .08, .02). Each of the 128 resulting outputs is then half-wave
rectified, and time-window averaged (window width=10 msec, computed at 4 msec intervals) to
generate the final traces shown in Fig.3a.

LIN.II - The second recurrent stage sharpens further the LIN.I outputs. The outputs are com-
puted at the steady state of the network, given by the set of equations:
Yi = g(v‘- - Ej w,-j y,-) N for i =0.. 127,

where g(u) = max(u,0), v; is the input to the network at the #*» location, and y; is the cor-
responding ** output which satisfies the mapping above. At each time instant, the input is
applied and a set of outputs is computed (the y vector) by iterating the mapping randomly
and asynchronously from zero initial conditions. The inhibitory profile of connectivities w;; is
chosen such that within any local region (approximately equivalent to the spatial width of the
inhibitory profile) only the largest output peak survives (i.e. a local winner-take-all strategy).
This is an extension of the network analyzed (for global connectivity) by [7]. The symmetric
w;; profile of inhibitory connection used is given by the set: 0 (midpoint), .02, .05, .1, .15, .2,
.25, .25, .2, .15, .1, .0 and its reflection.



A3. The learning algorithms 4

The results of the vowel classifications discussed in section III were duplicated in three
independent networks and learning algorithms. In all, competition emerges as a common theme,
primarily due to the desire to separate (categorize) the vowel patterns into nonoverlapping
patterns.

1. Feedforward network and back-propagation algorithm [9]: A two-layer network with 128
input and 9 output units is trained to associate each of the averaged vowel patterns with
a different unit vector (i.e. the ON state of each output unit acts as label for one of the
vowels). Hidden layers can also be used although interpreting the results becomes more
difficult with the proliferation of network connectivities. At the end of the training phase,
each of the averaged vowel patterns is applied, and its representation at the input of its
output unit is examined. This representation is weighted by the network connectivities
and presumably preserves the features of the input pattern that the output unit utilizes
to achieve its ON state (recognition)®. The resulting patterns of the nine averaged vowels
look quite similar to those shown in Fig.6 (derived from the recurrsive net below). We
have also trained the feedforward network on the individual non-averaged patterns, i.e.
by associating the multiple realizations of a given vowel from different speakers with one
output unit. The average of the weighted patterns again replicate closely the earlier results.

2. A gradient-descent algorithm for single-layer recurrsive networks: The averaged vowel pat-
terns are applied to a single-layer lateral inhibitory network which, through a competitive
learning algorithm, associates each of the patterns with unique stable state of the network.
A gradient-descent algorithm is derived by minimizing (with respect to the connectivities)
the following function of the network outputs:

E=g(<y,y*>)- (1-g(< ¢’ ¢ >)) (2)

where y* represents the steady state output of the network when a pattern z* is applied.

Here the constraint employs the usual similarity measure between the two patterns y* and
y’. The resulting algorithm forces the network outputs to coalesce into orthogonal classes
depending on the parameters (a,b) of the nonlinearity g(x) (a sigmoid of the form H—_ble“_’)
Initially, the network connectivities are set to zero and the outputs are identical to the
input patterns. The connectivities are then updated following the application of the entire
gset of patterns. This is repeated until E(.) reaches a minimum. The final outputs are
orthogonalized versions of the input patterns which preserve the unique elements of each
vowel. As shown in Fig.6, the surviving peaks of a given pattern are either the largest
features of the corresponding input pattern (e.g. as in [i] and [I]), or they overlap least
with the peaks of other patterns (as in [.]). The resulting network can also be used for the
recognition of an unknown vowel pattern by simply identifying the output towards which
the network iterates®.

4It should be emphasized that this approach should in general be complemented by a full examination of the
weighted representations of the other vowels at the same output unit, especially where exceedingly overlapping
patterns are involved.

5Unused neurons do not establish connectivities in this algorithm, and therefore need to be suppressed in the
recognition phase. This can be effectively accomplished by activating all neurons during the training phase, e.g.
through using positively biased versions of the vowel patterns, which result in global inhibitory inputs.



3. Heuristic algorithm for recurrent nets: This algorithm is more firmly rooted in physiological
models, and is closely related to the lateral tnhibitory topology described above. The basic
idea is to train the decision network as follows: Each time a pattern is presented, the
connectivity is modified in the direction of setting up an inhibitory field surrounding the
output (in analogy with the inhibitory fields set-up around each neuron in the LIN). Thus,
patterns with overlapping fields begin to compete, while closely spaced patterns merge.
By varying the range and shape of the interactions, it is possible to control the degree of
feature overlaps in the final set of classes. The iterative algorithm is given by:

bwij = —Pwi; + aG(y] — y]) - f (3)

where y¥ is the estimate of the expectation of the output at the j** neuron; 8 is the so
called inertial (or forgetting) term, # <« a. This algorithm was applied to the averaged
vowe] patterns (Fig.6) and the final output representations of the vowels were very similar
to those of the feedforward and feedback networks discussed above.
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