
On Fault Management using Passive Testing
for Mobile IPv6 Networks

Raymond E. Miller Khaled A. Arisha
Department of Computer Science Department of Computer Science

University of Maryland, University of Maryland,
College Park, MD 20742 College Park, MD 20742

miller@cs.umd.edu arisha@cs.umd.edu

Abstract
In this paper, we employ the Communicating finite state

machine (CFSM) model for networks to investigate fault
management using passive testing. First, we introduce the
concept of passive testing. Then, we introduce the CFSM model
and the observer model with necessary assumptions and
justification. We introduce the fault model and the fault
detection algorithm using passive testing. We present our new
passive testing approach for fault location, fault identification,
and fault coverage based on the CFSM model. Examples are
given for each fault management function to illustrate our
approach. Then, we illustrate the effectiveness of our new
technique through simulation of a practical protocol example, a
4-node mobile Ipv6 network. Finally future extensions and
potential trends are discussed.

I. INTRODUCTION

Due to the rapid growth in Telecommunication networks
and the fast evolution in technology, the need for a more
efficient and effective network management approach
becomes more urgent. The International Standard
Organization (ISO) has defined network management for the
Open System Interconnection (OSI) seven-layer model in
terms of five functional areas: fault management,
configuration management, accounting management,
performance management, and security management [14]. A
considerable effort has been made to standardize network
management protocols and develop network management
systems, such as the Simple Network Management Protocol
(SNMP) and the Common Management Information Protocol
(CMIP) [13]. However, there is much to be done towards
formally specifying problems in network management and
developing formal techniques to solve these problems. Our
work models the network using the formal approaches of
Finite State Machine (FSM) as is done in [1] and of CFSM as
in [8][8]. We illustrate our techniques by applying them to a
4-node mobile IPv6 network.

The work presented here focuses on one critical functional
area of network management; namely fault management.
There are two approaches to test a network for fault
management: active testing and passive testing. The most

commonly used approach for fault management is active
testing, which gathers information actively. By “actively” we
mean injecting test messages into the network to aid in
finding network faults. In addition to active testing checking
for dead links and nodes, active testing has techniques in
common with conformance testing of protocols.
Conformance testing is used to test protocols off-line to
insure that a protocol implementation conforms to its
specification. Test sequences are generated from the
specification. These input sequences are applied to the
implementation to see whether the produced output sequence
matches the expected one given by the specification. In
contrast, fault management for networks takes place while the
network is in use. Because of this, it is desirable to keep
testing traffic overhead to a minimum. Passive testing simply
observes the normal traffic of the network, without adding
any test messages. Thus using passive testing enables
examining the input-output behavior without forcing the
network to any test input sequences. As will be discussed
here, quite a bit of fault management can be accomplished
using passive testing.

Fault management usually covers the following aspects:
detection, location, identification, coverage and correction.
The main objective of this research is to see how much fault
management information we can obtain using passive testing
only. The simplest approaches to passive testing use a FSM
specification to model the behavior of the network. Given an
implementation of the network under test, it is viewed as a
black box where only the input-output behavior is observable.
The problem is to determine whether the behavior of the
implementation conforms to the behavior of the specification.
If it does not conform, this implies the existence of a fault.

Lee et al [1] apply passive testing on a FSM model of the
network for fault detection. Their paper demonstrates
effective fault detection capabilities of passive testing based
on observation of the input/output sequence of the
implementation. However, due to the limitation of the single
FSM model, no fault isolation or fault location was possible.
In [8][8] Miller presents a variant of the CFSM model to
specify a network. Using this model he showed that some
fault location information could be deduced. Miller and

Arisha [2][3] demonstrated that better fault location is
possible. As noted above, using passive testing to detect
faults eliminates testing overhead normally encountered by
other methods that inject special test messages into a
network. Of course fault detection is not sufficient. Once a
fault is detected, other remedial steps are required to
eliminate the fault. Fault location helps by isolating the
corrective actions to only a portion of the network. Thus,
additional fault location capability by passive testing would
be very useful if faults could be isolated to ever-smaller
regions. Additionally, if the exact fault that occurred could be
limited to a small set of possibilities, this would further
simplify the corrective activities. This greater fault location
and identification capability by passive testing is
demonstrated here for the IPv6 protocol.

We describe the CFSM based specification model, the
observer model, and the fault model in section 2 of this paper
with necessary assumptions. In section 3, we introduce a brief
description of the fault detection algorithm using passive
testing. Section 4 presents the results of fault location. In
section 5, we describe our work of fault identification for the
single FSM model and the CFSM model as well. Section 6
provides an overview of the fault coverage work with an
example. Section 7 presents experiments modeling and
simulation of the Ipv6 protocol for a 4-node mobile network,
as well as simulation results to demonstrate the effectiveness
of our approach. Finally, conclusions and possible extensions
are discussed in section 8.

II. THE MODEL

In this section we introduce the CFSM model for network
specification and the observer model. First, the FSM based
model is presented as a description of the single node
structure of the CFSM, together with associated assumptions
and justifications for the model. Then, the CFSM model is
introduced. Finally the observer model is described with
assumptions for the whole model.

A. The Node Model

A single node is modeled as a deterministic finite state
machine (DFSM) M. M is a six-tuple:
• M = (I, O, S, s0, δ, λ) where:
• I, O, and S are finite non-empty sets of input symbols,

output symbols, and states respectively.
• s0 is a designated initial state.
• δ: S × I Å S is the state transition function;
• λ: S × I Å O is the output function.
• When the machine is in state s in S and receives an input

a in I, it moves to the next state specified by δ(s, a) and
produces an output given by λ(s, a).

We denote the number of states, inputs, and outputs by n =
|S|, p = |I|, and q = |O|, respectively. Also the definition for
the transition function δ and the output function λ can be

extended from input symbols to strings as well. Starting from
initial state s0, an input sequence x = a0,a1,…,ak takes the
machine successively to states si+1= δ (si, ai), i=0,1,…,k, with
the final state δ(s0, x) = sk+1, and produces an output sequence
y=λ(s0, x)=b0,…,bk, where bi=λ(si,ai), i=0,1,…,k.

Assumptions: We assume that if a fault occurs, only one
fault occurs during a test cycle. We also assume that our
FSMs are deterministic. For all unspecified input transitions,
a fault should be detected. So all unspecified transitions will
lead to an implicitly defined additional fault state with a new
output called “f” to indicate “fault.” This fault state is not an
“original state” in the specification; it is used only to allow us
to assume that the machines are completely specified. For
more detail about justification of these assumptions, refer to
[1][2][4][8].

B. The CFSM Model

Our model is based on the node model of DFSM as
described above. Representing a huge network by a single
DFSM would result in a very large machine, whereas using a
machine for each node provides a distributed representation
with each machine being relatively simple. So, we choose to
propose a variant of the Communicating Finite State
Machines (CFSM), where the network is modeled as a set of
machines, one for each node of the network, with channels
connecting these nodes [15]. This variant uses the Mealy
model formulation rather than the send/receive labeling of
transitions which is used in the original CFSM model, that is,
here we have input/output labeling on transitions.

A CFSM consists of a set of machines M, and a set of
channels C. We specify our network N=(M, C), where
M= {m1,m2,…,mr} is a finite set of r machines, and C={Cij: i,j
≤ r ∧ i ≠ j} is a finite set of channels,
• For m ∈ M, we define the deterministic finite state

machine (DFSM) m as a six-tuple; m=(I, O, S, s0, δ, λ),
as defined in section 2.1.

• Each Cij ∈ C represents a communication channel from
mi to mj. It behaves as a FIFO queue with mj taking
inputs from the head of the queue and mi placing outputs
into the tail of this queue for messages produced by mi

that are intended for mj.
According to our completeness assumption, we are

assuming that the implementation machine has a transition
from every state for every input symbol i ∈ I. We define also
a set of fault states {F i} where each Fi defines for each
machine mi a common destination state for each additional
transition (whose output label ∈ {f ij }). More detail about the
completeness assumption implementation can be found in
[2][3].

C. The Observer

Each observer will be placed at a certain node in the
network. Let A represent a machine specification at a node

where the observer is placed. The observer is assumed to
know the structure of A, so it can trace the input/output tuples
observed with the specified state transitions of A. For the
implementation machine B the observer sees the input/output
behavior of the FSM representing this node as a black box,
and the observer compares B’s input/output sequence with the
specified sequence of A.

Assumptions: We assume that the network topology of the
implementation is the same as the specification. When more
than one node of the network has an observer, we assume that
there is some way to gather the information from these
observers for fault analysis. The node is viewed as a black
box FSM for the observer. For more detail about justification
of these assumptions, refer to [2][3][6].

D. The Fault Model

Due to our assumptions of the CFSM model used in
passive testing, the three types of faults that we can
investigate, in terms of the CFSM specification, are:

Output Fault: This occurs when a transition has the same
head and tail states and the same input as in the specification
FSM, but the output is altered.

Tail State Fault: This occurs when a transition has the
same head state and input/output symbols as specified, but
the tail state is altered.

Channel Fault: This occurs when a channel corrupts a
message (i.e. an input and/or output symbol)

Assumptions:
• Only a single fault exists on the network.
• Faults in the nodes are persistent, while faults in the

channels are non-persistent.

III. FAULT DETECTION

Passive testing fault detection for a network using the FSM
model was first developed in [1]. the fault detection
capability of passive testing can be summarized as follows:
As an input/output sequence of the implementation machine
B is observed it is compared with the expected behavior of
the specification FSM A. B is considered “faulty” if its
behavior is different than that of A. That is, there is no state
in A that would display the observed input/output sequence.
The procedure for detecting this is to first start out with the
set L0 consisting of all states of A, since we do not know what
state A is supposedly in at the start of the observed
input/output sequence. Then with the first observed
input/output i1/o1 we compute a new set of states L1, the
successor states of A from states in L0. This process is
continued for each i j/oj to produce an Lj set from Lj-1. If at
some point Lj becomes a singleton set then the sequence up to
this point is called a passive homing sequence. If at some
point k Lk becomes empty, we know that B is faulty since no
state A could produce this observed input/output sequence.

The detailed algorithm that describes the above procedure
is in [1]. An example of a FSM model and the passive testing
fault detection algorithm is shown in Figure 1, where x is the
observed input/output sequence.

IV. FAULT LOCATION

Referring to the fault location work on the two-node model
done by Miller [8][8], the detected fault can be characterized
with respect to its location in the network as follows:
Type A fault: ok

1 ε O1 of m1 Å the fault is in m1.
Type Ba fault: ok

1 = f12 ∧ no s1 ∈ Lk-1 has λ(s1, ik
1)=f12 Å

the fault is in m1.
Type Bb fault: ok

1 = f12 ∧ ∃ s1 ∈ Lk-1 has λ(s1, ik
1)=f12 Å the

fault is in m1 or outside m1.
Type Bc fault: ok

1 ∉ O1 ∧ ok
1 ≠ f12 Å the fault is in m1.

Type Ca fault: ik
1 ∉ I ∧ ik

1 ≠ f21 Å the fault is outside m1.
Type Cb fault: ik

1 ∉ I1 ∧ ik
1 = f21 Å the fault is in m1 or

outside m1.
Fault type Bc is first appended to the fault characterization

in [2][3]. More elaboration to generalize the fault location
work is given in [2][3]. From this work, analysis done at the
observer can be viewed as a node cut through a large network
splitting the network into three parts: The cut and the two
sides of the cut. To get finer location we can consider
multiple node-cuts such that these cuts, together, create
relatively small regions for the network. Using our fault
location capabilities through each cut, we will be able to
locate a fault to a smaller region as follows.

From this point of view, we show how we can obtain more
information regarding fault location. Taking into
consideration our assumption that there is a central observer
to which other local observers can report. For the above
figure, the node cut passing through ABC can have 3
observers, one at each node over this node cut. By combining
the fault location that is reported from each observer, we can

s1 s2

s4

s3

s5 F

F

0/0

0/0

0/0

1/1
1/1

0/0

0/f

1/1

1/f

1/0

s1

s2

s3

s4

s5

s2

s4

s5

X

s4

X

s5 s1 s2 s3 X
0/0 0/0 1/1 1/0 0/0 1/1 1/0

x = {0/0, 0/0, 1/1, 1/0, 0/0, 1/1, 1/

Fig. 1. FSM example for the specification

A

F

BE

C

D

Fig. 2. A multiple-node-cut example

determine whether the fault is located to the left or right side
of that node cut. If we look at the other node cut passing
through EBF which can also have 3 observers, one at each
node of this node cut, we determine whether the fault is
above or below that node cut. If we combine the location
information from both these edges, we can isolate a region of
the network where the fault resides. This leads to more
precision in the fault location approach. Subsequent active
testing can be applied to the isolated region to determine what
fault occurred in that region of the network.

V. FAULT IDENTIFICATION

This section covers the fault identification approach for the
single FSM model as described in [4][5][6]. Then, it
describes how to generalize it to the new fault identification
technique for the CFSM model. It also gives illustrative
examples demonstrating the proposed technique on a 2-node
model.

A. Fault Identification for the single FSM model

In section 3 we discussed how we obtained the sequence of
sets L0, L1, …, Lj-1, Lj from the observed input/output
sequence. Now, let us assume we have an observed
input/output sequence i1/o1, i2/o2,…ik-1/ok-1, ik/ok and the
resulting sequence of sets L0, L1, …, Lk-1, Lk where Lk=φ and
Lk-1≠φ . That is, at step k we have just detected that a fault has
occurred. We will call this process “forward trace” since it
can be computed step-by-step as each input/output pair is
observed. Now, for fault identification purposes we analyze
this input/output sequence, in terms of the specification, by
another process that we call the “backward trace”, to produce
a second sequence of sets of states.
• We let (Lk)R be the set of all states of A.
• In a backward manner we form set (Lj-1)R from (Lj)R as

follows: (Lj-1)R contains all states that are head states of
transitions with input/output i j/oj with tail states being
members of (Lj)R.

1) Output Fault identification:
Theorem 1: If Lj has a state sp that under i j+1 has an output

≠ oj+1 and (Lj+1)R has δ(sp, ij+1) as an element, then the output
fault sp  (i j+1/oj+1)Å δ(sp, ij+1) could have occurred.

Proof: is given in [4][5].
2) Tail State Fault Identification:
Theorem 2: If Lj has a state sp with transition sp

 (i j+1/oj+1)Å sq and there is a sr in (Lj+1)R , then sp

 (i j+1/oj+1)Å sr is a tail state fault that could have occurred.
Proof: is given in [4][5].

Example
Using the same FSM specification as shown in figure 1, we

assume an observed input/output sequence: {0/0, 0/0, 0/0,
0/0, 1/1, 00}. The forward and backward traces are shown in
figure 3 along with “crossovers” shown by dotted arrows.

The seven “crossovers” arrows above are applications of
theorems 2 and 3 as described below:

Applying theorem 2 we see that this crossover depicts an
output fault of transition s5  (0/f)Å F changing to s5

 (0/0)Å F.
Applying theorem 3 we see that this crossover depicts tail-

state faults of the following transitions:
• s4  (1/1)Å s5 changing to s4  (1/1)Å s1.
• s4  (1/1)Å s5 changing to s4  (1/1)Å s2.
• s4  (1/1)Å s5 changing to s4  (1/1)Å s3.
• s4  (1/1)Å s5 changing to s4  (1/1)Å s4.
• s4  (0/0)Å s4 changing to s4  (0/0)Å s2.
• s4  (0/0)Å s4 changing to s4  (0/0)Å s3

• s4  (0/0)Å s4 changing to s4  (0/0)Å s1

This example should provide insight over how single faults
that could possibly occur, and would cause the
implementation to produce that observed input/output
sequence, can be found using the forward and backward
traces along with crossovers. The algorithm is thus:

Forward/Backward Crossover Algorithm
• Do the forward trace analysis for the observed

input/output sequence, letting k be the least k such that
Lk=φ.

• Do the backward trace analysis for the observed
input/output sequence. Note: This can only be done after
the complete input/output sequence has occurred.

• Add crossover arrows by applying theorems 2 and 3.
Output faults (theorem 1) can arise in this analysis from

states, that under some observed input/output have no next
state (i.e. an X) in the forward trace analysis. In our example
we found two such cases where the current tail state for the
transition appeared in the backward analysis at the next step
in the input/output sequence. On the other hand, tail state
faults (Theorem 2) can arise from states in the forward trace
analysis that have next states in the forward trace, but whose
faulty next states appear in the next step of the backward
analysis. More detail about fault identification technique is
given in [4][5].

Notice that in figure 3 as described below the horizontal
line, the Tail-state fault {s2  (0/0)Å s4 changing to s2

 (0/0)Å s2} is undetected by the Forward-Backward-
Crossover technique. This type of fault is called a “recurrent”
fault. Extensions to our fault identification technique to detect
such recurrent faults are described in [4].

B. Fault Identification for the CFSM model

s1

s2

s3

s4

s5

s2

s4

s5

X

s4

X

s4 s4 s5 X

s 1

s 2

s 3

s 4

s 5

X
s1

X

s3
s2

s3X

0 / 0 0 / 0 0 / 0 0 / 0 1 / 1 0 / 0

0 / 0 1 / 1

X
1 / 1

s2

s4

X
X

1 / 1

s 1X
0 / 0

s2 s 1 s3 s5

0 / 0 0 / 0 0 / 0 0 / 0 1 / 1 0 / 0

s 2

s1

s2

s1

s2

s1

s2

Fig. 3. Example of the Fault Identification

For simplicity, we start with a two-node CFSM model as
illustrated in the figure below. An observer is located at
machine m1.

Fault Identification in m1:If by using the results of the
above characterization, the fault is determined to be of type A
or Ba, where the fault is located in m1, then the fault
identification procedure for single FSM model on machine
m1, as described in 4.1 provides the result. This analysis will
lead to potential output faults and/or tail-state faults in m1.
For other types of faults -namely faults of type Bb, Ca and Cb,
the fault can be located outside m1. A further analysis is
needed for machine m2 and both channels C12 and C21.

Fault Identification in m2: For machine m2, we need to
extract its expected input/output sequence from the
input/output sequence observed at m1. Since we are assuming
only one single fault in the system, and since in this phase we
are analyzing potential faults in m2, machine m1 and both
channels C12 and C21 are assumed to be fault free. If we
denote the observed input/output sequence at m1 as e1=i 1/o1,
i2/o2,…, ik-1/ok-1, ik/ok, then the expected input/output sequence
of machine m2 should be e2=o1 /i2, o2/i3, …, ok-2/ik-1, ok-1/ik.

This can be expressed as: If e1={ i j
1
 / oj

1
 | j=1,…,k} then

e2={ i j
2 / oj

2 | j=1,…,k-1 and ij
2=oj

1 and oj
2=i j+1

1 }. Now, we
have the expected input/output sequence at node m2.
Applying the fault identification procedure for a single FSM
model on machine m2 only, as described in 4.1, leads to
potential output faults and/or tail-state faults. Of course, this
assumed that the fault was in m2 and it could have been in C12

or C21 instead. Thus we have to look at these possibilities
also.

Fault Identification in channels C12 and C21:To analyze
potential faults in the channels, according to the single fault
assumption, both nodes are assumed fault free for this phase
of the analysis. Our approach here is to use the Message
Sequence Chart (MSC) to illustrate the scenario of the
exchanged symbols over the channels.

The analysis goes in the backward direction, i.e. the most
recent symbol first. The procedure -that is applied to each
symbol- can be described as follows:

For the symbol i j
1 over the channel C21, i.e. input to m1, we

check whether this symbol i j
1 can be a result of alteration of

an original symbol oj-1
2 coming from m2, due to a fault in C21,

provided that this alteration will cause the same observed
input/output sub-sequence e1*={ i t

1
 / ot

1
 | t=j,…,k} to occur.

For the symbol oj
1 over the channel C12, i.e. output from

m1, we check whether this symbol oj
1 can experience an

alteration to some other symbol i j
2 received by m2, due to a

fault in C12, provided that this alteration will cause the same
observed input/output sub-sequence e1**={ i t

1
 / ot

1
 |

t=j+1,…,k} to occur.
Notice that we always keep as a reference the observed (m1

side) input/output symbols and try to assume alteration to
occur during transmission over the channels.

VI. FAULT COVERAGE

This section gives an overview of the fault coverage work.
During the fault identification description, it is illustrated
how we collect information needed for the fault coverage
computation. So, it covers the fault coverage process for a
single node. It also gives an illustrative example to apply the
proposed technique. Finally, we introduce how to generalize
our fault coverage functionality to the CFSM model.

A. Fault Coverage for the single FSM model

As a product of the fault identification, we can get two sets
of faults: Set-I and Set-II. If any of the faults of Set-I occurs,
they could produce the observed input/output sequence of the
implementation. The faults of Set-II are known not to have
occurred since they would have produced a different output
sequence than observed, for the observed input sequence.
Extending the Forward/Backward Crossover Algorithm such
that, during this trace, after passive homing occurs, we can
identify potential set-II faults, which are known not to have
occurred. These potential set-II faults can be computed as all
possible output and tail-state faults that can be produced from
traversed transitions during the input/output observations,
since these faults if they had occurred would have produced a
different output sequence.

For the transitions before passive homing, a transition is
considered traversed only after we make sure that it has been
executed over all successful paths of transitions from L0 to
the homing state. So, we have to wait until the passive
homing occurs to check out the pre-homing transitions to
decide whether to add them or not to the potential set-II
faults.

At the end of the backward trace, we need to remove from
the potential set-II faults, any set-I fault that are detected
during the backward phase. Set-I faults are identified during
the backward trace after the collection of the potential set-II
faults in the forward trace. During the forward trace we
cannot predict these set-I faults. After the backward trace, we
remove any set-I faults that were collected in the potential
set-II faults.

m1 m2

C21
C12

Figure 4: A two-node model

m 1 m 2

T
im

e

o 1
1

i 1
1

s 1
1 s 1

2

s 2
1

o 2
1

i 2
1

s 2
2

s 3
1

…
.

o k
1

i k
1

s k - 1
2

s k
1

 Fig. 5. An example for MSC

i1/o1 i2/o2 i3/o3 i4/o4 … ik-2/ok-2 ik-1/ok-1 ik/ok

Fault coverage is defined as the percentage of faults found
by the test sequence observation versus the total number of
faults. First we describe how to calculate the total number of
faults. Then, we show how to compute the fault coverage
achieved by our observed input/output sequence.

The method used to determine the total number of faults in
each class is as follows:

For the total number of output faults, we consider every
transition in the specification FSM. To get an output fault we
have to alter its output to every possible output symbol other
than the output symbol in the transition. Repeating this for
every transition leads to:

Total number of Output Faults = |transitions| × (q - 1)
For the total number of tail state faults, we consider again

every transition and alter its tail state to every possible state
other than its original tail state. This leads to:

Total number of tail state faults = |transitions| × (n - 1)
Fault Coverage can be calculated as the percentage of the

total number of identified faults (Set-I + Set-II) versus the
total number of faults.

Example
The example below shows the application of the algorithm

to the FSM network model shown in Figure 1.
Assume the observed input/output sequence is: 0/0, 0/0,

1/1, 1/0, 0/0, 1/1, and 1/0. Tracing the set of possible states
according to the observed i/o sequence, we get the forward
trace. Then starting from the last observed i/o tuple, we can
produce another backward trace of possible states. The
forward and backward traces are shown in Figure 6.

First, we use the forward phase to calculate potential set-II
faults. Every transition visited in the forward trace implies
that all associated faults (Output and Tail-State) have been
considered, as shown in the table below. To calculate these
associated potential set-II faults:

Output faults for a given transition are all possible
alterations of the output symbol. Thus, the number of output
faults is (q – 1).

Tail-State faults of a given transition are every possible
alteration of the tail (destination) state value. Thus, the
number of tail-state faults is (n – 1).
Output fault coverage = (set-I + set-II)/total

= (1+4)/8 = 5/8 = 62.5%,
Tail State fault coverage = (set-I + set-II)/total

= (4+12)/32 = 16/32 = 50%,
For more detail about fault coverage calculation, refer to

[7][8]. Notice, that it is desired to have set-I fault coverage as

small as possible, since the smaller the number of identified
set-I faults, the smaller our uncertainty in possible faults to be
used in a later fault correction phase. While for set-II and
total fault coverage, it is better to have them as large as
possible, since this indicates a minimum number of the faults
that are left undetected.

B. Fault Coverage for the CFSM model

For fault coverage to be generalized for CFSM model
based passive testing, we need to consider the sources of
faults. These sources are the nodes and the channels. For the
nodes, since each is modeled as a FSM, we can apply the
fault coverage procedure as in 4.2 for each node individually
to get its own fault coverage. For channels, fault coverage
cannot be realistic since according to our assumptions the
faults in the channels are transient. So, a symbol transmission
through one channel cannot exclude the possibility of
occurrence of a related fault for the same symbol
transmission later due to the transient nature of faults.
Because of this the overall fault coverage is computed as the
average of the fault coverage of each individual node.

VII. EXPERIMENTS AND PRACTICAL EXAMPLES

To investigate the effectiveness of the passive testing based
fault management approach we have just discussed for our
CFM model; we model IPv6 mobility support with a 4-node
CFSM model shown in figure 7, and simulate the passive
testing techniques we have just described. First we give a
brief introduction for the mobility support of the Internet
Protocol version 6 (Ipv6), then we discuss the CFSM model,
the simulation and the results.

With recent advances in wireless communication
technology, mobile computing is an increasingly important
area of research. A mobile system is one where independently
executing components may migrate through some space
during the course of the computation, and where the pattern
of connectivity among the components changes as they move
in and out of proximity [10]. IETF made efforts to
standardize the introduction of the mobility to the Internet
Protocol version 6 (IPv6) [11][12]. IP version 4 assumes that
a node’s IP address uniquely identifies the node’s point of
attachment to the Internet. Therefore, a node must be located
in the network indicated by its IP address to receive
datagrams (connectionless packet data units) directed to it;
otherwise, datagrams destined to the node would be
undeliverable. The alternative mechanisms, proposed by IP
version 4, for a node to change its point of attachment
without losing its ability to communicate are unacceptable
due to the difficulties in maintaining higher-layer connections
and server scaling problems. The IPv6 protocol is a new
scalable mechanism to accommodate node mobility within
the Internet. Mobile IP introduces the following new
functional entities:

s1

s2

s3

s4

s5

s2

s4

s5

X

s4

X

s5 s1 s2 s3 X

s1

s2

s3

s4

s5

s5

X
X

X

X

s4s2

s4

X
X

0/0 0/0 1/1 1/0 0/0 1/1 1/0

1/0 0/0 1/1 1/0

Fig. 6. Example of Forward and backward traces

1) Mobile Node: a host or router that changes its point of
attachment from one network or subnetwork to another. A
mobile node may change its location without changing its IP
address.

2) Home Agent: a router on a mobile node’s home network
which tunnels datagrams for delivery to the mobile node
when it is away from home, and maintains current location
information for the mobile node.

3) Foreign Agent: A router on a mobile node’s visited
network that provides routing services to the mobile node
when registered. The foreign agent de-tunnels and delivers
datagrams to the mobile node that were tunneled by the
mobile node’s home agent. For datagrams sent by a mobile
node, the foreign agent may serve as a default router for
registered mobile nodes.

The mobile node is given a permanent IP address on a
home network. When away from its home network, a “care-
of-address” is associated with the mobile node and reflects
the mobile node’s current point of attachment. The mobile
node uses its home address as source address of all IP
datagrams that it sends. The following steps provide an
outline of the operation of the mobile IP protocol:
• Mobility agents (i.e. foreign agents and home agents)

advertise their presence via agent advertisement
messages. In the absence of agent advertisements, a
mobile node may optionally solicit an agent
advertisement message from any locally attached
mobility agents through an agent solicitation message.
All mobility agents should respond to agent solicitation.

• A mobile node receives these agent advertisements and
determines whether it is on its home network or a foreign
network.

• When the mobile node detects that it is located on its
home network, it operates without mobility services. If
returning to its home network from being registered
elsewhere, the mobile node de-registers with its home
agent, through exchange of a Registration Request and
Registration Reply with it.

• When a mobile node detects that it has moved to a
foreign network, it obtains a care-of-address on the
foreign network. The care-of-address can either be
determined from a foreign agent’s advertisement (a
foreign agent care-of-address), or by some external
assignment mechanism such as the Dynamic Host
Configuration Protocol (DHCP) (a co-located care-of-
address).

• The mobile node operating away from home then
registers its new care-of-address with its home agent
through exchange of a Registration Request and
Registration Reply message with it, possibly via a
foreign agent.

• Its home agent intercepts Datagrams sent to the mobile
node’s home address, tunneled by the home agent to the
mobile node’s care-of-address, received at the tunnel

endpoint (either at a foreign agent or at the mobile node
itself), and finally delivered to the mobile node.

• In the reverse direction, datagrams sent by the mobile
node are generally delivered to their destination using
standard IP routing mechanisms, not necessarily passing
through the home agent.

As shown in figure 7, our model has two mobile nodes (A
and B) moving randomly between the two subnetworks. Each
subnetwork has a mobility agent. We call the mobility agent
of mobile node A’s home network the “home agent”, while
the mobility agent of mobile node B’s home network the
“foreign agent”. The links connecting the mobile nodes to the
agents are wireless, while the link between the mobility
agents may not be wireless. Using our CFSM model, we
place an observer at each of the mobile agents. Figure 8
illustrates the FSM representing the mobile agent, while
figure 9 illustrates the FSM representing the mobile node.

Placing the observer at the mobile agents (home and
foreign agents) we generate faults randomly and inject them
in the system. Random generation of faults choose:
• Fault location: whether in home agent, mobile agent,

mobile node A, and mobile node B.
• Fault time: when the fault is injected in the system, (i.e.

at which step of the input/output sequence),

Host
Agent

Foreign
Agent

Mobile
Node B

Mobile
Node A

Fig. 7. Architecture of the model of IPv6 mobile network

1

(SL, —, —/HA, — , —)
(—, —, SL/— , —, FA)

2 3
(DT, —, —/—, —, DT)
(—, —, DT/DT, —, —)
(—, DT, —/DT, —, —)

(D
Q, —

, —
/D

P,
 D

Q, —
)

(SL, —, —/HA, — , —)
(—, —, SL/— , —, FA)

(D
Q

, —
, —

/D
N, —

, —
)

(—
, —

, RQ/—
, RQ, —

)

(—
, RN, —

/—
, —

, RN)

4 (—, —, DT/— , DT, —)
(—, DT, —/ —, — , DT)

(—, RP, —/— , —, RP)(—, DQ, —/— , —, —)

SL: Solicit
HA/FA: Home/Foreign Host Advertisement
DQ/DP/DN: De-Registration reQuest/resPonse/deNial
RQ/RP/RN: Registration reQuest/resPonse/deNial
DT: Data

Tuple ≡ (MobileNode,
OtherHost, OtherNode)

Fig. 8: The FSM representing the mobile agent

1

(—, —/SL, SL)

(—, —/SL, SL)

2

(HA, —
/DQ, —

)

(DT, —/DT, —)
(HA, —/—, —)

(DN, —
/SL, SL)

3

(—, FA/—, RQ)

(—, RN/SL , SL)

(—, FA/—, RQ)

4

(DP, —/DT, —)

(—, FA/—, RQ)

5

(—, RP/—, DT)

(—, DT/—, DT)
(—, FA/—, —)

(HA, —/DQ, —)

(HA, —/DQ, —)

SL: Solicit
HA/FA: Home/Foreign Host Advertisement
DQ/DP/DN: De-Registration reQuest/resPonse/deNial
RQ/RP/RN: Registration reQuest/resPonse/deNial
DT: Data

Tuple ≡ (Host, Foreign)

Fig. 9. The FSM representing the mobile node

• Fault class: based of the fault characterization mentioned
above,

• Fault identity: if the fault is located inside nodes, it tells
which transition and whether it is an output or tail-state
fault. If the fault is in channels it tells how the symbol is
altered.

Time is measured in atomic steps, where one atomic step is
equivalent to the time it takes for a transition to be executed
in one FSM (i.e. a node). The simulator reports the fault
detection time, the fault location information, the set of
potential faults identified, and the fault coverage.

The simulator functionality can be summarized as follows:
First, the simulator generates the fault randomly as

explained above, randomly selects a valid input/output
sequence, and injects the fault into the system.

The forward trace analysis is then done assuming that the
observers are at the mobile agents and computes the set of
possible states {Li} for each observer until the fault is
detected {Li =φ} by at least one of the two observers.

Using the fault characterization, we can get fault location
information.

Based on fault location, more analysis in fault location is
done to give the set of potential faults that can be identified in
each of these locations. For the case of node faults we
complete the fault identification process by the backward
trace and recurrent fault procedure. For the case of channels
we analyze the input/output sequence using the MSC
approach described above. Fault coverage information is
computed during the forward and backward traces.

The simulator computes the following results: fault
detection time since injection, number of located faulty
entities, average count of identified faults. Aggregate
analysis, such as histograms and averages of these
parameters; are computed for the whole set of tests.

Running the experiment for 50,000 random faults injected
into the system and the fault management process simulated,
the final results for fault detection, location, identification and
coverage are illustrated as follows.

It can be seen that most of the detection times are between
4 and 9. The passive testing based fault management does not
take long to detect the fault once injected. Since we are
measuring here the detection time since fault injection, the
detection time since injection is almost independent of the
length of the observed input/output sequence.

It can be seen that almost half the time, the fault is located
in just one entity (one node or one channel). About 25% of
the time the fault is located in one node and one of its
channels, and nearly 20% of the time the fault is located in 2
nodes with their connecting channel. With this observation,
we can realize that the fault location can enhance the active
corrective process in this 4-node network example. It reduces
the uncertainty about fault location from the whole network
to only a few entities.

This diagram shows that the average number of identified
potential faults mostly lies between 5 and 6 faults. The
smaller the set of identified potential set of faults, the simpler
it is for a later fault correction process. Thus, it shows how
efficient and effective the fault identification process is, using
our passive testing approach on the CFSM model. In order to
evaluate how much passive testing based fault identification
shrunk the set of potential faults, for this CFSM model the
total number of possible faults is about 420. So, our approach
reduces the fault space to 1/70th of its original size, i.e. 98.6%
reduction in the possible number of faults that would have to
be inspected in a later fault correction process.

These graphs demonstrate that the fault coverage in general
asymptotically approaches 100% coverage as the sequence
length increases. Also, for rather short sequence lengths [4,

Detection Time Since Injection Histogram

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Detection Time

F
re

q
u

en
cy

 (
%

)

Fig. 10. Histogram for Fault Detection Time

H is togram fo r Fau lt Location

0.00

10.00

20.00

30.00

40.00

50.00

1 Node 1 Channel Node +
Channel

2 Nodes 2 Nodes +
Channel

3 Nodes +
Channel

Loca te d Fa ulty Entite s

F
re

q
u

en
cy

 (
%

)

Fig. 11. Histogram for Fault Location Results

Histogram for Average Count of Identified Faults

0.00

3.00

6.00

9.00

12.00

15.00

3.
00

3.
50

4.
00

4.
50

5.
00

5.
50

6.
00

6.
50

7.
00

7.
50

8.
00

8.
50

9.
00

Average Fault Count

F
re

q
u

en
cy

 (
%

)

Fig. 12. Histogram for Average Number of identified Faults

Total Fault Coverage vs Sequence Length

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Time

T
o

ta
l F

au
lt

C
o

ve
ra

g
e

(%
)

Fig. 13. Fault Coverage vs. Sequence Length

10], the fault coverage is around [20%, 65%], which is very
efficient with such short sequence lengths

It can be noticed from the above histogram is that most of
the average total fault coverage values lie between 15% and
65%. So, even though we don’t have control on the observed
input/output sequence, we still can have reasonably good
fault coverage.

VIII. CONCLUSIONS AND POSSIBLE EXTENSIONS

A. Conclusions

In this paper we have shown how passive testing on a
practical example (IPv6 mobility support) can be used in fault
management for networks. Fault management includes fault
detection, fault location, fault identification, and fault
coverage. Previous work by Lee introduced fault detection
based on passive testing for a single FSM model. Later work
by Miller described how to extend the model to a CFSM
model and how to add fault location capabilities based on
passive testing. Our contribution is to introduce for both the
FSM and the CFSM models an integrated fault management
solution based on passive observations. Passive testing could
be used first for fault detection, followed by fault location to
determine a smaller region of the network containing the
fault. Then using fault identification to reduce the number of
faults that could have caused a network implementation to
display faulty behavior. Finally, fault coverage results would
provide some assurances as to how “good” the test was. In
this section we summarize our conclusions and remarks on
our contributions, first for the single FSM model and then for
the CFSM model.

A mobile IPv6 network model was used to demonstrate the
effectiveness of the approach on a practical example.
Extensive simulation was done for this example over many
simulation input/output sequences and many random
injections of faults. This simulation demonstrated that:

For fault detection capability the results in section 7
demonstrate that the average time to detect a fault in our
experiment is quite low (between 4 and 9 steps). That is, it
does not take long for passive testing to detect a fault

For fault location information, the results show that our
approach –in most of the cases- reduces the suspected faulty
region. Thus, one obtains a reduction in the amount of work
required for the active corrective phase.

The set of identified possible faults can be determined after
only a very modest number of steps once a fault was injected,
and also that considerable reduction in the number of possible
faults giving rise to the observed input/output sequence is
obtained by our approach. Thus, simplifying the following
tests aimed at uniquely identifying and correcting the fault. In
fact in some cases the passive testing identifies the unique
fault.

For fault coverage, good fault coverage can be achieved in
general, although passive testing has no control over the
observed input/output sequence. Generally, fault coverage
increases as the sequence length increases, since this
potentially increases the number of visited transitions.

B. Possible Extensions

There are a number of issues and problems that could be
investigated further. Some of these are briefly discussed in
what follows.

More than one fault: Multiple faults in the system will
complicate the process of fault management.

How should a network be cut to provide best fault
location?

Non-determinism: This means that the Lk sequence is not
necessarily monotonically non-increasing, i.e. it may never
converge to a singleton set. However, whenever the condition
Lk = ϕ exists the same analysis can be applied.

Another issue is whether further passive testing, beyond
when a fault is detected, could be used to provide better fault
identification and coverage.

Studying fault coverage for faults identified in the channels
can be revisited either with adding more assumptions for
faults in channels, or changing the way fault coverage is
calculated to include these types of faults as well.

Another challenge is to see how the techniques that have
been developed for passive testing might be applied in the
fault management systems of real network management tools.
This somewhat formal approach and way of thinking seems
to be quite distant from the techniques currently used in
actual network management systems.

One last major extension in our passive testing is to include
the timing of faults as a new dimension to our model.
Although the real-time dimension might appear orthogonal to
our fault management work, it could still add robustness to
our passive testing results. Real-time measurements in
passive testing could provide “changes in performance”
rather than “faulty indication”. Along with our passive
testing suite (fault detection, location, identification and
coverage), this might enable one to decide when and where
the performance flaw happens and provide some guidance to
take corrective actions.

REFERENCES

[1] D. Lee, A Netravali, K. Sabnani, B. Sugla, and A. John, “Passive
Testing and Applications to Network Management,” Proceedings

T o tal F au lt C o ve ra g e H is to g ram

0

5

10

15

0 10 20 30 40 50 60 70 80 90 10
0

Ave ra ge Fa u lt Cove ra ge (%)

F
re

q
u

en
cy

 (
%

)

Figure 14: Histogram for Fault Coverage

of IEEE International Conference on Network Protocols, pp. 113-
122, October 1997.

[2] R. E. Miller and K. Arisha, “On Fault Location in Networks by
Passive Testing,” 2000 IEEE International Performance
Computing and Communications Conference, February 2000.

[3] R. E. Miller and K. Arisha, “On Fault Location in Networks by
Passive Testing,” Technical Report #4044, Computer Science
Dept., University of Maryland College Park, August 1999.

[4] R. E. Miller and K. Arisha, “On Fault Identification in Networks
by Passive Testing,” Technical Report CS TR#4207/UMIACS
TR#2001-03, Computer Science Dept., University of Maryland
College Park, January 2001.

[5] R. E. Miller and K. Arisha, “Fault Identification in Networks by
Passive Testing,” Advanced Simulation Technologies Conference
(ASTC), April 2001.

[6] R. E. Miller and K. Arisha, “Fault Identification in Networks
Using a CFSM Model by Passive Testing,” under preparation.

[7] R. E. Miller and K. Arisha, “On Fault Coverage in Networks by
Passive Testing,” Technical Report CS TR#4220/UMIACS
TR#2001-10, Computer Science Dept., University of Maryland
College Park, February 2001.

[8] R. E. Miller and K. Arisha, “Fault Coverage in Networks by
Passive Testing,” under preparation.

[9] R. E. Miller, “Passive Testing of Networks Using a CFSM
Specification,” Bell Labs Technical Memorandum, BL011345-
97-0522-03TM, May 20th, 1997.

[10] P. McCain and G. Roman, “Modeling Mobile IP in Mobile
UNITY,” ACM Trans. on Software Engineering and
Methodology, Vol. 8, No.2, April 1999, pp. 115-146.

[11] C. Perkins, “IP Mobility Support,” IETF Network Working
Group, RFC 2002, October 1996.

[12] C. Huitema, “IPv6, The New Internet Protocol,” Prentice Hall, 2nd

Edition, 1998.
[13] W. Stallings, “SNMP, SNMPv2, and CMIP The Practical Guide

to Network-Management Standards,” Addison-Wesley Publishing
Company, 1993.

[14] ISO/IEC 7498-1: 1994 | ITU-T Recommendation X.200 (1994)
Information Technology – Open Systems Interconnection – Basic
Reference Model: The Basic Model, 1994.

[15] D. Brand and P. Zafiropulo, “On Communicating Finite-State
Machines,” JACM, Vol. 30, No. 2, pp. 323-42, April 1983.

