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The ability to store and transmit quantum information plays a central role

in virtually all quantum information processing applications. Single spins serve as

pristine quantum memories whereas photons are ideal carriers of quantum informa-

tion. Strong interactions between these two systems provide the necessary inter-

face for developing future quantum networks and distributed quantum computers.

They also enable a broad range of critical quantum information functionalities such

as entanglement distribution, non-destructive quantum measurements and strong

photon-photon interactions. Realizing spin-photon interactions in a solid-state de-

vice is particularly desirable because it opens up the possibility of chip-integrated

quantum circuits that support gigahertz bandwidth operation.

In this thesis, I demonstrate a nanophotonic quantum interface between a

single solid-state spin and a photon, and explore its applications in quantum infor-

mation processing. First, we experimentally realize a spin-photon quantum phase

switch based on a strongly coupled quantum dot and photonic crystal cavity sys-



tem. This device enables coherent light-matter interactions at the fundamental limit,

where a single spin controls the polarization of a photon and a single photon flips the

spin state. Furthermore, we theoretically propose a way to deterministically gener-

ate spin-photon entanglement based on the spin-photon quantum interface, which

is an important step towards solid-state implementations of quantum repeaters and

quantum networks. Next, we show both theoretically and experimentally, a new

method to optically read out a solid-state spin based on the same cavity quantum

electrodynamics (QED) system. This new method achieves significant improvement

in spin readout fidelity over typical approaches using fluorescence light detection.

In the end, we report efforts to realize tunable and robust quantum dot based

cavity QED systems. We present a technique for tuning the frequency of a quantum

dot that is strongly coupled to a photonic crystal cavity by applying strain. This

tuning technique enables us to accurately control the detuning between a quantum

dot and a cavity without affecting other emission properties of the dot, which is

essential for lots of applications associated with cavity QED systems, including

non-classical light generation, photon blockade, single photon level optical switch,

and also our major focus, the spin-photon quantum interface.
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Chapter 1: Introduction

1.1 Overview

Interactions between spins and photons play a central role in the field of quan-

tum information processing. Spin is a pristine quantum memory while photons are

ideal carriers of quantum information. Efficient interfaces between these systems are

essential for development of future quantum networks [1,2] and distributed quantum

computers [3]. They also enable critical functionalities such as entanglement distri-

bution [4, 5], non-destructive qubit measurements [6–8], and strong photon-photon

interactions for photonic quantum computation [9, 10].

Solid-state nanophotonic devices provide a desirable platform for creating spin-

photon interactions. These devices can be integrated on-a-chip to attain a compact

architecture for quantum circuits [11, 12]. Many theoretical works have proposed

exploiting the strong light-matter interactions inherent to nanophotonic waveguides

and cavities to create a spin-photon interface [13–19]. In this approach, a single

spin modulates the optical transmission or reflection of the nanophotonic structure,

thereby switching an incident photon. However, such a spin-photon interface has

yet to be realized.

The spin of a singly charged quantum dot has attracted significant interest
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for implementing a solid-state spin-photon interface. This trapped spin system pro-

vides a promising quantum memory with microsecond coherence time [20, 21] and

picosecond timescale single-qubit gates [21–26], enabling a large number of quan-

tum operations prior to qubit decoherence. Furthermore, the spin ground states of

the charged quantum dot are optically coupled to excited trion states that exhibit

nearly radiatively limited emission [27]. These properties have enabled post-selected

spin-photon entanglement [28–31], spin-photon teleportation [32], and spin-spin en-

tanglement [33], which are essential capabilities for quantum networks.

Quantum dots are also embedded in a high dielectric material that can be

directly patterned to form nanophotonic cavities that enhance light-matter interac-

tions [34–37]. Tremendous experimental progress has been made in the last decade

using a quantum dot exciton strongly coupled to a nanophotonic cavity, includ-

ing cavity reflectivity control [38], ultrafast optical switch [39–41], single photon

level nonlinearities [42–44], non-classical light generation [45, 46], and spin-exciton

quantum logic operations [47].

The effort to integrate quantum dot spins with cavities has also experienced

rapid progress. Several works demonstrated deterministic loading of a spin in a

quantum dot coupled to a nanophotonic cavity [48,49], and more recently coherent

control of the loaded spin [50] and spin-dependent Kerr rotation of photons [51,52].

However, a coherent spin-photon quantum interface, the essential building block for

quantum networks and distributed quantum computers, has not yet been realized.

In this thesis, we demonstrate a nanophotonic quantum interface for a sin-

gle solid-state spin, and explore its applications in solid-state implementations of
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quantum information processing. We utilize a strongly coupled quantum dot and

photonic crystal cavity system. We show that this nanophotonic interface enables

strong coherent spin-photon interactions, where a single solid-state spin can control

the polarization of a photon, and a single photon can flip the spin state. We also

show that this quantum interface allows deterministic generation of spin-photon en-

tanglement, and optical spin readout with improved fidelity. Our work represents

a critical step towards implementations of chip-integrated quantum networks and

distributed quantum computers.

1.2 Quantum dots

Quantum dots are semiconductor nanocrystals that can confine charge carriers

in a local potential trap with discretized energy levels. Although a single quantum

dot contains tens of thousands of atoms, its optical properties are very similar to

a single atom due to the quantum confinement of the charge carrier wavefunctions.

Therefore we can effectively treat a quantum dot as a single atom with discrete

energy levels in a theoretical model.

The quantum dots we study are self-assembled Indium Arsenide (InAs) nanocrys-

tals confined in a Gallium Arsenide (GaAs) substrate. They are grown by molecular

beam epitaxy based on Stranski-Krastanov method [53], and are provided by our

collaborator, Dr. Glenn S. Solomon. The density of the quantum dots are typically

10 ∼ 50 µm−2.
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1.2.1 Emission properties

A single quantum dot can occupy different quasi-particle states, such as neu-

tral ground state, charge ground state, neutral exciton state, trion exciton state,

biexciton state, dark exciton state and etc. Its exact energy level structures and

associated emission properties can be very complicated, which are well explained in

this excellent review paper found in Ref. [54] and are not within the scope of this

thesis. Here we only consider the emission from the neutral and charged exciton

states of a quantum dot.

The neutral exciton state is composed of a electron-hole pair, whereas the

charged exciton state (referred as the trion state) contains another electron or hole,

depending on whether the dot is negatively or positively charged. The electron-

hole pair in both of these exciton states could radiatively recombine to the ground

state with a quantum efficiency of > 90% in the cryogenic temperature [55, 56].

The radiative lifetime of quantum dot exciton is in the order of 1 ns [57]. But

the linewidth of exciton transition are typically broadened to several GHz, due

to dephasing [58], or spectral diffusion effects which could be caused by charge

fluctuations [59,60], thermal fluctuations [38], or nuclear spin noise [61, 62].

Different from real atoms, different quantum dots might emit at different fre-

quencies and even with different polarizations, because their emission properties

depend on their exact shape, size, strain, and local electric and magnetic fields.

Figure 1.1 shows the typical photoluminescence spectrum of an ensemble of quan-

tum dots in one of our wafers. Each sharp line in the spectrum roughly corresponds
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Figure 1.1: The spectrum of an ensemble of quantum dots in one of the
typical wafers we used.

to the emission from a single quantum dot. The quantum dot ensembles show emis-

sion wavelength predominantly at 900 ∼ 960 nm, which is a very broad distribution

compared to the linewidth of each individual quantum dot.

1.2.2 Charged quantum dots

In most of our reported experiments, we utilize a quantum dot that contains

an extra electron, which has the spin degree of freedom that forms a stable qubit.

Figure 1.2 shows the energy level structure of a negatively charged quantum dot

containing a single electron. Positively charged dots would have a similar level

structure. In both Fig. 1.2(a) and Fig. 1.2(b), we assume an external magnetic field

is present to break the degeneracy of each energy level. The left panel shows the

case where a magnetic field is parallel to the quantum dot growth direction (Faraday
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Figure 1.2: Energy level structure of a charged quantum dot in the pres-
ence of an external magnetic field. (a) The magnetic field is applied par-
allel to the quantum dot growth direction (Faraday configuration). (b)
The magnetic field is applied perpendicular to the quantum dot growth
direction (Voigt configuration).

geometry), whereas the right panel shows the case where a magnetic field is perpen-

dicular to the quantum dot growth direction (Voigt geometry). The discussion in

this section follows the excellent review paper found in Ref. [63].

In both configurations, the states of the quantum dot include two ground

states, |↑〉 and |↓〉, corresponding to the electron spin that orients parallel and anti-

parallel with the magnetic field respectively. They also contain two excited states

that are consisted of an electron pair and a hole, denoted as |⇑〉 and |⇓〉, which are

referred as the trion states. The trion states are two fold due to the two possible

spin orientation of the hole.

In the Faraday configuration, only spin preserving transitions |⇑〉 ↔ |↑〉 and

|⇓〉 ↔ |↓〉 are optically allowed, denoted as transition σ+ and σ− respectively. If

6



the quantum dot possesses ideal cylindrical symmetry, transition σ+ and σ− emits

right- and left-circularly polarized light respectively. In the Voigt configuration,

all four possible transitions are optically allowed, denoted as σ1 - σ4 respectively.

Therefore the Voigt configuration supports two λ-systems, each is formed by one

trion state and the two spin ground states. The vertical and cross transitions couple

to orthogonal linear polarizations of light, denoted V and H, respectively. The exact

orientations of V and H are determined by the shape and strain of the quantum

dot.

1.2.3 Single qubit operations for a quantum dot spin

A complete set of single qubit operations include initialization, coherent ma-

nipulation, and readout of the qubit state [64]. Quantum dot spin qubits are op-

tically coupled to trion states, which provides a mechanism to achieve all single

qubit operations with optical pulses. Here we briefly review previous experimental

developments on optical control of single quantum dot spins. Our discussion follows

the review paper by K. De Greve et. al. [65].

1.2.3.1 Spin initialization

The presence of the λ-system in the Voigt configuration enables optical pump-

ing of the spin into a particular spin ground states [66,67]. In a typical optical pump-

ing experiment, a narrowband laser resonantly drives one branch of a λ-system, say

transition σ4. In this case, the population in the spin-up state is unperturbed. But
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once the spin is in the spin-down state, it will be likely excited to the |⇓〉 state,

which will decay to both of the spin ground states with roughly equal probability.

Therefore after a few cycles of optical excitation, any residual population in the

spin-down state will be pumped into the spin-up state. In Voigt configuration, spin

initialization can be completed within several nanoseconds, with fidelity exceeding

99.5% [66].

In the Faraday configuration, the idealized selection rules do not permit spin

flips in the presence of an optical pumping field. However small imperfections in the

selection rules can still lead to non-vanishing probabilities for the spin non-preserving

transitions, which are exploited for optical pumping and spin initialization [68–70].

In the Faraday configuration, the spin initialization time is typically several hundreds

of nanoseconds, with fidelity exceeding 99.8% [69].

1.2.3.2 Spin measurement

One typical approach for optical spin readout is to detect spin-dependent res-

onance fluorescence or absorption of the quantum dot upon optical pumping. In

the Faraday configuration, the spin non-preserving transitions are weakly allowed.

Therefore when a narrowband laser resonantly drives one optical transition (referred

as the cycling transition), say transition σ+, it generates many emitted photons from

the same transition until the spin flips due to the imperfect selection rules. Both

multi-shot [71, 72] and single-shot [73] spin readout has been demonstrated using

this technique in the Faraday configuration. But the reported single-shot readout
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fidelity is only ∼ 82% [73], limited by the collection efficiency of the emitted pho-

tons and the imperfect cycling transitions. In the Faraday geometry, one can also

optically measure the spin via the spin-dependent Kerr or Faraday rotation of a

detuned laser [74–76]. However these experimental demonstrations did not reach

the single-shot regime due to the small polarization rotation angles.

In the Voigt configuration, the quantum dot does not possess a cycling tran-

sition since all possible transitions are optically allowed. Therefore single-shot spin

readout is not available by fluorescence light detection from a bare dot. This is actu-

ally one of the great challenge facing quantum information processing with quantum

dot spin qubits. In Chapter 5 we will propose and demonstrate a new optical ap-

proach for spin readout by using a cavity QED system, which would make single-shot

readout possible even for a quantum dot spin in the Voigt configuration. Multi-shot

statistical spin readout has been demonstrated by using resonance fluorescence [23]

or absorption [67] detection techniques.

1.2.3.3 Coherent spin manipulation

All the optical coherent spin manipulation experiments reported so far utilized

a charged quantum dot in the Voigt configuration [21–26]. Due to the presence of

the λ-system, a detuned broadband optical pulse could induce effective Rabi oscil-

lations between two spin ground states. One can intuitively understand it through

a stimulated Raman transition picture, where the broadband optical pulse contains

many pairs of Raman sidebands which are in phase with each other, and each pair
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of Raman sidebands effectively induce spin rotations by driving the two branches of

a λ-system independently. The detuning between the center frequency of the optical

pulse and the quantum dot transitions (any one of the four transitions) has to be

large enough to minimize the undesired population in the excited trion states.

Since the quantum dot level structure contains two λ systems, one also need to

make sure that the stimulated Raman transitions resulted from the two λ systems

add constructively. Theories have shown that a circular-polarized optical pulse could

lead to constructive interference between the two λ systems. Ref. [77] has provided

a detailed description on the optical coherent spin rotation theory for a charged

quantum dot.

The effective Rabi oscillations between two spin ground states demonstrate

the ability to rotate the spin qubit by an arbitrary angle about a single axis. Full

control of the spin qubit requires the ability to rotate the spin about a second axis,

so that one can coherently prepare the spin into an arbitrary point in the Bloch

sphere. The natural Larmor precession of the spin about the external magnetic field

accomplishes this rotation. Previous experiments have demonstrated this ability

using Ramsey interferometry measurements [23].

1.3 Photonic crystal cavities

Photonic crystals are periodic nanostructures fabricated on a dielectric mate-

rial, which lead to periodic modulation of the refractive index in the length scale of

an optical wavelength. In a photonic crystal, the motion of a photon obeys optical
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Bragg scattering, very similarly as the way an electron propagates in a real crystal

consisted of ionic lattices. In addition, one can engineer photonic crystals to open

a photonic band gap, analogous to an electronic bandgap in semiconductors, which

prohibits the propagation of photons for certain directions within some frequency

range.

Defects in a photonic crystal can support highly localized cavity modes within

the photonic band gap, referred as photonic crystal cavities. The properties of a

photonic crystal cavity, such as the resonant frequency, quality factor, mode profile,

and mode volume, can be easily controlled by tailoring the geometry of the photonic

crystals or the shape of the defect areas. In addition, it is straightforward to inte-

grate a photonic crystal cavity with other photonic structures using the photonic

crystal architecture. For example, previous experiments have demonstrated coupled

multiple cavities [78,79] and waveguide coupled photonic crystal cavities [40,80,81].

These assets make the photonic crystal cavity a very attractive platform for realizing

integrated photonics.

1.3.1 Cavity design

Figure 1.3 shows the design of the photonic crystal cavity that we use in the

reported experiments. The cavity design is based on a three-hole defect in a trian-

gular 2D photonic crystal, referred as a L3 photonic crystal cavity. We also shift the

inner three holes adjacent to the defect to optimize the quality factor [82]. In the

design, we set the distance between the center of two adjacent holes a to be a = 240
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240 nm 144 nm

Figure 1.3: Illustration of the design of the L3 photonic crystal cavity.

nm, the radius of each hole to be r = 72 nm. The inner three holes adjacent to

the defect are shifted outwards by 42 nm, 6 nm, and 42 nm respectively. Figure 1.4

shows the distribution of the x and y component of the electric field intensity and

the total electric field intensity in the center plane of the photonic crystal slab for

the cavity fundamental mode (the z-component of the electric field vanishes for

the fundamental mode), calculated using the finite-difference time-domain (FDTD)

method with a commercial software (Lumerical). The calculation shows that the

cavity fundamental mode has a well-defined polarization axis that is along the ŷ

direction in the center region of the cavity.

The L3 photonic crystal cavity supports small mode volume and high quality

factor, both of which are essential conditions for achieving strong light-matter in-

teractions in the cavity. Using the FDTD method, we calculate the mode volume of

the cavity to be ∼ 0.7(c/nf)3, where c is the speed of light, n ' 3.6 is the refractive

index of GaAs, and f is the resonant frequency of the cavity. The effective volume

of the cavity mode is even less than one wavelength cube. The cavity quality factor
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Figure 1.4: Calculated mode profile of the L3 photonic crystal cavity

is calculated to be Q > 100, 000, but this value is difficult to achieve in experiments

due to material absorptions and fabrication imperfections. In our measurements,

we routinely attain a quality factor of Q > 10, 000, which is already large enough

to enable strong coupling between the photonic crystal cavity and an embedded

quantum dot.

1.3.2 Device fabrication

Figure 1.5 shows a scanning electron microscope image of a typical fabricated

cavity. We start the fabrication with a wafer that consists of a 160-nm-thick GaAs

membrane. The membrane contains a single layer of InAs quantum dots at its center

with a density of 10∼50 µm−2. The membrane layer is grown on top of a 900-

nm-thick Al0.78Ga0.22As sacrificial layer. A distributed Bragg reflector composed

of 10 layers of GaAs and AlAs is grown below the sacrificial layer and acts as a

high reflective mirror. Photonic crystal structures are defined by electron beam

lithography, followed by inductively coupled plasma dry etching and selective wet
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(a)
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(b)

1 μmx
y

Figure 1.5: Scanning electron microscope image of a typical fabricated
photonic crystal cavity device. (a) A full view of the device. (b) The
zoom-in view showing the region of the cavity area.

etching of the sacrificial AlGaAs layer that creates a suspended membrane.

1.4 Outline of the thesis

Chapter 2 provides a theoretical background on using a cavity QED system

to interface an optical active qubit with photons. In Chapter 3, we present experi-

mental demonstrations of a spin-photon quantum switch, in which a single spin can

control the polarization of a photon, and a single photon can flip the state of the

spin. In Chapter 4, we discuss a theoretical proposal for deterministic generation of

spin-photon entanglement, which is one of the most important applications of the

spin-photon quantum switch, and represents an important step towards solid-state

implementations of quantum repeaters and quantum networks. In Chapter 5, we

show both theoretically and experimentally, a new method to optically read out
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a quantum dot spin by using a cavity QED system. This new method achieves

significant improvement in fidelity over typical approaches using fluorescence light

detection.

All the experimental results reported in Chapter 3, 4, 5 will utilize a nanopho-

tonic cavity QED system composed of a strongly coupled quantum dot and photonic

crystal cavity. Chapter 6 reports our efforts to make this system more tunable and

robust. In this chapter, we present a technique for tuning the frequency of a quan-

tum dot that is strongly coupled to a photonic crystal cavity by applying strain.

This tuning technique enables us to accurately control the detuning between a quan-

tum dot and a cavity without affecting other emission properties of the dot, which

is essential for lots of applications associated with cavity QED systems, including

cavity reflectivity control [38], ultrafast optical switch [39–41], single photon level

nonlinearities [42–44], non-classical light generation [45, 46], spin-exciton quantum

logic operations [47], and our main focus, the spin-photon quantum interface. We

conclude our work and discuss future research directions in Chapter 7.

Below we have listed all the relevant publications for each chapter.

Chapter 3:

Shuo Sun, Hyochul Kim, Glenn S. Solomon, and Edo Waks, A quantum phase

switch between a single solid-state spin and a photon, Nature Nanotechnology

11, 539-544 (2016) [83].

Chapter 4:

Shuo Sun and Edo Waks, Deterministic generation of entanglement between
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a quantum-dot spin and a photon, Physical Review A 90, 042322 (2014) [84].

Chapter 5:

Shuo Sun and Edo Waks, Single-shot optical readout of a quantum bit using

cavity quantum electrodynamics, Physical Review A 94, 012307 (2016) [85].

Shuo Sun, Hyochul Kim, Glenn S. Solomon, and Edo Waks, Cavity enhanced

optical readout of a single solid-state spin, Manuscript in preparation.

Chapter 6:

Shuo Sun, Hyochul Kim, Glenn S. Solomon, and Edo Waks, Strain tuning of

a quantum dot strongly coupled to a photonic crystal cavity, Applied Physics

Letters 103, 151102 (2013) [86].
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Chapter 2: Interfacing an optical active qubit with photons using a

cavity QED system

In this chapter, we provide theoretical background on using a cavity QED

system to interface an optical active qubit with photons. We focus our analysis on

a generic system consisted of an optical active qubit coupled to an optical cavity, as

shown in Fig. 2.1(a). We assume that the qubit system has a λ-type energy structure

as shown in Fig. 2.1(b), with two ground states that form a stable spin qubit, denoted

as |↑〉 and |↓〉, and one excited state |e〉 that gives rise to spin-dependent optical

transitions µ↑ and µ↓ respectively. The spin-dependent optical transitions provide

a mechanism to interconnect the spin qubit with photons. This energy structure

exists in many qubit systems that are optically addressable, such as cold atoms,

trapped ions, charged quantum dots and color centers, and therefore represents a

generic model.

In order to induce strong spin-photon interactions, we selectively couple the

optical transition µ↑ to a cavity mode, while decouple the other transition µ↓ to

the cavity, either by a large detuning or by selection rules if transition µ↓ emits a

photon with a different polarization than the cavity mode. In this configuration the

coupling between the atom and cavity depends on the spin state. The cavity thus
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Figure 2.1: Theoretical model for a generic cavity QED system composed
of an optical active qubit coupled to an optical cavity. (a) A schematic
cavity QED system. (b) Energy level structure of a generic optical active
qubit system.

exhibits spin-dependent reflection or transmission coefficients, enabling control of a

reflected or transmitted photon by the spin qubit. In our model, we assume that

the cavity field only couples to its reflective mode without loss of generality. In this

case the spin only modulates the reflection coefficient of the cavity. Double-sided

cavities would work similarly with minor modifications.

This chapter is organized as follows. Section 2.1 calculates the spin-dependent

cavity reflection coefficients. Section 2.2, we show that we can realize a quantum

switch between the spin qubit and a photonic qubit by utilizing the spin-dependent

cavity reflection coefficient. The realization of a spin-photon quantum switch re-

quires the incident photon to be resonant with both the cavity mode and the tran-

sition µ↑. In Section 2.3 reviews possible applications by detuning the photon or

transition µ↑ from the cavity mode.
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2.1 Calculation of spin-dependent cavity reflection coefficients

We calculate the cavity reflection coefficients using cavity input-output for-

malism [87]. We define â as the bosonic annihilation operator for the cavity field,

and âin and âout as the operators for the cavity coupled incidence and reflection

modes. These operators are related by the cavity input-output relation

âout = âin −
√
κexâ, (2.1)

where κex is the cavity energy decay rate to the reflection mode of the cavity.

In order to calculate the reflection coefficients, we need an expression for the

cavity field operator â. We assume that the incident photon is monochromatic with

a frequency of ω. We express the Hamiltonian for the coupled atom and cavity

system in the rotating reference frame with respect to ω, given by

H = h̄(ωc − ω)â†â + h̄(ωx − ω)σ̂†−σ̂− + igh̄(âσ̂†− − σ̂−â†), (2.2)

where σ̂− is the lowering operator for transition µ↑, ωc and ωx are the resonance

frequencies of the cavity mode and transition µ↑ respectively, and g is the coupling

strength between the cavity mode and transition µ↑. In the weak field limit, the

Heisenberg-Langevin equations are [14,88,89]

dâ

dt
= −

[
i(ωc − ω) +

κ

2

]
â− igσ̂− +

√
κexâin (2.3)

dσ̂−
dt

= −
[
i(ωx − ω) + γ

]
σ̂− − igâ, (2.4)

where κ is the total cavity energy delay rate given by κ = κex+κi, κi is the intrinsic

loss rate of the cavity due to material absorption and coupling to undesired leaky

modes, and γ is the dipole decay rate of for transition µ↑.
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We calculate the cavity field operator by taking the steady solution of Eq. 2.3

and Eq. 2.4. When the spin is in spin-down state, we have 〈σ̂−〉 = 0, therefore the

steady solution for â can be calculated from Eq. 2.3 and is given by

â =

√
κexâin

i(ωc − ω) + κ
2

. (2.5)

When the spin is in spin-up state, the expression for â is given by

â =

√
κex
[
i(ωx − ω) + γ

][
i(ωc − ω) + κ

2

][
i(ωx − ω) + γ

]
+ g2

âin. (2.6)

We calculate the cavity reflection coefficients r↓ and r↑ for both the spin-down

and spin-up cases by combining Eq. 2.5 or Eq. 2.6 with Eq. 2.1. For the spin-down

case, we obtain âout = r↓âin, where r↓ is given by,

r↓ = 1− ακ

i(ωc − ω) + κ
2

, (2.7)

where α is the interference contrast given by α = κex/κ. For the spin-up case, we

obtain âout = r↑âin, where r↑ is given by

r↑ = 1−
ακ
[
i(ωx − ω) + γ

][
i(ωc − ω) + κ

2

][
i(ωx − ω) + γ

]
+ g2

. (2.8)

2.2 Resonance case: a spin-photon quantum switch

We focus on the resonance condition where ω = ωc = ωx. In this case, the

cavity reflection coefficients simplify to

r↓ = 1− 2α (2.9)

r↑ = 1− 2α

1 + C
, (2.10)
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where C is the cooperativity of the system given by C = 2g2/κγ.

When α > 0.5 and C > 2α − 1, r↑ and r↓ have opposite signs. Thus, the

spin state conditionally shifts the phase of a reflected photon by π, implementing

a quantum phase operation. An ideal phase switch would be attained in the limit

of large cooperativity (C � 1) and a perfect single-sided cavity (α = 1) where the

reflection coefficient becomes r↓ = − 1 and r↑ = 1.

The quantum phase switch allows one qubit to conditionally switch the other

qubit between its two orthogonal eigenstates. We consider the case where the polar-

ization state of the photon encodes quantum information. We assume that the cavity

mode has a well defined polarization direction ŷ. Therefore only a y-polarized pho-

ton experiences spin-dependent phase shift upon reflection, whereas an x-polarized

incident photon does not couple to the cavity and gets directly reflected without a

phase shift. If the cavity mode does not have a well-defined polarization (i.e. the

cavity supports polarization degenerate modes), we could use a simple polarization

interferometry setup as illustrated in Fig. 2.2 to implement the similar idea.

We express the state of a photon incident on the cavity in the basis states |x〉

and |y〉, which denote the polarization states oriented orthogonal and parallel to the

cavity mode respectively. For a right-circularly-polarized incident photon |x〉+ i|y〉,

the reflected state is given by |x〉+ ir↑(↓)|y〉 (before renormalization). In the limit of

large cooperativity and perfect single-sided cavity, the state of the reflected photon

remains right-circularly polarized if the atom is in the spin-up state, but becomes

left-circularly polarized for spin-down. Similarly, a single control photon can flip

the state of the spin. If the spin is prepared in the state |↑〉 + |↓〉, then after a
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Figure 2.2: Schematic setup to implement a spin-photon quantum switch
where the polarization states of the photon encode quantum information.

y-polarized photon reflects from the cavity the spin-state transforms to |↑〉 − |↓〉,

but an x-polarized photon does not flip the spin.

We note that when α > 0.5 but C < 2α − 1, r↑ and r↓ have the same sign.

Thus the quantum phase operation is not available for a resonant photon if the

system cooperativity is too low.

2.3 Detuned case: spin-dependent Kerr rotation

The general expression for r↓ and r↑ are given by Eq. 2.7 and Eq. 2.8 respec-

tively. We can rewrite r↓(↑) as r↓(↑) = |r↓(↑)|eiφ↓(↑) , where φ↓(↑) represents the phase

of the reflection coefficient r↓(↑). Since in general φ↓ 6= φ↑, the spin can still apply

spin-dependent phase shift on the photon. The phase difference between the spin-up

and spin-down state φ is given by φ = φ↓ − φ↑, which is typically nonzero but not

necessarily π any more.

The nonzero value of φ can be utilized to realize spin-dependent Kerr rotation
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of a photon, as demonstrated in Ref. [51, 52]. Assuming the polarization of the

incident photon is in the state |x〉+ i|y〉, the reflected state becomes |P↑(↓)〉 = |x〉+

i|r↑(↓)|eiφ↑(↓) |y〉 (before renormalization). Therefore, the polarizations of the reflected

photon are different for the spin-up and spin-down cases, as long as 〈P↑|P↓〉 6= 1,

which is equivalent to φ 6= 0.

Similarly, a single detuned photon can also rotate the state of the spin. If the

spin is prepared in the state |↑〉+ |↓〉, then after a y-polarized photon reflects from

the cavity the spin-state transforms to |r↑||↑〉+ |r↓|eiφ|↓〉 (after taking out an overall

phase factor). If |r↑| ' |r↑|, this operation corresponds to the rotation of the spin

Bloch vector by an angle φ along the equator of the spin Bloch sphere.

For the detuned case, we do not require the cooperativity to be greater than

2α−1 in order to induce spin-dependent phase shift. Indeed Ref. [51] demonstrated

spin-dependent Kerr rotation of a photon with a coopeartivity of C = 0.2. However,

there is still significant difference between the regime C > 2α − 1 and C < 2α − 1.

Figure 2.3 shows numerically calculated phase shift φ as a function of the detuning

∆c and ∆x, where we define ∆c = ω − ωc and ∆x = ω − ωx. In both Fig. 2.3(a)

and Fig. 2.3(b), we use the following parameters from a realistic quantum dot based

cavity QED system [83]: α = 0.8, κ/2π = 36 GHz, γ/2π = 3 GHz. Figure 2.3(a)

shows the case where we set g/2π = 10.4 GHz so that the cooperativity is C = 2, and

Fig. 2.3(b) shows the case where we set g/2π = 3.3 GHz so that the cooperativity

is C = 0.2. When the cooperativity is large, we are able to tune the phase shift φ

to an arbitrary value between −π and π, by simply controlling the detuning ∆c and

∆x. However, when the cooperativity is small, we can only tune the phase shift φ
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Figure 2.3: Phase shift φ as a function of the detuning ∆c and ∆x. (a)
C = 0.2. (b) C = 2.

between −φmax and φmax, where φmax < π is an upper limit that is determined by

the system cooperativity. As an example, in Fig. 2.3(a) we have φmax = 0.1π.
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Chapter 3: Cavity assisted spin-photon quantum switch

In this chapter, we discuss experimental demonstrations of a spin-photon quan-

tum switch using a strongly coupled charged quantum dot and a photonic crystal

cavity. Before this work, our group has demonstrated a quantum controlled-not gate

between a quantum dot exciton qubit and a photon [47]. But the quantum exciton

states have short lifetimes that make them impractical for quantum information

processing applications.

The energy levels of a charged quantum dot in the Voigt configuration is shown

in Fig. 1.2(b), which consists of two λ-systems and is slightly different from the single

λ-system described in Chapter 2. However, we can still induce spin-dependent cavity

reflectivity by resonantly coupling only transition σ1 with the cavity mode, and

decoupling all other transitions from the cavity by a large magnetic field induced

detuning. Thus, the quantum dot resonantly couples to the cavity only when it is in

the spin-up state, inducing a spin-dependent reflection coefficient. As described in

Section 2.2, we are able to realize a quantum switch by utilizing the spin-dependent

reflection coefficients.

This chapter is organized as follows. Section 3.1 discusses device characteriza-

tion. In Section 3.2, we report spin-dependent cavity reflectivity. In Section 3.3 and
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Section 3.4, we demonstrate control of a reflected photon by coherently manipulating

the spin, and control of the spin state with a single photon respectively. Section 3.5

concludes the discussions of this Chapter.

3.1 Device characterization

To characterize the device, we mount the sample in a closed-cycle liquid-helium

cryostat and cool it down to 3.6 K. The sample mount is placed inside the bore of

a superconducting magnet that can apply magnetic fields up to 9.2 T. The sample

is oriented such that the magnetic field is in the in-plane direction (Voigt configura-

tion), and the cavity axis is approximately 45 degree with respect to the magnetic

field. Sample excitation and collection is performed with a confocal microscope us-

ing an objective lens with numerical aperture of 0.68. The coupling efficiency for

this configuration is measured to be 1% by measuring the Stark shift of the quantum

dot under cavity-resonant excitation [90].

We identify a charged quantum dot coupled to the cavity from the photo-

luminescence spectrum of the device under a magnetic field applied in the Voigt

configuration. Fig. 3.1(a) shows the photoluminescence spectrum from the device

used in our measurements when excited using an 860 nm continuous wave laser. At

0 T, the emission spectrum shows a bright peak due to the cavity (labeled as CM)

and a second peak due to the quantum dot (labeled as QD), which is red-detuned

from the cavity resonance by 0.19 nm (67 GHz). As we increase the magnetic field,

the quantum dot splits into four peaks corresponding to the four optical transitions
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Figure 3.1: Device characterization with photoluminescence. (a) Pho-
toluminescence spectrum. The blue lines show the spectra at various
magnetic fields ranging from 0 T to 5 T. The red line shows the spec-
trum at 6.6 T, where transition σ1 is resonant with the cavity. (b) Cavity
photoluminescence as a function of the magnetic field.

shown in Fig. 1.2(b).

To demonstrate strong coupling between the quantum dot and the cavity, we

finely tune the magnetic field over the range of 4.5 T to 8.5 T and measure the

cavity photoluminescence. Fig. 3.1(b) shows the photoluminescence spectrum near

the cavity resonance as a function of magnetic field. In this range, transition σ1

tunes over the cavity resonance and exhibits an anti-crossing, indicating that the

system operates in the strong coupling regime.
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Figure 3.2: Measurement setup. OL, objective lens; QWP, quarter wave
plate; P, polarizer; BS, beam splitter; M, mirror; SMF, single mode fiber;
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Figure 3.3: Co-polarized (blue circles) and cross-polarized (red dia-
monds) cavity reflection spectrum with no magnetic field. Blue and
red solid lines show the calculated spectrum.
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3.2 Spin-dependent cavity reflectivity

To demonstrate that the spin can flip the state of the photon, we use the

polarization interferometry set-up shown in Fig. 3.2. We excite the cavity with

right-circularly polarized light, and measure the reflected signal along either the

left-circularly or right-circularly polarized component. Fig. 3.3 shows both the cross-

polarized (red diamonds) and co-polarized reflection spectrum (blue circles) when

the quantum dot is detuned from the cavity so that the two systems are decoupled.

By fitting the reflection spectrum to a Lorentzian lineshape (blue and red solid

lines), we determine the cavity energy decay rate to be κ/2π = (35.9 ± 0.7) GHz

and the interference contrast to be α/2π = 0.81± 0.01.

We next apply a magnetic field of 6.6 T that tunes transition σ1 onto cavity

resonance via a Zeeman shift. We excite the quantum dot with a narrowband

tunable laser to optically pump the spin state [66, 67]. We first tune the optical

pumping laser to transition σ4 to prepare the quantum dot in the spin-up state.

The blue circles in Fig. 3.4(a) show the cross-polarized reflection spectrum with the

optical pumping laser, which exhibits a vacuum Rabi splitting. When we turn off

the pumping laser, we observe a reduced contrast due to random spin fluctuations

(red diamonds). In contrast, when we optically pump transition σ2 to initialize the

quantum dot to the spin-down state, we observe a spectrum that closely resembles

a bare cavity (Fig. 3.4(b)). This spin-dependent reflection spectrum is one of the

essential properties of the phase switch.
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Figure 3.4: Spin-dependent cavity reflectivity. (a) Cavity reflection spec-
trum under a 6.6 T magnetic field with (blue circles) and without (red
diamonds) an optical pumping laser resonant with transition σ4. The
blue solid line shows the calculated spectrum for the case where the
optical pumping laser is turned on. With the pumping laser, we ob-
serve a suppression of the cavity response at the σ1 resonance due to
strong coupling. We also observe a Fano-resonant lineshape at 27 GHz
detuning, corresponding to the coupling between transition σ2 and the
cavity mode. (b) Cavity reflection spectrum when the pump laser is res-
onant with transition σ2. The blue circles show the measured spectrum,
and the solid line shows calculated spectrum. The center wavelength is
927.48 nm for all panels.
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3.3 Coherent control of cavity reflectivity

To demonstrate control of a reflected photon using a coherently prepared spin

state, we use all-optical coherent control to manipulate the spin. We fix the magnetic

field at 6.6 T. A narrowband continuous-wave laser tuned to transition σ4 performs

spin initialization and circularly polarized picosecond optical pulses generate an

effective spin rotation [22,23]. We perform spin rotations using 6 ps rotation pulses

with center frequencies detuned by 520 GHz from the cavity resonance (equal to 15

cavity linewidth). To rotate the spin over the Bloch sphere, we utilize the Ramsey

interferometry setup illustrated in Fig. 3.5(a), which generates a pair of rotation

pulses separated by a time delay τ . A third laser pulse probes the cavity reflectivity

a time ∆t after the second rotation pulse. We attenuate this laser so that a single

pulse contains an average of 0.12 photons coupled to the cavity to ensure a low

probability of two-photon events. We set the power of the continuous-wave optical

pumping laser to 30 nW. At this power we measure a spin initialization time of

(1.27±0.09) ns, which is slow compared with τ and ∆t, but fast compared with the

repetition time of the experiment (13 ns).

Fig. 3.5(b) shows the reflected probe intensity as a function of rotation pulse

power P and delay τ , where we set ∆t to 140 ps. We observe Ramsey oscillations

in the reflected probe intensity as a function of both P and τ . Fig. 3.5(c) plots

the emission intensity of the quantum dot at transition σ2 for the same measure-

ment, which provides a second readout of the spin state. We observe the same

Ramsey oscillation pattern in the quantum dot emission signal, confirming that the
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Figure 3.5: Ramsey interference measurements. (a) Experimental setup
for generating the Ramsey pulse sequence. The delay time τ between the
two rotation pulses is controlled by a movable retro-reflector mounted
on a computer-controlled translation stage. BS, beam splitter; R, retro-
reflector. (b) Reflected probe intensity as a function of rotation pulse
power P and the delay time τ . (c) Intensity of the quantum dot emission
at σ2 transition frequency as a function of rotation pulse power P and the
delay time τ . (d) Calculated spin-down state population as a function of
peak rotation pulse power and the delay time τ . We express the rotation
pulse as a classical time-varying Rabi frequency with a Gaussian pulse
shape and peak power Ω2. (e) Reflected probe intensity as a function of
delay time τ .
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reflection modulation shown in Fig. 3.5(b) is induced by coherent spin manipula-

tion. Fig. 3.5(d) shows the numerically calculated value for the population of the

spin-down state for comparison, which exhibit good agreement with experiments.

In Fig. 3.5(e) we plot the reflected probe intensity over a larger time range

of 1 ns. We fix the power of each rotation pulse to 40 µW, which corresponds to

a π/2-rotation. From the decay of the fringe visibility, we calculate a T ?2 time of

(0.94± 0.02) ns. This coherence time is limited by inhomogeneous broadening due

to a slowly fluctuating nuclear spin background [20], along with decoherence due to

continuous optical pumping during the rotation pulse sequence. We could reduce

these effects by turning off the pump laser during the measurement process and

using a nuclear field locking [20] or spin echo technique [21], which has been shown

to improve the coherence to up to 2.6 µs.

To characterize the fidelity of the spin state preparation, we tune the probe

laser across the cavity resonance while setting P and τ to the conditions indicated

by the circles in Fig. 3.5(b). The resulting cavity spectra are plotted in Fig. 3.6. In

Fig. 3.6(a) the two pulses arrive in-phase with the Larmor precession of the spin,

and the quantum dot rotates to the spin-down state. The cavity spectrum (blue

circles) is thus similar to the bare cavity Lorentzian lineshape. Figure 3.6(b) shows

the case where the two rotation pulses arrive out-of-phase and the quantum dot

rotates back to the spin-up state. The cavity (blue circles) now exhibits a strongly

coupled spectrum. We also plot the measured spectrum when ∆t = 13 ns (red

diamonds) for comparison. At this condition the spin is re-initialized to the spin-up

state in both cases.
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Figure 3.6: Time-resolved cavity reflection spectrum. (a) and (b), Re-
flected probe intensity as a function of probe detuning at the rotation
condition indicated by point a and point b in Fig. 3.5(b) respectively.
Blue circles are ∆t = 140 ps; red diamonds are ∆t = 13 ns. Solid lines
are the calculated spectra. The center wavelength is 927.48 nm for both
spectra.

We numerically fit the data to a model. From the fit we determine the spin

preparation fidelity in these two conditions to be 0.70± 0.04 and 0.74± 0.05. The

imperfect population transfer could be caused by a number of factors such as re-

initialization of the spin by optical pumping during the interval between the rotation

and the probe pulse, and decoherence due to power-induced trion dephasing caused

by the rotation pulses [23,91].

3.4 Controlling a spin with a photon

The previous measurements demonstrate that the spin state of the quantum

dot induces a conditional phase shift on the photon. A quantum phase switch would

also exhibit the complementary effect, where reflection of a single photon rotates the

spin state. To demonstrate this phase shift, we use the experimental configuration
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shown in Fig. 3.7(a). We again perform a Ramsey interference measurement but we

inject a weak laser pulse that serves as the control field before the second rotation

pulse. We generate the control pulse in the same way as the probe pulse in the

previous measurement, with pulse duration of 63 ps. When a control photon couples

to the cavity, it imposes a phase shift on the spin-down state, which shifts the phase

of the Ramsey fringes.

We perform spin readout by monitoring the emission at the σ2 frequency. The

blue circles in Fig. 3.7(b) show the occupation probability of the spin-down state

conditioned on the detection of a control photon, as a function of delay between the

two rotation pulses. These data are obtained by performing a two photon correla-

tion measurement. The blue solid line is a numerical fit to a sinusoidal function.

We compare this curve to the occupation probability of the spin-down state when

we block the control field (black squares with black line as a numerical fit). The in-

terference fringe conditioned on detecting a single control photon is shifted in phase

by (1.09 ± 0.09)π radians relative to the case where there is no control photon,

demonstrating that a single control photon applies a large phase shift to the spin.

We attribute the degraded visibility of the Ramsey fringe conditioned on a con-

trol photon to finite cooperativity, intrinsic cavity losses and occasional two-photon

incidence events.

We can tune the phase shift imparted on the spin by a control photon by

introducing a frequency detuning between the control field and transition σ1, which

enables us to apply arbitrary controlled phase shifts. Fig. 3.7(c) shows the same

measurement for a blue detuned control field. The conditioned data (blue circles)
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Figure 3.7: Photon-induced spin phase switch. (a) Pulse timing dia-
gram showing the relative time delays between the rotation pulses and
the control field. (b) Occupation probability of the spin-down state as
a function of the delay time τ , in the absence of control pulse (black
squares), conditioned on detecting a reflected control photon polarized
along the cavity axis (blue circles), and in the presence of the control
field but not conditioning on the detection of a control photon (red dia-
monds). The control field is resonant with the σ1 quantum dot transition.
(c) Same as (b), except that the control field is blue detuned from the
σ1 quantum dot transition.
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show a (0.59 ± 0.05)π radian phase shift, which corresponds to a detuning of 7.3

GHz. We also plot the occupation probability of the spin-down state in the presence

of the control field but without conditioning on the detection of the control photon

(red diamonds in Fig. 3.7(b)(c)). These curves are very similar to the case where the

control field is blocked, which indicates that the average number of control photons

per pulse coupled to the cavity is much smaller than one.

3.5 Discussions

We have demonstrated a solid-state spin-photon quantum phase switch, which

is the fundamental building block for numerous applications including entanglement

distribution [4, 5], non-destructive qubit measurements [6–8], and strong photon-

photon interactions for photonic quantum computation [9,10]. The high light-matter

coupling strength of our solid-state devices enables a phase switch operating at

unprecedented bandwidths, where the spin can switch photon wavepackets as short

as 63 ps. Perhaps the most intriguing aspect of our quantum switch is that it

monolithically combines spins with strongly interacting nanophotonic structures on

a single semiconductor chip, which may have many beneficial properties for future

integration and scalability.

37



Chapter 4: Deterministic generation of spin-photon entanglement

One important application of the spin-photon quantum switch is to deter-

ministically generate entanglement between the quantum dot spin and a photon.

Entangling quantum dot spin with a flying photon could enable photon mediated

entanglement between spatially separated quantum dot spin qubits [14, 92] as well

as other matter qubits [93] for creating hybrid quantum systems. These capabilities

could ultimately lead to realization of long distance quantum networks [1, 2] and

distributive quantum computation [3].

Several groups have reported entanglement between a quantum dot spin and

a single photon [28–31]. These milestone achievements were attained by utilizing

spontaneous emission of an excited quantum dot. The polarization state of the

emitted photon was entangled with the spin state of the quantum dot by optical

selection rules. However, because the two spin states in these experiments were

non-degenerate, the emission frequency of the photon retained which-path informa-

tion of the spin state. To eliminate this which-path information, fast time-domain

detection was required. This operation can be understood as a post selection of

photons arriving in a time period that is short compared to the frequency mismatch

between the two spin-dependent optical transitions. However, post-selection leads
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to probabilistic entanglement with low success probability.

One method to eliminate post-selection is to utilize a spin-dependent elastic

scattering process, instead of inelastic scattering, to avoid entangling spin with the

photon energy. Several such approaches have been proposed using strong interac-

tions between a quantum dot and a cavity [16,94–96]. However, all of these methods

require the cavity to support two degenerate polarization modes, and the quantum

dot spin states to be degenerate. Although cavities with degenerate polarization

modes can be designed theoretically [97], the degeneracy is usually broken in real

devices due to fabrication imperfections, and complex steps are usually required to

restore the cavity mode degeneracy [98–100]. More importantly, all-optical coher-

ent control typically requires a strong in-plane magnetic field to break the selection

rules [21–26], which also breaks the degeneracy of the spin transitions.

Here, we propose and analyze a protocol for deterministic generation of en-

tanglement between the spin state of a quantum dot and the polarization state of

a photon using elastic scattering in a cavity QED system. The proposal is based

on the spin-photon quantum switch that we have demonstrated in Chapter 3. It re-

quires coupling between only one non-degenerate quantum dot spin transition and

a single cavity mode. We analyze the performance of the protocol and show that it

can attain high entanglement fidelity for a realistic coupled quantum dot - nanopho-

tonic cavity system. Our protocol could serve as an important building block for

quantum networks and chip-integrated quantum devices.

This chapter is organized as follows. Section 4.1 describes the proposed proto-

col. In Section 4.2, we derive an analytical expression for the entanglement fidelity,
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which acts as a measure of the quality of the generated entanglement. In Section 4.3,

we study the system fidelity under realistic experimental conditions. Section 4.4 con-

cludes the discussions in this chapter.

4.1 Basic protocol

The entanglement generation utilizes the same schematic setup as we proposed

in Fig. 2.1(a). We focus on a specific device composed of a single charged quantum

dot coupled to a single-sided optical cavity that supports one mode with well-defined

polarization. We assume an external magnetic field is applied in the Voigt geometry.

In this configuration, the energy level structure of the quantum dot is shown in

Fig. 1.2(b). We assume the cavity field is polarized along the V direction, which can

only couple to the quantum dot vertical transitions σ1 and σ4. This condition can be

attained by aligning the direction of the magnetic field with the cavity polarization.

We also assume that the transition σ1 is resonant with the cavity mode, while

transition σ4 is detuned.

We define the qubit basis of the photon as |D〉 = (|H〉 + |V 〉)/
√

2 and |A〉 =

(|H〉− |V 〉)/
√

2. To create entanglement between the quantum dot and photon, the

quantum dot qubit is first prepared to the superposition state (|↑〉+ |↓〉)/
√

2, which

can be achieved by optical pumping followed by all-optical coherent control, as we

demonstrated in Chapter 3. The photonic qubit is prepared in the |D〉 state and

reflects off the cavity mode. Upon reflection from the cavity, the photon polarization

will be transformed to |D〉 → (|H〉+r↑(↓)|V 〉)/
√

2 , where r↑(↓) = (C↑(↓)−1)/(C↑(↓) +

40



1) is the cavity reflection coefficient, and C↑(↓) is the spin-dependent cooperativity

given by (see detailed derivations in Section 2.1)

C↑ = 2g2/κγ (4.1)

C↓ = 2g2/κ(γ − i∆z) (4.2)

The parameter ∆z is the frequency difference between the two vertical transitions,

given by ∆z = ∆e + ∆h, where ∆e = geµBB/h̄ and ∆h = ghµBB/h̄ are the Zeeman

splitting for the ground states and trion states respectively, ge and gh are the Lande

g-factor for the electron and hole, respectively, B is the magnitude of the applied

magnetic field, and µB is the Bohr magneton. The remaining parameters g, γ and

κ are the quantum dot - cavity coupling strength, the trion state dipole decay rate,

and the cavity photon decay rate respectively. In the above equations, we have

assumed that the incident photon is monochromatic and resonant with the cavity

frequency, and the cavity is perfect single sided (α = 1).

In the limit where ∆z � 2g2/κ (large detuning) and C↑ � 1 (high cooperativ-

ity), we have r↑ = 1 and r↓ = −1. Therefore the photonic qubit is unchanged if the

quantum dot is in spin-up state (|↑〉|D〉 → |↑〉|D〉), but flipped if the quantum dot is

in spin down state (|↓〉|D〉 → |↓〉|A〉). Because the spin qubit is initially prepared to

an equal superposition of spin-up and spin-down states, the reflection of the photon

will generate the spin-photon entangled state (|↑〉|D〉+ |↓〉|A〉)/
√

2.
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4.2 General expression for entanglement fidelity

The protocol described in Section 4.1 generates an ideal entangled state in the

limit where the photon is monochromatic, the resonant cooperativity is large, and

the detuning between the vertical transitions is large. In order to investigate the

performance of the protocol under more realistic conditions, we derive a general

expression for the fidelity of the generated entangled state. We define the entangle-

ment fidelity as F = |〈ψd|ψf〉|2 , where |ψd〉 is the desired final state, and |ψf〉 is the

generated final state.

To attain an expression for |ψd〉 and |ψf〉, we focus on the case where the

entire system contains only a single excitation, and express the general state of the

system in the basis |α, β〉 where α ∈ {↑, ↓,⇑,⇓} is the state of the quantum dot,

and β ∈ {C, Vδ, Hδ, 0} describes the state of the photon. In the expression for the

photonic component, C denotes a photon in the cavity, Vδ and Hδ indicates that

the photon is in the external mode that drives the cavity and has a polarization V

or H with a detuning δ, and 0 indicates that all photonic modes are in vacuum (i.e.

the excitation is contained in the quantum dot). The general state of the system at

time t is

|ψ(t)〉 = c↑(t)|↑, C〉+ c↓(t)|↓, C〉+ c⇑(t)|⇑, 0〉+ c⇓(t)|⇓, 0〉

+

∫ ∞
−∞

[
p↑(δ, t)|↑, Vδ〉+ p↓(δ, t)|↓, Vδ〉

]
dδ

+

∫ ∞
−∞

[
q↑(δ, t)|↑, Hδ〉+ q↓(δ, t)|↓, Hδ〉

]
dδ

(4.3)

where the coefficient cα represents the probability amplitude when the excitation

is contained in the cavity, either as a photon or as a quantum dot excitation. The
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amplitudes p↑(↓)(δ, t) and q↑(↓)(δ, t) account for the cases where the photon is in the

V and H polarized external cavity mode that has a detuning δ, respectively.

We first obtain an expression for the initial state of the system |ψi〉, from which

we can calculate both |ψd〉 and |ψf〉. Initially, the single excitation is contained in

the external photonic mode. Therefore we have cα(ti) = 0, where ti is the time

that the photon arrives at the cavity. In addition, since the quantum dot is initially

prepared in an equal superposition state between |↑〉 and |↓〉, and the photon is

initially prepared in the polarization state (|H〉 + |V 〉)/
√

2, the coefficients for the

initial state satisfies p↑(δ, ti) = p↓(δ, ti) = q↑(δ, ti) = q↓(δ, ti). Therefore we can write

the initial state

|ψi〉 =

∫ ∞
−∞

u(δ)

2
(|↑, Vδ〉+ |↓, Vδ〉+ |↑, Hδ〉+ |↓, Hδ〉)dδ, (4.4)

where we set u(δ) = 2p↑(↓)(δ, ti) = 2q↑(↓)(δ, ti). The additional factor of 2 is selected

to ensure that u(δ) satisfies the normalization condition
∫∞
−∞ u

∗(δ)u(δ)dδ = 1.

The final state of the system takes similar expression, given by

|ψf〉 =

∫ ∞
−∞

[
p↑(δ, tf )|↑, Vδ〉+ p↓(δ, tf )|↓, Vδ〉

]
dδ

+

∫ ∞
−∞

u(δ)

2
(|↑, Hδ〉+ |↓, Hδ〉)dδ

(4.5)

Note that as the cavity is polarized in V direction, the H polarization component of

the external photon does not enter the cavity and gets directly reflected. Therefore

the coefficients for the H polarized photon remain the same as the initial state of

the system. We can also obtain the desired final state |ψd〉 by applying the ideal

transform relation |↑〉|D〉 → |↑〉|D〉 and |↓〉|D〉 → |↓〉|A〉 to the initial state of the
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system |ψi〉, given by

|ψd〉 =

∫ ∞
−∞

u(δ)

2
(|↑, Vδ〉 − |↓, Vδ〉+ |↑, Hδ〉+ |↓, Hδ〉)dδ (4.6)

Using the expressions of |ψd〉 and |ψf〉, we obtain the expression for the fidelity,

given by

F =

∣∣∣∣12 +
1

2

∫ ∞
−∞

u∗(δ)
[
p↑(δ, tf )− p↓(δ, tf )

]
dδ

∣∣∣∣2 (4.7)

Sometimes it is more convenient to express the fidelity in the time domain, given by

F =

∣∣∣∣12 +
1

2

∫ ∞
−∞

f ∗in(t)
[
f ↑out(t)− f

↓
out(t)

]
dt

∣∣∣∣2 , (4.8)

where the time varying function fin(t) represents the amplitude of the input photon

pulse, given by

fin(t) =

∫ ∞
−∞

u(δ)e−iδ(t−ti)dδ, (4.9)

and we define the cavity output field amplitudes f ↑out(t) and f ↓out(t) as

f
↑(↓)
out (t) =

∫ ∞
−∞

p↑(↓)(δ, tf )e
−iδ(t−tf )dδ, (4.10)

where tf is taken to be sufficiently large such that the photon has left the cavity.

The spin-dependent time output fields are related to the input field by the cavity

input-output relations

f
↑(↓)
out (t) = fin(t)/2−

√
κc↑(↓)(t) (4.11)

In order to calculate the fidelity, we need to obtain an expression for c↑(↓)(t).

We begin with the expression for the Hamiltonian of a coupled quantum dot -

cavity system where the quantum dot exhibits the energy level structure shown in
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Fig. 1.2(b). We define the center frequency of the incident photon as ω, and express

the Hamiltonian in a reference frame rotated with respect to ω. We express the

Hamiltonian as where Ĥ = Ĥ0 + Ĥint + Ĥd, where

Ĥ0 = h̄∆câ
†â + h̄∆xσ̂

†
1σ̂1 + h̄(∆x −∆z)σ̂

†
4σ̂4

+

∫ ∞
−∞

h̄δ
[
b̂†V(δ)b̂V(δ) + b̂†H(δ)b̂H(δ)

]
dδ (4.12)

Ĥint = ih̄gV (σ̂†1 + σ̂†4)â + ih̄gC(ei∆etσ̂†2 + e−i∆etσ̂†3)â + H.c. (4.13)

Ĥd =

∫ ∞
−∞

h̄Rb̂†V(δ)âdδ + H.c. (4.14)

In the above equations, σ̂1 - σ̂4 is the lowering operator for quantum dot transitions

σ1 to σ4 respectively; â is the photon annihilation operator for the cavity mode;

b̂H(δ) and b̂V(δ) are the photon annihilation operators for the V and H polarized

external cavity modes that drive the cavity and have a frequency of ω + δ. The

parameters ∆c and ∆x are given by ∆c = ωc−ω and ∆x = ωx−ω , where ωc is the

cavity resonance frequency, and ωx is the frequency of the dot transition σ1. The

parameters gV (gC) is the coupling strength between the cavity and the quantum dot

vertical (cross) transitions; and R is the coupling strength between the cavity and

the V -polarized external cavity modes. We have made the Markov approximation

where R is independent of frequency over a wide bandwidth centered around δ = 0.

We have included the coupling term between the cross transitions of the quantum

dot and the cavity. These coupling terms account for the possible misalignment of

the external magnetic field with the cavity polarization axis. For a perfect alignment

we have gC = 0 .

The state of the system evolves according to Schrodingers equation ih̄ ∂
∂t
|ψ(t)〉 =
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Ĥ|ψ(t)〉. Using the definition of ψ(t) in Eq. 4.3 and the Hamiltonian given in Eq. 4.12

- Eq. 4.14, we obtain the following differential equation for the probability ampli-

tudes of the internal states of the quantum dot - cavity system:

d

dt
c↑(t) = −(i∆c + κ/2)c↑(t)− g∗V c⇑(t)− g∗Ce−i∆etc⇓(t) +

√
κ
fin(t)

2
(4.15)

d

dt
c↓(t) = −(i∆c + κ/2)c↓(t)− g∗Cei∆etc⇑(t)− g∗V c⇓(t) +

√
κ
fin(t)

2
(4.16)

d

dt
c⇑(t) = −(i∆x + γ)c⇑(t) + gV c↑(t) + gCe

−i∆etc↓(t) (4.17)

d

dt
c⇓(t) = −

[
i(∆x −∆z) + γ

]
c⇓(t) + gCe

i∆etc↑(t) + gV c↓(t) (4.18)

We have added the decay term γ to the exciton probability amplitudes c⇑(t) and

c⇓(t) to account for spontaneous emission of the quantum dot trion states. The

parameter κ = 2πR2 accounts for the decay rate of the cavity photon to the V

polarized external cavity modes. By solving Eq. 4.15 - 4.18, we are able to obtain

c↑(↓)(t), from which we can calculate the system fidelity based on Eq. 4.8 and Eq. 4.11.

4.3 Analysis of entanglement fidelity

We first consider the fidelity in the quasi-monochromatic limit. In this limit,

the incident photon amplitude fin(t) varies sufficiently slowly so that we can analyze

the process in the adiabatic limit. We attain an analytical solution for f
↑(↓)
out (t) by

adiabatically eliminating Eq. 4.15 - 4.18. We assume for now that the magnetic field

is aligned with the cavity mode so that gC = 0 (we will re-visit this assumption),
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which gives

f ↑out(t) =
1

2

(
1− 2

1 + 2 |gV |2 /κγ

)
(4.19)

f ↓out(t) =
1

2

(
1− 2

1 + 2 |gV |2 /κ(γ − i∆z)

)
(4.20)

We can therefore calculate the entanglement fidelity, given by

F =

∣∣∣∣12 +
1

4

(
C↑ − 1

C↑ + 1
− C↓ − 1

C↓ + 1

)∣∣∣∣2 , (4.21)

where C↑ and C↓ have been previously defined in Eq. 4.1 and Eq. 4.2 respectively.

We obtain an ideal fidelity of F = 1 when |C↑| � 1 and |C↓| � 1, consistent with

the ideal case described in Section 4.1. However, C↑ and C↓ are not independent

variables, they are relate by C↓ = C↑/(1− i∆z/γ). Thus, for a finite value of ∆z and

γ, the two conditions |C↑| � 1 and |C↓| � 1 cannot be achieved simultaneously.

Figure 4.1(a) shows the fidelity as a function of the cooperativity C↑ for several

values of the magnetic field magnitude B. We assume the Lande g-factors for the

electron and hole are given by ge = 0.43 and gh = 0.21, respectively [101], and we set

γ/2π = 0.15 GHz [83]. The initial increase in C↑ results in a higher fidelity because

the condition |C↑| � 1 becomes better satisfied. At even larger cooperativity the

fidelity achieves a maximum and begins to decline because the condition |C↓| � 1

is no longer well-satisfied. Figure 4.1(b) plots the optimal fidelity as a function of

the magnetic field magnitude B. At B = 9 T, the optimal fidelity can be as high

as 0.974. Interestingly, in contrast to previously proposed protocol [28–31], this

protocol achieves higher fidelities with increasing magnetic field.

We next investigate the entanglement fidelity for an input field that is not

quasi-monochromatic. We excite the system with a Gaussian input pulse given by
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Figure 4.1: Entanglement fidelity as a function of cooperativity and
magnetic field magnitude. (a) Entanglement fidelity as a function of
the cooperativity C↑ for several different values of the magnetic field
magnitude B. (b) Optimal fidelity as a function of the magnetic field
magnitude B.

fin(t) =
[

1√
2πτ

exp(−t2/τ 2)
]1/2

. The parameter τ characterizes the pulse duration,

and represents the half-width of the pulse at 1/e of the maximum. We set gV /2π =

11 GHz, κ/2π = 25 GHz, which are achievable in a quantum dot - cavity quantum

electrodynamics system [83], and γ/2π = 0.15 GHz [83]. These parameters achieve

the optimal cooperativity in the monochromatic limit for B = 9 T.

We numerically solve Eq. 4.15 - Eq. 4.18 and calculate the entanglement fidelity

using Eq. 4.8. Figure 4.2 plots the fidelity as a function of the photon pulse width

τ . The dashed line in the figure indicates the fidelity in the quasi-monochromatic

limit. The fidelity makes a rapid transition from F = 0.974 to F = 0.25 at a

critical pulse width of τ ' 100 ps. This degradation in fidelity can be understood

most easily using a frequency domain picture. When the quantum dot is in the
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Figure 4.2: Entanglement fidelity as a function of the photon pulse width
(blue solid line). The red dashed line indicates the fidelity in the quasi-
monochromatic limit.

spin-up state, the cavity reflection spectrum will be strongly modified only within

a spectral bandwidth given by the vacuum Rabi splitting in the strong coupling

regime, and the modified quantum dot lifetime in the weak coupling regime [14].

As the pulse duration of the input photon continues to be reduced, its spectrum no

longer fits within this spectral window, leading to a degradation of the fidelity of the

generated state. We can achieve near unity fidelity with pulse width on the order

of 200 ps, which is much shorter than the typical decoherence time of the quantum

dot spin [20,21].

Finally, we analyze the entanglement fidelity when the external magnetic field

is not perfectly aligned to the cavity. In this case both the vertical and the cross

transitions of the quantum dot can couple with the cavity. The coupling strength

is given by gV = gcosθ and gC = igsinθ, where θ is the angle between the magnetic

field and the cavity axis. The factor i indicates the π/2 phase difference between

the dipole moments of the vertical and cross transitions of the quantum dot.

49



0.8

0.6

0.4

1

0.2
E

nt
an

gl
em

en
t f

id
el

ity
60300 90

Polarization misalignment angle 𝜃𝜃 (degree)

B = 3 T
B = 6 T
B = 9 T

Figure 4.3: Entanglement fidelity as a function of the polarization mis-
alignment angle θ for several different values of the magnetic field mag-
nitude B.

The coupling between the cavity and the quantum dot cross transitions pro-

vides a channel for spin flipping when the photon is interacting with cavity [102],

which is undesired in our protocol and degrades the entanglement fidelity. Fig-

ure 4.3 shows the fidelity as a function of θ for several values of the magnetic field

magnitude. We assume a Gaussian input pulse with pulse width of τ = 400 ps

and numerically calculate the fidelity using Eq. 4.15 - Eq. 4.18 and Eq. 4.8. We set

g/2π = 11 GHz (equal to gV in the previous calculation), while all other parameters

are identical to those used in the calculations for Fig. 4.2. The results show that

our entanglement protocol is robust to misalignment of the magnetic field, and can

tolerate angular mismatches of tens of degrees.
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4.4 Discussions

We have proposed and analyzed a protocol for deterministic generation of

entanglement between a quantum dot spin and a photon. The protocol does not

require temporal post-selection, and could therefore provide significantly improved

efficiency. In addition, the protocol is feasible to realize using currently achiev-

able quantum dot - cavity quantum electrodynamics systems. These results could

provide a promising approach for realization of solid states quantum networks and

distributive quantum computations using semiconductor nanophotonic devices.
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Chapter 5: Cavity enhanced optical spin readout

The ability to projectively measure the state of a qubit with high accuracy

is crucial for nearly all quantum information processing applications [103]. In the

majority of applications, these qubit measurements must be performed in a sin-

gle shot [64]. For example, quantum computing requires the ability to read out

the states of all output qubits after the quantum algorithm completes [104–106],

and quantum cryptography requires readout of all transmitted qubits [107]. Single-

shot qubit readout also plays an important role in quantum error corrections [108],

quantum teleportation [109], and experimental measurements of quantum non-

locality [110].

Resonance fluorescence spectroscopy is currently one of the most effective ways

to perform optical single-shot readout. However, this approach requires a good

cycling transition where an excited state optically couples to only one of the qubit

basis states. The cycling transition yields a large number of resonance fluorescence

photons for one basis state, enabling strong optical signal even with poor detection

efficiency, while yielding very few photons for the other state. Previous studies

have demonstrated single-shot readout with resonance fluorescence in a number of

qubit systems, including cold atoms [111], trapped ions [112,113], nitrogen vacancy
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centers [114, 115] and quantum dot molecules [116]. However, many qubit systems,

especially solid-state qubit systems, do not possess a good cycling transition due

to non-radiative decay mechanisms or selection rules. These qubit systems include

quantum dot spins [63], fluorine impurities in CdTe [117], and silicon vacancy centers

[118,119].

Cavity quantum electrodynamics provides an alternative approach to opti-

cally detect the qubit. In contrast to resonance fluorescence, this approach exploits

strong light-matter interactions where the qubit state modulates the reflectance

or transmittance of a cavity. Several experiments have utilized the reflection and

transmission of a cavity to measure the hyperfine state of a single atom [120, 121].

A number of theory works have proposed cavity enhanced solid-state qubit read-

out [16,122–124]. However, experimental demonstration of this approach in a solid-

state qubit system remains a grand challenge.

In this chapter, we propose a protocol for single-shot optical readout of a qubit

that lacks a good cycling transition based on a cavity QED system, and demonstrate

it experimentally using a specific system composed of a strongly coupled charged

quantum dot and a photonic crystal cavity. This chapter is organized as follows.

Section 5.1 describes the protocol for using a cavity QED system to perform spin

readout. Section 5.2 provides theoretical analysis of the spin readout fidelity based

on our protocol, and demonstrates the feasibility to achieve single-shot readout for

a quantum dot spin in the Voigt configuration. In Section 5.3, we experimentally

demonstrate cavity enhanced optical spin readout, using a specific system composed

of a charged quantum dot in the Faraday configuration that is strongly coupled to
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a photonic crystal cavity. Section 5.4 concludes the discussions in this chapter.

5.1 Basic protocol

The optical spin readout utilizes the same schematic setup as shown in Fig. 2.1,

which is consisted of a generic qubit system coupled to an optical cavity. Similar as

the analysis in Section 2.2, we assume that the cavity is single-sided and supports

only one mode with well-defined polarization in the y direction. We also assume

that the qubit system has a λ-type energy structure as shown in Fig. 2.1(b), with

two ground states that form a stable spin qubit, denoted as |↑〉 and |↓〉, and one

excited state |e〉 that gives rise to spin-dependent optical transitions µ↑ and µ↓

respectively. When exciting one of the two transitions, suppose µ↑, the emitter will

emit no photons when it is in the spin-down state, but emit N photons when it is

in the spin-up state. In the ideal case where the linewidth of both transitions is

radiatively limited, N is given by the branching ratio N = γ↑/γ↓, where γ↑ and γ↑

are the spontaneous emission rates for transitions µ↑ and µ↓ respectively. A qubit

system has a good cycling transition if N � 1. In contrast to resonance fluorescence

techniques that require a good cycling transition, here we are primarily interested in

the situation where the two optical transitions have similar dipole strength so that

the qubit system does not possess a good cycling transition.

To perform optical readout, we consider the case where optical transition µ↑ is

resonant with the cavity while transition µ↓ is decoupled, either by a large detuning

or by selection rules if transition µ↓ emits a photon with a different polarization than
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the cavity mode. In this configuration the coupling between the atom and cavity

depends on the qubit state. The cavity thus exhibits spin-dependent reflection

coefficients as shown in Section 2.1, enabling qubit readout by optically probing the

cavity.

We start the protocol by resonantly probing the cavity reflectivity using a

pulsed laser of a duration T . We define the incident photon flux as nin (in units of

photons per second). We assume nin � 1/τ where τ is the modified lifetime of the

excited state. Thus, the system operates in the weak excitation regime. Suppose the

incident field is polarized in the diagonal direction ~d (~d = (~x+~y)/
√

2). In the absence

of spin flip, the average number of photons collected in the anti-diagonal polarization

basis ~a (~a = (~x − ~y)/
√

2) is given by N↑(T ) = ηTnin/(1 + C)2 and N↓ = ηTnin

respectively [14, 88, 89], where N↑(T ) and N↓(T ) represents the average number of

collected photons when the qubit is in spin-up and spin-down state respectively,

and η is photon overall collection efficiency that accounts for coupling efficiency of

the optics, imperfect spatial mode matching between the incident photon and the

cavity, and quantum efficiency of the detector, and C is the system cooperativity.

To determine the spin state, we compare the number of collected photons with

a threshold photon number k. When the number of collected photons is less than

k the measurement result reports a qubit state |↑〉 , otherwise it reports state |↓〉.

Note that the photons collected in both the diagonal and anti-diagonal polarization

basis could in principle be used to measure the qubit. Our analysis will focus on the

photons collected at the anti-diagonal polarization basis, and the results will apply

for both cases.
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We define the spin readout fidelity as F = max
k

[q↑p↑(k) + q↓p↓(k)] , where

q↑ and q↓ is the probability that the spin occupies spin-up and spin-down state

respectively, and p↑(k) and p↓(k) is the probability of getting a correct result using

threshold photon number k when the spin is initially in the spin-up and spin-down

state respectively. If the dominant noise for the collected photon number is shot

noise (which is a valid assumption in the weak excitation regime provided that

the detector dead time is much short compared to the photon arrival rate), the

expression of the fidelity is given by

F (T ) =
1

2
+

1

2

M∑
j=0

1

j!

(
[N↑(T )]je−N↑(T ) − [N↓(T )]je−N↓(T )

)
(5.1)

whereM =
⌊

N↓(T )−N↑(T )

ln[N↓(T )]−ln[N↑(T )]

⌋
is the threshold photon number that gives the optimal

fidelity, and bxc indicates the largest integer that is not greater than x. In this

derivation we have assumed q↑ = q↓ = 0.5, since in general one has no a-priori

knowledge about the occupation probability of the two spin states.

Figure 5.1 shows the spin readout fidelity as a function of T for several different

values of the cooperativity. The fidelity grows monotonically with T because we

collect more photons. We are able to achieve near unity fidelity as long as the probe

pulse duration is long enough, even for a very small cooperativity. The ripples in

the plot are because the optimal threshold photon number can only increase by a

discrete step of 1.
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Figure 5.1: Spin readout fidelity as a function of probe pulse duration
for several different values of cooperativity. Blue dashed line, C = 0.4;
red dotted line, C = 4; green solid line, C = 40.

5.2 Theoretical analysis of spin readout fidelity

5.2.1 Derivation of fidelity in the presence of spin flip

In the previous section we showed that the fidelity of the spin readout operation

monotonically increases with the probe pulse duration and can eventually approach

unity. However, the probe pulse duration is fundamentally limited by the laser

induced spin flip which causes measurement errors. Thus, to accurately calculate

the fidelity, we need a model that incorporates both cavity reflectivity modification

and spin flip errors.

We still perform our calculation in the weak excitation regime. In this regime

Eq. 5.1 remains valid, but we need to derive the expressions for N↑(T ) and N↓(T )

in the presence of spin flips, which no longer holds a simple linear relationship with
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T . We can calculate N↑ and N↓ by integrating the photon output flux of the cavity

over the time duration T , given by

N↑(↓)(T ) = η

∫ T

0

∣∣Tr (√κâρ↑(↓)(t))∣∣2 dt (5.2)

where â is the photon annihilation operator for the cavity mode, ρ↑(↓)(t) is the

density matrix of the system at time t when the qubit is initialized in the spin-up

and spin-down state at t = 0 respectively.

To calculate ρ↑(↓)(t), we numerically solve the system dynamics using the mas-

ter equation given by dρ/dt = −(i/h̄)[Ĥ, ρ]+L̂ρ , where Ĥ is the system Hamiltonian

that accounts for all unitary processes, and L̂ is the Liouvillian superoperator that

accounts for all non-unitary Markovian processes. We write the system Hamiltonian

in a reference frame with respect to the frequency of the incident field ω, given by

Ĥ = Ĥ0 + Ĥint + Ĥd, where

Ĥ0 = h̄(ωc − ω)â†â + h̄(ωx − ω)|e〉〈e| (5.3)

Ĥint = igh̄(â|e〉〈↑| − â†|↑〉〈e|) (5.4)

Ĥd = h̄
√
κε(â + â†) (5.5)

In Eq. 5.3 - Eq. 5.5, ωc is the frequency of the cavity mode, and ωx is the frequency

of the transition µ↑.

The Liouvillian superoperator L̂ accounts for the decay of the cavity field and

spontaneous emission of each optical transition. This operator is given by

L̂ = κD(â) + γ1D(|↑〉〈e|) + γ2D(|↓〉〈e|) (5.6)

where D(Ô) = ÔρÔ† − 1
2
Ô†Ôρ − 1

2
ρÔ†Ô is the general Linblad operator form for
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the collapse operator Ô. The transition linewidth can also be broadened due to

trion dephasing and spectral diffusion, which we will revisit in Section 5.2.3.

5.2.2 Analysis of fidelity for a quantum dot based cavity QED system

In this section, we perform numerical calculations on a specific case of a charged

quantum dot coupled to a photonic crystal defect cavity. Both multi-shot [71, 72]

and single-shot [73] spin readout has been demonstrated for a charged quantum dot

with a magnetic field applied in the Faraday configuration, by using resonance flu-

orescence spectroscopy. But the highest spin readout fidelity reported so far is only

∼ 84%, limited by the imperfect cycling transition caused by the non-radiative de-

cay mechanism for the optical forbidden transitions. In addition, it is more desired

to realize single-shot spin readout in the Voigt configuration because this geometry

is the prerequisite for all-optical coherent spin manipulation [21–26]. The selection

rules in the Voigt configuration does not support a cycling transition, eliminating

the possibility for single-shot readout using typical fluorescence light detection tech-

nique.

In the Voigt configuration, the energy level structure of the quantum dot is

shown in Fig. 1.2(b). Similarly as the entanglement protocol described in Section 4.1,

we assume that the cavity field is polarized along the V direction, which can only

couple to the quantum dot vertical transitions σ1 and σ4. We consider the case

where transition σ1 is resonant with the cavity mode and the probe laser, whereas

transition σ4 is detuned by ∆z. In the limit where ∆z � 2g2/κ, we could effectively
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ignore the coupling between transition σ4 and the cavity, and simplify the qubit

system to the model depicted in Fig. 1.2(b). We will revisit this assumption in the

later part of this section. We set the cavity parameters to g/2π = 20 GHz and κ/2π

= 6 GHz [125]. For the quantum dot, we assume the spontaneous emission rate is

0.1 GHz for both optical transitions (γ1/2π = γ2/2π = 0.1 GHz) [57]. We set the

incident photon field amplitude to ε =
√

0.01× 2g2/κ , which corresponds to an

average incident photon number of 0.01 per modified lifetime of transition σ1, to

ensure that we are operating in the linear weak excitation regime.

The blue dashed line shown in Fig. 5.2(a) shows the fidelity as a function of

laser pulse duration T for a photon collection efficiency of η = 1%. The fidelity

initially increases with T because we collect more photons, similar as the results

shown in Fig. 5.1. At even larger T the fidelity achieves a maximum and begins to

decline because the probing laser induces a spin-flip. We define the optimal fidelity

as Fopt = max
T

[F (T )], which achieves 0.995 with a time window of T = 153 ns.

We next investigate how a finite value of ∆z affects the spin readout operation.

In this case, we have to take into account the coupling between transition σ4 and

the cavity by using the four-level model (Fig. 1.2(b)) instead of the three-level model

(Fig. 2.1(b)). We follow the same procedure described in Section 5.2.1 to calculate

the fidelity, with slight modifications of the system Hamiltonian and Liouvillian

superoperator. We still write the system Hamiltonian as Ĥ = Ĥ0 + Ĥint + Ĥd, but
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Figure 5.2: Spin readout fidelity in the presence of spin flips and finite
Zeeman splitting. (a) Spin readout fidelity as a function of probe pulse
duration calculated using the three-level model (blue dashed line) and
the four-level model (red solid line). (b) Red solid line, optimal fidelity
as a function of ∆z. Blue dashed line, optimal fidelity calculated using
a three-level model.

we modify Ĥ0 and Ĥint to

Ĥ0 = h̄(ωc − ω)â†â + h̄(ωx − ω)σ̂1
†σ̂1 + h̄(ωx −∆z − ω)σ̂4

†σ̂4 (5.7)

Ĥint = igh̄(âσ̂1
† − â†σ̂1) + igh̄(âσ̂4

† − â†σ̂4) (5.8)

We also modify the Liouvillian superoperator as

L̂ = κD(â) + γ1D(σ̂1) + γ2D(σ̂2) + γ3D(σ̂3) + γ4D(σ̂4) (5.9)

where γ1 - γ4 are the spontaneous emission rates for transitions σ1 - σ4 respectively.

We again assume the spontaneous emission rate is 0.1 GHz for all optical transitions.

The red solid line in Fig. 5.2(a) shows the spin readout fidelity as a function of

laser pulse duration T , calculated using the four-level model. In the calculation we

set ∆z/2π = 100 GHz, corresponding to a magnetic field of 9.4 T [83], and keep all
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other parameters the same as the calculations for the blue dashed line. The fidelity

calculated using the four-level model has a similar trend as a function of T , with

an optimal fidelity of 0.933. This value is lower than the value calculated using the

three-level model since the cavity now couples to both spin states.

We further calculate the optimal fidelity as a function of ∆z, shown as the

red solid line in Fig. 5.2(b). When ∆z is small, the cavity couples almost equally

to two spin states, leading to a low value of spin readout fidelity. The optimal

fidelity monotonically increases with ∆z and approaches the value calculated using

the three-level model (blue dashed line), because the coupling between transition σ4

and the cavity becomes negligible.

Finally, we analyze the optimal fidelity as a function of the overall photon

collection efficiency η. Figure 5.3 shows Fopt as a function of η, where all other

parameters are set to be the same as the red solid line shown in Fig. 5.2(a). The

fidelity increases with the collection efficiency and eventually approaches 1. At

collection efficiency of 2.5% the fidelity achieves a value of 0.99. This efficiency is

achievable with multiple cavity structures including photonic crystals [126–129] and

micro-pillars [130,131], and is also within the range of single photon counters [132].

5.2.3 The effect of emitter dephasing and spectral diffusion

To this point, we have assumed a radiatively limited linewidth for the optical

transition of the qubit. In a realistic situation, the transition can be homogenously

broadened due to dephasing [58], and inhomogeneously broadened due to spectral
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Figure 5.3: Spin readout fidelity as a function of photon overall collection
efficiency η.

diffusion [38, 59–62], which might affect the spin readout fidelity. We still calculate

the readout fidelity using the specific example of a quantum dot spin. To incorporate

dephasing into our model, we introduce an additional term L̂d in the Liouvillian

superoperator given by

L̂d = 2γdD(σ̂1
†σ̂1) + 2γdD(σ̂4

†σ̂4) (5.10)

The above expression assumes the same pure dephasing rate γd for both excited

states |⇑〉 and |⇓〉. We calculate the system dynamics using the master equation

dρ/dt = −(i/h̄)[Ĥ, ρ] + (L̂ + L̂d)ρ, where L̂ is given by Eq. 5.9.

The blue dashed line in Fig. 5.4 shows Fopt as a function of trion dephasing

rate γd. We assume that η = 2.5%, which achieves fidelity of 0.99 in the absence

of linewidth broadening. We set all the other parameters to the same values as the

ones used in the red solid line of Fig. 5.2(a). Increasing the trion dephasing rate
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reduces the cooperativity, which degrades the fidelity. For a typical trion dephasing

rate γd/2π = 1 GHz, we are still able to achieve a fidelity as high as 0.93.

We next consider the effect of spectral diffusion, which could be caused by

charge fluctuations [59, 60], thermal fluctuations [38], or nuclear spin noise [61, 62].

All of these mechanisms happen in a timescale that is slow compared to the modified

trion state lifetime, but fast compared to the repetition time of a typical measure-

ment. We can thus model it by setting ωx as ωx = ω
(0)
x + ∆ω, where ω

(0)
x is the

average frequency of transition σ1, and ∆ω is a random variable corresponding to the

frequency shift of transition σ1 which may be different for each measurement shot.

Here we only account for the spectral diffusion of transition σ1 since the detuning

between other transitions and the incident laser is much greater than their inho-

mogeneously broadened linewidth. We still assume the resonance condition where
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ω = ωc = ω
(0)
x .

Following the same procedure as described in Section 5.2.2, we calculate the

spin readout fidelity F (T,∆ω) as a function of probe pulse duration T for different

values of ∆ω. We define the average fidelity as F (T ) =
∫∞
−∞ F (T,∆ω)G(∆ω)d∆ω,

where G(∆ω) is the probability distribution of the random variable ∆ω. Spectral

diffusion is often modeled as a Gaussian distribution [38], given by

G(∆ω) =
2

γI

√
ln 2

π
exp

(
−4 ln 2

(
∆ω

γI

)2
)

(5.11)

where γI is the inhomogeneously broadened linewidth. We define the optimal fidelity

as F opt = max
T

[F (T )].

The red solid line in Fig. 5.4 shows F opt as a function of inhomogeneously

broadened linewidth γI . In this calculation we ignore the effect of trion dephasing

(γd = 0), and we set all other parameters the same as the ones used in the red solid

line of Fig. 5.2(a). The fidelity remains very robust to inhomogeneously broadened

linewidth, in contrast to the case with homogenously broadened linewidth. This

result might be surprising at first, since with larger inhomogeneous linewidth, the

contributions from those cases where the transition σ1 and the cavity are detuned

become more significant. For these detuned cases, the contrast of photon collection

rate between the spin-up and spin-down states are lower than the resonant case,

which might degrade the fidelity. To explain the robustness, we note that the de-

tuned contributions also suppress the laser induced spin flip. The robustness of the

fidelity over the emitter spectral diffusion makes this protocol very appealing for

experimental realizations in the quantum dot system and many other solid-state
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qubit systems.

5.3 Experimental demonstrations

5.3.1 Device characterization

To experimentally demonstrate spin readout using cavity QED, we utilize the

same device as shown in Chapter 3, which is composed of a single charged InAs

quantum dot coupled to a GaAs photonic crystal cavity. Here we apply a magnetic

field along the Faraday geometry. In this configuration, the quantum dot exhibits an

energy structure as shown in Fig. 1.2(a). Only transitions σ+ and σ− are optically

allowed and coupled to the cavity.

We mount the sample in a closed-cycle cryostat with an integrated supercon-

ducting magnet system. The crystat cools the sample down to 3.6 K, while the

magnet can apply magnetic fields of up to 9.2 T. We excite the sample and collect

the reflected signal using a confocal microscope with an objective lens that has a

numerical aperture of 0.8. We measure the collection efficiency of the objective lens

to be 4.4% using the Stark shift of the quantum dot under cavity resonant excita-

tion [90]. A single mode fiber spatially filters the collected signal to remove spurious

surface reflection. We perform spectral measurements using a grating spectrometer

with a spectral resolution of 7 GHz to perform spectral measurements. To measure

the temporal properties of the signal we perform photon couting measurements us-

ing a Single Photon Counting Module (SPCM) with a time resolution of 800 ps.,

The detection efficiency of the photon counters is 30% at the device wavelength.
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Figure 5.5: Cavity reflection spectrum at several different magnetic fields.

We first characterize the device by exciting the cavity with a broadband Light

Emitting Diode (LED) that is polarized along the diagonal direction, and measuring

the reflected signal along the anti-diagonal direction. The LED serves as a white light

with emission in the wavelength range of 900 nm to 950 nm. Figure 5.5 shows the

cavity reflection spectrum at several different magnetic fields. At 0 T, the spectrum

shows a bright peak due to the cavity (labeled as CM) and a second peak due to

the quantum dot (labeled as QD), which is red-detuned from the cavity resonance

by 0.27 nm (94 GHz). By fitting the cavity peak measured at 0 T to a Lorentzian

function, we determine the cavity energy decay rate to be κ/2π = 33.2± 0.6 GHz.

At higher magnetic field the quantum dot splits into two peaks, corresponding to

the σ+ and σ− transitions shown in Fig. 1.2(a).

To measure the coupling strength between transition σ+ and the cavity, we set
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the magnetic field to 3.7 T where transition σ+ is resonant with the cavity mode, and

transition σ− is largely detuned. This will also be the condition for us to perform

spin readout. We probe the cavity reflectivity using a narrow bandwidth laser (<

300 kHz) instead of a broadband LED, and use a second narrow bandwidth laser

to optically pump the spin to the spin-up state by resonantly driving transition

σ− [68–70]. The blue circles in Fig. 5.6(a) show the reflected probe intensity as we

tune the probe frequency across the cavity mode. By fitting the spectrum to a

theoretical model (blue solid line), we determine the coupling strength between the

σ+ transition and the cavity to be g/2π = 10.3 ± 0.1 GHz. The coupling strength

satisfies the condition g > κ/4, demonstrating that we are operating in the strong

coupling regime. Fig. 5.6(b) shows the case where we measure the cavity reflection

spectrum along the diagonal polarization basis (same polarization as the incident

field).

5.3.2 Time resolved spin-dependent reflectivity

To demonstrate spin-dependent cavity reflectivity, we use a pump-probe se-

quence as shown in Fig. 5.7. The pump pulse prepares the spin to either the spin-up

or the spin-down state by resonantly pumping either the σ− or σ+ transition. The

probe pulse is always resonant with the σ+ transition and the cavity mode. We set

the polarization of the incident probe pulse to be in the diagonal direction, and we

measure the reflected probe intensity along the same polarization basis.

Figure 5.8 shows the intensity of the reflected probe pulse when the spin is
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Figure 5.6: Cavity reflection spectrum at B = 3.7 T where transition σ+

is resonant with the cavity. (a) Cross-polarized cavity reflection spec-
trum with a pumping laser that is resonant with transition σ−. (b)
Co-polarized cavity reflection spectrum with a pumping laser that is
resonant with transition σ−. In both (a) and (b), blue circles show mea-
sured data, while blue solid lines show calculated spectrum.
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Figure 5.7: Pulse sequence that we utilize to demonstrate spin-dependent
cavity reflectivity and spin readout.
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Figure 5.8: Intensity of the reflected probe pulse. The blue and red solid
line shows the case when the spin is initialized in the spin-down and
spin-up state respectively.

initialized to the spin-up state (blue line) and spin-down state (red line) respec-

tively. The reflection intensity is much stronger for the spin-up case compared to

the spin-down case, which enables us to distinguish the spin states from the mea-

sured intensity. For the spin-up case, the reflected signal exponentially decays to

the background level due to the probe induced spin flip, which sets an upper limit

for the detection window that we can use to collect photons.

5.3.3 Cavity enhanced spin readout fidelity

To perform spin readout, we assign the spin state as spin-up if we detect

no photons within a detection window, and spin-down if we detect one (or more)

photons. Since there is no a-priori knowledge about the spin-state, the average spin

readout fidelity is given by F = 0.5(p↑+p↓), where p↑ is the probability of detecting
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Figure 5.9: Measured fidelity of the spin readout operation. (a) Mea-
sured spin readout fidelity as a function of the detection window. (b)
Measured spin readout fidelity as a function of the detuning between
transition σ+ and the cavity.

zero photons for the spin-up state, and p↓ is the probability of detecting at least one

photon for the spin-down state.

The fidelity depends on the length of the detection window. Figure 5.9(a)

shows the measured fidelity as a function of the detection window. The fidelity

initially grows with longer detection window, because the probability of detecting

at least one photon for the bright state increases. At even longer detection window

the fidelity achieves a maximum and begins to decline because the probe pulse

induces a spin-flip. We achieve the maximal fidelity of 0.61 with a detection window

of 75 ns. This detection window is indicated as the grey area in Fig. 5.8.

To show the cavity enhancement of the spin readout, we introduce detuning

between the cavity and the transition σ+ by reducing the magnetic field, and repeat

the same measurements for several different detuning conditions. The red circles
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in Fig. 5.9(b) shows the measured optimal fidelity (optimized at the best detection

window for each detuning) as a function of detuning between the transition σ+ and

the cavity. The fidelity rapidly drops as we increase the detuning and achieves the

maximum at the resonance condition, demonstrating that the cavity is enhancing

the spin readout.

We note that despite the cavity enhancement, the spin readout fidelity that

we achieve is still lower than the best value that other groups have reported for spin

readout of a bare quantum dot in the Faraday configuration using fluorescence light

detection [73]. The major reason is that the particular dot we measured shows a

very large non-radiative decay rate for the optical forbidden transition |⇑〉 → |↓〉,

which is measured to be γnr/2π = 49.4± 1.8 MHz by measuring the optical induced

spin-flip time at the saturation power [72]. This value is about 100 times larger than

the value reported previously [72, 73]. We calculate the maximum fidelity that one

could achieve using fluorescence light detection for this dot to be 0.505 (assuming

the same overall photon detection efficiency). This fundamental limit is much lower

than the cavity enhanced value. We do not have clear evidence why the particular

dot shows such a dramatically large decay rate for the optically forbidden transition.

It could be caused by larger heavy-hole-light-hole (LH-HH) mixing.

5.4 Discussions

In conclusion, we have proposed a protocol for single-shot optical readout of

a qubit that does not possess a good cycling transition. This protocol is broadly
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applicable to many qubit systems including quantum dot spins, fluorine impurities

in CdTe, silicon vacancy centers, and may also be useful for lots of new and emerging

qubit systems that are still under developed. We have also experimentally demon-

strated this approach using a strongly coupled quantum dot and photonic crystal

cavity system. We show that the cavity enhanced spin readout fidelity breaks the

fundamental limit for using resonance fluorescence from a bare quantum dot.

While we have shown optical spin readout that is strongly enhanced by a cav-

ity, our experimental results have not yet reached the single-shot regime. Based

on the theoretical calculation, single-shot regime could be achieved by improving

the overall photon collection efficiency, which could be achieved by using cavity de-

signs that enhance directional emission [126–128] or using single photon detectors

that have higher quantum efficiency [132]. We can also improve the spin readout

fidelity by improving the system cooperativity, which could be achieved by using

cavities with smaller mode volume [133,134] or higher quality factor [125,135,136].

Our theoretical calculation has shown the feasibility of implementing this protocol

on a charged quantum dot in the Voigt configuration, which could simultaneously

enable all-optical coherent spin manipulation and single-shot optical readout of the

quantum dot spin, an important step towards quantum dot spin based quantum

information processing [137,138]. Our results show how tailoring light-matter inter-

actions opens up new possibilities for processing quantum information with higher

speed and accuracy.
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Chapter 6: Strain tuning techniques for quantum dot based cavity

QED system

As demonstrated in previous chapters, semiconductor quantum dots coupled

to photonic crystal cavities offer a robust and scalable platform for studying cavity

QED in a solid state device. The high quality factor and small mode volume of

photonic crystal cavities, coupled with the large oscillator strength of quantum dots,

enable light-matter interactions in the strong coupling regime [34]. This regime

is a prerequisite for applications such as cavity reflectivity control [38], ultrafast

optical switch [39–41], single photon level nonlinearities [42–44], non-classical light

generation [45,46], and spin-exciton quantum logic operations [47].

The study of quantum dots coupled to photonic crystal cavities often requires

the ability to tune the quantum dot exciton energy in-situ. Tuning compensates for

spectral mismatch between the quantum dot exciton energy and the cavity resonant

frequency, and also provides control over the interaction strength between the two

systems. The quantum dot exciton energy can be tuned by various means such as

changing the sample temperature [34,38], applying an AC Stark shift [90], utilizing

the quantum confined Stark effect [139], or applying a magnetic field [140–142].

Temperature tuning and AC Stark effect can broaden the linewidth of the quantum
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dot through phonon scattering [143] or excitation induced dephasing [144–147]. The

quantum confined Stark effect does not suffer from these drawbacks but can quench

quantum dot emission at high electric fields due to separation of the electron and

hole wavefunctions [148]. Magnetic field tuning can reduce the coupling strength

between the quantum dot and the cavity by changing the polarization of the emitted

light and by magnetic field induced carrier confinement which lowers the quantum

dot oscillator strength [140].

Strain tuning is an alternate method for tuning quantum dots [149–160]. In

this method strain modifies the confinement of electrons and holes, thereby changing

their Coulomb interaction strength [151]. Strain tuning can reversibly shift the quan-

tum dot exciton energy without affecting its emission linewidth or intensity [151],

and can achieve a very large tuning range of up to 20 meV [160]. These advantages

make strain a promising method for tuning quantum dots coupled to optical cavi-

ties. Strain tuning of a single quantum dot strongly coupled to a microdisk cavity

has been previously reported [158]. However, applying strain to a photonic crys-

tal cavity can be challenging because these structures are supported on suspended

membranes. Recently, several methods to tune the resonances of photonic crystal

cavity modes with strain have been demonstrated [100,161]. These techniques open

up the possibility for strain tuning quantum dots in a photonic crystal device.

In this Chapter, we demonstrate reversible in-situ strain tuning of a quantum

dot strongly coupled to a photonic crystal cavity. We achieve an average strain

induced shift of 0.45 nm and demonstrate anti-crossing of a quantum dot and a

photonic crystal cavity mode. We show that inside the cavity membrane, quantum
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dots exhibit large fluctuations in the strain induced shift as compared to those in

the bulk, and also shift in the opposite direction. These results indicate that the

strain in the membrane region is very different from that of the bulk. We also

demonstrate that the cavity mode resonance shifts by an amount that is 5.8 times

smaller than the typical quantum dot shift. Thus, the quantum dot can be tuned

over an appreciable range with only a small change to the cavity resonance.

This chapter is organized as follows. Section 6.1 discusses device characteriza-

tion. In Section 6.2 and 6.3, we report the effect of the strain on quantum dots and

cavity mode respectively. Section 6.4 concludes the discussions of this Chapter.

6.1 Device characterization

Figure 6.1 shows a schematic of the sample mount used to perform strain tun-

ing. We utilize the approach demonstrated by Luxmoore et. al. [100] for reversible

strain tuning of a photonic crystal cavity mode. An L-shaped copper holder is

mounted on the cold finger of a continuous flow liquid helium cryostat. The sam-

ple and a piezo-electric actuator are mounted in parallel on the holder, with the

direction of the applied stress (y-axis shown in the figure) aligned along the row

defect of the photonic crystal cavities. The actuator is made of a 530 µm thick

[Pb(Mg1/3Nb2/3)O3]0.68[PbTiO3]0.32 (PMN-PT) substrate with gold coat on both

the top and bottom surface to create an electrical contact. The PMN-PT substrate

is poled in the [011] direction such that an out-of-plane electric field induces an

anisotropic in-plane strain in the substrate. We use the convention that a posi-
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Figure 6.1: Schematic diagram of the experimental setup used to apply
strain to the sample.

tive electric field results in expansion (contraction) in the y-direction (x-direction).

The device and mounting stage are cooled down to a temperature below 40 K for

photoluminescence measurements.

We excite the sample with a continuous wave Ti:sapphire laser tuned to a

wavelength of 780 nm and collect the emitted photoluminescence using a confocal

microscope with a 0.7 numerical aperture objective lens. The spectrum of the col-

lected signal is measured using a grating spectrometer with a resolution of 0.02 nm.

Figure 6.2(a) shows the emission spectrum from a photonic crystal cavity which

exhibits a bright peak at the cavity resonant frequency. We fit this peak to a

Lorentzian function and determine a cavity quality factor of 12,000 (corresponding

to a cavity decay rate of κ/2π = 27.3 GHz). Figure 6.2(b) shows a temperature

scan of the photoluminescence spectrum where a fixed electric field of 11.25 kV/cm

was applied to the piezo during the temperature scan. A quantum dot line (labeled
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Figure 6.2: Device characterization with photoluminescence. (a) Photo-
luminescence spectrum of a photonic crystal cavity at 30 K showing a
quality factor of 12,000. The black circles correspond to measured spec-
trum and the blue solid line shows Lorentzian fit. (b) Photoluminescence
spectrum of strongly coupled quantum dot and cavity as a function of
temperature.

QD) anti-crosses with the cavity mode (labeled as CM), indicating strong coupling.

Note that we cannot determine whether the quantum dot resonance corresponds to

a neutral or charged exciton emission from the spectral data shown in Figure 6.2(b).

However, because the neutral, charged, and bi-exciton lines all experience nearly

identical behavior under strain [151, 159], the exact nature of the exciton emission

does not affect our results.

6.2 The effects of strain on quantum dots

To demonstrate strain tuning, we perform photoluminescence measurement

on the same device at a fixed temperature of 30 K while sweeping the electric field

applied to the piezo from zero to 15 kV/cm and then back to zero. Figure 6.3(a)
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Figure 6.3: The effect of strain on quantum dots. (a) Photoluminescence
of the cavity shown in Fig. 6.2(b) as a function of electric field. (b)
Photoluminescence of bulk wafer containing several quantum dots as a
function of electric field. (c) Histogram of the wavelength shift for 41
different quantum dots embedded in 5 different photonic crystal cavities
for an electric field of 15 kV/cm. (d) Histogram of the wavelength shift
for 23 different bulk quantum dots using an electric field of 15 kV/cm.
The sample temperature is fixed at 30 K for all above measurements.

shows the measured spectrum as a function of applied electric field. As the electric

field increases, the quantum dot red-shifts across the cavity resonance, and becomes

resonant at an applied field of 7.8 kV/cm. We observe a clear anti-crossing as the

quantum dot exciton energy is tuned through the cavity resonance due to strong

coupling. The quantum dot exciton energy returns to its original value when the

field is reduced back to zero, indicating that the strain tuning process is reversible.

The redshift of the quantum dot suggests a tensile strain distribution in the

center of the cavity, which is opposite to the expected direction because we are ap-
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plying compressive stress. For comparison, Fig. 6.3(b) plots the photoluminescence

as a function of electric field in the bulk region of the sample, far away from all

fabricated devices. Multiple quantum dot lines appear in the measured spectrum.

In contrast to the photonic crystal membrane, all bulk quantum dots experience a

blueshift with increasing electric field, consistent with previous studies of quantum

dots under compressive stress [149]. Thus, there is a large difference in the strain

distribution inside the cavity membrane as compared to the bulk material.

To gain a further insight into the strain distribution inside the cavity mem-

brane, we measure the wavelength shift for 41 different quantum dots at the center

of 5 different cavities using an electric field of 15 kV/cm and plot the histogram in

Fig. 6.3(c). All quantum dots exhibit a redshift, with an average value of ∆λcav =

0.45 nm, equal to 6 cavity linewidth, but there is large variations in the shift. We

note that although the magnitude of the strain shift can vary from dot to dot, for

each individual dot the tuning is highly repeatable and reversible over many cycles

of the experiment. In contrast, Fig. 6.3(d) plots a histogram of the wavelength shift

at the maximum electric field for 23 individual quantum dots in the bulk far away

from all cavities. The histogram shows a very narrow distribution indicating that

the bulk exhibits compressive strain with a relatively uniform strain distribution.

We determine a maximum shift of ∆λbulk = -0.52 nm (averaged over all the quantum

dots) at the maximum electric field. The narrow distribution for bulk quantum dots

suggests that the variability in tuning range for quantum dots in the membrane is

largely due to strain variations at different locations inside the membrane. We also

speculate that the unexpected strain direction in the cavity may be due to bowing
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or warping of the membrane, which may depend on complex factors such as size of

undercut and shape of the photonic crystal.

6.3 The effect of strain on a cavity mode

The strain dependent spectrum in Fig. 6.3(a) shows that, in addition to tuning

of the quantum dots, the cavity mode also exhibits a small redshift. The direction

of cavity mode shift suggests a tensile strain inside the cavity membrane [161],

consistent with the shift of the quantum dots. Because the strain induced cavity

shift is in the same direction as the quantum dot shift, it reduces the effective

tuning range of the coupled quantum dot and cavity system. Figure 6.4(a) shows

the photoluminescence spectrum of a bare cavity mode as a function of electric field

at 30 K (these measurements were performed on a different device). By fitting the

emission spectrum at an electric field of zero and 15 kV/cm to a Lorentzian function

(see Fig. 6.4(b)), we determine a spectral redshift of 0.078 nm. This shift is 5.8 times

smaller than the average quantum dot shift in the cavity, indicating that the cavity

shift is a small effect in this system.

6.4 Discussions

In conclusion, we demonstrated in-situ strain tuning of a quantum dot strongly

coupled to a photonic crystal cavity. The average tuning range for quantum dots

within the cavity is about 6 cavity linewidth. This tuning range could be further

extended by applying higher electric field to the piezo. In our experiment we use
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an electric field range of 15 kV/cm due to limited range of our voltage source, but

previous works have applied electric field ranging as large as 80 kV/cm and have

attained highly repeatable results [160]. Methods to improve strain transfer into

the sample such as using a stiffer bracket and a smaller piece of substrate may also

improve tuning range. Finally, it is also possible to use a different type of quantum

dots that are more sensitive to strain [159,162]. The current device implementation

can be adapted to apply strain locally to individual cavities using micro-fabricated

piezoelectric micro-electro-mechanical structures. The combination of local strain

tuning of quantum dots with photonic crystals provides a promising path towards

integrated nonlinear photonic devices for ultra-low power opto-electronics and quan-

tum information processing on a chip.
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Chapter 7: Conclusions and future directions

In this thesis, we have demonstrated a quantum interface between a single

solid-state spin and a photon using a nanophotonic cavity QED system. We show

that the spin-photon quantum interface enables lots of important applications in

quantum information processing, including spin-photon quantum phase switching,

deterministic spin-photon entanglement generation, and high-fidelity optical spin

readout. In addition, the demonstrated device monolithically combines spins with

strongly interacting nanophotonic structures on a single semiconductor chip, which

may have many beneficial properties for future integration and scalability.

One important aspects of the future works is to improve the performance of

the device. Smaller mode-volume cavity designs could enable higher switching fi-

delity and spin readout fidelity by improving the system cooperativity [133, 134].

Using delta-doping layers [23] or active charge stabilization [50] could further im-

prove the spin state preparation fidelity. Our results can also be directly applied

in waveguide integrated devices that are more conducive to on-chip integration and

can exhibit similar strong light-matter interactions [81]. In such on-chip implemen-

tations, waveguide losses create further challenges by degrading the cavity quality

factor, which would reduce the cooperativity. Waveguide-coupled devices would
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therefore require higher bare cavity quality factor to ensure that the light remains

on the chip. Past work has demonstrated a quality factor exceeding 50,000 using

GaAs photonic crystal cavities operating at near-infrared wavelengths [135], and

quality factor exceeding 250,000 in cavities operating at a longer wavelength [136],

which could potentially enable both efficient on-chip coupling and high cooperativ-

ity. Employing regulated quantum dot growth techniques [163, 164] in conjunction

with local frequency tuning [90] could further open up the possibility to integrate

multiple quantum dot spins on a single semiconductor chip.

The ultimate direction for our research is to construct integrated quantum

photonic circuits and on-chip quantum processors using the nanophotonic platform

with solid-state spins embedded. The results reported in this thesis utilized single

quantum dot spins as the qubit system. But our results are applicable to a broad

range of solid-state emitters and solid-state qubit systems, including other species

of quantum dots [165], color centers [166, 167], rare earth ions [168], defects in 2D

materials [169–172] and etc. In addition, by interconnecting each solid-state spin

with a single photon, a hybrid integrated quantum circuits composed of different

types of qubit systems might be feasible, where the interactions between different

qubits are mediated via photons. This hybrid configuration might benefit from the

combined advantages of each individual qubit systems.

In conclusion, we note that numerous fascinating research possibilities are

ahead towards the ultimate realization of a chip-integrated quantum processor or a

quantum network. We hope that our work contribute only a small portion of what

will be achieved in the future.
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Jelena Vučković. Coherent generation of non-classical light on a chip via
photon-induced tunnelling and blockade. Nature Physics, 4(11):859–863, 2008.

[46] Kai Müller, Armand Rundquist, Kevin A Fischer, Tomas Sarmiento, Kon-
stantinos G Lagoudakis, Yousif A Kelaita, Carlos Sánchez Muñoz, Elena del
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Löıc Lanco. Macroscopic rotation of photon polarization induced by a single
spin. Nature communications, 6, 2015.

[52] P. Androvitsaneas, A. B. Young, C. Schneider, S. Maier, M. Kamp, S. Höfling,
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Peres, and William K Wootters. Teleporting an unknown quantum state via
dual classical and einstein-podolsky-rosen channels. Physical review letters,
70(13):1895, 1993.
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