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This study investigates how gear type and increased wave action as a result of 

tidal zone location, influenced the shape and weight of Crassostrea virginica during a 

“finishing” period in Chesapeake Bay. For these experiments, oysters were deployed in 

three different gear treatments in the intertidal zone: bottom cages, OysterGro™ floats, 

and rack and bag, and a bottom cage deployed in the subtidal zone as a control treatment. 

Shell length, width, height, total weight and wet meat weight were measured each month 

from August to December 2015 and an index of shell shape relative to an idealized 3-2-1 

ratio of length, width, and height was calculated. OysterGro™ floats produced significant 

increases in total weight and wet meat weight. Also, OysterGro™ floats showed less 

deviation from the ideal 3-2-1 ratio, while only one other treatment (intertidal bottom 

cage) differed from the control (subtidal bottom cage).  
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Introduction 
 
 

The eastern oyster, Crassostrea virginica, is an autogenic ecosystem engineer that 

is critically important to estuarine ecosystems such as the Chesapeake Bay (Newell 

2004), providing habitat for both epibenthic fishes and invertebrates (e.g. Coen et al., 

1999, Peterson et al., 2003, Grabowski et al., 2005, Fulford et al., 2010), increasing water 

quality through filtration (Coen et al., 2007), aiding chemical processes such as nutrient 

cycling (e.g. Dames and Libbes 1993; Souchu et al., 2001; Porter et al., 2004, Dumbauld 

et al., 2009, Kellogg et al., 2013), and stabilizing benthic and intertidal habitats 

(Grabowski and Peterson 2007). In Chesapeake Bay, C. virginica is a keystone species 

(Mann and Powell 2007) and the health of the oyster populations is critical to the overall 

health of the Bay and the other fisheries it sustains.  

The C. virginica fishery in Chesapeake Bay was the largest in the world in the late 

1800’s (Kennedy and Briesch 1983), but populations have since declined ~99% in 

Chesapeake Bay (Wilberg et al., 2013) and oyster populations are functionally extinct in 

many other ecosystems (Beck et al., 2011). The decline in oyster populations is a major 

cause of concern because of the commercial value of its harvests and the ecosystem 

services they provide many other species in Chesapeake Bay (e.g. Jackson et al., 2001, 

Kemp et al., 2005, Lotze et al., 2006, Coen et al., 2007, Grabowski and Peterson 2007).  

The role C. virginica plays in the local economy as a prominent fisheries resource has 

even been defined as an ecosystem service by Grabowski and Peterson (2007).  

Aquaculture provides a conduit to maintain the oyster resource in Chesapeake 

Bay, while relieving harvest pressure from wild stocks and reducing harmful harvesting 

practices that are detrimental to reef structures, and in turn the bay ecosystem as a whole. 



2	
  	
  

In the state of Virginia, aquaculture has effectively filled the gap between the demand of 

the oyster market and the low populations of oysters in Chesapeake Bay (Hudson and 

Murray 2016), but in Maryland, a number of oppositional forces exist that have hindered 

the expansion of aquaculture (Wheeler 2015). One of the primary issues is related to 

leasing regulations and permitting delays, which have presented major hurdles for 

individuals looking to get into the industry. Despite recent attempts to streamline 

regulatory requirements and permitting, new businesses applying for a water column or 

bottom lease often face at least six months and potentially up to multiple years of waiting 

for government approval from agencies such as the Maryland Department of Natural 

Resources and the Army Corps of Engineers (Wheeler 2015). Coinciding with 

governmental delay, NIMBY (“Not In My Back Yard”) opposition is a consistent 

approval obstacle, as many waterfront property owners oppose the presence of 

aquaculture gear around their property. Finally, the commercial waterman, though a 

minority numerically, often provide vociferous opposition to legislation that would 

expand aquaculture, and have historically had disproportionate political influence over 

decisions regarding oyster aquaculture (Kennedy and Breisch, 1983). These factors, 

combined with a strong cultural attachment to the public fishery, have resulted in a 

relatively slower response and acceptance of aquaculture in Maryland, and consequently, 

the growth of the industry has been much slower. Despite the slower pace of growth of 

aquaculture in Maryland, it is clear that current fishing practices are not sustainable 

(Kennedy and Breisch, 1983, Rothschild et al. 1996, Willberg et al. 2011). Aquaculture 

represents an important alternative to meet the market demand for oysters and data and 

studies of gear and regionally specific grow-out methods are needed to accelerate growth 
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of the industry in Maryland.  

Different methods of aquaculture grow-out for the Crassostrea, or cupped, genus 

of oyster are utilized around the world, all of which are influenced by local conditions 

(salinity, temperature, tidal flux, etc.). Oyster aquaculture gear used by a particular farm 

is usually a direct reflection of the physical conditions that are encountered at that site 

(Don Webster, Commercial Aquaculture Regional Specialist, Maryland SeaGrant 

Extension, personal communication, Paynter et al., 1992). Historically, oysters have been 

grown on-bottom in both subtidal and intertidal zones, but many industries around the 

world have implemented off-bottom culture (Chew 1988). While on-bottom culture still 

remains prevalent in some oyster industries, off-bottom and floating culture in intertidal 

zones is becoming increasingly popular worldwide, with gear types such as racks, 

floating cages or bags, and long-line culture being commonly utilized (e.g. Buestel et al., 

2009; Nell 1999; Maguire and Nell 2007; Dumbald et al., 2009; Lavoie 2005; Chew 

1988; Mallet et al., 2009; 2013; Comeau 2013). Rack-type culture uses galvanized frames 

to suspend oysters just off bottom in mesh bags, allowing oysters to feed while protecting 

them from bottom predators such as crabs. This method also allows growers to cultivate 

in areas that may otherwise have unfit bottom (e.g. Conte et al., 1994).  Next, floating 

cages/bags avoid the bottom all together and utilize wave action to increase access to 

food and movement, which aids in growth (Conte et al., 1994). One example that 

originated in Canada is the OysterGro™ float, in which cages are attached to floats that 

bob at the surface, keeping the cages hanging just below the surface of the water 24 hours 

per day, facilitating very rapid growth (Archer and Murphy 2014; Comeau 2013; Mallet 

et al., 2013). Finally, longline culture, which has recently become popular on the west 
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coast of the United States and both Canadian coasts, suspends oysters in individual 

plastic mesh cylinders hanging from a single wire with two simple, detachable clips, and 

is especially useful in areas with extreme tidal flow (e.g. Buestel et al., 2009; Nell 1999; 

Maguire and Nell 2007; Dumbald et al., 2009; Lavoie 2005; Chew 1988; Mallet et al., 

2009; 2013; Comeau 2013).  

Many regions with established aquaculture systems, such as Australia (Nell 

1999), France (Buestel et al., 2009), Canada (Mallet et al., 2013; Comeau 2013), and the 

west coast of the United States (Dumbald et al., 2009; Lavoie 2005), grow oysters in 

intertidal locations. This practice is intended to utilize wave action to help shape the 

oyster shell and prevent fouling. Additionally, most systems include a “finishing 

process”, in which oysters are transplanted to an area for the final phase of grow-out to 

perfect the oyster for market. Notable or popular practices include the relocation of 

oysters into claires, or warm, algae-rich ponds for the final months of grow-out in France 

(Buestel et al., 2009), the “hardening” of oysters on the Pacific Coast of the U.S., where 

oysters are allowed daily periods of exposure to air in the intertidal zone (Helm 2005), 

and the relocation of oysters from a subtidal to a nutrient-rich intertidal zone, in order to 

increase oyster exposure to wave action to shape and fatten the oyster (e.g. in Coffin Bay, 

Australia; Achim Janke, TOPS Oyster, personal communication).  Shell shape is a 

particularly important trait for the half-shell market, and thus is the focus of finishing 

processes in a number of systems. The deepness of the oyster half-shell cup and 

associated heavy meat (the two are often correlated), are considered highly desirable 

traits (e.g. Brake et al., 2003). Shell shape can be described quantitatively by the ratio of 

height to length (Brake et al., 2003) or even by the ratio of all three dimensions, length to 
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width to height, in which a 3-2-1 ratio is considered ideal (e.g. Ward et al 2005), Brake et 

al., 2003 documented the ideal dimensions of height/length of an oyster were 0.32, and 

width/length was 0.689, which translates to a 3-2-1 ratio. Though, this metric has not yet 

seen wide quantitative use in the industry.  

Oysters subject to more movement and frequent disturbance tend to be more 

round and have deeper cups (Brake et al., 2003, Carriker 1996; Boulding and Hay 1993; 

Seed 1968). The movement of oysters during grow-out allows excess shell growth to be 

chipped off and regrown into a more rounded shape, resulting in an oyster growing more 

quickly in height than length (Brake et al., 2003), which is referred to as “pruning” 

(Brake et al., 2003). In addition to benefits for shell shape, recent empirical studies also 

find that intertidal or higher-energy environments can improve oyster growth rates (e.g. 

Mallet et al., 2013; Walton et al., 2013; Manley et. al., 2009; Comeau 2013; Archer and 

Murphy 2014; Paynter et al., 1992), and floating gear specifically can improve overall 

condition index and performance (e.g. Mallet et al., 2013; Walton et al., 2013). 

Importantly, all of these studies except for Paynter et al. (1992) were carried out in 

regions outside of the Chesapeake Bay (e.g. the Gulf of Mexico, Canadian Atlantic, and 

U.S. Atlantic east coast), at locations with varying shoreline types, wave energy, tidal 

fluxes that could generally be described as more coastal ocean conditions (e.g. Goullion 

et al., 2010; Ramsey et al., 2005; Manley et al., 2009). Thus, the results of these studies 

may not be directly transferrable to oyster culture in Chesapeake Bay, which is a more 

sheltered estuary with an average tidal flux of about one meter maximum (Hagy and 

Kemp 2012).   
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Growers in the Chesapeake Bay region are still exploring how to produce a top-

grade product for the half-shell market in the most efficient, sustainable, and cost-

effective manner. The current standard for growing oysters in Chesapeake Bay, 

especially Maryland, is “on-bottom”, with 5,700 of 6,000 acres total of oyster leases in 

Maryland utilizing on-bottom culture, most of which is bottom cage (Don Webster, 

Commercial Aquaculture Regional Specialist, Maryland SeaGrant Extension, personal 

communication). On-bottom oyster aquaculture is probably not as effective in general 

and may be particularly inefficient in Chesapeake Bay due to the potential for heavy 

siltation (low tidal flux) and mortality from highly prevalent predators such as blue crabs 

and cow nose rays (Smith and Merriner 1985). However, there is limited empirical data 

on the relative performance of bottom culture compared with other gear types (e.g. 

floating cages), which could support recommendations for implementing alternative 

methods in the region. Paynter et al., (1992) evaluated the performance and economic 

viability of floating gear treatments in Chesapeake Bay, based on previous knowledge 

that oysters grown in floating cages had increased growth rates relative to bottom gear 

(Paynter and DiMichele 1990). The study found that lifting oysters above the sediment, 

even by a few inches, increased the growth rate by 50 to 100%, and made 

recommendations that a “finishing process” using such gear treatments should be 

explored in the region. Some growers in the region are starting to express interest in 

expanding their practices into off-bottom gear, as well as implementing a “finishing 

process” relevant to the area (Don Webster, Commercial Aquaculture Regional 

Specialist, Maryland SeaGrant Extension, personal communication); however, there is 

uncertainty about how these gear types would actually perform in the Chesapeake Bay 
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due to a lack of experiments and data, which has resulted in resistance to invest in such 

gear treatments. Until data on the effects of alternative gear type on oyster production in 

Chesapeake Bay are available, these gear types may not be implemented locally, 

potentially limiting the growth of the oyster aquaculture industry 

  The goal of this research was to examine how alternative gear types and a 

“finishing process” could improve oyster aquaculture in Chesapeake Bay, compared with 

traditional bottom cage culture. Specifically, this study sought to test the effect of off-

bottom culture (OysterGro™ floats and rack and bag systems; Figure 1), on growth, 

shape, and weight of an oyster, as well as the effect of culture in an intertidal vs. subtidal 

zone in the final four months of grow-out. This study addresses the following specific 

hypotheses: (1) moving oysters from a subtidal bottom cage into an intertidal gear 

treatment (rack and bag system, OysterGro™ float) for finishing will improve the shape 

and weight of an oyster,  (2) A floating gear type such as the OysterGro™ float will yield 

higher growth and more optimal shape characteristics than the other gear treatments and 

(3) deploying the traditional bottom gear in a location with more wave action (intertidal 

vs. subtidal) will improve growth and shape.  
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Materials and methods  
 

Gear types 
 
 Experimental gear treatments were selected based on their use in the oyster 

aquaculture industry in Chesapeake Bay (either common or uncommon), and on the 

expectation that the gear types would be affected differently by wave action, which was 

predicted to have an effect on shape and weight, as shown in other oyster aquaculture 

studies conducted in this region and elsewhere (e.g. Paynter et al., 1992; Paynter and 

DiMichele 1990; Carriker 1996; Boulding and Hay 1993; Seed 1968; Brake et al., 2003). 

The three gear treatments were OysterGro™ floats, rack and bag systems, and bottom 

cages, which were deployed in an intertidal location. A control treatment of oysters 

deployed in subtidal bottom cages was chosen to mimic the grow-out conditions that 

oysters experienced before the beginning of the experiment, and which is the traditional 

gear type currently employed in many locations in Maryland (Figure 1). OysterGro™ 

floats (Figure 1, 2) were chosen because of their lack of prevalence in the local industry 

but common use elsewhere, such as the west coast of the United States and the Atlantic 

coast of Canada (Paynter et al., 1992; Mallet et al., 2009; 2013; Comeau 2013). Because 

they are a surface gear (i.e. they bob at the surface with wave action and tidal 

fluctuations), OysterGro™ floats facilitate much greater movement of oysters, which 

may produce a more rounded shape that is desirable for the half-shell market (Brake et 

al., 2003). Rack and bag systems (Figure 1) were also chosen as a gear type that is 

uncommon in the local industry (Don Webster, Commercial Aquaculture Regional 

Specialist, Maryland SeaGrant Extension, personal communication; Helm 2005) but has 

the potential to improve shape during finishing due to the positioning of oysters off 
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bottom (0.6 m), which provides greater exposure to wave action and tidal fluctuations 

(though perhaps not as much as OysterGro™ floats). Finally, bottom cages (intertidal; 

Figure 1, 3) were chosen because they are the most common gear type used in the local 

industry (the local ‘control’) and to provide a direct comparison of intertidal vs. subtidal 

conditions. Bottom cages are stationary and rest about 0.3 meters off of the bottom 

sediments, receiving little to no wave action in subtidal areas and limited movement of 

the oysters within the cages. 

Oyster cohort sources 
 

Oysters (n = 2,300) that were grown in subtidal bottom cages to a shell height of 

~64 mm (just shy of market size) were obtained from two separate farms: True 

Chesapeake Oyster Co., located on the southern Western Shore of Maryland (henceforth 

referenced as Farm A; Figure 4) and Hoopers Island Oyster Aquaculture Company, 

located on the middle Eastern Shore of Maryland (henceforth referenced as Farm B; 

Figure 4). Oysters were collected from two separate farms on opposite shores of the 

Chesapeake Bay to reduce the possibility that initial shell shape characteristics or 

previous growing conditions at a given farm would influence the experimental results. 

Oysters used were a mix of triploid (three sets of chromosomes) strains (Guo et al., 

1996), including Lola, a low salinity Louisiana strain known to be Perkinsus marinus 

(Dermo) and Haplosporidium nelson (MSX) resistant, and DEBY, a medium salinity, 

high performance Delaware Bay strain with some disease resistance (Ragone Calvo et al., 

2003). These two strains are commonly used in aquaculture in the region, as they are 

known to thrive in Chesapeake Bay waters. 
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To ensure that oysters initially deployed into gear treatments were as uniform as 

possible, oysters were graded to a shell length of at least 63.5 mm by hand using a 

custom-made grading tool (Figure 5). At initial deployment, there were no significant 

differences in width, length, height, or 3-2-1 ratio deviation among treatments (one-way 

ANOVA, p>0.13; Table 1). For weight, there was a small, but significant initial 

difference between two of the gear treatments (intertidal cages vs. OysterGro™ floats; 

4.55 g mean difference, Tukey HSD p =0.011; Table 1), but no significant differences 

were found between any other treatments (Tukey HSD p>0.13). Note also that oysters 

deployed to the OysterGro™ had the lowest initial mean weight of any treatment (Table 

1). Thus, any changes observed over the course of the experiment could be attributed to 

the conditions encountered in the different gear treatments. 

Deployment of gear treatments 
 
 A set of two replicates per gear treatment were deployed for Farm A and Farm B 

(4 replicates; Figure 1, 6); however, replicates within farms were combined for 

measurements, resulting in a total of two effective replicates (Farm A combined, Farm B 

combined) for each experimental gear treatment, including the subtidal control. 

OysterGro™ floats (Ketcham Supply), rack and bag systems, and bottom cages were 

deployed at a uniform mean tidal height of 0.89 meters (Table 3) in the intertidal zone. 

This site experiences tidal flux of around 1 meter with about 10% exposure time based on 

manual meter stick measurements and averaged online data from the NOAA National 

Data Buoy Center, Station BISM2 – 8571421 in Bishops Head, MD, 10 km South East 

from the project site (data averaged from January 2014- August 2015). Gear treatments 

were positioned at a very similar mean tidal height so that they were subject to similar 
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wave action (Table 3; Figure 1, 6). At low tide, the intertidal gear treatments were 

positioned at an average of 7.83 cm below the surface (Table 4), whereas the subtidal 

bottom cage (control) was positioned at an average of 25.4 cm (Table 4).    

In August 2015, gear treatments utilizing bags (OysterGro™, rack and bag) were 

stocked with 150 oysters per bag, a density in accordance with the current oyster 

aquaculture industry standards (Walton et al., 2013; Mallet et al., 2013). Intermas™ 

Oyster bags with 23mm diamond mesh (Ketcham Supply) were used to hold oysters in 

the OysterGro™ and rack and bag gear treatments. Bags were open-ended and sealed 

using a PVC pipe and zip ties (Figure 7). A similar study (Walton et al., 2013) also 

stocked bags with 150 ~50-60 mm oysters, which they confirmed as a standard stocking 

density in commercial aquaculture operations within the Gulf of Mexico. Wire-mesh 

OysterGro™ floating cages contain six individual compartments, each of which can 

house one individual Vexar™ or Intermas™ bag (45.7 cm × 88.9 cm × 7.6 cm, Ketcham 

Supply; Figure 2, 7). Though OysterGro™ floats can house six bags per float; only two 

bags were stocked in the middle sections per float to reduce cost and labor. Four bags for 

each farm were stocked with 150 oysters per bag, for a total of 600 oysters per farm (total 

of 1200 oysters across both farms). For the rack and bag treatment, four bags total (2 bags 

per farm, 150 oysters per bag, 300 oysters per farm, 600 oysters total) were affixed to an 

8x4x3’ custom-made rebar rack using zip ties. Bottom cages possess two tiers, with each 

tier being divided into two sections (Figure 3). It is standard practice to stock each section 

with 300 market sized (76 mm/3 inches) oysters freely in the cage compartment, not 

within a bag (Johnny Shockley, Hoopers Island Oyster Aquaculture Company and Don 

Webster, MDDNR, personal communication).  A related experiment found that there was 
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no significant difference in growth and condition index between top and bottom layers of 

cages (Archer and Murphy 2014), so for this experiment, only the top right section 

(section 2; Figure 3) of each cage was stocked with 350 oysters, in order to reduce costs 

and labor. Each bottom cage was deployed in the intertidal zone with the top right section 

outwards from the shore, to ensure equal wave action was experienced among replicates. 

The same stocking and deployment methods for intertidal bottom cage were used for the 

subtidal bottom cage control.  

To summarize, there were 350 oysters in the bottom cage treatments, 300 oysters 

(2 bags) in each OysterGro™ float, and 150 oysters in each bag affixed to the rack. The 

reason for the different densities within treatments is that the optimal density in each gear 

type differs due to the size of the gear, and this study aimed at maintaining optimal 

densities for each gear treatment to accurately compare growth.   

Sampling procedures 
 

Oysters were sampled each month from August-December, and measurements of 

shell length, width, height (mm), and total weight (g) were recorded. Due to differences 

in the time it took to obtain oysters from the separate farms, Farm A was initially 

sampled and deployed on 8/5/2015, and Farm B was initially sampled and deployed on 

8/20/2015. Farms were then sampled on these dates each month through December 2015, 

to ensure that they had equal time in the water.  Additionally, the study sight was visited 

each day, and gear exposure and tidal height were recorded.  

An initial sampling of 10% of the population (n=232 oysters, 58/gear treatment) 

was conducted in August 2015 for all traits. Oysters from each gear treatment were 

collected randomly and measured for length, width, and height in millimeters using a 



13	
  	
  

Neiko 01407A Electronic Digital Caliper, with 0.01mm/0.0005 inch resolution and an 

accuracy of 0.02mm/0.001 inch. Total weight (g) was measured by placing the entire wet 

oyster onto an Etekcity 500g Digital Pocket Scale, accuracy (0.001g / 0.001 oz.) up to a 

weight range of 500g / 17.64 oz. Wet meat weight (g) was obtained by shucking the 

oyster immediately after the total weight (g) had been taken, and weighing the wet meat 

on the .001 gram scale. Oysters were sampled and measured for all traits (including wet 

meat weight) at the August (initial), and December (final) time points for 10% of the 

animals, and at the October (middle) time point, for 5% of the animals. Intervening time 

points (September and November) were sampled at 5% of the population (n=96, 24/gear 

treatment) for shape (length, width, height) and total weight. Mortality was monitored 

throughout the experiment, and dead animals were removed and recorded at each 

sampling time point. At the end of the experiment, all remaining live and dead animals 

were counted, and mortalities were added to the count from previous sampling points. 

There were only two mortality values recorded for each treatment, so no statistical tests 

were conducted. 

Shell shape index analysis 
 

To characterize 3-dimensional shell shape and changes to shape over time, the 

ratio, in inches, of the length to width to height of each oyster was calculated and 

compared to a ratio of 3-2-1, which roughly represents the optimal or most marketable 

shape sought by growers and chefs for oysters in the half-shell market (e.g. Brake et al., 

2003; Ward et al. 2005; Stan Allen and Nate Geyerhahn, Virginia Institute of Marine 

Science, personal communication).  A shell shape index was calculated as the deviation 

of an individual oyster’s length:width:height ratio from the idealized 3-2-1 ratio using 
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goodness of fit Chi-square tests. A deviation value is produced for each oyster by 

summing the standardized squared difference between the observed and expected values, 

the expected values being the proportionate dimensions (3-2-1) for each oyster given 

their observed values (see Table 5 for example and formulas). A chi-square deviation 

value of zero for an oyster would indicate perfect fit (no deviation from expected 3-2-1), 

while a value > 5 would indicate a substantial deviation from the 3-2-1 ratio. To our 

knowledge, this is one of the first times this calculation has been used to quantitatively 

assess shell shape or proportionality in oyster aquaculture research, though it is 

increasingly recognized as a metric for characterizing shell shape.  

Statistical analyses 
 
 Statistical analyses of differences in mean growth and shape among gear 

treatments were carried out with one-way analysis of variance (ANOVA) on the final 

time point (December 2015) and included the two farm replicates, Farm A (n= 1870) and 

Farm B (n= 2050), which were combined for analyses.  Tukey’s post-hoc tests were 

conducted to determine the significance among pairwise comparisons of gear treatments 

for each parameter, length, total weight, wet meat weight, and 3-2-1 ratio deviation. For 

the 3-2-1 deviation data, two-tailed t-tests were also used to examine changes in shape 

that occurred between initial and final samples. All statistical analyses were conducted in 

R version 3.2.3 (R Core Team 2015). 
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Results 
 
 

Measurements taken over the course of the experiment revealed significant 

changes in total weight, wet meat weight, and shell ratio index across all gear treatments. 

The OysterGro™ gear treatment yielded the greatest increases in total weight (g) and wet 

meat weight (g) over time (Table 2). Additionally, the OysterGro™ gear treatment 

yielded the lowest (closest to ideal) 3-2-1 ratio deviation values. No significant 

differences in length (mm) were found across treatments, which was unexpected. Results 

for each growth or shape parameter are described in greater detail below. 

Length 
 

The four treatments produced similar increases in mean shell length over the 

course of the experiment. Final mean length was 90.9 mm (+/- 7.24 mm standard 

deviation, SD) for OysterGro™ (growth rate of 0.14 mm/day), 89.8 mm  (+/- 9.37 mm 

SD) for rack and bag (growth rate of 0.13 mm./day), 87.9 mm (+/- 8.07 SD) for the 

intertidal bottom cage (growth rate of 0.12 mm/day), and 85.5 mm (+/- 8.85 SD) for the c 

subtidal bottom cage control (growth rate of 0.10 mm/day; Table 2, Figure 8). No 

statistically significant differences in mean length were found among gear treatments 

(one-way ANOVA, p>0.05; Table 6). Note that each treatment reached market size 

(length) during the course of the experiment. 

Total weight 
 

Mean oyster weight (total) at the end of the experiment varied significantly 

among gear treatments (one-way ANOVA p <0.0001; Table 6). The highest values were 

observed in the OysterGro™ treatment (mean of 103 g, +/- 20.6 g SD), followed by the 



16	
  	
  

rack and bag treatment (87.36 g, +/- 11.8 g SD), the control of subtidal bottom cage 

(81.54 g, +/- 9.9 g SD), and the intertidal bottom cage treatment (80.97 g, +/- 7.7 g std dev; 

Table 2, Figure 8).  Post-hoc testing indicated significant differences between the 

OysterGro™ and all treatments (Tukey HSD p <0.002), and a significant difference 

between rack and bag and subtidal cage treatments (Tukey HSD p<0.02), but not among 

other treatments (Tukey HSD p >0.13). There was no significant difference between the 

intertidal bottom cage and subtidal bottom cage (control; Tukey HSD p >0.88). 

Wet meat weight  
 

Mean oyster wet meat weight at the end of the experiment varied significantly 

among gear treatments (one-way ANOVA p <0.0001; Table 6). The highest values were 

observed in the OysterGro™ treatment (mean of 19.3 g, +/- 3.6 g std dev), followed by the 

intertidal cage treatment (15.4 g), +/- 4.1 g SD), the rack and bag treatment (14.6 g, +/- 4.3 

g SD), and the subtidal cage control (14.1 g, +/- 4.0 g SD; Table 2, Figure 8).  Post-hoc 

testing indicated significant differences between the OysterGro™ and all treatments 

(Tukey HSD p <0.0001; Table 6), but not among other treatments (Tukey HSD p >0.19). 

There was a strong positive relationship between total and wet meat weight for all oysters 

sampled (Pearson correlation, r = 0.98. n = 117).  

3-2-1 Ratio index 
 

Gear type had a significant effect on the 3-2-1 ratio deviation values of oysters 

(one-way ANOVA, p <0.04; Table 6). The OysterGro™ gear treatment yielded the 

lowest mean 3-2-1 ratio deviation value and the lowest standard deviation values (0.85, 

+/- 0.87 standard deviation, SD; Table 2) in the December (final) sample, with a 

significant decrease in the mean 3-2-1 ratio deviation value in the August (initial) sample 
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(two-tailed T-test p <0.02) The intertidal cage gear treatment yielded the second lowest 

mean 3-2-1 ratio deviation value (0.94, +/- 1.14 SD; Table 2) in the December (final) 

sample, with a significant decrease from the August (initial) sample (two-tailed T-test p 

<0.04; Figure 9). The rack and bag gear treatment yielded the highest mean 3-2-1 ratio 

deviation value in the December sample (1.56, +/- 3.53 SD; Table 2) and did not 

significantly change from the initial mean value (two-tailed T-test p >0.05, Figure 9). The 

control treatment (subtidal cage) yielded the second highest mean 3-2-1 ratio deviation 

value in the December sample (1.13, +/- 1.14 SD; Table 2), and did not significantly 

change from mean initial value (p >0.05; Figure 9,10). Post-hoc testing indicated a 

significant difference in final index values between OysterGro™ and rack and bag gear 

treatments (Tukey HSD p <0.04; Table 6). Overall, variance in 3-2-1 ratio deviation was 

high among oysters within all treatments, but was particularly high for the rack and bag 

treatment (3.53 SD), due to a number of very “ugly” or non-ideal oysters produced, one 

of which produced a 3-2-1 ratio deviation of 30.  Figure 10 illustrates the change 

(reduction) in distribution of 3-2-1 deviation values from the initial sample to the final 

sample for the OysterGro™ gear treatment, which yielded the most substantial 

improvement in 3-2-1 ratio. 

Mortality 
 

Mortality did not appear to vary much between treatments (Figure 11), though it 

did differ between replicates (Farm A vs. Farm B). Farm A had a mean mortality of 

9.83% across gear treatments, while Farm B had a mortality of 4.45% across treatments 

(Figure 11). The elevated mortality in Farm A is possibly due to pre-experiment stress 
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experienced by the animals during transport to the grow-out site (4 hour drive by 

automobile). Farm B had essentially no transport time.  
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Discussion 
 
 

The goal of this study was to examine the effect of aquaculture gear type and 

wave action (tidal exposure) on the growth and shape of oysters, and was guided by the 

hypothesis that gear types with the greatest potential for oyster movement (i.e. the 

OysterGro™ float) would produce the greatest gains in shape, size, and weight. Overall, 

OysterGro™ floats produced the greatest increase in growth (total weight and wet meat 

weight) over the course of the experiment, contrasting sharply with the lower growth and 

performance of bottom cages, the local industry standard (Table 2, Figure 8). In addition, 

using our novel 3-2-1 deviation metric, OysterGro™ floats produced the most 

commercially optimal shape (low mean 3-2-1 deviation), with lower variance compared 

to all other treatments. Interestingly, the rack and bag treatment, which deploys oysters 

higher in the water column than bottom cages and was expected to expose oysters to 

move water movement, only produced modest gains in growth compared with the bottom 

cage control and yielded significantly deeper, heavier oysters with hard shells with high 

3-2-1 ratio deviations. Finally, no significant difference in performance (growth or shape) 

was observed between the subtidal vs. intertidal bottom cages, which suggests that 

finishing bottom cage grown oysters in the intertidal may not provide a significant 

benefit. These results can offer growers in the region much needed information on how 

different gear treatments and tidal conditions can affect grow-out and finishing of their 

oysters, and should increase the available information for growers to make informed 

decisions on gear investment and strategies to remedy problems within current practices 

and gear types.  Below, these results are examined in greater detail and the possible 

causes of differences in growth and shape among gear types are discussed.  
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Growth 
 

In this experiment, growth was measured both as the increase in shell length (mm) 

and weight (g), and the most significant differences in growth among gear treatments 

were in total and wet meat weight. For shell length (mm), there were subtle differences 

across treatments at the final sampling period, with OysterGro™ floats possessing the 

highest mean length and lowest variance and subtidal bottom cage possessing the lowest 

mean length (Figure 8), but differences were not statistically significant (Table 6). This 

finding contrasts with prior experimental work, in which significant differences in growth 

rates (length in mm/day) were found between floating cage gear and gear treatments 

located lower in the water column or on-bottom (e.g. Archer and Murphy 2014; Comeau 

2013; Walton et al., 2013; Paynter and DiMichele 1990). However, a major difference 

between the current study and these previous grow-out studies is in the duration of the 

experiment. The previous studies mentioned above tracked oyster growth over many 

months to years, whereas the current study was only carried out over a 5-month period. 

Thus, the shorter duration of our study may not have provided adequate time for growth 

(length) differences to appear. In contrast, another study of gear treatments in the 

intertidal (Manley et al., 2009) found that the effect of wave action and position in the 

water column actually had little to no significant effect on oyster growth rate, which 

concurs with the results of the current study. However, the study by Manley et al., (2009) 

was conducted during months (October-April) with seasonally low water temperatures 

that typically inhibit growth in oysters, whereas the current experiment (and others) were 

carried out at a time of year (August-December) where oysters demonstrated significant 

and continuous growth. Clearly, duration of the experiment and grow-out season (water 
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temperature) could impact the observed changes in length. Alternatively, the lack of 

length difference observed may also reflect trade-offs between better shape (cup) 

characteristics and length in the higher-movement gear. For example, because oysters 

were likely being heavily tumbled in the OysterGro™ floats (as intended), leading shell 

growth may have been chipped more regularly, reducing an increase in shell length while 

promoting an increase in shell height, and therefore overall weight.  

While length did not significantly vary across gear types, weight did, likely due to 

the oysters rounding, deepening, and hardening instead of increasing in shell length 

alone. Previous studies have found differences in total weight and meat weight by 

reporting changes in condition index (actual values divided by expected values x 100, 

way to measure and compare overall health or performance of an organism) among gear 

types (Archer and Murphy 2014; Manley et al., 2009; Mallet et al., 2013; Walton et al., 

2013). Archer and Murphy (2014) reported a significant increase in condition index for 

floating cages compared to bottom cages, which agrees with the results from this study. 

Previous studies have suggested that the benefits of growing oysters higher in the water 

column likely include increased access to plankton, a greater distance from benthic 

predators, and warmer water temperatures (Archer and Murphy 2014).  The increase in 

growth and meat weight for the OysterGro™ treatment in the current experiment may 

have been due to these factors, while the other treatments suffered because they were 

lower in the water column.  

While gear type (e.g. float vs. bottom) did affect growth (weight), no significant 

effect of tidal location for bottom cage treatments (intertidal vs. subtidal) was detected. 

This could indicate that for the bottom cage gear type, there is little benefit in moving 
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oysters from subtidal to intertidal locations, for finishing or during the entire grow-out 

period.  It was expected that increased wave action in the intertidal (compared to 

subtidal) would result in better growth and production, but there are a few reasons why 

this might not have occurred. First, actual wave energy or action may not have been 

different enough between the two treatments to have an observable effect on performance 

over the course of the experiment.  It is also possible that any differences in wave energy 

had little influence due to the nature of the cage, which is a solid, enclosed structure, 

designed to protect the oysters within it from outside disturbances like predators and 

siltation. Waves crashing upon the intertidal could have lost most of their energy when 

encountering the mesh of the cage itself, leaving little to no wave energy to affect the 

oysters inside of the cage. Finally, the proximity of the caged gear to the bottom could 

have inhibited growth in general, despite the more “favorable” location in intertidal zone, 

because of the potential for increased encounter with predators or fouling organisms and 

siltation from suspended sediment.   

Overall, the superior growth performance of the OysterGro™ treatment suggests 

that location in the water column may be more important than tidal height.  Further, 

situating gear at the same tidal height may not be as effective in shallow water compared 

to a body of water with a deeper water column.  Aquaculture gear that sits on the surface 

of a deeper water column appears to have many benefits including optimal exposure to 

wave action and sufficient distance from bottom sediment and predators.  

3-2-1 Ratio index  
 

Our shell shape analyses using the 3-2-1 ratio deviation as a metric of ideal shape, 

showed that the OysterGro™ float yielded the most commercially optimal shape (lowest 
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mean 3-2-1 ratio deviation) at the end of the grow-out period (Table 2; Figure 9,10). 

Variation among oysters was also lowest in the OysterGro™ treatment, indicating that 

OysterGro™ oysters were also more uniform in shape compared with the other 

treatments. These results can likely be attributed to the floating nature of the OysterGro™ 

gear as well as its position high in the water column, where it receives sufficient wave 

action to naturally “tumble” oysters. It is well known in the local (Chesapeake) industry, 

and supported through studies (e.g. Brake et al., 2003), that more movement, or tumbling, 

results in a positive shaping of oysters that are more round or have deeper cups (Wheeler 

2013; Don Webster, Commercial Aquaculture Regional Specialist, Maryland SeaGrant 

Extension, personal communication). Growers can spend tens of thousands of dollars on 

equipment to shape oysters mechanically (e.g. a single tumbler costs ~ $30,000 dollars, 

see: http://www.hioac.com/equipment-pricing) while the OysterGro™ float appears to 

mimic this practice naturally, utilizing wave action to stimulate movement of the oysters 

and their collision with one another and the cage. Moreover, it appears that improvement 

in shape for oysters in OysterGro™ floats requires only a short duration during a 

“finishing” period.  

The intertidal cage and rack and bag treatments were also exposed to relatively 

more wave action than the control (subtidal bottom cage) and thus, were also expected to 

benefit from increased movement. However, while the intertidal bottom cage treatment 

did yield the second lowest 3-2-1 deviation at the final sample (Table 2; Figure 9), the 

rack and bag treatment surprisingly produced oysters with much less ideal shapes than 

the initial samples (higher 3-2-1 deviation values; Figure 9 and Table 2).  Anecdotally, 

the oysters sampled from the rack and bag treatment were very hard and spherical, which 
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reflects the high 3-2-1 deviation values and is generally not desirable for the half-shell 

market.  This “reversal” of the 3-2-1 metric in rack and bag oysters would, in general, be 

regarded as negative, but it may be useful in certain situations.  Siting of rack and bag 

gear may also be important as it is more commonly used in areas with greater tidal flux. 

Chesapeake Bay has relatively low levels of tidal flux (~1 meter at most; Hagy and Kemp 

2012), which might not provide ideal conditions for deploying this gear type. In 

summary, OysterGro™ appears to be the best gear for finishing oysters to a marketable 

shape, while rack and bag could be used in limited circumstances to finish brittle, shallow 

oysters.  

Implications for aquaculture in Maryland 
 

The work presented in this thesis provides some of the first data on oyster 

aquaculture gear performance in Chesapeake Bay, which should be helpful for current 

and prospective oyster farmers seeking more efficient methods to grow oysters. Growers 

in the region may be interested in novel or alternative gear types, but have been hesitant 

to try them due to a lack of Chesapeake-specific data. Some growers may be more 

concerned with overall meat weight rather than size or shape, but the data presented here 

allow growers to weigh the costs and benefits of different gear on a variety of traits that 

might provide higher marketability of their product. Based on the results from this study, 

a number of rough recommendations can be made, with the important caveat that these 

data come from only a single study. If farmers want heavier meat (which is generally 

desirable, e.g. Brake et al. 2003), they should finish in an intertidal zone or in a gear 

treatment positioned high in the water column (e.g. OysterGro™ floats). Given the 

relatively limited tidal range in Chesapeake Bay, floating gear might be a better option 
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for exposing oysters to higher wave energy, and the position of the gear higher in the 

water column may also limit problems associated with siltation and proximity to 

predators on the bottom.  

This work also sheds light on how gear type or culture technique might impact 

water quality and nutrient pollution around oyster aquaculture sites. As discussed in the 

introduction, oysters provide ecosystem services via filtration of the waters they are 

situated in and through benthic-pelagic coupling, which can remove nitrogen and 

phosphorus (in the phytoplankton they consume) as pseudofeces deposited to the 

sediment below (Verway 1952; Newell et al., 2002; Newell 2004; Kellogg et al., 2013). 

Thus, intensive oyster aquaculture has the potential to assist in management practices to 

reduce nitrogen and phosphorous inputs into highly eutrophic systems (Newell 2004). 

However, buildup of pseudofeces (benthic loading) in localized aquaculture areas may 

cause increased microbial respiration and ultimately the release of Phosphorous back into 

the water column, resulting in a buildup of H2S and the creation of a toxic, anoxic surface 

benthic environment (e.g. Dahlback and Gunnarson 1981; Tenore et al., 1982; Cranford 

et al., 2003; Newell 2004; Gallardi 2014). I personally have observed a number of oyster 

farms around the Chesapeake with black, anoxic sediment that reeks of hydrogen sulfide, 

especially in locations with low flow.  However, nutrient loading in and around 

aquaculture sites may be moderated to some extent by flow conditions and gear type. 

Increased wave action, flow, and tidal flux can move nutrients and waste products away 

from farm sites, reducing the potential for benthic loading and local buildup of pseudo 

feces (Cornwell et al., 2016).  Floating gear, such as the OysterGro™ float, may pose less 

of a risk than bottom culture because in these systems, phytoplankton and excess N and P 
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are removed by oysters that are higher in the water column (close to the surface), which 

may allow natural flow conditions to transport pseudo feces out of the area, mitigating 

benthic loading (Testa et al. 2015). Bottom culture, on the other hand, especially directly 

on-bottom, may pose a higher risk for benthic overloading because pseudo feces are 

deposited right on or near the bottom, where flow is often reduced relative to higher in 

the water column. In future studies, the impact of floating vs. bottom cage gear types on 

the benthic community and biogeochemistry should be examined, especially if paired 

with overall performance of gear type on oyster culture. 

Experimental Design/Future Work 
 
 Despite the overall success of this study and the relatively robust results obtained, 

there were a few shortcomings associated with the study design that warrant some 

discussion and can hopefully guide future work in this area. First, there was an error in 

how data among replicates were recorded. Though there were sufficient replicates for 

each gear treatment (four), they were not taken advantage of properly, because replicates 

within separate farms were combined before measurement, resulting in essentially only 

one replicate per farm, or two replicates per gear treatment total for the study. In future 

studies, at least three independent replicates of each gear treatment should be included to 

ensure a robust statistical design and to account for noise or variation due to uncontrolled 

environmental variability that is inherent in field studies.  

Another experimental design issue that could be corrected in future experiments is 

fouling. Fouling was not controlled in this experiment because an ancillary goal of the 

study was to test how much fouling would occur on particular gear over the experiment 

without any intervention. This study indicated that it is not advisable to leave a gear alone 
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for four months without some sort of standard antifouling procedures, even in cooler 

waters, as there was moderate fouling of all gear (e.g. presence of sea squirts, boring 

sponge) in this study. In future studies, control of fouling should be incorporated into the 

experimental design; however, the fouling experienced in this study may have also been 

site-specific.  

Future experiments of oyster aquaculture gear should also include the collection 

of data on physical and environmental parameters of the oysters and the environment 

around the gear. For example, this study did not deploy a wave gauge at the subtidal and 

intertidal locations (bottom cage treatments) to quantify wave action, thus it is difficult to 

know how much (or if) the wave energy at these sites actually differed, as was expected. 

In future studies, data such as these would be helpful in characterizing the physical 

conditions of gear deployed within the subtidal and intertidal zones, in order to more 

specifically describe the grow-out sites or to relate performance (growth, shape) to 

physical (wave energy) conditions.  Additionally, measuring turbidity, current/flow, and 

phytoplankton (chlorophyll distribution as a proxy), would provide important data that 

might be helpful in explaining performance differences among treatments during the 

experiment.  Finally, incorporating motion-sensing devices into gear or even inside 

‘dummy’ oysters could be especially useful in quantifying the movement energy of 

animals across gear types, shedding light on how exactly the exposure to different levels 

of wave or tidal energy affect oyster movement.  

Finally, It should be noted that the site of the current study would be considered 

moderate salinity in the Chesapeake Bay (10-20ppt), and experiments at higher salinity 

sites might result in different growth rates. Higher salinity environments generally favor 
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increased growth (up to ~35 ppt; Kennedy et al., 1996), but higher salinity environments 

also tend to have higher disease prevalence (e.g. Dermo, Perkensis marinus), which can 

cause significant mortality events or reduce growth (Burreson 1991). So, if this study is 

to be repeated, salinity and possibly even disease status should be monitored so that 

results can be compared. 

Conclusions 
 

The results of this study provide an interesting contrast to previous gear type 

studies for the aquaculture of eastern oysters and overall, indicate that gear treatments 

that expose animals to more wave energy and are higher in the water column produce 

oysters that grow faster and have more marketable shapes. However, the highest 

performing gear type, OysterGro™ floats, has seen little use in Chesapeake Bay to date, 

and more research on this gear may be needed in the region before it becomes widely 

used in the local industry. Differences in the results of the current study compared with 

previous aquaculture gear studies conducted across a number of locations outside of 

Chesapeake Bay (many of which differ physically), reinforces the need for more data on 

grow-out methods in this region. Most oyster industries are highly attuned or adapted to 

their local conditions, with tradition and on-the-water experience driving the local 

technology. For the local industry (Chesapeake Bay or other), information on grow-out 

practices are really only relevant if they relate to the local conditions, which renders 

complementary studies of gear-use in different areas of the country and world less likely 

to influence attitudes and implementation of gear type by growers (Don Webster, 

Commercial Aquaculture Regional Specialist, Maryland SeaGrant Extension, personal 

communication). Future experiments similar to this study (i.e. in the Chesapeake region) 
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are encouraged in order to build upon the limited body of knowledge about grow-out 

methods for oyster aquaculture in Chesapeake Bay, especially in Maryland. Given the 

major decline in the oyster fishery and the reduction in ecosystem services provided by 

oysters, there is a great need to invest in and implement novel technologies that can 

accelerate aquaculture production and the return of the oyster industry to the region.  

In summary, this study demonstrates that gear type can have a major effect on the 

shape and weight of an oyster and that transplanting oysters from a subtidal bottom cage 

into other gear treatments (e.g. OysterGro™ floats) can be a good option for finishing 

and possibly for the entire grow out period. This study also marks one of the first 

explicitly designed gear type experiments performed in Chesapeake Bay, and some of the 

unique results suggest that gear must be evaluated on a site or regionally specific basis. 

This study provides the first empirical data on the differences between local (traditional) 

and emerging gear types, as well as the costs and benefits of transplanting oysters into a 

different tidal zone in the last four months of growth in Chesapeake Bay. Of course, the 

data presented here represent a single study that should be repeated before any hard 

conclusions are drawn about the success of these gear types in Chesapeake Bay. 

Nevertheless, this information should positively affect the nascent oyster aquaculture 

industry in Maryland by providing growers with actual data on the effect of different 

gear, which they can use to make decisions about how to more effectively grow oysters 

with specific properties of shape and weight.  
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Tables 
 
 
Table 1. Mean initial values for length, width, height (mm), total weight (g), and 3-2-1 
ratio of oysters deployed into gear treatments at commencement of study.  
 

 

 
 
 
Table 2. Mean final values for length, width, height (mm), total weight (g), and 3-2-1 
ratio of oysters sampled from gear treatments at the end of study.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Gear type Length (mm) Width (mm) Height (mm) Total Weight (g) 3-2-1 ratio 

 
Subtidal cage 

(control) 
 

 
73.37(7.6) 

 

 
46.82(4.83) 

 
21.66(3.81) 

 
45.37(8.96) 

 

 
1.31(1.32) 

 

OysterGro™ 
 

71.81(6.87) 45.76(4.87) 
 

21.98(3.81) 44.01(9.88) 1.22(1.44) 

Rack and Bag 
 

72.7(7.45) 46.34(5.3) 22.60(4.31) 45.87(11.12) 1.38(1.49) 

Intertidal Cage 
 

74.14(7.91) 47.09(4.43) 21.73(3.9) 45.58(12.84) 1.29(1.38) 

Gear type Length (mm) Width (mm) Height (mm) Total Weight (g) 3-2-1 ratio 

 
Subtidal cage 

(control) 
 

 
85.5(8.85) 

 
58.09(7.96) 

 
 

 
29.77(4.18) 

 
81.54(9.9) 

 
1.13(1.14) 

OysterGro™ 
 

90.9(7.24) 61.06(5.75) 31.55(3.79) 103(20.6) 0.85(0.87) 

Rack and Bag 
 

89.8(9.73) 60.22(7.27) 30.83(5.62) 87.36(11.8) 1.56(3.53) 

Intertidal Cage 
 

87.9(8.07) 58.59(6.6) 30.32(3.78) 80.97(7.7) 0.94(1.14) 
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Table 3. Mean tidal heights at low and high tide levels for sites where gear treatments  
were deployed. OysterGro™ and subtidal cage were deployed at the far site, rack and bag 
at the middle site, and intertidal cage at the near site. 
 
 

Site* Tide level Tidal height (m) 
Far low 0.762 

Middle low 0.686 
Near low 0.559 
Far high 1.19 

Middle high 1.12 
Near high 1.02 

 
*Far site ~25 yards from coast, middle site ~15 yards from shoreline, near site ~5 yards 
from shoreline.  
 
 
 
Table 4.  Mean depth below surface (cm) of gear treatments and control deployed at a 
low tide level. 
 
 

Gear Tide level Depth below surface (cm) 
Subtidal cage (control) low 25.4 

OysterGro™ low 7.62 
Rack and bag low 7.62 
Intertidal cage low 8.26 
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Table 5. Example 3-2-1 deviation calculations on an excel spreadsheet using an adapted 
Chi-squared test. 
 
 

 
 
Results for oyster number 7 are highlighted in a gray dashed box and excel formulas are 
displayed in cells F10:G10 (expected values of each dimension) and F13 (the Chi-square 
value, moved to fit within figure dimensions).  
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Table 6. ANOVA and Tukey’s post-hoc results for differences in growth and shape 
parameters across treatments at the end of the experiment.  
 
 

Trait Length (mm) Total weight (g) Wet meat weight (g) 3-2-1 Ratio 
 
Anova 
P-Value 
 
DF 
 
F-stat 
 
n 

 
0.10 

 
 
3 
 

2.09 
 

1520 
 

 
1.15E-10 

 
 
3 
 

16.70 
 

1526 

 
2.93E-14 

 
 
3 
 

22.73 
 

1114 

 
0.03 

 
 
3 
 

2.92 
 

920 
 

 
Tukey* 

 
0 

 
3 

 
3 

 
1 
 

 
*Tally of number of significant pair-wise comparisons (Tukey’s) between OysterGro™ 
and all other treatments. 
  



34	
  	
  

Figures 
 

 
 
 
Figure 1. Schematic illustrating the gear types and details of oyster deployment of across 
four gear treatments. Three treatments were deployed in the intertidal; bottom cages, rack 
and bag system, and OysterGro™ floats and one treatment (bottom cage) was deployed 
in the subtidal as a control.  
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Figure 2. OysterGro™ large float system contains six compartments, each of which can hold one 
Intermas™ Oyster bag (Figure 5). Image source: Oystergro.com
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Figure 3. Custom manufactured bottom cage with stilts. Numbers indicate sections within 
top and bottom layers of cage; each section can hold 300 market-sized (~80 mm) oysters.  



37	
  	
  

 
 
Figure 4. Location in Chesapeake Bay of Farm A, True Chesapeake Oyster Co., Ridge, 
MD (red) and Farm B, Hoopers Island Oyster Aquaculture Company, Fishing Creek, MD 
(blue), where oyster sample populations were obtained from separate shores. Image 
source: chesapeakebay.net 
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Figure 5. Custom manufactured grading tool used to grade oysters to at least 63.5 mm 
before deployment, to ensure uniformity of initial samples.  
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Figure 6. Picture of study site from beach at Fishing Creek MD, with farm A treatments 
deployed center left and farm B treatments deployed center right in the intertidal zone 
(mean tidal height of 0.89 meters). From the beach, the first set of buoys indicate the  
intertidal bottom cage, the second set of buoys indicate the rack and bag system, the 
black floating pontoons indicate the OysterGro™ floats, and finally, a third set of buoys 
parallel with channel marker indicate the subtidal bottom cages (control).  
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Figure 7. Intermas™ Oyster bags with 12 mm diamond mesh, initially stocked with 150 
73.1 mm oysters.
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Figure 8. Box and whisker plots of the final parameter measurements across treatments. For each 
parameter/treatment combination, the dark bars within boxes represent the median of the data, 
the boxes on either side of the median represent the lower and upper 25% quartiles, the upper 
and lower bars extending from the boxes indicate the minimum and maximum values in the data, 
and the open circles indicate outliers.
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Figure 9. Box plot of 3-2-1 ratio deviation values in August (initial) and December (final) 
samples across gear treatments. The darker shade bars (or left-most bars of a pair) 
represent initial values, while the lighter shade bars indicate final values. Error bars 
indicate standard error of mean (SEM). Significant differences between initial and final 
values are indicated by p-values.  
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Figure 10. Histogram of the initial and final 3-2-1 ratio values observed in the 
OysterGro™ gear treatment, showing a shift in distribution of the final values towards 
zero, or lower deviation.  
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Figure 11. Mean total percent mortality of oysters within each farm replicate, across gear 
treatments. Farm A (True Chesapeake) displays a trend of approximately 9.83% mean 
mortality across gear treatments. Farm B (Hoopers Island Oyster Aquaculture Company), 
displays a trend of approximately 4.45% mean mortality across gear treatments. 
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