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Current estimation of the Earth’s carbon budget contains large uncertainties, with 

the largest ones in its terrestrial components. With an overarching goal to improve the 

understanding of carbon budget at regional to global scales, this study aimed to: 1. 

Develop a grid-based carbon accounting (GCA) model for estimating carbon fluxes 

from forest disturbance, tested over North Carolina; 2. Develop a consistent timber 

product output (TPO) record for a globally important timber production region, 

including seven states in the southeast U.S.; and 3. Further improve the GCA model 

based on results from objectives 1 and 2, and use it to derive carbon source/sink 

estimates for all forest land in North Carolina. 

The results show that several inputs/parameters such as pre-disturbance carbon 

density, disturbance intensity, allocation of removed carbon among slash and different 

wood product pools, and forest growth rates could have large impact on carbon 



  

estimates. The total emission between 1986 and 2010 from logging over North Carolina 

was reduced by one third and two thirds, respectively, when remote sensing-based 

disturbance intensity and biomass data were used to replace parameter values inherited 

from the original bookkeeping carbon accounting (BCA) model, and was reduced by 

over 70% when both were used.  Use of the TPO data derived in Chapter 3 to partition 

the removed carbon among slash and different wood product pools resulted in 

noticeably higher emission estimates than those derived using the partitioning ratios 

provided by the original BCA model. In addition, without considering legacy effect 

from wood products harvested before 1986, the emission value derived using the 

prompt release method was 50% higher than that derived using the delayed release 

method. 

This study addresses multiple sources of uncertainties related to the terrestrial 

carbon budget.  The TPO study demonstrated an approach for deriving consistent TPO 

records for large timber production regions. The GCA model produced state level 

carbon estimates comparable to those reported by the U.S. Forest Service while 

providing critical spatial details needed to support carbon management and advance 

forest-driven climate change mitigation initiatives. 
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Chapter 1 Introduction 

1.1 Forest Change and the Global Carbon Budget 

Numerous studies have pointed out that recent anthropogenic carbon emissions are 

the highest in human history and are extremely likely the main cause of the rise in 

atmospheric CO2 concentration that leads to the observed global warming since the 

mid-20th century (IPCC, 2014). Monitoring and assessing the global carbon cycle is 

therefore of utmost importance for national and international decision makers when 

considering climate mitigation strategies (Griscom et al., 2017; Marland et al., 2003; 

Noormets et al., 2015).  However, there are many uncertainties in the current estimation 

of the Earth’s carbon budget, with the largest ones in its terrestrial components 

(Houghton, 2013; Antonarakis, 2014).  

According to a recent study (Figure 1-1, Le Quéré et al., 2018), the global carbon 

budget for the decade of 2007-2016 had a budget imbalance (or missing sink) of 0.6 

GtC yr−1.  However, uncertainties in estimating the land sink and emissions from land 

use change were 0.8 GtC yr−1 and 0.7 GtC yr−1, respectively.  The combined 

uncertainties from these two flux estimates were 250% of the missing sink. Reducing 

these uncertainties is crucial for improved characterization of the missing sink and the 

global carbon budget.  Understanding the mechanisms responsible for this missing sink 

is crucial for accurate projections of future concentrations of CO2 in the atmosphere 

(Houghton & Davidson, 1998) and the change in the Earth’s climate. 
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Figure 1-1 Conceptual diagram of global carbon dioxide budget (Le Quéré et al., 2018). 

Covering over 4.1 billion hectares, forests contain over 80% of aboveground and 

40% of belowground terrestrial carbon, which is more than any other terrestrial 

ecosystem (Bradford et al., 2008; Gray & Whittier, 2014; Liu et al., 2008).  Relatively 

minor alterations to carbon storage or cycling in forest ecosystems may have substantial 

impact on atmospheric carbon dioxide concentrations. Forest carbon dynamics are 

governed in large part by disturbance and subsequent regrowth processes. While forest 

growth provides a mechanism for transferring atmospheric carbon to the forest 

ecosystem, through disturbance forest carbon is released to the atmosphere or 

transferred to other pools (e.g., slash, wood products) where carbon is released 
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gradually.  Along with other forest characteristics, disturbances regulate the amount of 

carbon stored in forests and influence C fluctuations overtime (Dugan et al., 

2015; Goetz et al., 2012; Pan et al., 2011; Powell et al., 2010).  

A major goal of forest carbon management is to increase carbon sequestration and 

storage by forests and related carbon pools (e.g., wood products) while reducing and/or 

delaying carbon emission from those pools (Canadell and Raupach, 2008; Denise et al., 

2011), which has been proposed as an important climate change mitigation strategy in 

many climate initiatives, including the Kyoto Protocol and the United Nations 

Framework Convention on Climate Change REDD+ (UNFCCC-REDD+, with REDD 

standing for “reducing emissions from deforestation and forest degradation”, and the + 

standing for “the role of conservation, sustainable management of forests and 

enhancement of forest carbon stocks”) program (Agrawal et al., 2011; Schulze et al., 

2002). Implementing this strategy requires robust carbon accounting systems to 

provide reliable estimates of carbon credits for carbon trade and to support the 

measurement, reporting, and verification (MRV) of carbon pools and fluxes (Birdsey 

et al., 2006; Fahey et al., 2010; Lamb et al., 2021).  

1.2 Carbon Estimation Approaches 

Many methods have been developed for deriving carbon estimates at regional to 

global scales, which can be grouped into four categories.  The first is the inverse models 

used with variations in atmospheric concentrations of CO2 to infer sources and sinks 

(Fan et al., 1998; Pacala et al., 2001; Crevoisier et al., 2007). These studies have 

generally estimated larger net sinks than other approaches, but the uncertainties are 
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high.  The second is to use process-based ecosystem models or Terrestrial Biosphere 

Models (TBMs) to simulate changes in carbon storage on land (Tian et al., 1999; Hurtt 

et al., 2002). The estimates of annual Net Ecosystem Productivity (NEP) from TBMs 

are also highly variable, with major components of NEP (GPP and Rs) having even 

larger among-models variability (Huntzinger et al., 2012).   

The third approach relies on data from forest inventories to calculate carbon 

budgets (Birdsey & Heath, 1995; Turner et al., 1995a; Smith et al., 2007; Pan et al., 

2011a). Ground-based inventory of the nation’s forests has been provided by the US 

Forest Service Forest Inventory and Analysis (FIA) program. FIA forest monitoring 

includes three phases of measurements conducted approximately every five years 

(Smith, 2002). Measurements at each forested plot include forest type, tree species, tree 

size (diameter, height), and stand age, among others. Each plot represents an area of 

about 1 ha. The biomass of each individual tree is calculated from tree size 

measurements using allometric equations (e.g. Jenkins et al., 2003). Tree level biomass 

estimates are then summarized to calculate plot level biomass density. Since 2000, FIA 

plots in the eastern US have been inventoried once every 5 years and those in western 

US once every 10 years. Estimates from inventory data are less variable than estimates 

from inverse studies and ecosystem models, and generally the estimated net carbon 

sink in forests is also smaller. However, inventory data are based on sampling strategies 

designed to estimate stocks (growth and mortality) at the national and state levels, not 

to monitor changes at sub-state levels (Bradford et al., 2010).  Use of inventory data 

alone, therefore, is difficult to support forest carbon management and the measurement, 

reporting, and verification of carbon pools and fluxes at scales where local management 
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decisions are made typically. 

The fourth group utilizes land use change data, including changes in agricultural 

and urban lands, forest harvest, and wildfires to estimate the net carbon fluxes 

attributable to these changes (Houghton et al., 1999; Zheng et al., 2011).  The 

bookkeeping model (Houghton, 1999) is a carbon estimation approach that takes land 

use / land cover change (LULCC) and biomass into consideration. The model keeps 

track of the carbon in four major pools: living aboveground and belowground 

biomass; dead biomass, including coarse woody debris; harvested wood products; and 

soil organic carbon (Houghton and Nassikas, 2017). Four types of land use / land cover 

changes are considered: forests disturbance by fire, industrial wood harvest, conversion 

from forest to cropland, and conversion from forest to urban land.  While this model 

directly addresses the land sink and fluxes driven by land use change, it can only 

produce estimates at the ecozone level, which lack critical spatial details needed to 

support carbon management decision making by local authorities and individual land 

owners. 

A few synthesis studies have reviewed a combination of different methods and data 

sets (Schimel et al., 2000; Pacala et al., 2001; CCSP, 2007; Hayes et al., 2012).  In 

addition, several C budget models have been developed to model ecosystem responses 

to climate drivers and other disturbances, and these models represent an established 

method for estimating C fluxes on a national to regional scale.  For example, the 

Canadian national forest carbon monitoring accounting and reporting system 

(NFCMARS) uses the carbon budget model of the Canadian forest sector (cbm-cfs3) 

and is used as a decision support tool for forest managers to quantify forest carbon 



 

 

6 

 

dynamics on a landscape scale. The Australian National Academy of Sciences has 

developed the National Carbon Accounting System (NCAS), which calculates annual 

Carbon fluxes (Richards, 2020).  

1.3 Remote Sensing of Forest Carbon Dynamics 

Understanding of the land sink and carbon fluxes driven by land use change 

requires reliable information on key land surface characteristics, including vegetation 

carbon and land use change history.  Lack of such information can lead to large 

uncertainties in modeling disturbance rates and biomass densities, which are among the 

major factors contributing to the widely varying results derived from different studies 

(Huntzinger et al., 2012).  With the ability to cover large areas in relatively short time, 

satellite remote sensing has been used to observe the dynamics of the vegetation cover 

on Earth. In the past few decades, remotely sensed data have not only contributed to 

increasing the speed, cost efficiency, precision, and timeliness associated with 

inventories, but they have facilitated construction of maps of forest attributes with high 

spatial resolutions (McRoberts & Tomppo, 2007).  

Among the various earth observing systems, the Landsat satellite series is arguably 

the most valuable for monitoring land surface characteristics.  With its first satellite 

launched in 1972, Landsat has produced a fine resolution imagery record of the Earth’s 

surface for half a century.  Landsat data has been used to map land cover and various 

surface characteristics in numerous studies (Loveland and Dwyer, 2012; Wulder et al., 

2019).  The multi-decadal time series observations provided by Landsat are especially 

valuable for understanding the carbon dynamics related to land use change over the last 
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few decades.  The opening of the Landsat archive in 2008 for public access ushered 

new opportunities for mapping land change history using time series Landsat 

observations.  LandTrendr (Kennedy et al., 2007; Kennedy et al., 2010), vegetation 

change tracker (VCT) (Huang et al., 2010), and continuous change detection and 

classification (CCDC) are among the various algorithms designed to leverage time 

series Landsat observations for land change studies.   

Since 2003, Goward and colleagues (Huang, Masek, Cohen, Moisen and others) 

have led efforts to characterize US forest disturbances using time series of Landsat 

observations (Goward et al., 2002; Goward et al., 2005; Goward et al., 2007; Goward 

et al., 2010). These studies became known as the North American Forest Dynamics 

(NAFD) study and was identified as a core project of the North American Carbon 

Program (Goward et al., 2008).  Major NAFD products include forest disturbances 

mapped at an annual time step.  These products were derived using the VCT algorithm 

and a 30-year surface reflectance record (Zhao et al., 2018).  VCT detects anomalous 

events in the per-pixel spectral time series caused by forest disturbances, including 

harvest/logging, fire, storm damages and insect outbreaks. With biennial Landsat 

observations, VCT detected stand clearing and partial disturbances with an accuracy of 

92% and 60% respectively (Thomas et al., 2011).  

The Landsat time series also provided opportunities for deriving other important 

biophysics related to forest carbon dynamics.  Building on the NAFD disturbance 

products, Schleeweis et al. (Schleeweis et al., 2020) mapped forest disturbance 

types/causal agents across the conterminous U.S. (CONUS) from 1986 to 2010.  By 

using field measurements collected by the Forest Inventory and Analysis (FIA) 
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program of US Forest Service as calibration data, Tao et al. (Tao et al., 2019) estimated 

the percentage of basal area removal (PBAR) as a measure of disturbance intensity for 

disturbance events detected by the VCT algorithm over North Carolina.  Building on 

that study, a CONUS-wide disturbance intensity dataset was developed recently (Lu et 

al. in review).  Further, the VCT disturbance products made it possible to derive an 

annual, multi-decadal (1986-2015) record on the timber product output (TPO) from 

forest harvest (Huang et al., 2015), and the influx of harvested carbon to wood products 

(Ling et al., 2016).   Compared to the TPO survey data that were only available for a 

few selected years (Huang et al. 2015), the Landsat-based TPO record was much longer 

and provided estimates for every year. 

In addition to the NAFD products, several other geospatial datasets have been 

developed to provide information on specific disturbance types at national or sub-

national scales. In particular, the Monitoring Trends in Burn Severity (MTBS) project 

(Eidenshink et al., 2007), a collaboration between the US Forest Service and USGS, 

has mapped the extent and severity of large fires across the United States using field 

records and Landsat images acquired from 1984 to present. The US Forest Service have 

been producing Aerial Detection Survey (ADS) sketch maps recording the location 

(polygons) of insect outbreaks, which can be used to produce consolidated data 

products on insect related mortality (Williams & Birdsey, 2003; Meddens et al., 2012). 

Hurricane and tornado tracks have been recorded by NOAA as early as 1851. 

Combining these tracks with wind model allows assessment of wind damages from 

tropical storms (Zeng et al., 2009).  

Biomass is one of the most valuable products for carbon studies, because it can be 
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directly related to landscape carbon, and can provide a constraint for both growth 

models and calculations of emissions from disturbance (Houghton, 2005; Houghton et 

al., 2009).  Of the three remote sensing instrument types – optical, radar, and LiDAR, 

LiDAR can provide metrics that are directly related to forest structure and height 

(Dubayah and Drake, 2000; Lefsky et al., 1999), and hence has the best potential for 

biomass estimation (Lefsky et al., 2002; Nelson et al., 2017).  However, current 

spaceborne LiDAR systems, including ICESAT-2 and the Global Ecosystem Dynamics 

Investigation (GEDI), can only sample along their tracks.  They cannot provide wall-

to-wall observations needed to create spatially contiguous map products.  In general, 

radar is more sensitive to vegetation structure than optical systems.  While radar offers 

promise for predicting forest biomass and for mapping general forest types and tree 

species in floristically simple landscapes (Neeff et al., 2005; Pulliainen et al., 2003; 

Rauste, 2005a; Rignot et al., 1994), radar signal saturates at mid- to high- biomass 

levels, with the location of the saturation point being wavelength dependent (Austin et 

al., 2003; Balzter et al., 2003a, b; Castel et al., 2002; Fransson et al., 2000; Patenaude 

et al., 2005; Rauste, 2005a, b; Santos et al., 2003a; Santos et al., 2003b; Schroder et al., 

2005).  

Although optical remote sensing data may not be as sensitive to forest structure and 

biomass as lidar and radar data (Franklin et al., 2003; Donoghue & Watt, 2006), they 

proved to be useful for mapping forest biomass over large areas (Bradford et al., 2008; 

(Powell et al., 2010).  Calibrated using field measurements collected by the FIA 

program or LiDAR measurements from the ICESAT-1 mission, Landsat and MODIS 

observations were one of the primary inputs in developing biomass maps for the US 



 

 

10 

 

(Blackard et al., 2008; Wilson et al., 2013) and the tropics (Saatchi et al., 2011).  Given 

the large quantities of LiDAR samples being collected by ICESAT-2 and GEDI, it can 

be expected that more and better biomass map products will be derived through fusion 

of these samples with field measurements and optical and/or radar observations soon. 

1.4 Research Objectives and Dissertation Structure 

Given the large uncertainties in current estimation of the land sink and carbon 

fluxes driven by land use change, this study is designed with an overarching goal to 

improve the understanding of carbon budget at regional to global scales.  The 

limitations of existing carbon modeling approaches call for new methods and data 

products that can leverage the rapid advances in satellite remote sensing of forest 

dynamics and provide more reliable carbon estimates with better spatial details.  Such 

estimates are needed to answer key carbon budget questions at global, national, and 

local scales.  In particular, estimates with local details are needed to determine whether 

a specific region is a carbon source or sink during a specific time period, and whether 

and to what degree different forest management practices, including those prescribed 

by various national and international climate change initiatives, may alter the source 

and sink estimates from forest land.  The specific research objectives of this dissertation 

include (Figure 1-2): 
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Figure 1-2 The overarching goal and three specific research objectives of this dissertation study. 

- Given the advantages of the bookkeeping carbon accounting (BCA) model over 

other modeling approaches for tracking carbon fluxes driven by land use 

changes, the first goal is to develop a grid-based carbon accounting (GCA) 

model that can take advantage of many newly available remote sensing products 

and use the BCA model to produce carbon flux estimates arising from forest 

disturbance and post-disturbance recovery at sub-ha spatial resolutions.  Such 

fine resolution estimates will provide critical management relevant details 

required by local or individual land managers.   

- Because large portions of harvested carbon can be stored in wood products for 

decades or longer before being completely released to the atmosphere, and only 

limited survey-based timber product output (TPO) estimates are available for a 
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few selected years, the second goal is to derive an annual TPO record spanning 

over three decades that are consistent among states and over time.  This record 

will shed light on the spatial and temporal variable of the influx to and emission 

from wood products over the entire study region. 

- The third objective is to further improve the GCA model such that it can ingest 

the annual TPO data record developed through Objective 2 and produce carbon 

estimates for all forest areas.  With this capability, the model is then used to 

determine whether a region is a carbon source or sink, and whether and to what 

degree the source and sink estimates are affected by different forest 

management practices. 

The study region is located in the southeast United States where large portions of 

the land base are dedicated to forestry and forest harvest rates are high (Figure 1-3).  

After the clear cutting and agriculture expansion that occurred in the 18th and 19th 

centuries, the region had extensive commercial wood harvest during the 20th century 

(Birdsey et al., 2006).  Previous studies show that the regrowth of the forests has likely 

turned the region into a net carbon sink since the mid-20th century (e.g. Chen et al., 

2006).  The GCA model and TPO data developed through this study will be used to 

determine whether the region has been a source or sink over the last few decades.  Due 

to constraints by data availability and computing resources, North Carolina is selected 

as the study area for the first and third objectives.  For Objective 2, the study region is 

expanded to include 7 states in the Southeast, including Alabama, Georgia, North 

Carolina, South Carolina, Florida, Tennessee, and Mississippi.  
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Figure 1-3 Study regions of the three research objectives of this dissertation study. 

Following this introduction chapter, studies for the three specific research 

objectives will be presented in Chapters 2, 3, and 4.  A summary will be provided in 

Chapter 5 along with a discussion of the significance and broad impact of this study. 
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Chapter 2 Carbon fluxes from contemporary forest 

disturbances evaluated using a grid-based carbon 

accounting model 

2.1 Background 

The carbon exchange between the atmosphere and terrestrial ecosystems, 

especially forests, is an important component in the global carbon cycle. Forests take 

up carbon dioxide (CO2) through photosynthesis, and release back a large portion to 

the atmosphere via respiratory processes while store some carbon in plant biomass for 

decades or even centuries; meanwhile, a disturbance event, such as fire, disease, insect 

outbreaks, drought, and harvesting, can trigger accelerated release of stored carbon 

back to the atmosphere (Goward et al. 2008). However, large uncertainties exist in 

current estimates of carbon fluxes between the biosphere and the atmosphere 

(Houghton, 2013; Antonarakis, 2014). According to Le Quéré et al. (2016) in their 

recent Global Carbon Budget report, current emission from land-use change is 1.3±0.7 

GtC/yr: the uncertain is more than 50%. Reducing such uncertainties is of great interest 

in the scientific community, especially in quantifying carbon fluxes at more local and 

regional scales (Turner et al. 2016). 

There are many ways to estimate forest carbon pools and fluxes. The first one is 

the inverse models used with variations in atmospheric concentrations of CO2 to infer 

sources and sinks (Fan et al., 1998; Pacala et al., 2001; Crevoisier et al., 2007). These 

studies have generally estimated larger net sinks than other approaches, but the 

uncertainties are high. The second approach is to use process-based ecosystem models 

or terrestrial biosphere models (TBMs) to simulate changes in carbon storage on land 

(e.g. Tian et al., 1999; Hurtt et al., 2002). The estimates of annual NEP from TBMs are 
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also highly variable; for example, the estimates of annual NEP for temperate North 

America to vary from a sink of 1600 to a source of 500 TgC/yr for the period 2000-

2005 (Huntzinger et al., 2012). The major components of NEP (GPP and Rs) varied 

even more than NEP among the models. The third approach relies on data from forest 

inventories to calculate carbon budgets (Birdsey & Heath, 1995; Turner et al., 1995a; 

Smith et al., 2007; Pan et al., 2011a). Estimates from inventory data are less variable 

than estimates from inverse studies and ecosystem models, and generally the estimated 

net carbon sink in forests is also smaller. But inventory data are based on sampling 

strategies designed to estimate stocks (growth and mortality), not to monitor changes 

(Bradford et al., 2010).  

The fourth approach is to utilize carbon accounting methods to track carbon fluxes 

arising from land use conversion, forest harvest, wildfire, and other land change types 

(Houghton et al., 1999; Zheng et al., 2011; Brack and Richards 2002). Driven by tabular 

statistics on land use change and related carbon pools, this approach typically produces 

results with spatial characteristics no better than those of the tabular input data. Such 

results might be useful at national or regional levels, but lack the spatial details needed 

to support carbon management decision makings by local agencies or individual 

landowners.  

Deriving carbon estimates with needed spatial details was difficult in the past, 

partly because spatial products on the required model inputs did not exist. With rapid 

advances in remote sensing technology, however, it has become increasingly more 

feasible to map many variables important for tracking track carbon fluxes with 

increasingly better quality. Landsat images have been used to map land cover and land 
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cover change for decades (Powell et al., 2010; Schroeder et al., 2014). Following the 

opening of the entire Landsat archive for no-cost access, the multi-decade Landsat 

record has been used to reconstruct forest disturbance history (Huang et al., 2010), map 

disturbance agent (Schroeder et al., 2014), and quantify disturbance intensity (Tao et 

al., 2019). Integration of remote sensing observations with field plot data and/or other 

measurements allowed derivation of biomass products at local, national, to continental 

scales (Hall et al., 2006; Santi et al., 2017). With increasingly more optical, radar, and 

lidar observations provided by existing and forthcoming satellite missions including 

S2, S1, IceSAT-2, and GEDI, the ability to produce high quality data products on land 

change, biomass density, and other biophysical variables needed to calculate terrestrial 

carbon fluxes will continue to improve (Xiao et al., 2019). 

Effective use of the rich, remote sensing-based datasets to advance carbon 

management decision makings requires a framework to integrate these datasets with 

models to produce carbon estimates with required spatial-temporal details. A major 

goal of this study was to develop a grid-based framework where disturbance, forest 

carbon, and other remote sensing products can be used as input to a well-established 

carbon accounting model (Houghton et al. 1999) to produce spatially detailed map 

products of carbon pools and fluxes. We have tested this framework over North 

Carolina where detailed forest carbon and disturbance products are available and used 

it to produce 30-m map products of carbon fluxes arising from forest disturbances 

occurred between 1986 and 2010. These fine resolution map products are valuable for 

understanding the spatial-temporal patterns of carbon sources from forest disturbances 

and sinks from post-disturbance growth. More importantly, they can provide much 



 

 

17 

 

needed details that are mostly unavailable thus far for carbon accounting, management, 

and related decision support at individual property owner, municipal, county, or even 

state levels. Note that any latency effect from before 1986 was not calculated in this 

study, nor were the absorption from undisturbed pixels included in the model. The total 

fraction of disturbed forest pixels is about 44.7% in North Carolina. 

2.2 Methods 

2.2.1 Study Area 

North Carolina is located in the southeastern United States.  Its 100 counties are 

distributed from the Atlantic coast in the east to the Great Smoky Mountains in the 

west.  About 60% (75199.3 km2) of the state’s 139,390 km2 land base is forest land 

(Brown et al., 2014), most of which is classified as timberland (Bardon et al., 2010).  

Major forest type groups include Oak-Hickory, Loblolly-shortleaf pine, Oak-pine, and 

Oak-Gum-Cypress.  More than half of the state’s forests were disturbed at least one 

between 1985 and 2010 (Huang et al., 2015).  While timber harvest is the dominant 

disturbance type, damages from hurricane, insect outbreak, snow/ice, fire, and other 

natural disturbances are also common.  The state’s total area subject to stand clearing 

disturbances was relatively stable, but the impact of partial disturbances had large inter-

annual variability (Tao et al., 2019).  

2.2.2 The original Bookkeeping Carbon Accounting (BCA) model 

The Bookkeeping Carbon Accounting (BCA) model (Houghton et al. 1999) is a 

well-established model for tracking carbon fluxes arising from land use and land cover 

change. This model divides the globe into ecozones following the Food and Agriculture 
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Organization of the United Nations (FAO) Global Ecological Zones (GEZ, second 

edition).  For each ecozone, the BCA model keeps track of the carbon in four major 

pools: living aboveground and belowground biomass; dead biomass, including coarse 

woody debris; harvested wood products; and soil organic carbon (Houghton and 

Nassikas, 2017). These major pools are divided into smaller categories for calculation 

purposes: soil release and uptake, slash (woody debris left on site), carbon burned on 

site, regrowth after disturbance, and decays in various industrial wood products.  

Carbon pools and the fluxes for different disturbance types are tracked at the ecozone 

level.  Table 2-1 lists the forest change processes and carbon pools considered in this 

study, and the key parameters used to calculate these pools and fluxes are listed in Table 

2-2. 

 

Table 2-1 Pools tracked by the BCA model for LULCC types considered in this study (indicated by 

“X”). 

 Fire Wood Harvesting Conversion to Urban 

Land 

Soil Release    

Soil Uptake    

Slash X X  

Burned X  X 

Regrowth X X  

Wood 

Products 

 X  

 

 

Table 2-2 Ecozone-specific parameters used by the BCA model 

Name Unit Description 
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CPrim g/Ha Carbon density in undisturbed, mature/primary 

forest 

CMin g/Ha Minimum carbon density after disturbance 

CSec g/Ha Carbon density in recovered, secondary forest 

FSlash  Fraction of carbon ended up in slash pool 

DRSlash  Decay rate coefficient for slash pool 

FP1  Fraction of carbon ended up in 1-year decay pool 

FP10  Fraction of carbon ended up in 10-year decay pool 

FP100  Fraction of carbon ended up in 100-year decay pool 

Tms Year Time for forest to grow into secondary forest from 

stand-clearing disturbance 

Tsp Year Time for forest to grow into mature forest from 

secondary forest 

For a disturbance event that resulted in a disturbance area of LC, the release from 

the carbon ended up in the slash in any given year X is 

Slashr in X = (Slash PoolX-1 + LC * CPrim * FSlash) * (1 – e-DRslash)           (2-1) 

And the carbon pool after each year’s release is 

Slash Pool in X = (Slash PoolX-1 + LC * CPrim * FSlash) * e-DRslash           (2-2) 

The carbon burned on site is released immediately in the year of disturbance, and can 

be calculated as 

 P1r = LC * FP1 * (CPrim – CMin)               (2-3) 

For regrowth after disturbance, it is assumed that the growth rate is fast when the 

disturbed land is recovering from minimum to secondary forest, then the rate becomes 

slow until the forest reaches mature stage, at which point the growth stops.  During 

each regrowth stage, it is assumed that the growth rate is constant.  The annual carbon 

uptake or sink by regrowth from minimum to secondary forest and from secondary 

forest to mature forest are calculated using equations (2-4) and (2-5) 

Regrowthmin2sec = LC * (CSec – CMin) / Tms              (2-4) 

Regrowthsec2mat = LC * (CMat – CSec) / Tms              (2-5) 
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The total annual uptake by regrowth is the sum of annual uptake by regrowth from 

all previous disturbances. 

For the wood products, based on different product types, the pool is divided into 

a fast decay pool (10-year decay pool, or P10, e.g., paper products) and a slow decay 

pool (100-year decay pool, or P100, e.g., furniture, wood used in buildings). The 

calculations for these pools and their annual releases are similar to Eq. (2-3) and Eq. 

(2-4), except that the exponent is replaced by a constant decay rate.  

2.2.3 Development of A Grid-Based Carbon Accounting (GCA) model 

A major limitation of the current BCA model is its inability to provide results at a 

resolution required for project level or landscape level carbon management.  To 

overcome this problem, we reimplemented the BCA model within a gridded framework 

to leverage the increasingly more available remote sensing products that could be used 

to derive the parameters required by the model.  In this framework, a study area is 

divided into even-sized grids (e.g., 30-m pixels).  Carbon pools and fluxes are 

calculated for individual grid cells instead of ecozones.  For each cell, the parameters 

that can be derived from available remote sensing products will have cell-specific 

values derived from those products.  The remaining parameters will inherit the 

ecozone-based values from the original BCA model according to which ecozone that 

cell belongs to.   

As will be discussed in section 2.3, several remote sensing products were available 

over the study area, including 1) a carbon content map, and 2) a suite of disturbance 

products providing details on the timing/year, intensity, as well as type/attribution of 

each disturbance event.  With these products, the GCA model was implemented such 
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that it could account for carbon fluxes arising from multiple disturbance events that 

occurred within the same grid cell in different years.  Further, we used these products 

to improve the calculation of carbon fluxes arising from disturbance and post-

disturbance regrowth through the following steps: 

First, the carbon density map was used to replace CPrim in determining the initial 

carbon density of a grid cell right before the first disturbance event detected at that 

location (pre-disturbance carbon density).  Second, the amount of carbon removed from 

the living biomass within that grid cell due to the first disturbance event was calculated 

as the product of pre-disturbance carbon density and the percentage of carbon removed 

(PCR) by that event, which was assumed to be 100% (stand clearing) without using the 

disturbance intensity data.  As will be discussed in section 2.4.1, the disturbance 

intensity products provided estimates of percent basal area removal (PBAR), which was 

the percentage of the total basal area of live trees removed by a disturbance event.  

Based on the allometric equations of Jenkins et al. (2003), which were developed to 

convert tree diameter measurements to biomass, the percentage of carbon removed 

(PCR) by a disturbance event can be calculated from PBAR using the following 

equation: 

PCR = PBAR
6/5 

Third, whether to use equation (2-4) or (2-5) to calculate the initial growth 

immediately following that disturbance event was determined according to the 

remaining carbon in live biomass after that event, which was the difference between 

pre-disturbance density and the amount of carbon removed by that event as calculated 
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above.  If the remaining carbon is below CSec, equation (2-4) is used.  Otherwise, use 

equation (2-5).   

Finally, if more disturbances were detected after the first disturbance over a pixel 

location, the pre-disturbance carbon density for each subsequent disturbance event was 

calculated as the sum of the remaining carbon after the previous disturbance and the 

carbon accumulated through the growth calculate in the third step.  The fluxes arising 

from disturbance and post-disturbance growth were then calculated following the 

second and third steps.  

2.2.4 Model inputs 

Since the GCA model was in essence a reimplementation of the BCA model 

within a gridded framework, most of its parameters would have values equivalent to 

those used in the original BCA model.  That is, for each of those parameters, all grid 

cells in the GCA model that were located within the same ecozone of the BCA model 

had the same ecozone-based values used by the original BCA model.  For the 

parameters that could be derived from available remote sensing products, their values 

over each grid cell will be derived from remote sensing products and can vary within 

the ecozones.  The remote sensing products used in this study included a suite of forest 

disturbance maps and a pre-disturbance carbon density map. 

2.2.4.1 Forest disturbance data 

Several products were used to produce a disturbance dataset with information on 

the timing (year), type (attribution), and intensity of disturbances that occurred in North 

Carolina from 1985 to 2010.  The first were annual forest disturbance maps showing 
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which pixels had disturbances in what years (Huang et al., 2015).  These maps were 

derived using Landsat time series stacks (LTSS) (Huang et al., 2009a) and the 

vegetation change tracker (VCT) algorithm (Huang et al., 2010).  For each disturbance 

event detected by the LTSS-VCT approach, if it was also mapped as a burned pixel by 

the annual fire maps derived through the MTBS project (Eidenshink et al., 2007), then 

it was a fire disturbance.  Otherwise it was a wood harvesting event unless it was 

classified as a conversion to urban as follows – if at least one disturbance was detected 

at a pixel location and that pixel was mapped as an urban pixel in 2011 by the National 

Land Cover Dataset (NLCD 2011) (Homer et al., 2015), then the last disturbance 

detected over that pixel was a conversion to urban.  It should be noted that if two or 

more disturbance events were detected over the same pixel location, each event could 

be of a different type.  However, if one of the types was a conversion to urban, that type 

must be the last one, because wood harvesting or fire could not happen over an area 

already converted to urban.  The decision process used to attribute the detected 

disturbances is shown in Figure 2-1.   
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Figure 2-1 The process of determining disturbance attribution. 

For each disturbance event determined above, its intensity was derived based on 

the PBAR dataset produced by (Tao et al., 2019).  As mentioned earlier, PBAR was a 

measure of the percentage of total live tree basal area that was removed by a disturbance 

event.  The PBAR value for a disturbance event was derived based on the spectral 

change values associated with that disturbance event and a model calibrated using 

reference PBAR data calculated from pre- and post-disturbance field measurements 

collected through the USFS Forest Inventory and Analysis (FIA) program.  While in 

the Tao et al. (2019) study, PBAR was calculated without considering the disturbance 

type, for this study, the PBAR values were set to 100% for all conversion-to-urban 

disturbances. 
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2.2.4.2 Pre-disturbance carbon density data 

As mentioned in section 2.2, pre-disturbance carbon density – the carbon density 

at a pixel location right before a disturbance event, is required for calculating the carbon 

change arising from that event.  Since disturbances could and did occur throughout the 

entire observing period, this would require annual carbon density maps for the entire 

study period, which unfortunately do not exist.  Although there were a couple of 

CONUS-wide carbon density maps (Kellndorfer et al., 2013; Wilson et al. 2013), the 

values from those maps could not be used as the pre-disturbance carbon density for 

disturbances occurred before the derivation of those maps.  Given the fact that 

harvesting is more likely to occur over older forests than younger ones, we applied a 

spatial filtering method to an existing map to derive a pre-disturbance carbon density 

map that might provide more realistic values than the values in the original maps or the 

ecozone level values used by the original BCA model.  Specifically, for any pixel 

location, we calculated the 95 or 99 percentile value with a relatively large area 

surrounding that pixel, say a 6 km by 6 km window, and used that value as the pre-

disturbance carbon density value for that location.  

To evaluate how realistic the pre-disturbance carbon density values derived this 

way were, we selected the FIA plots that had field measurements right before they were 

disturbed and plotted the FIA-based pre-disturbance carbon values against those from 

the original carbon density map as well as the pre-disturbance carbon density maps 

derived above.  Figure 2-2 shows that the median values from the pre-disturbance maps 

derived using both 95 and 99 percentiles were much closer to FIA measurements than 
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that derived from the original carbon map, demonstrating that the spatial filtering 

method did provide more realistic pre-disturbance carbon density values. 

 

Figure 2-2 Comparison of carbon density values between plot measurements and derived maps. After 

filtering the original map with 95th or 99th percentile in a 6 km by 6 km window, the range of values 

are closer to those of undisturbed plots. 

2.2.4.3 Other inputs 

We used the pre-set parameter values provided with the original bookkeeping 

model for all other inputs.  Attempts were made to find more realistic forest growth 

rates based on FIA plot data, however they varied greatly among different plots, even 

in the same ecozone (Figure 2-3). The median values of the plot-based growth rates 

were close to the fast growth rates provided in the original BCA for forest prior to 

reaching the secondary forest stage (Table 2-3).  Therefore, no change was made to the 

growth rates of the original model setting.  
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Figure 2-3 Distribution of forest growth rates calculated from FIA plot data. 

 

Table 2-3 Growth rate statistics from selected FIA plots. The last two columns show the values 

provided with the original BCA model. 

Ecozone 

code 

No. 

FIA 

plots 

Median Average Min Max Model 

(fast) 

Model 

(slow) 

21 3326 2.09 2.99 0.001 35.31 2.97 0.99 

35 919 1.77 2.51 0.002 64.14 1.58 0.53 
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2.2.5 Carbon modeling scenarios 

The ability of the GCA model to use spatially explicit remote sensing products 

made it possible to assess the impact of those inputs on carbon estimates.  In this study, 

four scenarios were designed to evaluate the impact of the products described in section 

2.2.4 (Table 2-4).  In the first scenario, neither the disturbance intensity dataset nor the 

pre-disturbance carbon density dataset was used.  Instead, pre-defined mature forest 

carbon density values were used as pre-disturbance carbon density and all disturbances 

were considered stand clearing according to the original model setting (OMS) of the 

BCA model.  In scenario 2, only the spatial disturbance intensity (SDI) dataset was 

used.  Pre-defined mature forest carbon density values were used as pre-disturbance 

carbon density values.  In scenario 3, only the spatial pre-disturbance carbon density 

(SPC) dataset was used.  All disturbances were assumed to be stand clearing.  In the 

last scenario, both spatial datasets (SDI+SPC) were used.  Assuming the remote sensing 

products would produce more realistic carbon estimates, the final carbon fluxes arising 

from the mapped disturbances were calculated using scenario 4 (SDI+SPC).  But the 

differences among the four scenarios could be used to examine the impact of the remote 

sensing products on the estimation of carbon fluxes arising from forest disturbances 

and recover in recent decades.   
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Table 2-4 Scenarios for assessing model sensitivity to spatial carbon density and disturbance intensity 

data. 

Scenario Pre-disturbance C value used Disturbance intensity data 

used? 

Original model 

setting (OMS) 

Ecozone-specific constant No 

Spatial 

disturbance 

intensity only 

(SDI) 

Ecozone-specific constant Yes 

Spatial Pre-

disturbance C 

density only 

(SPC) 

Spatial pre-disturbance C density 

map 

No 

SPC + SDI Spatial pre-disturbance C density 

map 

Yes 

 

2.3 Results 

2.3.1 Model verification and sensitivity analysis 

The model was first coded following the logic and assumptions of the original 

BCA model, with every disturbance assumed to be stand-clearing, the initial carbon 

density right before the disturbance always at the mature forest level, and conversion 

to agricultural or urban land can happen multiple times on a pixel. With this 

intermediate model, not only the total net fluxes over the entire observing period but 

also the annual source and sink estimates for all major carbon pools derived using the 

two models were the same, demonstrating that we have successfully deployed the BCA 

model in a gridded framework for producing spatially detailed carbon estimates. Then, 

disturbance attribution process was improved to account for multiple disturbance 

events on the same pixel (see Figure 2-1), disturbance intensity and starting carbon 
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density were replaced by gridded data derived from satellite remote sensing products, 

and the carbon density throughout the disturbance-regrowth process was tracked in the 

finalized GCA model. 

Model results derived with and without using the spatially explicit pre-disturbance 

carbon density map and the disturbance intensity dataset as inputs to the GCA model 

show that these inputs had large impact on both the total carbon estimates over the 25-

year study period (Figure 2-4) and annual flux estimates (Figure 2-5). Compared to 

benchmark results derived using original model settings (the OMS scenario), the net 

carbon flux arising from mapped disturbances over North Carolina during the study 

period was reduced from 242.9 MT (net source) to 136.4 MT (net source) when only 

the spatial disturbance intensity (the SDI scenario) was used. The flux value became 

negative (net sink) when the pre-disturbance carbon density map was used but all 

disturbances were assumed stand clearing (the SPC scenario). The net flux was further 

reduced to -47.2 MT when both spatial maps were used (the SPC+SDI scenario). 
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Figure 2-4 Comparison of carbon fluxes by disturbance type between different scenarios. Using both 

RS-based carbon density map and disturbance intensity data has turned the 25-year net total C flux 

from source to sink. 

Because wood harvesting was the dominant disturbance type in the study region, 

the two spatial datasets had the largest impacts on harvest source estimation. Emission 

from wood harvesting was estimated at 366.9 MT for the study region using the OMS 

scenario. It was reduced to 247.9 MT and 133.4 MT under scenarios SDI and SPC 

respectively, and further down to 88.5 MT when both datasets were used (the SPC_SDI 

scenario). The impacts of the two datasets on fire source estimates were similar but at 

much smaller scales because the total area affected by fire was only a small fraction of 

that subject to harvesting.  

Driven by post-disturbance growth rates, sink calculation for both post-harvest 

and post-fire growth should not be directly affected by the two spatial datasets. 

However, because the model assumes a fast growth rate at relatively low carbon density 
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and changes the growth rate to a lower value when a pixel’s carbon density exceeds a 

threshold value, use of the two spatial datasets can affect a pixel’s carbon value at any 

given time and hence can have indirect impact on the sink estimates for these post-

disturbance growth processes. 

While the impact of the pre-disturbance C dataset on source calculation for forest-

to-urban conversion is similar to that for wood harvesting and fire events, the impact 

of the disturbance intensity dataset is more complicated. In theory, source calculation 

for forest-to-urban should not be affected by the disturbance intensity data, because the 

intensity should always be 100% for this change process. However, a pixel converted 

to urban could have one or more disturbances (mostly harvesting) prior to the final 

conversion to urban. For such a pixel, if a mature forest carbon value was assigned to 

it prior to its earliest disturbance event, a low disturbance intensity would result in a 

small carbon source and trigger the model to start calculating carbon increase from 

post-disturbance regrowth and the pixel’s carbon density could exceed the assumed 

value for mature forest before the pixel was converted to urban. As a result, the source 

estimation for that forest-to-urban conversion event under the SDI scenario could be 

higher than that calculated under the OMS scenario. This could only happen to pixels 

that had other disturbances prior to the forest-to-urban conversion. This is why the 

annual forest-to-urban source values calculated under the OMS and SDI scenarios were 

similar in the first couple of years but differed in later years (Figure 2-5(C)).  
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Figure 2-5 Annual total carbon absorbed and released by disturbance types during the study period 

under the four different scenario settings. The trendlines show large differences among the sources 

under the four scenarios. 

2.3.2 Carbon fluxes from disturbance and post-disturbance growth 

Carbon fluxes arising from disturbances and post-disturbance growth over North 

Carolina were modeled using the SPC+SDI scenario where both the disturbance 

intensity and pre-disturbance carbon density datasets were used as inputs to the GCA 

model. Sources arising from harvesting, fire, and forest-to-urban conversion, as well as 

sinks from post-harvest and post-fire regrowth were calculated on an annual basis for 

every 30-m pixel that had at least one disturbance mapped.  Figure 2-6 shows the net 

flux images derived by summing up all source and sink terms over the study period for 
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each pixel, along with a few full resolution zoom-in examples showing the fluxes 

driven by different change processes. 

 

Figure 2-6 A browse image of the 30-m net flux map derived by summing up all source and sink terms 

over the study period for each pixel. The full resolution zoon-in examples show the flux patterns over 

areas with (a) extensive forest-to-urban conversion, (b) a large fire occurred in 2008, (c) active wood 

harvesting followed by strong growth throughout the study period, (d) minimal disturbances within 

national park/national forests, and (e) storm damage/salvage logging followed by recovery. 



 

 

35 

 

These 30-m maps can be aggregated for any geographic or administrative regions 

(e.g., areas affected by individual disturbance events, properties of individual 

landowners, districts, counties, and state) to derive estimates needed for addressing 

specific carbon management and/or decision support needs. At the state level, forest 

harvesting and fire from 1986 to 2010 released 88.5 MT and 1.6 MT carbon 

respectively. During the same period, regrowing trees over the logged area absorbed 

142.7 MT carbon while those over burned area added 1.6 MT more. The net flux from 

harvesting, fire, and post-disturbance growth was -52.5 MT. Conversion of forest to 

urban resulted in a net source of 5.3 MT. Overall, the areas subject to the three types 

of disturbances and post-disturbance growth was a net sink of 47.2 MT carbon over the 

entire study period. 

The source and sink estimates differed substantially among the counties within the 

state (Figure 2-7). Most counties with high carbon releases due to harvesting are located 

in the eastern side of the state, with Bertie and Beaufort having the highest releases. 

Except for Rutherford County and Wilkes County, harvesting emissions in most 

counties on the west side were only small fractions of many counties on the east side.  

Emissions due to the other two disturbance types were small in general. However, 

each of the two disturbance types had some hotspots. As expected, counties 

surrounding population centers had high emissions from urbanization, including the 

Mecklenburg County (the Charlotte metropolitan area), Wake County and Durham 

County (the Raleigh-Durham-Chapel Hill area, Figure 2-6(a)), and Guilford County 

(suburban Greensboro). The few other counties that had sizable emissions from 

urbanization also had mid-sized cities.  
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Large fire is not common in NC. In 2008, however, a fire ignited by lightening 

burned more than 41,500 acres, mostly within the Pocosin Lakes National Wildlife 

Refuge, resulting in high emissions in Tyrrell and Hyde counties. Several other 

counties, including Pender, Craven, and to lesser degrees, Burke and Washington, also 

had sizable emissions due to fire. 

The carbon sink related to wood harvesting and fire is driven by post-disturbance 

growth. Given the fast forest growth rates in the study region (especially in ecozone 

21), it does not take many decades for the carbon accumulation through post-

disturbance growth to surpass the amount released by a disturbance event, especially 

when the pre-disturbance carbon is low or the intensity of that disturbance event is low, 

or both. As a result, most counties with high carbon releases due to wood harvesting 

had even higher sink values over the entire study period. Except for Pender County 

where the carbon sink from post-fire growth by 2010 exceeded the release from a fire 

occurred in 1986, the few counties that had fire disturbances had minimal sinks from 

post-fire growth. 

Overall, the total C sink arising from post-disturbance recovery exceeded the total 

release from all three disturbance types in most counties in east and central North 

Carolina, resulting in negative net fluxes in those counties during the study period. The 

relatively large emissions from forest-to-urban conversion in Mecklenburg County and 

the 2008 Pocosin Lakes fire that spilled into Tyrrell County were offset by sinks from 

post-disturbance growth.  As a result, the net fluxes from disturbance and post-

disturbance growth were near 0 in both counties.  Three other counties in the east along 

with more than a dozen counties in the west also had near 0 net fluxes.  Most of these 
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counties had very little emissions from disturbances and hence not much post-

disturbance growth. The slightly positive net fluxes in the Swain, Jackson, and Macon 

Counties were likely due to slightly higher disturbances towards the end of study 

period.  

 

 

 

Figure 2-7 Total carbon absorption and emission by disturbance types at county level during the 25-

year study period. Wood harvesting activities are prevalent in the eastern part of the state, resulting in 

both large sources and sinks. Only a handful of counties are affected by fire. Emission from conversion 

to urban land is prominent in counties with major urban centers. Overall, the emission is less than or 

almost equal to the absorption in all counties. 
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2.4 Discussion 

The BCA model provides a useful tool for estimating carbon pools and fluxes 

arising from land use change.  It has been used to calculate carbon estimates at national 

and global scales.  However, because the smallest modeling unit of the model is an 

ecozone, it is difficult to use it to derive estimates with sub-ecozone details.  To address 

this limitation, we reimplemented the BCA model within a gridded framework.  The 

resultant grid-based carbon accounting (GCA) model provides a flexible framework 

for integrating remote sensing products into the carbon accounting process to produce 

spatially disaggregated carbon estimates, which are increasingly needed to support fine 

scale carbon management decision makings and related applications.   

As with the original BCA model, the estimates produced by the GCA model are 

attributed to different pools and change processes at an annual time step.  While the 

BCA model has been widely used to estimate carbon fluxes arising from historical land 

use changes (Houghton et al. 1999; Houghton 2003b; Houghton et al. 2012; Houghton 

& Nassikas 2017), the GCA model is intended for modeling the carbon dynamics of 

forest changes that occurred in recent decades during which key datasets such as 

disturbance history and carbon density could be mapped using RS data.  The sensitivity 

analysis conducted in this study revealed large differences between the carbon 

estimates derived based on RS products and those derived using parameter values of 

the original BCA model, which were fine tuned for modeling historical land use 

changes.  Compared to estimates derived by assuming the forests had a mature forest 

carbon density value and all disturbances were stand clearing events, the carbon release 

from wood harvesting was reduced by more than 30% and 60%, respectively, when RS 
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based disturbance intensity and carbon density data were used in deriving those 

estimates, and by more than 75% when both were used.  As a result, the net flux arising 

from the observed disturbances and post-disturbance growth in North Carolina changed 

from 242.9 MT (source) to -47.2 MT (sink) when the disturbance intensity and pre-

disturbance carbon density values used by the original BCA model were replaced by 

values derived based RS products.   

Like any other science data, RS products, including those used in this study, 

typically have varying levels of uncertainties.  However, as RS technology advances 

rapidly and increasingly more and better calibration data are becoming available, more 

RS products with better quality will be developed.  The gridded framework of the GCA 

model allows rapid integration of these new products to improve carbon estimation.  

This framework can be adapted for use with remote sensing products of any other 

spatial resolutions.   

While methods have been developed for producing forest disturbance products on 

an annual basis, forest carbon maps over large areas are available only for very few 

years (Wilson et al. 2013).  It should be noted that the carbon value from a map 

developed for a specific year cannot be used directly as the pre-disturbance carbon for 

calculating carbon emissions from a disturbance event that occurred in a different year.  

For areas where wood harvesting is the dominant disturbance type, however, it is 

reasonable to assume that older forests with higher carbon values are more likely to be 

logged than younger ones.  Based on this assumption, we developed a method to create 

a pre-disturbance carbon density map based on a map produced for a specific year.  The 
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values from the derived map were much closer to pre-disturbance carbon values 

measured by FIA field crew. 

It should be noted that GCA model implemented in this study only tracks the 

carbon accumulated through growth after a disturbance event.  It does not calculate 

carbon changes from growth for the years before the first disturbance was detected over 

a pixel location, nor does it do so over forest areas that have no detected disturbances.  

While we intend to add modules to track these carbon changes, the carbon estimates 

derived through this study do not provide a complete picture of forest carbon dynamics 

over North Carolina, and hence should not be used as evidence as to whether harvesting 

reduces or enhances carbon sequestration.  More comprehensive experiments are 

needed to address this important question. 

2.5 Conclusions 

The Bookkeeping Carbon Account (BCA) model was implemented within a 

gridded framework to allow it to produce carbon estimates with spatial details beyond 

the ecozone-based modeling unit of the original BCA model.  The resultant grid-based 

carbon accounting (GCA) model has been calibrated and parameterized such that it 

produces the same state level flux estimates as the original BCA model over North 

Carolina when the inputs to both models are equivalent.  As with the original BCA 

model, the GCA model calculates carbon fluxes between major carbon pools arising 

from several disturbance types and post-disturbance growth over forestlands, including 

timber harvesting, fire, and conversion to urban area.  

An important feature of the GCA model is that it can integrate remote sensing 

products into the carbon accounting process to produce spatially disaggregated carbon 
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estimates, which are increasingly needed to support fine scale carbon management 

decision makings and related applications.  In North Carolina, the model was used to 

estimate carbon fluxes arising from forest disturbances mapped using historical 

Landsat observations over 1986-2010.  The net flux from those disturbances and post-

disturbance growth over the study period was 242.9 MT (source) when derived based 

on the original parameter values of the BCA model, which were tuned for modeling 

fluxes from historical land use change over several centuries.  The flux was reduced to 

-47.2 MT (sink) when remote sensing based disturbance attribution, disturbance 

intensity, as well as pre-disturbance carbon density products were used as model inputs, 

demonstrating that use of remote sensing products could have large impact on modeling 

the carbon fluxes arising from forest disturbance and post-disturbance growth.  

Therefore, improved estimates of those fluxes will rely heavily on improving RS 

products using better observations and more accurate and more representative 

calibration data.   

Currently, the GCA model only tracks carbon accumulated through growth after 

a disturbance event.  It does not calculate carbon absorption by forests not disturbed 

during the study period.  The net carbon sink estimation derived through this study does 

not suggest that harvesting enhances or reduces carbon sequestration.  To address this 

question, it’s necessary to estimate the carbon fluxes over the disturbed areas by 

assuming those areas were not disturbed during the study period, which will be done in 

Chapter 4.   
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Chapter 3 Estimation of Annual Harvested Wood Products 

based on Remote Sensing and TPO Survey Data 

3.1 Introduction 

  Timber harvest is a dominant anthropogenic method for removing forest carbon 

from the standing biomass pool.  In the US, it is the number one cause of anthropogenic 

disturbances to forests, especially in major timber production regions (Zheng et al. 

2011; Harris et al. 2016). As a measure of the primary output of this activity, Timber 

Product Output (TPO) can be used to estimate carbon pools and fluxes in many carbon 

budget models. For example, Harris et al. (2016) used TPO survey data from the US to 

calculate the net carbon change from timber harvest, which showed that timber 

harvesting activities accounted for 86% ~ 92% of total C loss. On the other hand, the 

carbon in many timber products is not completely released immediately after timber 

harvest. While paper and some other wood products can store carbon for only a few 

years, furniture and building materials typically last for decades to centuries before they 

are completely decomposed (Ruddell et al. 2007; Zeng 2008; Lippke et al. 2011). 

Detailed information on different wood product type is therefore important for accurate 

estimation of the carbon pools and emissions from wood products. 

In the United States, timber product output (TPO) reports are produced by the 

Forest Service Forest Inventory and Analysis (FIA) program based on survey data 

collected from wood processing mills (Woodbury et al., 2007). While these reports 

have been produced for all 48 states in the conterminous U.S., they are not available 

for every year for any given state.  Further, the number of available reports, as well as 

the reporting frequencies and reporting years are not consistent among states (Huang 
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et al. 2015), making it difficult to derive consistent estimates of carbon pools in wood 

products and related fluxes among states (Birdsey, 2004; Zhu et al., 2010).  

With the ability to image the Earth’s land surface repeatedly, satellite remote 

sensing can provide more consistent observations of forest disturbances than allowed 

by using ground-based methods, which are often labor intensive and time consuming, 

and hence difficult to deploy with adequate frequency at the national scale. While direct 

estimation of timber volume and other forest attributes using optical data may be 

challenging (e.g. Makela and Pekkarinen, 2001; Trotter et al., 1997), the multi-decadal 

Landsat record has enabled annual mapping of forest disturbances at regional (Huang 

et al., 2009b; Kennedy et al., 2012), national (White et al., 2017; Zhao et al., 2018), 

and global scales (Hansen et al., 2013). In addition to detecting disturbance events, time 

series Landsat data have also been used to attribute disturbance agents (Kennedy et al., 

2015; Schleeweis et al., 2020) and quantify disturbance intensity (Tao et al., 2019). 

Because Landsat-based disturbance products are derived from a globally 

consistent observational record that has been calibrated over multiple decades (Chander 

et al., 2009; Mishra et al., 2016), they may provide a basis for deriving annual TPO 

estimates that are spatially more consistent and temporally more complete than 

available survey data.  For example, Huang et al. (2015) demonstrated that in North 

Carolina, the total TPO can be estimated annually from 1986 to 2010 using the 

Ordinary Least Square (OLS) regression method and Landsat-based annual forest 

disturbance products, whereas the survey data was available only for 10 of the years 

from 1992 to 2009.  Building on that study, Ling et al. (2016) developed a suite of 

linear models for estimating the carbon influxes to different wood product types for 
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each year between 1986 and 2010.  By accounting for the specific effects in both spatial 

(county) and temporal (year) domains, those models provided annual estimates of 6 

harvested wood products for each county in North Carolina, including saw log, 

pulpwood, and fuelwood from softwood and hardwood, respectively. 

The purpose of this chapter is to further explore the feasibility to derive multi-

decadal TPO records for a much larger timber production region, namely, the southeast 

US, which includes North Carolina, South Carolina, Alabama, Florida, Georgia, 

Mississippi, and Tennessee (Figure 3-1).  Given the demonstrated robustness of many 

advanced machine learning algorithms in a wide range of remote sensing applications 

(Huang and Jensen, 1997; Shao and Lunetta, 2012; Verrelst et al. 2012), this chapter 

seeks to evaluate whether one of the most commonly used algorithms – Random Forest 

(RF), can provide more robust TPO estimates across this large region.  RF is an 

integrated learning method that can solve both classification and regression problems 

(Ho, 1998; Breiman, 2001).  It has been used in numerous studies to generate 

classification maps or derive quantitative estimates of vegetation biophysical variables 

(Du et al., 2015; Pal, 2005; Rodriguez-Galiano et al., 2012; Pearse et al., 2017; Ploton 

et al., 2017; Liu et al 2019).  

3.2 Study Area and Data Collection 

3.2.1 Study Site 

Located in the southeastern of the United States, the seven states of the study area 

cover a total area of 354,053 square miles that include both lowlands and highlands. 

While the region is dominated by rolling hills, plateaus and rich river valleys in the 
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north, the south is characterized by beaches, swamps, and wetlands. The region has a 

subtropical monsoon climate in the south transitioning to a temperate climate to the 

north. The summer is long, hot, and humid, while the winter is short and warm. The 

average annual precipitation in this area ranges from about 43 to 54 inches. The forest 

coverage of the seven states is between 50.68% and 70.57% respectively, of which 

Alabama, South Carolina, Georgia, and Mississippi have the largest forest coverage, 

all above 65%. Southern forests have the highest planted timberland rates in the US 

(71% of all planted timberland), of which Alabama has 33% planted timberland rate, 

32% for Georgia, 32% for Mississippi, 31% for Florida, and 31% for Louisiana, all 

have the highest proportions of planted to total timberland, nationally (Oswalt et al. 

2017). In the southern planted timberland, the main forest types are Loblolly pine 

(Pinus taeda) and shortleaf pine (Pinus echinate), which account for 71% of all planted 

forests in the South. 
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Figure 3-1 Study area located in the US southeastern States, including North Carolina, South 

Carolina, Alabama, Florida, Georgia, Mississippi, Tennessee. 

3.2.2 Data collection 

3.2.2.1 TPO Survey Data 

The TPO survey data (USDA Forest Service, 2019) were acquired from Forest 

Inventory and Analysis (FIA) national program of the United States Forest Service 

(USFS). FIA carried out state level TPO studies to investigate round wood uses for 

industrial and non-industrial purposes in a given state using ground-based survey 

methods. In order to determine the geographic origin, harvest date, volume, species, 

and use of harvested roundwood products, FIA canvasses all primary wood-using mills, 

harvest sites, residential users, and commercial producers that harvest and sell wood 

products for selected study years (Johnson, 1996, Woodbury, et al. 2006). For each 

study year the collected data are compiled to produce a TPO report that provides county 
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level wood product estimates for that year.  The survey data includes county level 

estimation of industrial roundwood, fuelwood, chips, post, poles, and so on. The 

industrial roundwood estimation mainly consists of the estimates of industrial 

hardwood (sawlog, pulpwood) and industrial softwood (sawlog, pulpwood). In this 

study, industrial roundwood was considered only, as it is the main component of total 

roundwood production in the study region. 

Table 3-1 lists the TPO reports available from 1995 to 2009 over the study region.  

All of the 7 states had data for 1995, 1999, 2005, 2007, and 2009.  Except for 

Mississippi, the other 6 states also had data for 1997 and 2003.  In addition, TPO reports 

were available for Georgia, North Carolina, South Carolina, and Tennessee in 2001.  

While Mississippi had TPO data for only 5 years, it’s the only state that had data for 

2002.  These reports provided county level estimates for six major wood product types, 

including softwood saw log (SSL), softwood pulpwood (SPW), softwood fuelwood 

(SFW), hardwood saw log (HSL), hardwood pulpwood (HPW), and hardwood 

fuelwood (HFW). 
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Table 3-1 Years in which survey data are available for each state, "x" indicates the data is available 

for that year in that state. 

State 1995 1997 1999 2001 2002 2003 2005 2007 2009 

Alabama x x x   x x x x 

Florida x x x   x x x x 

Georgia x x x x  x x x x 

Mississippi x  x  x  x x x 

No. Carolina x x x x  x x x x 

So. Carolina x x x x  x x x x 

Tennessee x x x x  x x x x 

 

As the only data source that can provide survey-based TPO estimates for individual 

counties during a specific year, the TPO reports are highly valuable for calibrating and 

validating models designed to produce county level TPO estimates on an annual basis 

(Huang et al., 2015).  The average annual timber production volumes for hardwood, 

softwood, and both calculated from the available TPO reports are listed in Table 3-2.  

Except for Tennessee, all other states had substantially higher softwood production 

than hardwood production.  With a much lower total wood production than that of each 

of the other six states, Tennessee’s hardwood production was over 3 times of its 

softwood production. 
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Table 3-3-2 Average annual timber production volume (in thousand cubic meters) in each state based 

on the survey data listed in Table 3-1. 

State Hardwood Softwood Total 

Alabama 9733.46 23986.03 33719.49 

Florida 1574.83 13006.01 14580.83 

Georgia 7831.17 27986.87 35818.03 

Mississippi 7675.47 19330.68 27006.15 

North Carolina 9217.77 14760.85 23978.62 

South Carolina 4299.35 13804.73 18104.08 

Tennessee 7409.33 2328.98 9738.31 

 

3.2.2.2 Forest disturbance and land cover data 

Forest disturbance data used in this study included 30m disturbance maps derived 

using Landsat time series stacks (LTSS) and the vegetation change track (VCT) 

algorithm (Huang et al., 2011; Zhao et al., 2018).  An LTSS is a stack of Landsat images 

assembled for a World Reference System (WRS) path/row tile to provide clear view 

observations at a regular time step (Huang et al., 2009a).  An annual LTSS consists of 

an individual Landsat acquisition or a composited image for each year to provide cloud 

free or near cloud free (< 5% cloud cover) time series observations for the summer leaf-

on season of a multi-year study period.   

VCT is an automated algorithm designed to analyze an LTSS to produce 

disturbance products (Huang et al., 2010).  This is achieved through two major steps.  
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First, each image in the LTSS is analyzed to mask water, cloud, and cloud shadow 

pixels and to select forest samples from densely forested areas.  Based on these forest 

samples, an integrated forest z-score (IFZ) index is calculated for each pixel using the 

following formula: 
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where bi denotes the pixel’s value in band i; and bi and SDi are the mean reflectance 

value and its standard deviation of the forest samples selected above. IFZ index is a 

non-negative and inverse indicator of the likelihood of a pixel being a forest pixel 

(Figure 3-2). The higher IFZ value, the more likely the pixel being a non-forest pixel. 

On the contrary, the closer IFZ is to zero, the more likely the pixel is to be a forest 

pixel.  In step 2, the IFZ time series of each pixel is analyzed to determine whether that 

pixel had forest cover during at least part of the study period.  If yes, the pixel is further 

evaluated to determine whether disturbances occurred during the study period.  If yes, 

the disturbance year is determined for each detected disturbance event and its 

disturbance magnitude is calculated as the change in IFZ as shown in Figure 3-2.   



 

 

51 

 

 

Figure 3-2 A forest disturbance event typically results in an abrupt increase in IFZ, which decreases 

gradually due to post-disturbance recovery (Huang et al., 2015). Disturbance year is determined by 

the timing of the abrupt change and the change in the IFZ value provides a spectral measure of the 

disturbance intensity. 

 

The VCT algorithm has been used to produce 30m disturbance products for the 

conterminous U.S. from 1986 to 2010 (Zhao et al., 2018).  The disturbance products 

used in this study was generated as part of that effort, which were extended to 2015. 

Because the TPO data provide details on softwood and hardwood products, a land 

cover map derived as part of the National Land Cover Database (NLCD) was used in 

this study to provide information on the distribution of deciduous and evergreen forests 

over the study region. NLCD is an ongoing US-wide land cover mapping effort that 

has resulted in NLCD products for many epochs since 1990s.  The 1992 map should 

provide a better characterization of pre-disturbance forest distributions than later 

NLCD products, and hence was used in this study.  
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3.3 Methods 

3.3.1 Preparation of predictor variables 

A key hypothesis in modeling TPO from disturbance data is that timber harvest 

volume should be correlated with Landsat based disturbance estimates (Huang et al., 

2015).  Given the disturbance products, harvested timber volume (HTV) could be 

calculated from stock density, harvest area and harvest intensity as follows: 

        HTV = stock density x (logging area x logging intensity)            (3-2) 

And TPO would be the difference between HTV and slash: 

        TPO = HTV – slash                 (3-3) 

However, logging is a dominant but not the only disturbance agency in the 

southeast.  As a result, the disturbance data can only provide proxy information for 

logging.  Also, no good data is available on the slash amount from logging and the 

stock density before each logging event.  Therefore, direct calculation of TPO using 

the above equations was not possible.  Statistical models calibrated using TPO survey 

data were used to establish relationships between TPO and the disturbance data. 

Since the TPO survey data were only available at the county level, the 30m 

disturbance data were aggregated to produce county level estimates.  Based on lessons 

learned from the Huang et al. (2015) study, the disturbance areas within each county in 

any given year of the study period were calculated at four IFZ disturbance magnitude 

(IFZ-DM, Table 3-3).  Further, these areas were calculated for disturbances over 

deciduous, evergreen, and mixed forest pixels as mapped by the 1992 NLCD land cover 

map. Therefore, a total of 12 disturbance area values were calculated for each county 

in each disturbance year. 
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Table 3-3 IFZ Disturbance magnitude (IFZ-DM) levels at which county level disturbance areas were 

calculated. 

Distubance 

Magnitude 

Level 

Threshold Values 

1 IFZ-DM ≤ 3 

2 3 < IFZ-DM ≤ 6 

3 6 < IFZ-DM ≤ 9 

4 IFZ-DM ≥ 9 

 

The effective date range of the TPO survey data for any given year does not match 

that of the disturbances mapped by the VCT for that year (Figure 3-3).  The survey data 

is collected from the beginning to the end of a year (hereby called survey year), while 

most disturbance events mapped for a year by the VCT algorithm could occur any time 

between the acquisition dates of the images used for that year and the previous year 

(Figure 3-3).  Further, due to residual clouds and other data quality issues, the actual 

disturbance year could also be one year before or after the mapped disturbance year 

(Huang et al., 2010; Thomas et al., 2011).  To reduce the influence of such temporal 

mismatches, for each TPO modeling/prediction year it was necessary to consider two 

more years – one immediately before and one immediately after that year (Huang et al. 

2015, Ling et al. 2016).   Therefore, a total of 36 predictor variables (12 per year x 3 

years) were used to model and predict TPO for any given year. 
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Figure 3-3 Temporal mismatch between survey year and potential disturbance event (Huang et al. 2015). 

 

3.3.2 Modeling approaches 

Three modeling algorithms were examined in this study, including the ordinary 

least square (OLS) linear regression and the fixed effects linear regression (FELR) 

modeling approach used in previous studies (Huang et al. 2015; Ling et al. 2016), as 

well as the Random Forest algorithm.  The OLS linear regression model can be written 

as: 

𝑌𝑖𝑡 = 𝛼 + 𝛽𝑋𝑖𝑡 + 𝜀𝑖𝑡               (3-4) 

where 𝑌𝑖𝑡, 𝑋𝑖𝑡, and 𝜀𝑖𝑡 is are the TPO value for a specific wood product type, a 

vector of the 36 predictor variables as described in section 3.3.1, and model residual 

for county i in year t, and α and β are the regression intercept and the slope vector for 

the predictor variables, respectively.  Both α and β are independent of the county index 

i and year index t.  By considering both county specific and year specific effects, the 

fixed effects regression model can be written as: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽𝑋𝑖𝑡 + 𝜏𝑡 + 𝜀𝑖𝑡              (3-5) 

where 𝛼𝑖 and 𝜏𝑡 denote county specific and year specific effects, respectively.  

Random Forest is an ensemble learning method based on classification and 

regression trees (Breiman, 2001).  The algorithm ensembles a large number of trees 
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where each tree is developed using a random subset of the predictor variables and is 

trained using a random subset of the training data (Breiman, 1996; Breiman et al, 2017).  

With demonstrated robustness for addressing both classification and regression 

problems (Du et al., 2015; Pal, 2005; Rodriguez-Galiano et al., 2012), it has been used 

in many forest remote sensing applications (Pearse et al., 2017; Ploton et al., 2017; Liu 

et al., 2019).  

The three approaches were used to model each of the 6 individual product types, 

including softwood saw log (SSL), softwood pulpwood (SPW), softwood fuelwood 

(SFW), hardwood saw log (HSL), hardwood pulpwood (HPW), and hardwood 

fuelwood (HFW), as well as the total of the 6 types.  The robustness of OLS and 

Random Forest was evaluated through a ten-fold cross-validation method.   In this 

method, the reference samples were divided into 10 random subsets.  Each subset was 

used to evaluate a model calibrated using the remaining 9 subsets.  This was repeated 

10 times such that each time a different subset was used as test data.  Results from all 

10 experiments were combined to produce representative accuracy estimates for the 

final model to be derived using all reference samples.  As will be discussed in section 

3.4.1, the FELR method produced abnormally large and erroneous TPO values.  

Therefore, there was no need to further assessed that algorithm using cross validation.  

3.4 Results 

3.4.1 Limitations of the FELR method 

Similar to the results reported by the Ling et al. (2016), the FELR method appeared 

to be able to model the individual wood product types for all states in the Southeast.  A 
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comparison of model estimates and the survey data over South Carolina and Tennessee 

is shown in Figure 3-4.  However, the derived models predicted abnormally high or 

low values that appeared to be obvious errors (Figure 3-5).  A detailed examination of 

the model inputs revealed that in many of years where the model predictions were 

abnormally high or low, there were some counties that had TPO values but their 

disturbance areas were 0, or had disturbances mapped but their TPO values were 0.  

Obviously, these were errors in either the disturbance data or the survey data, or both.  

It’s like that the FELR method was extremely sensitive to such errors.  Abnormally 

high or low predictions by the FELR method were also found in Florida, Georgia, and 

Mississippi.  Given these large errors in the predictions, the FELR method was not 

considered any further in this study. 
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Figure 3-4 Comparison of model estimates (y-axis) derived using the fixed effects linear regression 

(FELR) method over South Carolina (top) and Tennessee (bottom) and TPO survey data.  Each point 

represents a county.  The orange lines are 1:1 lines. 
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Figure 3-5 Abnormally high or low values were predicted in many years by the FELR method in South 

Carolina (left) and Tennessee (right), which were obviously wrong.  Such obvious errors were also 

found in Florida, Georgia, and Mississippi. 

 

3.4.2 Performance of the OLS and RF for TPO modeling 

Several wood product types were modeled reasonably well using both OLS and 

RF. Comparison of the predicted values against the survey data resulted in coefficient 

of determination (R2) values of 0.5 or higher for multiple wood product types in several 

states (Tables 3-4 and 3-5).  Except for Tennessee, both OLS and RF resulted in better 

R2 values on the other 6 states for the softwood types than for the hardwood types, 

indicating that relationships between timber output for hardwood types and the 

disturbance data were not as good as those for softwood types.  Among the 7 states, 

South Carolina’s TPO appeared to be more difficult to model. Except for the hardwood 

sawlog (HS) in Florida, the R2 values derived for this state were lower than those for 

the other 6 states for all 6 wood types.   
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Table 3-4 R2 values of the relationships between TPO values predicted by OLS and survey data 

derived through 10-fold cross-validation. 

  AL FL GA MS TN NC SC 

SP 0.61 0.41 0.56 0.39 0.53 0.55 0.26 

SS 0.61 0.47 0.40 0.53 0.09 0.57 0.27 

SF 0.64 0.62 0.51 0.54 0.34 0.60 0.36 

HP 0.46 0.06 0.11 0.23 0.52 0.09 0.00 

HS 0.22 0.00 0.16 0.16 0.28 0.35 0.05 

HF 0.56 0.14 0.20 0.55 0.22 0.17 0.02 

 

Table 3-5 R2 values of the relationships between TPO values predicted by RF and survey data derived 

through 10-fold cross-validation. 

 
AL FL GA MS TN NC SC All 7 States 

SP 0.63 0.57 0.64 0.60 0.62 0.56 0.37 0.62 

SS 0.63 0.66 0.48 0.66 0.18 0.60 0.41 0.59 

SF 0.59 0.71 0.56 0.57 0.44 0.62 0.43 0.37 

HP 0.55 0.23 0.23 0.28 0.54 0.18 0.04 0.41 

HS 0.34 0.05 0.20 0.21 0.46 0.41 0.18 0.35 

HF 0.55 0.24 0.29 0.44 0.34 0.30 0.10 0.29 

 

Overall, RF performed better in modeling TPO than the OLS.  Its R2 values were 

higher than those derived using OLS for most of the states and wood types (Figure 3-

6).  While the differences were small in some cases, on average use of RF instead of 

the OLS resulted in an improvement of 0.08 in the R2 value, and the improvements 

exceeded 0.1 for at least one of the 6 wood types in each of the 7 states.  OLS had 

substantially better performance than RF for only two cases: softwood fuelwood (SF) 

in Alabama and hardwood fuelwood (HF) in Mississippi, suggesting that in these two 

cases the RF models might have overfitting issues.  
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Figure 3-6 Coefficient of determination (R2) values derived by comparing survey data and values 

predicted by OLS (y-axis) and Random Forest (x-axis) through 10-fold cross validation. 

 

3.4.3 Spatial-Temporal Variability of TPO in the Southeast  

Given the overall better performance of the Random Forest as compared to OLS 

for TPO modeling, it was used to produce annual TPO estimates for all 7 states in the 

southeast.  From 1986 to 2015, the region produced more than 5 billion m3 wood 

products, including 3.7 billion m3 softwood products and 1.6 billion m3 hardwood 

products (Table 3-6).  Of the 7 states, Georgia and Alabama had the highest TPO 

values, while Tennessee produced the least amount of wood products, although the 

state was larger and had more forest land than South Carolina.  Tennessee was also the 

only state that produced more hardwood products than softwood products.  All other 6 

states had higher total TPO values for the softwood types than for the hardwood types.  
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Softwoods are mostly used by the construction industry or to produce paper pulp and 

card products (Ryan, 2019). They account for about 80% of the world's timber 

production, with traditional production centers being located in the Baltic region, North 

America, and China (Europe, U.N.E.C,2007).  

 

Table 3-6 Estimated 30-year (1986-2015) total TPO (thousand m3, or kcume) for the 7 states in the 

southeast United States. 

State SP SS SF HP  HS HF All Types 

AL 330487 404207 7269 175158 87575 43301 1065097 

FL 235876 215251 4439 45939 16294 18238 559074 

GA 439448 496884 11946 148388 104004 62604 1309772 

MS 238282 362725 6186 146179 76195 35335 878470 

TN 45456 58719 3152 72831 105075 36378 324335 

NC 159241 239199 6613 111021 94753 50262 675047 

SC 206721 215908 4521 61986 36193 24301 567153 

All 

States 

1655511 1992892 44126 761500 520089 270420 5378947 

 

The derived TPO estimates had large variations among the counties within each 

state.  Counties that had high TPO values were mostly in Alabama, South Carolina, the 

central and southern part of Mississippi, northern Florida, and the east part of North 

Carolina (Figure 3-7).  Most counties in Tennessee, southern Florida, western 

Mississippi, north central Georgia, and the northern most part of Alabama had low TPO 

values. 
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Figure 3-7 County-level total TPO values predicted by the Random Forest for the 30-year study period 

(1986-2015). 

 

Overall, the average state-level annual TPO estimates calculated from the 30-year 

record were comparable to those derived from the TPO survey data, with the 30-year 

averages being higher than the survey data for the softwood types in some states (Figure 

3-8). In particular, the 30-year average TPO values for softwood sawlog (SS) and 

softwood pulpwood (SP) in Mississippi were 14.6 and 16.6 million m3/year, whereas 

the averages from the survey data were 12.7 and 12.9 million m3/year, respectively.  

Alabama’s 12.5 million m3/year 30-year average value for softwood sawlog was ~2 

million m3/year higher than the 11.6 million m3/year average value calculated from 

survey data.  A detailed examination of the annual TPO estimates over the 30-year 
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study period revealed that the TPO values had large variations over time (Figure 3-9).  

The highest TPO values in Georgia were found before 1990 and after 2010, but those 

years were not represented by the TPO survey data.  This may explain why the 30-year 

averages were substantially higher than the averages from the survey data.  The slightly 

higher 30-year average values than averages from the survey data in Alabama, Florida, 

Mississippi, and South Carolina were likely due to similar reasons. 

 

 

Figure 3-8 Comparison of the average annual TPO values calculated from the 30-year record derived 

through this study and available TPO survey data.  Each point represents one wood product type in 

one state.  The two right most points were from Georgia. 
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Figure 3-9 Annual timber production volume in softwood, hardwood, and total for seven states: (a) 

North Carolina; (b) South Carolina; (c) Alabama; (d) Florida; (e) Georgia; (f) Mississippi; (g) 

Tennessee. 

 

The temporal dynamics of the TPO the 30-year study period had similarities and 

differences among the 7 states (Figure 3-9).  The 2007-2008 economic downturn 

appeared to have large impact on wood product output across the region.  All 7 states 

had the lowest TPO values around that time, which were followed by sharp increases 

in the next few years.  Several states also had high TPO values before or around early 
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1990s that were followed relatively lower TPO values throughout much of the 1990s 

and 2000s, including Florida, Georgia, and South Carolina, whereas Tennessee’s TPO 

values were relatively high during that period.  Both Alabama and Mississippi had high 

TPO values over multiple years that peaked in early to mid-1990s, which were followed 

by a smaller peak centered around 2005.   

3.5 Discussion and Conclusions 

This chapter explored three approaches for deriving annual TPO estimates, 

including a fixed effects linear regression (FELR) model, the ordinary least square 

(OLS) linear regression, and the Random Forest (RF) regression tree algorithm.  The 

FELR method produced abnormally large values that were obvious errors in 5 of the 7 

states, indicating that this method was not appropriate for TPO modeling, likely due to 

its sensitive to noises in the predictor variables and/or calibration data.  Both OLS and 

RF produced more stable TPO estimates.  Cross-validation results revealed that on 

average, the coefficient of determination (R2) between predicted and survey data was 

improved by 0.08 when TPO was modeled using RF instead of the OLS.  Therefore, 

the RF was used to derive annual TPO estimates from remote sensing-based 

disturbance products over three decades (1986 to 2015). 

Predictions by the RF algorithm revealed that from 1986 to 2015, the 7 states in 

the Southeast produced more than 5 billion m3 wood products, of which over 40% were 

contributed by Georgia and Alabama.  The average annual TPO estimates calculated 

from the 30-year record were comparable to those derived from the TPO survey data, 

with the 30-year averages being higher than the survey data in some states.  This was 
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mainly due to large temporal variations of the TPO estimates over the 30-year study 

period, with many of the years in the first and/or last 5-10 years of the study period 

having high TPO values that were not represented by the survey data. 

The TPO dataset derived through this study represents multiple improvements 

over the available survey data.  First, the time span of the derived data record (1986-

2015) is twice as long as that covered by the TPO survey data used in this study (1995-

2009).  Second, the annual time step of the derived data can better capture the temporal 

variability of the TPO than the survey data available for each state, which typically 

skipped one or more years (Table 3-1).  Third, the years during which survey data are 

available in one state are not always the same as those in other states, making it difficult 

to assemble a complete TPO dataset that covers all 7 states for some years.  As an 

annual dataset derived consistently across the region and over time, the TPO record 

derived through this study can provide a complete TPO dataset for the entire region in 

any given year between 1986 and 2015. 

Modeled based on forest disturbances mapped using satellite imagery, the TPO 

data derived through this study can provide an observational basis for calculating the 

amount of C transferred from the standing biomass to the wood product through 

logging and for partitioning of harvested C among different wood product pools.  As 

an example, Figure 3-10 shows the total amount of C calculated from the derived TPO 

record that were transferred to the P10 (C released in 10 years) and P100 (C released 

in 100 years) pools over the 30-year study period.  While the amount transferred to the 

two product pools were comparable in most counties, many counties had higher shares 

of the harvested C in the P10 pool than in the P100 pool, or vice versa.  The TPO record 
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derived through this study will be used to improve the estimates of C fluxed related to 

wood products in Chapter 4.   

 

 

Figure 3-10 Total C influx to the P10 (C released in 10 years) and P100 (C released in 100 years) 

pools calculated using the derived TPO record over the 30-year study period.  The blue ellipsoids 

highlight the counties that had more harvested C allocated to the P10 pool than the P100 pool, or vice 

versa. 
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With demonstrated robustness over 7 states in the Southeast, the RF-based 

modeling framework developed in this study might be applicable in other regions of 

the United States.  Annual forest disturbances have already been mapped for the 

conterminous U.S. (CONUS) using time series Landsat observations from 1986 to 

2010 (Zhao et al., 2018).  As of the Huang et al. (2015) study, every state in CONUS 

had TPO survey data for at least two years.  Therefore, it is possible to expand the 

geographic domain of this study to the entire CONUS.   

It should be noted that several data products that became available recently might 

be better than the data used in this study and hence could be used to improve TPO 

modeling.  One is a disturbance intensity dataset developed by Tao et al. (2019), which 

quantifies the percentage of the basal area removed by disturbance events mapped by 

VCT.  Calibrated using basal area removal data calculated from field observations, this 

dataset should provide a more reliable measure of logging intensity that in turn should 

result in better estimation of the timber output from logging.  Another dataset is the 

disturbance attribution data developed by Schleeweis et al. (2020), which explicitly 

mapped forest harvest and several other disturbance agents across CONUS.  Excluding 

disturbances that are unlikely to result in timber output likely will improve TPO 

estimation.  Another desirable dataset is annual aboveground biomass.  Such a dataset 

could be used to calculate pre-harvest C stock, which is needed together with a measure 

of disturbance intensity to calculate harvested C. 
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Chapter 4 GCA Model Improvement and Implications for 

Carbon Management and Flux Estimation over North 

Carolina 
 

4.1 Introduction 

The Grid-based Carbon Accounting (GCA) model developed in Chapter 2 

provided a framework for estimating C fluxes over areas affected by forest disturbances 

at the 30m resolution, which is needed to calculate the C fluxes arising from harvest or 

other disturbances over individual forest patches.  Such patch level C estimates are 

crucial for supporting various carbon management, carbon trade, and other climate 

change mitigation initiatives at individual project and/or individual property owner 

levels (Birdsey et al. 2006; Corbera and Schroeder 2011).  In order to derive C estimates 

for all forest lands, however, the fluxes over forests not affected by contemporary 

disturbances should also be included.   

Further, the annual TPO records derived in Chapter 3 provided an opportunity to 

improve C flux estimates related to different wood product pools.  Following the 

original bookkeeping carbon accounting (BCA) model, the GCA model uses fixed 

fractions when dividing harvested wood products into different release pools.  In 

reality, the release pool fractions of carbon sources in different grids could be 

different.  Derived using satellite-based annual forest disturbance data and TPO survey 

data, the TPO records from Chapter 3 provide year and county specific estimates of 

fuelwood, pulpwood, and sawlog volumes.  These records could be used to derive more 

realistic partitioning of the total biomass removed by disturbance events into the P1, 
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P10 and P100 release pools (i.e., pools with C assumed to release in 1, 10, and 100 

years, respectively).  

This chapter had two major goals.  The first was to further improve the GCA 

model such that it could produce flux estimates for pre-disturbance growth over 

disturbed areas as well as the growth of undisturbed forests, and to use the TPO records 

developed in Chapter 2 to derive more realistic partitioning of the total biomass 

removed by disturbance events into the P1, P10 and P100 release pools.  Following a 

comparison of model outputs to available inventory-based flux estimates, the growth 

rates used by the model were also adjusted according to rates calculated using FIA field 

plot data.  The second goal was to use the improved model to evaluate how forest C 

flux estimates were affected by forest management practices as well as emission 

calculation methods.  The spatial and temporal domains of this chapter were exactly 

the same as in Chapter 2: the study area included the entire state of North Carolina and 

the years ranged from 1986 to 2010.  Except for those described in the following 

sections, all other model inputs were exactly the same as those used in Chapter 2. 

4.2 GCA Model Improvement 

4.2.1 Partitioning of Removed C 

The aboveground carbon removed by disturbance events can be divided into four 

pools from which the C is released through different processes at different rates – slash, 

P1, P10, and P100 (Table 2-2).  The original BCA model provided the partitioning 

ratios among the four pools for each ecozone, which were assumed to remain the same 

across counties and over time within each ecozone.  In reality, however, these ratios 
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could differ from county to county and vary from year to year.  The TPO data provided 

an opportunity to derive county and year specific partitioning among the P1, P10, and 

P100 pools.  Specifically, softwood and hard fuelwoods should go to the P1 pool 

because they likely will be burned in one year.  The pulpwood might store C for up to 

a decade and should be in the P10 pool.  Sawlogs could store C in furniture and 

buildings for over a century, and hence should be in the P100 pools.  No estimate of 

slash was provided by the TPO survey data.  In theory, however, slash should be the 

difference between removed C and the amount of C stored in wood products: 

Cslash = Cvct-Ctpos                                       (4-1) 

Where, Cvct, Cslash, and Ctpos are the total C removed by disturbance events mapped 

by the VCT algorithm and the amounts stored in slash and wood products, respectively.  

In any given year, Cvct for a county was calculated as the sum of the carbon removed 

at individual pixel locations (Cpj) for all pixels within that county (4-2): 

    Cvct=∑ Cpj                                         (4-2) 

For each TPO survey year, Ctpos was provided by the TPO survey data.  Therefore, 

a slash ratio (Rslash) could be calculated for each TPO survey year for every county: 

Rslash = Cslash/Cvct                                  (4-3) 

The county specific Rslash values calculated this way, however, varied greatly 

among counties and TPO survey years.  Assuming the Rslash value was mostly 

determined by harvest methods, which were unlikely to differ that much among 

counties in the same state, the large among-county and among-TPO survey year 

differences were more likely caused by uncertainties in both the disturbance products 
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and the pre-disturbance C data.  To minimize the impact of such uncertainties, an 

average Rslash was calculated based on the county and TPO survey year specific values.  

The resultant Rslash value, 0.4672, was then used to calculate the influx of C to the slash 

pool from the total C removed by each year’s disturbances for each county (CVslash): 

CVslash = Cvct x Rslash                               (4-4) 

After subtracting this slash pool from the total removed C, the P1, P10, and P100 

pool fractions were calculated annually for each county by ratios of C in different wood 

products based on the annual TPO record derived in Chapter 2.  Finally, the C removed 

at each pixel location within a county was then partitioned according to the above 

derived county and year specific fraction values.  Release of C stored in each product 

pool was calculated the same way as described in Chapter 2. 

4.2.2 C accumulation from forest growth 

Forests transfer C from the atmosphere to the biomass pool through tree growth.  

Over disturbed areas, the GCA model developed in Chapter 2 used pre-defined growth 

rates to calculate the C accumulated by regrowing trees reestablished after each logging 

and/or fire disturbance event.  The growth before the first disturbance event, however, 

was not tracked, nor was the growth over undisturbed forest areas.   In this chapter, 

both of these two cases were included in calculating the C fluxes arising from forest 

growth. 
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4.2.3 Model verification and adjustment 

While the GCA model could produce C estimates at the 30m spatial resolution, 

validation of fine resolution flux estimates remains a challenge.  Flux estimates with 

spatial details close to the 30m resolution are difficult to find in the published literature.  

Such estimates are often reported at global, national, or regional scales (Houghton and 

Nassikas, 2017; Woodall et al., 2015).  However, state level details have been reported 

in some studies (Han et al., 2007; Houghton and Nassikas, 2017; Woodall et al., 2015; 

Zheng et al., 2011), which could be useful for evaluating the results derived in this 

study.  In particular, the U.S. Forest Service published an inventory of greenhouse gas 

emissions and removals from forest land, woodlands, and urban trees (Domke et al. 

2020).  This report provided annual flux estimates with state level details from 1990 to 

2018.  Estimates were derived for both forest land remaining forest land and forest land 

conversions, and included fluxes among aboveground biomass (including harvested 

wood products), belowground biomass, and other major carbon pools.  Those related 

to aboveground biomass over forest land remaining forest land and forest land 

conversion to urban land between 1990 and 2010 were used to evaluate the results 

derived through this study. 

Figure 4-1 shows a comparison between the GCA model and inventory data on 

carbon changes in the aboveground biomass pool over forest land remaining forest 

land.  Overall, the aboveground biomass pool had large negative fluxes (sink) during 

the study period.  But the GCA estimates were much larger.  The annual fluxes were 

twice as much as the inventory data in early 1990s and remained about 50% larger by 
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2010.  As a result, the 21-year total sink estimate from the GCA model was 80% larger 

than the inventory-based estimate. 

 

 

Figure 4-1 Comparison of annual C changes in the aboveground (including harvested wood products) 

pool derived using the GCA model and from the USFS inventory data over forest land remaining forest 

land. The slope of the increasing trend in the annual flux estimates by the GCA model was reduced 

after adjusting the estimates to account for legacy emission from wood products harvested during 100 

years before each model year (see the text for details on the adjustment method). 

 

Compared to the relatively stable inventory data, the annual sink derived from the 

GCA model had an obvious decreasing trend over the 21-year period.  This is because 

the GCA model did not include legacy emissions from wood products harvested before 

1986.  As the model started to accumulate the wood product pool in 1986, the pool 

increased over time, and so did the model estimate of the legacy emission from that 

pool, roughly following a logarithmic curve (Figure 4-2).   
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Figure 4-2 Because the GCA model did not include legacy emissions from wood products harvested 

before 1986 and started to accumulate the wood product pool in 1986, model estimates of legacy 

emission from wood products increased as the number of years since 1986 increased, roughly 

following a logarithmic curve. 

 

Assuming all factors controlling the influx of C to the wood product pools and 

emission from the pools between 1986 and 2010 would not change that much in future 

years, the fitted curve could be used to estimate the legacy emission in any year after 

1986 from wood products harvested between 1986 and that year.  For example, by the 

100th year after 1986, the total annual legacy emission from wood products harvested 

in the 100 years after 1986 would be 6.8Tg.  Assuming the same method could also be 

used to estimate the legacy emission in any year between 1986 and 2010 from wood 

products harvested 100 years before that year, then it would be possible to adjust the 

flux value estimated by the GCA model for each year such that the value would include 

legacy emission from wood products harvested during the 100 years before that year.  

Figure 4-1 shows that after this adjustment, the annual C sink values from the GCA 

model were still 2.5Tg – 4.5Tg larger than the inventory data, indicating that other 
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factors, e.g., inflated growth rates, could have also contributed to the larger sink 

estimates by the GCA model. 

As shown in Table 2-3, the growth rate used by the model for young forests (fast 

growth) in ecozone 21 was close to the mean growth rate calculated from FIA plot data.  

However, that mean growth rate likely was overestimated, because a good number of 

FIA plots appeared to have abnormally high (5-10 times higher than the mean) growth 

rates (Figure 2-3).  Such high values had disproportionately large impact on the mean 

value, but they were errors because no trees could grow that fast.  Because medians are 

typically less affected by extremely large or small values, the median growth rates from 

Table 2-3 were used to replace the original growth rates used by the GCA model for 

young forests (fast).  After this adjustment, annual sink estimates from the GCA model 

were still mostly larger than inventory data, but the differences were much smaller than 

those derived using the original growth rates (Figure 4-3).  After compensating for 

legacy emissions from wood products harvested during the 100 years before each 

model year, the annual sink estimates became slightly smaller than the inventory data, 

with differences ranging from 1Tg and 2Tg (Figure 4-3).  These differences were less 

than half of the 2.5Tg-4.5Tg differences derived above using the original growth rates 

in the GCA model, suggesting that the growth rates of forests across North Carolina 

were better represented by the FIA-based median values than the original growth rates 

used by the model.  Therefore, the FIA-based median growth rates were used in the 

GCA model in the remaining analysis in this chapter. 
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Figure 4-3 Comparison of annual C changes in the aboveground (including harvested wood products) 

pool derived using the GCA model with growth rates adjusted based on FIA plot data and from the 

USFS inventory data over forest land remaining forest land.  After adjusting the estimates to account 

for legacy emission from wood products harvested during 100 years before each model year, the 

annual sink estimated by the GCA model became slightly smaller than the inventory-based estimates. 

 

Compared to the initial GCA model developed in Chapter 2, the improved model 

developed in this chapter not only included fluxes from growth of pre-disturbance 

forests and undisturbed forests, but also adjusted forest growth rates and the method 

for calculating the influx of harvest carbon to slash and the wood product pools.  

Therefore, both sources and sinks derived from the improved model were different 

from those derived using the initial GCA model developed in Chapter 2, even over the 

disturbed areas (Figure 4-4). 
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Figure 4-4 Compared to the initial GCA model developed in Chapter 2, improvements made in this 

chapter resulted in higher source and lower sink estimates for forest land disturbed by logging.  The 

same was true for conversion to urban land (no sink) and forest land subject to fire disturbances. 

4.3 North Carolina’s Forest Carbon Dynamics 

4.3.1 Source and Sink Analysis 

The improved GCA model was used to produce C flux estimates at the 30m 

resolution for North Carolina.  The results showed that without considering soil carbon 
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as well as the legacy emissions from wood products harvested before 1986 and the 

emissions from wood products harvested from 1986 to 2010 that will be released after 

2010, North Carolina’s forest land was a net C sink of 218.1Tg over the 25-year (1986-

2010) study period.  Major sources included logging (136.7Tg), conversion of forest to 

urban land (6.9Tg), and fire (2.1Tg).  About 55% of the forests in North Carolina 

remained undisturbed during the study period.  The growth of these forests resulted in 

the largest sink (179.1Tg).  While logging resulted in the largest source, post-logging 

regrowth and the C removed by logging that was transferred to the harvested wood 

product pool and was not released by 2010 created a sink of 103.2Tg, and the sink from 

post-fire growth was 0.7Tg.  Further, pre-disturbance forest growth over the disturbed 

areas resulted in a sink of 80.8Tg.  Figure 4-5 shows the contributions of each source 

and sink process to the total source and sink estimates over the 25-year study period.  
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Figure 4-5 Contributions of different source and sink processes to the total source and sink over North 

Carolina from 1986 and 2010. 

 

On average, the forest land absorbed 14.6Tg per year between 1986 and 2010, 

including 7.2Tg by undisturbed forests, 4.1Tg from post-disturbance growth and C 

stored in harvested wood products not released by 2010, and 3.2Tg from pre-

disturbance growth.  The average annual release from logging was 5.5Tg, while fire 

and conversion to urban land created annual sources of 0.08Tg and 0.3Tg, respectively.  
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Overall, the forest land in North Carolina had an average net C flux of -8.7Tg/year 

(sink) between 1986 and 2010.  This sink estimate seems to be comparable to those 

reported in a few studies that provided flux estimates for North Carolina.  For example, 

Zheng et al. (2011) reported an average net C change of -9.7Tg/year for forest areas in 

North Carolina that remained forested between 1992 and 2001.  Without specifying a 

year range, Han et al. (2007) estimated that the “current annual” C change in forest 

biomass was -8.5Tg/year.  While it is not clear how legacy emissions from wood 

products were analyzed in those studies, the net sink estimate from this study should 

be smaller if legacy emissions from all wood products harvested over 100 years were 

to be fully accounted for (see section 4.2.3). 

4.3.2 Impact of management approaches and emission calculation methods 

While the GCA model provides a way to derive high resolution source and sink 

estimates for forest land, those estimates could be affected by many factors.  In chapter 

2, it was demonstrated that the use of remote sensing-based biomass and disturbance 

intensity data had large impact on the estimation of fluxes driven by disturbance and 

post-disturbance recovery.  The use of newly available TPO records developed in 

Chapter 3 and field-based growth rates also resulted in estimates that were different 

from the earlier model (Figure 4-4) and were closer to inventory data (Figures 4-1 and 

4-3).  While forest management in general can improve carbon storage (Canadell and 

Raupach, 2008), different harvest and management practices have different C outcomes 

(Naudts et al., 2016; Nunery and Keeton, 2010; Van Deusen, 2010).   Other important 

factors to consider in derive flux estimates include land-cover dynamics and methods 

for expressing emissions from forest disturbances (Ramankutty et al., 2007). 
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The GCA model provided an opportunity to examine the C outcome of different 

logging intensity over North Carolina, and how the estimation of the outcome could be 

affected by the use of different emission expression methods.  Four harvest intensity 

methods were considered, including clear cut (disturbance intensity = 100%), observed 

disturbance intensity represented by the disturbance intensity data developed by Tao et 

al. (2019), which had already been used in Chapter 2, half of the observed disturbance 

intensity, and zero disturbance (i.e., no logging).  The emission expression methods 

considered included “prompt emission” (C released in the year of clearing) and 

“delayed emission” (C released following decay processes in multiple years) 

(Fearnside, 1997).  The combination of logging intensity and emission expression 

methods considered in this study resulted in 8 scenarios (Table 4-1): 

Table 4-1 Scenarios for assessing the impact of logging intensity and emission expression methods on 

forest C outcome estimates. 

Disturbance Intensity Delayed Release Prompt Release 

Clear Cut (100%) CD CP 

Mapped Intensity (Tao et al. 

2019) 

MD MP 

Half of Mapped Intensity HD HP 

Zero Intensity ZD ZP 

 

As expected, clear cut resulted in the highest fluxes from logging, followed by 

logging at the mapped intensity, half of the mapped intensity, and zero intensity (no 
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logging).  Except for the zero intensity case, flux estimates derived using the prompt 

emission method were always higher than those derived using the delayed emission 

method (Figure 4-6) for each of the other three logging intensities.  The annual fluxes 

derived using the delayed emission method for each of these three logging intensity 

levels had an increasing trend over time.  As discussed earlier, this was mainly because 

the GCA model started to accumulate the wood product pools in 1986, and did not 

include legacy emissions from wood products harvested before 1986. The increasing 

trends were mostly the result of a growing wood product pool, which then resulted in 

higher emissions from that pool as the number of years since 1986 increased.  Fluxes 

derived using the prompt emission method had larger temporal variability than those 

derived using the delayed emission method but did not have obvious temporal trends.   
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Figure 4-6 Annual carbon emissions derived using the delayed (top) and prompt (bottom) emission 

methods at the four disturbance intensity levels shown in Table 4-1. 

 

When fluxes were calculated using the delayed emission method, the logging 

source estimate over the logging areas for the 25-year study period would be ~60Tg 

more if those areas had clear cut instead of having the logging intensities mapped by 

Tao et al. (2019).  On the other hand, that estimate would be reduced by ~60Tg if the 

observed logging intensities were reduced by half, and further down to 0 if there 

logging intensity were also reduced to 0 (Figure 4-7).  Logging intensity had little 

impact on post-logging growth.  The flux from logging at the observed intensity 

(scenario MD) and post-logging growth over the logging areas was a net source of 

33.5Tg over 25 years.  That source would become 95.8Tg if the logging practice were 

changed to clear cut. However, if the observed logging intensity were reduced by half, 

the sink from post-logging growth would exceed emissions from logging, resulting in 

a net sink of 28.6Tg.  The sink from the disturbed areas would reach 94.5Tg should 

logging be eliminated during the study period. 
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Figure 4-7 Total fluxes over the 25-year study period derived using the delayed (top) and prompt 

(bottom) emission methods at the four disturbance intensity levels shown in Table 4-1. 

 

The emission expression methods had no impact on the calculation of sink from 

post-logging growth.  However, because the logging source estimates derived using the 

prompt emission method were substantially higher than those derived using the delayed 

emission method, logging source estimates derived using the prompt emission method 
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for the three non-zero intensity cases exceeded estimates of the sink from post-logging 

growth, resulting in positive net flux estimates for all three logging intensity levels. 

Due to the large sink estimates from pre-disturbance growth and the growth of 

undisturbed forests, North Carolina’s forest land had a net sink estimate over the 25-

year study period regardless of the logging intensity levels or the emission expression 

method used.  The estimated size of the sink, however, decreased substantially as 

logging intensity increased from no logging to clear cut, and the decreasing pace was 

faster when flux estimates were derived using the prompt emission method than using 

the delayed emission method. 

4.4 Summary and Conclusions 

Building on results derived in Chapters 2 and 3, a number of improvements were 

made to the GCA model such that it tracks the fluxes among all major aboveground C 

pools, including pre-disturbance growth and the growth of undisturbed forests, which 

were not included in the initial model developed in Chapter 2.  Based on available TPO 

survey data and the annual TPO records derived in Chapter 3, efforts were also made 

to improve the partitioning of removed C among slash and different wood product 

pools.  Specifically, an average slash ratio was calculated for North Carolina based on 

the difference between removed C and the influx of C to wood products, which was 

calculated from the TPO survey data.  The annual TPO records derived in Chapter 3 

were then used to calculate county and year specific ratios for partitioning the rest of 

the removed C among the P1, P10, and P100 pools, which were then applied to each 

30m pixel based on which county and year that pixel belongs to.   
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While the GCA model was designed to use remote sensing-based products to 

estimate fluxes arising from contemporary disturbances and hence could not track 

legacy emissions from wood products harvested before the study period, the model did 

track emissions from wood products harvested during the study period, which provided 

a basis for estimating the amount of legacy emissions from wood products that were 

not accounted for by the GCA model.  After compensating for these missed legacy 

emissions and adjusting forest growth rates based on FIA field plot data, the model 

produced estimates that were close to the greenhouse gas emission and sink inventory 

data provided by the USFS for North Carolina and comparable to estimates reported in 

several other studies.   

Without considering soil carbon as well as the legacy emissions from wood 

products harvested before 1986 and the emissions from wood products harvested from 

1986 to 2010 that will be released after 2010, North Carolina’s forest land was a net C 

sink of 218.1Tg over the 25-year (1986-2010) study period.  That sink would be smaller 

if all logging areas had clear cut, and could be larger if the logging intensities could be 

reduced by half or down to 0.  In general, the prompt emission method resulted in larger 

source estimates from disturbances than the delayed emission method, and hence 

reduced the sink estimates at all disturbance intensity levels. 
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Chapter 5 Conclusions 

Designed with an overarching goal to improve the understanding of the terrestrial 

carbon budget, this study sought to improve the estimation of forest carbon dynamics 

in two fronts.  One was to develop an improved carbon modeling capability – a grid-

based carbon accounting (GCA) model was developed based on the bookkeeping 

carbon accounting (BCA) model developed by Houghton et al. (1999).  The initial GCA 

model only included modules for estimating fluxes arising from forest disturbance and 

post-disturbance recover (Chapter 2).  Additional improvements were made in Chapter 

4, which allowed the model to produce carbon estimates for all forest land.  The other 

front was to derive new remote sensing-base data products, including an improved 

forest carbon density map that better represented pre-disturbance forest carbon than the 

original map, a series of annual forest attribution maps, and an annual timber product 

output (TPO) record that was much longer and more consistent than available TPO 

survey data.  Together with a suite of disturbance datasets, these products were 

incorporated into the GCA model to produce carbon estimates over a quarter century 

(1986-2010) across North Carolina. 

5.1 Summary of Major Findings  

Previous inter-model comparison studies showed that flux estimates derived using 

different carbon models are highly variable (Huntzinger et al., 2012).  This study 

demonstrated that given the same model, different inputs can also result in vastly 

differences flux estimates.  Among the major inputs/parameters that could have large 

impact on carbon estimates included pre-disturbance carbon density, disturbance 
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intensity, allocation of removed carbon among slash and different wood product pools, 

and forest growth rates.  The first three inputs/parameters primarily affect emission 

estimation from disturbances.  Compared to estimates derived using an initial GCA 

model that inherited the parameters provided by the original BCA model, the total 

emission between 1986 and 2010 from logging over North Carolina was reduced by 

almost one third and two thirds when those parameters were replaced by remote 

sensing-based disturbance intensity and biomass data, respectively, and when both 

products were used, the emission was reduced by more than three quarters.  Use of the 

TPO data derived in Chapter 3 to partition the removed carbon among slash and 

different wood product pools resulted in noticeably high emission estimates than those 

derived using the partitioning ratios provided by the original BCA model. 

The emission expression method used also had considerable impact on the source 

estimation for logging.  Without considering legacy effect from wood products 

harvested before 1986, the emission value derived using the prompt release method 

was 50% higher than that derived using the delayed release method.  Of course, much 

of these differences would be gone if the legacy emissions from wood products 

harvested over a sufficiently long period (e.g. 100 years) were considered.  

Forest growth rates mainly affect the sink estimates from the growth of 

undisturbed forests as well as from pre- and post-disturbance growth.  Compared with 

flux estimates reported by the greenhouse gas inventory program of the U.S. Forest 

Service, the growth rates prescribed by the original BCA appeared to be too high.  After 

adjusting those rates based on FIA inventory data and accounting for legacy emissions 

from wood products harvested before 1986, the GCA model produced flux estimates 
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comparable to those reported by the USFS greenhouse gas inventory program.  Without 

considering soil carbon, the forest land in North Carolina had an average annual sink 

of 5.5Tg C/Year from 1990 to 2010, compared to the 6.7Tg C/Year sink reported by 

the USFS.   

Alternative logging practices could have significant impact on the size of this sink.  

Without considering the legacy emissions from wood products harvested before 1986 

and the emissions from wood products harvested from 1986 to 2010 that will be 

released after 2010, the sink would be reduced by ~30% if all logging areas had clear 

cut, but would be increased by ~30% or ~60%, if the logging intensities could be 

reduced by half or down to 0, respectively.   

Of the three approaches explored in this study for TPO modeling, the fixed effects 

linear regression (FELR) model produced abnormally large values that were obvious 

errors, and hence was deemed inappropriate for TPO modeling.  Both the ordinary least 

square (OLS) linear regression and the Random Forest (RF) regression tree algorithm 

produced more stable TPO estimates, with the coefficient of determination (R2) values 

derived using RF being 0.08 higher than those derived using the OLS on average.  

Predictions by the RF algorithm revealed that from 1986 to 2015, the 7 states in the 

Southeast produced more than 5 billion m3 wood products, over 90% of which were 

pulpwood and sawlogs that were assumed to release carbon in 10 years (P10) and 100 

years (P100), respectively.  While the influxes to the P10 and P100 were roughly the 

same for the entire Southeast over the 30-year study period, the ratio of the influxes to 

the two pools had substantial variations from year to year and among counties and 

states.   
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5.2 Significance of Original Contributions  

A major contribution of this research is the development of the GCA model.  By 

integrating the BCA model with spatially detailed remote sensing products within a 

grid-based framework, this model made it possible to utilize a well-established carbon 

accounting method designed for use at regional to global scales to produce fine 

resolution carbon estimates.  As with the original BCA model, the GCA model tracks 

carbon fluxes arising from natural disturbances (e.g., fire), conversion, and forest 

management (e.g. logging).  Given that about half of the forest area in the U.S. is 

disturbed each decade (Pan et al., 2011), being able to account for the fluxes from 

different disturbance types should greatly reduce the uncertainties with the flux 

estimates over forest land (Turner et al. 2016).   

A key input for calculating the carbon flux from a given disturbance event is the 

carbon density before that disturbance event.  Because disturbances can happen in any 

year within a relatively large study region (e.g., a county or state), ideally annual carbon 

maps for an entire study period should be required by the GCA model.  Unfortunately, 

no such annual carbon maps exist for most areas.  Use of a carbon map developed for 

a specific year in other years can result in substantial uncertainties, because the carbon 

density in most areas changes from one year to another due to growth or disturbance. 

Assuming that larger trees are more likely to be harvested than smaller ones, a local 

window-based method was developed in this study to derive more realistic pre-

disturbance carbon values for any year using a carbon map available for a specific year.  

The pre-disturbance carbon values derived using this method were much closer to those 

derived from FIA plot data than values from the carbon map available in a specific year 
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or the values prescribed in the original BCA model.  This method should be useful for 

other carbon studies where pre-disturbance or relatively mature forest carbon values in 

different years are needed but carbon maps are only available for one or a few selected 

years. 

While both the ordinary least square (OLS) linear regression and fixed effects 

linear regression (FELR) have been used to model TPO from satellite-based 

disturbance data in previous studies, it was demonstrated in this study the Random 

Forest algorithm was more robust for TPO modeling over 7 states in the southeast 

United States.  The TPO record derived through this study represents multiple 

improvements over the survey data used in this study.  With a time span (1986-2015) 

twice as long as that covered by the survey data (1995-2009), it provides a more 

complete picture of the influx to and emissions from wood product pools over three 

decades across the entire Southeast.  The annual time step of the derived data revealed 

large temporal variations that were not captured by the survey data and makes it 

straightforward to assemble a complete TPO dataset for any given year of the study 

period that covers all 7 states, which was not possible by using the survey data alone 

for most years.  Derived based on ground survey data and time series satellite 

observations, this TPO record made it possible to develop observation-based 

partitioning of harvested carbon among different release pools for each county in each 

year, which should be more realistic than the fixed partitioning ratios prescribed in the 

original BCA model.  Therefore, it should be highly valuable for future efforts aimed 

to improve carbon estimates in the southeast region.  Given that Landsat-based forest 

change maps can be and have been produced across the globe or for any land area of 
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the earth, the modeling approach should be applicable to any other regions where at 

least some survey data on wood products are available. 

Given that carbon management decisions are often made at local, community, or 

individual property levels, the 30m carbon maps produced by the GCA model should 

provide adequate spatial details to support decision makings at these levels.  The grid 

size of the GCA model can be adjusted for use with remote sensing products of any 

spatial resolutions.  As remote sensing technology continues to evolve rapidly, new 

products with better quality and finer resolutions will continue to emerge.  The GCA 

model provides a framework for integrating new products as they become available to 

support various carbon management applications, including calculating carbon credits 

for carbon trade, and supporting various climate change initiatives regarding the 

measurement, reporting, and verification of carbon pools and fluxes (Birdsey et al., 

2006; Fahey et al., 2010; Lamb et al., 2021).  

5.3 Limitations and Future Research Directions 

Despite the many advantages of the GCA model as compared to the original BCA 

model, there is plenty of room for further improvement.  For example, the new model 

still uses a single set of growth rates for each ecozone.  In reality, however, forest 

growth rates likely are more variable across space and over time.  An integrated 

analysis of the FIA plot data with time series satellite observations and climate data 

may provide growth rate estimates that are more variable and likely more realistic.  

While a method was developed to determine the pre-disturbance carbon value for any 

disturbance year based on an available forest carbon map developed for a specific year, 
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annual forest carbon maps, if derived properly, likely will provide more realistic 

representation of pre-disturbance carbon values, and hence are more desirable.  With 

the launch of Sentinel-1 back in 2014, global fine resolution radar observations have 

become routinely available, which in general should be more sensitive to forest biomass 

than optical data. Since 2018, global samples of LiDAR measurements have been 

collected by GEDI and ICESAT-2.  As LiDAR measurements in general are better 

correlated with biomass than optical and radar data, these samples could be used 

together with ground measurements to calibrate optical and/or radar images to produce 

annual biomass maps. 

While the Random Forest algorithm in general performed better than the OLS 

algorithm in TPO modeling, relationships between the predicted values and survey data 

were not always that good.  In particular, the hardwood types appeared to be more 

difficult to model for most states.  Improvements might be achievable using two 

products.  One is the disturbance intensity dataset developed by Tao et al. (2019).  The 

other is a pre-disturbance carbon density map, like the one developed in Chapter 2.   

Because logging is the dominant disturbance agent to the forests in the Southeast, 

the logging emission in any given year depends to a large degree on the amount of 

carbon harvested in that year transferred to wood products and the amount of legacy 

emission from wood products harvested in previous years.  While the GCA model 

cannot account for all legacy emissions by itself, it does track the portion from wood 

products harvested during a study period.  For a sufficiently long study period (e.g., 25 

years), results from the model could be used to estimate the total legacy emission from 

wood products harvested over a much longer period (e.g., 100 years), assuming the 
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wood product pools were relatively stable over time.  Knowing this assumption likely 

is not true, historical TPO or TPO-like data, if available, should be used to calculate 

the legacy emission from wood products harvested before the beginning of the study 

period. 

Despite these limitations and some desirable new improvements, the GCA model 

is ready for use in other regions, at least other states in the Southeast, to produce high 

resolution carbon estimates.  Such estimates should provide more definitive (likely with 

less uncertainty) answer to questions on the carbon dynamics of the forests in this 

region.  More importantly, the fine spatial resolution of the derived products should 

provide sufficient details to support carbon management applications at a broad range 

of geographical scales, including the measurement, reporting, and verification of 

carbon pools and fluxes at local, community, or even individual property owner levels.  
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