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Abstract. Interpolating scattered data points is a problem of wide rang-
ing interest. A number of approaches for interpolation have been pro-
posed both from theoretical domains such as computational geometry
and in applications’ fields such as geostatistics. Our motivation arises
from geological and mining applications. In many instances data can be
costly to compute and are available only at nonuniformly scattered posi-
tions. Because of the high cost of collecting measurements, high accuracy
is required in the interpolants. One of the most popular interpolation
methods in this field is called ordinary kriging. It is popular because it is
a best linear unbiased estimator. The price for its statistical optimality is
that the estimator is computationally very expensive. This is because the
value of each interpolant is given by the solution of a large dense linear
system. In practice, kriging problems have been solved approximately by
restricting the domain to a small local neighborhood of points that lie
near the query point. Determining the proper size for this neighborhood
is a solved by ad hoc methods, and it has been shown that this approach
leads to undesirable discontinuities in the interpolant.

Recently a more principled approach to approximating kriging has been
proposed based on a technique called covariance tapering. This process
achieves its efficiency by replacing the large dense kriging system with
a much sparser linear system. This technique has been applied to a re-
striction of our problem, called simple kriging, which is not unbiased for
general data sets. In this paper we generalize these results by showing
how to apply covariance tapering to the more general problem of ordi-
nary kriging. Through experimentation we demonstrate the space and
time efficiency and accuracy of approximating ordinary kriging through
the use of covariance tapering combined with iterative methods for solv-
ing large sparse systems. We demonstrate our approach on large data
sizes arising both from synthetic sources and from real applications.

1 Introduction

Scattered data interpolation is a problem of interest in numerous areas such as
electronic imaging, smooth surface modeling, and computational geometry [1,2].
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Our motivation arises from applications in geology and mining, which often
involve large scattered data sets and a demand for high accuracy. The method
of choice (sometimes called the “gold standard” in this area [10]) is ordinary
kriging. This is because it is a best unbiased estimator [6-8]. Unfortunately, this
interpolant is computationally very expensive to compute exactly. The reason
is that for n scattered data points, computing the value of a single interpolant
involves solving a dense linear system of size roughly n x n. This is infeasible
for large n. In practice, kriging is solved approximately by local approaches
that are based on considering only a relatively small number of points that
lie close to the query point [6,7]. There are many problems with this local
approach, however. The first is that determining the proper neighborhood size
is tricky, and is usually solved by ad hoc methods such as selecting a fixed
number of nearest neighbors or all the points lying within a fixed radius. Such
fixed neighborhood sizes may not work well for all query points, depending on
local density of the point distribution [6]. Local methods also suffer from the
problem that the resulting interpolant is not continuous. Meyer showed that
while kriging produces smooth continues surfaces, it has zero order continuity
along its borders [10]. Thus, at interface boundaries where the neighborhood
changes, the interpolant behaves discontinuously. Therefore, it is important to
consider and solve the global system for each interpolant. However, solving such
large dense systems for each query point is impractical.

Recently a more principled approach to approximating kriging has been pro-
posed based on a technique called covariance tapering [5]. We will discuss these
issues in greater detail below, but the problems arise from the fact that the
covariance functions that are used in kriging have global support. In tapering
these functions are approximated by functions that have only local support, and
that possess certain necessary mathematical properties. This achieves greater
efficiency by replacing large dense kriging systems with much sparser linear sys-
tems. Covariance tapering has been successfully applied to a restriction of our
problem, called simple kriging [5]. Simple kriging is not an unbiased estimator
for stationary data whose mean value differs from zero, however. In this paper
we generalize these results by showing how to apply covariance tapering to the
more general problem of ordinary kriging. Ordinary kriging ensures unbiasedness
for stationary data, whose mean can have any value.

Our implementations combine and utilize and enhance a number of differ-
ent approaches that have been introduced in literature for solving large linear
systems for interpolation of scattered data points. For very large systems, exact
methods such as Gaussian elimination are impractical since they require O(n?)
time and O(n?) storage. As Billings et al. [3] suggested, we use an iterative ap-
proach. In particular we use the SYMMLQ method [14], for solving the large but
sparse ordinary kriging systems that result from tapering.

There are a number of technical issues that need to be overcome in our algo-
rithmic solution. We will see in Section 2 that the points’ covariance matrix for
kriging should be symmetric positive definite. The goal of tapering is to obtain
a sparse approximate representation of the covariance matrix while maintain-



ing its positive definiteness. Furrer et al. [5] used tapering to obtain a sparse
linear system of the form Ax = b, where A is the tapered symmetric positive
definite covariance matrix. Thus, Cholesky factorization [9] could be used solve
the linear system for their application. They further utilized the sparseness of A
to implement an efficient sparse Cholesky decomposition method for solving the
linear system. They also applied the Fast Fourier Transform in conjunction with
their sparse implementation to obtain better efficiency in solving the system. In
addition, they show if these tapers are used for a limited class of covariance mod-
els, the solution of the system converges to the solution of the original system.
While their results show significant improvements over dense Cholesky factor-
ization, their approach is not applicable to the ordinary kriging problem. This
is mainly due to the fact that matrix A in the ordinary kriging linear system,
while symmetric, is not positive definite. We will discuss details of the ordinary
kriging system in Section 2.

In ordinary kriging, additional constraints are imposed on the interpolation
coefficients to ensure the unbiasedness of the estimator. These constraints result
in one or more additional rows and columns in matrix A. As we will see in Sec-
tion 2, these constraints result in a matrix that fails to be positive-definite. Thus,
efficient implementations of Cholesky factorization (which require a positive def-
inite matrix) are not applicable to the ordinary kriging problem. Therefore, we
use tapering only to obtain a sparse linear system, and then use a sparse itera-
tive method to solve our linear systems. In particular, we use SYMMLQ method
which is an iterative method for solving symmetric but not positive definite
systems [14].

We have also developed a more efficient variant of the SYMMLQ method to
solve large ordinary kriging systems. This variant is obtained by projecting our
global system to an appropriate lower dimensional system. This approach can
be viewed as adaptively finding the correct local neighborhood for each query
point in the ordinary kriging interpolation process. We compare both quality of
our results and running times with those obtained using traditional approaches
based on neighborhood sizes for solving large ordinary kriging systems. We show
that solving large kriging systems becomes practical via tapering and iterative
methods, and results in lower estimation errors compared to traditional local
approaches, and significant memory savings compared to the original global sys-
tem. We achieve further significant speed-ups by introducing a variant of the
global tapered system.

The remainder of the paper is organized as follows. We start in the next
section with a review of the ordinary kriging. In Section 3 we describe the ta-
pering properties as mentioned in [5] and the tapering functions used for our
experiments. We proceed by introducing our approaches for solving the ordinary
kriging problem in Section 4. Section 5 describes data sets used in this paper.
Then, we describe our experiments and results in Section 6. We conclude the
paper in Section 7.



2 Ordinary Kriging

Kriging is an interpolation method named after Danie Krige, a South African
mining engineer, who pioneered in the field of geostatistics [6]. Kriging is also re-
ferred to as the Gaussian process predictor in the machine learning domain [16].
Kriging and its variants have been traditionally used in mining and geostatistics
applications [6-8]. The most commonly used variant is called ordinary kriging,
which is often referred to as a BLUE method, that is, a Best Linear Unbiased
Estimator [5,7]. Ordinary kriging is considered to be best because it minimizes
the variance of the estimation error. It is linear because estimates are weighted
linear combination of available data, and is unbiased since it aims to have the
mean error equal to zero [7]. Minimizing the variance of the error forms the ob-
jective function of an optimization problem. Ensuring unbiasedness of the error
imposes a constraint on this objective function. We proceed by explaining how
this optimization problem is formalized, subject to the mentioned constraint.

The estimate of a random function U at location xg, g, using known variable
values at n nearby locations has the form 4o = Y ;- ; a;u; ( [7]). In this linear
combination, uy,us, ..., u, are data values at n nearby locations. For simplicity,
assume that locations of these points are presented as z1, . . . , . In kriging inter-
polation methods, for any point where one performs the estimation, a stationary
random function model with multiple random variables (one at each location)
is assumed. That is uq,us,...,u, are viewed as values of n different random
variables Uy (z1), Us(x2), . .., Un(xy), where u; = Ui (x1),...,up = Up(z,). Sta-
tionarity of the random function model, implies that all these variables have
the same mean, E(U). The estimation error, R, is calculated as the difference
between values of the actual random variable value U(z) and the estimated
random variable U(zo).

R(:L'o) = [/]5(5170) - Uo(.’l?o) = ﬁo —Uug = 'LUtZ, (1)

where w! = (wy,...,wn,—1), Zt = (u1,...,Un,u), and w; ...w, are weights
used in estimating Up(zo). It is also known that the variance of a random variable

created as a linear combination of other random variables, V; ...V, is estimated
as follows (see [7], p. 216):

Var <i w;Vz> = i iwgw; Cov (V;V;). (2)
i=1

i=1 j=1
where V; ...V, are random variables at given locations, and wj ...w), are the
weights associated with them. Equations 1 and 2 imply the following objective
function for minimizing the variance of the estimation error.
n n n
Var(R(zo)) = w'Cyrw = Z w;w;Csj — 2Zw,~C’,~0 + Co, 3)
% J i

where C;; = Cov(U;,U;), Co = Cov(Up,Up) = Var (Up), and wy ... w, are un-
known values which need to be found such that the above objective function



is minimized. Unbiasedness of estimates is ensured by adding additional appro-
priate constraints to the mentioned objective function. The following is proven
in [7].

Lemma 1 (Isaaks and Srivastava [7]). A kriging estimate of an stationary
variable is unbiased iff sum of its kriging weights is 1.

Adding this constraint to Eq. (3) introduces a Lagrange parameter, u, to our
system [13].

Var(R(zo)) = Y Y wiw;Cyj — 2 wiCio + Co + 2u()_wi —1). (4)
J i i

% i=1

Next, partial derivatives of the objective function with respect to wy, ..., w, are
taken and are set to zero. This results in (n + 1) equations, which are equivalent

to the following system.
C L w _ CO
(i) ()= (%) ®

where C' is the matrix of pairwise covariances for Uy, ..., U,, L is a column vector
of all ones and of size n, and w is the vector of weights w;;,...,w,. Therefore,
the minimization problem for n points reduces to solving a linear system of
size (n + 1)2, which is impractical for very large data sets via direct approaches.
Note that the coefficient matrix in the above linear system is a symmetric matrix
which is not positive definite since it has a zero entry on its diagonal.

Lemma 2 (Myers [12]). The ordinary kriging system described in Eq. (5) has
a solution if C is positive definite.

Lemma 3 (Isaaks and Srivastava [7]). The variance of the ordinary kriging
estimation error is positive if C is positive definite. (This can be observed via

Eq. (2).)

Pairwise covariances are modeled as a function of points’ separation. These func-
tions should result in a positive definite covariance matrix. Christakos [4] showed
necessary and sufficient conditions for such permissible covariance functions.
Two of these valid covariance functions, used in this paper, are the Gaussian
and Spherical covariance functions (C, and C; respectively).

3h?
¢y =ewp (-2-). ©
1 if h=0;
Cs(h) =9 1-1524+05(2)® if 0<h<a, (7
0 otherwise

where a is the range for the covariance values, and h is the Euclidean distance of a
pair of points. The range is the distance after which the covariance values remain
constant at their lowest possible value. Please see [4,6,7] for other examples of
permissible covariance functions.



3 Tapering Covariances

Tapering covariances for the kriging interpolation problem, as described in [5],
is the process of obtaining a sparse representation of the points’ pairwise co-
variances so that positive definiteness of the covariance matrix as well as the
smoothness property of the covariance function be preserved. One may first
think of assigning zero to pairwise covariances of points that are further than
a threshold distance, €, from each other (truncating by assigning zeros to very
small covariance values). However, the modified covariance matrix obtained in
this manner may not necessarily be positive definite. It can be shown that the
covariance matrix obtained in this manner is positive definite if the norm of the
total change to the covariance matrix is smaller than the smallest eigenvalue
of the covariance matrix. However, estimating or calculating the smallest eigen-
value of a large matrix reduces to solving a large linear system of the same size as
the original problem. Instead, the sparse representation via tapering is obtained
through the Schur product of the original positive definite covariance matrix by
another positive definite covariance matrix.

Ciap(h) = C(h) x Cg(h). (8)

The resulting tapered covariance matrix, Cy,p, has zero values for points that are
more than a certain distance apart from each other. It is also positive definite
since the Schur product of two positive definite matrices are positive definite.
A taper is considered valid for a covariance model if it perseveres its positive-
definiteness property and makes the approximate system’s solution converge to
the original system’s solution.

The authors of [5] mention few valid tapering functions. They also showed
that tapers need to be as smooth as the original covariance function to ensure
convergence to the original system’s solution. In this paper, we used the following

tapers.
: h\? h
Spherical = (1 - §)+ (1 + 2—0) , 9)
4
Wendland, = (1 - ﬁ) (1 + ﬁ) , (10)
0, 0
Wendlands, = (1 — h ’ 1+ 6h + ﬁ (11)
2 ), 6 " 362 )°
h
TopHat = (1 - —) , (12)
0/

where 1 = max{0, 2} and 6 is chosen so that pairwise covariances can be sup-
ported in [0, ). Note that the above tapers result in positive definite covariance
functions in R® and lower dimensions [5]. However, considering convergence to
the optimal estimator, these tapers are not valid for all covariance functions.
Tapers need to be as smooth as the original covariance function at origin to



guarantee convergence to the optimal estimator [5]. Thus, for a Gaussian covari-
ance function, which is infinitely differentiable, no taper exists that satisfies this
smoothness requirement. However, since tapers proposed in [5] still maintain
positive definiteness of the covariance matrices, we examined using these tapers
for Gaussian covariance functions as well. For this paper, we are using these ta-
pers mainly to build a sparse approximate system to our original global system
even though these tapers do not guarantee convergence to the optimal solution of
the original global dense system theoretically. Of the above mentioned tapering
functions, the top hat taper is closest to the truncation idea while guaranteeing
positive definiteness of the covariance matrix.

4 Our Approaches

We implemented and examined both local and global interpolation methods for
the ordinary kriging interpolation problem as follows.

Local Methods: This is the traditional and the most common way of solving
kriging systems. That is, instead of considering all known values in the interpo-
lation process, points within a neighborhood of the query point are considered.
Neighborhood sizes are defined either by a fixed number of points closest to the
query point or by points within a fixed radius from the query point. Therefore,
the problem is solved locally. We experimented our interpolations using both of
these local approaches. We defined the fixed radius to be the distance beyond
which correlation values are less than 10~ of the maximum correlation. Simi-
larly, for the fixed number approach, we used maximum connectivity degree of
points’ pairwise covariances, when covariance values are larger than 1079 of the
maximum covariance value. Gaussian elimination [13] was used for solving the
local linear systems in both cases.

Global Tapered Methods: In global tapered methods we first redefine our
points’ covariance function to be the tapered covariance function obtained through
Eq. (8), where C(h) is the covariance function which was used (Eq. (6) or (7)),
and Cy(h) is one of the tapering functions defined in Section 3. We then solve
the linear system using the SYMMLQ approach as mentioned in [14]. Note that,
while one can use conjugate gradient method for solving symmetric systems,
the method is guaranteed to converge only when the coefficient matrix is both
symmetric and positive definite [19]. Since ordinary kriging systems are sym-
metric and not positive definite, we used SsYMMLQ. We modified the original
SYMMLQ implementation to take advantage of the sparseness of the matrix A,
similar to the sparse conjugate gradient implementation mentioned in [15]. Note
that in [15)’s implementation, matrix elements that are less than or equal to a
threshold value are ignored. Since we obtain sparseness through tapering, this
threshold value for our application is zero. One appealing approach would be
to obtain a sparse system by having a small nonzero threshold value, instead of
obtaining sparseness through tapering. However, as mentioned before, this ap-
proach does not necessarily result in a positive definite covariance matrix, and



that is the main reason why tapering functions are of great value for kriging
applications [5].

Global Tapered and Projected Methods: This implementation is motivated
by numerous empirical results in geostatistics which show that interpolation
weights associated with points that are very far from the query point tend to be
very close to zero. That is, very far points do not seem to contribute much to
the interpolation weights. This phenomenon is called the screening effect in the
geostatistical literature [20]. Stein showed conditioned under which the screening
effect occurs for gridded data [20]. While the existence of the screening effect
has been the basis for using local methods in the past, there is no proof of this
empirically supported idea for scattered data points [5]. We use this conjecture
for solving the global ordinary kriging system Az = b and observing that many
elements of b are zero after tapering. This indicates that for each zero element
b; , representing the covariance between the query point and the it* data point,
we have C;o = 0. Thus, we expect their associated interpolation weight, w;,
to be very close to zero. We assign zero to such w;’s, and consider solving a
smaller system A'z' = V', where b’ consists of nonzero entries of b. We store
indices of nonzero rows in b in a vector called indices. A’ contains only those
elements of A whose row and column indices both appear in indices. Then, we
solve the projected system A’z’ = b'. This method is effectively the same as the
fixed radius neighborhood size. The difference is that the local neighborhood is
found adaptively by looking at covariance values in the global system for each
query point. There are several differences between this approach and the local
methods. One is that we build the global matrix A once, and use relevant parts of
it, contributing to nonzero weights, for each query point. Second, for each query,
the local neighborhood is found adaptively by looking at covariance values in
the global system. Third, the covariance values are modified through tapering.

5 Data Sets

We need large scattered data sets to test and evaluate performance of various
approaches mentioned in Section 4. As mentioned before, we cannot solve the
original global systems exactly for very large data sets, and thus cannot com-
pare our solutions with respect to the original global systems. Therefore, we
would need ground truth values for our data sets. Also, since performance of
local approaches can depend on data points’ density around the query point,
we would like our data sets to be scattered non-uniformly. Therefore, we create
our scattered data sets by sampling points of a large dense grid from both uni-
form and Gaussian distributions. Values of the dense grid are either synthetically
generated or are real measurements.

We generated our synthetic data sets using the Sgems [18] software. We gen-
erated values on a (1000 x 1000) grid. Values were generated using the Sequential
Gaussian Simulation (sgsim) algorithm of the Sgems software (please see [17,18]
for more details). Points were simulated through ordinary kriging with a Gaus-
sian covariance function (Eq. (6)) of range equal to 12. Each point was simulated



using a maximum of 400 neighboring points within a 24 unit radius area. Then,
we created five sparse data sets by sampling 0.01% to 5% of the original simu-
lated grid’s points. This procedure resulted in sparse data sets of sizes ranging
from over 9K to over 48K. The sampling was done so that the concentration of
points in different locations vary. That is, for each data set, 5% of the sampled
points were selected from ten randomly selected Gaussian distributions. The
rest of the points were drawn from the uniform distribution. We then removed
duplicates that were resulted from sampling in these two different manners.

We also used the exhaustive Walker Lake data set, which is described in [7].
This data set was originally derived from a digital elevation model from the
Walker Lake area in Nevada, U.S. There are two variables measured at 78000
points on a 260 x 300 grid. These two variables are continuous and their values
range from zero to several thousands. These variables, which we will refer to as
U and V, are related to topographic features. Authors in [7] try to keep their
book generic by mentioning that these variables can represent various features
such as thickness of a geographic horizon, rainfall measurements, soil strength,
etc. From the dense grid, we created two scattered data sets (one for U, and
one for V). In each case we sampled less than 5% of the points from the grid.
About 95% of the sampled points were from the uniform distribution while the
rest were sampled from 5 Gaussian clusters.

6 Experiments

All experiments were run on a Sun Fire V20z running Red Hat Enterprise release
3, using the g++ compiler version 3.2.3. Our software is implemented in C++
and uses the Geostatistical Template Library (GsTL) [17] and Approximate
Nearest Neighbor library (ANN) [11]. GSTL is used for building and solving the
ordinary kriging systems, and ANN is used for finding nearest neighbors for local
approaches.

For each input data we examined various ordinary kriging interpolation meth-
ods on 200 query points which are missing in our sparse data sets. One hundred
of these query points were sampled uniformly from the original grids. The other
100 query points were sampled from the same Gaussian distributions that were
used in the generation of a small percentage of the sparse data. We used two
classes of interpolation techniques: local and global methods. Local methods
used Gaussian elimination for finding the solution of the linear system while
global methods used a sparse SYMMLQ with threshold = 0 (see Section 4). All
experiments’ running times are averaged over 5 runs. We examined methods
mentioned in Section 4 for each query point. Global approaches require selec-
tion of a tapering function. Note that the covariance model for synthetic data is
Gaussian, which is infinitely differentiable. Therefore, there is no function which
is as smooth as the covariance model to guarantee convergence to the optimal
solution. For synthetic data, we examined all tapers mentioned in Section 3 to
introduce sparsity while maintaining positive-definiteness of the covariance ma-
trix. For real data, we used the spherical tapering function since the underlying
covariance model was spherical as well, and thus we have a valid taper. The



value for § was chosen as the distance beyond which our data’s covariance func-
tion, is less than 1078. After performing tapering and storing the global sparse
covariance matrix, we examined two approaches for solving the linear system.
One approach solves the tapered global system using sparse SYMMLQ, and the
other approach solves the tapered and projected global system as described in
Section 4. Next, we analyze the quality of results, time spent solving the linear
systems, and memory savings associated with our global approaches.

Table 1. Average Absolute Errors over 200 Randomly Selected Query Points.

Local Tapered Global
n |Fixed| Fixed || Top | Top Hat |Spherical| Spherical | W1 Wi Wo Wa
Num |Radius|| Hat |Projected Projected Projected Projected

48513(0.416| 0.414 ||0.333| 0.334 0.336 0.337 10.278| 0.279 |0.276, 0.284
39109(0.461| 0.462 ||0.346| 0.345 0.343 0.342 |0.314| 0.316 (0.313) 0.322
29487(0.504 | 0.498 ||0.429| 0.430 0.430 0.430 |0.384| 0.384 |0.372| 0.382
19757|0.569| 0.562 |[0.473| 0.474 0.471 0.471 |0.460{ 0.463 ]0.459| 0.470
9951 |0.749| 0.756 ||0.604| 0.605 0.602 0.603 |0.608] 0.610 ]0.619| 0.637

Table 2. Average CPU Times for Solving the System over 200 Random Query Points.

Local Tapered Global
n | Fixed | Fixed || Top | Top Hat |Spherical|Spherical| Wi Wi Wa Wa
Num |Radius|| Hat [Projected Projected Projected Projected

48513|0.03278|0.00862||8.456| 0.01519 | 7.006 | 0.01393 |31.757| 0.0444 [57.199| 0.04515
39109|0.01473|0.00414((4.991| 0.00936 | 4.150 | 0.00827 |17.859| 0.0235 |[31.558| 0.02370
29487/0.01527|0.00224(|2.563| 0.00604 | 2.103 | 0.00528 |08.732 0.0139 (15.171| 0.01391
19757/0.00185(0.00046{{0.954| 0.00226 | 0.798 | 0.00193 [02.851| 0.0036 |05.158| 0.00396
9951 |{0.00034(0.00010{(0.206| 0.00045 | 0.169 | 0.00037 [00.509| 0.0005 |00.726| 0.00064

6.1 Synthetic Data

Table 1 gives the overall average absolute estimation errors over the 200 query points
compared to the ground truth values generated on the original grid. Table 2 reports
the corresponding average CPU running times for solving the linear systems involved.
Even though there is no taper which is as smooth as the Gaussian model to guarantee
convergence to the optimal estimates, in almost all cases, we obtained lower estimation
errors when using global tapered approaches. As expected, smoother functions result
in lower estimation errors. Also, results from tapered and projected cases are compa-
rable to their corresponding tapered global approaches. In other words, projecting the
global tapered system did not significantly affect the quality of results compared to
the global tapered approach in our experiments. In most cases, Top Hat and Spherical
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Table 3. Memory Savings in the Global Tapered Coefficient Matrix

n (n+1)? Stored |% Stored|Savings
(Total Elements)|Elements Factor
48513| 2,353,608,196 (5,382,536 0.229 |437.267
39109 1,529,592,100 |[3,516,756| 0.230 |434.944
20487| 869,542,144 [2,040,072| 0.235 |426.231
19757,  39,0378,564 934,468 | 0.239 |417.755
9951 99,042,304 252,526 | 0.255 |392.206

tapers performed similar to each other with respect to the estimation error, and so did
Wendland; and Wendlands tapers. Wendland tapers give the lowest overall estima-
tion errors since they are smoother functions. Among Wendland tapers, Wendland;
has lower CPU running times for solving the systems (Table 2). Thus, we plot the
absolute errors and CPU running times for local approaches and global cases where
Wendland: taper is being used (Figure 1). As seen in Table 2, global tapered and
projected approaches are a factor of 2-3 orders of magnitude faster than the global ta-
pered approaches, and are comparable to running times of the local approaches. Right
column of Figure 1 displays these running times. The absolute estimation errors for
global approaches, as seen on Table 1 and the left column of Figure 1, are lower than
the local approaches.

For local approaches, using fixed radius neighborhoods resulted in lower overall
errors for query points from the Gaussian distribution. Using fixed number of neigh-
bors seems more appropriate for query points from the uniform distribution, were not
enough points may be within a fixed radius. Considering maximum degree of points’
covariance connectivity as number of neighbors to use in the local approach requires
extra work and longer running times compared to the fixed radius approach. The fixed
radius local approach is faster than the fixed neighborhood approach by 1-2 orders of
magnitude for the uniform query points, and is faster within a constant factor to one
order of magnitude for query points from clusters, while giving better or very close by
estimations compared to the results obtained when using fixed number of neighbors.

Tapering covariances, when used with sparse implementations for solving the lin-
ear systems, results in significant memory savings. Ordinary kriging of n data points
involves a coefficient matrix of size (n +1)” (see Section 2). Table 3 reports memory
savings due to tapering. Memory needed after tapering is a factor 392 to 437 less than
the original coefficient matrix’s size.

6.2 Real Data

As explained in Section 5, we have two real data sets, each representing a different
measurement, called U and V. Since we know that the underlying covariance model for
these data sets are Spherical model (Eq. (7)), we only applied the Spherical taper (Eq.
(9)). Table 4 reflects the overall average normalized absolute error. As before, global
approaches give better estimation errors than the local approaches, even though the
difference in errors is subtler compared to the synthetic data.

Similarly, Table 5 reflect CPU running times for solving the ordinary kriging sys-
tems. The running times, in contrast to the estimation errors, show significant improve-
ments, even when using the global tapered system without projection. This is due to
two reasons. First, the data sets are denser than the synthetic data. For real data,



we have sampled almost 5% of the original grid, while for synthetic data this ratio
ranged from 0.01% to 5%. This makes the maximum number of neighbors to consider
in local approaches much larger than number of neighbors that were considered in local
approaches for synthetic data. Second, the original covariance model, Spherical model
(Eq. (7)), is a tapered function itself (unlike the Gaussian model), even before more
sparsity is introduced via tapering. This sparseness is not being taken advantage of
in local approaches that use Gaussian elimination to solve the interpolation systems,
and where the largest safest neighborhood is being used. Even though the tapered
global systems are solved quite fast compared to the dense local systems, we still can
improve their running times by an order of magnitude using the tapered and projected
approach.

Table 6 indicates that global tapered approaches use a factor of 4-22 less memory
compared the original global systems. Again, these factors are smaller compared to
the synthetic data sets, since the sampled points are denser (higher percentage of the
original grid).

Table 4. Average Normalized Absolute Errors over 200 Query Points.

Local Tapered Global
n |Variable||Fixed| Fixed |[Spherical|Spherical
Num |Radius Projected

3720 u 0.380]| 0.379 || 0.364 0.360
3675 v 0.346| 0.346 || 0.342 0.341

Table 5. Average CPU Times over 200 Query Points.

Local Tapered Global
n |Variable||Fixed| Fixed |[Spherical| Spherical
Num |Radius Projected

3720 u 4.649| 4.023 || 0.729 0.045
3675 v 4.649| 4.650 1.642 0.119

Table 6. Memory Savings in the Global Tapered Coefficient Matrix

n (n+1)? Stored |% Stored|Savings
(Total Elements)|Elements Factor
3720| 13,845,841  |3,013,823| 21.77 | 4.59
3675 13,512,976 2,973,046 22.00 4.54

7 Conclusion

Solving very large ordinary kriging systems via direct approaches is infeasible for large
data sets. We implemented efficient ordinary kriging algorithms through utilizing co-



variance tapering [5] and iterative methods [13,15]. Furrer et al. [5] had utilized co-
variance tapering along with sparse Cholesky decomposition to solve simple kriging
systems. We explain in Section 1 why Cholesky decomposition is not applicable to
the ordinary kriging problem. We used tapering with sparse SYMMLQ method to solve
large ordinary kriging systems. We also implemented a variant of the global tapered
method through projecting the large global system on to an appropriate smaller sys-
tem. Global tapered methods resulted in saving factors ranging from 4.54 to 437.27 for
the storage of the coefficient matrix of the ordinary kriging system compared to the
original global system. Global tapered iterative methods gave better estimation errors
compared to the local approaches. In all cases, the estimation results of the global
tapered method were very close to the global tapered and projected method. This is
while global tapered and projected method solves the linear systems within order(s) of
magnitude faster than the global tapered method. This method can be viewed as a way
of adaptively finding the correct neighbors to consider for the interpolation problem.
Results of traditional local approaches depend on the underlying points’ distribution,
and whether or not enough points are included in the specified neighborhood.
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