
ABSTRACT

Title of dissertation: POWER AND PERFORMANCE STUDIES

OF THE EXPLICIT MULTI-THREADING (XMT)

ARCHITECTURE

Fuat Keceli, Doctor of Philosophy, 2011

Dissertation directed by: Professor Uzi Vishkin

Department of Electrical and

Computer Engineering

Power and thermal constraints gained critical importance in the design of micropro-

cessors over the past decade. Chipmakers failed to keep power at bay while sustaining the

performance growth of serial computers at the rate expected by consumers. As an alter-

native, they turned to fitting an increasing number of simpler cores on a single die. While

this is a step forward for relaxing the constraints, the issue of power is far from resolved

and it is joined by new challenges which we explain next.

As we move into the era of many-cores, processors consisting of 100s, even 1000s of

cores, single-task parallelism is the natural path for building faster general-purpose com-

puters. Alas, the introduction of parallelism to the mainstream general-purpose domain

brings another long elusive problem to focus: ease of parallel programming. The result

is the dual challenge where power efficiency and ease-of-programming are vital for the

prevalence of up and coming many-core architectures.

The observations above led to the lead goal of this dissertation: a first order valida-

tion of the claim that even under power/thermal constraints, ease-of-programming and com-

petitive performance need not be conflicting objectives for a massively-parallel general-

purpose processor. As our platform, we choose the eXplicit Multi-Threading (XMT) many-

core architecture for fine grained parallel programs developed at the University of Mary-

land. We hope that our findings will be a trailblazer for future commercial products.

XMT scales up to thousand or more lightweight cores and aims at improving single

task execution time while making the task for the programmer as easy as possible. Per-

formance advantages and ease-of-programming of XMT have been shown in a number

of publications, including a study that we present in this dissertation. Feasibility of the

hardware concept has been exhibited via FPGA and ASIC (per our partial involvement)

prototypes.

Our contributions target the study of power and thermal envelopes of an envisioned

1024-core XMT chip (XMT1024) under programs that exist in popular parallel benchmark

suites. First, we compare XMT against an area and power equivalent commercial high-end

many-core GPU. We demonstrate that XMT can provide an average speedup of 8.8x in ir-

regular parallel programs that are common and important in general purpose computing.

Even under the worst-case power estimation assumptions for XMT, average speedup is

only reduced by half. We further this study by experimentally evaluating the performance

advantages of Dynamic Thermal Management (DTM), when applied to XMT1024. DTM tech-

niques are frequently used in current single and multi-core processors, however until now

their effects on single-tasked many-cores have not been examined in detail. It is our pur-

pose to explore how existing techniques can be tailored for XMT to improve performance.

Performance improvements up to 46% over a generic global management technique has

been demonstrated. The insights we provide can guide designers of other similar many-

core architectures.

A significant infrastructure contribution of this dissertation is a highly configurable

cycle-accurate simulator, XMTSim. To our knowledge, XMTSim is currently the only

publicly-available shared-memory many-core simulator with extensive capabilities for es-

timating power and temperature, as well as evaluating dynamic power and thermal man-

agement algorithms. As a major component of the XMT programming toolchain, it is not

only used as the infrastructure in this work but also contributed to other publications and

dissertations.

POWER AND PERFORMANCE STUDIES OF THE EXPLICIT
MULTI-THREADING (XMT) ARCHITECTURE

by

Fuat Keceli

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor Uzi Vishkin, Chair/Advisor
Assistant Professor Tali Moreshet
Associate Professor Manoj Franklin
Associate Professor Gang Qu
Associate Professor William W. Pugh

c© Copyright by

Fuat Keceli

2011

To my loving mother, Gulbun, who never stopped believing in me.

Anneme.

ii

Acknowledgments

I would like to sincerely thank my advisors Dr. Uzi Vishkin and Dr. Tali Moreshet for

their guidance. It has been a long but rewarding journey through which they have always

been understanding and patient with me. Dr. Vishkin’s invaluable experiences, unique

insight and perseverance not only shaped my research, but also gave me an everlasting

perspective on defining and solving problems. Dr. Moreshet selflessly spent countless

hours in discussions with me, during which we cultivated the ideas that were collected in

this dissertation. Her advice as a mentor and a friend kept me focused and taught me how

to convey ideas clearly. It was a privilege to have both as my advisors.

I am indebted to the past and present members of the XMT team, especially my good

friends George C. Caragea and Alexandros Tzannes with whom I worked closely and puz-

zled over many problems. James Edwards’ collaboration and feedback was often crucial.

Aydin Balkan, Xingzhi Wen and Michael Horak were exceptional colleagues during their

time in the team. I would not have made it to the finish line without their help.

It was the sympathetic ear of many friends that kept me sane through the course of

difficult years. They have helped me deal with the setbacks along the way, push through

the pain of my father’s long illness and gave me a space where I can let off steam. Thank

you (in no particular order), Apoorva Prasad, Thanos Chrysis, Harsh Dhundia, Nimi Dvir,

Orkan Dere, Bulent Boyaci, and everybody else that I may have inadvertently left out.

Apoorva Prasad deserves a special mention, for he took the time to proofread most of this

dissertation during his brief visit from overseas.

Finally and most importantly, I would like express my heart-felt gratitude to my family.

I am lucky that my mother Gulbun and my brother Alp were, are, and always will be with

me. Alas, my father Ismail, who was the first engineer that I knew and a very good one,

passed away in 2009; he lives in our memories and our hearts. I would not be the person

that I am today without their unwavering support, encouragement, and love. I owe many

thanks to Tina Peterson for being my family away from home, for her continuous support

and concern. Lastly, I will always remember my grandfather, Muzaffer Tuncel, as the

person who planted the seeds of scientific curiosity in me.

iii

Table of Contents

List of Tables ix

List of Figures x

List of Abbreviations xiii

1 Introduction 1

2 Background on Power/Temperature Estimation and Management 5

2.1 Sources of Power Dissipation in Digital Processors 5

2.2 Dynamic Power Consumption . 6

2.2.1 Clock Gating . 6

2.2.2 Estimation of of Dynamic Power in Simulation 7

2.3 Leakage Power Consumption . 9

2.3.1 Management of Leakage Power . 10

2.3.2 Estimation of of Leakage Power in Simulation 11

2.4 Power Consumption in On-Chip Memories 12

2.5 Power and Clock Speed Trade-offs . 12

2.6 Dynamic Scaling of Voltage and Frequency 14

2.7 Technology Scaling Trends . 16

2.8 Thermal Modeling and Design . 18

2.9 Power and Thermal Constraints in Recent Processors 21

2.10 Tools for Area, Power and Temperature Estimation 22

3 The Explicit Multi-Threading (XMT) Platform 24

3.1 The XMT Architecture . 25

3.1.1 Memory Organization . 26

3.1.2 The Mesh-of-Trees Interconnect (MoT-ICN) 26

3.2 Programming of XMT . 28

3.2.1 The PRAM Model . 28

3.2.2 XMTC – Enhanced C Programming for XMT 29

3.2.3 The Prefix-Sum Operation . 30

iv

3.2.4 Example Program . 31

3.2.5 Independence-of-Order and No-Busy-Wait 31

3.2.6 Ease-of-Programming . 32

3.3 Thread Scheduling in XMT . 34

3.4 Performance Advantages . 36

3.5 Power Efficiency of XMT and Design for Power Management 36

3.5.1 Suitability of the Programming Model 37

3.5.2 Re-designing Thread Scheduling for Power 37

3.5.3 Low Power States for Clusters . 40

3.5.4 Power Management of the Synchronous MoT-ICN 41

3.5.5 Power Management of Shared Caches – Dynamic Cache Resizing . . 42

4 XMTSim – The Cycle-Accurate Simulator of the XMT Architecture 44

4.1 Overview of XMTSim . 45

4.2 Simulation Statistics and Runtime Control . 48

4.3 Details of Cycle-Accurate Simulation . 49

4.3.1 Discrete-Event Simulation . 49

4.3.2 Concurrent Communication of Data Between Components 52

4.3.3 Optimizing the DE Simulation Performance 54

4.3.4 Simulation Speed . 56

4.4 Cycle Verification Against the FPGA Prototype 58

4.5 Power and Temperature Estimation in XMTSim 61

4.5.1 The Power Model . 62

4.6 Dynamic Power and Thermal Management in XMTSim 65

4.7 Other Features . 65

4.8 Features under Development . 66

4.9 Related Work . 67

5 Enabling Meaningful Comparison of XMT with Contemporary Platforms 68

5.1 The Compared Architecture – NVIDIA Tesla 69

5.1.1 Tesla/CUDA Framework . 70

5.1.2 Comparison of the XMT and the Tesla Architectures 71

5.2 Silicon Area Feasibility of 1024-TCU XMT . 74

v

5.2.1 ASIC Synthesis of a 64-TCU Prototype 74

5.2.2 Silicon Area Estimation for XMT1024 74

5.3 Benchmarks . 78

5.4 Performance Comparison of XMT1024 and the GTX280 82

5.5 Conclusions . 83

6 Power/Performance Comparison of XMT1024 and GTX280 84

6.1 Power Model Parameters for XMT1024 . 84

6.2 First Order Power Comparison of XMT1024 and GTX280 86

6.3 GPU Measurements and Simulation Results 87

6.3.1 Benchmarks . 88

6.3.2 GPU Measurements . 88

6.3.3 XMT Simulations and Comparison with GTX280 89

6.4 Sensitivity of Results to Power Model Errors 91

6.4.1 Clusters, Caches and Memory Controllers 91

6.4.2 Interconnection Network . 93

6.4.3 Putting it together . 95

6.5 Discussion of Detailed Data . 95

6.5.1 Sensitivity to ICN and Cluster Clock Frequencies 95

6.5.2 Power Breakdown for Different Cases 97

7 Dynamic Thermal Management of the XMT1024 Processor 99

7.1 Thermal Simulation Setup . 100

7.2 Benchmarks . 102

7.2.1 Benchmark Characterization . 103

7.3 Thermally Efficient Floorplan for XMT1024 108

7.3.1 Evaluation of Floorplans without DTM 112

7.4 DTM Background . 115

7.4.1 Control of Temperature via PID Controllers 116

7.5 DTM Algorithms and Evaluation . 118

7.5.1 Analysis of DTM Results . 119

7.5.2 CG-DDVFS . 123

7.5.3 FG-DDVFS . 124

vi

7.5.4 LP-DDVFS . 124

7.5.5 Effect of floorplan . 125

7.6 Future Work . 125

7.7 Related Work . 127

8 Conclusion 129

A Basics of Digital CMOS Logic 131

A.1 The MOSFET . 131

A.2 A Simple CMOS Logic Gate: The Inverter . 131

A.3 Dynamic Power . 133

A.3.1 Switching Power . 134

A.3.2 Short Circuit Power . 135

A.4 Leakage Power . 135

A.4.1 Subthreshold Leakage . 136

A.4.2 Leakage due to Gate Oxide Scaling . 139

A.4.2.1 Junction Leakage . 139

B Extended XMTSim Documentation 140

B.1 General Information and Installation . 140

B.1.1 Dependencies and install . 140

B.2 XMTSim Manual . 142

B.3 XMTSim Configuration Options . 149

C HotSpotJ 157

C.1 Installation . 157

C.1.1 Software Dependencies . 157

C.1.2 Building the Binaries . 158

C.2 Limitations . 159

C.3 Summary of Features . 160

C.4 HotSpotJ Terminology . 161

C.4.1 Creating/Running Experiments and Displaying Results 163

C.5 Tutorial – Floorplan of a 21x21 many-core processor 164

C.5.1 The Java code for the 21x21 Floorplan 164

vii

C.6 HotSpotJ Command Line Options . 166

D Alternative Floorplans for XMT1024 169

Bibliography 171

viii

List of Tables

2.1 A survey of thermal design powers. 22

4.1 Advantages and disadvantages of DE vs. DT simulation. 52

4.2 Simulated throughputs of XMTSim. 58

4.3 The configuration of XMTSim that is used in validation against Paraleap. . . 58

4.4 Microbenchmarks used in cycle verification 60

5.1 Implementation differences between XMT and Tesla. 73

5.2 Hardware specifications of the GTX280 and the simulated XMT configuration. 76

5.3 The detailed specifications of XMT1024. 76

5.4 The area estimation for a 65 nm XMT1024 chip. 77

5.5 Benchmark properties in XMTC and CUDA. 81

5.6 Percentage of time XMT spent on various types of instructions. 83

6.1 Power model parameters for XMT1024. 85

6.2 Benchmarks and results of experiments. 88

7.1 Benchmark properties . 107

7.2 The baseline clock frequencies . 119

C.1 Specifications of the HotSpotJ test system. 158

ix

List of Figures

2.1 Addition of power gating to a logic circuit. 10

2.2 Demonstration of dynamic energy savings with DVFS. 14

2.3 VF curve for Pentium M765 and AMD Athlon 4000+ processors. 16

2.4 Modeling of temperature and heat analogous to RC circuits. 19

2.5 Side view of a chip with packaging and heat sink, and its simplified RC model. 20

2.6 Thermal image of a single core of IBM PowerPC 970 processor. 21

3.1 Overview of the XMT architecture. 25

3.2 Bit fields in an XMT memory address. 26

3.3 The Mesh-of-Trees interconnect. 27

3.4 Building blocks of MoT-ICN. 27

3.5 XMTC programming. 32

3.6 Flowchart for starting and distributing threads. 33

3.7 Execution of a parallel section with 7 threads on a 4 TCU XMT system. . . . 35

3.8 Sleep-wake mechanism for thread ID check in TCUs. 38

3.9 Addition of thread gating to thread scheduling of XMT. 39

3.10 The state diagram for the activity state of TCUs. 40

3.11 Modification of address bit-fields for cache resizing. 42

4.1 XMT overview from the perspective of XMTSim software structure. 46

4.2 Overview of the simulation mechanism, inputs and outputs. 48

4.3 The overview of DE scheduling architecture of the simulator. 50

4.4 Main loop of execution for discrete-time vs. discrete-event simulation. . . . 51

4.5 Example of pipeline discrete time pipeline simulation. 53

4.6 Example of discrete-event pipeline simulation. 54

4.7 Example of discrete-event pipeline simulation with the addition of priorities. 54

4.8 Example implementation of a MacroActor. 57

4.9 Operation of the power/thermal-estimation plug-in. 62

4.10 Operation of a DTM plug-in. 65

5.1 Overview of the NVIDIA Tesla architecture. 70

x

5.2 Speedups of the 1024-TCU XMT configuration with respect to GTX280. . . . 82

6.1 Speedups of XMT1024 with respect to GTX280. 90

6.2 Ratio of benchmark energy on GTX280 to XMT1024 with respect to GTX280. 90

6.3 Decrease in XMT vs. GPU speedups with average case and worst case as-

sumptions for power model parameters. 92

6.4 Increase in benchmark energy on XMT with average case and worst case

assumptions for power model parameters. 92

6.5 Degradation in the average speedup with different ICN power scenarios (1). 94

6.6 Degradation in the average speedup with different chip power scenarios (2). 95

6.7 Degradation in the average speedup with different cluster and ICN clock

frequencies. 96

6.8 Degradation in the average speedup with different cluster frequencies when

ICN frequency is held constant and vice-versa. 98

6.9 Power breakdown of the XMT chip for different cases. 98

7.1 Degree of parallelism in the benchmarks. 105

7.2 The activity plot of the variable activity benchmarks. 106

7.3 The dance-hall floorplan (FP2) for the XMT1024 chip. 109

7.4 The checkerboard floorplan (FP1) for the XMT1024 chip. 110

7.5 The cluster/cache tile for FP2. 110

7.6 Partitioning the MoT-ICN for distributed ICN floorplan. 111

7.7 Mapping of the partitioned MoT-ICN to the floorplan. 112

7.8 Temperature data from execution of the power-virus program on FP1, dis-

played as a thermal map. 113

7.9 Temperature data from execution of the power-virus program on FP2, dis-

played as a thermal map. 113

7.10 Execution time overhead on FP2 compared to FP1. 115

7.11 PID controller for one core or cluster and one thermal sensor. 117

7.12 Benchmark speedups on FP1 with DTM. 121

7.13 Benchmark speedups on FP2 with DTM. 122

7.14 Execution time overheads on FP2 compared to FP1 under DTM. 126

xi

A.1 The MOSFET transistor. 132

A.2 The CMOS inverter. 132

A.3 Overview of dynamic currents on a CMOS inverter. 134

A.4 Overview of leakage currents in a MOS transistor. 136

A.5 Overview of leakage currents on a CMOS inverter. 136

A.6 Drain current versus gate voltage in an nMOS transistor. 137

C.1 Workflow with the command line script of HotSpotJ. 161

C.2 21x21 many-core floorplan viewed in the floorplan viewer of HotSpotJ. . . . 165

D.1 The first alternative floorplan for the XMT1024 chip. 170

D.2 Another alternative tiled floorplan for the XMT1024 chip. 170

xii

List of Abbreviations

DTM Dynamic Thermal Management
ICN Interconnection Network
MoT-ICN Mesh-of-trees Interconnection Network
PRAM Parallel Random Access Machine
TCU Thread Control Unit
XMT Explicit Multi-Theading
XMT1024 A 1024-TCU XMT processor

xiii

Chapter 1

Introduction

Microprocessors enjoyed a 1000-fold performance growth over two decades, fueled by

transistor speed and scaling of energy [BC11]. Transistor density increase following

Moore’s Law [Moo65], enabled integration of microarchitectural techniques which have

contributed further to the performance. Nonetheless, too-good-to-be-true scaling of

performance has reached its practical limit with the advance of technology into the deep

sub-micron era. The “power wall” has stagnated the progress of processor clock

frequency and complex microarchitectural optimizations are now deemed inefficient, as

they do not provide energy-proportional performance. Instead, vendors currently

depend on increasing the number of computing cores on a chip for sustaining the

performance growth across generations of products. Recent industry road-maps indicate

a popular trend of sacrificing core complexity for quantity hence vitalizing many-core

and heterogeneous computers [Bor07, HM08]. Arrival of many-core

GPUs [NVIb, AMD10b] and ongoing development of other commercial processors (e.g.,

Intel Larrabee [SCS+08]) support this observation.

Moore’s Law and the many-core paradigm alone cannot provide the recipe for

supporting the performance growth of general-purpose processors. Performance of a

single-tasked parallel computer depends on programmers’ ability to extract parallelism

from applications, which has historically been limited by ease-of-programming. Parallel

architectures and programming models should be co-designed with

ease-of-programming as the common goal, however contemporary architectures have

fallen short on accomplishing this objective (see [Pat10, FM10]). The Explicit

Multi-Threading (XMT) architecture [VDBN98, NNTV01], built at the University of

Maryland, has emerged as a new approach towards solving this long-standing problem.

The XMT architecture was developed and optimized with the purpose of achieving

strong performance for Parallel Random Access Model/Machine (PRAM)

1

algorithms [JáJ92, KR90, EG88, Vis07]. PRAM is accepted as an easy model for parallel

algorithmic thinking and it is accompanied by a rich body of algorithmic theory, second

only to its serial counterpart known as the “von-Neumann” architecture. XMT is a

highly-scalable shared memory architecture with a heavy-duty serial processor and many

lightweight parallel cores called Thread Control Units (TCUs). The current hardware

platform of XMT consists of 64-TCU FPGA and ASIC prototypes [WV08a, WV07, WV08b]

and the next defining step for the project would be to build a 1024-TCU XMT processor.

The contributions of this dissertation significantly strengthen the claim that the 1024-TCU

XMT processor is feasible and capable of outperforming other many-cores in its class.

For an industrial grade processor, commitment to silicon is costly and demands an

extensive study that examines feasibility of its implementation, as well as the

programmability and performance advantages of the approach. First, it should be shown

that the concept of the design does not impose any constraints that are fundamentally

unrealistic to implement. For XMT, the FPGA and the ASIC prototypes serve this

purpose. Additionally, the merit of the new architecture should be demonstrated against

existing ones via simulations or projections from the prototype. XMT exhibits superior

performance in irregular parallel programs [CSWV09, CKTV10, Edw11, CV11], while not

significantly falling behind in others and requires a much lower learning and

programming effort [TVTE10, VTEC09, HBVG08, PV11].

Our contributions within this framework can be summarized as follows:

• A configurable versatile cycle-accurate simulator that facilitated most of the

remainder of this thesis as well as other threads of research within the XMT project.

To our knowledge, XMTSim is currently the only publicly available academic tool that

is capable of simulating distributed dynamic thermal and power management

algorithms on a many-core environment.

• Performance comparison of XMT1024 against a state-of-the-art many-core GPU with

and without power envelope constraints. Derivation of the design specifications for a

1024-TCU XMT chip (XMT1024) that fits on the same die and power envelope as the

baseline GPU.

• Evaluation of various dynamic thermal management algorithms for improving the

2

performance of XMT1024 without requiring to increase its thermal design power

(TDP).

• Synthesis and gate level simulations of the 64-core ASIC chip in 90nm IBM

technology.

Among our contributions, XMTSim stands out as it does not only enable the rest of this

dissertation but it has also been instrumental in other publications that are outside the

scope of our work [Car11, CTK+10, DLW+08]. These publications were important

milestones for demonstrating the merit of the XMT architecture. Moreover, XMTSim can

be configured to simulate other shared memory architectures (for example, the Plural

architecture [Gin11]) and as such can be an important asset in architectural exploration.

The performance of XMT1024 was compared against the GPU in two steps. The first

step, a joint effort between two dissertation projects, was a comparison between

area-equivalent configurations. Our contribution to this step consisted of establishing the

XMT configuration, execution of experiments and collecting data from XMTSim.

Preparation of the benchmarks and the experimental methodology was a part of the work

in [Car11]. For a meaningful comparison, it was essential that the simulated XMT chip is

area-equivalent to the GPU.

The second part extended the comparison by addition of power constraints. We have

discussed earlier that power is a primary constraint in design of processors and a

meaningful comparison between two processors requires both similar silicon areas and

power envelopes. In this comparison, we repeated experiments for different scenarios

accounting for the possibility of different degrees of errors in estimating the power of

XMT1024.

Finally, we further the performance study of XMT by adding dynamic thermal

management (DTM) to the simulation of the XMT1024 chip. With DTM, the chip more

efficiently utilizes the power envelope for better performance of the average case. DTM

has previously been implemented in multi-core processors, however our work is the first

to analyze it in a 1000+ core context.

This thesis is organized as follows: Following the introduction, we discuss the

background on power/temperature estimation and management in Chapter 2. In

3

Chapter 3, we review the XMT architecture and provide insights on how power

management can be implemented in its various components. Chapter 4 introduces the

cycle-accurate XMT simulator – XMTSim and its power model. Chapter 5 presents the

performance comparison of the envisioned XMT1024 chip with a state-of-the-art

many-core GPU. This chapter establishes the feasibility of the proposed XMT chip and

sets the full specifications of XMT1024, which are needed in the following chapters. In

Chapter 6, we extend the performance study to include power constraints, and in

Chapter 7), we simulate various thermal management algorithms and evaluate their

effectiveness on XMT. Finally, we conclude in Chapter 8.

4

Chapter 2

Background on Power/Temperature Estimation and Management

In this chapter, we give a brief overview of the topic of power consumption in digital

processors. We start the overview with the sources, management and modeling of

dynamic and leakage power in Sections 2.1 through 2.4. In Section 2.5, we explain power

and clock speed trade-offs, which is followed by a discussion of dynamic voltage and

frequency scaling (DVFS). We continue with a summary of the trends in the design of

modern processors (Section 2.7), using the perspective given in the previous sections.

Section 2.8 provides the background on thermal modeling of a chip. We conclude with

power and thermal constraints in recent processors (Section 2.9) and a survey of tools

supplementary to simulators for estimating area, power and temperature (Section 2.10).

The basic intuition we convey in this overview is required for the work we present in the

subsequent chapters. Simulation is our main evaluation methodology in this thesis and as

a general theme, most sections include notes about simulating for power estimation and

management.

Throughout this chapter, unless otherwise is noted, digital/CMOS refers to

synchronous digital CMOS (Complementary Metal Oxide Semiconductor) logic and more

information on CMOS than given in this chapter can be found in Appendix A.

2.1 Sources of Power Dissipation in Digital Processors

Digital processors dissipate power in two forms: dynamic and static. Dynamic power is

generated due to the switching activity in the digital circuits and the static power is

caused by the leakage in the transistors and spent regardless of the switching activity.

While dynamic power has always been present in CMOS circuits, leakage power has

gained importance with shrinking transistor feature sizes and is a major contributor to

power in the deep sub-micron era. Initially, static power was projected to overrun

5

dynamic power in high performance processors by the 65nm technology node. This

prediction is averted only because industry backed away from aggressive scaling of the

threshold voltage and incorporated various technologies such as stronger doping profiles,

silicon-on-insulator (SOI) [SMD06] and high-k metal gates [CBD+05]. We will discuss

these trends further in Section 2.7.

The next two sections will focus on the specifics of dynamic and leakage power. Each

section contains a subsection on a power model that can be used in simulators, which we

will combine in a unified model in Section 4.5.1 to be used in our simulator.

2.2 Dynamic Power Consumption

The dynamic power of processors is dominated by the switching power, Psw, which is

described as follows:

Psw ∝ CLVdd
2fα (2.1)

CL is the average load capacitance of the logic gates, Vdd is the supply voltage, f is the

clock frequency and α is the average switching probability of the logic gate output nodes.

In a pipelined digital design, dynamic power is spent at pipeline stage registers,

combinatorial (stateless) logic circuits between stages, and the clock distribution network

that distributes the clock signal to the registers. While the clock distribution does not

directly contribute to the computation, combined with the pipeline registers, it can form

up to 70% of the dynamic power of a modern processor [JBH+05]. In the next subsection,

we will see how dynamic power can be reduced by turning off parts of the clock tree.

2.2.1 Clock Gating

As stated in Equation (2.1), dynamic power of a sequential logic circuit such as pipelines

is directly proportional to the average switching activity of its internal and output nodes.

Ideally, no switching activity should be observed if the circuit is not performing any

computation, however this is usually not the case. Pipeline registers and combinatorial

6

logic gates might continue switching even if the inputs and the outputs of the system are

stable due to feedback paths between different pipeline stages.

Clock gating is an optimization procedure for reducing the erroneous switching activity

that wastes dynamic power. It selectively freezes the clock inputs of pipeline registers

that are not involved in carrying out useful computation, and thus forces them to cease

redundant activity. Clock gating can be applied at coarse or fine grain [JBH+05].

Coarse-grained clock gating (at the unit level): All pipeline stages of a unit are gated if

there is no instruction or data present in any of the stages. Unit level clock gating has the

advantage of simpler implementation. It is also possible to turn-off last few levels of the

clock tree along with the register clock inputs. Since major part of the clock power is

dissipated close to the leaf nodes, substantial savings are possible via this method.

Fine-grained clock gating (at the stage level): Only the pipeline stages that are

occupied are clocked and the rest are gated. Intuitively, fine-grained clock gating results

in larger power savings compared to unit level especially if a unit is always active but

with low pipeline occupancy. However it is more complex to implement: it might incur a

power overhead that offsets the savings and might even require slowing down the clock.

For these reasons, fine grained clock gating might not be suitable for microarchitectural

components such as pipelined interconnection networks with simple stages that are

distributed across the chip.

Clock gating can reduce the core power by 20-30% [JBH+05] but also has the drawback

of involving difficulties in testing and verification of VLSI circuits. Insertion of additional

logic on the path of the clock signal complicates the verification of timing constraints by

CAD tools. Moreover, turning the clock signal of a unit on or off in short amount of time

may lead to large surge currents, reducing circuit reliability and increasing

manufacturing costs [LH03].

2.2.2 Estimation of of Dynamic Power in Simulation

In this section, we will describe how to model dynamic power of a pipelined

microarchitectural unit in a high level architectural simulator by only observing its inputs

and outputs. We assume that the peak power of the unit is given as a constant (Pdyn,max).

7

The switching activity of a combinatorial digital circuit is a function of the bit transition

patterns at its inputs [Rab96]. However, bit level estimations can be prohibitively

expensive to compute and architecture simulators typically take the energy to carry out

one computation as a constant. This simplification can also be applied to the pipelined

circuits: a pipeline with a single input will be at its peak power if it processes one

instruction per clock cycle (maximum throughput).

Under ideal assumptions, a pipeline should consume dynamic power proportional to

the work it does. We can approximate work (or activity – ACT , as we call it in

Section 4.5.1), as the average number of inputs a unit processes per clock cycle, divided by

the number of the input ports. However, we have discussed earlier that sequential circuits

continue consuming dynamic power even if they are not performing any computation.

We would like to model this waste power in the simulation, therefore we introduce a

parameter, activity correlation factor (CF). Finally, we express dynamic power as:

Pdyn = Pdyn,max ·ACT · CF + Pdyn,max · (1− CF) (2.2)

If CF is set to 1, this represents the ideal case where no dynamic power is wasted. The

worst case corresponds to CF = 0, for which dynamic power is always constant.

Fine-grained clock gating affects Equation (2.2) by increasing the correlation factor and

bringing Pdyn closer to ideal. On the other hand, unit level clock gating (and voltage

gating, which we will see in Section 2.3.1) creates a case where Pdyn is 0 if ACT = 0:

Pdyn =


0 if ACT = 0,

Pdyn,max ·ACT · CF + Pdyn,max · (1− CF) if 0 < ACT ≤ 1.
(2.3)

If unit level clock gating (or voltage gating) is applied only for a part of the sampling

period in a simulation:

Pdyn = Pdyn,max ·ACT · CF +DUTYclk · Pdyn,max · (1− CF) (2.4)

DUTYclk is the duty cycle of the unit clock, i.e., the fraction of the time that the clock

8

tree of the unit is active.

2.3 Leakage Power Consumption

An ideal logic gate is not expected to conduct any current in a stable state. In reality, this

assumption does not hold and in addition to the active power, the gate consumes power

due to various leakage currents in transistor switches. Currently, subthreshold leakage

power is the dominant one among the various leakage components, however gate-oxide

leakage has also gained importance with the scaling of transistor gate oxide thickness (see

Appendix A for details).

Subthreshold leakage power is related to supply voltage (V), temperature (T) and MOS

transistor threshold voltage (vth) via a complex set of equations that we review in

Appendix A. The following is a simplified form that explains these dependencies:

Psub ∝ TECH · ρ(T) · V · exp(V) · exp(−vth0
T

) · exp(− 1

T
) (2.5)

exp(.) signifies an exponential dependency in the form of exp(x) = ekx, where k is a

constant. TECH is a technology node dependent constant which, among other factors,

contains the effect of the the geometry of the transistor (gate oxide thickness, transistor

channel width and length).

The exp(−vth0
T) term in Equation (2.5) signifies the importance of threshold voltage for

Psub. At low vth values Psub becomes prohibitively high, which is a limiting factor in

technology scaling as we will discuss in Section 2.7. The temperature related terms are

often aggregated into a super-linear form for normal operating ranges [SLD+03]. The

temperature/power relationship implied by this function is a concern for system

designers. Strict control of the temperature requires expensive cooling solutions, however

inadequate cooling might create a feedback loop where a temperature increase will cause

a rise in power and vice-versa. Lastly, the V · exp(V) term also reflects a strong

dependence on supply voltage and usually approximated by V 2 for typical operating

ranges.

The total leakage power of a logic gate depends on its logic state. In different states,

9

different sets of transistors will be off and leaking. Leakage power varies among

transistors because of sizing differences reflected in the TECH constant and the

threshold voltage differences between pMOS and nMOS transistors.

In optimizing VLSI circuits, high clock speed and low leakage power are usually

competing objectives. Faster designs require use of low threshold transistors, which

increase leakage power. Most fabrication processes provide two types of gates for the

designers to choose from: low threshold (low vth) and high threshold (high vth). CAD

tools place low vth gates on critical delay paths that directly affect the clock frequency and

use high vth gates for the rest. It was observed that, for most designs with reasonable

clock frequency objectives, CAD tools tend to choose gates so that the leakage power is

30% of the total power at maximum power consumption [NS00].

2.3.1 Management of Leakage Power

Voltage gating (also called power gating) is a technique that is commonly incorporated

for reducing leakage power. An example is depicted in Figure 2.1. When the sleep signal

is high, sleep transistors are switched off and the core circuit is disconnected from supply

rails. Otherwise, the sleep transistors conduct and the core circuit is connected. For

power gating to be efficient, the sleep transistors should have superior leakage

characteristics, which can be achieved by using high threshold transistors for the sleep

circuit [MDM+95]. The high threshold transistors will switch slower, but this is not a

problem in most cases since sleep state transitions can be performed slower than the core

clock.

Vdd

Core logic OutIn

Sleep

Sleep

Figure 2.1: Addition of power gating to a logic circuit.

10

Threshold Voltage Scaling (TVS) is another technique to to reduce leakage power.

TVS is typically applied to the the core logic transistors, unlike power gating which does

not touch the core logic. The general idea of TVS is to take advantage of the dependence

of leakage power on the threshold voltage. A higher threshold voltage reduces the

leakage power, nevertheless it also increases the gate delays hence requires the system

clock to be slowed down. The threshold voltage of a transistor can be changed during

runtime via the Adaptive Body Bias technique (ABB) [KNB+99, MFMB02] to match a

slower reference clock. ABB can be enabled during the periods that system is relatively

underloaded or clock speed is not crucial in computation.

Leakage power is also dependent on the supply voltage. Lowering the supply voltage

reduces leakage. In Section 2.6, we will review Dynamic Voltage and Frequency Scaling

(DVFS), which dynamically adjusts the voltage and frequency of the system in order to

choose a different trade-off point between clock speed and dynamic power. DVFS can

also be effective in leakage power management.

A caveat of both TVS and DVFS is the fact that they both adjust the clock frequency

dynamically, which takes time and can be limiting for fine-grained control purposes. In

Section 2.6, we discuss methods for faster clock frequency switching.

2.3.2 Estimation of of Leakage Power in Simulation

In this section, we introduce a simulation power model for leakage that complements the

model for dynamic power in Section 2.2.2.

It was previously mentioned that the leakage power of a logic gate depends on its state.

Nevertheless, as for dynamic power, bit-level estimations are unsuitable for high-level

simulators and leakage is approximated as a constant which is the average of the values

from all states. If the voltage gating technique from the Section 2.3.1 is applied, average

leakage power can be computed as:

Pleak = DUTYV × Pleak,max (2.6)

where DUTYV is the duty cycle of the unit, i.e., the fraction of time that it is not voltage

11

gated and Pleak,max is the maximum leakage power, a constant in simulation.

2.4 Power Consumption in On-Chip Memories

Most on-chip memories (caches, register files, etc.) are implemented with Static Random

Access Memory (SRAM) cells which are essentially subject to the same power

consumption and modeling equations as the CMOS logic circuits. Details of power

modeling for SRAM memories can be found in [MBJ05] and [BTM00]. In the context of

the model given in Section 2.2.2, dynamic activity of an SRAM memory (ACTmem) can be

expressed as:

ACTmem =
Number of requests

Maximum number of requests
(2.7)

The maximum number of requests is equal to the number of memory access ports times

the clock cycles in the measured time period.

Switching activity of caches are typically not as high as the core logic, hence dynamic

power of caches is usually not significant compared to the rest of the chip. However,

while the logic circuits can be turned off during inactive phases to save leakage power,

caches usually have to be kept alive in order to retain their data. As a result, energy due

to the leakage power of caches can add up to significant amounts over time. A solution is

threshold voltage scaling that was previously mentioned in Section 2.3.1. A cache that is

in a low power stand-by mode preserves its state, however returning to an active state in

which data can be read from it again, may add require an overhead. DVFS, which we will

discuss in Section 2.6 is another technique to reduce cache leakage with the same

overhead issue.

2.5 Power and Clock Speed Trade-offs

The delay of a logic gate (td) is a function of its supply voltage, the transistor threshold

voltage and a technology dependent constant, a (for details see Appendix A.2):

td ∝
Vdd

(Vdd − vth)a
(2.8)

12

In pipelined synchronous logic, the clock period is determined as the worst case

combinatorial path (a chain of stateless gates) between any pair of pipeline registers1. If

the supply and the threshold voltages are adjusted globally, this will affect the worst case

path along with the rest of the chip. Therefore, the clock period is directly proportional to

the factors that change gate delay. Clock frequency (fclock), which is the inverse of the

clock period given in Equation (2.8), can be expressed as follows:

fclock ∝
(Vdd − vth)

a

Vdd
≈ Vdd (2.9)

where a is set to the typical value of 2 and we assume that Vdd � vth.

Following relationship between power and clock frequency can be deduced from the

above equation and Equation (2.1) (Psw ∝ Vdd
2 · f). Assume a digital circuit that is

optimized for power, i.e. lowest supply voltage is chosen for the desired clock frequency.

If the design constraints can be relaxed in favor of a slower clock and lower Vdd, dynamic

power consumption decreases proportional to Vdd
3. The Vdd is upper bound by velocity

saturation and lower bound by noise margins. Lowering Vdd, while keeping vth constant

increases noise susceptibility due to the shrinking value of Vdd − vth.

In order to reduce power, one can lower the supply and the threshold voltages together

and still be able to keep clock frequency at the same value or lower. This has been the

main driver of technology scaling for 2 decades until the practical limit of threshold

voltage scaling has been reached. The limit is basically due to the leakage power: in

Section 2.3 (Equation (2.5)), the subthreshold leakage was shown to be exponentially

proportional to the threshold voltage.

Equation (2.9) relates the clock frequency to the supply and the threshold voltages for a

fixed technology node. Between technology nodes, the die area that the same circuit

occupies shrinks because of transistor feature scaling. Lower transistor and wire area

induce proportionally lower capacitance and gate delay. As per intuition, we can say that

smaller feature sizes will reduce the electrical charge required to switch the logic states

hence the time it takes to charge/discharge with the same drive strength.

1A detailed discussion of pipelining is beyond the scope of this introduction and can be found in textbooks
such as [Rab96]

13

The channel width (W), and length (L) are the most typical (and non-trivial)

parameters in optimizing the performance of a single gate at the transistor level. The

drive current of a MOS transistor is directly proportional to the W/L ratio and

consequently, its ability to switch the state of the next transistor in the chain. But

increasing W (assuming L is kept minimum for smaller sizes) adversely affects the

parasitic/load capacitances in the system, which, in turn, might slow down other parts of

the circuit and also increase dynamic power consumption. Moreover, W/L is one of the

factors that effect leakage power. Logic synthesis tools usually include circuit libraries

that are W/L optimized for performance so transistor sizing, in most cases, is not of

concern to system designers.

2.6 Dynamic Scaling of Voltage and Frequency

Dynamic voltage and/or frequency scaling (DVFS) is routinely incorporated in recent

processor designs as a technique for dynamically choosing a trade-off point between

clock speed and power. As we will show in Chapter 7, DVFS can be used to resolve

thermal emergencies without having to halt the computation and can also reduce the total

task energy in a energy-constrained environment.

Time

Power

P

T

Frequency = f

Vdd = V

Energy = P x T

Time

Power

P/8

2T

Frequency = f/2

Vdd = V/2

Energy = 1/4 x P x T

(a) (b)

Figure 2.2: Demonstration of dynamic energy savings with DVFS. (a) A task finishes on a serial core in time
T at 1GHz clock and 1.2V supply voltage. (b) Same task takes twice the time at half the clock frequency but
consumer 1/4 of the initial energy.

Figure 2.2 demonstrates the power reduction and energy savings made possible by

scaling the voltage and frequency of a serial core running a single task. At F GHz clock

frequency and supply voltage of V , the task finishes in time duration of T. Assume that

the frequency and voltage are lowered to half of their initial values.. At the new

14

frequency the power scales down by 1/8 and the task takes twice the time to finish. The

total energy will be reduced to 1/8× 2 = 1/4 of the initial energy. It should be noted that,

this example is excessively optimistic in assuming (a) the power only consists of dynamic

portion, and (b) the voltage can scale at the same rate as the frequency.

Scaling of voltage lowers leakage power as well, but at a rate slower than it does for

dynamic power (see Equation (2.5)). In some cases it might be more beneficial to finish

computation faster and use voltage gating introduced in Section 2.3.1 to cut off leakage

power for the rest of the time.

From a simulation point of view DVFS is characterized via two parameters: the

switching overhead and the voltage-frequency (VF) curve. Next, we will elaborate on

these factors.

Switching overhead. The overhead of DVFS depends on the implementation of

voltage and frequency switching mechanisms. As a rule of thumb, if the voltage or

frequency can be chosen from a continuous range of values, more efficient algorithms can

be implemented. However continuous voltage and frequency converters may require

significant amount of area and power, as well as the time for a transition to occur can be

in the order of µ-seconds, milliseconds or more [KGyWB08, FWR+11]. Continuous

converters are usually suitable for global control mechanisms (as in [MPB+06]) whereas

for multi and many-core processors the cost of implementing a continuous converter per

core can be prohibitively expensive. Moreover because of high time overhead,

fine-grained application of continuous DVFS may not be effective.

A fast switching mechanism (in the order of a few clock cycles overhead) allows

choosing from a limited number of frequencies and voltages. For the clock frequency,

switching is done either via choosing one of the multiple constant clock generators or

using frequency dividers on a reference clock. Voltage is usually switched between

multiple existing voltage rails. Example implementations can be found

in [LCVR03, TCM+09, Int08b, AMD04, FWR+11].

VF curve. Bulk of the savings in DVFS comes from the reduction in voltage whenever

frequency is scaled down. We used the published data on the Intel Pentium M765 and

AMD Athlon 4000+ processors [LLW10], to determine the minimum feasible voltage for a

15

Figure 2.3: VF curve for Pentium M765 and AMD Athlon 4000+ processors.

given clock frequency in GHz. The VF curve for both processors in plotted in the same

graph in Figure 2.3. The data fitted to the following formula via linear regression:

V = 0.22f + 0.86 (2.10)

where f is clock frequency in GHz and V is the voltage in Volts. We use this relation in the

implementation of DVFS for our simulator.

2.7 Technology Scaling Trends

The microprocessor industry has been following a trend that survived for the majority of

the past 45 years: in 1965 Gorden Moore observed that the number of transistors on a die

doubles with every cycle of process technology improvement (which is approximately 2

years). This trend was made possible by the scaling of transistor dimensions by 30%

every generation (die size has been growing as well but at a slower rate).

What translated “Moore’s Law” into performance scaling of serial processors was the

simultaneous scaling of power. With every generation, circuits ran 40% faster, transistor

integration doubled and power stayed the same. Below is a summary of how that was

made possible.

16

Area: 30% reduction in transistor dimensions (0.7x scaling)

Area scales by 0.7× 0.7 =∼ 0.5.

Capacitance: 30% reduction in transistor dimensions and tox.

Total capacitance scales by Cox ×W/L = 0.7× 0.7/0.7 = 0.7.

Fringing capacitance also scales 0.7x (prop. to wire lengths).

Speed: Transistor delay scales 0.7x.

Speed increases 1.4x.

Transistor power: Voltage is reduced by 30%.

Psw ∝ CLVdd
2f = 0.7× 0.72 × 1.4 ≈ 0.5

Total power: Power per transistor is scaled 0.5x and count is doubled.

Ptotal0.5× 2 = 1

In addition to the 40% boost in clock speed above, doubling of the transistor count is

also reflected the performance via Pollack’s Rule. Pollack’s Rule [BC11] suggests that

doubling of transistor count will increase performance by
√
2 due to microarchitectural

improvements.

A few points to be noticed in the above discussion is it assumes that the transistor

power consist of only switching power (Equation (2.1), α is constant) and the reduction in

supply voltage does not reduce drive power. The former was reasonable before leakage

power became significant and the latter was maintained by reducing the threshold

voltage along with the supply voltage. As we have seen, these assumptions do not hold

in the deep sub-micron technologies.

It was the exponential relationship between threshold voltage and subthreshold

leakage power (Equation (2.5)) that broke the recipe above. Threshold voltage can no

longer be scaled without significantly increasing the leakage power. Thus, keeping the

drive power (and the speed) constant requires supply voltage to stay constant as well. If

the supply voltage is not scaled, clock frequency cannot be boosted without increasing

dynamic power. Note that Moore’s Law is still being followed today (even though it has

its own challenges) but performance growth can no longer rely on clock frequency and

inefficient microarchitectural techniques. Instead, silicon resources are used towards

increasing on-chip parallelism. Parallel machines can provide performance in the form of

multi-tasking, however increasing the performance of a single task no longer comes at no

17

cost to the programmers since the programs have to be parallelized.

2.8 Thermal Modeling and Design

Temperature rises on a die as a result of heat generation, which is due to the power

dissipated by the circuits on it. The relationship between power and temperature is often

modeled analogously to the voltage and current relationship in a resistive/capacitive

(RC) circuit [SSH+03]. Figure 2.4(a) shows such an equivalent RC circuit. i is the input

current and V is the output voltage. The counterparts of i and V for thermal modeling are

power and temperature, respectively. Rdie and Rhs are the die and heat sink thermal

resistances (K/W is the unit of thermal resistance). Temperature responds gradually to a

sudden change in power, as voltage does with current in RC circuits. The gradual

response of temperature to power filters out short spikes in power, which is called

temporal filtering.

The example in Figure 2.4(c) demonstrates the case where the power is a rectangle

function (two step functions). The initial phase before temperature stabilizes is named the

transient-response and the stable value that comes after the transient is the steady-state

response. In the steady-state, the circuit is equivalent to a pure resistive network since

capacitances act as open circuits when they are charged. The resistive equivalent of

Figure 2.4(a) is given in Figure 2.4(b). As a result, steady-state temperature is

proportional to the power (V = i ·R). In typical microchips, the transient response may

last in the order of milliseconds.

The discussion above focused on the time-response of the temperature to a point heat

source. It is also important to analyze the spatial distribution of temperature on the

silicon die where the circuits are printed. A common microchip is a three dimensional

structure that consists of a silicon die, a heat spreader and a heat sink. Temperature

estimation tools such as the one in [SSH+03] model this structure as a distributed RC

network, solution methods for which are well known. Figure 2.5 is an example of a chip

with the cooling system and its RC equivalent.

In this thesis, we only consider cooling systems that are mounted on the surface of the

chip packaging, heatsinks, which are dominant in commercial personal computers. The

18

i

V

Vamb

Rdie

Rhs

i

V

Vamb

Rdie

Rhs

(a) (b)

(c)

Figure 2.4: Modeling of temperature and heat analogous to RC circuits. (a) Equivalent RC circuit. (b) Equiva-
lent RC circuit in steady-state. (c) Time response of the circuit to a rectangle function (which is the combination
of a rising and a falling step function).

efficiency of a cooling system is measured in the amount of power density that it can

remove while keeping the chip below a feasible temperature. The most affordable of

surface mounted systems is air cooling and it is estimated to last in the market until the

power densities reach approximately 1.5W/mm2 [Nak06]. Currently, 0.5W/mm2 is

typical for high-end processors (see next section). An equivalent measure of the efficiency

for a heatsink is the convection resistance (Rc) between the heatsink and the environment.

We will give typical values for Rc in Section 2.9.

Temperature constraints can be very different than power constraints especially if

power is distributed unevenly on the die. Temperature rises more at areas that have

higher power density. The hottest areas of a chip are termed thermal hot-spots and the

cooling system should be designed so that it is able to remove the heat from hot-spots.

Even though the hot-spots dictate the cost of cooling mechanism, they might cover only a

small portion of the chip area, which is the reason for the difference between power and

thermal constraints. For example, assume that a 200mm2 chip has an average power

density of 0.1W/mm2 and a hot-spot that dissipates 0.5W/mm2 (numbers are chosen for

illustrative purposes). The total power of the chip is 20mm2 however the cooling

19

Heatsink

Heat spreader

Heatsink

Package, I/O, PCB,...

Silicon Die

Heatsink

Heat spreader

Silicon Die

Rconv

Tamb

(a) (b)

Figure 2.5: (a) Side view of a typical chip with packaging and heat sink. (b) Simplified RC model for the chip.

mechanism should be chosen for 0.5W/mm2 and it capable of removing 100W . This

observation motivated a magnitude of research in managing chip temperature, which we

will review in Chapter 7.

Hot-spots can be severe especially in superscalar architectures, where the power

dissipated by different architectural blocks can vary by large amounts. An example is

demonstrated for a IBM PowerPC 970 processor (based on the Power 4 system [BTR02])

in Figure 2.6 [HWL+07]. The PowerPC 970 core consists of a vector engine, two FXUs

(fixed point integer unit), and ISU (instruction sequencing unit), two FPUs (floating-point

unit), two LSUs (load-store unit), an IFU (instruction fetch unit) and an IDU (instruction

decode unit). The thermal image was taken during the execution of a high power

workload and clearly shows that there is a drastic temperature difference between the

core and the caches. This behavior is quite common in processors where caches and logic

intensive cores are isolated.

In many-cores with simpler computing cores and distributed caches, the cores can be

scattered across the chip, alternating with cache modules. Due to the spatial filtering of

temperature [HSS+08], the issue of thermal hot-spots may not be as critical for such

floorplans. Basically, when high power small heat sources (i.e., cores) are padded with

low power spaces in between (i.e., caches) the temperature spreads evenly. The peak

temperature will not be as high as if the cores were to be lumped together. The floorplan

that we propose for XMT in Section 7.3 is motivated by this observation.

20

Figure 2.6: Thermal image of a single core of IBM PowerPC 970 processor. The thermal figure and floorplan
overlay are taken from [HWL+07, HWL+07], respectively.

2.9 Power and Thermal Constraints in Recent Processors

Processor cooling systems are usually designed for the “typical worst-case” power

consumption. It is very rare that all, or even most, of the sub-systems of a processor are at

their maximum activity simultaneously. A 1W increase in the specifications of the cooling

system costs in the order of $1-3 or more per chip when average power exceeds

40W [Bor99]. Therefore, it would not be cost efficient to design the cooling system for the

absolute worst-case. The highest feasible power for the processor is defined as the

thermal design power (TDP). Most low to mid-grade computer systems implement an

emergency halt mechanism to deal with the unlikely event of exceeding TDP. More

advance processors continuously monitor and control temperature.

Table 2.1 is the survey of a representative set of commercial processors as of 2011. The

GPUs (GTX280 and Radeon HD 6970) are many-core processors with lightweight cores

and the remainder are more traditional multi-cores. The power densities range from

0.44W/mm2 to 0.64W/mm2. The maximum temperature listed for all processors are close

to 100C.

The value of the heatsink convection resistance is a controlled parameter in our

simulations for reflecting the effect of low, mid and high grade air cooling mechanisms.

These values are 0.5K/W , 0.1K/W , and 0.05K/W , which are representatives of

commercial products.

21

Processor TDP Max. Clock Freq. Die Area Cores
Core i7-2600 [Inta] 95W 1.35GHz 216mm2 4

Power7 750 [BPV10] ∼350W 3.55GHz 567mm2 8
Phenom II X4 840 [AMD10a] 95W 3.2GHz 169mm2 4

GTX 580 [NVIb] 244W 1.5GHz 520mm2 512
Radeon HD 6970 [AMD10b] 250W 880MHz 389mm2 1536

Table 2.1: A survey of thermal design powers.

2.10 Tools for Area, Power and Temperature Estimation

Academia and industry have developed a number of tools to aid researchers who

develop simulators for early-stage exploration of architectures. We list the ones that stand

out as they are highly cited in research papers. Architecture simulators, including our

own XMTSim described in Chapter 4, can interface with these tools to generate runtime

power and temperature estimates.

Cacti [WJ96, MBJ05] and McPAT [LAS+09] estimate the latency, area and the power of

processors under user defined constraints. More specifically, Cacti models memory

structures, mainly caches, and McPAT explores full multi-core systems. McPAT internally

uses Cacti for caches and projects the rest of the chip from existing commercial

processors. McPAT cannot be configured to estimate the power of an XMT chip directly,

however it can still be used to generate parameters for microarchitectural components

simulated in XMTSim, including execution units and register files. Section 6.1 is an

example of how McPAT and Cacti outputs can be used in XMTSim.

HotSpot [HSS+04, HSR+07, SSH+03] is an accurate and fast thermal model that can be

included in an architecture simulator to generate the input for thermal management

algorithms or other stages that are temperature dependent, for example leakage power

estimation. It views the chip area as a finite number of blocks each of which is a 2

dimensional heat source. In order to solve the temperatures based on the power values, it

borrows from the concepts that describe the voltage and current relationships in

distributed RC (resistive/capacitive) circuits. HotSpot has inherent shortcomings because

of the hardness of estimating or even directly measuring the temperature in complex

systems, and it can only model air cooling solutions. However, it still is the most

frequently used publicly-available temperature model for academic high-level simulators.

22

HotLeakage [ZPS+03] is an architectural model for subthreshold and gate leakage in

MOS circuits. As its input, it takes the die temperature, supply voltage, threshold voltage

and other process technology dependent parameters and estimates the leakage variation

based on these inputs. In Section 2.3, we have briefly reviewed the leakage power

equation which was derived from the HotLeakage model.

23

Chapter 3

The Explicit Multi-Threading (XMT) Platform

The primary goal of the eXplicit Multi-Threading (XMT) general-purpose computer

platform [NNTV01, VDBN98] has been improving single-task performance through

parallelism. XMT was designed from the ground up to capitalize on the huge on-chip

resources becoming available in order to support the formidable body of knowledge,

known as Parallel Random Access Model (PRAM) algorithmics, and the latent, though

not widespread, familiarity with it. Driven by the repeated programming difficulties of

parallel machines, ease-of-programming was a leading design objective of XMT. The

XMT architecture has been prototyped on a field-programmable gate array (FPGA) as a

part of the University of Maryland PRAM-On-Chip project [WV08a, WV07, WV08b]. The

FPGA prototype is a 64-core, 75MHz computer. In addition to the FPGA, the main

medium for running XMT programs is a highly configurable cycle-accurate simulator,

which is one of the contributions of this dissertation.

The PRAM model of computation [JáJ92, KR90, EG88, Vis07] was developed during the

1980s and early 1990s to address the question of how to program parallel algorithms and

was proven to be very successful on an abstract level. PRAM provides an intuitive

abstraction for developing parallel algorithms, which led to an extremely rich algorithmic

theory second in magnitude only to its serial counterpart known as the “von-Neumann”

architecture. Motivated by its success, a number of projects attempted to carry PRAM to

practice via multi-chip parallelism. These projects include

NYU-Ultracomputer [GGK+82] and the Tera/Cray MTA [ACC+90] in the 1980s and the

SB-PRAM [BBF+97, KKT01, PBB+02] in the 1990s. However the bottlenecks caused by the

speed, latency and bandwidth of communication across chip boundaries made this goal

difficult to accomplish (as noted in [CKP+93, CGS97]). It was not until 2000s that

technological advances allowed fitting multiple computation cores on a chip, relieving

the communication bottlenecks.

24

Figure 3.1: Overview of the XMT architecture.

The first three sections of this chapter gives an overview of the XMT architecture, its

programming and performance advantages. Section 3.5 discusses various aspects of XMT

from a power efficiency and management perspective.

3.1 The XMT Architecture

The XMT architecture, depicted in Figure 3.1, consists of an array of lightweight cores,

Thread Control Units (TCUs), and a serial core with its own cache (Master TCU). TCUs

are arranged in clusters which are connected to the shared cache layer by a

high-throughput Mesh-of-Trees interconnection network (MoT-ICN) [BQV09]. Within a

cluster, a compiler-managed Read-Only Cache is used to store constant values across all

threads. TCUs incorporate dedicated lightweight ALUs, but the more expensive

Multiply/Divide (MDU) and Floating Point Units (FPU) are shared by all TCUs in a

cluster.

The memory hierarchy of XMT is explained in detail in Section 3.1.1. The remaining

on-chip components are an instruction and data broadcast mechanism, a global register

file and a prefix-sum unit. Prefix-sum (PS) is a powerful primitive similar in function to

the NYU Ultracomputer Fetch-and-Add [GGK+82]; it provides constant, low overhead

inter-thread coordination, a key requirement for implementing efficient intra-task

parallelism (see Section 3.2.3).

25

045111231

Address inside module Module ID

Figure 3.2: Bit fields in an XMT memory address.

3.1.1 Memory Organization

The XMT memory hierarchy does not include private writable caches (except for the

Master TCU). The shared cache is partitioned into mutually exclusive modules, sharing

several off-chip DRAM memory channels. A single monolithic cache with many

read/write ports is not an option since the cache speed is inversely proportional to the

cache size and number of ports. Cache coherence is not an issue for XMT as the cache

modules are mutually exclusive in the addresses that they can accommodate. Caches can

handle new requests while buffering previous misses in order to achieve better memory

access latency.

XMT is a Uniform Memory Access (UMA) architecture: all TCUs are conceptually at at

the same distance from all cache modules, connected to the caches through a symmetrical

interconnection network. TCUs also feature prefetch buffers, which are utilized via a

compiler optimization to hide memory latencies.

Contiguous memory addresses are distributed among cache modules uniformly to

avoid memory hotspots. They are distributed to shared cache modules at the granularity

of cache lines: addresses from consecutive cache lines reside in different cache modules.

The purpose of this scheme is to increase cache parallelism and reduce conflicts on cache

modules and DRAM ports. Figure 3.2 shows the bit fields in a 32-b memory address for

an XMT configuration with 128 cache modules and 32-bit cache lines. The least significant

5 bits are reserved for the cache-line address. The next 7 bits are reserved for addressing

cache modules and the remainder is used for the address in a cache module.

3.1.2 The Mesh-of-Trees Interconnect (MoT-ICN)

The interconnection network of XMT complements the shared cache organization in

supporting memory traffic requirements of XMT programs. The MoT-ICN is specifically

designed to support irregular memory traffic and as such contributes to the

ease-of-programming and performance of XMT considerably. It is guaranteed that unless

26

N x N connection

Fan-out layer

Fan-in layer

Figure 3.3: The concept of Mesh-of-Trees demonstrated on a 4-in, 4-out configuration.

(a) (b)

Figure 3.4: Building blocks of MoT-ICN: (a) fan-out tree, (b) fan-in tree.

the memory access traffic is extremely unbalanced, packets between different sources and

destinations will not interfere. Therefore, the per-cycle throughput provided by the MoT

network is very close to its peak throughput and it displays low contention under

scattered and non-uniform requests.

Figure 3.3 is a high level overview of the 4-to-4 MoT topology. The building blocks of

the MoT-ICN, binary fan-out and fan-in trees, are depicted in Figures 3.4(a). The network

consists of a layer of fan-out trees at its inputs and a layer of fan-in trees at its the outputs.

For an n-to-n network, each fan-out tree is a 1-to-n router and each fan-in tree is a n-to-1

arbiter. The fan-in and fan-out trees are connected so that there is a path from each input

to each output. There is a unique path between each source and each destination. This

simplifies the operation of the switching circuits and allows faster implementation which

27

translates into improvement in throughput when pipelining a path. More information

about the implementation of MoT-ICN can be found in [Bal08].

3.2 Programming of XMT

3.2.1 The PRAM Model

A parallel random access machine employs a collection of synchronous processors.

Processors are assumed to access a shared global memory in unit time. In addition, every

processor contains a local memory (i.e. registers) for calculations within the thread it

executes. Among various strategies to resolve access conflicts to the shared memory,

arbitrary CRCW (concurrent read, concurrent write) and QRQW (queue read, queue

write) rules are relevant to our discussion since the XMT processor follows a model that is

the hybrid of the two. In the arbitrary CRCW, concurrent write requests by multiple

processors result in the success of an arbitrary one. Concurrent reads are assumed to be

allowed at no expense. The prefix-sum instruction of XMT, explained in Section 3.2.3,

provides CRCW-like access to memory. On the other hand, the QRQW rule does not

allow concurrent reads or writes, and instead requests that arrive at the same time are

queued in an arbitrary order. All memory accesses in XMT other than prefix-sum are

QRQW-like. These two strategies have the same consequence, that is, only one succeeds

among all requests that arrive at the same time. However, the execution mechanism and

latencies are different (i.e., concurrent access versus queuing).

The next example shows a short snippet code that adds one to each element in array B

and writes the result in array A. Arrays A and B are assumed to be of size n. According to

the PRAM model, this operation executes in constant time, given that each parallel thread

i is carried by a separate processor.

for 1≤i≤n do in parallel

A(i) := B(i) + 1

XMT aims to give performance that is proportional to the theoretical performance of

PRAM algorithms. The programmer’s workflow of XMT provides means to start from a

28

PRAM algorithm and produce a performance optimized program [Vis11], analogous to

the traditional programming of serial programs. XMT does not try to implement PRAM

exactly. In particular, certain assumptions of PRAM are not realistic from an

implementation point of view. These assumptions are:

• Constant access time to the shared memory. While this assumption is unrealistic

for any computer system, XMT attempts to minimize access time by shared caches

specifically designed for serving multiple misses simultaneously. True constant

access time on a limited number of global registers is implemented via prefix-sum

operation (see Section 3.2.3).

• Unlimited number of virtual processors. XMT programs are independent of the

number of processors in the system. Hardware automatically schedules the threads

to run on a limited number of physical TCUs.

• Lockstep Synchronization. The lockstep synchronization of each parallel step in

PRAM is not infeasible for large systems from a performance and power point of

view. XMT programming model relaxes this specification of PRAM.

3.2.2 XMTC – Enhanced C Programming for XMT

The parallel programs of XMT are written in XMTC, a modest extension of the

C-language with alternating serial and parallel execution modes. The spawn statement

introduces parallelism in XMTC. It is a type of parallel “loop” whose “iterations” can be

executed in parallel. It takes two arguments low, and high, and a block of code, the

spawn block. The block is concurrently executed on (high-low+1) virtual threads. The ID of

each virtual thread can be accessed using the dollar sign ($) and takes integer values

within the range low ≤ $ ≤ high. Variables declared in the spawn block are private to

each virtual thread. All virtual threads must complete before serial execution resumes

after the spawn block. In other words, a spawn statement introduces an implicit

synchronization point. The number of virtual threads created by a spawn statement is

independent from the number of TCUs in the XMT system. XMT allows concurrent

instantiation of as many threads as the number of available processors. Threads are

efficiently started and distributed thanks to the use of prefix-sum for fast dynamic

29

allocation of work, and a dedicated instruction broadcast bus. The high-bandwidth

interconnection network and the low-overhead creation of many threads facilitate

effective support of fine-grained parallelism. An algorithm designed following the XMT

workflow [Vis11] permits each virtual thread to progress at its own speed, without ever

having to busy-wait for other virtual threads.

3.2.3 The Prefix-Sum Operation

In XMTC programming PS operations are typically used for load balancing and

inter-thread synchronization. It is also implicitly used in thread scheduling, which is

explained in Section 3.3. PS is an atomic operation that increments the value in a global

base register G by the value in a local thread register R and overwrites the value in R with

the previous value of G.

Gn+1 ← Gn +Rn

Rn+1 ← Gn

Even though this operation is similar to Fetch-and-Add in [GGK+82], its novelty lies in

the fact that a PS operation completes execution in constant time, independent of the

number of parallel threads concurrently trying to write to that location. The PS hardware

only ensures atomicity but the commit order is arbitrary for concurrent requests. For

example, a group of concurrent prefix-sum operations from different TCUs with local

registers 0, 1 and 2 to a global base register G will result in

Gn+1 ← Gn +Rn,0 +Rn,1 +Rn,2

Rn+1,0 ← Gn

Rn+1,1 ← Gn +Rn,0

Rn+1,2 ← Gn +Rn,0 +Rn,1

30

Any other order is also possible, as in

Gn+1 ← Gn +Rn,0 +Rn,1 +Rn,2

Rn+1,2 ← Gn

Rn+1,0 ← Gn +Rn,2

Rn+1,1 ← Gn +Rn,2 +Rn,0

Due to the hardware implementation challenges, the incremental values are limited to

0 and 1. Also, the base register can only be a global register. XMT also provides an

unrestricted version of PS, prefix-sum to memory (PSM) for which the base can be any

memory address and the increment values are not limited. However, PSM operation does

not give the same performance as PS since PSM is essentially an atomic memory

operation that is serialized with other memory references at the shared caches.

3.2.4 Example Program

An example of a simple XMTC program, Array Compaction, is provided in Figure 3.5(a).

In the program, the non-zero elements of array A are copied into an array B, with the

order not necessarily preserved. The spawn instruction creates N virtual threads; $ refers

to the unique identifier of each thread. The prefix-sum statement ps(inc,base) is

executed as an atomic operation. The base variable is incremented by inc and the the

original value of base is assigned to the inc variable. The parallel code section ends

with an implicit join instruction. Figure 3.5(b) illustrates the flow of an XMT program

with two parallel spawn sections.

3.2.5 Independence-of-Order and No-Busy-Wait

XMT programs usually do not include coordination code other than prefix-sums and

threads can only communicate through shared memory and global registers via the

31

int A[N],B[N],base=0;
spawn(0,N-1) {
int inc=1;
if (A[$]!=0) {
ps(inc,base);
B[inc]=A[$];

}
}

spawn

join

spawn

join$

(a) (b)

Figure 3.5: (a) XMTC program example: Array Compaction. (b) Execution of a sequence of spawn and join
commands.

CRCW/QRQW memory model. Due to these properties threads can be abstracted as

virtual No-Busy-Wait (NBW) finite state machines, where each TCU progresses at an

independent rate without blocking another. The No-Busy-Wait paradigm yields much

better performance results than tightly coupled parallel architectures, such as Vector or

VLIW processors. In addition to NBW, XMTC programs also exhibit Independence of Order

Semantics (IOS): the correctness of an XMTC program should be independent of the

progression rate and completion order of individual threads.

3.2.6 Ease-of-Programming

Ease-of-programming (EoP) is a goal that has long eluded the field of parallel

programming. The emergence of on-chip parallel computers in the general-purpose

domain exacerbates the problem now that parallel architectures are targeting a large

programmer base and a wider variety of applications. Among these, programs with

irregular memory access and parallelism patterns are frequent in the general-purpose

domain and they are considered among the hardest problems in parallel computing

today. These programs defy optimizations, such as programming for locality, that are

common in typical many-cores, and require significant programming effort to obtain

minor performance improvements. More information and examples on irregular versus

regular programs will be given in Section 5.3.

EoP is one of the main objectives of XMT: considerable amount of evidence was

developed on ease of teaching [TVTE10,VTEC09] and improved development time with XMT

32

Serial Code

TIDlow ← N + IDfirst

TIDhigh ← IDlast

Broadcast IDfirst

Spawn

TIDlow - TIDhigh > N

Serial Code

Yes

$ = IDfirst + TCUID

$ ≤ TIDhigh

Parallel Code

$ = PS(TIDlow,1)

Yes

Master TCU

Parallel TCUs

St
ar

t
al

l T
C
U
s

No

No

Figure 3.6: Flowchart for starting and distributing threads.

relative to alternative parallel approaches including MPI [HBVG08], OpenMP [PV11] and

CUDA (experiences in [CKTV10]). XMT provides a programmer’s workflow for deriving

efficient programs from PRAM algorithms, and reasoning about their execution

time [VCL07] and correctness. The architecture of XMT was specifically built to handle

irregular parallel programs efficiently, which is one of the reasons for its success in EoP.

Complex optimizations are often not needed in order to obtain performance advantages

over serial for these programs.

In a joint teaching experiment between the University of Illinois and the University of

Maryland comparing OpenMP and XMTC programming [PV11], none of the 42 students

achieved speedups using OpenMP programming on the simple irregular problem of

breadth-first search (Bfs) using an 8-processor SMP, but all reached speedups of 8x to 25x

on XMT. Moreover, the PRAM/XMT part of the joint course was able to convey

algorithms for more advanced problems than the other parts.

33

3.3 Thread Scheduling in XMT

XMT features a novel lightweight thread scheduling/distribution mechanism. Figure 3.6

provides the algorithm for starting a parallel section, distributing the threads among the

TCUs and returning control to the Master TCU upon completion. The detail level of the

algorithm roughly matches the assembly language, meaning that each stage in the

algorithm corresponds to an assembly instruction. Most important of these mechanisms

is the prefix-sum (PS), on which thread scheduling is based.

The algorithm in Figure 3.6 is for one spawn block with thread ID (TID) numbers from

IDfirst to IDlast (recall that XMT threads are labeled with contiguous ID numbers).

Master TCU first initializes two special global registers: TIDlow and TIDhigh. These two

registers, contain the range of ID numbers of the threads that have not been picked up by

TCUs. Spawn broadcasts parallel instructions and sends a start signal to all TCUs present

in the system. Master TCU broadcasts the value of IDfirst by embedding it into the

parallel instructions. TCUs start executing parallel code with assigned thread IDs ($) from

TCUID to TCUID +N − 1, where N is the number of TCUs. TCUID is the hardcoded

identifier of a TCU, a number between 0 and N − 1. TCUs with invalid thread IDs (i.e.,

$ > TIDhigh) will wait for new work to become available (it is possible that an active

thread modifies TIDhigh, therefore dynamically changes the total number of threads to be

executed). $ = PS(TIDlow, 1) serves the double purpose of returning a new thread ID for

a TCU that just finished a thread and also updating the range of threads that are not yet

picked up. When all TCUs are idle, which implies TIDlow − TIDhigh = N + 1, the

parallel section ends and master TCU proceeds with serial execution.

Figure 3.7 is an example of how seven threads, with IDs from 0 to 6, are started and

scheduled on a 4-TCU XMT configuration. Below are the explanations that correspond to

each step in the figure.

a) TCUs initially start with thread IDs equal to their TCUIDs therefore the threads that

are not yet picked up are 4 to 6.

b) In this example, TCU 2 finishes its thread first so it picks up the next thread ID, 4.

c) Then TCUs 1 and 3 finish simultaneously and pick up threads with IDs 5 and 6 in

arbitrary order.

34

TCU0

TID0=7

Idle

TCU2

Finished

TCU0

TID0=0

Executing...

TCU1

TID1=1

Executing...

TCU2

TID2=2

Executing...

TCU3

TID3=3

Executing...

TIDlow = 4

TIDhigh = 6

TCU0

TID0=0

Executing...

TCU1

TID1=1

Executing...

TCU2

Finished

TCU3

TID3=3

Executing...

TIDlow = 4

TIDhigh = 6

TID2=PS(TIDlow,1)

TCU0

TID0=0

Executing...

TIDlow = 5

TIDhigh = 6 TID3=PS(TIDlow,1)

TCU2

TID2=4

Executing...

TID1=PS(TIDlow,1)

TCU3

Finished

TCU1

Finished

TCU1

TID0=6

Executing...

TIDlow = 7

TIDhigh = 6

TCU2

TID2=4

Executing...

TCU0

Finished

TCU2

TID2=5

Executing...

TID0=PS(TIDlow,1)

TCU0

TID0=7

Idle

TIDlow = 8

TIDhigh = 6
TID3=PS(TIDlow,1)

TID1=PS(TIDlow,1)

TCU3

Finished

TCU1

Finished

TCU1

TID0=9

Idle

TIDlow = 11

TIDhigh = 6

TCU2

TID2=8

Idle

TCU2

TID2=10

Idle

TID2=PS(TIDlow,1)

(a)

(b)

(e)

(b)

(d)

(f)

Figure 3.7: Execution of a parallel section with 7 threads on a 4-TCU XMT system. N is the number of TCUs
in the system. Refer to text for a detailed explanation of the example.

d) TCU 0 finishes thread 0 and picks up thread ID 7, which is invalid at the moment.

TCU 0 starts waiting, in case one of the currently executing threads creates thread 7

by incrementing TIDhigh.

e) The remainder of the TCUs finish their threads and pick up invalid thread IDs as

well.

f) At the final state, all TCUs are idling and TIDlow − TIDhigh = 5. This is the

condition to end a parallel section and control returns to the Master TCU.

35

3.4 Performance Advantages

It was shown that a cycle-accurate 64-core FPGA hardware XMT

prototype [WV07, WV08a] outperforms an Intel Core 2 Duo processor [CSWV09], despite

the fact the Intel processor uses more silicon resources. A comparison of FFT (the Fast

Fourier Transform) on XMT and on multi-cores showed that XMT can both get better

speedups and achieve them with less application parallelism [STBV09]. In Section 5.4, we

will present a study, in which we simulate a 1024-core XMT chip, that is silicon-area and

power equivalent to an NVIDIA GTX280 many-core GPU. We show that, in addition to

being easier to program than the GPU, XMT also has the potential of coming ahead in

performance.

Many doubt the practical relevance of PRAM algorithms, and past work provided very

limited evidence to alleviate these doubts; [CB05] reported speedups of up to 4x on

biconnectivity using a 12-processor Sun machine and [HH10] up to 2.5x on maximum

flow using a hybrid CPU-GPU implementation when compared to best serial

implementations. New results, however, show that parallel graph algorithms derived

from the PRAM theory can provide significantly better speedups than alternative

algorithms. These results include potential speedups of 5.4x to 73x on breadth-first search

(Bfs) and 2.2x to 4x on graph connectivity when compared with optimized GPU

implementations. Also, with respect to best serial implementations on modern CPU

architectures, we observed potential speedups of 9x to 33x on biconnectivity [Edw11],

and up to 108x on maximum flow [CV11].

3.5 Power Efficiency of XMT and Design for Power Management

Several architectural decisions in XMT, such as the lightweight cores, thread

synchronization (via the join mechanism) and thread scheduling, as well as the lack of

private local caches (hence, of power-hungry cache coherence) are geared towards energy

efficient computation. It is the synergy of the cores that accelerate a parallel program over

a serial counterpart rather than the performance of a single thread. In the remainder of

this section, we overview several aspects of XMT from a power efficiency and

36

management point of view.

3.5.1 Suitability of the Programming Model

In Chapter 7, we will see that efficient dynamic thermal and power management of a

parallel processor may require the ability to independently alter the execution of its

components (for example, cores). In XMT, execution of the TCUs can be individually

modified without creating a global bottleneck. This is facilitated by its programming

model, which we explain next.

The No-Busy-Wait paradigm and Independence of Order Semantics of XMT naturally

fit the Globally Asynchronous, Locally Synchronous (GALS) style design [MVF00], in which

each one of the clusters operate in a dedicated clock domain. Moreover, the ICN and the

shared caches can operate in separate clock domains as there is no practical reason for

any of these subsystems to be tightly synchronized. Clusters, caches and the ICN can

easily be designed to interface with each other via FIFOs. As explained above, the relaxed

synchrony does not hurt the XMT programming model. In fact, XMT was built on the

idea of relaxing the strict synchrony of PRAM model. In Chapter 7 we will evaluate

various clocking schemes for XMT inspired by the ideas above. The programming model

of XMT is also suitable for a power-efficient asynchronous ICN, as demonstrated recently

in [HNCV10].

As we will discuss in the next section, XMT threads can be easily dispatched to the

different parts of the die by temporarily preventing the TCUs from requesting threads

from the pool, should it be necessary for avoiding thermal emergencies. It is important to

note that this is possible because a) XMTC programs do not rely on the number of TCUs

for correct and efficient implementation, b) threads in XMTC programs are typically

shorter compared to thermal time constants, and c) there is no complex work distribution

algorithm that interferes with the routing of threads.

3.5.2 Re-designing Thread Scheduling for Power

The implementation of thread scheduling in the FPGA prototype, reviewed in Section 3.3,

is not optimized for power efficiency and power management was not one of its design

37

$ = IDfirst + TCUID

$ ≤ TIDhigh

Parallel Code

$ = PS(TIDlow,1)

Yes

Parallel TCUs

No

Global Thread

Monitor

TCUID, $

Stall

$ ≤ TIDhigh

Figure 3.8: Sleep-wake mechanism for thread ID check in TCUs.

specifications. In this section, we list two potential improvements: sleep-wake for

reducing the power of idling TCUs and thread gating for controlling the assignment of

threads to TCUs. Both of these mechanisms are incorporated into our cycle-accurate

simulator. The effect of sleep-wake is included by default in the results presented in

Chapters 6 and 7. Thread gating is applied to equally distribute the power across the

cores whenever the number of active threads is less than the number of TCUs.

Sleep-Wake vs. Polling for Thread ID Check

The first change that we propose is an energy efficient implementation of the TCU

thread ID check step ($ ≤ TIDhigh) in Figure 3.6. In the current implementation, the

corresponding assembly instruction is a branch that continuously polls on the condition

until it is satisfied. This polling mechanism, in addition to wasting dynamic power, also

prevents a potential power management algorithm from putting the TCU to a low-power

mode to save static power.

Figure 3.8 (based on Figure 3.6) illustrates the proposed sleep-wake mechanism. When a

TCU reaches the condition and fails at the first attempt, it sends its unique ID (TCUID in

Figure 3.6) along with the new thread ID ($) to a global controller and stalls. The global

controller monitors TIDhigh for changes and “wakes up” the TCU if its stored thread ID

becomes active.

Implementation of a sleep-wake mechanism for the parallel TCUs is especially

important since the cost of polling is multiplied by the number of TCUs. Another step in

38

$ = IDfirst + TCUID

$ ≤ TIDhigh

Parallel Code

$ = PS(TIDlow,1)

Yes

Parallel TCUs

Continue?

Yes

No

Continue

Set condition

No

Global Thread

Monitor

TCUID, $

Stall

$ ≤ TIDhigh

Figure 3.9: Addition of thread gating to thread scheduling of XMT. Original mechanism was given in Fig-
ure 3.8.

Figure 3.6 where polling appears is the TIDlow − TIDhigh > N condition of the Master

TCU. However, optimization of this step is not as critical since it is only executed by

Master TCU.

Thread Gating

A straightforward addition to the thread scheduling mechanism is the ability to

modulate the distribution of threads to the clusters dynamically during the runtime in

order to reduce the power at certain areas of the chip. We will call this feature thread

gating.

The change proposed for incorporating thread gating to the mechanism in Figure 3.8 is

shown in Figure 3.9. The general idea is to reduce the number of active TCUs and limit

the execution to a subset of all TCUs in the system. Given a TCU selected for thread

gating, the algorithm will let the TCU run to the completion of its current thread and

prevent it from picking up a new one. A thread gated TCU can be put in a low power

stand-by mode and later can be awaken to proceed. This system is deadlock-free as the

TCU is stopped right before it picks up a new thread so none of the virtual threads

created so far or that can yet be created dynamically resides in the gated TCU.

It should be noted that thread gating relies on the fact that in fine-grained parallelism,

39

Active

IdleMWait

Response

Mem-op

T-Gate?

No

Yes

T-Gated

End of thread

$ ≤ TIDhigh

Release

Start

Figure 3.10: The state diagram for the activity state of TCUs.

threads are usually short and the control algorithm can afford to wait until the executing

threads are finished before the selected TCUs can be gated. This assumption holds in the

majority of the cases, especially for thermal management. The time scale of temperature

changes, as we have discussed in Section 2.8, is usually orders of magnitude higher

compared to typical XMTC threads. Nevertheless, if thread gating is used for a critical

task such as prevention of thermal emergencies, a fall back should be implemented. In

most processors the fall back is a system-wide halt of the clock.

3.5.3 Low Power States for Clusters

We envision that an industry grade XMT system will be capable of stopping the clock of

the TCUs that are waiting on memory operations or not executing a thread. This can

provide substantial savings in dynamic power. If none of the TCUs in a cluster is

executing threads, the cluster can be voltage gated for saving leakage power. In this

section, we discuss how these optimizations can be implemented. These optimizations

are incorporated into the simulations of Chapter 7.

We assume that a TCU can be in one of the following four states: (a) active – executing

an XMTC thread and not waiting on a memory operation, (b) mwait – waiting on a

memory operation, (c) idle – blocked at the thread ID check (see Figure 3.6), and (d)

t-gated1 – TCU is gated by global control as explained in the previous subsection. A

t-gated TCU does not contain any state. In the idle state, values of the program counter

(PC) and the thread ID ($), and in the mwait state, the values in all registers and the PC

1 We use t-gated to prevent confusion with clock or voltage gating. It stands for thread-gated.

40

should be kept alive. Figure 3.10 summarizes the TCUs activity states.

Any TCU that is not in the active state can individually be clock gated. Non-active

states (especially mwait) can happen at short time intervals and clock gating can be

applied successfully since it typically does not cost additional clock cycles. The power

model that we later introduce in Section 4.5 assumes that clock gating is implemented for

TCUs.

Voltage gating is usually implemented at coarser grain and causes the information in

the registers to be lost. For XMT, cluster granularity is suitable. For a cluster to be voltage

gated, all TCUs in it should be in one of the t-gated or idle states. The mwait state, which

requires the registers and the PC to be alive, is not considered for this mechanism. Even

though, thread ID should not be lost in the idle state, it is already saved to the thread

monitor (see Figure 3.9).

A voltage gated cluster can also turn off other components in it, such as the functional

units and the ICN access port. If the instruction cache is also turned-off, the instructions

in it will be lost and upon returning to active state, it will have to be loaded again costing

in performance.

3.5.4 Power Management of the Synchronous MoT-ICN

We will elaborate on challenges and ideas in managing the dynamic and leakage power

of ICN. Note that, efficient management of dynamic and leakage power in

interconnection networks is an open research question not only for XMT, but for most

architectures [MOP+09]. For this reason, the future plan for XMT is a power efficient

asynchronous ICN [HNCV10].

Dynamic Power. The MoT-ICN trees (depicted in Figure 3.4) consist of lightweight

nodes that are distributed along the routing paths. Due to simplicity of the nodes, trees

might not benefit from fine-grained clock gating (see Section 2.2.1). On the other hand,

clock gating at a coarser grain, for example tree level, might introduce other difficulties.

Turning the clock of a whole tree on and off might require more than one clock cycle

because the trees, on average, are distributed over a large area. As a result, potential

efficiency of clock-gating in the ICN is not clear.

41

045111231

Address inside module Module ID

Shift right to reduce

number of cache modules

045101131

Address inside module Module ID

(a)

(b)

Figure 3.11: Modification of address bit-fields for cache resizing. Original example was given in Figure 3.2. (a)
All 128 cache modules in use, (b) Cache size reduced by half to 64 modules.

Leakage Power. As an intuition, we can say that methods such as voltage gating (see

Section 2.3.1) can only have marginal effect on the leakage power of the MoT-ICN, if the

memory traffic is balanced: most trees in the MoT-ICN will have flits in transfer.

Therefore, applying voltage gating at the granularity of trees might not produce many

opportunities for turning off a tree to prevent leakage (and finer grained voltage gating

might not be feasible). However if the memory traffic is not balanced, voltage gating can

be beneficial. Voltage gating also saves power if certain cache modules are disabled via

cache resizing (Section 3.5.5). The ICN trees that are attached to the disabled modules can

be gated.

3.5.5 Power Management of Shared Caches – Dynamic Cache Resizing

We explain a scheme, where the cache modules can selectively be turned-off, effectively

reducing the total cache size for the system. This can reduce the overall energy for

programs that do not require the full cache size, for example if they operate on data sets

that fit into a subset of the cache. Also, reducing the total cache size can still be beneficial

for programs that are computation heavy and not sensitive to memory bottlenecks. Cache

resizing can help reduce the ICN power as well, as we discussed in the previous section.

There are several trade-offs related to dynamic cache resizing. First, changing the cache

size dynamically requires flushing the cached data and incurs warm-up cache misses.

Second, if a smaller cache size reduces program performance, increased runtime might

incur a larger amount of energy because of the power of other components.

Figure 3.11 shows how to modify the selection of bit-fields in a memory address to

42

reduce the cache size by half. The original example (Figure 3.2) was given for an XMT

system with 128 cache modules and 32-bit cache lines. Initially, 7 bits are used to address

cache modules and we reduce that to 6 bits. Consequently, only 26 = 64 modules can

receive memory references and the rest can be disabled. Note that, as a side effect of this

modification, length of the field for addresses inside cache modules changes. Therefore,

cache tags in this system need to be designed for the worst-case (i.e. smallest dynamic

cache size).

Reducing the power consumption of caches is not a focus of this work since it is not on

the critical path of power/thermal feasibility. Therefore evaluation of cache resizing is left

to future work.

43

Chapter 4

XMTSim – The Cycle-Accurate Simulator of the XMT Architecture

In this chapter, we present XMTSim, a highly-configurable cycle-accurate simulator of the

XMT computer architecture. XMTSim features a power model and a thermal model, and

it provides means to simulate dynamic power and thermal management algorithms.

These features are essential for the subsequent chapters. We made XMTSim publicly

available as a part of the XMT programming toolchain [CKT10], which also includes an

optimizing compiler [TCVB11].

XMT envisions bringing efficient on-chip parallel programming to the mainstream, and

the toolchain is instrumental in obtaining results to validate these claims, as well as

making a simulated XMT platform accessible from any personal computer. XMTSim is

useful to a range of communities such as system architects, teachers of parallel

programming and algorithm developers due to the following four reasons:

1. Opportunity to evaluate alternative system components. XMTSim allows users to

change the parameters of the simulated architecture including the number of functional

units and organization of the parallel cores. It is also easy to add new functionality to the

simulator, making it the ideal platform for evaluating both architectural extensions and

algorithmic improvements that depend on the availability of hardware resources. For

example, Caragea, et. al [CTK+10] searches for the optimal size and replacement policy

for prefetch buffers given limited transistor resources. Furthermore, to our knowledge,

XMTSim is the only publicly available many-core simulator that allows evaluation of

architectural mechanisms/features, such as dynamic power and thermal management.

Finally, the capabilities of our toolchain extend beyond specific XMT choices: system

architects can use it to explore a much greater design-space of shared memory

many-cores.

2. Performance advantages of XMT and PRAM algorithms. In Section 3.4, we listed

publications that not only establish the performance advantages of XMT compared to

44

exiting parallel architectures, but also document the interest of the academic community

in such results. XMTSim was the enabling factor for the publications that investigate

planned/future configurations. Moreover, despite past doubts in the practical relevance

of PRAM algorithms, results facilitated by the toolchain showed not only that

theory-based algorithms can provide good speedups in practice, but that sometimes they

are the only ones to do so.

3. Teaching and experimenting with on-chip parallel programming. As a part of the

XMT toolchain, XMTSim contributed to the experiments that established the

ease-of-programming of XMT. These experiments were presented in

publications [TVTE10, VTEC09, HBVG08, PV11] and conducted in courses taught to

graduate, undergraduate, high-school and middle-school students including at Thomas

Jefferson High School, Alexandria, VA. In addition, the XMT toolchain provides

convenient platform for teaching parallel algorithms and programming, because students

can install and use it on any personal computer to work on their assignments.

4. Guiding researchers for developing similar tools. This chapter also documents our

experiences on constructing a simulator for a highly-parallel architecture, which, we

believe, will guide other researchers who are in the process of developing similar tools.

The remainder of this section is organized as follows. Section 4.1 gives an overview of

the simulator. Section 4.2 elaborates on the mechanisms that enables users to customize

the reported statistics, and modify the execution of the simulator during runtime.

Sections 4.3 and 4.4 describe the details of the cycle-accurate simulation and present the

cycle verification against the FPGA prototype. Power and thermal models are explained

in Section 4.5 and the dynamic management extensions are explained in Section 4.6.

Sections 4.7 and 4.8 list the miscellaneous features that are not mentioned in other

sections and the future work.

4.1 Overview of XMTSim

XMTSim accurately models the interactions between the high level micro-architectural

components of XMT shown in Figure 4.1, i.e., the TCUs, functional units, caches,

interconnection network, etc. Currently, only on-chip components are simulated, and

45

DRAM Port

Spawn-join Unit

Cluster

ALUALU

SFTSFT

BRBR

MUL/DIVMDU

FPUFPU

Prefetch

TCU

Read-only

Cache

LS Unit

Master Cluster

ALU

SFTSFT

BR

MUL/DIVMDU

FPU

MTCU

Master

Cache

LS Unit

Global PS Unit

ICN Send

ICN Return

Shared Cache Module

Master ICN Send

Master ICN Return

Reg. File

Fetch/Dec/Commit Fetch/Dec/Commit

Reg. File

DRAM Port

Global

Register

File
In

te
rc

o
n
n
e
c
ti

o
n

N
e
tw

o
rk

 L
a
y
e
r

Figure 4.1: XMT overview from the perspective of XMTSim software structure.

DRAM is modeled as simple latency. XMTSim is highly configurable and provides

control over many parameters including number of TCUs, the cache size, DRAM

bandwidth and relative clock frequencies of components. XMTSim is verified against the

64-TCU FPGA prototype of the XMT architecture.

The software structure of XMTSim is geared towards providing a suitable environment

for easily evaluating additions and alternative designs. XMTSim is written in the Java

programming language and the object-oriented coding style isolates the code of major

components in individual units (Java classes). Consequently, system architects can

override the model of a particular component, such as the interconnection network or the

shared caches, by only focusing on the relevant parts of the simulator. Similarly, a new

assembly instruction can be added via a two step process: (a) modify the assembly

language definition file of the front-end, and (b) create a new Java class for the added

instruction. The new class should extend Instruction, one of the core Java classes of the

simulator, and follow its application programming interface (API) in defining its

functionality and type (ALU, memory, etc.).

46

Each solid box in Figure 4.1 corresponds to a Java object in XMTSim. Simulated

assembly instruction instances are wrapped in objects of type packet. An instruction

packet originates at a TCU, travels through a specific set of cycle-accurate components

according to its type (e.g., memory, ALU) and expires upon returning to the commit stage

of the originating TCU. A cycle-accurate component imposes a delay on packets that

travel through it. In most cases, the specific amount of the delay depends on the previous

packets that entered the component. In other words, these components are state

machines, where the state input is the instruction/data packets and the output is the

delay amount. The inputs and the states are processed at transaction-level rather than

bit-level accuracy, a standard practice which significantly improves the simulation speed

in high-level architecture simulators. The rest of the boxes in Figure 4.1 denote either the

auxiliary classes that help store the state or the classes that enclose collections of other

classes.

Figure 4.2 is the conceptual overview of the simulation mechanism. The inputs and

outputs are outlined with dashed lines. A simulated program consists of assembly and

memory map files that are typically provided by the XMTC compiler. A memory map file

contains the initial values of global variables. The current version of the XMT toolchain

does not include an operating system, therefore global variables are the only way to

provide input to XMTC programs, since OS dependent features such as file I/O are not

yet supported. The front-end that reads the assembly file and instantiates the instruction

objects is developed with SableCC, a Java-based parser-generator [GH98]. The simulated

XMT configuration is determined by the user, typically via configuration files and/or

command line arguments. The built-in configurations include models of the 64-TCU

FPGA prototype (also used in the verification of the simulator) and an envisioned

1024-TCU XMT chip.

XMTSim is execution-driven (versus trace-driven). This means that instruction traces

are not known ahead of time, but instructions are generated and executed by a functional

model during simulation. The functional model contains the operational definition of the

instructions, as well as the state of the registers and the memory. The core of the simulator

is the cycle-accurate model, which consists of the cycle-accurate components and an event

scheduler engine that controls the flow of simulation. The cycle-accurate model fetches

47

XMTSim Functional

Model

Cycle-accurate

Model

Fetch

instruction Execute

Instruction

Counters Activity

Monitor

Configuration

Input

Filter plug-in

Runtime

feedback

Instruction

statistics
Activity output- Memory dump

- Printf output

Cycle count Activity plug-in

Simulated

program

Asm.

Reader

Figure 4.2: Overview of the simulation mechanism, inputs and outputs.

the instructions from the functional model and returns the expired instructions to the

functional model for execution, which is illustrated in Figure 4.2.

The simulator can be set to run in a fast functional mode, in which the cycle-accurate

model is replaced by a simplified mechanism that serializes the parallel sections of code.

The functional simulation mode does not provide any cycle-accurate information, hence

it is faster by orders of magnitude than the cycle-accurate mode and can be used as a fast,

limited debugging tool for XMTC programs. However, the functional mode cannot reveal

any concurrency bugs that might exist in a parallel program since it serializes the

execution of the spawn blocks. Another potential use for the functional simulation mode

is fast-forwarding through time consuming steps (e.g., OS boot, when made available in

future releases), which would not be possible in the cycle-accurate mode due to

simulation speed constraints.

4.2 Simulation Statistics and Runtime Control

As shown in Figure 4.2, XMTSim features built-in counters that keep record of the

executed instructions and the activity of the cycle-accurate components. Users can

customize the instruction statistics reported at the end of the simulation via external filter

plug-ins. For example, one of the default plug-ins in XMTSim creates a list of most

48

frequently accessed locations in the XMT shared memory space. This plug-in can help a

programmer find lines of assembly code in an input file that cause memory bottlenecks,

which in turn can be referred back to the corresponding XMTC lines of code by the

compiler. Furthermore, instruction and activity counters can be read at regular intervals

during the simulation time via the activity plug-in interface. Activity counters monitor

many state variables. Some examples are the number of instructions executed in

functional units and the amount of time that TCUs wait for memory operations.

A feature unique to XMTSim is the capability to evaluate runtime systems for dynamic

power and thermal management. The activity plug-in interface is a powerful mechanism

that renders this feature possible. An activity plug-in can generate execution profiles of

XMTC programs over simulated time, showing memory and computation intensive

phases, power, etc. Moreover, it can change the frequencies of the clock domains assigned

to clusters, interconnection network, shared caches and DRAM controllers or even enable

and disable them. The simulator provides an API for modifying the operation of the

cycle-accurate components during runtime in such a way. In Sections 4.5, we will provide

more information on the power/thermal model and management in XMTSim.

4.3 Details of Cycle-Accurate Simulation

In this section, we explain various aspects of how cycle-accurate simulation is

implemented in XMTSim, namely the simulation strategy, which is discrete-event based

and the communication of data between simulated components. We then discuss the

factors that effect the speed of simulation. Finally, we demonstrate discrete-event

simulation on an example.

4.3.1 Discrete-Event Simulation

Discrete-event (DE) simulation is a technique that is often used for understanding the

behavior of complex systems [BCNN04]. In DE simulation, a system is represented as a

collection of blocks that communicate and change their states via asynchronous events.

XMTSim was designed as a DE simulator for two main reasons. First is its suitability for

large object oriented designs. A DE simulator does not require the global picture of the

49

system and the programming of the components can be handled independently. This is a

desirable strategy for XMTSim as explained earlier. Second, DE simulation allows

modeling not only synchronous (clocked) components but also asynchronous

components that require a continuous time concept as opposed to discretized time steps.

This property enabled the ongoing asynchronous interconnect modeling work mentioned

in Section 4.8.

The building blocks of the DE simulation implementation in XMTSim are actors, which

are objects that can schedule events. Events are scheduled at the DE scheduler, which

maintains a chronological order of events in an event list. An actor is notified by the DE

scheduler via a callback function when the time of an event it previously scheduled

expires, and as a result the actor executes its action code. Some of the typical actions are

to schedule another event, trigger a state change or move data between the cycle-accurate

components. A cycle-accurate component in XMTSim might extend the actor type,

contain one or more actor objects or exist as a part of an actor, which is a decision that

depends on factors such as simulation speed, code clarity and maintainability.

DE Scheduler

Actor 1

(Single

Component)

Actor 2

(Macro Actor)

Component 2.a

Component 2.b

...

S
c
h
e
d
u
le

S
c
h
e
d
u
le

N
o
ti

fy

N
o
ti

fy

Iterate

Event List

Event 1

Event 2

Event 3

...

Event n

Return
Next

Insert in order

Figure 4.3: The overview of DE scheduling architecture of the simulator.

Figure 4.3 is an example of how actors schedule events and are then notified of events.

DE scheduler is the manager of the simulation that keeps the events in a list-like data

structure, the event list, ordered according to their schedule times and priorities. In this

example, Actor 1 models a single cycle-accurate component whereas Actor 2 is a

macro-actor, which schedules events and contains the action code for multiple

components.

50

i n t time = 0 ;
while (t rue) {

. . .
i f (. . .) break ;
time ++;

}

i n t time ;
while (t rue) {

Event e = e v e n t L i s t . next () ;
time = e . time () ;
e . a c t o r () . n o t i f y () ;
i f (. . .) break ;

}

(a) (b)

Figure 4.4: Main loop of execution for (a) Discrete-time simulation, (b) Discrete-event simulation.

It should be noted that XMTSim diverges from discrete-time(DT) architecture

simulators such as SimpleScalar [ALE02]. The difference is illustrated in Figure 4.4. The

DT simulation runs in a loop that polls through all the modeled components and

increments the simulated time at the end of each iteration. Simulation ends when a

certain criteria is satisfied, for example when a halt assembly instruction is encountered.

On the other hand, the main loop of the DE simulator handles one actor per iteration by

calling its notify method. Unlike DT simulation, simulated time does not necessarily

progresses at even intervals. Simulation is terminated when a specific type of event,

namely the stop event is reached. The advantages of the DE simulation were mentioned at

the beginning of this section. However, DT simulation may still be desirable in some

cases due to its speed advantages and simplicity in modeling small to medium sized

systems. Only the former is a concern in our case and we elaborate further on simulation

speed issues in Section 4.3.4.

A brief comparison of discrete-time versus discrete-event simulation is given in

Table 4.1. As indicated in the table, DT simulation is preferable for simulation of up to

mid-size synchronous systems, and the resulting code is often more compact compared to

the DE simulation code. For larger systems DT simulation might require an extensive

case study for ensuring correctness. Also, for the cases in which a lot of components are

defined but only few of them are active every cycle, DT simulation typically wastes

computation time on the conditional statements that do not fall through. Advantages of

DE simulation were discussed earlier in this section. Primary concern about DE

simulation is its performance, which may fall behind DT simulation as demonstrated in

the next section.

51

Table 4.1: Advantages and disadvantages of DE vs. DT simulation.

Discrete Time Simulation Discrete Event Simulation
Pros ·Efficient if a lot of work done for every ·Naturally suitable for an object-oriented structure

simulated cycle ·Can simulate asynchronous logic
·More compact code for smaller ·More flexible in quantization of simulated time
simulations

Cons ·Requires complex case analysis for a ·Event list operations are expensive
large simulator ·Might require more work for emulating one
·Slow if not all components do work clock cycle
every clock cycle

4.3.2 Concurrent Communication of Data Between Components

In DE simulation, if the movement of data between various related components is

triggered by concurrent events, special care should be paid to ensure correctness of

simulation. As a result the DE simulation might require more work than DT simulation.

We demonstrate this statement on an example for simulating a simple pipeline. We first

show how the simulation is executed on a DT simulator, as it is the simpler case and then

move to the DE simulator.

Figure 4.5 illustrates how a 3 stage pipeline with a packet at each stage advances one

clock cycle in case of no stalls. Figure 4.5(a) is the initial status. Figures 4.5(b), 4.5(c) and

4.5(d) shows the steps that the simulation takes in order to emulate one clock cycle. In the

first step, the packet at the last stage (packet 3) is removed as the output. Then packets 2

and 1 are moved to the next stage, in that order. By starting at the end, it is ensured that

packets are not unintentionally overwritten.

Figure 4.6 shows the same 3 stage pipeline example of Figure 4.5 in DE simulation. We

assume that each stage of the pipeline is defined as an actor. For advancing the pipeline,

each actor will schedule an event at time T to pass its packet to the next stage. In DE

simulation, however, there is no mechanism to enforce an order between the notify calls

to the actors that schedule events for the same time (i.e., concurrent events). For example,

the actors can be notified in the order of stages 1, 2 and 3. As the figure exhibits, this will

cause accidental deletion of packets 2 and 3.

Figures 4.7 repeats the DE simulation but this time with intermediate storage for each

pipeline stage, which is denoted by smaller white boxes in Figures 4.7(b) and 4.7(c). For

this solution to work, we also have to incorporate the concept of priorities to the

52

1 2 3

1 2 3

1 2 3

1 2 3

(a) Initial State

(d) After 1

simulated cycle

(b)

(c)

Figure 4.5: Example of pipeline discrete time pipeline simulation.

simulation. We define two priorities, evaluate and update. The event list is ordered such

that evaluate events of a time instant in simulation come before the update events of the

same instant. In the example, at T-1 (initial state, Figure 4.7(a)) all actors schedule events

for T.evaluate. At the evaluate phase of T, T.evaluate (Figure 4.7.(b)), they move

packets to intermediate storage and schedule events for T.update. At the update phase

of T, T.update (Figure 4.7(c)), they pass the packets to the next stage.

Next, we compare the work involved in simulating the 3-stage pipeline in DT and DE

systems. In DT simulation, 3 move operations are performed to emulate one clock cycle.

In DE simulation, 6 move operations and 6 events are required. Clearly, DE simulation

would be slower in this example not only because of the number of move operations but

also the creation of events is expensive, since they have to be sorted when they are

inserted to the event list. This example supports the simulation speed argument in

Table 4.1.

53

1 2 3(a) Initial State

(d) End of simulated

cycle: packet 1 is

read as the output

(b) Stage 1 passes

package 1 to Stage 2 2 3

3

1

1

1
(c) Stage 2 passes

package 1 to Stage 3

Figure 4.6: Example of discrete-event pipeline simulation. Simulation creates wrong output as the order of
notify calls to actors cause packets to be overwritten.

1 2 3

1

(a) Time T-1:

Initial State

(b) Time T: After

evaluate phase
2 31 2 3

1 2 31 2 3

(c) Time T: After

update phase. End

of simulated cycle.

Figure 4.7: Example of discrete-event pipeline simulation with the addition of priorities. Intermediate storage
is used to prevent accidental deletion of packets.

4.3.3 Optimizing the DE Simulation Performance

As mentioned earlier, DT simulation may be considerably faster than DE simulation,

most notably when a lot of actions fall in the same exact moment in simulated time. A DT

simulator polls through all the actions in one sweep, whereas XMTSim would have to

54

schedule and return a separate event for each one (see Figure 4.4), which is a costly

operation. A way around this problem is grouping closely related components in one

large actor and letting the actor handle and combine events from these components. An

example is the macro-actor in Figure 4.3. A macro-actor contains the code for many

components and iterates through them at every simulated clock cycle. The action code of

the macro-actor resembles the DT simulation code in Figure 4.4a except the while loop is

replaced by a callback from the scheduler. This style is advantageous when the average

number of events that would be scheduled per cycle without grouping the components

(i.e., each component is an actor) passes a threshold. For a simple experiment conducted

with components that contain no action code, this threshold was 800 events per cycle. In

more realistic cases, the threshold would also depend on the amount of action code.

In XMTSim, clusters and shared caches are designed as macro-actors, as well as each of

the interconnection network (ICN) send and return paths. This organization not only

improves performance, it also facilitates maintainability of the simulator code and

provides the convenient means to replace any component by an alternative model, if

needed. We define the following mechanism to formalize the coding of macro-actors.

Ports: A macro-actor accepts inputs via its Port objects. Port is a Java interface class

which is defined by the two methods: (a) available(): returns a boolean value which

indicates that a port can be written to, (b) write(obj): accepts an object as its parameter,

which should be processed by the actor; can only be called if available method returns

true.

2-phase simulation: The phases refer to the priorities (evaluate and update) that were

defined in the previous section. The evaluate phase of a simulation instant is the set of all

events with evaluate priority at that instant. The update phase is defined similarly. Below

are the rules for coding a macro-actor within the 2-phase framework.

1. The available and write methods can only be called during the evaluate phase.

2. The output of the available method should be stable during the evaluate phase until

it is guaranteed that there will be no calls to the write method of the port.

3. The write method should not be called if a prior call to available for the same

simulation instant returns false.

55

4. If the write method of a port is called multiple times during the evaluate phase of a

simulation instant, it is not guaranteed that any of the writes will succeed. Typically

the write method should be called at most once for a simulation instant. However,

specific implementations of the Port interface might relax this requirement, which

should be noted in the API documentation for the class.

5. Typical actions of a macro-actor in the update phase are moving the inputs away

from its ports, updating the outputs of the available methods of the ports, and

scheduling the evaluate event for the next clock cycle (in XMTSim, evaluate phase

comes before the update phase). However, these actions are not requirements.

An example implementation of a MacroActor is given in Figure 4.8.

4.3.4 Simulation Speed

Simulation speed can be the bounding factor especially in evaluation of power and

thermal control mechanisms, as these experiments usually require simulation of relatively

large benchmarks. We evaluated the speed of simulation in throughput of simulated

instructions and in clock cycles per second on an Intel Xeon 5160 Quad-Core Server

clocked at 3GHz. The simulated configuration was a 1024-TCU XMT and for measuring

the speed, we simulated various hand-written microbenchmarks. Each benchmark is

serial or parallel, and computation or memory intensive. The results are averaged over

similar types and given in Table 4.2. It is observed that average instruction throughput of

computation intensive benchmarks is much higher than that of memory intensive

benchmarks. This is because the cost of simulating a memory instruction involves the

expensive interconnection network model. Execution profiling of XMTSim reveals that

for real-life XMTC programs, up to 60% of the time can be spent in simulating the

interconnection network. When it comes to the simulated clock cycle throughput, the

difference between the memory and computation intensive benchmarks is not as

significant, since memory instructions incur significantly more clock cycles than

computation instructions, boosting the cycle throughput.

56

c l a s s ExampleMacroActor extends Actor {
// The only input port of the a c t o r . I t takes o b j e c t s of type
// InputJob as input .
Port <InputJob > inputPort ;

// Temporary s torage f o r the input j o b s passed via inputPort .
InputJob inputPortIn , inputPortOut ;

// Constructor −− Contains the i n i t i a l i z a t i o n code f o r a new
// o b j e c t of type ExampleMActor .
ExampleMActor () {

inputPort = new Port <InputJob > () {
publ ic void wri te (InputJob job) {

inputPort In = job ;
// Upon r e c e i v i n g a new input , a c t o r should make sure
// t h a t i t w i l l r e c e i v e a c a l l b a c k at the next update
// phase . That code goes here .

}
publ ic boolean a v a i l a b l e () {

re turn inputPort In == n u l l ;
}

}
}

// Implementation of the c a l l b a c k funct ion (c a l l e d by the scheduler) .
// Event o b j e c t t h a t caused the c a l l b a c k i s passed as a parameter .
void not i fyActor (Event e) {

switch (e . p r i o r i t y ()) {
case EVALUATE:

// Main a c t i o n code of the actor , which processes
// inputPortOut . The a c t o r might wri te to the ports of
// other a c t o r s . For example :
// i f (anotherActor . inputPort . a v a i l a b l e ())
// anotherActor . inputPort . wri te (. . .)
// Actor schedules next evaluate phase i f there i s more
// work to be done .
break ;

case UPDATE:
i f (inputPortOut == n u l l & inputPort In != n u l l) {

inputPortOut = inputPort In ;
inputPort In = n u l l ;

}
// Here a c t o r schedules the next evaluate phase , i f there
// i s more work to be done .
// For example :
// scheduler . schedule (new Event (scheduler . time + 1) ,
// Event .EVALUATE)
break ;

}
}

}

Figure 4.8: Example implementation of a MacroActor.

57

Table 4.2: Simulated throughputs of XMTSim.

Benchmark Group Instruction/sec Cycle/sec
Parallel, memory intensive 98K 5.5K
Parallel, computation intensive 2.23M 10K
Serial, memory intensive 76K 519K
Serial, computation intensive 1.7M 4.2M

Table 4.3: The configuration of XMTSim that is used in validation against Paraleap.

Principal Computational Resources

Cores 8 TCUs in 8 clusters
32-bit RISC ISA
5 stage pipeline (4th stage may be shared and variable length)

Integer Units 64 ALUs (one per TCU), 8 MDUs and 8 FPUs (one each per cluster)
On-chip Memory

Registers 8 KB integer and 8 KB FP (32 integer and 32 FP reg. per TCU)

Prefetch Buffers 1 KB (4 buffers per TCU)

Shared caches 256 KB total (8 modules, 32 KB each, 2-way associative, 8 word lines)

Read-only caches 512 KB (8 KB per cluster)

Global registers 8 registers
Other

Interconnection Network (ICN) 8 x 8 Mesh-of-Trees

Memory controllers 1 controller, 32-b (1 word) bus width

Clock frequency ICN, shared caches and the cores run at the same frequency. Mem-
ory controllers and DRAM run at 1/4 of the core clock to emulate
the core-to-memory controller clock ratio of the FPGA.

4.4 Cycle Verification Against the FPGA Prototype

We validated the cycle-accurate model of XMTSim against the 64-core FPGA XMT

prototype, Paraleap. The configuration of XMTSim that matches Paraleap is given in

Table 4.3. In addition to serving as a proof-of-concept implementation for XMT, Paraleap

was also set up to emulate the operation of a 800MHz XMT computer with a DDR

DRAM. The clock of the memory controller was purposefully slowed down so that its

ratio to the core clock frequency matches that of the emulated system. The simulator

configuration reflects this adjustment.

Even though XMTSim was based on the hardware description language description of

Paraleap, discrepancies between the two exist:

• Due to its development status, certain specifications of Paraleap does not exactly

match those of the envisioned XMT chip modeled by XMTSim. Given the same

58

amount of effort and on-chip resources that are put towards an industrial grade

ASIC product (as opposed to a limited FPGA prototype), these limitations would

not exist. Some examples are:

– Paraleap is spread over multiple FPGA chips and requires additional buffers at

the chip boundaries which add to the ICN latency. These buffers are not

necessary for modeling an ASIC XMT chip, and are not included in XMTSim.

– Due to die size limitations, Paraleap utilizes a butterfly interconnection

network instead of the MoT used in XMTSim.

– The sleep-wake mechanism proposed in Section 3.5 is implemented in

XMTSim but not in Paraleap.

• Our experiences show that some implementation differences do not cause a

significant cycle-count benefit or penalty however their inclusion in the simulator

would cause code complexity and slow down the simulation significantly (as well

as requiring a considerable amount of development effort). Note that, one of the

major purposes of the XMT simulator is architectural exploration and therefore the

simulation speed, code clarity, modularity, self documentation and extensibility are

important factors. Going into too much detail for no clear benefit conflicts with

these objectives. For example, some of the cycle-accurate features of the Master

TCU are currently under development. The benchmarks that we use in our

experiments usually have insignificant serial sections therefore the inefficiencies of

the master TCU should not effect simulation results significantly.

• An accurate external DRAM model, DRAMSim, is currently being incorporated to

XMTSim [WGT+05]. Meanwhile XMTSim does models DRAM communication as

constant latency.

• Currently XMT does not feature an OS, therefore I/O operations such as printf’s

and file operations cannot be simulated in a cycle-accurate way.

Another difficulty in validating XMTSim against Paraleap is related to the

indeterminism in the execution of parallel programs. A parallel program can take many

execution paths based on the order of concurrent reads or writes (via prefix-sum or

59

Table 4.4: Microbenchmarks used in cycle verification

Cycles
Name Description Paraleap XMTSim Diff.

MicrPar0 Start 1024 threads and for each thread run a 50000 iteration
loop with a single add instruction in it.

1600513 1600327 <1%

MicrPar1 Start 102400 threads and for each thread issue a sw instruction
to address 0.

204943 204918 <1%

MicrPar2 Start 1024 threads and for each thread run a 18000 iteration
loop with an add and a mult instruction in it.

3456482 3456318 <1%

MicrPar3 Start 1024 threads and for each thread run a 150 iteration loop
with an add and a sw to address 0 instruction in it.

307349 307710 <1%

MicroPar4 Start 1024 threads and for each thread run a 1800 iteration loop
with a sw instruction (and wrapper code) in it. Sw instruc-
tions from different TCUs will be spread across the memory
modules.

935225 626908 -33%

MicroPar5 Start 1024 threads and for each thread run a 10K iteration loop
with an add, a mult and a divide instruction in it.

8320486 8320318 <1%

MicroSer6 Measure the time to execute a starting and termination of
200K threads.

6226029 4587533 -26%

memory operations in XMT). If the program is correct it is implied that all these paths

will give correct results, however the cycle or assembly instruction count statistics will

not necessarily match between different paths. The order of these concurrent events is

arbitrary and there is no reliable way to determine if Paraleap and XMTSim will take the

same paths if more than one path is possible. For this reason, a benchmark used for

validation purposes should guarantee to yield near identical cycle and instruction counts

for different execution paths.

Table 4.4 lists the first set of micro-benchmarks we used in verification. Each

benchmark is hand-coded in assembly language for stressing a different component of

the parallel TCUs as described in the table. The difference in cycle counts is calculated as

Difference =
(CY Csim − CY Cfpga)

CY Cfpga
× 100 (4.1)

where CY Csim and CY Cfpga are the cycle counts obtained on the simulator and Paraleap,

respectively. These benchmarks fulfill the determinism requirement noted earlier and the

only significant deviation in cycle counts is observed for the MicroPar4 benchmark

(33%). This deviation can be explained by the differences between the interconnect

structures of XMTSim and Paraleap as mentioned above.

60

4.5 Power and Temperature Estimation in XMTSim

Power and temperature estimation in XMTSim is implemented using the activity plug-in

mechanism. (The activity plug-in mechanism was first mentioned in Section 4.2).

XMTSim contains a power-temperature (PTE) plug-in for a 1024 TCU configuration by

default. We explain how we compute the power model parameters for this configuration

later in Chapter 6. Other configurations can easily be added, however power model

parameters should also be created for the new configurations.

As the thermal model, we incorporated HotSpot1. HotSpot is written in the C language

and in order to make it available to XMTSim we created HotSpotJ, a Java Native Interface

(JNI) [Lia99] wrapper for HotSpot. HotSpotJ is available as a part of XMTSim but it is also

a standalone tool and can be used with any Java based simulator. We extended HotSpotJ

with a floorplan tool, FPJ, that we use as an interface between XMTSim and HotSpotJ. FPJ

is essentially a hierarchical floorplan creator, in which the floorplan blocks are

represented as Java objects. A floorplan is created using the FPJ interface and passed to

the simulator at the beginning of the simulation. During the simulation it is used as a

medium to pass power and temperature data of the floorplan blocks between XMTSim

and HotSpotJ. More information on HotSpotJ (and FPJ) will be given in Appendix C.

Figure 4.9 illustrates the working of XMTSim with the PTE plug-in. Steps of estimation

for one sampling interval are indicated on the figure. XMTSim starts execution by

scheduling an initial event for a callback to the PE plug-in. When the PE plug-in receives

the callback, it interacts with the activity trace interface to collect the statistics that will be

explained in the next section and resets the associated counters. Then, it converts these

statistics, also called activity traces, to power consumption values according to the power

model. It sets the power of each floorplan module on the floorplan object and passes it to

HotSpotJ. HotSpotJ computes temperatures for the modules. Finally, the PTE plug-in

schedules the next callback from the simulator. Users can create their own plug-ins with

models other than the one that we will explain next, as long as the model can be

described in terms of the statistics reported by the activity trace interface.

1HotSpot [HSS+04, HSR+07, SSH+03] was previously mentioned in Section 2.10

61

XMTSim
Activity

Trace

Interface
Power

Estimation Plug-in

1. Callback for power

 estimation

2. Read counters from

 components and

 reset counters

6. Schedule next

 callback

Power Model

3. Pass activity values

HotSpotJ

4. Set power on floorplan

 modules and pass to HotSpotJ

5. Report

 temperature.

Figure 4.9: Operation of the power/thermal-estimation plug-in.

4.5.1 The Power Model

For the power model of XMTSim, we combine the models explained in Sections 2.2.2

and 2.3.2 to fit them into the framework proposed by Martonosi and Isci [IM03].

According to their model, the simulation provides the access rate for each component

(Ci), which is a value between 0 and 1. The power of a component is a linear function of

the access rate with a constant offset.

Power(Ci) =AccessRate(Ci) ·

MaxActPower(Ci) + (4.2)

Const(Ci)

C is the set of microarchitectural components for which the power is estimated. We

will give the exact definition of AccessRate(Ci) shortly. MaxActPower(Ci) is the upper

bound on the power that is proportional to the activity and Const(Ci) is the power of a

component which is spent regardless of its activity.

According to Sections 2.2.2 and 2.3.2, the total power of a component, which is the sum

of its dynamic power (Equation (2.4)) and leakage power (Equation (2.6)), is expressed as:

P = Pdyn,max ·ACT · CF +DUTYclk · Pdyn,max · (1− CF) +DUTYV · Pleak,max (4.3)

62

The configuration parameters in the simulation are Pdyn,max and Pleak,max, which are

the maximum dynamic and leakage powers and CF, which is the activity correlation

factor.

ACT is identical to AccessRate(Ci) above, which is the average activity of a the

component for the duration of the sampling period and obtained from simulation.

XMTSim utilizes internal counters that monitor the activity of each architectural

component. We will discuss the definition of activity on a per component basis in the

remainder of this section. DUTYclk and DUTYV are the clock and voltage duty cycles,

which were explained in Sections 2.2.2 and 2.3.2. Note that DUTYV is always greater than

DUTYclk since voltage gating implies that clock is also stopped.

If we assume that no voltage gating or coarse grain clock gating is applied (i.e., both

duty cycles are 1), Equation (4.3) can be simplified to:

P = Pdyn,max ·ACT · CF + Pdyn,max · (1− CF) + Pleak,max (4.4)

In this form, the Pdyn,max ·ACT · CF and the Pdyn,max · (1− CF) + Pleak,max terms are

the equivalents of MaxActPower(Ci) and Const(Ci) in Equation (4.2), respectively.

If CF is less than 1, Const(Ci) not only contains the leakage power but, also contains a

part of the dynamic power. A common value to set the activity correlation factor (CF) for

aggressively fine-grained clock gated circuits is 0.9, which is the same assumption as

Wattch power simulator [BTM00] uses.

Next, we provide details on the activity models of the microarchitectural components

in XMTSim. As we discussed in Section 2.10, parameters required to convert the activity

to power values can be obtained using tools such as McPAT 0.9 [LAS+09] and Cacti

6.5 [WJ96, MBJ05].

Computing Clusters. The power dissipation of an XMT cluster is calculated as the sum

of the individual elements in it, which are listed below: The access rate of a TCU pipeline

is calculated according to the number of instructions that are fetched and executed, which

is a simple but sufficiently accurate approximation. For the integer and floating point

units (including arbitration), access rates are the ratio of their throughputs to the

63

maximum throughput. The remainder of the units are all memory array structures and

their access rates are computed according to the number of reads and writes they serve.

Memory Controllers, DRAM and Global Shared Caches. The access rate of these

components are calculated as the ratio of the requests served to the maximum number of

requests that can be served over the sampling period (i.e. one request per cycle).

Global Operations and Serial Processor. We omit the power spent on global

operations, since the total gate counts of the circuits that perform these operations were

found to be insignificant with respect to the other components, and these operations

make up a negligible portion of execution time. In fact, prefix-sum operations and global

register file accesses make up less than 1.5% of the total number of instructions among all

the benchmarks. We also omit the power of the XMT serial processor, which is only active

during serial sections of the XMTC code and when parallel TCUs are inactive. None of

our benchmarks contain significant portions of serial code: the number of serial

instructions, in all cases, is less than 0.005% of the total number of instructions executed.

Interconnection Network The power of the Mesh-of-Trees (MoT) ICN includes the

total cost of communication from all TCUs to the shared caches and back. The access rate

for the ICN is equal to its throughput ratio, which is the ratio of the packets transferred

between TCUs and shared caches to the maximum number of packets that can be

transferred over the sampling period.

The power cost of the ICN can be broken into various parts [KLPS11], which fit into the

framework of Equation (4.2) in the following way. The power spent by the reading and

writing of registers, and the charge/discharge of capacitive loads due to wires and

repeater inputs can be modeled as proportional to the activity (i.e. number of transferred

packets). All packets travel the same number of buffers in the MoT-ICN, and the wire

distance they travel can be approximated as a constant which is the average of all possible

paths. The power of the arbiters is modeled as a worst-case constant, as it is not feasible

to model it accurately in a fast simulator.

The power of the interconnection network (ICN) is a central theme in Section 6.4, which

will explore various scenarios considering possible estimation errors in the power model.

64

XMTSim
Activity

Trace

Interface DPTM Plug-in

1. Callback for DPTM

2. Read counters from

 components and

 reset counters

7. Schedule next

 callback

Power Model

3. Pass activity values

HotSpotJ

4. Set power on floorplan

 modules and pass to HotSpotJ

5. Report

 temperature.

DPTM Algorithm

Clock

Frequency

Interface

6. Modify clocks

Figure 4.10: Operation of a DTM plug-in.

4.6 Dynamic Power and Thermal Management in XMTSim

Dynamic Power and Thermal Management (DPTM) in XMTSim works in a similar way

to the PTE plug-in with the addition of a DPTM algorithm stage. The DPTM algorithm

changes the clock frequencies of the microarchitectural blocks in reaction to the state of

the simulated chip with respect to the constraints.

Figure 4.10 shows the changes to the PTE plug-in. The two mechanisms are identical

up to step 5, at which point the PTE plug-in finishes the sampling period, while the

DPTM plug-in modifies the clocks according to the chosen algorithm. The clocks are

modified via the standardized API of the clocked components.

4.7 Other Features

In this section we will summarize some of the additional features of XMTSim.

Execution traces. XMTSim generates execution traces at various detail levels. At the

functional level, only the results of executed assembly instructions are displayed. The

more detailed cycle-accurate level reports the components through which the instruction

and data packets travel. Traces can be limited to specific instructions in the assembly

input and/or to specific TCUs.

Floorplan visualization. The FPJ package of the HotSpotJ tool can be used for

purposes other than interfacing between XMTSim and HotSpotJ. The amount of

simulation output can be overwhelming, especially for a configuration that contains

65

many TCUs. FPJ allows displaying data for each cluster or cache module on an XMT

floorplan, in colors or text. It can be used as a part of an activity plug-in to animate

statistics obtained during a simulation run. Example outputs from FPJ can be found in

Chapter 7 (for example, Figure 7.8). FPJ is explained in further detail in Appendix C.

Checkpoints. XMTSim supports simulation checkpoints, i.e., the state of the

simulation can be saved at a point that is given by the user ahead of time or determined

by a command line interrupt during execution. Simulation can be resumed at a later time.

This is a feature which, among other practical uses, can facilitate dynamically load

balancing a batch of long simulations running on multiple computers.

4.8 Features under Development

XMTSim is an experimental tool that is under active development and as such, some

features and improvements either currently being tested or they are in its future roadmap.

More accurate DRAM model. As mentioned earlier, an accurate external DRAM

model, DRAMSim, is currently being incorporated to XMTSim [WGT+05].

Phase sampling. Programs with very long execution times usually consist of multiple

phases where each phase is a set of intervals that have similar behavior [HPLC05]. An

extension to the XMT system can be tested by running the cycle-accurate simulation for a

few intervals on each phase and fast-forwarding in-between. Fast-forwarding can be

done by switching to a fast mode that will estimate the state of the simulator if it were run

in the cycle-accurate mode. Incorporating features that will enable phase sampling will

allow simulation of large programs and improve the capabilities of the simulator as a

design space exploration tool.

Asynchronous interconnect. Use of asynchronous logic in the interconnection

network design might be preferable for its advantages in power consumption. Following

up on [HNCV10], work in progress with our Columbia University partner compares the

synchronous versus asynchronous implementations of the interconnection network

modeled in XMTSim.

66

Increasing simulation speed via parallelism. The simulation speed of XMTSim can be

improved by parallelizing the scheduling and processing of discrete-events [Fuj90]. It

would also be intriguing to run XMTSim as well as the computation hungry simulation of

the interconnection network component on XMT itself. We are exploring both.

4.9 Related Work

Cycle-accurate architecture simulators are particularly important for evaluating the

performance of parallel computers due to the great variation in the systems that are being

proposed. Many of the earlier projects simulating multi-core processors extended the

popular uniprocessor simulator, SimpleScalar [ALE02]. However, as parallel architectures

started deviating from the model of simply duplicating serial cores, other

multi/many-core simulators such as ManySim [ZIM+07], FastSim [CLRT11] and

TPTS [CDE+08] were built. XMTSim differs from these simulators, since it targets shared

memory many-cores, a domain that is currently underrepresented. GPU simulators,

Barra [SCP09], Ocelot [KDY09] and GPGPUSim [BYF+09] are closer to XMTSim in the

architectures that they simulate but they are limited by the programming models of these

architectures. Also, Barra and Ocelot are functional simulators, i.e., they do not report

cycle-accurate measures. Kim, et al extended Ocelot with a power model, however it is

not possible to simulate dynamic power and thermal management with this system.

Cycle-accurate architecture simulators can also be built on top of existing simulation

frameworks such as SystemC. An example is the simulator presented by Lebreton, et

al. [LV08]. Instead, we chose to build our own infrastructure since XMTSim is intended as

a highly configurable simulator that serves multiple research communities. Our

infrastructure gives us the flexibility to incorporate second party tools, for example

SableCC [GH98], which is the front end for reading the input files. In this case, SableCC

enabled easy addition of new assembly instructions as needed by user’s of XMTSim.

Simulation speed is an issue, especially in evaluating thermal management. Atienza, et

al. [AVP+06] presented a hardware/software framework that featured an FPGA for fast

simulation of a 4-core system. Nevertheless, it is not feasible to fit a 1024-TCU XMT

processor on the current FPGAs.

67

Chapter 5

Enabling Meaningful Comparison of XMT with Contemporary

Platforms

In the previous chapters, we discussed the XMT architecture and introduced its

cycle-accurate simulator. In this chapter, we first enable a meaningful comparison of XMT

with contemporary industry platforms by establishing a hardware configuration of XMT

that is silicon area-equivalent of a modern many-core GPU, NVIDIA GTX2801 [NVIa].

Then, using the simulator, we compare the runtime performance of the two processors on

a range of irregular and regular parallel benchmarks (see Section 5.3 for definitions of

regular and irregular). The 1024-TCU XMT configuration (XMT1024) we present here is

employed in the following chapters and the comparison against GTX280, besides

demonstrating the performance advantages of XMT, also confirms that those chapters

target a realistic XMT platform.

The highlights of this work are:

• A meaningful performance comparison of a state-of-the-art GPU to XMT, a

general-purpose highly parallel architecture, on a range of both regular and

irregular benchmarks. We show via simulation that XMT can outperform GPUs on

irregular applications, while not falling behind significantly on regular

benchmarks.

• Beyond the specific comparison to XMT, the results demonstrate that an easy to

program, truly general-purpose architecture can challenge a performance-oriented

architecture – a GPU – once applications exceed a specific scope of the latter.

In the course of this chapter we list the specifications for an XMT processor

area-equivalent to the GTX280 GPU, configure and use XMTSim to simulate the

envisioned XMT processor, collect results from simulations and compare them against the

1At the time of the writing GTX280 was the most advanced commercially available GPU.

68

results from the GPU runs. Preparations of the XMT and the GPU benchmarks for this

work and the compiler optimizations for improving XMT performance were the topic of

another dissertation [Car11]. The analysis of the results was a collaboration between the

two dissertation projects.

The organization of this chapter is as follows. In Section 5.1, we review NVIDIA Tesla,

the architecture of the GTX280 GPU, and compare its high level design specifications with

those of XMT. In Section 5.2, we present a configuration of XMT that is feasible to

implement, in terms of silicon area, using current technology. In section 5.3, we introduce

the benchmarks used to perform the comparison. Finally, in Section 5.4 we report the

performance comparison data.

5.1 The Compared Architecture – NVIDIA Tesla

In this section, we go over the NVIDIA Tesla architecture, and the CUDA programming

environment and compare it against the XMT architecture. We start by explaining the

importance of the GPU platform.

GPUs are the main example of many-cores that are not typically confined to traditional

architectures and programming models, and use hundreds of lightweight cores in order

to provide better speedups. In this respect, they are similar to the design of XMT.

However, GPUs perform best on applications with very high degrees of parallelism; at

least 5,000 – 10,000 threads according to [SHG09], whereas XMT parallelism scales down

to provide speedups for programs with only a few threads.

Advances in GPU programming languages (CUDA by GPU vendor,

NVIDIA [NBGS08], Brook by AMD [BFH+04], and the upcoming OpenCL

standard [Mun09]) and architecture upgrades have led to strong performance

demonstrated for a considerable range of software. When all optimizations are applied

correctly by the programmer, GPUs provide remarkable speedups for certain types of

applications. As of January 2010, the NVIDIA CUDA Zone website [NVI10] lists 198

CUDA applications, 28 of which reporting speedups of 100× or more. On the other hand,

the programming effort required to extract performance can be quite significant. The fact

that the implementation of basic algorithms on GPUs, such as sorting, merit so many

69

...

...

...

Streaming
Multiproc.

Shared
Memory

Interconnection Network

DRAM

Register File

Warp SchedulerWarp State

Instruction
Cache

Constant
Cache

SP

Special
Function

Unit (SFU)

SP

SP

SP

Shared Memory

Thread Block Scheduler

SP SP

SP SP

...

...

Texture Cache

Special
Function

Unit (SFU)

Texture
Cache

Load/Store
Unit

Controler

DRAM

Texture Cache

Controler

Streaming
Multiproc.

Shared
Memory

SP SP

SP SP
...

Figure 5.1: Overview of the NVIDIA Tesla architecture.

research papers (e.g., [BG09, CT08, SA08]) affirms that. Nevertheless, the notable

performance benefits led some researchers to regard GPUs as the most promising

solution for the pervasive computing platform of the future. The emergence of

General-Purpose GPU (GPGPU) communities is perhaps one indication of this belief.

5.1.1 Tesla/CUDA Framework

In recent years, GPU architectures have evolved from purely fixed-function devices to

increasingly flexible, massively parallel programmable processors. The

CUDA [NBGS08, NVI09] programming environment together with the NVIDIA

Tesla [LNOM08] architecture is one example of a GPGPU system gaining acceptance in

the parallel computing community.

Fig. 5.1 depicts an overview of the Tesla architecture. It consists of an array of

Streaming Multiprocessors (SMs), connected through an interconnection network to a

number of memory controllers and off-chip DRAM modules. Each SM contains a shared

register file, shared memory, constant and instruction caches, special function units and

several Streaming Processors (SPs) with integer and floating point ALU pipelines. SFUs

are 4-wide vector units that can handle complex floating point operations. The CUDA

programming and execution model are discussed elsewhere [LNOM08].

A CUDA program consists of serial parts running on the CPU, which call parallel

kernels offloaded to a GPU. A kernel is organized as a grid (1, 2 or 3-dimensional) of

thread blocks. A thread block is a set of concurrent threads that can cooperate among

70

themselves through a block-private shared memory and barrier synchronization.

A global scheduler assigns thread blocks to SMs as they become available. Thread

blocks are partitioned into fixed-size warps (e.g. 32 threads); At each instruction issue

time, a scheduler selects a fixed-size warp (32 threads) that is ready to execute and issues

the next instruction to all the threads in the warp. Threads proceed in lock-step manner,

and this execution model is called SIMT – Single Instruction Multiple Threads.

The CUDA framework provides a relatively familiar environment for developers,

which led to an impressive number of applications to be ported since its

introduction [NVI10]. Nevertheless, a non-trivial development effort is required when

optimizing an application in the CUDA model. Some of the considerations that must be

addressed in order to get significant performance gains are:

Degree of parallelism: A minimum of 5,000 - 10,000 threads need to be in-flight for

achieving good hardware utilization and latency hiding.

Thread divergence: In the CUDA Single Instruction Multiple Threads (SIMT) model,

divergent control flow between threads causes serialization, and programmers are

encouraged to minimize it.

Shared memory: No standard caches are included at the SMs. Instead, a small

user-controlled scratch-pad shared memory per SM is provided, and these memories are

subject to bank conflicts that limit the performance if the references are not properly

optimized. SMs also feature constant and texture caches but these memories are

read-only and use separate address spaces.

Memory request coalescing: better bandwidth utilization is achieved when data

layout and memory requests follow a number of temporal and spatial locality guidelines.

Bank conflicts: concurrent requests to one bank of the shared memory incur

serialization, and should be avoided in the code, if possible.

5.1.2 Comparison of the XMT and the Tesla Architectures

The key issues that affect the design of the XMT and the Tesla architectures, and the main

differences between them, are summarized in Table 5.1.

71

The fundamental difference between the Tesla and the XMT architectures is their target

applications. GPUs such as Tesla aim to provide high peak performance for regular

parallel programs, given that they are optimized using the specific guidelines provided

with the programming model. For example, global memory access patterns need to be

coordinated for high interconnect utilization and scratchpad memory accesses should be

arranged to not cause conflicts on memory banks. However, GPUs can yield suboptimal

performance for low degrees of parallelism and irregular memory access patterns.

XMT is designed for high performance on workloads that fall outside the realm of

GPUs. XMT excels on programs that show irregular parallelism patterns, such as control

flow that diverges between threads or irregular memory accesses. XMT also scales down

well on programs with low degrees of parallelism. Hence, the specifications of XMT are

not geared towards high peak performance. However, as we will see in following

sections, XMT still does not fall behind on regular programs in a significant way.

72

Te
sl

a
X

M
T

M
em

or
y

La
te

nc
y

H
id

in
g

an
d

R
ed

uc
tio

n

•
H

ea
vy

m
ul

ti
th

re
ad

in
g

(r
eq

ui
re

s
la

rg
e

re
gi

st
er

fil
es

an
d

st
at

e
aw

ar
e

sc
he

du
le

r)
.

•
Li

m
it

ed
lo

ca
ls

ha
re

d
sc

ra
tc

hp
ad

m
em

or
y.

•
N

o
co

he
re

nt
pr

iv
at

e
ca

ch
es

at
SM

or
SP

.

•
La

rg
e

gl
ob

al
ly

sh
ar

ed
ca

ch
e.

•
N

o
co

he
re

nt
pr

iv
at

e
TC

U
or

cl
us

te
r

ca
ch

es
.

•
So

ft
w

ar
e

pr
ef

et
ch

in
g.

M
em

or
y

an
d

C
ac

he
Ba

nd
w

id
th

•
M

em
or

y
ac

ce
ss

pa
tt

er
ns

ne
ed

to
be

co
or

di
na

te
d

by
th

e
us

er
fo

r
ef

fic
ie

nc
y

(r
eq

ue
st

co
al

es
ci

ng
).

•
Sc

ra
tc

hp
ad

m
em

or
ie

s
pr

on
e

to
ba

nk
co

nfl
ic

ts
.

•
H

ig
h

ba
nd

w
id

th
in

te
rc

on
ne

ct
io

n
ne

tw
or

k.

•
C

ac
he

s
re

la
x

th
e

ne
ed

fo
r

us
er

-c
oo

rd
in

at
ed

D
R

A
M

ac
ce

ss
.

•
A

dd
re

ss
ha

sh
in

g
fo

r
av

oi
di

ng
m

em
or

y
m

od
ul

e
ho

ts
po

ts
.

•
M

es
h-

of
-t

re
es

in
te

rc
on

ne
ct

ab
le

to
ha

nd
le

ir
re

gu
la

r
co

m
m

un
ic

at
io

n
ef

fic
ie

nt
ly

.

Fu
nc

tio
na

lU
ni

t
(F

U
)A

llo
ca

tio
n

•
D

ed
ic

at
ed

FU
s

fo
r

SP
s

an
d

SF
U

s.

•
Le

ss
ar

bi
tr

at
io

n
lo

gi
c

re
qu

ir
ed

.

•
H

ig
he

r
th

eo
re

ti
ca

lp
ea

k
pe

rf
or

m
an

ce
.

•
H

ea
vy

w
ei

gh
tF

U
s

(F
PU

/M
D

U
)a

re
sh

ar
ed

th
ro

ug
h

ar
bi

tr
at

or
s.

•
Li

gh
tw

ei
gh

tF
U

s
(A

LU
an

d
br

an
ch

un
it

)a
re

al
lo

ca
te

d
pe

r
TC

U
(A

LU
s

do
no

ti
nc

lu
de

m
ul

ti
pl

y/
di

vi
de

fu
nc

ti
on

al
it

y)
.

C
on

tr
ol

Fl
ow

an
d

Sy
nc

hr
on

iz
at

io
n

•
Si

ng
le

in
st

ru
ct

io
n

ca
ch

e
an

d
is

su
e

pe
r

SM
fo

r
sa

vi
ng

re
so

ur
ce

s.
W

ar
ps

ex
ec

ut
e

in
lo

ck
-s

te
p

(p
en

al
iz

es
di

ve
rg

in
g

br
an

ch
es

).

•
Ef

fic
ie

nt
lo

ca
ls

yn
ch

ro
ni

za
ti

on
an

d
co

m
m

un
ic

at
io

n
w

it
hi

n
bl

oc
ks

.G
lo

ba
l

co
m

m
un

ic
at

io
n

is
ex

pe
ns

iv
e.

•
Sw

it
ch

in
g

be
tw

ee
n

se
ri

al
an

d
pa

ra
lle

lm
od

es
(i

.e
.,

pa
ss

in
g

co
nt

ro
lf

ro
m

C
PU

to
G

PU
)

re
qu

ir
es

of
f-

ch
ip

co
m

m
un

ic
at

io
n.

•
O

ne
in

st
ru

ct
io

n
ca

ch
e

an
d

pr
og

ra
m

co
un

te
r

pe
r

TC
U

en
ab

le
s

in
de

pe
nd

en
tp

ro
gr

es
si

on
of

th
re

ad
s.

•
C

oo
rd

in
at

io
n

of
th

re
ad

s
ca

n
be

pe
rf

or
m

ed
vi

a
co

ns
ta

nt
ti

m
e

pr
efi

x-
su

m
.O

th
er

fo
rm

s
of

th
re

ad
co

m
m

un
ic

at
io

n
ar

e
do

ne
ov

er
th

e
sh

ar
ed

ca
ch

e.

•
D

yn
am

ic
ha

rd
w

ar
e

su
pp

or
tf

or
fa

st
sw

it
ch

be
tw

ee
n

se
ri

al
an

d
pa

ra
lle

lm
od

es
an

d
lo

ad
ba

la
nc

e
of

vi
rt

ua
lt

hr
ea

ds
.

Ta
bl

e
5.

1:
Im

pl
em

en
ta

ti
on

di
ff

er
en

ce
s

be
tw

ee
n

X
M

T
an

d
Te

sl
a.

FP
U

an
d

M
D

U
st

an
d

fo
r

flo
at

in
g-

po
in

ta
nd

m
ul

ti
pl

y/
di

vi
de

un
it

s
re

sp
ec

ti
ve

ly
.

73

5.2 Silicon Area Feasibility of 1024-TCU XMT

In this section, we aim to establish a configuration of XMT that is feasible to implement,

in terms of silicon area, using current technology. The issue of power is investigated

separately in Chapter 6. Since we would like to compare the performance of XMT against

the GTX280 GPU (see Section 5.4), we assume that a 576mm2 die, which is the area of

GTX280, is also available to us in 65 nm ASIC technology.

We start the section with information on the ASIC implementation of the 64-TCU XMT

prototype. This is followed by the area estimation of a 1024-TCU XMT processor

configuration (XMT1024), complete with number of TCUs, functional units, shared cache

size, and interconnection network (ICN) specifications. The area estimation includes a

subsection that contains the details, such as dimensions of modules, required for

constructing the XMT1024 floorplan in Section 7.3.

5.2.1 ASIC Synthesis of a 64-TCU Prototype

The 64-TCU integer-only 200MHz XMT ASIC prototype, fabricated in 90 nm IBM

technology, serves the dual purpose of constituting a proof-of-concept for XMT and

providing the basis for the area estimation of clusters and shared caches (see Table 5.4)

presented in the remainder of this section. The power data obtained from the gate level

simulations is also utilized in Section 6.1.

The ASIC prototype was a collaborative effort among the members of the XMT

research team including the author of this dissertation. We used the post-layout area

reported in 90 nm technology for projecting the area of the XMT1024 chip.

Synopsys [Syn] and Cadence [Cad] logic synthesis, place and route, physical verification

and gate level simulation tools were used for the tape-out.

5.2.2 Silicon Area Estimation for XMT1024

We needed to determine the power-of-two configuration of XMT, the chip resources of

which are in the same ballpark as the GTX280. We base our estimation on the detailed

data from the ASIC implementation of the MoT interconnection

74

network [BQV08, BQV09, Bal08] and the 64-TCU ASIC prototype. Our calculations below

show that using the same generation technology as the GTX280, a 1024-TCU XMT

configuration could be fabricated.

Overview and Intuition

A 1024-TCU XMT configuration requires 16 times the cluster and cache modules

resources of the 64-TCU XMT ASIC prototype, reported by the design tools as 47 mm2.

The area of the MOT interconnection network for the envisioned XMT configuration can

be estimated as 170 mm2 in 90nm using the data from [Bal08]. Applying a theoretical area

scaling factor of 0.5 from 90nm to 65nm technology feature size we obtain an area

estimate of (47× 16 + 170)× 0.5 = 461mm2. We assume that with the same amount of

engineering and optimization effort put behind it as for the GPUs, XMT could support a

comparable clock frequency and addition of floating point units (whose count, per Table

5.2, is around 20% of the GTX 280) without a significant increase in area budget. This is

why the XMT clock frequency considered in the comparison is the same as the shader

clock frequency (SPs and SFUs) of GTX280, which is 1.3GHz. Note that this estimation

does not include the cost of memory controllers. The published die area of GTX280 is

576mm2 in 65nm technology and approximately 10% of this area is allocated for memory

controllers [Kan08]. It is reasonable to assume that the difference in the GPU area and the

estimated XMT area, which is also approximately 20%, would account for the addition of

the same number of controllers to XMT. We expect that very limited area will be needed

for XMT beyond the sum of these components since they comprise a nearly full design.

Table 5.2 gives a comparative summary of the hardware specifications of an NVIDIA

GTX280 and the simulated XMT configuration. The sharp differences in this table are due

to the different architectural design decisions summarized in Table 5.1. From these

calculations, we conclude that overall, the configurations of these very different

architectures appear to use roughly the same amount of resources.

Detailed Area Estimation

Clusters, cache modules and the ICN are the components that take up the majority of the

die area in an XMT chip. In this section, we will project their dimensions in 65nm

technology based on our 90nm ASIC prototype implementation reviewed in Section 5.2.1.

75

GTX280 XMT-1024

Principal Computational Resources
Cores 240 SP, 60 SFU 1024 TCU
Integer Units 240 ALU+MDU 1024 ALU, 64 MDU
Floating Point Units 240 FPU, 60 SFU 64 FPU

On-chip Memory
Registers 1920KB 128KB
Prefetch Buffers – 32KB
Regular caches 480KB 4104KB
Constant cache 240KB 128KB
Texture cache 480KB –

Other Parameters
Pipeline clk. freq. 1.3 GHz 1.3 GHz
Interconnect clk. freq. 650 MHz 1.3 GHz
Voltage ? 1.15V
Bandwidth to DRAM 141.7 GB/sec (peak theoretical)
Fab. technology 65 nm
Silicon area 576 mm2

Table 5.2: Hardware specifications of the GTX280 and the simulated XMT configuration. In each category, the
emphasized side marks the more area-intensive implementation. Values that span both columns are common
to GTX280 and XMT1024. GTX280 voltage was not listed in any of the sources.

Table 5.3: The detailed specifications of XMT1024.

Processing Clusters
·64 clusters x 16 TCUs
·In-order 5–stage pipelines
·2-bit branch prediction
·16 prefetch buffers per TCU
·64 MDUs, 64 FPUs
·2K read-only cache per cluster

Interconnection Network
·64-to-128 Mesh-of-Trees

Shared Parallel Cache
·128 modules x 32K (4MB total)
·2-way associative

76

Module Area in 95 nm Area estimated for 65 nm Total Area for all Modules

Cluster 2× 3.6 = 7.2mm2 7.2× 0.5× 1.1 = 3.96mm2 3.96× 64 = 253.4mm2

Cache 1.33× 1.7 = 2.26mm2 2.26× 0.5× 1.1 = 1.24mm2 1.24× 128 = 159.1mm2

ICN 26.3 + 5.2 = 31.5mm2 [26.3× (5234 × 0.7)2 + 5.2× 52
34 × 0.5]× 1.25× 2 = 85.2mm2

Total 497.7mm2

Table 5.4: The area estimation for a 65 nm XMT1024 chip.

Table 5.3 lists the specifications of XMT1024 in detail and the calculations that lead to

the estimate of the total chip area are summarized in Table 5.4. For clusters and caches,

we start with the dimensions measured post-layout in 90nm. Cluster dimensions are

2mm× 3.6mm, and for cache module dimensions are 1.33mm× 1.7mm. We apply a

factor of 0.5 for estimating the area in the 65nm technology node (see Section 2.7 for area

scaling between technology nodes). In future implementations of the XMT processor (ex.,

XMT1024), design of the clusters and the caches is not anticipated to change significantly.

We only foresee inclusion of floating point capability in clusters (only single-precision for

the purposes of this work). Area optimization was not an objective for the prototype, we

predict that an aggressively optimized cluster design would be able to accommodate the

addition of a floating point unit within the same area. Moreover, the place-and-route

results showed that the space within the cluster bounding box was not fully utilized. To

be on the safe side, we add a 10% margin to the area of clusters and cache modules (the

1.1 multiplier in column 3 of the table), which could compensate further for the floating

point unit and also for internal interconnect routing costs expected for a larger system.

The last column of the table gives the total area for 64 clusters and 128 cache modules.

The area of the interconnection network is estimated based on the work in [Bal08],

which reports the area of a 64 terminal 34-bit ICN in 95 nm. The total logic cell area was

found to be 26.3mm2 and the wire area was 5.2mm2. The area of a different

configuration can be estimated using the following relation (see [Bal08]):

Wire area ∝ (wc · dw)2 (5.1)

Cell area ∝ wc · k

77

where wc is the bit count, dw is wire pitch (95nm and 65nm) and k is the transistor feature

size (65nm, 95nm, etc.). Another factor that could increase the ICN area is the inclusion of

repeaters. Repeaters are added in order to satisfy the timing constraints for high clock

frequencies. In [Bal08], it was reported that the area overhead of repeaters for a 16

terminal ICN to attain a clock frequency of 1GHz is 5% and for 32 terminals, the overhead

is 12%. The overhead increases linearly with the number of terminals so we assume 25%

overhead for the 64 terminal ICN we are considering (1.25 multiplier for the ICN

equation in Table 5.4). The XMT chip that we simulate contains two identical

interconnection networks, one for the path from the clusters to the caches and another for

the way back. Therefore we multiply the ICN area by 2 to find the total. It should be

noted that the XMT chip can work with a single ICN serving both directions, thus saving

area at the cost of increased traffic.

This total of 497.7mm2, compared to GTX280’s 576mm2 die area, (our baseline), is

reasonable assuming the remaining area is for the memory controllers. The reason that

there is a difference between the 497.7mm2 estimated here and the 461mm2 in this

section’s overview is the additional 10% ICN routing cost per cluster/cache module.

5.3 Benchmarks

One of our goals is to characterize a range of single-task parallel workloads for a

general-purpose many-core platform such as XMT. We consider it essential for a

general-purpose architecture to perform well on a range of applications. Therefore we

include both regular applications, such as graphics processing, and irregular benchmarks,

such as graph algorithms. In a typical regular benchmark, memory access addresses are

predictable and there is no variability in control flow. In an irregular benchmark, memory

access addresses and the control flow (if it is data dependent) are less predictable.

We briefly describe the benchmarks used for the comparison next. Since it is our

purpose to make the results relevant to other many-core platforms, we select benchmarks

that commonly appear in the public domain such as the parallel benchmark

suites [CBM+09, NVI09, HB09, SHG09, BG09]. Where applicable, benchmarks use single

precision floating point format.

78

Breadth-First Search (Bfs) A traversal of all the connected components in a graph.

Several scientific and engineering applications as well as more recent web search engines

and social networking applications involve graphs of millions of vertices. Bfs is an

irregular application because of its memory access patterns and data dependent control

flow.

Back Propagation (Bprop) A machine-learning algorithm that trains the weights of

connecting nodes on a layered neural network. It consists of two phases, forward and

backward, both of which are parallelizable. The data set contains 64K nodes. Bprop is an

irregular parallel application and causes heavy memory queuing.

Image Convolution (Conv) An image convolution kernel with a separable filter. The data

set consists of a 1024 by 512 input matrix. Convolution is a typical regular benchmark.

Mergesort (Msort) The classical merge-sort algorithm. It is the preferred technique for

external sorting, as well as for sequences which do not permit direct manipulation of

keys. The data set consists of 1M keys. Mergesort is an application with irregular

memory access patterns.

Needleman-Wunsch (Nw) A global optimization method for DNA sequence alignment,

using dynamic programming and a trace-back process to search the optimal alignment.

The data set consists of 2x2048 sequences. Nw is an irregular parallel program with a

varying amount of parallelism between the iterations of a large number of

synchronization steps (i.e. parallel sections in XMTC).

Parallel Reduction (Reduct) Reduction is a common and important parallel primitive in

a large number of applications. We implemented a simple balanced k-ary tree algorithm.

By varying the arity, we observed that the optimal speed was obtained with k = 128 for

the 16M element dataset simulated. Reduction is a regular benchmark.

Sparse Matrix - Vector Multiply (Spmv) One of the most important operations in sparse

matrix computations, such as iterative methods to solve large linear systems and

eigenvalue problems. The operation performed is y ← Ax+ y, where A is a large sparse

matrix, x and y are column vectors. We implemented a naïve algorithm, which uses the

compact sparse row (CSR) sparse matrix representation and runs one thread per row.

This is an irregular application due to irregular memory accesses. The dataset is a 36K by

79

36K matrix with 4M non-zero elements.

A summary of benchmarks characteristics on XMTC and CUDA are given in Table 5.5.

The table includes the lines of code for each benchmark, in order to give an idea of the

effort that goes into programming it. Also number of parallel sections (spawn for XMT,

CUDA kernels for CUDA) and the number of threads per section are listed for illustrating

the amount of parallelism extracted from each benchmark. The runtim characteristics of

the benchmarks are examined in further detail in Chapter 7.

80

N
am

e
D

es
cr

ip
ti

on
C

U
D

A
im

pl
em

en
ta

ti
on

so
ur

ce
Li

ne
s

of
C

od
e

D
at

as
et

Pa
ra

ll
el

se
ct

n.
T

hr
ea

ds
/s

ec
tn

.

C
U

D
A

X
M

T
C

U
D

A
X

M
T

C
U

D
A

X
M

T

Bf
s

Br
ea

dt
h-

Fi
rs

tS
ea

rc
h

on
gr

ap
hs

H
ar

is
h

an
d

N
ar

ay
an

an
[H

N
07

],
R

od
in

ia
be

nc
hm

ar
k

su
it

e
[C

BM
+

09
]

29
0

86
1M

no
de

s,
6M

ed
ge

s
25

12
1M

87
.4

K

Bp
ro

p
Ba

ck
Pr

op
ag

at
io

n
m

ac
hi

ne
le

ar
ni

ng
al

go
ri

th
m

R
od

in
ia

be
nc

hm
ar

k
su

it
e

[C
BM

+
09

]
96

0
52

2
64

K
no

de
s

2
65

1.
04

M
19

.4
K

C
on

v
Im

ag
e

co
nv

ol
ut

io
n

ke
rn

el
w

it
h

se
pa

ra
bl

e
fil

te
r

N
V

ID
IA

C
U

D
A

SD
K

[N
V

I0
9]

28
3

87
10

24
x5

12
2

2
13

1K
51

2K

M
so

rt
M

er
ge

-s
or

ta
lg

or
it

hm
Th

ru
st

lib
ra

ry
[H

B0
9,

SH
G

09
]

96
6

28
3

1M
ke

ys
82

14
0

32
K

10
.7

K

N
w

N
ee

dl
em

an
-W

un
sc

h
se

qu
en

ce
al

ig
nm

en
t

R
od

in
ia

be
nc

hm
ar

k
su

it
e

[C
BM

+
09

]
43

0
12

9
2x

20
48

se
qu

en
ce

s
25

5
41

92
1.

1K
1.

1K

R
ed

uc
t

Pa
ra

lle
lr

ed
uc

ti
on

(s
um

)
N

V
ID

IA
C

U
D

A
SD

K
[N

V
I0

9]
48

1
59

16
M

el
ts

.
3

3
5.

5K
44

K

Sp
m

v
Sp

ar
se

m
at

ri
x

-v
ec

to
r

m
ul

ti
pl

ic
at

io
n.

Be
ll

an
d

G
ar

la
nd

[B
G

09
]

91
34

36
K

x3
6K

,
4M

no
n-

ze
ro

1
1

30
.7

K
36

K

Ta
bl

e
5.

5:
Be

nc
hm

ar
k

pr
op

er
ti

es
in

X
M

TC
an

d
C

U
D

A
.

81

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Bfs Bprop Conv Msort NW Reduct Spmv

X
M

T
 S

p
e
e

d
u

p
 o

v
e

r
G

T
X

2
8

0

5.38

7.36

0.23

8.10
7.35

0.74
2.05

Figure 5.2: Speedups of the 1024-TCU XMT configuration with respect to GTX280. A value less than 1 denotes
slowdown.

5.4 Performance Comparison of XMT1024 and the GTX280

Figure 5.2 presents the speedups of all the benchmarks on a 1024-TCU XMT configuration

relative to GTX280. Speedups range between 2.05× and 8.10× for highly parallel

irregular benchmarks. The two regular benchmarks (Conv and Reduct) show slowdown.

This is due to the nature of the code, exhibiting regular patterns that the GPUs are

optimized to handle, while the XMT abilities to dynamically handle less predictable

execution flow go underused. Moreover, Conv on CUDA uses the specialized Tesla

multiply-add instruction, while on XMT two instructions are needed.

Table 5.5 shows the number of parallel sections executed and the average number of

threads per parallel section for each benchmark. Table 5.6 provides the percentage of the

execution time spent executing instructions in different categories as reported by the

XMT Simulator. To the best of our knowledge, there is no way of gathering such detailed

data from the NVIDIA products at this time.

We observed that benchmarks with irregular memory access patterns such as Bfs,

Spmv and Msort spend a significant amount of their time in memory operations. We

believe that the high amount of time spent by Bprop is due to the amount of memory

queuing in this benchmark. Conv is highly regular with lots of data reuse, and spends

less than half of its time on memory accesses; however, it performs a non-trivial amount

of floating-point computation (more than 50% of the remaining time).

Table 5.6 shows that in the Nw benchmark, a significant amount of time is spent idling

by the TCUs. From Table 5.5, we observe that the number of threads per parallel section is

82

Name MEM Idle ALU FPU MD Misc

Spmv 71.8 2.1 6.1 19.1 0.0 0.9

Nw 34.7 50.0 6.0 0.0 3.2 6.2

Bfs 94.7 1.2 2.4 0.0 0.0 1.7

Bprop 93.4 1.4 0.6 1.8 1.0 1.9

Msort 63.7 21.1 4.5 3.2 1.0 6.6

Conv 41.1 0.2 14.4 31.5 0.0 12.8

Reduct 71.0 0.9 3.2 23.0 0.0 1.8

Table 5.6: Percentage of time on XMT spent executing memory instructions (MEM), idling (due to low paral-
lelism), integer arithmetic (ALU), floating-point (FPU), integer multiply-divide (MD) and other.

relatively low in this benchmark. In spite of this high idling time, XMT outperforms the

GPU by a factor of 7.36x on this benchmark, illustrating the fact that XMT performs well

even on code with relatively low amounts of parallelism. The very large number of

parallel sections executed for the Nw benchmark (required by the lock-step nature of the

dynamic programming algorithm) favors XMT and its low-overhead synchronization

mechanism, and explains the good speedup.

5.5 Conclusions

In this chapter, we compared XMT, a general-purpose parallel architecture, with a recent

NVIDIA GPU programmed using the CUDA framework. We showed that when using an

equivalent configuration, XMT outperformed the GPU on all irregular workloads

considered. Performance results on regular workloads show that even though GPUs are

optimized for these kind of applications, XMT does not fall behind significantly – not an

unreasonable price to pay for ease of programming and programmer’s productivity.

This raises for consideration a promising candidate for the general-purpose pervasive

platform of the future, a system consisting of an easy-to-program, highly parallel

general-purpose CPU coupled with (some form of) a parallel GPU – a possibility that

appears to be underrepresented in current debate. XMT has a big advantage on

ease-of-programming, offers compatibility on serial code and rewards even small amount

of parallelism with speed-ups over uni-processing, while the GPU could be used for

applications where it has an advantage.

83

Chapter 6

Power/Performance Comparison of XMT1024 and GTX280

In Chapter 5, we compared the performance of a 1024-TCU XMT processor (XMT1024)

with a silicon area-equivalent NVIDIA GTX280 GPU. The purpose of this chapter is to

show that the speedups remain significant under the constraint of power envelope

obtained from GTX280. Given the recent emphasis on power and thermal issues, this

study is essential for a complete comparison between the two processors. For

many-cores, the power envelope is a suitable metric that is closely related to feasibility

and cooling costs of individual chips or large systems consisting of many processors.

Early estimates in a simulation based architecture study are always prone to errors due

to possible deviations in the parameters used in the power model. Therefore, we consider

various scenarios that represent potential errors in the model. In the most optimistic

scenario we assume that the model parameters, which are collected from a number of

sources, are correct and we use them as-is. In more cautious scenarios (which we call

average case and worst case), we compensate for hypothetical errors by adding different

degrees of error margins to these parameters. We show that, for the optimistic scenario,

XMT1024 over-performs GTX280 by an average of 8.8x on irregular benchmarks and 6.4x

overall. Speedups are only reduced by an average of 20% for the average-case scenario

and approximately halved for the worst-case. We also compare the energy consumption

per benchmark on both chips, which follows the same trend as the speedups.

6.1 Power Model Parameters for XMT1024

In this section, we establish the simulation power model parameters for the XMT1024

processor specified in Table 5.2. The XMTSim power and thermal models were

introduced in Section 4.5. The external inputs of the power model are the Const(Ci) and

MaxActPower(Ci) parameters (see Equation (4.2)), where C is the set of

84

Component MaxActPower Const Source
Computing Clusters

TCU Pipeline 51.2W 13.3W McPAT
ALU 122.9W 20.5W McPAT
MDU 21.1W 6.4W McPAT, ASIC
FPU 29W 3.2W McPAT, ASIC
Register File 30.8W ∼0W McPAT
Instr. Cache 15.4W 1W Cacti
Read-only Cache 2.7W 300mW Cacti
Pref. Buffer 18.4W 2W McPAT

Memory System
Interconnect 28.5W 7.2W ASIC [Bal08]
Mem. Contr./DRAM 44.8W 104mW McPAT, [Sam]
Shared Cache 58.9W 19.2W ASIC

Table 6.1: Power model parameters for XMT1024.

microarchitectural components, Const(Ci) is the power of a component which is spent

regardless of its activity and MaxActPower(Ci) is the upper bound on the power that is

proportional to the activity.

Table 6.1 lists the cumulative values of the Const(Ci) and MaxActPower(Ci)

parameters for all groups of simulated components. In most cases, parameter values were

obtained from McPAT 0.9 [LAS+09] and Cacti 6.5 [WJ96, MBJ05]. The maximum power of

the Samsung GDDR3 modules are given in [Sam] and we base the DRAM parameters in

the table on this information.

The design of the interconnection network (ICN) is unique to XMT and its power

model parameters cannot be reliably estimated using the above tools. This is also the case

for the shared caches of XMT as they contain a significant amount of logic circuitry for

serving multiple outstanding requests simultaneously. In fact, Cacti estimates for the

shared caches were found to be much lower than our estimates. Instead, the cache

parameters are estimated from our ASIC prototype (Section 5.2.1), and the ICN

parameters are based on the MoT implementation introduced in [Bal08], as indicated in

Table 6.1. The power values obtained from the ASIC prototype were adjusted to the

voltage and clock frequency values in Table 5.2 using Equations (2.2) and (2.5). The

voltage of the XMT chip in the table was estimated via Equation (2.10). For scaling from

90nm to 65nm, we initially used an ideal factor of 0.5, but this assumption is subject to

further analysis in Section 6.4.

85

6.2 First Order Power Comparison of XMT1024 and GTX280

The purpose of this section is to convey the basic intuition of why XMT1024 should not

require a higher power envelope than GTX280. While the remainder of this chapter

investigates this question via simulations and measurements, in this section we start with

a simple analysis.

As we previously discussed in Section 5.1, the XMT is particularly strong in improving

the performance of irregular parallel programs and it achieves this in hardware via a

flexible interconnection network topology; TCUs that allow independent execution of

threads; and fast switching between parallel and serial modes (i.e., fast and effortless

synchronization). Even though XMT contains a very high number of TCUs (and simple

ALUs), it does not try to keep all TCUs busy at all times. Recall that each computing

cluster features only one port to interconnection network. The XMT configuration we

simulate is organized in 64 clusters of 16 TCUs (Table 5.2), which means only one of 16

TCUs receive new data to process every clock cycle. As a result, computation and

memory communication cycles of TCUs in a cluster automatically shift out of phase.

On the other hand, GTX280 features a smaller number of cores and a higher number of

floating point units in the same die area. Its interconnection network is designed so that,

with proper optimizations, all cores and execution units can be kept busy every clock

cycle. As a result, the theoretical peak performance of GTX280 is higher than that of

XMT1024.

A simple calculation is as follows. In [Dal], it is indicated as a rule-of-thumb that

movement of data required for 1 floating point operation (FLOP) costs 10x the energy of

the FLOP itself. If the data is brought from off chip, the additional cost is 20x the energy

of a FLOP.

For XMT1024 the maximum number of words that can be brought to the clusters every

clock cycle is 64. In the worst, i.e., most power intensive case, every word is brought from

off-chip at the 64 words per cycle throughput. Also, assume that only one operand is

needed per operation (for example, the second one might be a constant that already

resides in the clusters). The energy spent per clock will be equivalent to the energy of

64× (1+ 10+ 20) = 1984 FLOPS.

86

Now, we repeat the calculation for GTX280. Assuming that the GTX280 ICN can bring

240 words to the stream processors every clock cycle at an energy cost of 30 FLOPS each

(10 for the ICN and 20 for the off-chip communication). The energy spent per clock will

be equivalent of the energy of 240× (1+ 10+ 20) = 7440 FLOPS, which is 3.75 times

what we estimated for XMT1024.

6.3 GPU Measurements and Simulation Results

Power envelope is the main constraint in our study. In this section we aim to show that

the XMT1024’s performance advantage (previously demonstrated in [CKTV10]) holds

true despite this constraint. First, we provide a list of our benchmarks, followed by the

results from the GTX280 measurement setup and the XMT simulation environment. We

report the benchmark execution times, power dissipation values and average

temperatures on both platforms. We also compare the execution time and energy

consumption.

As mentioned earlier, the power envelope of many-core chips is more closely related to

their thermal feasibility than is the case with large serial processors. Many-cores can be

organized in thermally efficient floorplans such as the one in [HSS+08]. As a result,

activity is less likely to be focused on a particular area of the chip for power intensive

workloads, and temperature is more likely to be uniformly distributed (unlike serial

processors, in which hotspots are common). In some cases, as observed in [HK10], the

temperature of the memory controllers might surpass the temperature of the rest of the

chip. However, this typically happens for low power benchmarks such as Bfs, which are

heavy on memory operations but not on computation.

We thermally simulated an XMT floorplan, in which caches and clusters are organized

in a checkerboard pattern and the ICN is routed through dedicated strips. For the most

power-hungry benchmarks, maximum variation between adjacent blocks was only 1C.

However, from the midpoint of the chip towards the edges, temperature can gradually

drop by up to 4C. This is due to the greater lateral dissipation of heat at the edges and

does not change the relationship between power and temperature. These results as well

as the linear relationship between the power and temperature of the GTX280 chip [HK10]

87

Name Type GTX280 XMT1024

Time Power Tempr. Pidle Time Power Tempr.

Bfs Irregular 16.3ms 155W 74C 81W 1.34ms 161W 70C

Bprop Irregular 15ms 97W 61C 76W 2.26ms 98W 65C

Conv Regular 0.18ms 180W 78C 83W 0.69ms 179W 81C

Msort Irregular 33.3ms 120W 70C 79W 2.77ms 144W 71C

Nw Irregular 13.4ms 116W 67C 78W 1.46ms 136W 71C

Reduct Regular 0.1ms 156W 74C 81W 0.52ms 165W 75C

Spmv Irregular 0.9ms 200W 80C 85W 0.23ms 189W 78C

Table 6.2: Benchmarks and results of experiments.

strengthens the argument of using power envelope as relevant metric.

6.3.1 Benchmarks

We use the same benchmarks as in Chapter 5. The details of these benchmarks were given

in Section 5.3. Table 6.2 lists the data collected from the runs on GTX280 and XMT

simulations along with the parallelism type of each benchmark. Particulars of the

measurement and simulation setups will be explained in the subsequent sections. As we

will discuss in Section 6.3.3, there exists a correlation between the type and power

consumption of a benchmark. The characteristics of the benchmarks are examined in

further detail in Chapter 7.

6.3.2 GPU Measurements

A P4460 Power Meter [Intb] is orchestrated to measure the total power of the computer

system that we use in our experiments. The system is configured with a dual-core AMD

Opteron 2218 CPU, an NVIDIA GeForce 280 GPU card under RedHat Linux 5.6 OS. The

temperatures of the CPU cores and the GPU are sampled every second via the commands

sensors and nvclock -T. The clock frequencies of the CPU cores and the GPU are

monitored via the commands cat /proc/cpuinfo and nvclock -s.

Our preliminary experiments show that the effect of the CPU performance is negligible

on the runtime of our benchmarks. Therefore, for reducing its effect on overall power, the

88

clock frequency of the CPU was set to its minimum value, 1GHz. While the GPU card

does not provide an interface for manually configuring its clock, we observed that during

the execution of the benchmarks, core and memory controller frequencies remain at their

maximum values (1.3GHz).

The GTX280 column of Table 6.2 lists the data collected from the execution of the

benchmarks on the GPU. The power of a benchmark is computed by subtracting the idle

power of the system without the GPU card (98W) from the measured total power. Each

benchmark is modified to execute in a loop long enough to let the system reach a stable

temperature, and execution time is reported per iteration. The initialization phases,

during which the input data is read and moved to the GPU memory, are omitted from the

measurements 1. The idle power of the GPU card is measured at the operating

temperature of each benchmark in order to demonstrate its dependency on operating

temperature. The CPU core temperatures deviate at most 2◦C from the initial

temperature, which is not expected to effect the leakage power of the CPU significantly.

6.3.3 XMT Simulations and Comparison with GTX280

The simulation results for XMT1024 are given in the XMT1024 column of Table 6.2. The

heatsink thermal resistance was set to 0.15 K/W in order to follow the power-temperature

trend observed for GTX280, and the ambient temperature was set to 45C.

We need to ensure that the two most power intensive benchmarks on XMT1024, Spmv

and Conv, do not surpass the maximum power on GTX280, which is 200W for Spmv.

Under these restrictions, we determined that the XMT1024 chip can be clocked at the

same frequency as GTX280, 1.3 GHz.

Figure 6.1 presents the speedups of the benchmarks on XMT1024 relative to GTX280.

Figure 6.2 then shows the ratio of benchmark energy on GTX280 to those on XMT1024.

As expected, XMT1024 performance exceeds GTX280 on irregular benchmarks (8.8x

speedup) while GTX280 performs better for the regular benchmarks (0.24x slowdown).

The trends of the speedups match those demonstrated in Chapter 5 and the differences in

1In XMT, the Master TCU and the TCUs share the same memory space, and no explicit data move opera-
tions are required. However, this advantage of XMT over Tesla is not reflected in our experiments.

89

Figure 6.1: Speedups of XMT1024 with respect to GTX280. A value less than 1 denotes slowdown.

Figure 6.2: Ratio of benchmark energy on GTX280 to XMT1024 with respect to GTX280.

the exact values are caused by improved simulation models and the newer version of the

CUDA compiler used in our experiments.

The two chips show similar power trends among the benchmarks. On XMT1024, the

average power of irregular benchmarks, 138W, is lower than the average power of the

two regular benchmarks, which is 168W. A similar trend can be observed for GTX280. In

general, we can expect the irregular programs to spend lower power as they are usually

not computation heavy. However, Spmv is an exception to this rule as it is the most

power intensive benchmark on both XMT and the GPU. In the case of Spmv, irregularity

is caused by the complexity of the memory addressing, whereas the high density of

floating point operations elevates the power.

The energy comparison yields results similar in trend to the speedup results (ratio of

8.1 for irregular and 0.22 for regular benchmarks). Energy is the product of power and

execution time, and the relation of power dissipation among the benchmarks is alike

between the two chips, as can be seen in Table 6.2. Therefore, the energy is roughly

proportional to the speedups.

90

6.4 Sensitivity of Results to Power Model Errors

Early estimates in a simulation based architecture study are always prone to errors due to

possible deviations in the parameters used in the power model. In this section we will

modify some of the assumptions in Section 6.1 that led to the results in Section 6.3.3.

These modifications will increase the estimated power dissipation, which will in turn

cause the maximum power observed for the benchmarks to surpass GTX280. To satisfy

the power envelope constraint in our experiments, we will reduce the clock frequency

and voltage of the XMT computing clusters and the ICN according to Equation (2.10)2.

We show that XMT1024 still provides speedups over GTX280, even at reduced clock

frequencies.

The assumptions that we will challenge are the accuracy of the parameter values

obtained from the McPAT and Cacti tools, the ideal scaling factor of 0.5 used to scale the

power of the shared caches from 90nm to 65nm, and the overall interconnection network

power.

6.4.1 Clusters, Caches and Memory Controllers

In their validation study, the authors of McPAT observed that the total power dissipation

of the modeled processors may exceed the predictions by up to 29%. Therefore, we added

29% to the value of all the parameter obtained from McPAT to account for the worst case

error. As a worst case assumption we also set the technology scaling factor to 1, which

results in no scaling. In addition to the worst case assumptions, we explored an average

case, for which we used 15% prediction correction for McPAT and Cacti and a technology

scaling factor of 0.75.

Figure 6.3 shows that the average speedups decrease by 5.6% and 21.5% for the

average and the worst cases, respectively. The energy ratios of the benchmarks increase

by average of 15.5% for the average and 42.7% for the worst case (Figure 6.4). For each

case, we ran an exhaustive search for cluster and ICN frequencies between 650MHz and

1.3GHz and chose the frequencies that give the maximum average speedup while staying

under the power envelope of 200W. For the average case the cluster and ICN frequencies
2We assume that clusters and ICN are in separate voltage and frequency domains as in GTX280

91

Figure 6.3: Decrease in XMT vs. GPU speedups with average case and worst case assumptions for power
model parameters.

Figure 6.4: Increase in benchmark energy on XMT with average case and worst case assumptions for power
model parameters.

were 1.1GHz and 1.3GHz, respectively. For the worst case, they were 650MHz and

1.3GHz. The optimization tends to lower the cluster frequencies and keep the ICN

frequency as high as possible since the irregular benchmarks are more sensitive to the rate

of data flow rather than computation. Also, with the current parameters, ICN power

contributes to the total power less than the cluster power and the effect of reducing the

ICN frequency on power is relatively lower.

Conv and Spmv are the two most power intensive benchmarks and they are also the

most affected by lowering the cluster frequency. Under best-case assumptions, Conv is

very balanced in the ratio of computation to memory operations, and Spmv has a

relatively high number of FP and integer operations that it cannot overlap with memory

operations. Reducing the cluster frequency slows down the computation phases in both

Conv and Spmv. Msort and Nw are programmed with a high number of parallel sections

(i.e., high synchronization) and they are also affected by the lower cluster frequency, as it

slows down the synchronization process. Bfs, Bprop and Reduct are not sensitive to the

cluster frequency since they spend most of the time in memory operations. The trend of

92

the energy increase data in Figure 6.4 is similar to the data in Figure 6.3, however unlike

Figure 6.3, all benchmarks are affected. This is expected as the average and worst case

assumptions essentially increase the overall power dissipation.

6.4.2 Interconnection Network

The ICN model parameters used in Section 6.1 may be inaccurate due to a number of

factors. First, the implementation on which we based our model [Bal08] was placed and

routed for a smaller chip area than we anticipate for XMT1024, and therefore might

under-estimate the power required to drive longer wires. Second, as previously

mentioned, the ideal technology scaling factor we used in estimating the parameters

might not be realistic. To accommodate for these inaccuracies, we run a study to show the

sensitivity of the results we previously presented to the possible errors in ICN power

estimation.

We assume that the errors could be manifested in the form of two parameters that we

will explore. First is Pmax - ICN power at maximum activity and clock frequency. In

terms of the power model parameters in Equation (4.2), Pmax is given by:

Pmax = MaxActPower(ICN) + Const(ICN) (6.1)

Second is the activity correlation factor (CF) introduced in Equation (2.2). The

motivation for exploring CF as a parameter arises from the fact that ICN is the only

major distributed component in the XMT chip. As discussed in Section 3.5.4, efficient

management of power (including dynamic power) in interconnection networks is an

open research question [MOP+09], which affects the activity-power correlation implied

by CF . For example, if clock-gating is not implemented very efficiently the dynamic

power may contain a large constant part. Other distributed components are the

prefix-sum network and the parallel instruction broadcast, which do not contribute to

power significantly. The remainder of the components in the chip are off-the-shelf parts,

for which optimal designs exist.

The values of Pmax and CF in Figures 6.5 and 6.6 (which will be explained next) are

93

Figure 6.5: Degradation in the average speedup with different ICN power scenarios. Pmax and activity-power
correlation (α) are regarded as variables. Their values are with respect to 1.3GHz clock frequency.

given for the maximum clock frequency of 1.3GHz. However, ICN frequency may be

reduced as a part of the optimization process, which will change the effective values of

these parameters. For example, assume that MaxActPower(ICN) + Const(ICN) is set

to 125W. When the power due to the other components is included, the power envelope

required with these parameter values will be more than 200W, which is our constraint.

An exhaustive search looking for the maximum speedup point within the power

envelope is performed, and the ICN and cluster clock frequencies are then both set to

650MHz. Since the ICN clock and voltage are both lowered, the sum of

MaxActPower(ICN) + Const(ICN) decreases to 78W.

Fig. 6.5, shows the average speedups for different scenarios of the ICN power model.

In order to compress the large amount of data, we only show the average of the speedups

of all benchmarks. We plot two CF values, 0.9 (which is the default) and 0.5. As in the

previous section, we ran an exhaustive search for cluster and ICN frequencies ranging

from 650MHz to 1.3GHz for finding the suitable design point. The change in speedups

for the CF = 0.9 series of the plot is relatively low, whereas the decline for the CF = 0.5

series is faster. A lower value of CF will cause the ICN to spend more power regardless

of its activity, which will increase the overall power dissipation. As a result, the solutions

found have lower clock frequencies.

94

Figure 6.6: Degradation in the average speedup with different chip power scenarios. Pmax for ICN and best,
average and worst case for the rest of the chip are regarded as variables. ICN activity-power correlation (CF)
is set to 0.5. Pmax and CF are with respect to 1.3GHz clock frequency.

6.4.3 Putting it together

In Fig. 6.6, we combine various scenarios from the previous two sections, namely the

variations in Pmax of ICN with the best, average and worst case scenarios for the rest of

the chip. The CF parameter for ICN is set to the worst case value of 0.5. For the data

points that do not exist in the plot, no solution exists within our search space. It should be

noted that even for the worst scenarios the average speedup of XMT is greater than 3x.

6.5 Discussion of Detailed Data

In this section, we will present more detailed data about the characteristics of the

simulated benchmarks in order to better explain the results in the previous section.

6.5.1 Sensitivity to ICN and Cluster Clock Frequencies

We have mentioned earlier that, on average, the benchmarks are more sensitive to the ICN

clock frequency, than the cluster clock frequency. For this reason, an optimizing search

looking for the maximum performance within a fixed power envelope tends to reduce the

cluster frequency first. Figures 6.7 and 6.8 show the data that support this observation.

Figure 6.7 is a contour graph of the speedups versus cluster and ICN frequencies. Each

point on the plot corresponds to a speedup value for a different set of cluster and ICN

frequencies. Both clock frequencies are swept over a range of values that were considered

95

Figure 6.7: Degradation in the average speedup with different cluster and ICN clock frequencies.

in previous sections (650 MHz to 1.3 GHz). As expected, lowest speedup, approximately

3.5, is observed when both clocks are 650MHz, whereas the highest speedup is 6.3, when

they are 1.3GHz.

Figure 6.8 is extracted from the Ficn = 1.3GHz and Fcluster = 1.3GHz intercepts of the

plot in Figure 6.7. In other words, first the ICN clock is kept constant at maximum and

cluster clock is varied and then this is reversed. The two plots superimposed clearly

demonstrates the sensitivity of the speedups to the ICN and cluster frequencies.

A more detailed look at the benchmarks reveals that Bfs, Bprop, Msort and Reduct

are the benchmarks that are more sensitive to ICN frequency, As a regular benchmark

with heavy computation, Conv is more sensitive to cluster frequency. Lastly, Nw and

Spmv, which are most balanced in computation and communication, are equally sensitive

to both.

96

6.5.2 Power Breakdown for Different Cases

Figure 6.9 demonstrates the average of the XMT chip power breakdown for all

benchmarks. In the first case (Figure 6.9(a)), the best case assumptions are used for the

clusters, caches and the memory controllers. The ICN power is on the optimistic side

with Pmax = 33W , and CF=0.9. For this case, we observe that most of the power is spent

on the clusters. In the second case (Figure 6.9(a)) Pmax for ICN is increased 2.5 times to

83W and also CF is set to 0.5. For the rest of the chip we used the average case

assumptions. As we increased ICN power significantly, its percentage in the total grew

from 10% to 28%, and cluster power shrank to 50%. In the last case, Pmax for ICN is set to

66W, CF to 0.5 and worst case assumptions are used for the rest of the chip. The difference

between this case and the previous is not significant, except the cluster percentage

increased slightly as we lowered the ICN power. The total of cache and memory

controller powers stay almost at the same percentages throughout these experiments.

97

Figure 6.8: Degradation in the average speedup with different cluster frequencies when ICN frequency is held
constant and vice-versa.

(a) (b) (c)

Figure 6.9: Power breakdown of the XMT chip for different cases. (a) CF = 0.9, Pmax = 33W and best case
assumptions for the rest of the chip. (b) CF = 0.5, Pmax = 83W and average case assumptions for the rest of
the chip. (c) CF = 0.5, Pmax = 66W and worst case assumptions for the rest of the chip.

98

Chapter 7

Dynamic Thermal Management of the XMT1024 Processor

Dynamic Thermal Management (DTM) is the general term for various algorithms used to

more efficiently utilize the power envelope without exceeding a limit temperature at any

location on the chip. In this chapter, we evaluate the potential benefits of several DTM

techniques on XMT. The results that we present demonstrate how the runtime

performance can be improved on the 65 nm 1024-TCU XMT processor (XMT1024) of

Chapter 6, or any similar architecture that targets single task fine-grained parallelism.

The relevance and the novelty of this work can be better understood by answering the

following two questions.

Why is single task fine-grained parallelism important? On a general-purpose

many-core system the number of concurrent tasks is unlikely to often reach the number of

cores (i.e., thousands). Parallelizing the most time consuming tasks is a sensible way for

both improved performance and taking advantage of the plurality of cores. The main

obstacle then is the difficulty of programming for single-task parallelism. Scalable

fine-grained parallelism is natural for easy-to-program approaches such as XMT.

What is new in many-core DTM? DTM on current multi-cores mainly capitalizes on

the fact that cores show different activity levels under multi-tasked workloads [DM06]. In

a single-tasked many-core, the source of imbalance is likely to lie in the structures that did

not exist in the former architectures such as a large scale on-chip interconnection network

(ICN) and distributed shared caches.

Using XMTSim we measure the performance improvements introduced by several

DTM techniques for a XMT1024. We compare techniques that are tailored for a many-core

architecture against a global DTM (GDVFS), which is not specific to many-cores.

Following are the highlights of the insights we provide: (a) Workloads with scattered

irregular memory accesses benefit more from a dedicated ICN controller (up to 46%

runtime improvement over GDVFS). (b) In XMT, cores are arranged in clusters.

99

Distributed DTM decisions at the clusters provide up to 22% improvement over GDVFS

for high-computation parallel programs, yet overall performance may not justify the

implementation overhead.

Our conclusions apply to architectures that consider similar design choices as XMT (for

example the Plural system [Gin11]) which promote the ability to handle both regular and

irregular parallel general-purpose applications competitively (see Section 5.3 for a

definition of regular and irregular). These design choices include an integrated serial

processor, no caches that are local to parallel cores, and a parallel core design that

provides for a true SPMD implementation. We aim to establish high-level guidelines for

designers of such systems. While a comprehensive body of previous work is dedicated to

dynamic power and thermal management techniques for multi-core processors [KM08],

to our knowledge, our work is among the first to evaluate DTM techniques on a

many-core processor for single task parallelism.

The floorplan of a processor, i.e., placement of the hierarchical blocks on the die, is an

important factor that affects processor’s thermal efficiency. In the earlier stages of the

XMT project (i.e., 64-TCU XMT prototype), thermal constraints were not a priority. The

work in this chapter is the first time that floorplanning for thermal efficiency is taken into

consideration for XMT. We simulate two floorplans in order to evaluate the efficiency of

the DTM algorithms at different design points.

This section is organized as follows. In Section 7.1, we explain the specifics of

simulation for thermal estimation and DTM. In Section 7.2, we list our benchmarks and

their characteristics. Section 7.3 introduces the benchmarks. Section 7.5 discusses the

DTM algorithms and their evaluation. Section 7.5 gives possibilities for the future work

and Section 7.7 summarizes the related work.

7.1 Thermal Simulation Setup

In this section, we list the parameters used in thermal simulations and elaborate on two

simulation related issues that affect evaluation of thermal management: simulation speed

and thermal estimation points.

100

Thermal Simulation and Management Parameters. In most cases, we run simulations

for two convection resistance values observed in typical (Rc = 0.1W/K) and advanced

(Rc = 0.05W/K) cooling solutions (see Section 2.9). In our experience, these two

conditions are reasonable representatives of strict and moderate thermal constraints for

comparison purposes. Ambient temperature is set to 45C, which is a typical value. For

the DTM algorithms, the thermal limit is set at 65C.

Simulation Speed. The primary bottleneck in simulating a many-core architecture for

temperature management is the simulation speed. Transient thermal simulations1 usually

require milliseconds of simulated time for generating meaningful results, which

corresponds to millions of clock cycles at a 1GHz clock. The performance of XMTSim

reported in Section 4.3.4 is on par with existing uni-core and multi-core simulators when

measured in simulated instructions per second. When measured in simulated clock cycles

per second, XMTSim, just as any many-core simulator, is at an obvious disadvantage: the

amount of simulation work per cycle increases with the number of simulated cores.

As we have discussed in Section 4.8, simulation speed improvements are on the

roadmap of XMTSim. In the meantime, we circumvent the limitations by replacing the

transient temperature estimation step in the DTM loop with steady-state estimation.

Despite the fact that steady-state is an approximation to transient solutions only for very

long intervals with steady inputs, it still fits our case due to the nature of our benchmarks.

We observed that the behaviors of the kernels we simulated do not change significantly

with larger data sets, except that the phases of consistent activity (which we will discuss

with respect to Figure 7.2) stretch in time. Therefore, we interpret the steady-state results

obtained from simulating relatively short kernels with narrow sampling intervals as

indicators of potential results from longer kernels.

On-chip Thermal Estimation Points. We lump the power of the subcomponents a

cluster together to estimate an overall temperature for the cluster. A higher resolution is

not required due to the spatial low-pass filtering effect, which means that a tiny heat

source with a high power density cannot raise the temperature significantly by

itself [HSS+08]. XMT cores are not large enough to impact the thermal analysis

individually. Likewise, one temperature per cache module is estimated. The ICN area is

1For transient versus steady-state simulation, see Section 2.8

101

divided into 40 regions with equal power densities, which can be seen in the floorplan

figures in Section 7.3. Their power consumption add up to the total power of the ICN. We

estimate the temperature for all regions and report the highest as the overall ICN

temperature.

The DTM algorithms that we will evaluate take the temperatures of the clusters and

the ICN as input. While optimization of count and placement of the on-chip thermal

sensors is beyond the scope of our work, examples from industry indicate that one sensor

per cluster is feasible (for example, IBM Power 7 with 44 temperature sensors [WRF+10]).

ICN temperature can be measured at a few key points that consistently report highest

temperatures.

7.2 Benchmarks

We use the same benchmarks that we listed in Section 5.3 with the addition of two regular

benchmarks (described below) and a new dataset for the Bfs benchmark. Where

applicable, benchmarks use single precision floating point format, except FFT which is

fixed point.

Fixed-point Fast Fourier Transform (FFT) 1-D Fast-Fourier transform with logN/2

levels of 4-point butterfly computations where N = 1M for the dataset. 4-point butterfly

operations are preferred over 2-point operations in order to reduce memory accesses. The

computations are fixed point therefore utilize the integer functional units instead of the

FP units. The program includes a phase where the twiddle factors are calculated. The

simulated data set of FFT results in a high cache hit rate, and therefore we classify it as

regular. Yet, its cluster activity is lower than the other regular benchmarks, partly due to

the fact that it uses less time consuming integer operations rather than floating point

operations.

Matrix Multiplication (Mmult) This is a straightforward implementation of the

multiplication of two integer matrices, 512 by 512 elements. Each thread handles one row

therefore only half of the TCUs are utilized2. Matrix multiplication is a very regular

2It is possible to implement Mmult with up to 5122-way parallelism, however the performance does not
improve.

102

benchmark.

We simulated two datasets for Bfs. The first data set, denoted as Bfs− I , is heavily

parallel and contains 1M nodes and 6M edges. The second dataset, (Bfs− II), has a low

degree of parallelism and contains 200K nodes and 1.2M edges.

7.2.1 Benchmark Characterization

Table 7.1 provides a summary of the benchmarks that we use in our experiments, along

with their execution times, distinguishing parallelism, activity and regularity

characteristics, and average power and temperature data. Execution times, and average

power and temperature data are obtained from simulating benchmarks with no thermal

constraints. A global clock frequency of 1.3 GHz and Rc = 0.15W/K was assumed for the

measurements.

The parallelism column reports three types of data: the total number of threads, the

total number of spawn (parallel) sections, and a comment on how the threads are

distributed among the parallel sections, reflecting the degree of parallelism. The activity

column categorizes each benchmark according to its cluster and ICN activity. The

regularity column describes benchmark regularity in terms of memory accesses and/or

parallelism. More detail on these will follow next.

The degree of parallelism for a benchmark is defined to be low (low-P) if the number of

TCUs executing threads is significantly smaller than the total number of TCUs when

averaged over the execution time of the benchmark. Otherwise the benchmark is

categorized as highly parallel (hi-P). According to Table 7.1, three of our benchmarks,

Bfs-II, Mmult and Nw, are identified as low-P. In Mmult, the size of the multiplied matrices

is 512× 512 and each thread handles one row, therefore only half of the 1024 TCUs are

utilized. Bfs-II shows a random distribution of threads between 1 and 11 in each one of its

300K parallel sections. Nw shows varying amount of parallelism between the iterations of

a large number of synchronization steps (i.e., parallel sections in XMTC).

Among the benchmarks in Table 7.1, we can immediately determine that Spmv has a

high degree of parallelism (hi-P) since it has one parallel section with 36K threads. On the

contrary, Mmult is a low-P benchmark, containing, again, one parallel section but with

103

only 512 threads. An inspection of the simulation outputs from the runs of Conv and

Reduct, which are summarized in the table, reveals that they are both of hi-P type. Bfs-II

shows a random distribution of threads between 1 and 11 per parallel section, hence it is

of low-P type. The rest of the benchmarks contain a high number of parallel sections and

threads are not distributed to the sections randomly, thus they require a more methodical

inspection. For these benchmarks we refer the readers to the plots in Figure 7.1. Every

integer point on the x-axis of this figure denotes one parallel section in the order that it

appears in the benchmark. The left y-axis is the number of simultaneous virtual threads

in a parallel section and the right y-axis is the execution depth of the section as the

percentage of the total execution depth.

Three of the parallel sections in Bfs-I (7, 8, and 9) comprise more than 90% of the

execution depth and each of these parallel sections execute 100K+ threads. Similarly,

approximately 75% of the execution depth of Bprop is spent in the last parallel section,

which contains more than 1M threads. Finally, almost all parallel sections in FFT and

Msort contain more than 1K threads. Therefore, we categorize the above benchmarks as

high-P. Inspecting Nw, we see that half of the parallel sections execute less than 1K

threads, which indicates that Nw is a low-P benchmark.

We then proceed to profile the cluster and ICN activity of each benchmark under no

thermal constraints. Figure 7.2 provides a representative sample of this data. We observe

that some benchmarks consist of relatively steady activity levels, which can be high

(Conv), moderate (FFT), or low. Others, such as Msort, have several execution phases,

each with a different activity characteristic. Note that cluster and ICN activities are

determined by various factors: the computation to memory operation ratio of the threads,

the queuing on common memory locations, DRAM bottlenecks, parallelism, etc. For

example, the low activity of Bfs-II is due to low parallelism, whereas in case of Bprop the

cause is memory queuing (both benchmarks are listed in Table 7.1). The activity profile of

a benchmark plays an important role in the behavior of the system under thermal

constraints, as we demonstrate in the next section.

104

Bfs-I FFT

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12
0%

10%

20%

30%

40%

50%

N
um

. T
hr

ea
ds

0M

1M

10M

 0 5 10 15 20 25
0%

20%

40%

60%

80%

100%

E
xe

c.
 D

ep
th

Num. Threads
Exec. Depth

Nw Bprop

 0

 500

 1000

 1500

 2000

 2500

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

 4500

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

N
um

. T
hr

ea
ds

0.0M

0.2M

0.4M

0.6M

0.8M

1.0M

1.2M

 0 10 20 30 40 50 60 70
0%

20%

40%

60%

80%

100%

E
xe

c.
 D

ep
th

Msort

0K

1K

10K

100K

1000K

 0 20 40 60 80 100 120 140
0%

5%

10%

15%

20%

E
xe

c.
 D

ep
th

Parallel Section

Figure 7.1: Degree of parallelism in the benchmarks. The benchmarks that are not included in this figure are
explained in Table 7.1.

105

Conv FFT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ct

iv
ity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

A_CL
A_IC

Msort Nw

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
ct

iv
ity

Million Clock cycles

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Million Clock cycles

Figure 7.2: The activity plot of the variable activity benchmarks A_CL stands for the cluster activity and A_IC
for the interconnect activity.

106

Ta
bl

e
7.

1:
Be

nc
hm

ar
k

pr
op

er
ti

es

N
am

e
D

at
a

Se
t

Si
m

.t
im

e
(i

n
cy

cl
es

)
A

vg
.

po
w

er
A

vg
.

te
m

pr
.

Pa
ra

ll
el

is
m

A
ct

iv
it

y
Ty

pe

Bf
s-

I
1M

no
de

s,
6M

ed
ge

s
1.

82
5M

16
1W

70
C

T=
1M

,P
=1

2.
H

i-
P

(s
ee

Fi
g.

7.
1)

.
C

lu
st

er
:0

.1
IC

N
:0

.3
2

(a
vg

)
Ir

re
gu

la
r

Bf
s-

II
20

0K
no

de
s,

1.
2M

ed
ge

s
13

5.
2M

97
W

65
C

T=
70

0K
,P

=3
00

K
.

Lo
w

-P
:1

to
11

th
rd

.p
er

se
ct

s.

Ve
ry

lo
w

ac
ti

vi
ty

.
Ir

re
gu

la
r

Bp
ro

p
64

K
no

de
s

3.
99

0M
98

W
65

C
T=

1.
2M

,P
=6

5.
H

i-
P

(s
ee

Fi
g.

7.
1)

.
C

lu
st

er
=0

.1
2

IC
N

=0
.0

6
Ir

re
gu

la
r

C
on

v
10

24
x5

12
0.

88
5M

17
9W

81
C

T=
1M

,P
=2

.
H

i-
P:

50
0K

th
rd

pe
r

se
ct

io
n.

H
ig

h
ac

ti
vi

ty
in

tw
o

ph
as

es
(s

ee
Fi

g.
7.

2)
.

R
eg

ul
ar

FF
T

1M
po

in
ts

4.
90

5M
16

0W
77

C
T=

12
.7

M
,P

=2
3.

H
i-

P
(s

ee
Fi

g.
7.

1)
.

M
od

er
at

e
ac

t.
w

/
m

ul
ti

pl
e

ph
as

es
(s

ee
Fi

g.
7.

2)
.

R
eg

ul
ar

M
m

ul
t

51
2x

51
2

el
ts

.
10

.6
M

16
5W

78
C

T=
51

2,
P=

1.
Lo

w
-P

:5
12

TC
U

s
ut

ili
ze

d.
C

lu
st

er
=0

.5
IC

N
=0

.4
2

R
eg

ul
ar

M
so

rt
1M

ke
ys

3.
62

5M
14

4W
71

C
T=

1.
5M

,P
=1

40
.

H
i-

P
(s

ee
Fi

g.
7.

1)
.

V
ar

ia
bl

e
m

od
er

at
e

to
lo

w
ac

t.
(s

ee
Fi

g.
7.

2)
.

Ir
re

gu
la

r

N
w

2x
20

48
se

qs
.

1.
72

5M
13

6W
71

C
T=

4.
2M

,P
=4

19
2.

Lo
w

-P
(s

ee
Fi

g.
7.

1)
.

V
ar

ia
bl

e
m

od
er

at
e

to
lo

w
ac

t.
(s

ee
Fi

g.
7.

2)
.

Ir
re

gu
la

r

R
ed

uc
t

16
M

el
ts

.
0.

67
M

16
5W

75
C

T=
13

2K
,P

=3
.

H
i-

P:
99

%
of

th
rd

s
in

fir
st

se
ct

.
C

lu
st

er
=0

.5
5

IC
N

=0
.4

R
eg

ul
ar

Sp
m

v
36

K
x3

6K
,

4M
no

n-
ze

ro
0.

31
M

18
9W

78
C

T=
36

K
,P

=1
.H

i-
P.

C
lu

st
er

=0
.5

IC
N

=0
.5

Ir
re

gu
la

r

107

7.3 Thermally Efficient Floorplan for XMT1024

The floorplan of an industrial grade processor is designed to accommodate a number of

constraints. Thermal efficiency is usually one of them, and it is what we focus on in this

chapter. A thermally efficient floorplan is able to fit more power, hence more work, within

a fixed thermal envelope. Albeit, there might be other concerns that take priority over

thermal considerations, such as routing complexity. Also, the floorplan might be imposed

as a part of a larger system. For example, XMT cores and interconnect might be

incorporated, as a co-processor, on top of an existing CPU with a fixed cache hierarchy.

Therefore, in our experiments we simulate two floorplans for XMT1024 that depict

different design points. The first one (FP1) is a thermally efficient floorplan that we

propose, and the second (FP2) represents a compromise in a case where the floorplan

organization is restricted by existing constraints. FP1 came ahead in efficiency by a close

margin among a number of floorplans we inspected. Other floorplans yielded results

close to FP1 therefore they are not included in this chapter. They can be found in

Appendix D.

XMT1024 contains 64 clusters of 16 TCUs, and 128 cache modules of 32 KB each (see

Table 5.3). The post-layout areas of a cluster and a shared cache module scaled for the 65

nm technology node were given in Section 5.2.2 as 3.96mm2 and 1.24mm2 respectively.

In the same section total area of the interconnection network (ICN) was calculated as

85.2mm2. Floorplans discussed in this section preserve the total area of 497.7mm2 for the

clusters, caches and the ICN. The memory controllers are not included in the figures for

brevity, but in a full chip, the 8 memory controllers will be aligned along the edges.

We start with FP2 (shown in Figure 7.3), as it is the simpler of the two floorplans, and a

direct projection of the 64-TCU prototype floorplan to XMT10243. In this arrangement

(also called dance-hall floorplan), the ICN is in the middle, clusters are placed on the left

side and the cache modules are placed on the right side of the ICN. The dark box at the

top edge of the floorplan is reserved for the Master TCU. FP2 represents a case in which

thermal considerations are not a priority.

Figure 7.4 depicts FP1. It is inspired by a study by Huang et al. [HSS+08], who

3All floorplan figures are generated with the HotSpotJ software introduced in Section 4.7

108

Master TCU

Caches

Clusters

ICN

Figure 7.3: The dance-hall floorplan (FP2) for the XMT1024 chip.

analytically found that the thermal design power (TDP) of a many-core chip can be

improved with a checkerboard design. In the checkerboard design caches and clusters are

placed in an alternating pattern. Recall from Section 2.4 that caches can be placed between

power intensive cores to alleviate hotspots as they have lower peak power. The basic

building block of this floorplan is a tile of one cluster and two cache modules. (We explain

the structure of a tile shortly.) The vertical orientation of every other tile is reversed for

more evenly distributing the caches and the clusters in the chip. ICN is split into 3 strips,

with the purpose of preventing hotspots that may be caused by programs that are heavy

on communication. One strip is placed in the middle of the left half, another is placed in

the middle of the right half and the last one is placed at the center of the chip.

The composition of a tile is given in Figure 7.5. Each cluster is paired with two cache

modules, and together they form a near perfect square. The aspect ratios of the clusters

and the caches are kept approximately the same as their 90 nm versions. It is important to

note that the physical neighborhood of caches to the clusters does not imply reduced

memory access times in the programming of XMT. XMT is still a uniform memory access

(UMA) architecture.

Next, we will show that the Mesh-of-Trees (MoT) ICN of XMT can feasibly be split into

the three strips in FP1 (Figure 7.4) and this division will not add significant complexity to

the ICN routing. A brief background on the MoT-ICN can be found in Section 3.1.2.

Figure 7.6 shows conceptually how to divide the Mesh-of-Trees (MoT) interconnect

109

Cluster

Cluster
Cache Cache

Cache Cache

Master TCU

ICN

Figure 7.4: The checkerboard floorplan (FP1) for the XMT1024 chip.

topology into three independent groups of subtrees4. In each sub-figure clusters (and

cache modules) are split into two groups. Each group represents the clusters (cache

modules) on one side of the chip in Figure 7.4. In this example, we focus on the ICN from

the clusters to the cache modules, however the solution can also be applied to the reverse

direction. The number of cache modules are twice the number of clusters, so two cache

modules share one ICN port via arbitration. The problem can now be reformulated as

“Can we partition the ICN so that we have independent circuits that route cluster group A to

cache group A (A→ A), cluster group B to cache group B (B → B), cluster group A to cache

group B (A→ B), and finally cluster group B to cache group A (B → A)?”. If the answer is

yes, A→ A and B → B partitions can be placed on the sides and A→ B and B → A

4The MoT topology was reviewed in Section 3.3.

Cluster

Cache Cache

2.54 mm

1.56 mm

0.98 mm

1.27 mm

Figure 7.5: The cluster/cache tile for FP2.

110

Clusters 0...31

0 31

Clusters 32...63

32 63

Caches 0...63

0 63

Caches 64...127

32 1271 62 33 126

Clusters 0...31

0 31

Clusters 32...63

32 63

Caches 0...63

0 63

Caches 64...127

32 1271 62 33 126

(a)

(b)

Figure 7.6: Partitioning the MoT-ICN for distributed ICN floorplan: (a) Example partitioning of routing from
a cluster on the left hand side of the floorplan to all cache modules. (a) Example partitioning of routing from
a cluster on the right hand side of the floorplan to all cache modules.

partitions can be placed at the center.

For the purposes of a simple demonstration we assume that fan-in tree of a cache

module resides right in front of it and fan-out trees from all the clusters span the chip to

connect to it. This means that one leaf from each cluster fan-out tree should reach the

physical location of the cache module in order to connect to its fan-in tree. An inspection

of the MoT topology will show that this can be assumed without loss of generality.

Figure 7.6(a) and (b) show the fan-out trees of Clusters 0 and 32. More specifically, the

root and its immediate subtrees are illustrated. As should be clear from the figure, each

fan-out tree has one subtree that can be put in one of the A→ A or B → B partitions, and

one subtree that can be put in one of the A→ B or B → A partitions. The only wires for

111

Clusters 0...31

0 31

Clusters 32...63

32 63

Caches 0...63

0 63

Caches 64...127

32 1271 62 33 126

Figure 7.7: Mapping of the partitioned MoT-ICN to the floorplan.

which the routing distance might increase are the ones that start at the tree roots and cross

from left to right or right to left (marked with red in the figure). This might incur

additional latencies for certain routing paths because of additional pipeline stages

required to keep the timing constraints. However this is a reasonable cost and be

alleviated via floorplan optimizations. Finally, Figure 7.7 shows how the connections can

be mapped on the floorplan.

7.3.1 Evaluation of Floorplans without DTM

We claimed that between the two floorplans we consider in this section, FP1 is superior to

FP2 in terms of thermal efficiency. Now, we verify this claim via simulation. We define

112

Figure 7.8: Temperature data from execution of the power-virus program on FP1, displayed as a thermal map.
Brighter colors indicate hotter areas; highest and lowest temperatures are marked with yellow and blue boxes.

Figure 7.9: Temperature data from execution of the power-virus program on FP2, displayed as a thermal map.
Brighter colors indicate hotter areas; highest and lowest temperatures are marked with yellow and blue boxes.

peak temperature as the highest temperature observed among the on-chip temperature

sensors. Assuming that our claim is correct, for a given program FP2 would yield a

113

higher peak temperature than FP1. If the temperature is a constraint, we would have to

bring the peak temperature of FP2 down by slowing its clock until the the temperature is

the same as for FP1. As a result, the program will take longer to finish in FP2. We

measure the overhead of a program on FP2, compared to FP1:

Overhead =
RuntimeFP2 −RuntimeFP1

RuntimeFP1
(7.1)

We repeat experiments for the two heatsink convection resistance values of 0.05K/W

and 0.1K/W . The initial experiment with an artificial power-virus program shows that

FP2 suffers from a 22% execution time overhead compared to FP1 (for both Rc values)

due to the reduced clock frequency required to meet the TDP. The program we simulated

in this experiment contains only arithmetic operations and no memory instructions.

Figures 7.8 and 7.9 display the temperature data from execution of the power-virus

program on FP1 and FP2 with Rc = 0.1K/W . This time the clock frequency was kept the

same, at 1.3GHz, in both experiments. Each figure shows maximum, minimum and

average temperatures. Brighter colors indicate hotter areas; highest and lowest

temperatures are marked with yellow and blue boxes. The data indicates that the highest

temperature in FP2 (370.95K = 97.80C) is approximately 5C higher than it is in FP1.

Moreover, the difference between the highest and the lowest temperatures is 18C whereas

it is almost half, 9.7C in FP1. The average temperatures are approximately the same in

FP1 and FP2. It is the more uniform distribution of temperature in FP1 that makes is more

thermally efficient.

A more realistic evaluation is shown in Fig. 7.10, where we repeat the same analysis on

our benchmark set. We choose a baseline clock frequency to accommodate the worst case

thermal limitations, as demonstrated by the most power consuming benchmark (Conv).

Limit temperature (Tlim) was set to 65C. The average cycle time overhead for

Rc = 0.05K/W is 13% and 16% for Rc = 0.1K/W (Tlim = 65K).

114

Rc = 0.05K/W Rc = 0.1K/W

0%

4%

8%

12%

16%

bfs-ii
bfs

bprop
conv

fft m
m

ult

m
sort

nw reduct

spm
v

O
ve

rh
ea

d

0%

4%

8%

12%

16%

bfs-ii
bfs

bprop
conv

fft m
m

ult

m
sort

nw reduct

spm
v

Figure 7.10: Execution time overhead on FP2 compared to FP1.

7.4 DTM Background

DTM interacts with the system during runtime and usually operates at the architectural

level by utilizing tools such as dynamic voltage and frequency scaling (DVFS) and clock

and power gating (reviewed in Chapter 2). These tools can be applied globally or in a

distributed manner, where different parts of the chip are on different clock (and, if

available, voltage) domains. A comprehensive survey of various power and thermal

management techniques in uni-processors and multi-cores can be found in [KM08].

While distributed control is generally more beneficial, it also comes at a higher design

effort and implementation cost:

Clock domains: Separate clocks on a chip can be implemented via multiple PLL clock

generators and/or clock dividers. Alternatively, Truong, et al. [TCM+09] managed to

clock the 167 cores on their many-core chip independently using a ring oscillator and a set

of clock dividers per core.

Voltage Domains: One of the strategies for multiple on-chip voltage domains is voltage

islands [LZB+02]. Voltage islands are silicon areas in a chip that are fed by a common

supply source through the same package pin. The advantage of voltage islands is

separate islands can be managed independently according to their activation pattern. For

the routing to be feasible, the transistors in the same voltage group should physically be

placed together. Another strategy is to distribute two or more power networks to the chip

in parallel [TCM+09]. In this scenario, design is considerably simpler but the voltage

choices are limited to two. The two voltages can still be modified dynamically at the

115

global scale.

Distributed power management has become common among state-of-the-art parallel

processors. For instance, Intel Nehalem is capable of power gating a subset of cores,

which then enables it to raise the voltage and frequency of the active cores to boost their

performance without exceeding the power budget [Int08a]. Intel’s 48-core processor goes

even further, supporting DVFS with 8 voltage and 28 frequency islands, and allowing

software control of frequency scaling [HD+10].

7.4.1 Control of Temperature via PID Controllers

Proportional-Integral-Derivative (PID) controllers are the most common form of feedback

control and they are extensively used in a variety of applications from industrial

automation to microprocessors [Ben93]. The reason behind their popularity is their

simplicity and effectiveness.

PID controllers are also commonly utilized in power and thermal management of

processors [DM06, SAS02]. In the DTM algorithms that we introduce in the next section,

the PID controller is one of the building blocks and it is defined by the following equation

(for one core and one thermal sensor):

u[n] = kp · e[n] + ki ·
∑n

y=1 e[n] + kd · (e[n]− e[n− 1]) (7.2)

e[n] = Target− Sensor Reading

where kp, ki and kd are constants called the proportional, integral and derivative gains,

respectively. u[n] is the controller output, Target is the objective temperature and error,

e[n], is the distance of the current temperature reading from the target. The first term in

the equation is the proportional term, the second is the integral term and the third is the

derivative term. At the steady state, the proportional and derivative terms are 0 and the

integral term alone is equal to the output.

The concept of the PID controller is illustrated in Figure 7.11. An actual

implementation of a PID controller requires additional considerations from a practical

point of view. First, output should be filtered from possible invalid values. For example,

116

Core

∑

-

+
Target

PID Calculation

Sensor

reading

Controller

output (u[n])

Frequency

voltage

Workload

Error (e[n])

Figure 7.11: PID controller for one core or cluster and one thermal sensor.

at times the output might turn to very small negative values due to quantization errors,

which should not be allowed. Second, the integral term should be protected against a

phenomenon called integral windup. This happens in cases where the the power

dissipation is so low that the core works at the maximum frequency but the temperature

reading is still under the target value (i.e., error is non-zero). The error will continuously

accumulate on the integral term, causing it to increase arbitrarily. Eventually, if power

dissipation does increase and temperature overshoots the target, it will take the integral

output a long time to “unwind”, i.e., return to a reading that is within the meaningful

input range. Integral windup is can be avoided by limiting the range of the integral term.

The code given next represents our implementation of the PID controller in XMTSim.

// k_p , k_i , and k_d are constant parameters .
// t a r g e t i s the t a r g e t temperature .
double c o n t r o l l e r (double sensor_reading) {

double l a s t _ e r r o r = e r r o r ;
double e r r o r = t a r g e t − sensor_reading ;
// Ca l cu l a te the propor t iona l term .
double propor t iona l = k_p ∗ e r r o r ;
// Ca l cu l a te the i n t e g r a l term .
double i n t e g r a l += k_i ∗ e r r o r ;
// Prevent the i n t e g r a l windup .
i f (i n t e g r a l > i n t e g r a l _ f r e e z e) i n t e g r a l = i n t e g r a l _ f r e e z e ;
i f (i n t e g r a l < 0) i n t e g r a l = 0 ;
// Ca l cu l a te the d e r i v a t i v e term .
double d e r i v a t i v e = k_d ∗ (e r r o r − l a s t E r r o r) ;
double c o n t r o l l e r _ o u t p u t = propor t iona l + i n t e g r a l + d e r i v a t i v e ;
// C o n t r o l l e r output should not take an i n v a l i d value even i f i t i s
// n e g l i g i b l e .
i f (c o n t r o l l e r _ o u t p u t < lowerBound)

c o n t r o l l e r _ o u t p u t = lowerBound ;
i f (c o n t r o l l e r _ o u t p u t > upperBound)

c o n t r o l l e r _ o u t p u t = upperBound ;
re turn c o n t r o l l e r _ o u t p u t ;

}

117

For complex systems, values of the parameters, kp, ki, and kd are determined through

well established procedures. In our case, simple experimentation was sufficient to derive

parameters values for a fast converging control mechanism.

Other controllers (ex., model predictive control [BCTB11]) are also proposed in the

literature . These controllers can yield better convergence times compared to PID

controllers, however this was not an immediate issue for our experiments, therefore we

leave incorporating these controllers as future work.

7.5 DTM Algorithms and Evaluation

In this section, we evaluate a set of DTM techniques that can potentially improve the

performance of the XMT1024 processor. Our main objective is obtaining the shortest

execution time for a benchmark without exceeding a predetermined temperature limit.

Note that energy efficiency is not within the scope of this objective.

In our experiments, we evaluated the following DTM techniques that are motivated by

the previous work on single and multi-cores [KM08]. We adapted these techniques to our

many-core platform.

GDVFS (Global DVFS): All clusters, caches and the ICN are controlled by the same

controller. The input of the controller is the maximum temperature among the clusters

and the output is the global voltage and frequency values. Global DVFS is the simplest

DTM technique in terms of physical implementation therefore any other technique

should perform better in order to justify its incorporation.

CG-DDVFS (Coarse-Grain Distributed DVFS): In addition to the global controller for

clusters, the ICN is controlled by a dedicated controller. The input of this controller is the

maximum temperature measured over the ICN area. Some many-cores, such as GTX280,

already have separate clock domains for the computation elements and the

interconnection network, leading us to conclude that the implementation cost of this

technique is acceptable.

FG-DDVFS (Fine-Grain Distributed DVFS): Each cluster has a separate voltage island

and is controlled by an independent DVFS controller. The input of a controller is the

118

Table 7.2: The baseline clock frequencies

Rc = 0.05K/W Rc = 0.1K/W
FP1 69% 34%
FP2 60% 29%

temperature of the cluster and the output is the voltage and frequency values. The cache

frequency is equal to the average frequency of the clusters. The ICN is controlled by a

dedicated controller as in CG-DDVFS. The implementation of this technique may be

prohibitively expensive on large systems due to the number of voltage islands.

LP-DDVFS (Distributed DVFS for Low-Parallelism): This technique is only relevant for

the benchmarks that have significant portions of parallel execution during which the

number of threads is less than the number of TCUs. In XMT, threads are spread out to as

many clusters as possible in order to reduce resource contention. However, this approach

prevents us from placing the unused TCUs in the off state (i.e. voltage gating) and the

wasted static power cannot be used towards increasing the dynamic power envelope.

LP-DDVFS groups the threads into a minimal number of clusters. The unutilized clusters

are then placed in the off state, and the saved power is utilized by increasing the clock

frequency of the active clusters. The implementation cost of this technique is proportional

to the complexity of thread scheduling, which is very low on XMT.

7.5.1 Analysis of DTM Results

To form a baseline for assessing the efficiency of the DTM techniques listed above, we

simulated all the benchmarks on an XMT configuration with no thermal management.

We assume that such a system is optimized to run at the fastest clock frequency that is

thermally feasible for the worst case (i.e. the most active, most power consuming)

benchmark, which was shown to be Conv in Section 7.2. Table 7.2 lists these clock

frequencies as a percentage of the maximum cluster clock frequency. The table contains

one entry per convection resistance and floorplan combination, as they determine the

thermal response of the chip. The entry for FP2 and Rc = 0.1K/W requires the lowest

clock frequency therefore it constitutes the strictest thermal constraint. Similarly, the entry

for FP1 and Rc = 0.05K/W constitutes the least restrictive thermal constraint.

In Figures 7.12 and 7.13, we list the benchmark speedups when simulated with the

119

various DTM techniques. The speedup of a benchmark is calculated using the following

formula:

S =
Execbase
Execdtm

(7.3)

where Execbase and Execdtm are the execution times on the baseline system and with

thermal management, respectively. The benchmarks are divided into graphs according to

their overall activity levels, where the top row is for the high activity benchmarks and

bottom row is for the low activity benchmarks. Within each row there are four subgraphs,

each of which corresponds to one of the four entries in Table 7.2.

As a general trend, the benchmarks that benefit the most from the DTM techniques are

benchmarks with low cluster activity factors, namely Bfs-I, Bfs-II, Bprop, Nw and Msort

(note the scale difference between the y axes of the two rows of Figures 7.12 and 7.13).

The highest speedups are observed for Bfs-II with the DTM techniques that incorporate a

dedicated ICN controller, CG-DDVFS and FG-DDVFS (up to 46% better speedup than

GDVFS). There are two underlying reasons for this behavior. First, Bfs-II is mainly bound

by memory latency, hence it benefits greatly from the increased ICN frequency. Moreover,

it has very low overall activity and runs at the maximum clock speed without even

nearing the limit temperature. On the other extreme, Conv has the highest cluster activity

and was used as the worst case in determining the feasible baseline clock frequency, and

therefore shows the least improvement in most experiments.

We also observe that as the thermal constraints become stricter, the average speedup

increases and the variation between speedups widens. This trend is clearly visible when

comparing the low activity benchmarks with the two Rc values. In order to clarify the

cause for this phenomenon, recall that the benchmark runtimes with DTM are compared

against the runtimes with the baseline clock frequency, which is optimized for the worst

case. The no-DTM case penalizes the lowest activity benchmarks unnecessarily, and this

penalty increases further as the thermal constraints tighten (as can be seen from

Table 7.2). On the other hand, if DTM is present, the overhead of the low activity

benchmarks will not change as significantly with tighter thermal constraints.

In the remainder of this section we will concentrate on the performance of individual

DTM techniques and conclude by revisiting the effect of floorplan on performance.

120

High Activity Benchmarks

Rc=0.05K/W Rc=0.1K/W

 1.0

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

spm
v

reduct

conv
m

m
ult

fft

S
pe

ed
up

GDVFS
CG−DDVFS
FG−DDVFS

 1.0

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

spmv
reduct

conv
mmult

fft

Low Activity Benchmarks

Rc=0.05K/W Rc=0.1K/W

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

bfs−i
bfs−ii

bprop

nw m
sort

S
pe

ed
up

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

bfs−i
bfs−ii

bprop

nw m
sort

Figure 7.12: Benchmark speedups on FP1 with DTM. Each graph shows results with a different convection
resistance (Rc) and floorplan combination. The benchmarks are grouped into high (top graphs) and low
(bottom graphs) cluster activity. Note that the two groups have different y-axis ranges.

121

High Activity Benchmarks

Rc=0.05K/W Rc=0.1K/W

 1.0

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

spmv
reduct

conv
mmult

fft

Sp
ee

du
p

 1.0

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

spmv
reduct

conv
mmult

fft

Low Activity Benchmarks

Rc=0.05K/W Rc=0.1K/W

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

bfs−i
bfs−ii

bprop

nw m
sort

S
pe

ed
up

GDVFS
CG−DDVFS
FG−DDVFS

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

bfs−i
bfs−ii

bprop

nw m
sort

Figure 7.13: Benchmark speedups on FP2 with DTM. Each graph shows results with a different convection
resistance (Rc) and floorplan combination. The benchmarks are grouped into high (top graphs) and low
(bottom graphs) cluster activity. Note that the two groups have different y-axis ranges.

122

7.5.2 CG-DDVFS

The CG-DDVFS technique is only effective when the thermal constraints are not very

tight (i.e. Rc = 0.05K/W) and generates good results on a subset of the low activity

benchmarks: Bfs-I, Bfs-II, Nw and Msort, which run below the thermal limit for the

majority of their execution time. This allows them to maximize the ICN clock frequency,

providing speedups of 17% (Msort), 25% (Bfs-II), 30% (Nw) and 46% (Bfs-II) over GDVFS

on both floorplans. With Rc = 0.1K/W , all benchmarks but Bfs-II reach the thermal limit

temperature. In this case, the gains are not significant except for a few noticeable cases:

Bfs-I, (14% over GDVFS) and Nw (10% over GDVFS). Bfs-II’s gain stays at 46% as it is still

under the thermal limit. A common property of these benchmarks, aside from the low

overall activity factors, is how the cluster and ICN activities compare: their ICN activity is

higher than the cluster activity, as opposed to the rest of the benchmarks, for which it is

the opposite. At the source of this observation lies the fact that higher ICN to cluster

activity ratio is common in programs with irregular memory accesses and low

computation. An exception is the Bprop benchmark, for which the bottleneck is queuing

on data. For the remainder of the benchmarks, we observed that CG-DDVFS may hurt

performance by up to 12% with respect to GDVFS.

Insight: For a system with a central interconnection component such as XMT, workloads

that are characterized by scattered irregular memory accesses usually benefit more from a

dedicated interconnect thermal monitoring and controller. This information can influence

the choice of DTM for a system that targets such workloads. We also saw that dedicated

ICN control based on thermal input can hurt performance for regular parallel benchmarks

with high computation ratios. This observation gives a good decision mechanism to a

general-purpose system for picking up the instances when CG-DDVFS should be applied.

We incorporated dynamic activity monitoring into the control algorithm of CG-DDVFS,

and fall back to GDVFS whenever the ICN activity is lower than the cluster activity. The

speedup values in Figures 7.12 and 7.13 reflect this addition to CG-DDVFS.

123

7.5.3 FG-DDVFS

As indicated in Section 7.2, the activity of clusters does not vary significantly over the

chip area at a given time, when considering a single task and time window that is

comparable to the duration for a significant change in temperature to occur. Therefore,

the only benefit that FG-DDVFS can provide to a single tasking system is a result of the

temperature difference between the middle of the die, where the clusters are hotter, and

the edges. A distributed DTM technique requires fine granularity of hardware control for

voltage and frequency, which is costly in terms of added hardware complexity.

Consequently, the associated benefits of such a scheme need to justify the added

overhead. As can be seen in Figures 7.12 and 7.13, the added value of FG-DDVFS is more

apparent for higher activity benchmarks such as Spmv, Reduct, Conv and FFT. For these

benchmarks the combined effect of ICN and distributed cluster scaling provides a

speedup of up to 22% (Reduct in FP2 and Rc = 0.05K/W) over GDVFS.

Insight: Individual temperature monitoring and control for computing clusters may be

worthwhile even in a single-tasking system with fairly uniform workload distribution.

The gains are noteworthy for regular parallel programs with high amounts of

computation. Conversely, the overall performance of FG-DDVFS on the low activity

benchmarks may not justify its added cost for some systems.

An interesting insight to the operation of FG-DDVFS is as follows. Typically, with a

global cluster controller, the edges of the chip will be cooler than the thermal limit

temperature. A per cluster controller mechanism will try to pick up this thermal slack by

increasing clock frequency at the edge clusters. However, as the temperature of the edge

clusters rise, so does the temperature of the center clusters and the controllers will

respond by converging at lower clock frequencies.

7.5.4 LP-DDVFS

The LP-DDVFS technique is relevant only for a small subset of the simulated benchmarks

- those with low parallelism. The only two benchmarks to which LP-DDVFS would apply

are Mmult and Nw, both of which were classified as low-p type (see Table 7.1). The third

low parallelism benchmark, Bfs-II, would not benefit from this technique for the

124

simulated parameters. This is because Bfs-II already operates at the maximum clock

frequency, meaning that the reduced power consumption resulting from voltage gating

the clusters in the off state cannot be translated into performance gain. The LP-DDVFS

techniques provides performance gains of 10%-12% over GDVFS for the low parallelism

benchmarks.

Insight: In a clustered architecture such as XMT, threads of programs with low levels of

parallelism can be assigned to clusters in two ways with conflicting benefits. On the one

hand, distributing threads between clusters increases performance due to reduced

contention on shared resources. On the other hand, when threads are grouped, off clusters

can be voltage gated, allowing us to route the saved static power towards increasing the

clock frequency of the active ones. The optimal choice is benchmark dependent. For

example, a benchmark such as Bfs-II does not benefit from the latter. This fact

demonstrates the need for dynamic control of assignment of threads to clusters.

7.5.5 Effect of floorplan

We revisit Figure 7.10, this time including the effect of thermal management. Figure 7.14

compares the runtimes of the benchmarks on the two floorplans with DTM. As expected,

the low-activity benchmarks show the least difference between the two floorplans since

they operate at near maximum clock speeds (except for Bfs-II when Rc = 0.05K/W ,

which is bound by the ICN activity). For the rest of the benchmarks, application of DTM

seems to lessen the differences between the floorplans.

7.6 Future Work

XMTSim opens up a range of possibilities for evaluating power and thermal management

algorithms in the many-core context. In this chapter, we evaluated thermal management

algorithms in a single-tasked environment. Some other possibilities are as follows.

New metrics for management. Total energy consumption and power envelope are

some of the other relevant metrics that can be considered for dynamic management. Total

energy is especially important for mobile devices, which are limited by battery life, and

125

Rc = 0.05K/W

 0%
 2%
 4%
 6%
 8%

 10%
 12%
 14%

bfs−ii

bfs−i
bprop

conv
fft m

m
ult

m
sort

nw reduct

spm
v

O
ve

rh
ea

d

GDVFS
CG−DDVFS
FG−DDVFS

Rc = 0.1K/W

 −5%

 0%

 5%

 10%

 15%

 20%

bfs−ii

bfs−i
bprop

conv
fft m

m
ult

m
sort

nw reduct

spm
v

O
ve

rh
ea

d

Figure 7.14: Execution time overheads on FP2 compared to FP1 under DTM.

126

data centers, where the cost of energy adds up to significant amounts. Power envelope,

similar to thermal envelope, is related to the feasibility of the system. In this case, the

power plan for the processor may enforce a specific power envelope. Also, in large

systems such as server farms, it might be desirable to modify the the power density for

certain groups of processors dynamically.

Dynamic thermal/power management in a multi-tasking environment. Consider an

XMT system with multiple master TCUs. Such a system would be capable of running

multiple parallel programs concurrently, each program assigned to one master TCU. Total

number of parallel TCUs would be shared among the master TCUs statically or

dynamically. In this environment, dynamic management becomes an optimization

problem with many variables. Given a set of parallel tasks, first the algorithm should

choose the tasks that should be run at the same time. Then, it should decide an

appropriate power/performance point for each task. The parameters for fixing the

power/performance point are the number of parallel TCUs to be allocated for the task

and frequency/voltage values of the TCUs.

7.7 Related Work

A vast amount of literature is dedicated to the thermal management of systems with dual,

quad or 8 core processors (for a summary, see book by Kaxiras and Martonosi [KM08]).

However, the interest in the thermal management of more than tens of cores on a chip is

relatively recent. A factor that stands in the way of extended research in this area is the

scarcity of widely accepted power/thermal enabled simulators and also the lack of

consensus on the programming model and architecture of such processors. Many of the

current research papers on the thermal management of many-cores start with less than

100 cores. They assume a pool of uncorrelated serial benchmarks as their workload and

capitalize on the variance in the execution profiles of these benchmarks. Some examples

are [LZWQ10, KRU09, GMQ10]. However, it is simply not realistic to assume that an OS

will provide a sufficient number of independent tasks to occupy all the cores in a

general-purpose many-core with 1000s of cores. It is evident that single-task parallelism

should be included in the formulation of many-core thermal management. Even though

127

it focuses on power rather than thermal management and considers up to only 128 cores,

the study by Ma, et al. [MLCW11] should be mentioned as they simulate a set of parallel

benchmarks and in this respect they are closer to our vision.

128

Chapter 8

Conclusion

In this thesis we investigated the power consumption and the thermal properties of the

Explicit Multi-Threading (XMT) architecture from a high-level perspective. XMT is a

highly-scalable on-chip many-core platform for improving single-task parallelism. One of

the fundamental objectives of XMT is ease-of-programming and our study aims to

advance the high impact message that it is possible to build a highly scalable general-purpose

many-core computer that is easy to program, excels on performance and is competitive on power.

We hope that our findings will be a trailblazer for future commercial products. More

concretely, the contributions of this thesis can be summarized as follows:

• We implemented XMTSim, a highly-configurable cycle-accurate simulator of the

XMT architecture, complete with power estimation and dynamic power/thermal

management features. XMTSim has been vital in exploring the design space for the

XMT computer architecture, as well as establishing the ease-of-programming and

competitive performance claims of the XMT project. Furthermore, the capabilities

XMTSim extend beyond the scope of the XMT vision. It can be used to explore a

much greater design space of shared memory many-cores by a range of researchers

such as algorithm developers and system architects.

• We used XMTSim to compare the performance of an envisioned 1024-TCU XMT

processor (XMT1024) with an NVIDIA GTX280 many-core GPU. We enabled a

meaningful comparison by establishing the XMT configuration that is silicon

area-equivalent to GTX280. Results from the ASIC tape-out of a 64-TCU XMT ASIC

prototype, to which we contributed at the synthesis stage, was partly used in

derivation of the XMT configuration. Simulations show that the XMT1024 provides

2.05x to 8.10 speedups over GTX280 on irregular parallel programs, and slowdowns

of 0.23x to 0.74x on regular programs. In view of these results, XMT is

well-positioned for the mainstream general-purpose platform of the future,

129

especially when coupled with a GPU.

• We extended the XMT versus GPU comparison by adding a power constraint,

which is crucial for supporting the performance advantage claims of XMT. A

complete comparison of XMT1024 and GTX280 should essentially show that, not

only they are area-equivalent but also XMT1024 does not require higher power

envelope than GTX280 for achieving the above speedups. Our initial experiments

suggested this is indeed the case, however power estimation of a simulated

processor is subject to unexpected errors. Therefore we repeated the experiments

assuming that our initial power model was imperfect in various aspects. We show

that for the best case scenario XMT1024 over-performs GTX280 by an average of

8.8x on irregular benchmarks and 6.4x overall. Speedups are only reduced by an

average of 20% for the average-case scenario and approximately halved for the

worst-case. Even for the worst case, XMT is an viable option as a general-purpose

processor given its ease-of-programming.

• We explored to what extent various dynamic thermal management (DTM)

algorithms could improve the performance of the XMT1024 processor. DTM is well

studied in the context of multi-cores up to 10s of cores but we are among the first to

evaluate it for a many-core processor with 1000+ cores. We observed that in the

XMT1024 processor with fine-grained parallel workloads, the dominant source of

thermal imbalance is often between the cores and the interconnection network. For

instance, a DTM technique that exploits this imbalance by individually managing

the interconnect can perform up to 46% better than the global DTM for irregular

parallel benchmarks. We provided several other high-level insights on the effect of

individually managing the interconnect and the computing clusters.

The material in Chapters 4 and 5 has appeared in [KTC+11] and [CKTV10] as peer

reviewed publications. The work presented in Chapters 6 and 7 is currently under

review for publication.

130

Appendix A

Basics of Digital CMOS Logic

The majority of the modern commercial processors are designed with Metal-Oxide

Semiconductor (MOS) transistors. Complementary-MOS (CMOS) is also the most

common circuit design methodology used in constructing logic gates with MOS

transistors. In this section, we give a brief background on power dissipation and speed of

CMOS circuits.

A.1 The MOSFET

Metal-Oxide Semiconductor Field Effect Transistors (MOSFETs, or MOS transistors) are

the building blocks of CMOS circuits. For the purposes of digital circuits, a MOSFET is

expected to act as an ideal switch. The vertical cross section of a MOSFET as well as the

circuit symbols for n and p types (explained next) are given in Figure A.1. The gate is the

control terminal and when an ideal transistor is on, it forms a low-resistance conductive

path (i.e., channel) between the source and the drain terminals1. The connection does not

exist when the transistor is off. Two types of MOS transistors are used in CMOS circuits:

(i) an n-channel MOS (nMOS) transistor is on when high voltage is applied to its gate

(VGS = (VG − VS) > vth) and, (ii) a p-channel MOS (pMOS) transistor is on at low voltage

input (VGS = (VG − VS) < −vth). vth is the transistor threshold voltage and it is a positive

number. The value of VGS − vth for nMOS or −VGS − vth for pMOS is called the gate

overdrive. Higher gate overdrive values result in faster and more ideal switch behavior.

A.2 A Simple CMOS Logic Gate: The Inverter

Figure A.2 shows a CMOS inverter, which is the simplest of CMOS logic gates. We use it

to demonstrate the working principles of CMOS gates.

1The fourth terminal, body (or substrate) connection, is not crucial for the purposes of this introduction.

131

Source

Gate

Drain

Channel

Body

Gate-oxide
VG

VS

VD

VB ISD
VG

VD

VS

VB IDS

(a) (b)

Figure A.1: (a) Vertical cross-section of a MOSFET along its channel. (b) Circuit symbols of pMOS and nMOS
transistors.

Supply Voltage -- Vdd

Ground voltage -- 0V

Load

(modeled as capacitance)

Transistor current paths

for ON state

Transistor gate

terminals

Input Output

M1

M2

Figure A.2: The CMOS inverter.

The inverter consists of two transistors: the nMOS (M2 in the figure) is on when gate

voltage is high and the pMOS (M1 in the figure) is on when its gate voltage is low. Since

binary logic assumes only two voltage levels - low and high - it is clear that only one

transistor can be on at a given time. Ideally, the one that is off acts as an open circuit and,

at any given time, the output is connected to either Vdd (when input is low and M1 is on)

or to ground (when input is high and M2 is on). For the transistor that is on, the value of

|VG − VS | is equal to Vdd, therefore gate overdrive is Vdd − vth.

Other logic functions can be obtained by replacing the pMOS and nMOS transistors of

the inverter with more complex pMOS and nMOS transistor networks, so-called pull-up

and pull-down networks. The overall circuit still operates according to the same principle:

only one of the pull-up and pull-down networks can have a conductive path at any given

time.

Average time that it takes for a CMOS gate to switch between states (td) depends on the

drive strength of the transistors in it. The drive strength is a function of the supply

132

voltage and the gate overdrive [SN90]:

td ∝
Vdd

(Vdd − vth)a
(A.1)

The constant, a is a technology dependent parameter between 1 and 2 with a typical

value close to 2, therefore gate delay is assumed to be proportional to voltage. The

equation ceases to hold for very high values of Vdd due to the velocity saturation

phenomenon, which causes the effective value of a to drop down to 1.

Switching time, td, is also proportional to the gate load capacitance. The output of a

CMOS gate is essentially connected to the inputs of other gates. The total capacitance at

the output node, which is the sum of the parasitic capacitances of all connected gates, is

called the load capacitance. When the logic state of the gate changes, the output

capacitance charges (or discharges) to the new voltage. The switching speed of a gate, td,

depends on its output (or load) capacitance and its drive strength, a function of the supply

voltage and gate overdrive [SN90].

A.3 Dynamic Power

Charge/discharge of capacitive loads (switching power) and short circuit currents are the

two mechanisms that cause the dynamic power of CMOS circuits. In modern circuits,

short circuit currents are usually negligible and switching power is dominant.

Figure A.3 illustrates the series of events that lead to the dynamic power dissipation in

an inverter gate. Low voltage state (ideally 0V) is assumed to correspond to binary value

0 and high voltage (ideally Vdd) to binary value 1. At the initial and final states

(Figs. A.3(a) and A.3(d)), no dynamic power is spent. Short circuit current is observed

only during the brief time that both gates are active, as shown in Figs. A.3(b). Switching

current exists during the entire transition. In the following subsections, we explain the

switching power and short circuit power in detail.

133

ON

ON

OFF

Isc

Input=

 high to low

Input=low

VddVdd

Output=high

(b)(a)

Load

discharged

Isw

OFF

ON

Input=low

Vdd

Output=

 low to high

(c)

Isw

OFF

ON

Input=low

Vdd

Output=high

(d)

Load

charged

ON

Figure A.3: Dynamic currents during the logic state transition of an inverter from 0 to 1: (a) initial state, no
dynamic power is spent, (b) short circuit (Isc) and switching current (Isw) observed during transition, (c) Isw
continues until the transition is completed, (d) new state.

A.3.1 Switching Power

In CMOS logic gates, binary states are represented with high and low voltage levels and

switching from one level to another results in charging or discharging of the load

capacitance at the output of the gate. In an aggressively optimized logic circuit, the

switching power is proportional to the amount of work performed. Unlike the other

power components, it cannot be brought down to a negligible value via conservative

design constraints or advanced technologies.

The overall switching power of a logic circuit consisting of many gates, Psw, is

described as follows [Rab96]:

134

PSW ∝ CLVdd
2fα (A.2)

CL is the average load capacitance of the gates, Vdd is the supply voltage, f is the clock

frequency and α is the average switching probability of the logic gate output nodes.

A.3.2 Short Circuit Power

During the logic state switch of a gate, for a brief moment the input voltage sweeps

intermediate values. Intermediate levels at the input of a gate cause both the pull-up and

pull-down circuits (M1 and M2 for the inverter in Figure A.2) to conduct for a short

period of time as illustrated in Figure A.3(b). The resulting power consumption is

described by the following equation [Vee84].

PSC ∝
W

L
(Vdd − 2 · Vth)

3τf (A.3)

W and L are the channel width and length in a CMOS transistor, Vth is the threshold

voltage and τ is the average input rise and fall time. As mentioned earlier, short circuit

power is negligible in comparison to the switching power.

A.4 Leakage Power

An ideal MOSFET switch is expected not to conduct any current between its drain and

source terminals in the off state. Also, the gate of the transistor is intended to act as an

ideal insulator at all times. In reality, these assumptions do not hold and in addition to the

active power, the transistor consumes power due to various leakage currents. The

amount of leakage has become significant in the deep sub-micron era. Below is a list of

the leakage currents that we discuss in this section and Figure A.4 illustrates these

currents on a vertical cross-section of a MOS transistor.

I1 – Subthreshold leakage

I2 – Gate oxide tunneling leakage

I3 – Gate induced drain leakage (GIDL)

135

Source Drain

Gate

I1

I2

I3

I4

Figure A.4: Overview of leakage currents in a MOS transistor.

OFF

ON

ON

OFF

Isub

Igate

Input=high

Input=low

Igate

Vdd Vdd

Output=low Output=high

(a) (b)

Isub

Figure A.5: Subthreshold (Isub) and gate (Igate) leakage currents during inactive states of a CMOS inverter (a)
transistor output is logic-low (b) transistor output is logic-high.

I4 – Junction leakage

Among the currents listed above, subthreshold leakage has historically been the dominant

one. Gate-oxide tunneling has gained importance with the scaling of transistor gate

oxides. Junction leakage along with GIDL becomes significant in the presence of body

biasing techniques that might reduce other types of leakage (discussed in Section 2.3.1).

Figure A.5 demonstrates the subthreshold and gate leakage currents on logic-high and

logic-low states of an inverter gate. As the figure shows, subthreshold leakage causes a

constant current path from supply voltage to ground and gate leakage induces current

through the gate of the off transistor.

A.4.1 Subthreshold Leakage

Subthreshold leakage power (Psub) typically dominates the off-state power in modern

devices. It is caused by the inability of the transistor to switch off the path between its

136

VGS

log(IDS)

Vth

Ideal threshold

cut-off

Subthreshold

current

Figure A.6: Drain current versus gate voltage in an nMOS transistor with constant VDS . The inverse of the
subthreshold slope has typical values ranging from 80 to 120 mV per decade.

source and drain terminals and as we will show, it is strongly related to the threshold

voltage. Figure A.6 depicts the drain to source current (IDS) as a function of gate voltage

(VGS). The section where VGS is lower than the threshold voltage plots the subthreshold

leakage current (Isub).

Psub and Isub are modeled via the following equations [ZPS+03].

Psub = Isub · Vdd (A.4)

Isub = µ0 · Cox ·
W

L
· eb(Vdd−Vdd0) · v2t · (1− e

−Vdd
vt) · e

−|vth|−Voff
n·vt (A.5)

According to Equation (A.4) leakage power is a function of several parameters, most

importantly the supply voltage (Vdd), temperature, which is included in the thermal

voltage (vt = kT/q, where k is the Boltzmann constant and q is the electron charge) and

the MOS threshold voltage (vth). The parameters vt and vth are both functions of

temperature. We will further elaborate on this equation next.

Literature contains a vast number of research papers written on the subject of

subthreshold leakage (and leakage in general) which represent its dependence on the

parameters listed above in various ways (ex., [ZPS+03, BS00]). This is a result of the the

inevitable complexity of the model and the hidden interdependencies between the

parameters of Equation (A.4). The changes brought by advancing technologies and

137

miniaturization of transistors further exacerbates the complexity. For example, the charge

mobility, µ0, is a function of temperature however, some papers list it as a constant, which

is an adequate approximation in some cases. For our purposes, we will reduct

Equation (A.4) to a simpler form which is sufficient to explain trends in computer design.

The term Cox · WL contains the effect of the the geometry of the transistor (gate oxide

thickness, transistor channel width and length) and can be interpreted as a technology

node dependent constant, TECH . µ0, as mentioned earlier, is cited as a constant or as

proportional to a power of the temperature (T−1.5in [GST07], depending on the context.

Combined with v2t , we will express this term as a polynomial function of temperature,

ρ(T). The term (1− e
−Vdd
vt) is approximately 1 for the values of V dd ([0.9V, 1.2V]) and T

([27C, 110C]) we consider so it will be omitted. The effective threshold voltage of the

transistor, vth, is a function of temperature and expressed as

vth = vth0 − c · (T − T0) (A.6)

where vth0 is the base threshold voltage, c is a constant and T0 is the initial temperature. b,

Vdd0, n, and Voff are technology dependent constants (Voff might depend on temperature

but taken as a constant here). Also, recall that vt ∝ T . Finally, all terms of Equation (A.4)

are arranged into the following relation (exp(.) signifies an exponential dependency in the

form of exp(x) = ekx, where k is a constant).

Psub ∝ TECH · ρ(T) · V · exp(V) · exp(−Vth0

T
) · exp(− 1

T
) (A.7)

It should be noted that, while the simpler equation explains the behavior of

subthreshold leakage for past and recent technologies, it might not hold below the 32nm

technology node with the addition of factors such as short channel effects. Also, so far we

have only focused on a single transistor. Further steps are required to carry the analysis to

the chip scale since the coefficients of the equation vary for different transistors on the

chip. Nevertheless, the observations we listed for Equation (A.7) hold at the macro level,

which is the purpose of this discussion.

138

A.4.2 Leakage due to Gate Oxide Scaling

Gate oxide thickness (see Figure A.1), is a technology parameter that has been

aggressively scaled to control the threshold voltage and improve switching performance.

However, scaling of gate oxide comes at the cost of triggering additional leakage

mechanisms that have not been of concern before. These mechanisms are gate oxide

tunneling leakage and gate induced drain leakage (GIDL). Explicit equations for the

associated currents are difficult to obtain hence we only give the intuition on the factors

that affect these currents.

Gate oxide tunneling leakage is a result of quantum tunneling, where electrical charges

tunnel through an insulator (barrier). This phenomenon is especially detectable for thin

barriers (i.e., gate oxide) and high potential energy differences (i.e., voltage), therefore it is

very sensitive to gate oxide thickness (tox) and supply voltage. It has a weak dependency

on temperature. At 70nm, tox = 1.2nm (which is a typical value), Vdd = 0.9 and room

temperature (300K), gate leakage is in the order of 40nA/µm [ZPS+03].

GIDL is caused by the tunneling effect at the overlap of gate and drain and it can

become a limiting factor for the adaptive body biasing technique which is mentioned in

Section 2.3.1.

A.4.2.1 Junction Leakage

Junction leakage is observed at the drain/body and source/body junctions. There can be

multiple mechanisms contributing to junction leakage such as tunneling effects or reverse

bias junction leakage. Similar to GIDL, the effect of junction leakage becomes relevant

especially if reverse body biasing technique is used [MFMB02, KNB+99].

139

Appendix B

Extended XMTSim Documentation

This appendix contains detailed documentation of XMTSim, including installation

instruction, a command line usage manual, software architecture overview, programming

API and coding examples for creating new actors, activity monitors, etc.

B.1 General Information and Installation

XMTSim is typically used with the XMTC compiler which is a separate download

package. It can be used standalone in cases that the user directly writes XMT assembly

code.

To use XMTSim, you must:

• Download and install the XMTC compiler (typically).

• Download and install XMT memory tools (optional).

• Build/install XMTSim.

The XMT toolchain can be found at

http:

//www.umiacs.umd.edu/users/vishkin/XMT/index.shtml#sw-release

and also on Sourceforge

http://sourceforge.net/projects/xmtc/

B.1.1 Dependencies and install

Pre-compiled binary distribution consists of a Java jar file and a bash script file. Due to

platform independent nature of Java, this distribution is platform independent as well.

140

http://www.umiacs.umd.edu/users/vishkin/XMT/index.shtml#sw-release
http://www.umiacs.umd.edu/users/vishkin/XMT/index.shtml#sw-release
http://sourceforge.net/projects/xmtc/

The cygwin/linux dependent bash script is distributed for convenience and is not an

absolute requirement. In future distributions, simulator may include platform dependent

components.

System requirements:

• You must have Sun Java 6 (JRE - Java Runtime Environment) or higher on your

system. Java executable must be on your PATH, i.e. when you type "java -version"

on command line you should see the correct version of Java. XMTSim might work

with other implementations of Java that are equivalents of the Sun Java 6 (or higher)

however it is only tested with the Sun version of Java. Note that the XMTC

compiler and memory tools come with their own set up system requirements that

are independent of the simulator.

• In order to use the script provided in the package, you must have bash installed on

your system. XMTSim can directly be run via the "java -jar" command. Read the

xmtsim script if you would like to use the simulator in such a way.

Follow these steps to install XMTSim:

a) Create a new directory of your choice and place the contents of this package in the

directory. Example: /xmtsim

b) Make sure java is on the PATH:

> java -version

The commands should display the correct java version.

c) Add the new directory to the PATH. Example (bash):

> export PATH=~/xmtsim:$PATH

d) Test your installation:

> xmtsim -version

> xmtsim -check

Type “xmtsim -help” and “xmtsim -info” for information on how to use the simulator.

For detailed examples see the XMTC Manual and Tutorial [CTBV10].

141

B.2 XMTSim Manual

This manual lists the usage of all command line controls of XMTSim and also includes a

brief manual of the trace tool. The manual is also available on the command line and can

be displayed via xmtsim -info all.

Usage: xmtsim [<input assembly file> | -infile <input assembly file>]
[-cycle]

[-conf <configName>]
[-confprm <prmName> <value>]
[-timer <?num | num~>]
[-interrupt <num>]
[-starttrace <num>]
[-savestate <filename>]
[-checkpoint <num>,<num>...]
[-stop <num | actsw+num> | <+num>]
[-activity | -activity=<options>]
[-actout <filename>]
[-actsw]
[-preloadL1 | -preloadL1=<num>]
[-debug | -debug=<num>]
[-randomize <num>]

[-count | -count=<options>]
[-trace | -trace=<options>]
[-mem <debug <?val> | simple | paged>]
[-binload <filename>]
[-textload <filename>]
[-loadbase <address>]
[-bindump <filename>]
[-textdump <filename>]
[-hexdump <filename>]
[-dumprange <startAddr> <endAddr>]
[-dumpvar <variableName>]
[-printf <filename>]
[-out <filename>]
[-traceout <filename>]
[-argfile <filename>]

For running a program, choose from the appropriate options
listed in square braces ([...]). A pipe character (|) means one
of the multiple variants should be chosen. Mandatory parameters to
an option are indicated with angle braces (<...>). Optional
parameters are indicated with angle braces with a question mark
(<?...>). Options indented under ’cycle’ option can only be used
when ’cycle’ is specified.

Below are different forms of the xmtsim command, that show options

142

that should be used standalone and not with each other or with the
ones above.

xmtsim -resume <filename>
xmtsim (-v|-version)
xmtsim (-h|-help)
xmtsim -info [<option>]
xmtsim -check
xmtsim -diagnose <?number> [-conf <configName>]
xmtsim -diagnoseasm <?number>
xmtsim -conftemplate <configName>
xmtsim -checkconf <filename>
xmtsim -listconf <filename>

OPTIONS

-h -help
Display short help message.

-info
Display this info message.

-v -version
Display the version number.

-check
Runs a simple self test.

-diagnose <?number> [-conf <configName>]
Runs a simple cycle-accurate diagnostics program to show how
fast the user system is under full load (all TCUs working).
Depending on the number (0 - default, 1, 2, etc.) a different
test will be run. -conf can optionally be used to change the
default configuration.

-diagnoseasm <?number>
Runs a simple diagnostics program in assembly simulation mode to
show how fast the user system is under full load.
Depending on the number (0 - default, 1, 2, etc.) a different
test will be run.

-conftemplate <configName>
Creates a new template file that can be modified by the user
and passed to the ’conf’ option. The file created will have
the name ’configName.xmtconf’.

-checkconf <filename>
As input, takes a file that is typically passed to the
’conf’ option. Checks if the field types and values are all
correctly defined, if all fields exist and if all the
configuration parameters are set in the input file.

-listconf <filename>
As input, takes a file that is typically passed to the
’conf’ option. Lists all the field names and their values sorted
according to names. Can be used to compare two conf files.
For this option to return without an error the conf file should
pass checkconf with no errors.

-argfile <filename>
Reads arguments from a text file and inserts them on the command

143

line at the location that this argument is defined. Lines
starting with the ’#’ character are ignored. Multiple argument
files can be defined using multiple occurrences of this
parameter, ex: -argfile file1.prm -argfile file2.prm. The
parameters from these file will be inserted in the order that
they appear on command line.

-cycle
Runs the cycle accurate simulation instead of the assembly
simulation. For obtaining timing results, this option should
be used. It comes with a list of sub-options.

-timer <?num | num~>
Provides an updated cycle count every 5 seconds. The default
value of 5 can be overridden by passing an integer number
after the timer option.
Timer option can be used in tandem with the count (or
detailed count) option to display the detailed instruction
counts as well as the cycle count.
If passed integer is followed with a ’~’ character
(ex. -timer 2500~), the information will be printed periodically
in simulation clock cycles rather than real time.

-interrupt <num>
If this option is used, the cycle accurate simulation will be
interrupted before completion and the simulator will exit with
an error value. Interrupt will happen after N minutes after the
simulation starts where N is the value of this parameter.
If the simulation is completed before the set value, it will
exit normally.

-conf <configName>
Reads the simulator cycle accurate hardware configuration.
This might be a built-in configuration or an externally
provided configuration file. The search order is as follows:

1. Search <configname> among the built-in configurations.
2. Search for the file <configname>.xmtconf
3. Search for the file <configname>

The built-in configurations are ’1024’, ’512’, ’256’
(names signify the tcu counts in the configuration) and ’fpga’
(64 tcu configuration, similar to the Paraleap FPGA computer).

-confprm <prmName> <value>
Sets the value of a configuration parameter on command line.
It will overwrite the values set by the -conf option.

-starttrace <num>
Starts the tracing (as specified by the -trace option)
only after <num> cycles instead of from the beginning of the
simulation.

-stop <num | actsw+num | +num>
Schedules the simulation to stop at a used defined time. If
actsw+num is passed the stop time will be relative to the
actsw instruction. The latter requires actgate option. If +num
is used in conjunction with the resume option, simulation will
stop at current time plus num.

-activity
-activity=<options>
This is an experimental option that logs activity of actors
that implement ActivityCollectorInterface. For a list of

144

available options, try -activity=help. Requires -cycle option.
-actout <filename>
Redirects the output of the activity option to a file. If no
activity option is defined, this option will not have an effect
except for creating an empty file.

-actgate
Gates the output of the activity collector unless its state is
on. The state can be switched on and off via the actsw
instruction in assembly. Initial state is off. The activity
collection mechanism still works in the background but it
doesn’t print its output.

-savestate <filename>
Dumps the state of the simulator in a file. This option is used
in order to pause simulation and restart it at a later time.
The paused simulation is resumed via the resume option.
Simulation can be stopped and state can be saved in three
different ways: simulation can terminate naturally at the
end of the execution of the input (meaning a halt, hex/textdump,
bindump, ... instruction is encountered), at a user defined
time via the ’stop’ argument or a via a SIGINT (CTRL-C)
interrupt. If the simulation ends naturally the state dump
is only useful for inspection with a debugging tool since
there is nothing to resume.
The output file should not already exist or the command will
fail with an error.
All command line arguments that are used during this
call will be lost during the save operation. Exceptions are
the arguments that directly affect the state of the simulation
such as the input file, ’binload’, ’conf’, etc. Other
exceptions are the ’count’ and ’activity’ arguments. If the
activity option is using a user provided plug-in that cannot
be saved (not implementing the serializable interface), it will
be lost as well. Arguments that have been lost can be redefined
while the simulation is resumed (see the ’resume’ argument).

Also see: checkpoint
-checkpoint <num>,<num>...
Used to dump states during execution without quitting the
simulation. Should be used with the savestate option.
The names of the state files are based on the filename passed to
savestate. They will be appended with .[time] suffix. Checkpoint
option takes a mandatory comma separated list of numbers which
represent the clock cycles that the states will be saved.
The state dump events have low priority, meaning the state will
be saved after all events of a clock cycle are processed.
The state will still be saved at the end as if savestate option
was used stand-alone.

Also see: savestate
-resume <filename>
Resumes a simulation that has been paused by the ’savestate’
option. Implies the ’cycle’ flag. This argument can be used
with other command line arguments such as trace, count,
bindump, dumpvar, out, printf. This is how a user can redefine
the options that were lost during save state (see savestate
argument). However command line

145

arguments that directly affect the state of the simulation
should not be used; the results are undefined. Such arguments
are redefinition of input file, infile, conf, preloadL1,
check/warnmemreads, bin/textload and loadbase. If count and
activity arguments were defined in the original run,
redefining them during resume will not have an effect.
"-activity=disable" option can be used to remove an activity
collection plug-in that was saved from the original run.

-trace
-trace=<options>
By default dumps out the instruction results filtering out
all instructions marked as skipped.
When used with additional options -trace is a powerful tool
to monitor the system for tracing instructions through the
hardware and reading results of instructions.
For more information see the "Trace Manual" section below.

-count
-count=<options>
Displays the number of instructions executed. In case of
parallel programs, this will be the total number of
instructions executed by all TCUs. The instructions that are
marked by the @skip directive are not counted.
The simulator can have only one counter. To change the default
counter specify the plugin:[class path]. The full path for the
built-in counters (ones in the utility package of the simulator)
is not required, only the class name is sufficient. For a list
of available options, try -count=help.

-binload <binary memory file>
Load the data memory image from a binary file. This option is
compatible with the XMT Memory Map Creator tool.

-textload <text memory file>
Load the data memory image from a text file. The format of the
text file is, numerical values of consecutive words
separated by white spaces. Each word is a 64-bit signed
integer.This option is compatible with theXMT Memory Map
Creator tool.

-loadbase <address>
Loads the data file specified by a -binload or -textload
option at the address <address>. Default address is 0.

-bindump <filename>
Dump the contents of the data memory to the given file in
little-endian binary format. This option is compatible with
the XMT Memory Map Reader tool.
Either a range of addresses using -dumprange, or a global
variable using -dumpvar needs to be specified.

-textdump <filename>
Dump the contents of the data memory to the given file in
text format. The output file is in the same format described
for ’textload’ option.
Either a range of addresses using -dumprange, or a global
variable using -dumpvar needs to be specified.

-hexdump <filename>
Dump the contents of the data memory to the given file in
hex text format.

146

Either a range of addresses using -dumprange, or a global
variable using -dumpvar needs to be specified.

-dumprange <startAddr> <endAddr>
Defines the start and end addresses of the memory section that
will be dumped via ’hex/textdump’ or ’bindump’ options.
Without the ’hex/textdump’ or ’bindump’ options, this parameter
has no effect.

-dumpvar <variableName>
Marks a global variable to be dumped after the execution via
’hex/textdump’ or ’bindump’ options. This option can be repeated
for all the variables that need to be dumped.
Without the ’hex/textdump’ or ’bindump’ options, this parameter
has no effect.

-out <filename>
Write stderr and stdout to an output file. The display order of
stderr and stdout will be preserved.
If the printf option is defined, output of printf instructions
will not be included.
If the traceout option is defined, output of traces will not be
included.

-printf <filename>
Write the output of printf instructions to an output file.

-traceout <filename>
Write the output of traces to an output file.

-mem <paged | debug <?val> | simple>
Sets the memory implementation used internally. Default is
paged.
Paged memory allocates memory locations in pages as they are
needed. This allows non-contiguous accesses over a wide range
(i.e. up to 4GB) without having to allocate the whole memory.
For example, if the top of stack (tos) is set to 4GB-1,
simulator will allocate one page that contains the tos and one
page that contains address 0 at the beginning instead of
allocating 4GB of memory. In this memory implementation
all addresses are automatically initialized to 0, however it
is considered bad coding style to rely on this fact. This is
the default memory type.
Debug parameter is used to keep track of initialized
memory addresses for code debugging purposes. Paged and simple
memory implementations do not report if an uninitialized memory
location is being read (remember that they automatically
initialize all addresses to 0), whereas the debug
implementation reports a warning or an error. If no additional
parameter is passed to debug, simulator will print out a
warning whenever an uninitialized address is read.
If ’err’ is passed as a parameter (-mem debug err), simulation
will quit with an error for such accesses. If a decimal integer
address is passed as a parameter a warning will be displayed
every time this address is accessed (read or write) regardless
of its initialization status. Users should be aware that
underlying memory implementation for debug is a hashtable which
is quite inefficient in terms of storage/speed, therefore it
should not be used for programs with large data sets.
Simple memory allocates a one dimensional memory with no

147

paging. It remains as an option for internal development and
should not be chosen by regular users.

-infile <filename>
If the name of the input file starts with a ’-’ character it
can be passed through this argument. Otherwise this argument is
not required.

-preloadL1
-preloadL1=<num>
Preloads the L1 cache with data in order to start the cache
warm. If used with no number it should be used with -textload
or -binload, in which case the passed binary data will be
preloaded into L1 caches. If a number is provided and no
-textload or -binload is passed, given number of words will
be assumed preloaded with valid garbage (!) startng from the
data memory start address. Latter case is intended for
debugging assembly etc.
If the data to be preloaded is larger than the total L1 size,
smaller addresses will be overwritten.

-debug
-debug=<num>
Used to interrupt the execution of a simulation with the
debug mode. If a cycle time is specified, the debug mode will be
started at the given time. If not, the user can interrupt
execution to start the debug mode by typing ’stop’ or just
simply ’s’ and pressing enter. In the debug mode, a prompt will
be displayed, in which debugging commands can be entered. Debug
mode allows stepping through simulation and printing the states
of objects in the simulation. For a list of commands, type
’help’. Commands in debugging mode can be abbreviated.

-randomize <num>
Used with cycle-accurate simulation to introduce some
deterministic variations. The flag expects one argument
that will be used as the seed for the pseudo-random
generators.

TRACE TOOL MANUAL

Trace option can take additional options in the form below

-trace=<option 1>,<option 2>,<option 3>,...,<option n>

Each option is separated with commas and no white spaces exist.
Following are the list of trace options:

track
Displays instruction package paths through all the hardware
actors. This option cannot be used unless the -cycle option
is specified for the simulator.

result
Displays the dynamic instruction traces.

tcu=<num>
Limits the instructions traced to the ones that are generated
from the TCU with the given hardcoded ID.

directives

148

Displays only the instructions that are marked in the
assembly source (see below for a list of directives).
This option can only be used with tcu=<num>.
It will not display an instructions if it is marked as ’skip’.

’-trace’ with no additional options is equivalent to ’-trace=result’.

What are the assembly trace directives?
Assembly programmers can manually add prefixes to lines of
assembly to track specific instructions. This feature is
activated from command line via the -trace=directives option.
Otherwise all such directives are ignored.

A trace directive should be prepended to an assembly line.
Example:

@track addi $1, $0, 0

Following is the list of directives:

@skip: Excludes the instruction from execution and job traces.
Check for the specific trace command line option you are using
for exceptions.

@track <?num>: Turns on the track suboption just for this
instruction. If a number is specified, only the instructions
that are generated from the TCU with the given hardcoded ID
will be tracked.

@track <?num>: Turns on the track suboption just for this
instruction. If a number is specified, only the instructions
that are generated from the TCU with the hardcoded ID that is
given with this directive and/or on command line via tcu=<num>
will be tracked.

@result <?num>: Turns on the result suboption just for this
instruction. If a number is specified, only the instructions
that are generated from the TCU with the hardcoded ID that is
given with this directive and/or on command line via tcu=<num>
will be tracked.

B.3 XMTSim Configuration Options

The configuration options of XMTSim are passed in a text file via the conf command line

option or one by one via the confprm option. The default configuration file, which is

listed in this section, can also be generated using the conftemplate option of XMTSim.

The initial configuration given here models a 1024 core XMT in 64 clusters. DRAM

149

clock frequency is 1/4 of the to emulate a system with 800MHz core clock frequency and

200MHz DRAM controller. If features 8 DRAM ports with 20 DRAM clock cycle latency.

Number of c l u s t e r s in the XMT chip excluding master TCU c l u s t e r .
i n t NUM_OF_CLUSTERS 64

Number of TCUs per c l u s t e r .
i n t NUM_TCUS_IN_CLUSTER 16

Number of p i p e l i n e s t a g e s in a tcu before the execute s tage .
(I n i t i a l l y the s t a g e s are IF/ID and ID/EX) .
i n t NUM_TCU_PIPELINE_STAGES 3

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
CLOCK RATE PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Period of the Clus ter c lock . This number i s an i n t e g e r t h a t
i s r e l a t i v e to the other co ns ta n ts ending with _T .
i n t CLUSTER_CLOCK_T 1

Period of the i n t e r c o n n e c t i o n network c lock . This number i s an
i n t e g e r t h a t i s r e l a t i v e to the other cons tants ending with _T .
i n t ICN_CLOCK_T 1

Period of the L1 cache c lock . This number i s an i n t e g e r t h a t
i s r e l a t i v e to the other co ns ta n ts ending with _T .
i n t SC_CLOCK_T 1

Period of the DRAM clock f o r the s i m p l i f i e d DRAM model . This
number i s an i n t e g e r t h a t i s r e l a t i v e to the other cons tants
ending with _T .
i n t DRAM_CLOCK_T 4

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
FU PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Number of ALUs per c l u s t e r . Has to be in the i n t e r v a l
(0 , NUM_TCUS_IN_CLUSTER] .
i n t NUM_OF_ALU 16

Number of s h i f t u n i t s per c l u s t e r . Has to be in the i n t e r v a l
(0 , NUM_TCUS_IN_CLUSTER] .
i n t NUM_OF_SFT 16

Number of branch u n i t s per c l u s t e r . Has to be in the i n t e r v a l
(0 , NUM_TCUS_IN_CLUSTER] .
i n t NUM_OF_BR 16

Number of mult iply/divide u n i t s per c l u s t e r . Has to be in the

150

i n t e r v a l (0 , NUM_TCUS_IN_CLUSTER] .
i n t NUM_OF_MD 1

Latency in terms of Clus ter c lock c y c l e s .
i n t DECODE_LATENCY 1

Latency in terms of Clus ter c lock c y c l e s . Does not
include the a r b i t r a t i o n l a t e n c y .
i n t ALU_LATENCY 1

Latency in terms of Clus ter c lock c y c l e s . Does not
include the a r b i t r a t i o n l a t e n c y .
i n t SFT_LATENCY 1

Latency in terms of Clus ter c lock c y c l e s . Does not
include the a r b i t r a t i o n l a t e n c y .
i n t BR_LATENCY 1

I f true , branch p r e d i c t i o n in TCUs w i l l be turned on .
boolean BR_PREDICTION true

The s i z e of the branch p r e d i c t i o n b u f f e r (i . e . maximum number
of branch PCs f o r which p r e d i c t i o n can be made) .
i n t BRANCH_PREDICTOR_SIZE 4

The number of b i t s f o r the branch p r e d i c t o r counter .
i n t BRANCH_PREDICTOR_BITS 2

Latency in terms of Clus ter c lock c y c l e s . Does not
include the a r b i t r a t i o n l a t e n c y . Does not include
the MD r e g i s t e r f i l e l a t e n c y .
i n t MUL_LATENCY 6

Latency in terms of Clus ter c lock c y c l e s . Does not
include the a r b i t r a t i o n l a t e n c y . Does not include
the MD r e g i s t e r f i l e l a t e n c y .
i n t DIV_LATENCY 36

Latency of mflo/mtlo/mfhi/mflo operat ions in terms of
Clus ter c lock c y c l e s . Does not inc lude the a r b i t r a t i o n
l a t e n c y . Does not include the MD r e g i s t e r f i l e l a t e n c y .
i n t MDMOVE_LATENCY 1

Latency of the MD uni t i n t e r n a l r e g i s t e r f i l e in terms
of Clus ter c lock c y c l e s .
i n t MDREG_LATENCY 1

Latency in terms of base c l u s t e r c lock c y c l e s .
i n t PS_LATENCY 12

This i s the hal f−penalty f o r a TCU t h a t i s request ing
a PS to a g loba l r e g i s t e r t h a t i s not the one t h a t i s
c u r r e n t l y being handled . See the s imulator t e c h n i c a l
repor t f o r d e t a i l s . This i s in terms of base c l u s t e r

151

c lock c y c l e s .
i n t PS_REG_MATCH_PENALTY 4

Latency at the c l u s t e r input in terms of i n t e r c o n n e c t i o n
network c lock c y c l e s .
i n t LS_RETURN_LATENCY 1

Latency in terms of base c l u s t e r c lock c y c l e s .
Found e m p i r i c a l l y from the FPGA via microbenchmarks .
This i s an average but might not e x a c t l y match a l l cases due
to mechanism d i f f e r e n c e s between the s imulator and FPGA.
i n t SPAWN_START_LATENCY 23

Latency in terms of Clus ter c lock c y c l e s . This i s the l a t e n c y
of the SJ uni t to re turn to s e r i a l mode a f t e r a l l TCUs go i d l e .
Cannot be 0 .
i n t SPAWN_END_LATENCY 1

#∗∗∗
FLOATING POINT FUNCTIONAL UNITS PARAMETERS
#∗∗∗

Number of F l o a t i n g Point ALUs per c l u s t e r .
i n t NUM_OF_FPU_F 1

All folowing l a t e n c i e s are in terms of Clus ter c lock c y c l e s .
Do not inc lude the a r b i t r a t i o n l a t e n c y .
i n t MOV_F_LATENCY 1

i n t ADD_SUB_F_LATENCY 11

i n t MUL_F_LATENCY 6

i n t DIV_F_LATENCY 28

i n t CMP_F_LATENCY 2

i n t CVT_F_LATENCY 6

i n t ABS_NEG_F_LATENCY 1

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
MEMORY PARAMETERS
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Tota l number of memory ports . Has to be a 2 ’ s power mult ip le of
NUM_OF_CLUSTERS.
i n t NUM_CACHE_MODULES 128

Tota l number of DRAM ports . Has to be of the form
#NUM_CACHE_MODULES / 2^k
with k >= 0 . Defaul t i s i s one DRAM port per CACHE_MODULE
(no content ion) . This parameter i s ignored unless the memory
model does not imply t h a t DRAM i s simulated .

152

NUM_CACHE_MODULES should be a mult ip le of t h i s parameter . I f
they are not equal the type of the DRAM port t h a t w i l l be
i n s t a n t i a t e d i s SharedSimpleDRAMActor . I f not the type i s
SimpleDRAMActor .
i n t NUM_DRAM_PORTS 8

I f the ICN_MODEL parameter i s s e t to " const " , t h i s value
w i l l be used as the constant ICN l a t e n c y . The delay time
w i l l be equal to ICN_CLOCK_T x CONST_SC_LATENCY.
i n t CONST_ICN_LATENCY 50

#∗∗
ADDRESS AND CACHE PARAMETERS
#∗∗

The number of words (not bytes) t h a t a cache l i n e conta ins .
The number of bytes in a word i s defined by MEM_BYTE_WIDTH in
xmtsim . core . Constants .
i n t CACHE_LINE_WIDTH 8

Master Cache parameters

S ize of the MasterCache in bytes .
i n t MCACHE_SIZE 16384

Master cache can serve only t h i s many d i f f e r e n t cache l i n e misses . For
example , i f master cache r e c e i v e s 5 s t o r e word i n s t r u c t i o n s a l l of
which are misses to d i f f e r e n t cache l i n e s , 5 th i n s t r u c t i o n w i l l s t a l l .
i n t MCACHE_NUM_PENDING_CACHE_LINES 4

Master cache can serve only t h i s many d i f f e r e n t misses f o r a
given cache l i n e . For example , i f master cache r e c e i v e s 9 s t o r e
word i n s t r u c t i o n s a l l of which are misses to the same cache l i n e ,
9 th i n s t r u c t i o n w i l l s t a l l .
i n t MCACHE_NUM_PENDING_REQ_FOR_CACHE_LINE 8

L1 parameters

S ize of the L1 Cache in bytes (per module) .
i n t L1_SIZE 32768

A s s o c i a t i v i t y of the L1 cache . 1 f o r d i r e c t mapped and
I n t e g e r .MAX_VALUE f o r f u l l y a s s o c i a t i v e .
Note t h a t s e t t i n g t h i s value to I n t e g e r .MAX_VALUE has the same
e f f e c t as MCACHE_SIZE / (MCACHE_LINE_WIDTH ∗ MEM_BYTE_WIDTH)
i n t L1_ASSOCIATIVITY 2

L1 cache can serve a t most t h i s many d i f f e r e n t pending cache l i n e
misses . For example , i f master cache sends 9 s t o r e word i n s t r u c t i o n s
a l l of which are misses to d i f f e r e n t cache l i n e s , 9 th i n s t r u c t i o n w i l l
s t a l l .
i n t L1_NUM_PENDING_CACHE_LINES 8

L1 cache can serve a t most t h i s many d i f f e r e n t pending misses f o r a

153

given cache l i n e . For example , i f L1 cache r e c e i v e s 9 s t o r e word
i n s t r u c t i o n s a l l of which are misses to the same cache l i n e ,
9 th i n s t r u c t i o n w i l l s t a l l .
i n t L1_NUM_PENDING_REQ_FOR_CACHE_LINE 8

The s i z e of the DRAM request buffer , which i s the module t h a t the
reques ts from L1 to DRAM wait u n t i l they are picked up by DRAM.
NOTE: S e t t i n g t h i s to a s i z e t h a t i s too small (8) causes deadlocks .
Deadlocks can be encountered even with bigger s i z e s i f the
DRAM_LATENCY i s not l a r g e enough .
NOTE2: In Xingzhi ’ s t h e s i s , t h i s b u f f e r i s c a l l e d L2_REQ_BUFFER f o r
h i s t o r i c a l reasons .
i n t DRAM_REQ_BUFFER_SIZE 16

The s i z e of the DRAM response buffer , which i s the module t h a t the
responses from DRAM to L1 wait u n t i l they are picked up by L1 .
NOTE: In Xingzhi ’ s t h e s i s , t h i s b u f f e r i s c a l l e d L2_RSPS_BUFFER f o r
h i s t o r i c a l reasons .
i n t DRAM_RSPS_BUFFER_SIZE 2

#∗∗
ADDRESS HASHING PARAMETERS
#∗∗

I f t h i s i s s e t to true , hashing w i l l be applied on phys ica l memory
addresses before they get sent over the ICN . This v a r i a b l e does not
change the cycle−accura te delay t h a t i s incurred by the hashing uni t
but i t turns on/ o f f the a c t u a l hashing of the address .
boolean MEMORY_HASHING true

Constant s e t by the operat ing system (?) f o r hashing
See ASIC document f o r algorithm .
i n t HASHING_S_CONSTANT 63

#∗∗∗
PREFETCHING PARAMETERS
#∗∗∗

The number of words t h a t f i t in the TCU P r e f e t c h b u f f e r .
i n t PREFETCH_BUFFER_SIZE 16

The replacement pol i cy f o r the p r e f e t c h b u f f e r uni t :
RR − RoundRobin
LRU − Least Recent ly Used
MRU − Most Recent ly Used
S t r i n g PREFETCH_BUFFER_REPLACEMENT_POLICY RR

The number of words t h a t f i t in the read only b u f f e r .
i n t ROB_SIZE 2048

The maximum number of pending reques ts to ROB per TCU.
i n t ROB_MAX_REQ_PER_TCU 16

#∗∗

154

MISC PARAMETERS
#∗∗

The i n t e r c o n n e c t i o n network model used in the s imulat ion .
const − Constant delay model . I f t h i s model i s chosen , the cache and
DRAM models w i l l be ignored . The amount of delay i s taken
from CONST_ICN_LATENCY.
mot − Separate send and r e c e i v e Mesh−of−Trees networks between
c l u s t e r s and caches .
S t r i n g ICN_MODEL mot

The shared cache model used in the s imulat ion . This has no e f f e c t i f
const model i s chosen f o r the ICN model .
const − Constant delay model . I f t h i s model i s chosen , the DRAM
model w i l l be ignored . The amount of delay i s taken from
CONST_SC_LATENCY.
L1 − One l a y e r shared cache as i t i s implemented in the Paraleap
FPGA computer .
L1_old − One l a y e r shared cache as in L1 model . This i s an old
implementation of the L1 cache and should not be used by the
t y p i c a l user due to p o s s i b l e bugs .
S t r i n g SHARED_CACHE_MODEL L1

The DRAM model used in the s imulat ion . This has no e f f e c t i f e i t h e r
const model i s chosen f o r the ICN model or const model i s chosen f o r
the shared cache model .
const − Constant delay model . The amount of delay i s taken from
CONST_DRAM_LATENCY.
S t r i n g DRAM_MODEL const

The memory model f o r the master tcu :
h i t − All memory reques t s w i l l be h i t s in the cache . The amount of
the delay can be s e t through the MCACHE_HIT_LATENCY.
miss − All memory reques t s w i l l go through the ICN model defined in
MEMORY_MODEL. The master cache w i l l add two clock
c y c l e s to the ICN l a t e n c y (one on the way out one on the way
back) .
f u l l − f u l l MCACHE implementation .
S t r i n g MCLUSTER_MEMORY_MODEL miss

The number of CLUSTER clock c y c l e s t h a t Master cache serves a cache
h i t in case of the ’ h i t ’ value of MCLUSTER_MEMORY_MODEL.
i n t MCACHE_HIT_LATENCY 1

The number of c lock c y c l e s t h a t a shared cache module serves a request
f o r the constant delay implementation of shared cache . The delay time
w i l l be equal to SC_CLOCK_T x CONST_SC_LATENCY.
See SHARED_CACHE_MODEL.
i n t CONST_SC_LATENCY 1

The number of DRAM c y c l e s t h a t DRAM serves a memory request in case
of the s i m p l i f i e d implementation of DRAM. See DRAM_MODEL parameter .
Also see the note a t DRAM_RSPS_BUFFER_SIZE .
The t y p i c a l l a t e n c y of DRAM f o r DDR2 at 200MHz i s about 20 c y c l e s . I f

155

s c a l i n g t h i s number f o r a higher c lock frequency the l a t e n c y should
a l s o be increased p r o p o r t i o n a l l y to give the same delay in absolute
time .
i n t CONST_DRAM_LATENCY 20

I f ’ grouped ’ , c l u s t e r 0 w i l l get TCUs 0 , 1 , 2 , . . . , (T−1) and
c l u s t e r 1 w i l l get T , T+1 , T+2 , T+3 , e t c . T i s the number of TCUs in
a c l u s t e r .
I f ’ d i s t r i b u t e d ’ c l u s t e r 0 w i l l get TCUs 0 , N, 2N and c l u s t e r 1 w i l l
get TCUs 1 , N+1 , 2N+1 , e t c . N i s the number of c l u s t e r s .
This parameter makes a d i f f e r e n c e in programs with low p a r a l l e l i s m .
’ Grouped ’ option might be used i f power i s a concern , otherwise
’ d i s t r i b u t e d ’ option should r e s u l t in b e t t e r performance .
S t r i n g TCU_ID_ASSIGNMENT d i s t r i b u t e d

156

Appendix C

HotSpotJ

HotSpotJ is a java interface for HotSpot [HSS+04, HSR+07, SSH+03], an accurate and fast

thermal model, which is typically used in conjunction with architecture simulators. Even

though we use HotSPotJ with XMTSim, it can be used by any other Java based simulator.

HotSpot is written in C and so far has been available for use with C based simulators.

We have originally developed HotSpotJ as an Application Programming Interface (API)

to bridge between HotSpot and Java based architecture simulators and eventually it

became a supporting tool that enhances the workflow with HotSpot by offering features

such as alternative input forms, a floorplan GUI that can display color coded temperature

and power values, etc.

The current version of HotSpotJ is based on HotSpot version 4.1. This documentation

assumes that readers are familiar with the concepts of HotSpot.

C.1 Installation

C.1.1 Software Dependencies

HotSpotJ relies on Java Native Interface (JNI) [Lia99] for interfacing with C-language

which is platform dependent unlike pure Java code. Development and testing is done

under Linux OS. In earlier development stages, it has been tested on Windows

OS/Cygwin and the build system still supports compilation under Cygwin. It is very

probable that the Cygwin build still works without problems however, we are not

actively supporting it. Table C.1 lists the specifications of the system under which

HotSpotJ is tested.

157

Linux OS kernel: 2.6.27-13
distribution: ubuntu 8.10

Bash 3.2.48
GNU Make 3.81
Sun Java Development Kit (JDK) 1.6.0
GNU C Compiler (GCC) 4.3.3

Table C.1: Specifications of the HotSpotJ test system.

HotSpotJ package contains a copy of the HotSpot source code therefore a separate

HotSpot installation is not required.

C.1.2 Building the Binaries

HotSpotJ installation is built from source code. Prior to running the build script, you

should make sure that the required tools are installed and their binaries are on the PATH

environment variable (see Table C.1 for the list).

Following are the steps to build HotSpotJ. Each step includes example commands for

the bash shell.

• Download the source package at

http://www.ece.umd.edu/~keceli/web/software/HotSpotJ/.

• Uncompress the package in a directory of your choice (/opt in our example, xxx is

the version). A hotspotj directory will be created.

> tar xzvf hotspotj_xxx.tgz /opt/

• Make sure that the javac, java and javah executables are on the path (you can

check this using the linux which command). If not, set the PATH environment

variable as in the example below.

> export PATH=$PATH:/usr/lib/jvm/java-6-sun/bin

• Include the bin directory under the HotSpotJ installation in the PATH environment

variable.

> export PATH=$PATH:/opt/hotspotj/bin

158

http://www.ece.umd.edu/~keceli/web/software/HotSpotJ/

• Run the make command in the installation directory.

> cd /opt/hotspotj

> make

For proper operation, the PATH variable should be set everytime before the tool is used

(which can be done in the .bashrc file for the bash shell). You can turn on a math

acceleration engine for HotSpot by editing the hotspotj/hotspotcsrc/Makefile

file. For more information on the math acceleration engines that can be used with

HotSpot, see the HotSpot documentation.

Compiling the floorplans written in Java requires the CLASSPATH environment

variable to include the HotSpotJ java package. For example,

> export CLASSPATH=$CLASSPATH:/opt/hotspotj

If you are using Sun Java for MS Windows under Cygwin, the colon character should be

exchanged with backslash and semi-colon characters (\;).

In order to use HotSpotJ as an API in another Java based software (e.g. a cycle-accurate

simulator or a custom experiment), you should set the LD_LIBRARY_PATH environment

variable to include the HotSpotJ java package. For example,

> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/hotspotj/bin

C.2 Limitations

A known limitation of HotSpotJ is, no floorplan layer configuration can be provided with

the grid model. Users are limited to the default number of layers provided by HotSpot,

which is a base layer (layer 0) and a thermal interface material layer1. Consequently,

experiments where only the base layer dissipates power are supported. Other limitations

of which we are not aware may exist and may be revealed over time. HotFloorplan,

which is another tool that comes with HotSpot, is not supported through HotSpotJ.

1For the specifications of these layers, see the populate_default_layers function in temperature_grid.c file
of HotSpot.

159

hotspotj/hotspotcsrc/Makefile

C.3 Summary of Features

With HotSpotJ you can:

• Create floorplans in an object oriented way with Java or directly in a text file (using

the FLP format of HotSpot),

• View a floorplan in the GUI and save the floorplan as an image or a FLP file,

• Run steady or transient temperature analysis experiments on a floorplan on the

command line – this feature uses HotSpot as the analysis engine,

• Interface with a Java based cycle-accurate simulator in order to feed the HotSpot

engine with power values for an experiment,

• View the results of an experiment in the temperature/power viewer GUI, save the

results as image files or data files that can later be opened in the GUI.

A noteworthy item in this list is the methodology to express a HotSpot floorplan with

object oriented Java programming, which is particularly useful in constructing repetitive

floorplans that contain a large number of blocks. HotSpotJ API defines methods to

construct hierarchical blocks, which can be replicated and shifted to fill a 2-D grid. As a

result, a floorplan that contains a few thousand blocks can easily be expressed under a

hundred lines of Java code.

There are two ways that you can use the HotSpotJ software. First is to call the hotspotj

script to process your input, which is in the form of a compiled Java

floorplan/experiment or text files describing the floorplan and power consumption. The

workflow with this option is shown in Figure C.1. Second is to write your own Java

executable that utilizes the HotSpotJ API, in which case all the functionality of the first

option (and more) is provided in the form or function calls. Incorporating HotSpotJ into

your cycle-accurate simulator falls into the second category.

160

Figure C.1: Workflow with the command line script of HotSpotJ.

C.4 HotSpotJ Terminology

In HotSpotJ, the building blocks of a floorplan are called simple boxes. A simple box is

identified by its location, dimensions and power consumption value. While location and

dimensions are immutable, power consumption value can change over time in the

context of a transient experiment with consecutive runs.

In order to introduce the concept of hierarchy, HotSpotJ API defines composite boxes

which can contain other simple or composite boxes. We refer the highest level composite

box in the hierarchy as the floorplan. When a box is nested in a composite box, it is said to

be added to a parent. The hierarchy graph of a floorplan should always be a connected tree,

i.e. each box should have exactly one parent except the floorplan which has none. On the

other hand, there is no limit to the number of children a composite box can have.

Hierarchical boxes can be cloned at different locations, which allows for easy construction

of repetitive floorplans with a large number of elements.

The hierarchy concept of HotSpotJ is just an abstraction for convenience. Internally, a

floorplan is stripped off its hierarchical structure (in other words flattened) before it is

passed to the HotSpot engine for temperature analysis. Therefore attributes such as

161

location and color are not relevant for composite boxes.

A simple box has the following attributes:

• Name Box names do not need to be unique. Each simple box is assigned an index

according to the order that it is added to its parent. In cases that uniqueness is

required, this index will be appended to the name of the box.

• Dimensions Simple box dimensions are set through its constructor in micrometers.

The resolution is 1µm.

• Location The location of a box is defined as the coordinates of its corner with the

smallest coordinates on a 2-D cartesian system. When a box is created it is initially

located at the origin. It can later be shifted to any location on the coordinate system

(negative coordinate values are allowed). A box can be shifted multiple times, in

which case the effect will be accumulative. In the GUI, boxes are displayed in a

upside-down cartesian coordinate system, i.e. positive-x direction is east and

positive-y direction is south. Coordinates are set in micrometers at the resolution of

1µm.

• Power The total power spent (static and dynamic) in watts per second.

• Color The color attribute is used by the GUI to display a simple box in color.

Above attributes (except for the location and the GUI color as explained before) are

valid for a composite box as well. However dimensions and the power are automatically

derived from its sub-boxes therefore they cannot be directly set. The dimensions of a

composite box are defined as the dimensions of its bounding box, which is the smallest

rectangle that covers all the boxes in it. Similarly, power of a composite box is defined as

the sum of powers of all the simple box instances that it contains. The only user definable

attribute of a composite box is its name which is passed in the constructor override

(super(...) call).

A floorplan is valid if its bounding box is completely covered by the simple boxes in it

and none of the simple boxes overlap. Composite box class API provides two geometrical

check methods to ensure validity: checkArea reports an error if gaps or overflows in the

162

floorplan exist by comparing the bounding box area of the floorplan with the total area of

the simple boxes in the floorplan and checkIntersections checks for overlaps

between boxes. These two methods form a comprehensive geometric check. However

they might require a considerable amount of computation especially for floorplans that

consist of many simple boxes. These overheads can be a problem if numerous

experiments are to be performed on a floorplan, therefore one might choose to remove the

checks after the initial run to optimize performance.

The relevant Java classes for creating floorplans are SimpleBox, CompositeBox and

Box. A floorplan in a CompositeBox object can be displayed in a GUI via the

showFloorplan method of the FloorplanVisualizationPanel class (which is

equivalent to the -fp option of the hotspotj script). In the GUI, each SimpleBox object of

the floorplan will be shown in the color that it is assigned (or gray if no color is assigned).

Options for converting the image to grayscale and displaying box names are provided.

The floorplan can be exported as an image file (jpeg, gif, etc.) from the GUI.

C.4.1 Creating/Running Experiments and Displaying Results

The command line of HotSpotJ allows running steady-state and transient experiments on

a user provided floorplan without further setup. The input should either be in the form of

a compiled Java floorplan class extending CompositeBox or a HotSpot floorplan (FLP)

file. HotSpot configuration values and the initial temperatures/power consumption

values can be set from text files or can be directly set in the constructor of the Java class.

For details see the documentation of -steady and -transient options of the hotspotj script.

A typical experiment is built as follows. First the HotSpot engine and the data

structures that will be used as the communication medium between the C and the Java

code are initialized. Then the stages of the experiment, which can be any combination

and number of steady-state and transient calculations, are executed. Finally the resources

used by the HotSpot engine are deallocated and results are displayed and/or saved.

163

C.5 Tutorial – Floorplan of a 21x21 many-core processor

In this tutorial, we will show how to construct a floorplan using the HotSpotJ Java API,

compile it, check it for geometric errors and view it using the GUI.

The examples that we will demonstrate are taken from a paper by Huang et

al. [HSS+08], in which they investigate the thermal efficiency of a processor with 220

simple cores and 221 cache modules. Cores and caches are assumed to be shaped as

squares and they are placed in a 20mm by 20mm die using a checkerboard layout. 1W

power is applied to each core and caches do not dissipate any power. Figure C.2 shows

the floorplan.

Below is the self documented Java code for this floorplan2. It should be noted that the

code contains less than 20 statements if the inline comments are ignored.

In the code, first, one non-hierarchical box (also called simple box) per cache module

and core is created and its attributes are set. Each simple box is then added to its parent

level hierarchical box (or composite box). As the last step of the code, the floorplan is

checked for geometric errors.

C.5.1 The Java code for the 21x21 Floorplan

package t u t o r i a l ;

import java . awt . Color ;

import h o t s p o t j s r c . CompositeBox ;
import h o t s p o t j s r c . SimpleBox ;

publ ic c l a s s ManyCore21x21 extends CompositeBox {

p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID = 1L ;

publ ic ManyCore21x21 () {
// Pass the name of the f l o o r p l a n to the c o n s t r u c t o r of
// CompositeBox .
super (" 21 x21 Many−core ") ;

// A bui lding block i s a cache or a core .
// This i s the dimension of the r e c t a n g u l a r uni t in um.
i n t BOX_DIM = (i n t) ((2 0 . 0 / 2 1 . 0) ∗ 1 0 0 0) ;

2The associated Java file can be found at tutorial/ManyCore21x21.java.

164

Figure C.2: 21x21 many-core floorplan viewed in the floorplan viewer of HotSpotJ. Red boxes denote the
cores and white boxes are the cache modules. The GUI displays information about a box as a tooltip when the
mouse pointer is held steady over it.

// Tota l power of one core in watts .
double CORE_POWER = 1 ;

// This i s the two l e v e l loop where the f l o o r p l a n i s crea ted .
f o r (i n t x = 0 ; x < 2 1 ; x++) {

f o r (i n t y = 0 ; y < 2 1 ; y++) {
SimpleBox bb ;
i f ((y+x∗21)%2 == 1) {

// The odd numbered elements are the cores .
// Build a non−h i e r a r c h i c a l square box f o r a core .
bb = new SimpleBox (" Core " , BOX_DIM, BOX_DIM) ;
// Cores d i s s i p a t e power .
bb . setPower (CORE_POWER) ;
// Set the c o l o r of the cores to red in the GUI .
bb . se tF loorplanColor (Color . red) ;

} e l s e {
// The even numbered elements are the caches .
// Build a non−h i e r a r c h i c a l square box f o r a cache module .
bb = new SimpleBox (" Cache " , BOX_DIM, BOX_DIM) ;
// The even numbered elements are the caches and they
// do not d i s s i p a t e power .
bb . setPower (0 . 0) ;
// Set the c o l o r of the caches to white in the GUI .
bb . se tF loorplanColor (Color . white) ;

165

}
// S h i f t the box to the c o r r e c t l o c a t i o n in the checkerbox
// grid .
bb . s h i f t (x ∗ BOX_DIM, y ∗ BOX_DIM) ;
// Add the new simple box to the ManyCore21x21 o b j e c t .
addBox (bb) ;

}
}

// Check the f l o o r p l a n f o r geometric e r r o r s . These checks
// might take a long time f o r a l a r g e f l o o r p l a n .
checkArea () ;
c h e c k I n t e r s e c t i o n s () ;

}
}

C.6 HotSpotJ Command Line Options

-fp <class path>
Loads a CompositeBox class to view its floorplan on the
HotSpotJ GUI. Class path should be expressed in Java
notation, the associated class file should have been
previously compiled and the CLASSPATH environment variable
should be set appropriately in order to load the class. See
the HotSpotJ tutorials for detailed examples.

-steady <class path>
Loads a CompositeBox class to run a steady state
experiment on it. It is assumed that the power values are
already set in the floorplan. Class path should be expressed
in Java notation, the associated class file should have been
previously compiled and the CLASSPATH environment variable
should be set appropriately in order to load the class. See
the HotSpotJ tutorials for detailed examples.

This option internally uses the steadySolve method of
CompositeBox class.

-transient <class path> <num>
Loads a CompositeBox class to run a transient experiment
with constant power values on it. It is assumed that the
power values are already set in the floorplan. The number of
iterations is set by the num parameter. The iteration period
is controlled by the const_sampling_intvl field in the
HotSpotConfiguration class, which can be set in the
floorplan file in compilation time.

Class path should be expressed in Java notation, the
associated class file should have been previously compiled
and the CLASSPATH environment variable should be set
appropriately in order to load the class. See the HotSpotJ

166

tutorials for detailed examples.

This option internally uses the transientSolve method of
CompositeBox class.

-loadhjd <?filename>
Loads a previously saved data file. If no data file is
specified, a GUI window will be brought up to select a file
from the file system.

-experiment <classpath> [-save [-base <name>]] [-showinfo] <run_options>
This option is used to call the run method of a class that
extends Experiment. The classpath argument should point to
the full java name of the Experiment class (for example
tutorial.TutorialExperiment), which should be on the
CLASSPATH. If save option is defined, returned panels will
be saved in HJD files. File names will be derived from the
name of the class. If the base option is defined the file
names will use it as the base. If no save option is defined
panels will be shown in the GUI. The showinfo option prints
the info text (see hjd2info option) for each panel to
standard out.

See HotSpotJ documentation for more information on setting
up experiments.

-showflp <FLP file>
Reads a HotSpot floorplan (FLP) file and loads it into the
floorplan viewer GUI.

-fp2flp <class path>
Converts a CompositeBox class to a HotSpot floorplan (FLP)
file representation and prints it on standard output. This
option can be used to write a complex floorplan in HotSpotJ
and then work on it in HotSpot.

-hjd2image [-savedir <dirname>]
[-mintemp <value>] [-maxtemp <value>]
[-minpower <value>] [-maxpower <value>] <hjd filenames..>

This is a batch processing option that saves the power and
temperature map images in the HJD files to image files.
Multiple image types are supported (platform dependent) and
a list of supported types can be obtained via the "hotspotj
-hjd2image -type list" command. The image type is set with
the "-type" option. If a type is not provided, default is
jpeg.

By an output file is written to the same directory that
the associated input file is read from. This can be changed
via the savedir option. The relative paths of the input
files will be conserved in the save directory.

Arguments that are not options are considered as input
files.

167

A purpose of batch converting HJD files to images is to
assemble movies that show the change in power and
temperature maps over the course of an experiment. For this,
the experiment should periodically save the data. The the
user can use the hjd2image option to convert the data to
image files and these files can be converted to an mpeg
movie (a script that does this conversion is provided in the
HotSpotJ package).

Note that, the color scheme in a temperature or power map
is derived relative to the minimum and maximum values in the
map (i.e. minimum and maximum will be at the opposite ends
of the color spectrum). However in order to make a
meaningful movie, the color schemes should be consistent
between all maps. Therefore below options are provided for
the user to set minimum and maximum values for the
temperature and power map color schemes:

[-mintemp <value>] [-maxtemp <value>]
[-minpower <value>] [-maxpower <value>]

Values are in Kelvins. If a value is not provided, it will
be set from the minimum/maximum found in the associated map.
If a value is outside the user provided range, it will be
truncated to the minimum/maximum.

-hjd2info [-intbase <float>] <filenames...>
This is a batch processing command that works in the same
way as the hjd2image option but instead of saving map images
it prints the information of each input hjd file on standard
output. The information is the text displayed in the power
and temperature tabs below the maps.

If instbase is specified, the base value for the
temperature integral will be set. See HotSpotJ documentation
for information on temperature integral.

168

Appendix D

Alternative Floorplans for XMT1024

In Chapter 7, one of the two floorplans we simulated was a thermally efficient

checkerboard design (FP1, Figure 7.4). In the process of constructing that floorplan, we

inspected two others that are given in this appendix. These floorplans use the same basic

tile structure explained in Section 7.3 (Figure 7.5). In terms of efficiency, they are close to

the checkerboard floorplan, therefore should the constraints dictate, they can be

substituted for it without much difference.

Both alternative floorplans place the ICN in the middle of the chip as in FP2 of

Figure 7.3. The first one in Figure D.1 features a grid structure similar to FP1, without the

alternating orientations of tiles, and the second one (Figure D.2) features a grid with

alternating tiles.

169

Cluster

Cache Cache

ICN

Master TCU

Figure D.1: The first alternative floorplan for the XMT1024 chip.

Cluster

Cluster
Cache Cache

Cache Cache

ICN

Master TCU

Figure D.2: Another alternative tiled floorplan for the XMT1024 chip, tiles are placed in alternating vertical
orientations.

170

Bibliography

[ACC+90] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan
Porterfield, and Burton Smith. The Tera computer system. In Proceedings of
the International conference on Supercomputing, 1990.

[ALE02] Todd Austin, Eric Larson, and Dan Erns. Simplescalar: An infrastructure for
computer system modeling. IEEE Computer, 35(2):59–67, 2002.

[AMD04] AMD. Cool’n’Quiet Technology . www.amd.com/us/products/
technologies/cool-n-quiet/Pages/cool-n-quiet.aspx, 2004.

[AMD10a] AMD. Phenom II. www.amd.com/us/products/desktop/
processors/phenom-ii/Pages/phenom-ii.aspx, 2010.

[AMD10b] AMD. Radeon HD 6970. www.amd.com/us/products/desktop/
graphics/amd-radeon-hd-6000/hd-6970/Pages/
amd-radeon-hd-6970-overview.aspx, 2010.

[AVP+06] David Atienza, Pablo G. Del Valle, Giacomo Paci, et al. HW-SW Emulation
Framework for Temperature-Aware Design in MPSoCs. In Proceedings of the
Design Automation Conference, 2006.

[Bal08] Aydin O. Balkan. Mesh-of-trees Interconnection Network for an Explicitly
Multi-threaded Parallel Computer Architecture. PhD thesis, University of
Maryland, 2008.

[BBF+97] P. Bach, M. Braun, A. Formella, J. Friedrich, T. Grun, and C. Lichtenau.
Building the 4 processor SB-PRAM prototype. In Proceedings of the
International Conference on System Sciences, 1997.

[BC11] Shekhar Borkar and Andrew A. Chien. The future of microprocessors.
Communications of the ACM, 54:67–77, 2011.

[BCNN04] Jerry Banks, John S. Carson, Barry L. Nelson, and David M. Nicol.
Discrete-Event System Simulation. Prentice Hall, Upper Saddle River, NJ,
USA, 4th edition, 2004.

[BCTB11] Andrea Bartolini, Matteo Cacciari, Andrea Tilli, and Luca Benin. A
distributed and self-calibrating model-predictive controller for energy and
thermal management of high-performance multicores. In Proceedings of the
Design, Automation, and Test in Europe, 2011.

[Ben93] S. Bennett. Development of the pid controller. IEEE Control Systems
Magazine, 13:58–65, 1993.

[BFH+04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,
Mike Houston, and Pat Hanrahan. Brook for GPUs: stream computing on
graphics hardware. ACM Trans. Graph., 23(3):777–786, 2004.

[BG09] Nathan Bell and Michael Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proceedings of the
ACM/IEEE Conference on Supercomputing, 2009.

171

www.amd.com/us/products/technologies/cool-n-quiet/Pages/cool-n-quiet.aspx
www.amd.com/us/products/technologies/cool-n-quiet/Pages/cool-n-quiet.aspx
www.amd.com/us/products/desktop/processors/phenom-ii/Pages/phenom-ii.aspx
www.amd.com/us/products/desktop/processors/phenom-ii/Pages/phenom-ii.aspx
www.amd.com/us/products/desktop/graphics/amd-radeon-hd-6000/hd-6970/Pages/amd-radeon-hd-6970-overview.aspx
www.amd.com/us/products/desktop/graphics/amd-radeon-hd-6000/hd-6970/Pages/amd-radeon-hd-6970-overview.aspx
www.amd.com/us/products/desktop/graphics/amd-radeon-hd-6000/hd-6970/Pages/amd-radeon-hd-6970-overview.aspx

[Bor99] S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23–29,
Jul-Aug 1999.

[Bor07] Shekhar Borkar. Thousand core chips: a technology perspective. In
Proceedings of the Design Automation Conference, 2007.

[BPV10] Luigi Brochard, Raj Panda, and Sid Vemuganti. Optimizing performance
and energy of hpc applications on power7. In International Conference on
Energy-Aware High Performance Computing, 2010.

[BQV08] A. O. Balkan, Gang Qu, and U. Vishkin. An area-efficient high-throughput
hybrid interconnection network for single-chip parallel processing. In
Proceedings of the Design Automation Conference, pages 435–440, June 2008.

[BQV09] Aydin O. Balkan, Gang Qu, and Uzi Vishkin. Mesh-of-trees and alternative
interconnection networks for single-chip parallelism. IEEE Transactions on
VLSI Systems, 17(10):1419–1432, 2009.

[BS00] J.A. Butts and G.S. Sohi. A static power model for architects. In Proceedings
of the International Symposium on Microarchitecture, 2000.

[BTM00] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In Proceedings of the
International Symposium on Computer Architecture, 2000.

[BTR02] D.C. Bossen, J.M. Tendler, and K. Reick. Power4 system design for high
reliability. IEEE Micro, 22:16 – 24, 2002.

[BYF+09] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. Analyzing CUDA workloads using a detailed GPU simulator. In
Proceedings of the IEEE International Symposium on Performance Analysis of
Systems and Software, 2009.

[Cad] Cadence. NC-Verilog Simulator.
www.cadence.com/datasheets/IncisiveVerilog_ds.pdf.

[Car11] George C. Caragea. Optimizing for a Many-co Architecture Without
Compromising Ease of Programming. PhD thesis, University of Maryland, 2011.

[CB05] G. Cong and D.A. Bader. An Experimental Study of Parallel Biconnected
Components Algorithms on Symmetric Multiprocessors (SMPs). In
Proceedings of the IEEE International Parallel and Distributed Processing
Symposium, 2005.

[CBD+05] Robert Chau, Justin Brask, Suman Datta, et al. Application of high-k gate
dielectrics and metal gate electrodes to enable silicon and non-silicon logic
nanotechnology. Microelectronic Engineering, 80:1–6, 2005.

[CBM+09] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In Proceedings of the IEEE International Symposium
on Workload Characterization, 2009.

172

www.cadence.com/datasheets/IncisiveVerilog_ds.pdf

[CDE+08] Sangyeun Cho, S. Demetriades, S. Evans, Lei Jin, Hyunjin Lee, Kiyeon Lee,
and M. Moeng. TPTS: A novel framework for very fast manycore processor
architecture simulation. In Proceedings of the International Conference on
Parallel Processing, 2008.

[CGS97] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 1997.

[CKP+93] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.
LogP: towards a realistic model of parallel computation. SIGPLAN Notes,
28:1–12, 1993.

[CKT10] George C. Caragea, Fuat Keceli, and Alexandros Tzannes. Software release
of the XMT programming environment.
www.umiacs.umd.edu/users/vishkin/XMT/sw-release.html, 2008
– 2010.

[CKTV10] George Caragea, Fuat Keceli, Alexandros Tzannes, and Uzi Vishkin.
General-purpose vs. GPU: Comparison of many-cores on irregular
workloads. In Proceedings of the USENIX Workshop on Hot Topics in
Parallelism, 2010.

[CLRT11] Olivier Certner, Zheng Li, Arun Raman, and Olivier Temam. A very fast
simulator for exploring the many-core future. In Proceedings of the IEEE
International Parallel and Distributed Processing Symposium, 2011.

[CSWV09] George C. Caragea, Beliz Saybasili, Xingzhi Wen, and Uzi Vishkin.
Performance potential of an easy-to-program pram-on-chip prototype
versus state-of-the-art processor. In Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures, 2009.

[CT08] Daniel Cederman and Philippas Tsigas. On sorting and load balancing on
gpus. SIGARCH Comput. Archit. News, 36(5):11–18, 2008.

[CTBV10] George C. Caragea, Alexandros Tzannes, Aydin O. Balkan, and Uzi Vishkin.
XMT Toolchain Manual for XMTC Language, XMTC Compiler, XMT
Simulator and Paraleap XMT FPGA Computer.
sourceforge.net/projects/xmtc/files/xmtc-documentation/,
2010.

[CTK+10] George Caragea, Alexandre Tzannes, Fuat Keceli, Rajeev Barua, and Uzi
Vishkin. Resource-aware compiler prefetching for many-cores. In
Proceedings of the International Symposium on Parallel and Distributed
Computing, 2010.

[CV11] G.C. Caragea and U. Vishkin. Better speedups for parallel max-flow. In
Proceedings of the ACM Symposium on Parallelism in Algorithms and
Architectures, 2011.

173

www.umiacs.umd.edu/users/vishkin/XMT/sw-release.html
sourceforge.net/projects/xmtc/files/xmtc-documentation/

[Dal] William Dally. Power, programmability, and granularity: The challenges of
exascale computing. Talk at the 2011 IEEE International Symposium on
Parallel and Distributed Processing.

[DLW+08] T. M. DuBois, B. Lee, Yi Wang, M. Olano, and U. Vishkin. XMT-GPU: A
PRAM architecture for graphics computation. In Proceedings of the
International Conference on Parallel Processing, 2008.

[DM06] James Donald and Margaret Martonosi. Techniques for multicore thermal
management: Classification and new exploration. In Proceedings of the
International Symposium on Computer Architecture, 2006.

[Edw11] James Edwards. Can pram graph algorithms provide practical speedups on
many-core machines? Dimacs Workshop on Parallelism: A 2020 Vision,
March 2011.

[EG88] D. Eppstein and Z. Galil. Parallel algorithmic techniques for combinatorial
computation. Annual review of computer science, 3:233–283, 1988.

[FM10] Samuel H. Fuller and Lynette I. Millett, editors. The Future of Computing
Performance: Game Over or Next Level? The National Academies Press,
December 2010. Computer Science and Telecommunications Board.

[Fuj90] Richard M. Fujimoto. Parallel discrete event simulation. Communications of
the ACM, 33:30–53, 1990.

[FWR+11] M. Floyd, M. Ware, K. Rajamani, T. Gloekler, et al. Adaptive
energy-management features of the IBM POWER7 chip. IBM Journal of
Research and Development, 55(8):1–18, 2011.

[GGK+82] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and
M. Snir. The NYU ultracomputer: designing a MIMD, shared-memory
parallel machine (extended abstract). In Proceedings of the International
Symposium on Computer Architecture, 1982.

[GH98] Etienne M. Gagnon and Laurie J. Hendren. SableCC, an Object-Oriented
Compiler Framework. In Proceedings of the Technology of Object-Oriented
Languages, 1998.

[Gin11] R. Ginosar. The plural architecture. www.plurality.com, 2011. Also see
course on Parallel Computing, Electrical Engineering, Technion
http://webee.technion.ac.il/courses/048874.

[GMQ10] Yang Ge, P. Malani, and Qinru Qiu. Distributed task migration for thermal
management in many-core systems. In Proceedings of the Design Automation
Conference, 2010.

[GST07] B. Greskamp, S.R. Sarangi, and J. Torrellas. Threshold voltage variation
effects on aging-related hard failure rates. In Proceedings of the IEEE
International Symposium on Circuits and Systems, 2007.

[HB09] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2009.
Version 1.1.

174

www.plurality.com
http://webee.technion.ac.il/courses/048874

[HBVG08] Lorin Hochstein, Victor R. Basili, Uzi Vishkin, and John Gilbert. A pilot
study to compare programming effort for two parallel programming
models. Journal of Systems and Software, 81(11):1920 – 1930, 2008.

[HD+10] Jason Howard, Saurabh Dighe, et al. A 48-core IA-32 message-passing
processor with DVFS in 45nm CMOS. In Proceedings of the IEEE Solid-State
Circuits Conference, 2010.

[HH10] Z. He and Bo Hong. Dynamically Tuned Push-Relabel Algorithm for the
Maximum Flow Problem on CPU-GPU-Hybrid Platforms. In Proceedings of
the IEEE International Parallel and Distributed Processing Symposium, 2010.

[HK10] Sunpyo Hong and Hyesoon Kim. An integrated GPU power and
performance model. In Proceedings of the International Symposium on
Computer Architecture, 2010.

[HM08] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. IEEE
Computer, 41(7):33–38, 2008.

[HN07] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on
the gpu using cuda. In In proceedings High Performance Computing - HiPC,
pages 197–208, 2007.

[HNCV10] Michael N. Horak, Steven M. Nowick, Matthew Carlberg, and Uzi Vishkin.
A low-overhead asynchronous interconnection network for GALS chip
multiprocessors. In Proceedings of the ACM/IEEE International Symposium on
Networks-on-Chip, 2010.

[HPLC05] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0:
Faster and more flexible program analysis. Journal of Instruction Level
Parallelism, 7, Sept. 2005.

[HSR+07] W. Huang, K. Sankaranarayanan, R. J. Ribando, M. R. Stan, and K. Skadron.
An Improved Block-Based Thermal Model in HotSpot 4.0 with Granularity
Considerations. In Proceedings of the Workshop on Duplicating, Deconstructing,
and Debunking, 2007.

[HSS+04] Wei Huang, M.R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and
S. Velusamy. Compact thermal modeling for temperature-aware design. In
Proceedings of the Design Automation Conference, 2004.

[HSS+08] W. Huang, M. R. Stan, K. Sankaranarayanan, Robert J. Ribando, and
K. Skadron. Many-core design from a thermal perspective. In Proceedings of
the Design Automation Conference, 2008.

[HWL+07] H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil.
Hotspot-limited microprocessors: Direct temperature and power
distribution measurements. IEEE Journal of Solid-State Circuits, 42:56 –65,
2007.

[IM03] Canturk Isci and Margaret Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In Proceedings of the
International Symposium on Microarchitecture, 2003.

175

[Inta] Intel. Core i7 2600.
ark.intel.com/ProductCollection.aspx?series=53250.

[Intb] P3 International. P4460 Electricity Usage Monitor.
www.p3international.com/products/p4460.html.

[Int08a] Intel. Core i7 (Nehalem) Dynamic Power Management. White paper, 2008.

[Int08b] Intel. Turbo Boost Technology in Intel Core Micro-architecture (Nehalem)
Based Processors. White paper, 2008.

[JáJ92] J. JáJá. An introduction to parallel algorithms. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1992.

[JBH+05] H. Jacobson, P. Bose, Zhigang Hu, A. Buyuktosunoglu, V. Zyuban,
R. Eickemeyer, L. Eisen, J. Griswell, D. Logan, Balaram Sinharoy, and
J. Tendler. Stretching the limits of clock-gating efficiency in server-class
processors. In Proceedings of the International Symposium on High-Performance
Computer Architecture, 2005.

[Kan08] David Kanter. NVIDIA’s GT200: Inside a Parallel Processor. Physical
Implementation. http://www.realworldtech.com/page.cfm?
ArticleID=RWT090808195242&p=11, September 2008.

[KDY09] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. A
characterization and analysis of PTX kernels. In Proceedings of the IEEE
International Symposium on Workload Characterization, 2009.

[KGyWB08] Wonyoung Kim, Meeta S. Gupta, Gu yeon Wei, and David Brooks. System
level analysis of fast, per-core dvfs using on-chip switching regulators. In
Proceedings of the International Symposium on High-Performance Computer
Architecture, 2008.

[KKT01] Jorg Keller, Christopher Kessler, and Jesper Larsson Traeff. Practical PRAM
Programming. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[KLPS11] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. Orion 2.0: A
power-area simulator for interconnection networks. IEEE Transactions on
VLSI Systems, 2011. to appear.

[KM08] Stefanos Kaxiras and Margaret Martonosi. Computer Architecture Techniques
for Power-Efficiency. Morgan and Claypool Publishers, 2008.

[KNB+99] Ali Keshavarzi, Siva Narendra, Shekhar Borkar, Charles Hawkind, Kaushik
Roy, and Vivek De. Technology scaling behavior of optimum reverse body
bias for standby leakage power reduction. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 252–254, 1999.

[KR90] R. M. Karp and V. Ramachandran. Handbook of theoretical computer science
(vol. A), chapter Parallel algorithms for shared-memory machines, pages
869–941. MIT Press, Cambridge, MA, USA, 1990.

176

ark.intel.com/ProductCollection.aspx?series=53250
www.p3international.com/products/p4460.html
http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=11
http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=11

[KRU09] Michael Kadin, Sherief Reda, and Augustus Uht. Central vs. distributed
dynamic thermal management for multi-core processors: which one is
better? In Proceedings of the Great Lakes symposium on VLSI, 2009.

[KTC+11] Fuat Keceli, Alexandros Tzannes, George Caragea, Uzi Vishkin, and Rajeev
Barua. Toolchain for programming, simulating and studying the XMT
many-core architecture. In Proceedings of the International Workshop on
High-Level Parallel Programming Models and Supportive Environments, 2011. in
conj. with IPDPS.

[LAS+09] Sheng Li, Jung H. Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. McPAT: an integrated power, area, and
timing modeling framework for multicore and manycore architectures. In
Proceedings of the International Symposium on Microarchitecture, 2009.

[LCVR03] Hai Li, Chen-Yong Cher, T. N. Vijaykumar, and Kaushik Roy. VSV:
L2-Miss-Driven Variable Supply-Voltage Scaling for Low Power. In
Proceedings of the IEEE/ACM International Symposium on Microarchitecture,
page 19, 2003.

[LH03] Weiping Liao and Lei He. Power modeling and reduction of vliw
processors. In Compilers and operating systems for low power, pages 155–171.
Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[Lia99] Sheng Liang. Java Native Interface: Programmer’s Guide and Reference.
Addison-Wesley Longman Publishing, 1999.

[LLW10] Yu Liu, Han Liang, and Kaijie Wu. Scheduling for energy efficiency and
fault tolerance in hard real-time systems. In Proceedings of the Design,
Automation, and Test in Europe, 2010.

[LNOM08] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.
NVIDIA tesla: A unified graphics and computing architecture. IEEE Micro,
28(2):39–55, 2008.

[LV08] H. Lebreton and P. Vivet. Power Modeling in SystemC at Transaction Level,
Application to a DVFS Architecture. In Proceedings of the IEEE Computer
Society Annual Symposium on VLSI, 2008.

[LZB+02] David E. Lackey, Paul S. Zuchowski, Thomas R. Bednar, Douglas W. Stout,
Scott W. Gould, and John M. Cohn. Managing power and performance for
system-on-chip designs using voltage islands. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pages 195–202,
2002.

[LZWQ10] Shaobo Liu, Jingyi Zhang, Qing Wu, and Qinru Qiu. Thermal-aware job
allocation and scheduling for three dimensional chip multiprocessor. In
Proceedings of the International Symposium on Quality Electronic Design, 2010.

[MBJ05] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi.
CACTI 6.0: A Tool to Model Large Caches. Technical report, HP
Laboratories, 2005.

177

[MDM+95] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada.
1-V Power Supply High-Speed Digital Circuit Technology with
Multithreshold-Voltage CMOS. IEEE Journal of Solid-State Circuits,
8(30):847–854, 1995.

[MFMB02] Steven M. Martin, Krisztian Flautner, Trevor Mudge, and David Blaauw.
Combined dynamic voltage scaling and adaptive body biasing for lower
power microprocessors under dynamic workloads. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, 2002.

[MLCW11] Kai Ma, Xue Li, Ming Chen, and Xiaorui Wang. Scalable power control for
many-core architectures running multi-threaded applications. In Proceedings
of the International Symposium on Computer Architecture, 2011.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics Magazine, 38(8):4, 1965.

[MOP+09] R. Marculescu, U.Y. Ogras, Li-Shiuan Peh, N.E. Jerger, and Y. Hoskote.
Outstanding Research Problems in NoC Design: System, Microarchitecture,
and Circuit Perspectives. IEEE Transactions on CAD of Integrated Circuits and
Systems, 28:3 – 21, 2009.

[MPB+06] R. McGowen, C.A. Poirier, C. Bostak, J. Ignowski, M. Millican, W.H. Parks,
and S. Naffziger. Power and temperature control on a 90-nm itanium family
processor. IEEE Journal of Solid-State Circuits, 41(1):229–237, 2006.

[Mun09] A. Munshi. OpenCL specification version 1.0. Technical report, Khronos
OpenCL Working Group, 2009.

[MVF00] Jens Muttersbach, Thomas Villiger, and Wolfgang Fichtner. Practical design
of globally-asynchronous locally-synchronous systems. In Proceedings of the
IEEE International Symposium on Asynchronous Circuits and Systems, 2000.

[Nak06] Wataru Nakayama. Exploring the limits of air cooling.
www.electronics-cooling.com/2006/08/
exploring-the-limits-of-air-cooling/, 2006.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with CUDA. Queue, 6(2):40–53, 2008.

[NNTV01] Dorit Naishlos, Joseph Nuzman, Chau-Wen Tseng, and Uzi Vishkin.
Towards a first vertical prototyping of an extremely fine-grained parallel
programming approach. In Proceedings of the ACM Symposium on Parallelism
in Algorithms and Architectures, 2001.

[NS00] Koichi Nose and Takayasu Sakurai. Optimization of vdd and vth for
low-power and high speed applications. In ASP-DAC ’00: Proceedings of the
2000 conference on Asia South Pacific design automation, pages 469–474, New
York, NY, USA, 2000. ACM.

[NVIa] NVIDIA. GeForce GTX280.
www.nvidia.com/object/product_geforce_gtx_280_us.html.

178

www.electronics-cooling.com/2006/08/exploring-the-limits-of-air-cooling/
www.electronics-cooling.com/2006/08/exploring-the-limits-of-air-cooling/
www.nvidia.com/object/product_geforce_gtx_280_us.html

[NVIb] NVIDIA. GeForce GTX580.
www.nvidia.com/object/product-geforce-gtx-580-us.html.

[NVI09] NVIDIA. CUDA SDK 2.3, 2009.

[NVI10] NVIDIA. CUDA Zone. www.nvidia.com/cuda, 2010.

[Pat10] David Patterson. The trouble with multicore: Chipmakers are busy
designing microprocessors that most programmers can’t handle. IEEE
Spectrum, July 2010.

[PBB+02] Wolfgang J. Paul, Peter Bach, Michael Bosch, Jörg Fischer, Cédric Lichtenau,
and Jochen Röhrig. Real PRAM Programming. In Proceedings of the
International Euro-Par Conference on Parallel Processing, 2002.

[PV11] D. Padua and U. Vishkin. Joint UIUC/UMD parallel algorithms/
programming course. In Proceedings of the NSF/TCPP Workshop on Parallel
and Distributed Computing Education, 2011. in conj. with IPDPS.

[Rab96] Jan M. Rabaey. Digital integrated circuits: a design perspective. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1996.

[SA08] Erik Sintorn and Ulf Assarsson. Fast parallel GPU-sorting using a hybrid
algorithm. Journal of Parallel and Distributed Computing, 68(10):1381–1388,
2008.

[Sam] Samsung. Samsung Green GDDR5. www.samsung.com/global/
business/semiconductor/Greenmemory/Downloads/Documents/
downloads/green_gddr5.pdf.

[SAS02] K. Skadron, T. Abdelzaher, and M.R. Stan. Control-theoretic techniques and
thermal-rc modeling for accurate and localized dynamic thermal
management. High-Performance Computer Architecture, 2002. Proceedings.
Eighth International Symposium on, pages 17–28, 2002.

[SCP09] David Defour Sylvain Collange, Marc Daumas and David Parello. Barra, a
modular functional GPU simulator for GPGPU. Technical report, Université
de Perpignan, 2009.

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, et al. Larrabee: A many-core x86
architecture for visual computing. In SIGGRAPH, 2008.

[SHG09] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient
sorting algorithms for manycore GPUs. In Proceedings of the IEEE
International Parallel and Distributed Processing Symposium, 2009.

[SLD+03] Haihua Su, F. Liu, A. Devgan, E. Acar, and S. Nassif. Full chip
leakage-estimation considering power supply and temperature variations.
In Proceedings of the International Symposium on Low Power Electronics and
Design, 2003.

[SMD06] Takayasu Sakurai, Akira Matsuzawa, and Takakuni Douseki. Fully-Depleted
SOI CMOS Circuits and Technology for Ultralow-Power Applications. Springer,
2006.

179

www.nvidia.com/object/product-geforce-gtx-580-us.html
www.samsung.com/global/business/semiconductor/Greenmemory/Downloads/Documents/downloads/green_gddr5.pdf
www.samsung.com/global/business/semiconductor/Greenmemory/Downloads/Documents/downloads/green_gddr5.pdf
www.samsung.com/global/business/semiconductor/Greenmemory/Downloads/Documents/downloads/green_gddr5.pdf

[SN90] T. Sakurai and A.R. Newton. Alpha-power law mosfet model and its
applications to cmos inverter delay and other formulas. IEEE Journal of
Solid-State Circuits, 25:584–594, April 1990.

[SSH+03] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik
Sankaranarayanan, and David Tarjan. Temperature-aware
microarchitecture. In Proceedings of the International Symposium on Computer
Architecture, 2003.

[STBV09] A. Beliz Saybasili, Alexandros Tzannes, Bernard R. Brooks, and Uzi Vishkin.
Highly parallel multi-dimentional fast fourier transform on fine- and
coarse-grained many-core approaches. In IASTED International Conference on
Parallel and Distributed Computing and Systems, 2009.

[Syn] Synopsys. PrimeTime. www.synopsys.com/Tools/Implementation/
SignOff/Pages/PrimeTime.aspx.

[TCM+09] D. N. Truong, W. H. Cheng, T. Mohsenin, Zhiyi Yu, A. T. Jacobson,
G. Landge, M. J. Meeuwsen, C. Watnik, A. T. Tran, Zhibin Xiao, E. W. Work,
J. W. Webb, P. V. Mejia, and B. M. Baas. A 167-processor computational
platform in 65 nm cmos. IEEE Journal of Solid-State Circuits, 44(4):1130–1144,
April 2009.

[TCVB11] Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev Barua.
The compiler for the XMTC parallel language: Lessons for compiler
developers and in-depth description. Technical Report
UMIACS-TR-2011-01, University of Maryland Institute for Advanced
Computer Studies, 2011.

[TVTE10] Shane Torbert, Uzi Vishkin, Ron Tzur, and David J. Ellison. Is teaching
parallel algorithmic thinking to high-school student possible? one teachers
experience. In Proceedings of the ACM Technical Symposium on Computer
Science Education, 2010.

[VCL07] Uzi Vishkin, George C. Caragea, and Bryant C. Lee. Handbook of Parallel
Computing: Models, Algorithms and Applications, chapter Models for
Advancing PRAM and Other Algorithms into Parallel Programs for a
PRAM-On-Chip Platform. CRC Press, 2007.

[VDBN98] Uzi Vishkin, Shlomit Dascal, Efraim Berkovich, and Joseph Nuzman.
Explicit multi-threading (XMT) bridging models for instruction parallelism.
In Proceedings of the ACM Symposium on Parallelism in Algorithms and
Architectures, 1998.

[Vee84] Harry J. M. Veendrick. Short circuit power dissipation of static CMOS
circuitry and its impact on the design of buffer circuits. IEEE Journal of
Solid-State Circuits, 19:468–473, August 1984.

[Vis07] U. Vishkin. Thinking in parallel: Some basic data-parallel algorithms and
techniques. www.umiacs.umd.edu/users/vishkin/PUBLICATIONS/
classnotes.pdf, 2007. In use as class notes since 1993.

180

www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
www.umiacs.umd.edu/users/vishkin/PUBLICATIONS/classnotes.pdf
www.umiacs.umd.edu/users/vishkin/PUBLICATIONS/classnotes.pdf

[Vis11] Uzi Vishkin. Using simple abstraction to guide the reinvention of computing
for parallelism. Communications of the ACM, 54(1):75–85, Jan. 2011.

[VTEC09] Uzi Vishkin, Ron Tzur, David Ellison, and George C. Caragea. Programming
for high schools.
www.umiacs.umd.edu/~vishkin/XMT/CS4HS_PATfinal.ppt, July
2009. Keynote, The CS4HS Workshop.

[WGT+05] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes,
Aamer Jaleel, and Bruce Jacob. DRAMsim: a memory system simulator.
SIGARCH Computer Architecture News, 33:100–107, 2005.

[WJ96] S.J.E. Wilton and N.P. Jouppi. CACTI: an enhanced cache access and cycle
time model. IEEE Journal of Solid-State Circuits, 31(5):677–688, May 1996.

[WRF+10] Malcolm Ware, Karthick Rajamani, Michael Floyd, Bishop Brock, Juan C
Rubio, Freeman Rawson, and John B Carter. Architecting for power
management: The ibm power7 approach. In Proceedings of the International
Symposium on High-Performance Computer Architecture, 2010.

[WV07] Xingzhi Wen and Uzi Vishkin. PRAM-on-chip: first commitment to silicon.
In Proceedings of the ACM Symposium on Parallelism in Algorithms and
Architectures, 2007.

[WV08a] Xingzhi Wen and Uzi Vishkin. FPGA-based prototype of a PRAM on-chip
processor. In Proceedings of the ACM Computing Frontiers, 2008.

[WV08b] Xingzhi Wen and Uzi Vishkin. The XMT FPGA prototype/ cycle-accurate
simulator hybrid. In Proceedings of the Workshop on Architectural Research
Prototyping, 2008.

[ZIM+07] Li Zhao, R. Iyer, J. Moses, R. lllikkal, S. Makineni, and D. Newell. Exploring
large-scale cmp architectures using manysim. IEEE Micro, 27:21 – 33, 2007.

[ZPS+03] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan.
Hotleakage: A temperature-aware model of subthreshold and gate leakage
for architects. Technical report, Univ. of Virginia Dept. of Computer Science,
2003.

181

www.umiacs.umd.edu/~vishkin/XMT/CS4HS_PATfinal.ppt

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background on Power/Temperature Estimation and Management
	Sources of Power Dissipation in Digital Processors
	Dynamic Power Consumption
	Clock Gating
	Estimation of of Dynamic Power in Simulation

	Leakage Power Consumption
	Management of Leakage Power
	Estimation of of Leakage Power in Simulation

	Power Consumption in On-Chip Memories
	Power and Clock Speed Trade-offs
	Dynamic Scaling of Voltage and Frequency
	Technology Scaling Trends
	Thermal Modeling and Design
	Power and Thermal Constraints in Recent Processors
	Tools for Area, Power and Temperature Estimation

	The Explicit Multi-Threading (XMT) Platform
	The XMT Architecture
	Memory Organization
	The Mesh-of-Trees Interconnect (MoT-ICN)

	Programming of XMT
	The PRAM Model
	XMTC – Enhanced C Programming for XMT
	The Prefix-Sum Operation
	Example Program
	Independence-of-Order and No-Busy-Wait
	Ease-of-Programming

	Thread Scheduling in XMT
	Performance Advantages
	Power Efficiency of XMT and Design for Power Management
	Suitability of the Programming Model
	Re-designing Thread Scheduling for Power
	Low Power States for Clusters
	Power Management of the Synchronous MoT-ICN
	Power Management of Shared Caches – Dynamic Cache Resizing

	XMTSim – The Cycle-Accurate Simulator of the XMT Architecture
	Overview of XMTSim
	Simulation Statistics and Runtime Control
	Details of Cycle-Accurate Simulation
	Discrete-Event Simulation
	Concurrent Communication of Data Between Components
	Optimizing the DE Simulation Performance
	Simulation Speed

	Cycle Verification Against the FPGA Prototype
	Power and Temperature Estimation in XMTSim
	The Power Model

	Dynamic Power and Thermal Management in XMTSim
	Other Features
	Features under Development
	Related Work

	Enabling Meaningful Comparison of XMT with Contemporary Platforms
	The Compared Architecture – NVIDIA Tesla
	Tesla/CUDA Framework
	Comparison of the XMT and the Tesla Architectures

	Silicon Area Feasibility of 1024-TCU XMT
	ASIC Synthesis of a 64-TCU Prototype
	Silicon Area Estimation for XMT1024

	Benchmarks
	Performance Comparison of XMT1024 and the GTX280
	Conclusions

	Power/Performance Comparison of XMT1024 and GTX280
	Power Model Parameters for XMT1024
	First Order Power Comparison of XMT1024 and GTX280
	GPU Measurements and Simulation Results
	Benchmarks
	GPU Measurements
	XMT Simulations and Comparison with GTX280

	Sensitivity of Results to Power Model Errors
	Clusters, Caches and Memory Controllers
	Interconnection Network
	Putting it together

	Discussion of Detailed Data
	Sensitivity to ICN and Cluster Clock Frequencies
	Power Breakdown for Different Cases

	Dynamic Thermal Management of the XMT1024 Processor
	Thermal Simulation Setup
	Benchmarks
	Benchmark Characterization

	Thermally Efficient Floorplan for XMT1024
	Evaluation of Floorplans without DTM

	DTM Background
	Control of Temperature via PID Controllers

	DTM Algorithms and Evaluation
	Analysis of DTM Results
	CG-DDVFS
	FG-DDVFS
	LP-DDVFS
	Effect of floorplan

	Future Work
	Related Work

	Conclusion
	Basics of Digital CMOS Logic
	The MOSFET
	A Simple CMOS Logic Gate: The Inverter
	Dynamic Power
	Switching Power
	Short Circuit Power

	Leakage Power
	Subthreshold Leakage
	Leakage due to Gate Oxide Scaling
	Junction Leakage

	Extended XMTSim Documentation
	General Information and Installation
	Dependencies and install

	XMTSim Manual
	XMTSim Configuration Options

	HotSpotJ
	Installation
	Software Dependencies
	Building the Binaries

	Limitations
	Summary of Features
	HotSpotJ Terminology
	Creating/Running Experiments and Displaying Results

	Tutorial – Floorplan of a 21x21 many-core processor
	The Java code for the 21x21 Floorplan

	HotSpotJ Command Line Options

	Alternative Floorplans for XMT1024
	Bibliography

