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A new variant of the iterative “data = fit + residual” data-analytical approach 

described by Mosteller and Tukey is proposed and implemented in the context of item 

response theory psychometric models.  Posterior probabilities from a Bayesian 

mixture model of a Rasch item response theory model and an unscalable latent class 

are expressed as weights for the original data. The data weighted by the units’ 

posterior probabilities for the unscalable class is used for further exploration of 

structures. Data were generated in accordance with departures from the Rasch model 

that have been studied in the literature.  Factor analysis models are compared with the 

original data and the data as reweighted by the posterior probabilities for the 

unscalable class. Eigenvalues are compared with Horn’s parallel analysis 

corresponding to each class of factor models to determine the number of factors in a 

dataset. In comparing two weighted data sets, the Rasch weighted data and the data 

  



were considered unscalable, and clear differences are manifest. Pattern types are 

detected for the Rasch baselines that have different patterns than that of random or 

systematic contamination.  The Rasch baseline patterns are strongest around item 

difficulties that are closest to the mean generating value of θ’s. Patterns in baseline 

conditions are weaker as they depart from a item difficulty of zero and move toward 

extreme values of ±6. The random contamination factor patterns are typically flat and 

near zero regardless of the item difficulty with which it is associated. Systematic 

contamination using reversed Rasch generated data produces alternate patterns to the 

Rasch baseline condition and in some conditions shows an opposite effect when 

compared to the Rasch patterns. Differences can also be detected within the residually 

weighted data between the Rasch generated subtest and contaminated subtest. In 

conditions that have identified factors, the Rasch subtest often had Rasch patterns and 

the contaminated subtest has some form of random/flat or systematic/reversed 

pattern. 
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Chapter 1: Purpose and Rationale 
 

Background 

In educational assessments and sample surveys of opinions, there are expected 

patterns in the data that form the basis of our hypothesis testing. We draw inference 

from patterns we can anticipate; however, other patterns exist in the data, which may 

be expected or unexpected depending on the nature of the pattern. These other 

patterns may arise through systematic or idiosyncratic approaches of the respondents. 

Mosteller and Tukey 

Mosteller and Tukey (1977) express data as the degree of fit plus residual. For 

most predictive statistical analysis, such as a regression model, one can obtain a value 

that is indicative of the fit to that model, and anything left over, positive or negative, 

is the residual for that case. Mosteller and Tukey discuss the examination of residuals 

for detecting patterns. In the case of the current investigation, Item Response Theory 

(IRT) is the fit which can than be expressed as the degree of model fit, the Rasch IRT 

model (described in Chapter 3), plus what is left over that did not fit the IRT model 

(e.g., Smith, 1986, 1988). In the current investigation, the idealized model is fit while 

the residual includes everything not consistent with that model, but with a different 

approach to differentiating fit and residual. Specifically, this approach is inspired by 

the perspective of mixture modeling. The data will be re-expressed in terms of 

weights to examine the data by splitting it into the weighted proportion that fits both 

the model and that which is misfit from the model.  

 1 
 



 

In the foundational book, Data Analysis and Regression, Mosteller and Tukey 

(1977) set aside the final chapter in the book to examine regression residuals. They 

effectively come up with a set of guidelines for examining regression residuals that 

can be very helpful in exploring if a better fit exists. This method is found more 

explicitly in Understanding Robust and Exploratory Data Analysis (Hoaglin, 

Mosteller and Tukey, 1983) and broken up into four components: resistance, 

residuals, re-expression, and revelation (Hoaglin, 2003). Resistance occurs in the data 

when local misfit is not revealed. The residual is expressed as the data minus the fit of 

the specific model. Re-expression is typically some form of transformation to aid in 

analysis. The data is then presented through display for revelation of expected or 

unexpected characteristics. 

Mosteller and Tukey (1977) have the idea that the model is fit to the data and 

that the patterns associated with this model can be removed by examining the 

residuals. In removing the model fit, that portion of the data is stripped away and re-

exploration of what is left over in the residual portion of the data begins. The idea 

here is that it will be easier to examine the remainder of misfit when the portion of the 

data that is fit to the model is removed. Mosteller and Tukey continue to explore the 

data in an iterative process, examining and searching for patterns and occasionally 

observing recognizable patterns that can further explain what is left over. Similar to 

the approach marshaled by Mosteller and Tukey, the current project investigates this 

notion that the fitted portion of the data can be removed in order to explore the 

portion of the data that does not fit the model. 
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In the spirit of the method set forth by Mosteller and Tukey (1977), the 

current investigation will explore the original data using residuals to look for 

suspicious patterns that could indicate an alternative and better fit. If one re-expresses 

the original data as residual fit to the Rasch class, what is left over when the Rasch is 

fit will be in the unscalable class. Examining what is left over in this sense is similar 

to what is done in regression. We examine what is left over once the model removes 

the perfectly fitting portion of the data in the Rasch class. 

This investigation differs from the Mosteller and Tukey approach in its notion 

of misfit. Their conception of misfit is that data = fit + misfit and is a residual to the 

model in the traditional aspects of a regression. Mosteller and Tukey fit a linear 

regression model to the data and calculate predicted values and the difference of the 

predicted value from the actual value being observed. This difference is the residual. 

The residual is what is left over when the regression function is fit. Along this 

conceptual framework of data= fit + misfit, the Rasch model may be fit to the data but 

a known value to generate a residual for an individual’s ability does not exist. Here, 

we examine the model through a mixture perspective using the structure of a latent 

class model. An unscalable class is used as a type of residual catch all. 

 The present investigation extends work done by Mislevy and Verhelst (1990) 

that shows how individuals can employ different strategies to respond to items even 

though the strategy used by each individual is unknown.  The strategy used for each 

response is inferred and a separate IRT model is fit for each strategy component in 

the mixture. In order to calculate a conditional estimate of the respondent’s ability 

given the strategy they are likely to be using, Mislevy and Verhelst used probabilities 
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that a respondent was employing a specific strategy.  One of the examples Mislevy 

and Verhelst used posited two classes: a Rasch model for students engaged in the 

tasks, and a random-guessing class.   

What follows are three additional examples of analogous models.  Extending 

work by Goodman (1975), Dayton and Macready (1980) proposed a latent class 

model with intrinsically unscalable subjects.  Andreassen et al. (1987) used a similar 

strategy in a medical diagnosis example in which the states of the latent “disease” 

variable included several possible states of the suspected diseases, including a 

“normal” state, and an “unknown” state with independent probabilities.  Patients with 

pathologies other than those anticipated would have high posterior probabilities in the 

unknown class. Yamamoto, (1987,1989,1995) employed a HYBRID model and 

extended it for diagnosing test speediness (1990, 1995) with a discrete latent class 

model and Rasch.  

Another method for examining Rasch mixtures was proposed by Rost (1990). 

Rost’s work with the Rasch model used latent class analysis (LCA) to conceptually 

split data sets and permit different parameters for a Rasch model within each latent 

class. The mixed Rasch model gives an alterative to testing the fit of the Rasch. Using 

LCA as this conceptual split for Rasch permits the latent classes to form the basis of 

comparison regarding parameters instead of a typical available variable (such as 

score, age, or gender) with known criteria that may not make a meaningful qualitative 

difference for research. 
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A brief philosophical examination into exploratory research 

When we move from confirmation of theory to investigation of data in an 

exploratory process, we no longer have the same scientific goal. We have moved 

from an a priori framework of hypothesis testing in which statistical significance 

testing is appropriate to an exploratory method that should be used at a completely 

different stage of scientific investigation. According to Gorsuch (1983), if any part of 

a model is based on the data then we are sure to fit the data, even if it is only by 

chance. Probability levels should not be reported or taken seriously. Statistical testing 

for significance and the use of confidence intervals are only valid in the context of 

prior theoretical development. 

When we fail to reject the null hypothesis then we are saying that the results 

of our analysis are not statistically significant. In basic foundations (Minium, King, & 

Bear, 1993) we learn that we should be find direction and significance level before 

we even collect the data. In an exploratory analysis one cannot attribute differences, 

which statistical theory indicates has probably occurred through chance, to some new 

hypothesis generated after seeing the results. The exploratory mode of analysis 

requires “greater caution” (Dayton, 1998) because we do not know what significance 

levels mean when we fit models to data. Even if we reject the null hypothesis, great 

caution is taken in statistical decision theory, stating that our alternative hypothesis is 

one of many possible explanations for some difference in the data. If we reason after 

the fact and develop a model from the data then we are stepping away from an 

already cautious justification of theory.  
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 Immanuel Kant (1778 ), in The Critique of Pure Reason discusses the role 

prior reasoning plays in our scientific investigations: 

When Galileo caused balls…to roll down an inclined plane; when Torricelli 

made the air carry a weight of which he had calculated beforehand… a light 

broke upon all students of nature. They learned that reason has insight only 

into that which it produces after a plan of its own… constraining nature to 

give answer to questions of reason’s own determining. Accidental 

observations…can never be made to yield a necessary law, which alone 

reason is concerned to discover (Kant, 1778). 

This idea summarized here by Kant, is foundational in our pursuit of science. We 

need to have well reasoned prior theory to test against the observations we gather. 

Albert Einstein certainly understood the division of exploratory and 

confirmatory analysis. Einstein’s (1916) theory of relativity was born out of 

imagination and mental exploration. When it came time to test and confirm his 

general theory of relativity he had a very difficult time. There was the competing 

theory of Newtonian mechanics, which was in “far-reaching agreement” (Einstein, 

1961) with his theory of relativity. Based on the general theory of relativity, it would 

be very hard to deduce an a priori hypothesis and then test it against another 

competing theory that is in such close agreement. Deflection of light by gravitational 

fields were accomplished and tested.  

In statistics we also construct models to explain theory, just as the physicist 

does. Atomic theory was first proposed over 2000 years ago by Democritus. 

Exploration and confirmation of theory lead us to present day quantum theory (Bohm, 
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1980). Models of atoms are now perceived as waves/particles with probability fields. 

Science very reluctantly (Capra, 1982) turned to probability models to explain the 

atomic nature of the world. The need to turn to such models of the universe was 

brought about by the combinations of exploratory and confirmatory research, each 

playing its proper role in the construction of a theoretical framework.  

When our hypotheses fail or are untestable in a traditional sense, where does 

this leave us, as researchers? We begin developing new ideas that may be in conflict 

with existing paradigms (Kuhn, 1996) of scientific knowledge, colliding with the 

rigorous barriers of a current theoretical framework that we would not notice during 

normal science. It is only in times of conflict, like those that could arise when an 

expected theory fails or an unexpected one prevails, that we take much notice of the 

rules in which we work. 

The current investigation is a preliminary examination of the data with 

structured hypotheses that is likely to lead to additional hypotheses that can be further 

explored in future research. Investigating the data structures through preliminary 

analysis prior to running the complete research will insure that reasonable techniques 

are used on the data to find meaning and evidence. 

Novelty of study 

The goal of the current investigation is to examine residuals from a Bayesian 

Rasch IRT model for patterns of responses that do not fit the model, due to utilization 

of different underlying strategies employed by respondents.  Notably, “the residual” 

is a reweighted facsimile of the original data set: the same response vectors, but with 

cases weighted in proportion to the degree to which they do not fit the posited model. 
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The investigation will use the Rasch model as a filter and obtain residuals to reweight 

the data. The residually reweighted data will then be examined for what is left behind 

once a model, which is unsatisfactory for the complete dataset in the sense of Mislevy 

and Verhelst (1990), has been employed. 

Mosteller and Tukey provide a road map of exploring residuals, particularly 

those in the regression context. Some similarities exist between the process they 

follow and the variant of residual exploration in this research. The first similarity is 

the disbelief of perfect fit. The model will fit the data to some degree regardless of the 

underlying distributions. The fit of the model can be extracted and what is left behind 

can be explored. These ideas run parallel to this study. Data is transformed and 

reevaluated to explore for additional anomalous and probable patterns. Mosteller and 

Tukey explore the residual to determine what type of transformation of the original 

data will simplify and clarify the analysis. The differences arise here where in this 

investigation: data is reweighted by the posterior probability of class membership – 

specifically by the probability of a residual class rather than a class defined by the 

“model” class corresponding to the Rasch model – and then transformed and 

explored. Each respondent receives a weight from 0 to 1 and the new data is a 

weighted copy of the original dataset. The same data vectors exist but each individual 

case represents only a proportion of the original case. In the Mosteller and Tukey 

method data is transformed and a new data set is manifest with each case still 

representing the same proportion as in the original data, while each data point is the 

difference between the original data point and the value predicted by the model. Their 

transformation changes the data values while maintaining case proportionality. This 
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investigation changes case proportionality and maintains the original data values. If 

one where to apply this method to regression, instead of transforming the data by a 

square root or logarithmic function, the data would be weighted by the regression’s 

residual size proportionate to the entire data. 

 

Overview of the study

In the current investigation data will be generated in accordance with an IRT 

model. The baseline condition data will be generated strictly in accordance with the 

Rasch model, while in others conditions data will be contaminated in some way, as 

suggested by earlier studies in the literature about person fit analysis.   

Posterior probabilities from a Bayesian mixture model of a Rasch and an 

unscalable latent class are expressed as weights for the original data. The data 

weighted by the unscalable class is used for exploration of further structure, in a new 

variant of the iterative “data = fit + residual” data-analytical approach described by 

Mosteller and Tukey. Exploratory factor analysis models using tetrachoric 

correlations are used to determine if the contamination can be detected in the 

generated data. Factor structures are evaluated to determine if, on average, systematic 

differences are still manifest after the data has been weighted by the unscalable class 

or “residually reweighted” data set.  

This dissertation will present information on: the review of relevant literature, 

methods involved in the current investigates, preliminary analysis, results of the 

research, and, lastly, conclusions. Chapter 2 provides a literature review of pertinent 

topics. Background is presented in the literature review for the Rasch model and 
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departures from the Rasch model. Types of potential misfit are identified and used 

later in the method chapter. Models and topics relevant to generating and estimating 

data for this method are reviewed. Examples of topics include: Latent Class Analysis, 

Mixture Item Response Theory, Factor Analysis and Bayesian estimation. 

Chapter 3 outlines the method for this research. The mixture Bayesian Rasch 

model for estimating the data is presented along with generating conditions for the 

configuration of the data. Fixed and manipulated factors, including the baseline test 

and subtests are described. The simulation process for data generation, 

transformations and analysis using the SAS and Winbugs computer programs is 

explained. Evaluation and analytical procedures are arranged to: assess residuals, 

transform weighted and unweighted data through the use of orthogonal principal 

components analysis using tetrachoric correlation, determine significance through the 

use of an effect size for Wilks’ lambda and confidence intervals, graph comparison 

between Rasch and residually weighted data and visually compare subtests within the 

residual data. Hypotheses are generated for all analysis to theorize expectations and 

directionality of the results. 

Chapter 4 is the preliminary research and investigation of the model used in 

this investigation. Winbugs is used to estimate four conditions and models are 

evaluated for accuracy and parsimony. From this investigation fixed number of burn-

in cycles and estimation cycles are set. Priors and sample size are determined and 

held constant for all conditions. 

Chapter 5 is the preliminary analysis to determine the viability of the research 

to uncover patterns for Rasch and alternative strategies. This chapter uses five 
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conditions from the full analysis and examines them using the Winbugs estimation 

model from Chapter 4 and evaluates these conditions using the method prescribed in 

Chapter 3.  

Chapter 6 presents results from the full analysis. Residuals are examined to 

determine if they are of sufficient size. Eigenvalues for weighted and unweighted data 

are investigated using horns parallel analysis as a determinant for number of factors. 

MANOVA, confidence intervals and graphs compare Rasch and residually weighted 

data for differences in factor patterns. Residually weighted data is explored to 

determine visual differences in patterns for the Rasch and contaminated subtests.  

Chapter 7 provides a final discussion of the results, research implication and 

directions for future research. Conclusions regarding the results are expounded on and 

direction is provided for future work into using Bayesian posteriors in a similar 

manner.  
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Chapter 2: Review of the Literature 
 
 
This chapter provides a literature review related to the current investigation. The 

areas under review include Item Response Theory (IRT), Latent Class Analysis 

(LCA), Bayesian analysis, and analysis of person-fit in relation to types of departures 

from the Rasch model.   

Item Response Theory (IRT) 

Item Response theory (IRT) models the probability of a person’s response to 

an item as a function of one or more parameters for the person’s ability and one or 

more parameters for characteristics of the item, such as its difficulty and sensitivity to 

ability.  Mislevy and Verhelst (1990) review the general form of the IRT model, with 

“the probability of response xij (1 if correct, 0 if not) from Subject I to item j is given 

by”: 

( ) ( )[ ] ( )[ ] ijij x
ji

x
jijiij ffxp −−= 1,1,,| βθβθβθ  

where the person parameter, θi associated with subject i and item parameter βj 

associated with item j and f is “a known, twice differentiable, function whose range is 

the unit interval” (Mislevy & Verhelst, 1990).  

Assuming local independence: 
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=

=
n

j
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The general formula for a response vector as the product of item-by-item 

probabilities.  The general form of a one parameter item response model: 
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In IRT, the main trait(s) or factor(s) in a model ideally accounts for the 

responses one would give to items that should measure that ability (Hambleton et. al, 

1991). The probability that an examinee will respond correctly to an item increases as 

the ability increases, as represented by that factor. The assumptions of correct 

dimensionality and local independence are intertwined. Correct dimensionality is the 

assumption of all IRT models, and in a one-dimensional model that assumption is 

unidimensionality. Unidimensionality assumes that only one dimension of ability is 

being measured by the items of the test (θ).  

There is always some level of departure from the unidimensionality 

assumption, as psychological and educational research does not take place in a 

vacuum. All abilities of the test takers are brought to bear when they take the 

assessment. Minor departure from unidimensional ability at work on a test might be 

motivation, anxiety, guessing tendencies, response speed, and additional cognitive 

skills (Hambleton et. al, 1991). The application for the unidimensionality assumption 

to be met is that only one dominant component is being measured on the test. 

However, perfect unidimensionality is not probable. The first assumption of correct 

dimensionality is essential in order for the second assumption of local independence 

to be met. When the assumption of dimensionality is met, so is the assumption of 

local independence. 

Mislevy and Chang (2000) present local independence as the “cornerstone of 

Item Response Theory (IRT)”. Local independence is necessary regardless of the 
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dimensionality of the test. The goal is to have no relationship remain between the test 

takers’ item responses after the ability being measured has been removed. When 

ability is held constant, responses should be statistically independent. This will be 

true if the correct dimensionality has been specified in the model. When θ is the 

ability of interest and it is removed, all remaining responses should be unrelated. This 

process is similar to looking at factors in a Factor Analysis (FA) model. When local 

independence occurs in the data, one dominant factor is present that can account for 

much of the variability in unidimensional data. Other factors are small and 

insignificant in comparison and are merely random fluctuation, as some minor 

disturbances from departure are expected in any model.  

In order for local independence to hold with multiple dimensions, the entire 

latent space needs to be specified. There are several ways that latent space can be 

understood. There could be multiple dimensions at work on items or there could be 

subpopulations of abilities. One can view the multiple aspects of ability as 

multivariate space and/or  mixture of classes. When the underlying dimension is 

continuous the multidimensional approach is appropriate. If the underlying dimension 

is a discrete  dimension then the mixture approach is suitable. 

Departures from the Rasch Model  

In conjunction with ideas of alternative strategies in testing, misfit of the 

Rasch model has been explored in relevant literature. The statistical properties, 

estimation algorithms, and statistical fit of data to the Rasch model have been 

explored (Kelderman, 1984). Looking to examine types of data that will misfit the 

Rasch model (Mead, 1976; Smith, 1986) typically conforms to some form of mixing 
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or multidimensional disturbance. This approach is considered to be detrimental 

because the desirable qualities of the Rasch model are then lost. The following three 

types of departures from the Rasch that are explored by Mead (1976): Random 

guessing, also called carelessness; Practice, which is related to how quickly one 

finishes the test; and finally, Bias. These data all violate the model’s assumptions, but 

still show acceptable fit when the fit statistics are used to test these models. 

Smith (1986, 1991) explored distributional properties of fit statistics through 

investigations based on thorough investigations of simulated data. Similar types of 

patterns to those Mead studied for departure from the Rasch model are used by Smith 

(1986), including: guessing, startup (fumbling), plodding, content interaction, 

sloppiness (carelessness), reanalysis, and random responses. Guessing, speed and 

item bias are considered amongst types of misfit. Guessing is a very common type of 

misfit modeled throughout Rasch research (Wainer & Wright, 1990; Mislevy & 

Verhelst, 1990).  Wright (1995) examines Low Mean Squares (LMS).  Misfit is 

represented by LMS inspired methods with departures from the Rasch model with 

less randomness than expected results  

Effects of change on parameters, such as time effect, curriculum effect as 

shifts in θ or difficulty, have been conceptualized prior to this research (Mead 1976; 

Mislevy 1981). Mead (1976) refers to speed as both the need to warm up and the 

rushing influenced by lack of speed. Changing theta or changing difficulty can be 

shown to be mathematically the same if done systemically. If done for the same 

population or sub-population, a positive one standardized shift in item difficulty as a 

generating parameter is mathematically equivalent to a negative one shift in theta 
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generating parameters.  Mead also examines bias as the same type of shift in 

parameters. Bias in this case is typical; in population A the items are relatively harder 

than in population B. This is said to have the same effect as practice or speed and 

speed is to be a special form of bias. Curriculum effect is also just a special form of 

bias. It is bias to look at two subpopulations with one having increased ability over 

the other with respect to some subsets of items but not others, due to their educational 

experiences. The underlying cause is philosophically different only insofar as one 

group is said to have special knowledge, or an increased ability. Curriculum is a 

special case of Mead’s bias in which the mathematics remains identical and the 

discussion is pointed toward an increase in ability in some subpopulation for some 

subset of items.  

Gentner and Gentner (1983) describe models of erroneous knowledge that can 

serve as an inferential framework. Serial and parallel combinations of resistors and 

batteries are posed to participants using different analogies. People are separated 

based on differencing analogy for electricity and respond differently based on the 

analogy. Those using the flowing water model performed well on the battery section 

and poorly on the resistor section, while those using the moving crowd model 

performed better on resistor section and poorly on the battery section. The model of 

their performance shows a reversal effect. Given the same questions using different 

analogy, respondents differ depending on the interaction of the analogy and the 

model. 

In IRT the advantages hold when the assumption, principally independence, of 

IRT hold. (Hambleton, Swaminathan, & Rogers, 1991) Testing the fit of the model is 

 16 
 



 

crucial to insure violations of the underlying assumptions are not severe. Goodness of 

fit studies (Divgi, 1986; Rogers & Hattie, 1987) were flawed considering their 

sensitivity to sample size (Hambleton, Swaminathan, & Rogers, 1991). The literature 

of item and person fit is valuable here even though the model of misfit is different in 

the current investigation. The literature on misfit statistics is not as useful for the 

present research in the context of mathematical theory or statistical fit, but as the 

theory underlying why the misfit exists within the data. The current investigation 

does not use misfit literature for diagnosis but for investigating common types of 

departures found in the investigation of IRT and particularly Rasch data.  

Hambleton, Swaminathan, and Rogers (1991) discuss an approach to 

assessing data model fit as “designing and conducting a variety of analyses to detect 

expected types of misfit” As noted above, useful mechanisms that can produce misfit 

have been developed within this literature of departure from Rasch data.  

In the current investigation, the simulated IRT mixture data represent two 

alternative strategies to responding to questionnaire style survey tools or examination 

assessments. The idea of “person fit” as laid out by Richard Smith (1986) traces the 

major themes focusing on the concept of believability of a pattern of responses from a 

person. Person fit statistics for the Rasch are shown to provide a useful framework to 

test person fit and believability. In comparing the ability of two Rasch statistics to 

detect disturbances, Smith simulates 10 sets of responses with 100 patterns per set for 

four guessing level of random responses 1/3, ½, 2/3, and all items. In addition, he 

generated 9 sets of 100 simulated patterns to study subsets. In situations in which the 

power of the test was low, the impact of measurement disturbance was also 
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considered low. Smith goes on to state that total and between statistics are required to 

detect all disturbances.  

From Strategies to Factors: A Martial Example 

Strategies can be translated into factors through expectation of the patterns 

that might arise from following one strategy over another. When one strategy is 

followed, a certain patterns of results are likely to occur for a given set of test items. 

That pattern of results will yield one factor model. Alternatively a different strategy 

may yield different patterns of results. Gentner and Gentner (1983) provide one 

example of reversed strategies from analogy in studying electricity. Let us take an 

alternative example from martial arts. Different strategies therefore yield different 

patterns of interrelationships among item responses, which are revealed in different 

results from factor analyses of the data. When it is not known a priori what strategies 

respondents may be using, the revealed factor patterns can be analyzed for hypothesis 

generation in light of what is known about the substance of the items and 

respondents’ plausible distinctive ways of interacting with that substance.  

In training modern style martial arts such as Taekwondo, there are many 

choices in training strategies. Currently it is very popular to train students for fighting 

in the Olympics for a point style combat sport. In training, students may learn to 

break boards, forms and patterns, move quickly in and out of range and always keep 

their hands down to protect their vital scoring targets. Alternatively, students of other 

Taekwondo schools may focus more on the martial aspect of the art. These students 

also learn to break boards, forms and patterns but spar with hands raised and strike to 

do maximum damage. In repeated test of breaking boards and moving through formal 
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movements students of both styles would have very comparable abilities. If we were 

to design an exam of 20 items, where items were forms and boards to break, students 

would perform based on their ability and both strategies could lead to a similar scale, 

such as a Rasch scale for both strategies. If we then moved to other arenas for 

examination we might see where alterative strategies would give rise to alterative 

factors. In the formal sport of Olympic style Taekwondo, a student trained to score 

points would likely have very high ability compared to a student taught combat. The 

sport trained student would score points and move in and out with footwork and 

hands protecting the chest before the combat student learned the elements of the 

contest. The sport trained martial artist would appear to have a high ability for 

elements or items in this venue while the combat student would have low ability. If 

the same two athletes where to meet and be tested on elements of combat a different 

and likely opposite result would occur. The combat trained athlete would ignore 

points and look to deliver deadly strikes attacks. The guard of the sports trained 

athlete would not serve well during real confrontation. The two would seem to have 

reversed in ability as in the reversed Rasch case in this current investigation. This 

alterative strategy, tested over several iterations could yield part of the subtest. In the 

end each strategy would have an underlying set of factor patters that may be similar 

when viewed through one subtest and very different on another test of skill. 

The above martial arts exam could be envisioned as a 40 item assessment 

where the first subtest consisting of 20 items measured the skill of breaking boards 

and performing martial arts patterns. The second subtest could be items relating to 

sparing where the two strategies would perform differently. The underlying strategies 
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can give rise to the alternative factor patterns in the sparring subsection of the exam. 

Strategy one leads to high patterns of sparing on some items and low patterns in the 

others while the alternative strategy reverses the effect. This patterns could be picked 

up in unweighted data or data that had been filtered to attempt to remove one of the 

two underlying strategies. 

 

Latent Class Analysis  

Categorical latent variables distinguish among respondents in a Latent Class 

Analysis (LCA) model. In this type of latent structure model, both the observable and 

latent variables are categorical (Dayton, 1998). The covariance in the manifest 

variables can be explained by the latent variables (McCutcheon, 1987). In LCA, a 

mutually exclusive set of latent classes accounts for the distribution in a cross 

tabulation of the observable variables. The latent variable in LCA is defined such that 

there is a set of classes and for people within a given class, the manifest variables are 

independent (i.e., local independence). In a cross tabulation table, each of the cells is 

equal to the sum of the expected values over classes, weighted by the class-size, or 

mixing, proportions. 

LCA is related to discrete mixture models and factor analysis (Dayton & 

Macready, 2007). The basic form of LCA is a mixture of product-multinomial 

distributions, but can also be perceived as a factor analytic model for categorical data.  

Dayton and Macready (2007) represent the formula for a latent class model 

given the assumption of local (conditional) independence as: 
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“where Pr(Yi|c) is the conditional probability for response vector, Yi given latent class 

c.” (Dayton & Macready, 2007). 

As addressed by Dayton and Macready (1980), the concept of an unscalable 

class has a history in LCA. The mixture IRT model is a combination of the IRT and 

LCA models, and the mixture IRT model that is the focus of the present research uses 

a class that is analogous to an unscalable class.  

Multidimensionality and Mixture IRT 

In some instances, the assumption that ability is of one dimension is violated. 

Or, it can be that multiple abilities are at work in an assessment.  This paper will 

present such cases as a mixture of underlying class ability in a Bayesian framework. 

It is important to have an understanding of common ways of interpreting and 

modeling dimensionality in an IRT model. In IRT two general frameworks for 

dealing with multiple factors are multidimensional IRT models (MIRT) and Mixture 

IRT models (Davier & Carstensen, 2007). The focus of the present research will be 

on a Mixture IRT model of a Rasch class and an unscalable class in a Bayesian 

framework, as presented by Mislevy and Verhelst (1990).  

In exploring the literature of Mixture IRT, it is valuable to consider MIRT an 

alternative way to model data that cannot be satisfactorily fit with a unidimensional 

model. The MIRT model differs in its theoretical framework of underlying structure 

within the data. In MIRT models, all the person’s ability parameters are continuous. 

A mixture IRT model has both continuous ability parameters within classes and a 

discrete parameter for class membership. Mixture IRT examines the latent classes that 

are posited to be inherent within the data (Rost, 1990). In Mixture IRT, there is an 

 21 
 



 

assumption that ability is from multiple subclasses on multivariate categorical data. A 

powerful model is the general mixture IRT framework (Kelderman & Macready 

1990, Mislevy & Verhelst, 1990) in examining latent groups. 

Factor Mixture Analysis  

A framework for different types of latent variable models by Muthen (2008) 

configures different variations of models within the general area of mixture modeling 

or modeling with categorical latent variables. The model overview (Muthen, 2008) 

includes continuous, categorical, and hybrid latent variables for both cross-sectional 

and longitudinal models. Hybrid models include continuous and categorical latent 

variables. Cross-sectional models have one instance in time, while longitudinal 

models have several time periods. Central to the current investigation is the branch of 

mixture modeling known as Factor Mixture Analysis (FMA). FMA is nested within 

the cross-sectional hybrid latent variable models division of mixture modeling.  

 A division of FMA in the IRT literature (Muthen 2008) includes Mislevy and 

Verhelst (1990), Mislevy and Wilson (1996), Wilson (1989), and Yamamoto and 

Gitomer (1993). The current investigation can also be nested in this branch of FMA. 

Much like one of the models used by Mislevy and Verhelst (1990), the current 

investigations looks at the case of a two class mixture model, one with a 1-parameter 

Rasch model and the other with an unscalable class. Although the model under 

investigation can easily be set in the framework of FMA, the question at hand is not a 

best fit question within that framework. The question is about what is left behind in a 

given selected model when fit is determined for each person. The model selected for 
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investigation is amongst the most popular models used in item response theory, the 

Rasch model.  

Principal Components Analysis or Factor Analysis  

 There are many different extraction methods used in Factor Analysis 

(Gorsuch, 1983; Tabachnick & Fidell, 1996). A Comparison of factor procedures 

(Gorsuch, 1983) for the current investigation is reviewed for selection of an 

appropriate method. The theoretical rationale in the analysis concerns whether the 

technique chosen serves the purpose of data reduction or if the factors will be used to 

draw theoretical inferences regarding the constructs (Lawrence & Hancock, 1999). 

Components are mathematically abstract composites, while factors explain the 

theoretical underpinnings of the observed data. The major consideration for extraction 

is whether the current investigation is dealing with factors or components.  

Mathematically, the difference between PCA and the common factor analytic 

technique of Principal Axes Factoring (PAF) lies in the positive diagonal of the 

correlation matrix (Tabachnick & Fidell, 1996). FA differs from PCA in that 

commonalities derived through an iterative procedure are used instead of those in the 

diagonal of the correlation matrix. When the principal factor procedure is used on the 

original matrix with those in the diagonal, the result is PCA (Gorsuch 1983). When 

the diagonal is a commonality, such as in principal axes factoring, the result is a 

factor. The goal of PCA is to reduce a large number of variables to a small number of 

components while extracting the maximum variance in the data with each component. 

FA is concerned only with covariance or commonalities: the variance in observed 

variables shared with other observed variables.  
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In the case of systematic contamination of the current investigation within the 

data that is proportionally reweighted to conform to the misfit, contamination can be 

detected by examining composite or factor structures. How we classify this 

contamination in the current investigation may not be important. In the current study 

we expect to find Rasch data, systematic and random contamination, as well as 

random uniqueness. The concepts underpinning the ability in the current investigation 

are generic in that argued general ability, special abilities of contamination, and 

uniqueness are each examined in the data. When looking at the Rasch model as 

having one underlying latent variable for a given ability, the data in the systematic 

contamination condition is generated to have a secondary latent special ability factor. 

These components in the simulation are generic and could hold equal meaning in 

math or reading ability. In factor analysis it is valuable for the final results to be 

understood as a conceptually clear construct, summarizing the interrelationships 

among variables to be understood (Gorsuch, 1983).  

There are several factor extraction procedures (Tabachnick & Fidell, 1996) 

besides the traditional principal factor method used in the discussion between PCA 

and FA and involving the solution of the characteristic roots and vectors also known 

as eigenvalues and eigenvectors (Gorsuch, 1983). Image analysis is another variant 

using principal factors that has the same vector (Gorsuch, 1983; Harris, 1964) as PCA 

and PAF but different roots. These three solutions should have the same pattern of 

high and low loadings (Gorsuch, 1983). Minimum residual analysis and alpha 

factoring also use the same mathematics behind principal factoring but have 

alternative methods of obtaining communalities. The maximum likelihood factor 
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extraction method differs mathematically from those methods using the solution of 

characteristic roots and vectors. The maximum likelihood method estimates 

population parameters from sample statistics.  

The current investigation will use PCA and look at rotated components 

instead of factors. Mathematically, the same principal factor method is used in PCA 

as in common factor analysis but the choice is not to reduce the variance to only 

commonality. Under the principal factor method, PCA is often used as a first step to 

FA as it can help determine the number of likely factors, variables to remove and the 

general factorability (Tabachnick & Fidell, 1996). In the current investigation, there is 

no need to make the argument that components underlying the data need to draw 

inference, as the main research questions are not regarding content development. The 

main question to examine is if any of the systematic difference is still left in the data 

after the Rasch model has been used as a filter. Devising explanations for what might 

be left could be performed on a case by case basis using real data instead of simulated 

data. 

Bayesian estimation of Mixture IRT  

Bayesian inference is described by Gelman, Carlin, Stern, and Rubin (2004) 

as a process that fits a probability model to data sets whose results are summarized by 

probability distributions on both parameters of the model and unobserved quantities.  

Inference comes from the data using probability models to quantify uncertainty for 

observed and unobserved information. Probability statements are made about 

parameter θ (Gelman, Carlin, Stern, & Rubin, 2004) and are conditional on observed 

values of y: p(θ|y). The joint probability distribution for θ and y allows for probability 
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statements about θ given y. Density functions are the prior distribution p(θ)  and the 

sampling distribution p(y|θ): 

( ) ( ) ( )θθθ |, yppyp =  

Conditioning on the known data y: 

( ) ( ) ( )
( )yp

yppyp θθθ || =  

Omitting p(y) yields the unnormalized posterior density: 

( ) ( ) ( )θθθ || yppyp ∝  

Unlike likelihood functions or estimation equations Bayesian estimation, 

using Markov-Chain Monte-Carlo (MCMC) estimation iterates through many draws 

in model parameter space (Rost 1990). Priors in conjunction with the algorithm are 

used for each parameter to estimate. MCMC permits extensions of more complex IRT 

models, as the number and estimation of parameters is not limited to the more 

conventional likelihood function.  In this study, the Winbugs program (Lunn et al., 

2000) will be used to carry out MCMC estimation. 
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Chapter 3: Method 
 

Research Design 

The goal of this research is to determine if the posterior residual used to 

reweigh data can extract out from the data significant differences in factor patterns 

between a Rasch and unscalable class. The current study will examine the use of 

posterior residuals from a Bayesian mixture model comprised of a Rasch and an 

unscalable latent class, expressed as weights for the original data, to explore factors 

that may still exist.  Such factors include the use of multiple strategies to answer 

survey questions. In order to address this issue, multiple procedures will be used in 

conjunction with one another to accomplish the desired method. Replications will be 

simulated using SAS to conform to the Rasch model in the null condition with 

variants on the Rasch model adding in different levels of random and systematic 

pattern in other conditions.  

The Model 

In the investigation, simulated data will be generated to provide fit and 

intentional misfit (i.e., contamination) to a Rasch model. Using a Bayesian procedure 

via the Winbugs computer program, a mixture Rasch model will be fit to each dataset. 

Each person will have a value ranging from zero to one, in terms of posterior 

probabilities that the case accords with a class defined by the Rasch model response 

process, as opposed to a residual class represented by the independent product of .5 

probabilities.-– in essence, a class of unscalables (Dayton & Macready, 1980).   An 

IRT mixture model will be fit to all data conditions, in which one class consists of 
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examinees responding in accordance with the Rasch model, and the other class 

represents examinees responding randomly.  The following expressions are adapted 

from Mislevy and Verhelst (1990): 

The two class mixture model: 

( ) ( ) ,

2

1
,1|| k

k
kii xPxP πξφξ ∑

=

==  

where π is the class proportion, ξ is the full vector of item parameters for all b’s and 

c’s, The two mixture model for estimation will contain two classes. The first class 

defined by the Rasch model and the second by Random Guessing.  

Rasch model: 
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where bj is the difficulty parameter for Item j under the Rasch model. 

Random guessing: 
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where cj is a prespecified guessing parameter for Item j. It follows from the 

definition of the model that  

( ) ( ) ( ) 212111 ,...,,1|,...,,1|| πφπφξ JJi ccxPbbxPxP =+==  

( )[ ]
( ) ( ) ( ) .1

exp1
exp

              2

1

1 ππθθ
θ
θ

⎥
⎦

⎤
⎢
⎣

⎡
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂

−+
−

=
−

∏∫∏ jj
x

j
j

x
j

j j

jj ccp
b
bx

 

The posterior probability of a given subject with response vector xi belonging 

to each of the two classes is thus calculated as follows: 
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Rasch class: 
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Random class: 
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The posterior probability estimate can be used to determine class each 

response pattern likely belongs in, Rasch or Non-Rasch, and to what degree each 

response pattern likely belongs. In this model, we can interpret an examinee’s 

posterior probability of belonging to the Rasch class as his fit to the Rasch model, and 

the posterior probability of belonging to the random guessing class as a residual.   

Each subject’s  posterior probability of being in the unscalable class will be used to 

reweight the original data as the “residual” data set. The implementation of this 

weighting is discussed later in this chapter in the section  

Responses that fit perfectly to the Rasch class will have a weight near one, 

while those patterns that accord very poorly with the Rasch model will have a weight 

nearer to zero. All other response patterns will have a value between zero and one 

from the posterior distribution representing the degree of fit with the Rasch model. 

Those that fit well with the Rasch model should be those respondents that were 
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generated to conform to the Rasch model. Those that differ are less like the 

theoretical model, and exploring this residual information can yield reasons for 

differences. 

As specified above, by using the residual weights from the posterior 

distribution of the Bayesian Rasch model the original data will be re-examined 

through Factor analytic techniques. Tetrachoric correlations will be used instead of 

Pearson’s correlation coefficient, as the data are dichotomous. Three exploratory 

factor analysis (EFA) models will be constructed, one with unweighted data, the other 

two are based on reweighted data of posterior probabilities belonging to the 

unscalable or Rasch class. 

The first exploratory model will be of the unweighted dataset. It may be useful 

to return to this unweighted model after examining the other model, and it may be 

very useful as a baseline in determining the number of factors in the overall dataset. 

The second EFA model is the model of interest for examining response 

patterns to the extent that they are not in accord with the expected one-dimensional 

model. This model uses reweighted data, where the weights for each case are 

posterior probabilities of belonging to the unscalable class; that is, a weighting of the 

data that best represents misfit to the Rasch model.  

The third EFA model is reweighted and estimated to represent fit to the Rasch 

model. This model uses reweighted data, where the weights for each case are 

posterior probabilities of belonging to the Rasch class; that is, a weighting of the data 

that best represents fit to the Rasch model.  
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Rasch and Misfit Data 

Data will be generated in the current investigation to conform to three 

different strategies: Rasch, random, and a Rasch reversal effect. The Rasch model 

will represent the expected response pattern. Randomly generated responses will 

represent the first patterns of misfit from the Rasch. These two strategies are 

commonly found in mixture IRT simulations (e.g., Smith, 1986, 1988 and Mislevy 

and Verhelst 1990). The random effect misfit will be characterized by random chance 

regardless of the difficulty of the item; the reversal effect represents special training, 

course of study, or analogy difference. The reversal alternative strategy is based on 

the reversal effect shown by Gentner and Gentner (1983). Under the same domain of 

knowledge, one can perform strong in one section and weak in another. Gentner and 

Gentner (1983) illustrate this situation using tasks on electrical circuits.  One kind of 

task was relatively easier for students thinking of electrical flow in analogy to 

hydraulic flow.  Another kind of task was relatively easier for students thinking of 

electrical flow in analogy to teeming crowds trying to get through different 

configurations of turnstyles. Based on analogy or special knowledge, the reversal 

effect will be simulated by reversing the difficulties of the items in one of the 

subsections for those in the contaminated condition 

The first strategy will be represented by the one parameter logistic model, 

known also as the Rasch model. The Rasch equation will be used to model the data 

for respondents using the first strategy:  
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The second strategy will be represented by generating random responses. This 

“Random” strategy is common and sometimes based on issues such as the lack of 

care from a participant, rushing through responses, lack of knowledge, or some other 

underlying concept that would manifest an apparently random set of responses.  

( ) 25.|1 == θiXP  

The probability, P, in the current investigation is set to .25 because the data 

will be generated assuming that four responses were possible for each item, as is 

typical for most multiple choice exams. If a participant responds randomly to item 

with C possible response categories the resulting probability of guessing is: 

( )
C

XP i
1|1 == θ

 

Selecting .25 as the unscalable class is analogous to Andreassen et al. (1987) 

for diseases that are unknown. When looking at diseases in their Bayesian system 

they introduce a state of “other”. This “other” condition helps to avoid strong 

favorable statements for any of the set of prespecified disease states, for when cases 

fit poorly. Instead of placing the case in the least poorly fitting prespecified condition, 

the network places this case in the “other” condition with a high probability. This is 

similar to the unscalable class in the current investigation. It is not that the data fits 

the unscalable condition but that it is placed into this class at all regardless of the 

cases structure. This can be an indicator that anomalous structure not accounted for 

by the hypothesized model(s) is present. 
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The third strategy will be represented by generating responses affected by 

special knowledge or analogy. The reversal effect will be simulated by reversing the 

difficulties on the generating parameters. 

The Data Generating Factors 

The subsequent section will provide an overview for fixed factors and 

manipulated factors in the simulation. This will facilitate the kinds of misfit from the 

Rasch model within the current investigation. Fixed factors in the research are:  Theta 

distribution, number of items, sample size, and number of replications per cell. The 

four manipulated factors and the associated levels are: Misfit (2), Proportion within 

items misfit (contamination) (5), Scaling factor for scaling the item difficulty 

parameters in the test (4), Size of subtest (2). The following are tabular summaries of 

the fixed and manipulated factors. The next two sections of methodological 

discussion focus first on the selection fixed factors and later on the selection of levels 

for manipulated factors. 

Table 3-1: Fixed Factors 

Fixed Factor  

Theta Distribution Normal(0,1)

Number of items 40

Sample size 500

replications per cell 50
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Table 3-2: Manipulated Factors 

Manipulated Factors Levels      

Type of Misfit 3(2) 
No Misfit, 
All Rasch 

Reverse 
effect  

Random 
effect    

Proportion within 
item Misfit 
(contamination) 5(4) 0 0.5 0.80 0..95 1 
Scaling factor for 
scaling the 
difficulties 4 1/1 3/3 1/3 3/1  
Size of subtests 2 30/10 20/20    
Number of Cells All Rasch Baseline = 1*1*4*2 + misfit 2*4*4*2=8+64=72 Total Cells 

Fixed Factors 

Several factors are fixed in this study for all conditions of the simulation. 

Theta for the Rasch portions of the mixture will have a normal distribution with a 

mean of zero and a constant standard deviation of one. The sample size is fixed to 

500 simulees and is discussed in the sample and subtest size section of this chapter. 

The number of replications per cell is set to 50. The sample size and replications that 

were tested in preliminary investigations are the discussions of these are deeply 

ingrained in chapters four and five.  The number of items will be held constant at 40 

with evidence supporting this number of items or less from previous research (e.g. 

Smith 1988, and Wright & Tennant 1996).  

While searching the literature for a rational number of items to be used in the 

current investigation, several standardized tests of achievement were explored. The 

primary sources used to determine the number of items in the current investigation 

include the subtests of the GRE, TOEFL, NAEP and SAT.  

ETS (2009) provides test information on the GRE’s. The computer based test 

typically has 30 verbal and 28 quantitative questions. The paper based version of the 

GRE has 2 sections of verbal and quantitative 38 and 30 items per section 
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respectively. The TOEFL (Test of English as a Foreign Language) sections of 

listening comprehension have 50 questions, structure and writing expression have 40 

questions and reading comprehension has 50 questions. The NAEP for 2003 has a 

range of items used to develop its scales.  In the 4th grade assessment, the subscales 

ranged from 19 to 75, while in the 8th Grade the subscales ranged from 30 to 51. The 

SAT’s subsections ranged in item numbers from 18 to 25 for reading, 16 to 20 for 

mathematics and 14 to 35 for writing.  

The range of items for a test and subtest for standardized tests vary greatly. 

The range of the above values is from 14 to 75 for subsections of these well 

established standardized tests. The typical range for number of items can be limited 

from the mid 20’s to 40’s. Based on this review of test item length  and preliminary 

analysis of 20 and 40 item tests lengths, the longer of the two 40 items has been 

selected for use in the current research. It would be reasonable to select a shorter test 

length of 20 considering the simulation research, targeted inspections of items have 

been limited to 3 items (Mislevy & Verhelst, 1990). Wainer and Wright (1980) used 3 

tests lengths of 10, 20 and 40 items in their simulation work. In this investigation, 40 

items will increase the chances of finding effects in the data. The contamination effect 

will change from 5 out of 20 to 10 out of 40 in the first subtest condition, which will 

double the number of items in comparison and increase the overall power of the 

design.  

The researchers’ preference to select precise points instead of having them 

randomly generated for the test will permit the evaluation of the study to have 

multiple overlapping item difficulties so that comparisons within and between 
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subsections of the test can be made clear. To evaluate common structure, patterns will 

be looked at individually and aggregated by these common difficulties within subsets.  

Manipulated Factors 

There will be a total of four manipulated factors in the current investigation: 

Type of Misfit or contamination (2), Proportion of misfit or contamination (5), 

Scaling factor of the test (4), and Size of subtest (2). The all Rasch conditions that are 

represented by the no misfit condition will not be repeated as one set overlaps. There 

are two sets of cells for the no contamination condition: no random contamination 

and no reverse contamination are the same effective cell. The number of cells 

replicated will be 2x4x4x2+8 = 72 cells in total. 

The first of the manipulated factors, type of misfit to the Rasch model, 

involves departure from Rasch generating data. The data will be generated by altering 

the proportion of strategies being mixed and the strength of the models. The Rasch 

versus Non-Rasch (Random, Reverse effect) condition will represent key difference 

in cells. These Non-Rasch conditions are considered contamination in the 

investigation. 

The second manipulated factor, the mixture proportions of expected and 

alternative models, will have 5 levels. The amount of Non-Rasch, contaminated 

responses mixed in with the expected Rasch responses will be: 0, .5, .80, .95 and 1. 

The intent here is to cover many possible levels in which patterns may interact and 

strength of patterns may be more or less prevalent. The mixing proportion here is for 

the total dataset, not within an individual’s response pattern. This factor for a given 

set of responses is considered Rasch or Contaminated between case proportions. 
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Based on this first factor, responses will be all Rasch or contaminated within a given 

response pattern.  

The third manipulated factor is the scaling factor of the test difficulties. In 

determining the range of the difficulties, several articles were reviewed (Chyn, Tang 

& Way,  (1994); Chen & Davis, 1991; Mislevy & Verhelst, 1990; Kingston & 

Durons, 1982). In the sensitivity analysis (Hambleton & Rovinelli, 1973; via 

Hambleton et al, 1991) carried out on the goodness of fit statistics to determine 

sample size, item difficulties were chosen to those commonly found in practice, 

between -2 and +2. Items in the current investigation, taking into account previous 

research and practical considerations, are constrained to have a base range of 2 

through -2. This item range will interact with a change in scaling factor specifically 

considered to interact with the contaminated conditions.  

The scaling factors of the item difficulties in the test will take on four 

conditions: The base range of the exam extends from ±2. This scaling factor is used to 

create the four conditions where the base range is multiplied by: 1 for both subtests, 3 

for both subtests, 1 for the Rasch only subtest and by 3 for the contaminated subtest, 

and 3 for the Rasch only subtest and by 1 for the contaminated subtest. This will 

provide a variety of test ranges from ±2 for all items in both subtests to a relatively 

extreme condition with a range of ±6 for items on subtests with interaction effect of 

those ranges also being examined. 

The fourth and final manipulated factor is the sizes of subtests. In the first 

condition, the Rasch only subtest will have 30 items generated by Rasch only, with 

the remaining 10 items in the contaminated subtest changing based on the mixing 
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parameters. The second subtest condition for this factor will be equal subtests of 20 

items each.  

The Random proportion is envisioned as the lack of care, laziness, or even an 

alternate rushing factor. In conforming to this notion, randomness will be adjusted 

within a response pattern to represent different levels of carelessness. The reverse 

contamination will be generated to conform to the analogy or alternative knowledge 

models. These two represent contamination in the second subtest. 

The contaminated responses will be generated within the second subtest. This 

subset represents not caring responses or differencing inferential models within the 

non-Rasch response subtest. All individuals will conform to the Rasch model for the 

first subtest. This factor is the amount of randomness within each response pattern. 

Sample size and subtests 

The approach to investigating misfit proposed here is quite different from that 

of Smith (1988), who calculates residuals for each item by person combination.  

However, we can use his results as a guide to determining sample sizes for which it is 

possible to both fit the Rasch model and detect residuals from the model.  Particularly 

of interest for number of replication is Smith’s second analysis with samples ranging 

from 30 to 2000 for a 10 and 20 item tests. Smith states that for 10 or 20 items, the 

relative frequencies appear to be independent of the sample size, and that the 

differences in frequencies seem like random fluctuations of the 10 replication, 20 

item, 1000 person sample. In further examining tables 3 and 4 of Smith’s work, 100 

persons in a simulated sample seem minimally adequate. Wright and Tennant (1996) 

suggest at least 10 items “with a reasonably targeted sample of 50 persons, there is 
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99% confidence that the estimated item difficulty is within ±1 logit of its stable 

value.”30 people are suggested to be good enough for pilot studies and 200 

participants brings you within ± .5 logits. Keeping all this in mind, and understanding 

that the Rasch model is used here for the purposes of extracting information, the 

current investigation will simulate a fixed number of 500 subjects. This is above the 

400 minimum suggested by Kolen and Brennan (1995) who are dealing with high 

stakes issues of equating and falls within research suggested by Smith (1988).  

This sample size was also evaluated in preliminary investigation, and the 

results indicate 500 people estimated parameters significantly better than 100 people 

but not significantly different from 2000 people per replication. 

In the current simulation 4 core characteristics were manipulated. Type of 

Misfit or contamination (2), Proportion of misfit or contamination (5), Scaling factor 

of item difficulties on the test (4), and Size of subtest (2). The above description of 

the factors includes: three different strategies of misfit, all Rasch, random and 

reversed inferential knowledge; five levels of mixing contamination between Rasch 

and misfit; four interacting scaling factors with the subtests; two separate subtest 

sizes, and all with a constant number of response patterns. Overall there will be 72 

mixture response patterns generated with 500 subjects per replication. 

Simulation Method 

While discussing the overall process, it is useful to explain the method with 

respect to design considerations and model approach. In order to generate, transform, 

format, transport, analyze and graph data, several macros and general code were 

developed in SAS. The model for consideration was constructed and run in Winbugs. 
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Moving through the simulation process step by step and understanding all decisions 

and generating parameters will be helpful to understand the overall research. 

Modeling 

The measurement model was developed as a mixture Rasch model which fits 

a latent class model with the first class being the Rasch model and the second class 

being unscalable. Estimation of residual is done using a Bayesian mixture Rasch 

model within each of the 72 cells.  

The Rasch model is used as the basis for model specification for the mixture 

in this analysis. The one parametric model 
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The mixture uses one class as Rasch with the second class being an unscalable class. 

The unscalable class for this two class model is set to have a p of .25. This mixture of 

Rasch and unscalable assumes that multiple classes exist within the population and 

for a portion of them the Rasch model will hold, the other portion of the population 

will be more appropriately within the unscalable. 
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The mixture model was presented earlier in this chapter.  The posterior probabilities 

that a subject belongs to each of the two classes can be written as 

Rasch class: 

( )[ ]
( ) ( )

( )[ ]
( ) ( ) ( )

.
1

exp1
exp

exp1
exp

              

2

1

1

1

ππθθ
θ
θ

πθθ
θ
θ

⎥⎦
⎤

⎢⎣
⎡ −+⎥

⎦

⎤
⎢
⎣

⎡
∂

−+
−

⎥
⎦

⎤
⎢
⎣

⎡
∂

−+
−

=
−

∏∫∏

∫∏

jj
x

j
j

x
j

j j

jj

j j

jj

ccp
b
bx

p
b
bx

 

Random class: 
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These can be used as weights for an analogy to Tukey’s “fit” and residual,” to split 

the original data set casewise in proportion to these probabilities. 

In the current research a 40 item test with 500 simulees is used. In the 

following example Table 3-3, four items with 50 simulees are used to represent an 

analogous but smaller example.   
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Table 3-3: 4 item, 50 simulees example. 

0000 Observed Rasch  Unscalable  
0000 1 1 0 
0001 3 3 0 
0010 2 1.5 .5 
0011 6 6 0 
0100 0 0 0 
0101 6 5 1 
0110 2 1.5 .5 
0111 11 9 2 
1000 0 0 0 
1001 4 3 1 
1010 2 1.5 .5 
1011 9 8 1 
1100 0 0 0 
1101 2 1.6 .4 
1110 0 0 0 
1111 2 2 0 
Total 50 43.1 6.9 
 

If a simulee with a 1101 pattern is determined to be .80 in the Rasch class and .20 in 

the unscalable class, that simulee and others with the same pattern will be assigned a 

weight of .20 to the residual class. The posterior probability is used as a weight for 

each individual within each class by assigning the proportionately associated with the 

patter that simulee falls in. The above example would take the 6.9 responses 

classified in the unscalable class and use them as weights in a factor analysis for the 

residual class. 

Winbugs model 

The first choice to be made in generating the data was the model to be used in 

the simulation. In the Preliminary investigation discussed earlier, the priors were set 

for each parameter and tested to make sure priors did not overwhelm the data.  Data 

points were fixed in order to resolve the label switching indeterminacy with multiple 
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classes (Chung, Loken, & Schafer, 2004).  The data is fixed by the first replication 

always being set to the first class. The model was set to remain as a fixed factor in the 

overall simulation. The preliminary study also set the number of burn-in and 

estimation cycles for the study. The end results of a set of fixed parameters for the 

current research are discussed sufficiently in the preliminary investigation chapters 4 

and 5, so that only the brief recap of the model and its fixed factors are mentioned. 

The two class mixture model of Rasch and an unscalable class is used in all 

replications across all cells. This is the model that the generated data, which is 

generated under differing conditions depending on the cells manipulated factors, will 

be applied to like a filter to examine residuals. The burn-in cycles are set to 2000 and 

the estimation cycles are set to 5000.  

Winbugs diagram 

In developing the code to transform the above equations into Winbugs code, 

the intermediate step of modeling was taken. Figure 3-1 is a directed acyclic graphical 

representation of the model, called a doodle in the WinBUGS program.  This 

representation aides a structural explanation of the model. 
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Figure 3-1: Winbugs doodle of the 2 class model 

for(j IN 1 : N)

for(k IN 1 : I)

for(c IN 1 : G)

prop1[j]

r[j,k]

p[j,k]

p2[j,k]

tau

alpha[1:G] pi[1:G]

class[j]

theta[j]

b[k,c]

p1[j,k]

m 
 

The WinBUGS code in figure 3-2,  is modeled from the above doodle. The code and 

the doodle show the two class model with Rasch and unscalable classes. 

Figure 3-2: Winbugs code for the 2 class model 

 
model 
{ 
for( j in 1 : N ) { 
for( k in 1 : I ) { 
p1[j,k] <- exp(theta[j]-b[k,class[1]])/(1+exp(theta[j]-b[k,class[1]])) 
p2[j,k] <- 0.25 
p[j,k] <- p2[j,k]*prop1[j]+p1[j,k]*(1-prop1[j]) 
r[j,k] ~ dbern(p[j , k]) 
} 
} 
for( k in 1 : I ) { 
for( c in 1 : 1 ) { 
b[k , c] ~ dnorm( 0.0,0.25) 
} 
} 
for( j in 1 : N ) { 
theta[j] ~ dnorm( 0.0,tau) 
class[j] ~ dcat(pi[]) 
prop1[j] <- class[j] - 1 
} 
pi[1:G] ~ ddirch(alpha[]) 
tau ~ dgamma( 0.5,1) 

} 
list(N=500, I=20, G=2, alpha=c(10,10), 
class=c( 
1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
……………………………………………………………………………… 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA), 
r=structure(.Data=c( 
1,0,1,0,0,1,1,0,1,0,0,0,1,0,1,0,0,1,1,1, 
0,0,1,0,0,0,0,1,1,1,1,0,0,0,1,1,0,1,0,1, 
……………………………………… 
1,0,1,0,0,0,1,1,1,0,0, 0,1,1,1,1,0,0,1, 1,
), .Dim = c(500, 20))) 
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Generating data: Calculating the Probability 

The simulation process for generating the data in the current investigation 

starts with a Monte Carlo simulation of varying mixture conditions of Rasch data and 

unscalable, random data. In generating one replication within one cell, several choices 

are made. The first decision was to set the test to be used in the simulation process.  

The general base test has set points of +2, +1, 0, -1, -2 repeated 8 times in the 

assessment for a total of 40 items. There are 6 of each base values in the thirty item 

subtest, 4 of each in the twenty item subtest and 2 of each in the ten item subtest. 

These interact with the scaling factor for a given subtest and are either multiplied by 

one, meaning they do not change, or multiplied by three to show a more extreme 

scaling factor condition of +6, +3, 0, -3, -6. 

The Rasch data is generated to conform to a normal distribution with a mean 

of zero and a standard deviation of 1.  These theta values are randomly drawn for 

each respondent. Regardless, the first subtest  is generated to conform entirely to the 

Rasch model for all respondents. 

In order to get one respondent for one replication within a given cell in the 

first subtest, the randomly generated theta value is used to generate probabilities. The 

probabilities are calculated for each of the items in the subtest resulting in item 

response probabilities for the simulee. The model used to generate this is simply the 

Rasch model in SAS code. 

PROB[P] = (EXP(THETA-ITEM[P])/(1+(EXP(THETA-ITEM[P]))) 

In the code PROB is the probability and is calculated by taking the exponential (EXP) 

of the difference between the generated THETA value and the ITEM difficulty 
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divided by one plus that same value. This is effectively the Rasch model in SAS code. 

The P parameter represents that this occurs over P items and for the Rasch subtest. 

 The remaining items in the second test represent either 25% or 50% of the 

items and are generated under one of several mixing conditions. The two 

contaminated alternatives to the above Rasch model used in the mixing condition are 

an unscalable class of random data and the reverse analogy effect. The Random 

probabilities are simply set to .25 for each of the items in the subtest. This is the same 

as random guessing. The Reverse effect swaps sign of the difficulties so that +2 

becomes -2 and +1 becomes -1 for that portion of the subtest. The data is generated 

the same way as above except for those in the contaminated portion of the subtest 

where the code now reverses, as shown bellow. 

PROB[P] = (EXP(THETA+ITEM[P])/(1+(EXP(THETA+ITEM[P]))) 

These items are generated as Rasch with a proportion mixing conforming to 

the misfit generating parameter, 0, .5, .80, .95 or 1. In this subtest zero, Rasch and all 

of the alternative contaminated condition can be generated, partial Rasch and partial 

contamination or all Rasch can be present in the subtest, which would result in the 

baseline, non-mixed, uncontaminated condition. 

 The probabilities are generated in SAS based on the Rasch and misfitting, 

contaminated conditions. The generation of these probabilities is based on equations 

mentioned earlier in the misfit from Rasch section of the paper. 

Generating data: the observable zero/ones 

 Based on the simulee’s theta and mixing condition, each simulee has 40 

probabilities, one for each item in the test.. The probabilities are then transformed into 
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zero one responses based on a random procedure in SAS called RANBIN (SAS, 

2009). This function RANBIN returns a random value for 1 or 0 from a binomial 

distribution with set parameters of number and probability of success taken from the 

probability calculated in the previous section. 500 such simulees are run per each 

replication of a cell.  

Transformation and Transportation of Data 

The response data is stored first in SAS as zeros and ones and contains 500 

respondents by 40 items. The data is restructured and merged with Winbugs 

formatting to create a plain text document that can be used with Winbugs. In addition 

to the data being formatted as a text file to be used in Winbugs, the Bayesian Mixture 

model is also written out by SAS into a text file to be used in the analysis.  

 A command script is written in SAS and exported as text to run Winbugs 

remotely through SAS. The script contains generating parameters, locations of files to 

be used for the data and model, information to set parameters and collect summary 

statistics information from set parameters. The statistics are then saved as a text file. 

This script is run automatically using code within SAS. A DOS command prompt 

opens, runs code that starts Winbugs, runs the script, closes Winbugs, and the data is 

stored as a text file  and then transformed in its entirety into a SAS dataset. A second 

SAS dataset from the raw text file generated from the Winbugs analysis contains only 

the probability of class membership for each simulated respondent. This information, 

the posterior probability of class membership, is stored to be used as the weight 

variable to investigate the original data. This is the residual or misfit by which the 
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data is weighted and reexpressed to have fit stripped away, leaving the misfitting 

portion to make it easier to find patterns should they still exist. 

Evaluating the outcome 

Exploratory in the spirit of Tukey 

In examining the reproduction of factors, Gorsuch (1983) discusses replication 

and invariance of factors across random samples of individuals in terms of 

desirability of the factor model.  A solution is considered invariant when the factor 

patterns are similar across multiple replications. Invariance is said to occur when 

there is a high correlation of factor scores. Slight differences in a model are attributed 

to chance fluctuations. In evaluating the factor models in the preliminary 

investigation, visual inspection as well as correlation will be used to determine if 

invariance exists. Invariance and replication of factor structures will be considered 

crucial for the final study.   

Mosteller and Tukey (1977) provide an in-depth treatment of exploratory data 

analysis of residuals for regression models. In a similar general framework of data=fit 

+ residual the data is explored through reweighing data to the residuals and fit of the 

model. A critical difference between Mosteller and Tukey’s exploration of regression 

and the current investigation of the Rasch model is the benefit of knowing the 

outcome in real data situations. In regression, one uses a predictor, or set of predictors 

to predict an outcome, and  the outcome of the model regression is known. In the 

Rasch model, although it too develops a model with parameters for prediction, the 

true values are not know and typically sufficient statistics are used to estimate a 

model. In regression, we have the model and a calculated residual between observed 
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and true values. The residual to the Rasch model in this framework is created from a 

two class LCA model with one class, as Rasch and everything else unscalable, which 

includes the residual to the Rasch model.  

In the current investigation, 50 replications in each cell will be aggregated and 

reported in terms of summary statistics for the posterior mixture model. Summary 

statistics of the posterior probabilities of class membership will be evaluated using 

means and SE. After all cells are simulated, 3 factor models will be constructed from 

each individual dataset by weighing the data: unweighted, Rasch weighted, and 

residual weighted data. The number of factors in a condition and the structure of 

factors will be evaluated. Eigenvalues will be evaluated by comparison and patterns 

of change. Patterns will be aggregated within a cell and within each dataset type and 

compared using MANOVA and Hotelling’s T test. Individually aggregated patterns 

can be compared using t-test and ANOVAs. Grouping patterns will be compared in 

terms of  means and standard errors (SEs). 

Tetrachoric correlation 

Tetrachoric correlation coefficients are estimated in SAS using the PLCORR 

option in the Tables statement of the PROC FREQ Procedure (SAS 2004). PROC 

FREQ is the procedure for producing frequency tables, while the option PLCORR 

produces polychoric correlation coefficients. In the limiting case of a 2 by 2 

contingency table, the polychoric correlation coefficient is described as the 

tetrachoric coefficient. In SAS, the correlation starts with the Pearson correlation 

coefficient as the starting point and attempts to iteratively solve for the tetrachoric 

solution.  The model will run until it converges, or until the maximum number of 
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replications has been reached. This value is typically 20.  In the current investigation 

it is crucial that each solution for the tetrachoric coefficient be solved. There are 40 

items, so there are 40*39/2= 780 unique correlations to be estimated for each 

correlation matrix used in this analysis. The maximum number of iterations has been 

set to 100 and the convergence criteria have been set to .001. If a solution is not found 

for every coefficient in the matrix, the result cannot be used in a factor analysis 

model. If unsuccessful, the Pearson correlation will be substituted into the model, 

because when using tetrachoric correlations or Pearson correlations, no difference 

could be detected in results in preliminary analysis. 

Incorporating the weights for a tetrachoric correlation  

In SAS the frequency proc freq procedure which produces the tetra correlation 

was an option to weigh the data by some other variable (SAS, 2009). In the current 

investigation, the weight used is the posterior probability of class membership, 

specifically the probability of being in the unscalable class. This is the concept of 

residual discussed earlier. When this type of weighted structure is applied to 

tetrachoric correlations there is a modification of the construction of the correlation 

by using the weighted value for each case instead of counting each case as one. 

Instead of frequency of response being entered into each of the 2x2 contingency table 

cell, 11,10,01,00; the weighted frequency is entered. Each individual counts once in 

the original data so the summed weight for each condition is effectively entered into 

the cell. One could also take the average weight times N to show the value as well. 

For 500 people, when all responses have the same frequency of relation there is 125 

in each cell combination as shown in Table 3-4: 
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Table 3-4: Equal frequency N = 500 

Raw frequency 1 0 

1 125 125 

0 125 125 

 

Weights sum to: average weight times N Total N=131.25 

11=.476, 10=.238, 01=.095, 00=.190 

Table 3-5: Unequal frequency N=131.25 

Weighted frequency 1 0 

1 62.5 31.25 

0 12.5 25 

 

Eigenvalues and Horn’s parallel analysis 

Horns parallel analysis (HPA), was initially evaluated using Pearson 

correlation coefficients and tetrachoric correlation coefficients. The two performed 

equally in discriminating eigenvalues. To determine the number of factors for the 

unweighted factor models, 50 replications are used in the modified HPA to stay 

consistent with the 50 replications in each cell. Each replication is run on random data 

with the same structure as the data used in the current analysis: 40 items and 500 

simulees in the unweighted model, and the correct proportion when data is weighted.  

Eigenvalues from the appropriate 50 replication HPA will be evaluated using 

this as the cutoff criteria for selecting the number of eigenvalues. Eigenvalues with 
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values greater than their counterparts from the random modified HPA eigenvalues 

will be quantified as being justifiable factor. 

The weighted factor model comparison will have a similar method with the 

additional step of using posterior weights of the unscalable condition,  as is also used 

in the cells weighted condition. The randomly generated data will be estimated using 

the same mixture model used on analyzed data. The posterior proportion for the 

unscalable class will be used as a weight and tetrachoric correlations will be run to 

generate factor models.  

Analyzing the data 

Analysis in the current investigation will address the first two factors unless 

results of the HPA investigation determine indicate inquiry beyond these two factors. 

The initial examination of the conditions will be to determine what proportion of 

times respondents who were generated to have misfit data are judged to be in the 

residual class. Essentially, how well does the mixture model do at categorizing these 

respondents into the unscalable class? Examination of the residuals will be 

comparative to the baseline Rasch model. The average and standard error of correct 

classification of misfit will be compared for each cell to the baseline Rasch model. A 

95% confidence interval will be used. A condition will be determined to be 

categorizing misfitting respondents if the portion of correctly identified misfitting 

data is outside of the 95% confidence interval of the baseline Rasch model average.  

Conditions with residuals that fall outside this value will be explored in 

further analysis when possible. In order to explore the unscalable class weighted data, 
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the residual must be of sufficient size. Practical considerations are considered when 

determining what might make a meaningful residual.  

A practical exploration value of 1.25% is a reasonable guide to consider when 

exploring residuals in the current investigation. In the smallest misclassification 

generating parameters, 5% of the data in 25% of the items is contaminated. Although 

this does not translate directly to the expected size of the residual, it is a good guide in 

the current investigation to suggest a residually weighted dataset that is large enough 

to explore regardless of other concerns with the residual.  

In the current investigation, if a residual value meets or exceeds 1.25% of the 

data it will be considered for further analysis to determine what types of patterns are 

left in the weighted data. This value also includes the residuals for the Rasch only 

baseline conditions should they be 1.25% or larger. This is not the smallest size of 

residuals possible for further analysis in the weighted data, but value for preliminary 

screening to suggest that a residual is large enough to explore.  

Depending on the results of analysis in the baseline condition and what is 

feasible given the analyses to be conducted, a smaller residual value may still be set. 

The residual must be of sufficient size to work with the mechanics of the analysis 

procedures. When analyzing the results, smaller residuals will be explored provided 

they work with the factor analysis procedure and are reasonably larger than the 

baseline Rasch models. Unless baseline Rasch conditions increase greatly, the 

smallest condition explored will be .4%, as it is both feasible for analysis and just 

outside the 2SE band from the Rasch preliminary investigation. 
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Hypotheses surrounding the expectations of the size of the residual are based 

on the manipulated factors and will be evaluated based on the proportionate size 

relative to the percent contaminated condition. 

1. It is expected that the proportionate residual size will: 

a. Increase as the percent of contamination generated into the data 

decreases 

b. Increase as the contaminated subtest range increases from +/-2 to +/-6 

c. Increase as the contaminated subtest size increases from 10 to 20 items 

d. Be larger for the systematic contamination conditions when compared 

to the random contamination conditions. 

The residual weights will then be used to reweigh the data into three separate 

datasets. The first is the unweighted initial dataset, and no weight is applied. The 

second uses the weighted fit portion of the data to proportionately create a new 

dataset that removes unscalable effects, and theoretically increases the Rasch 

proportion of the data. The third dataset is weighted with the residual data and is the 

proportion of data categorized into the unscalable class for that replication. These 

three datasets,--unweighted, Rasch weighted, and unscaled--will be used in the next 

set of analysis.  

In evaluating the patterns within the factors,  all Rasch generated cells with no 

contamination will serve as a baseline. This uncontaminated Rasch generated 

condition is generated with patterns that would be expected for the model. There is a 

second factor of contamination being introduced in the reverse effect condition.  

When that factor is systematic variation, it should manifest in the unweighted factor 
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analysis and have a stronger secondary factor than when no systematic variation is 

present in the uncontaminated condition. The patterns in the uncontaminated 

condition will load heavily on the first factor. The second factor in this unweighted 

condition will be the best of what is left over when the first factor is removed. The 

contaminated second factor should be greater than those in the uncontaminated 

baseline second factor and the patterns within that factor should also be large on 

average in an absolute sense. On average, the patterns in the second factor in the 

contaminated conditions should be significantly greater than the patterns in the 

uncontaminated condition for the unweighted factor analysis.  

There are several hypotheses to test surrounding the expectation of the 

number of factors in the data. HPA will be used as a threshold to determine the 

number of factors for all hypotheses regarding the number of factors in a given 

condition.  

2. In the eight Rasch only generated baseline conditions, one factor will be 

present in the unweighted data. 

3. All other 64 systematic or random contamination conditions will have present 

a second factor in the data for all unweighted datasets.  

An exploratory factor analysis (EFA) model will be estimated on the 

unweighted data. The eigenvalues will be compared to a Horn’s parallel analysis to 

determine the number of factors in the unweighted data. It is expected that models 

conforming to the Rasch model will have one factor, and that models with 

contamination will have two factors in the unweighted data. The two factors in the 

contaminated condition are expected to be enhanced when the data is reweighted. 
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EFA will be conducted for the two remaining weighted datasets, Rasch and 

unscalable data, to determine if significant patterns exist in a given cell and to 

evaluate eigenvalues.  The eigenvalues will first be examined prior to exploring the 

loadings of the two weighted datasets.  

The Rasch weighted data is examined for expected eigenvalues patterns. In 

general, it is expected that the Rasch weighted data will have more clearly one 

dominant factor compared to the unweighted data. This is because some of the 

systematic and random fluctuation from the unscalable class should be reduced. 

Furthermore, this will interact with the proportion correctly into Rasch and unscalable 

classes such that the greater the proportion of contaminated data correctly classified, 

the smaller the secondary factor should be proportionate to the unweighted data.  It 

also should be easier to extract information that is systematic instead of random. The 

related hypothesis surrounding the Rasch weighted data are thus as follows: 

4. On average, in the Rasch weighted there will be fewer factors extracted from 

the data when compared to the unweighted data.  

The eigenvalues of the unscalable weighted data are also examined. The residual 

data should reweight the data such that Rasch effects are reduced in factor 

exploration. One important question with regards to the contamination in the data is 

as follows: can the contamination still be detected, or are the remaining factors no 

better than what would occur by random chance alone? The unscalable weighted data 

will have a different proportion of Rasch versus contamination.  

The unscalable weighted data should have a reduced Rasch factor and an 

increased random or systematic factor. The related hypotheses surrounding the 
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residually weighted data are as follows and assume the residual is large enough, over 

.4 to be used in analysis: 

5. On average it is expected that the systematically contaminated conditions will 

have more factors than the random contamination conditions when the 

residual is detectable. 

a. When factors are found for the systematically contaminated conditions 

there will be two factors: one Rasch and one Reversed Rasch 

b. When factors are found for the random contaminated conditions there 

will be only one factor in the data which is a suppressed Rasch factor. 

MANOVA 

The patterns of the factor models will be compared first using a MANOVA or 

Hotelling’s T-test to examine the multivariate differnec between the Rasch weighted 

data and the residually weighted data across all items on the exam. The structures of 

factor patterns will be evaluated using the all Rasch generating conditions as the 

baseline. The Rasch condition will serve as a baseline under the assumption that the 

data is generated to fit the Rasch model and only random fluctuation from the Rasch 

model will occur in these generated conditions. The posterior weights for the 

unscalable condition should have no substantial meaning in terms of modeling 

contamination, as only random variation lead to its categorization in the unscalable 

class.  

The baseline Rasch has 8 cell conditions: The four scaling factor conditions 

interacting with the two subtest sizes; the three baseline factor models derived from 

these Rasch conditions that will not use the posterior residual, as this would be too 
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small and not comparative; instead a random assignment of respondents to one of the 

two classes will be used to split the data and determine if the MANOVA structure is 

significant as a baseline. The data will be randomly weighted in each cell with 4 

different weight sets as appropriate for comparison: .5  represents 250 Rasch 250 

unscalable, .8 represents 400 Rasch, 100 unscalable, .95 represent 475 Rasch and 25 

unscalable, and .97 485 Rasch and 15 unscalable. This represent the 3 generated 

contaminated conditions of .05, .8 and .95 as well as a smaller 3% condition (15 

respondents) condition for the expected residuals around 2%-4% as found in some 

preliminary analysis.  

In order to conduct the MANOVA, the two weighted factor models for the all 

Rasch weighted data and for the unscalable weighted data will be used. The factor 

patterns from the first two factors will be used in conducting two MANOVAs, one on 

factor one, and a second on factor two. In a multivariate analysis the two sets of 

patterns, one from the Rasch weighted data and the other from the unscalable data, 

will be compared to determine if they are different. In the first MANOVA Factor one, 

patterns for all items will be used as the dependent variables. The independent 

variable is the Rasch weighted factor patterns compared to the unscalable weighted 

factor patterns. The second MANOVA will follow the same method but use factor 

two for both Rasch and unscalable patterns.  

These models are all expected to come up as not significant. The same logic 

for the baseline will be used for the other conditions except the splitting of the data 

will be the posterior classification of class membership. 
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In all other cells having contamination, the two weighted patterns for the 

Rasch factor model and unscalable factor model will be compared. A MANOVA will 

be conducted comparing the matrix of patterns across all items as the dependent 

measures. The Rasch factor patterns and unscalable factor patters are the independent 

measure, just as in the baseline condition. The sample sizes will be equal in all cases 

even though factor models are estimated using a different proportion of respondents. 

If the multivariate model is different, it will be a statement that there is a difference in 

the dimensional space of patterns between the two sets of patterns. This analysis will 

only be conducted for the first two factors within each cell. 

The results of the Wilks’ lambda F value for each condition will be compared 

to the baseline F value in the Rasch conditions. For comparison reasons, any 

MANOVA F value that is not over the Rasch Baseline value, regardless of 

significance will not be considered a large enough effect. The F value of the baseline 

model will be the comparison value of interest.  

Instead of relying just on significance and one F value, 100 MANOVAs will 

be used and a mean F and SE will be derived. F values outside of 2SE will be 

identified in a results table. 

The hypotheses surrounding the comparison of patterns between Rasch 

weighted and residually weighted data involve the manipulated factors in the current 

research.  

6. Through the use of MANOVA it is expected that when residual misfit is 

extracted there will be a significant difference between the Rasch weighted 

patterns and residually weighted patterns in the first and second factors.  
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a. It is expected that differences will be more detectable when the 

contamination is stronger. Specifically, stronger contamination is 

measured by: an increase in scaling factor in the contaminated subtest 

and an increase in the number of items from 10 to 20 items. 

b. It is expected that as the proportion of contamination increases, less 

residual effects will be significant. The contamination will overwhelm 

the data in both the residual and Rasch conditions and cancel out 

differences between the two weighted datasets. 

Continued investigation: MANOVA and Confidence Intervals to support visual 

graphs  

Once it is determined that  the proportion in the residual is large enough to 

explore for a given cell, and that the multidimensional structure has been investigated, 

the individual differences will then be examined.  Each pattern will be examined to 

determine if the unscalable pattern is different than the Rasch pattern. This will be 

done using confidence intervals. The overall goal is not to be able to speak to each of 

the 40 individual differences between patterns per cell, but to lend support when 

necessary to the graphical models used to visualize differences between the overall 

patterns in the weighted datasets. Furthermore differences clarified by CI and 

graphical representation will help to articulate where separation occurred in the 40 

dimensional multivariate model used in MANOVA.  

In the residual dataset, the data is weighted to maximize unscalable data. This 

approach should have the effect of reducing the Rasch factor from the unweighted 

dataset and leaving more of the secondary factors from the unweighted dataset. The 
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Rasch weighted data should have the contrary effect of reducing the contamination 

and clarifying the Rasch factor. In comparing the two sets of patterns from the Rasch 

weighted data and the residual weighted data several patterns should be apparent. 

There is expected to be differences in both random and reversed contamination 

conditions but for different reasons. It is expected that random conditions will have 

suppressed weak patterns while the reversed condition will have strong patterns in a 

different structure than the Rasch weighted data. The hypotheses about the difference 

in patterns stated above will be investigated through the use of CI, graphs and Wilks’ 

lambda. 

7. When the Rasch only, baseline data are randomly split, there should be no 

visible difference between the two sets of patterns for the first or second 

factor. 

8. In the random contamination conditions, the residually weighted dataset 

should have suppressed patterns for the first and second factor. The Rasch 

weighted data should still have strong Rasch patterns. The differences should 

be captured, with CI differences attributed to residual weighted values close to 

0 and Rasch weighted data following Rasch type patterns. These differences 

should be apparent in graphs comparing the two weighted datasets The Wilks’  

lambda should be significant and larger than the baseline F. 

9. In the reversed contamination condition, the residually weighted dataset 

should have strong patterns similar to Rasch weighted data but in a different 

graphic structure for both the first and second factor. The differences should 

be captured with CI differences attributed to the differences in patterns 
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particularly in the contaminated subtest. The Wilks’ lambda should be 

significant and larger than the baseline F. 

Examining the residual patterns of subtests 

Finally, the patterns will be examined by groups of like items. Within each subtest, 

items with the same difficulty base value, +2, +1, 0, -1, -2 will be averaged and the 

patterns will be examined. Each cell will have five averaged patterns in subtest one 

compared to five average patterns in subtest two. Descriptive comparison through 

graphical representation is the primary form of comparison. The all Rasch condition 

will be used as a baseline condition.  

There are several hypotheses to test surrounding the expectation of the patterns. 

10. It is expected that the subtest in the Rasch baseline conditions will look like 

the remainder of the exam. Both subtests will have Rasch patterns 

11. In the random condition it is expected that the contaminated subtest will have 

significantly smaller pattern values, close to zero, than the all Rasch subtest. 

12. It is expected that patterns in the reverse effect condition should show a 

reversed pattern in the subtests which becomes more prominent as the strength 

of the effect increases. 
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Chapter 4: Preliminary Investigations into Model Justification  

Logic of preliminary investigation 

The test was comprised of forty items, with a base range in difficulty values of 

±2 This size and range was selected after an extensive literature review. All of the 

analysis at this stage of investigation was initially evaluated using a 20 item model 

with a test range of +1 to - 1.  The 20 item analysis was used as guidance in 

structuring the current method in this preliminary analysis and a baseline for expected 

times for cycles. It is important to reevaluate the model under the 40 item condition to 

substantiate a good model.  

The base condition to be evaluated for the simulated test is forty items with a 

range of +/-2. The test has two subsections: (a) 30 item difficulties all generated as 

Rasch and (b) 10 items with varying degrees of contamination. This test is identical to 

the model test that will be used in the final analysis. In the current investigation, five 

individual datasets are reviewed to explore the robustness of conditions and help 

provide a rational for burn-in cycles, estimation cycles, sample size, effect size and 

finally number of replications. The investigation process is not intended to 

exhaustively explore all possible conditions but instead to iteratively select a high-

quality model from amongst reasonable models to be used in the final analysis. 

The initial burn-in and estimation cycles are examined using a sample size of 

500 simulees. The foci of the study of the number of burn-in cycles are to first insure 

sufficient cycles are removed and that the remaining data are stable. Once the burn-in 

condition is set, the estimation cycles will beare evaluated to determine if 2500, 5000 
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or 7500 cycles are used in the final simulation. When the model has a stable number 

of cycles for burn-in and estimation cycles, the sample size is examined further to 

determine if 500 is a reasonable sample size that reproduces expected parameters by 

comparing it to sample sizes of 100 and 2000. Finally, the effects of reversing the 

Rasch model are examined. 

The preliminary investigation has several phases that are based on issues of 

correct technique from the method section in chapter three. In the first phase of 

investigation, a rationale is demonstrated for selection of the number of burn-in 

cycles and estimation cycles along with a brief review of priors. This first step in this 

investigation is necessary to be confident in the accurate estimation of the Bayesian 

mixture model. The criteria for selection of burn-in cycles and estimation cycles are 

balanced between two main factors, accuracy and overall estimation time. The 

Gelman-Rubin statistic, cycle history and density plots are used to select accuracy 

level for burn in criteria. The Gelman- Rubin statistic must approach the value of 

1.05, the history must show convergence of the three disperse chains, and finally, the 

density plot for the three chains must overlap and begin to look like one distribution 

instead of three.  

The second criterion is parsimony. In most cases, for accuracy, more is better: 

the more cycles used, the more accurate the outcome. However, the model could be 

run into infinity, or at least until the computer stops running. The lowest number of 

burn-in and estimation cycles are used to meet the criteria set for convergence across 

five datasets. In addition to the convergence criteria, reproduction of the difficulty 

parameters is examined. The parameters should be reasonably close to the generating 
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parameters when the Rasch model is expected to fit the data. In selecting a larger 

cycle size over a smaller size, the difficulty parameters will show change greater than 

expected by chance.     

Once the burn-in and estimation cycles are set, the sample size is adjusted to 

see if it would be reasonable to lower the sample size or if it needs to be increased. 

Samples sizes of 100, 500 and 2000 are evaluated.  

The next phase uses the selected burn-in, estimation cycles, and sample size 

from the first phase to investigate cells from study and determine the final simulation 

design and analysis plan using the trial cells from this second Stage of investigation. 

The all-Rasch generated model is used in the main analysis as a baseline condition  

while the data is generated to fit the Rasch model. It is expected that if a sufficient 

effect in the contamination condition occurs there should be some difference in the 

amount of contamination. 

Burn-in and Estimation Cycle Investigation: Preliminary cycle investigation 

In order to begin running the full scale simulation using MCMC estimation in 

Winbugs, preliminary investigations of parameters were conducted to present 

evidence that parameters are being estimated with the correct number of burn-in and 

estimation cycles with a reasonable number sample size. The Gelman-Rubin 

(modified by Brooks & Gelman (1998)) statistic in Winbugs (Spiegelhalter et. al., 

2003), is used to examine burn-in cycles. In addition, statistics of posterior 

parameters, history of cycles and densities of the posterior data are examined under 

several conditions to add evidence and cover the rational for selecting the number of 
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burn in cycles and adequate estimation cycles computed per replication in the final 

simulation analysis. 

Four datasets were examined to be falling under differing conditions within 

the main simulation study. The intention here is not a comprehensive examination of 

all datasets in the analysis, which will occur during the main investigation, but an 

exploration of a sub-sampling of datasets from different conditions to justify cycles 

for use in the main investigation, as well as to provide some additional evidence that 

the model being used is a reasonable model.   

Limiting the burn-in cycle 

This initial exploration at this stage of the investigation is to  provide practical 

limitations for the second stage of the burn-in and estimation cycle study. Extreme 

burn-in cycles such as 50 or 8000 are examined alongside of several reasonable 

conditions to insure thorough review of limits on the size conditions in the second 

stage of the burn-in cycles are apparent. The conditions of 50 and 8000 burn-in cycles 

are principally for comparison purposes in the first stage of investigation to the more 

practical conditions between 250 and 4000, and are expected to be the boundaries 

considered extreme conditions of very poor estimation at 50 and loss of efficiency at 

8000. This groundwork also provides some examination of the estimation cycles, and 

if it is worth examining, small estimation cycles in the next stage. The estimation 

sample size of 50 is useful in investigating initial estimation densities, history and 

summary statistics, but not for the Gelman-Rubin statistic which was investigated 

under the 500 burn-in cycle condition. Before running a full scale MCMC simulation, 

it is essential in preliminary investigations to consider good estimation along with 
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prudence of cycles. The goals of the first stage of the investigation were to narrow 

down the number of burn-in conditions to those that showed good quality 

convergence in the initial data and to determine if any could be eliminated for the 

second stage of investigation as superfluous.  

Manipulated Factors 

In the first stage of this part of the investigation, burn-in is initially examined 

in only one of five of the datasets under consideration.  Two estimation conditions, 50 

and 500 cycles are run past the initial burn-in cycles to determine which number of 

iterations for burn-in cycles would be worth further investigation in the other four 

datasets. Initially 50, 250, 500, 1000, 2000, 4000, and 8000 burn-in iterations were 

examined for a total of seven burn-in conditions. This initial study covers fourteen 

conditions, seven burn-in cycle conditions by two estimation conditions. The purpose 

here is simply to remove the extreme conditions of burn-in cycles, should they not 

meet the accuracy criteria or are unnecessarily time intensive. 

Initial Data Structure and Model 

The factors from the main analysis for which this dataset falls under in the 

first stage of investigation are a Mixture of Rasch and unscalable data. A total of 40 

items were used as the test structure and 500 respondents were simulated. The initial 

250 response in the dataset are simulated as Rasch with N(0,1) with the remaining 

250 response are a mixture of 75%  Rasch N(0,1) and 25% guessing or unscalable 

with P=.25. The data was analyzed in Winbugs. 
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Winbugs Model: 

Model 
{ 
for( j in 1 : N ) { 
for( k in 1 : I ) { 
p1[j,k] <- exp(theta[j]-b[k,class[1]])/(1+exp(theta[j]-b[k,class[1]])) 
p2[j,k] <- 0.25 
p[j,k] <- p2[j,k]*prop1[j]+p1[j,k]*(1-prop1[j]) 
r[j,k] ~ dbern(p[j , k]) 
} 
} 
for( k in 1 : I ) { 
for( c in 1 : 1 ) { 
b[k , c] ~ dnorm( 0.0,0.25) 
} 
} 
for( j in 1 : N ) { 
theta[j] ~ dnorm( 0.0,tau) 
class[j] ~ dcat(pi[]) 
prop1[j] <- class[j] - 1 
} 
pi[1:G] ~ ddirch(alpha[]) 
tau ~ dgamma( 0.5,1) 

} 
Three chains were run with every analysis used in the preliminary investigation. The 

starting values were set to be dispersed with convergence being examined with the 

Gelman-Rubin statistic as suggested for use in Winbugs. Class mixing proportions 

were intentionally set to have diverse starting points (.9,.1), (.5,.5), and (.1,.9), while 

the remainder of starting values were permitted to be generated by Winbugs. In 

addition to reviewing the model with the Gelman-Rubin statistic, the summary 

statistics, history and density of each analysis were investigated to assist in 

determining the best number of burn-in cycles to investigate in other datasets for the 

next stage of investigation.  

Results for limiting burn-in cycle 

The value for the Gelman-Rubin statistic suggested to be good is below 1.05. 

The two smaller conditions of 50 and 250 burn-in cycles are examined here. The 

Gelman-Rubin statistic initial value changed within the burn-in cycle condition of 50, 

from a range of 5 to 100 for item difficulties with the occasional extreme value 
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spiking to 200 in ability estimations In the 250 burn-in cycle condition, more stable 

estimation were revealed with ranges of approximately 1 to 3, with ability estimates 

spiking to no more than values in the twenties. However, both of these conditions are 

eliminated from further consideration as they do not fall with-in reasonable values for 

the Gelman-Rubin statistic. 

Figures 4-1: Examples of Gelman-Rubin graph for 50 and 250 burn-in cycles of item 

difficulty 1 
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All other conditions 500 through 8000 have very similar Gelman-Rubin statistics and 

are considered to have met the criteria of accuracy for further investigation. 

Figures 4-2: Examples of Gelman-Rubin graph for 500 and 8000 burn-in cycles of 

item difficulty 1 and 2.  
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Density patterns are similar for all graphs to those displayed below for 

preliminary analysis. The graphs are identified by the number of burn in cycles and 

estimation cycles. The 50 and 250 conditions are not under commiseration after 

evaluation of the Gelman-Rubin statistic and Graph 6-7 shows and example of poor 

convergence in a density plot. 

Figure 4-3: Poor convergence density plot 
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The 500 burn in condition for 50 estimation cycles is the first visual smoothing of a 

distribution and by 500 estimation cycles the density plot is not distinguishable from 

the 8000 burn-in cycle condition 

Figure 4-4: 500 burn-in 50 estimation cycles per chain. 
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Figure 4-5: 500 burn-in 500 estimation cycles per chain. 
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Figure 4-6: 8000 burn-in 50 estimation cycles per chain 
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Figure 4-7: 8000 burn-in 500 estimation cycles per chain 
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Using the 500 burn-in condition shows cycles form this burn-in estimation 

have the chains converging, which does not occur in the earlier conditions. 

 500 burn-in, 500 estimation: The conditions greater than 500 of 1000, 2000, 4000 

and 8,000 simply add support to the chains converging prior to 500 cycles. 
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Figure 4-8: Three chain convergence for item difficulty 
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Figure 4-9: Three chain convergence for class  
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Figure 4-10: Three chain convergence for Theta  
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Decisions for next stage of analysis 

The conditions of 50 and 250 burn-in cycles for both levels of estimation 

cycles, 50 and 500, were considered unsatisfactory for further investigation in the 

next stage of the study but were examined thoroughly in the first stage to assist the 

overall goal of quality estimation. The 8000 burn-in cycle condition was also not 
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considered useful in further investigation after the examining the preliminary dataset 

because it yielded no distinguished improvement in Gelman-Rubin statistics even 

when compared with the modest 500 burn-in condition. The history convergence and 

density plots also did not show any reason to keep it over other more concise 

conditions. The removal of the 8000 cycle conditions reflects the undesirability of 

using extreme burn-in when unnecessary for large scale simulations.  

The 50 and 250 burn-in cycle conditions served as a baseline for unwanted 

Gelman-Rubin statistics, providing visual example of what is not desirable for this 

model. These two conditions displayed statistics that did not level off or come near to 

the value of 1.05. The Gelman-Rubin statistic was greatly increased in the two 

conditions than in other conditions, noticeably the 50 cycle condition to the 250 burn-

in cycle condition was a large jump toward a good convergence. This change from 50 

to 250 burn-in cycles represents a marked improvement, but remains unsatisfactory 

for the next stage of investigation. 

All other conditions for further consideration in the first stage of analysis are 

so similar to the most extreme and time consuming condition of 8000 burn-in cycles 

that it will not be considered further in the second stage of investigation--unless the 

Gelman-Rubin statistics indicate in the other burn-in conditions that the more cycles 

are needed and this condition needs to be reinvestigated. It is considered from 

preliminary results that 500 estimation cycles used to estimate the Gelman-Rubin 

statistics in the current stage of investigation should be increased to provide more 

stable conditions in the estimation cycles. 
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The investigation of the density for these conditions was also informative in 

helping to provide further evidence for the selection of the number of burn-in cycles, 

as well as total estimation cycles. Despite the extremely low number of replications of 

50 burn-in cycles, the density never fully overlaps in the estimation cycle examples 

provided. Moving up the number of burn-in iterations to the 250 condition the density 

already displayed some overlapping in the chains, even when only 50 estimation 

cycles are examined though not condensed enough to be used in further analysis. 

Showing the density with low frequency, as in the first 50 cycles, show estimation 

cycles that have high disturbance. The history of cycles shows three chains are easy 

to distinguish in the 50 burn-in condition regardless of the number of estimations 

afterward, while in the 500 burn-in cycles with 500 replications start to produce a 

useful mix of chains. The exploration of the densities support the Gelman-Rubin 

statistic in that 500 burn-in cycles with 500 estimation cycles look to converge well 

even with dispersed initial values on the three chains.  

The history of the multiple chains shows what is going on in the burn-in 

cycles as well as in the estimation cycles. In order to have thorough exploration of 

values, the history is a tool to provide evidence in evaluating the burn-in cycles, as 

well as what was being kept afterward in the estimation cycles. Throwing out too 

many cycles can be very wasteful, as in the 8000 burn-in case, and overly time-

consuming in simulations. The primary focus of the history review as with the density 

is on the early cycles to estimate good burn-in for the next stage of the investigation. 

It is apparent that for item difficulty and person ability that very little effect 

occurs in the burn-in cycles until somewhere around 400 to 450 cycles are discarded.. 
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This is representative of all item difficulties. Theta and class proportion values 

followed a similar pattern with visual convergence for most ability estimates 

beginning to converge around 350 cycles and the class proportion converging just 

after 400 cycles. 

The history also indicates evidence of support for the Gelman-Rubin statistic 

as very little if any improvement is seen after 450 or so estimations are used as burn-

in. The conclusion from the history graphs support a 500 burn-in cycle stage for the 

next leg of investigation. 

Burn-in and estimation cycle selection 

In this stage of analysis, four datasets were analyzed including the dataset 

under from stage one of the burn-in and estimation cycle investigation. Both the 

estimation cycles and the burn-in cycles are explored here. Four burn-in conditions 

and 3 estimation cycle conditions are further investigated. The burn-in cycle values 

from the first stage have been narrowed down to 500, 1000, 2000, and 4000. 2500, 

5000, and 7500 estimation cycles are scrutinized to choose a relatively fast 

convergence that still yields high-accuracy estimation. The Gelman-Rubin statistic, 

history and density plots are explored for all four datasets under all 12 conditions.  

These four datasets are used as a sampling of datasets from the final set of 

cells for analysis without having to test each cell. The sample size for this portion of 

the analysis is limited to 500, but is explored further to ensure a reasonable sample 

size. The datasets explored: 

Dataset 1 is generated to conform to the Rasch model with Theta values of N(0,1) 
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Dataset 2 is a mixture of Rasch and random data. Replication’s 1 through 250 are 

generated to conform to the Rasch model and have Theta N(0,1). Replication’s 251 

through 500 are generated as a mixture with Rasch Theta N(0,1) for the first 30 items 

and randomly generated response for the remaining 10 items. 

Dataset 3 is a mixture of Rasch and random data for all replications. Replication’s 1 

through 500 are generated as a mixture with Rasch Theta N(0,1) for the first 30 items 

and randomly generated response for the remaining 10 items. 

Dataset 4 is a mixture of Rasch and reverse Rasch. Replication’s 1 through 250 are 

generated to conform to the Rasch model and have Theta N(0,1). Replication’s 251 

through 500 are generated as a mixture with Rasch Theta N(0,1) for the first 30 items. 

The final 10 items are generated to have the reverse Rasch 

Evaluation of accuracy for burn-in cycles 

The Gelman-Rubin statistics for all conditions are examined. All Gelman-

Rubin statistics for the data conditions are similar and meet the 1.05 criteria for all 

parameters of difficulty theta and class proportion. In addition to the Gelman-Rubin 

statistic, the generated conditions of Rasch and the random responses mixed with 

Rasch meet all criteria for evaluation of history of estimation cycles and density plot 

convergence.  

These results for the worst of the divergent Gelman-Rubin statistic are 

displayed here and the improvement is displayed in the 1000 and 2000 burn-in cycle 

conditions. 
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Figure 4-11: 500 burn-in cycles condition 
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Figure 4-12: 1000 burn-in cycle condition 
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Figure 4-13: 2000 burn-in cycle condition 

b[1,1] chains 1:3

start-iteration
2051 2500 3000

    0.0
    0.5
    1.0
    1.5

 

b[26,1] chains 1:3

start-iteration
2051 2500 3000

    0.0
    0.5
    1.0
    1.5

 

In supporting the Gelman-Rubin statistic the history of cycles Figure 4-14, shows 

convergence in all parameters prior to 1000 cycles.  

Figure 4-14: Three chain convergence for multiple item difficulties 
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The ability and class parameters follow the same pattern as the difficulty parameters 

displayed above. The following in Figures 4-15 and 4-16 show the improvement from 

500 burn-in cycles to 1000 burn-in cycles for a theta example and class proportion 

examples. 

Figure 4-15: Improvement in Theta from 500 to 1000 burn-in cycles 

theta[250] chains 1:3

start-iteration
551 1000 1500

    0.0
    0.5
    1.0
    1.5
    2.0

 

theta[250] chains 1:3

start-iteration
1051 1500 2000

    0.0
    0.5
    1.0
    1.5

 

Figure 4-16: Improvement in class proportion from 500 to 1000 burn-in cycles 
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Final burn-in selection 

The 1000, 2000 and 4000 burn-in conditions seem sufficiently well behaved for all 

parameters.  Considering parsimony, the 4000 burn-in cycle case is ruled out of 

selection. This case adds a few thousand wasted cycles being thrown out without 
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justification. The number of estimation cycles beyond 2500 does not change the 

conclusion that 1000 burn-in cycles would probably be likely to be acceptable. There 

are additional considerations besides the empirical evidence for selection. The default 

in Winbugs for the adaptive burn-in stage is 2000 cycles. This is commonly used as 

the number of cycles thrown out in a given analysis by default. The datasets are 

representative of the datasets to be used in the final research; however, they do not 

cover all cell conditions.  Also, effect sizes may be implemented that are stronger 

than those presented here. Regardless, the conservative selection is to choose the 

2000 burn-in condition. In further preliminary analysis, the cycles are checked to 

make sure they still hold up to inspection. 

Selection of estimation cycle size 

 The selection focus for estimation cycle selection is different than the burn in 

cycles from the previous section. The 2000 burn-in cycle condition has been chosen 

for accuracy using the Gelman-Rubin statistic and supporting graphical evidence, 

under several data conditions. All three estimation conditions were tested: 2500, 5000 

and 7500. The criteria for estimation cycle selection are accurate reproduction of 

parameters in posterior statistics and an evaluation of those differences in parameters 

given the size of the cycle. The goal here is to choose estimation size that accurately 

but prudently yields good estimation. Reproduction of parameters should occur when 

it is expected, such as in the Rasch-only condition. Parameters will also be examined 

and selected on the basis of the difference between the parameters given the 

estimation cycle size. All things being equal, the 7500 condition is run twice and used 

as the baseline for differences in parameters.  
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Statistics for Rasch only condition 

Inspection of the Rasch condition and expected replication of parameters is 

examined using the posterior means of the data. The posterior means are compared to 

the generating parameters for item difficulties to show how closely parameters are 

being reproduced in each condition. 

When looking across all item difficulties, the absolute average difference 

remains the same for all three conditions with a mean of .102. The average MC error 

is also very low for all conditions of the Rasch generated data: 2500 cycles = .043, 

5000. The difference in theta value between 7500 cycles and 2500 cycles is .002. The 

difference between the 7500 and 5000 cycles case is .0003. The class proportion 

difference amongst all groups is .0001. These values are effectively the same under 

the Rasch condition. When estimating the parameters a second time using the same 

data, the difference between theta values is .0004 slightly greater than the difference 

between the 5000 and 7500 cycle condition. The proportion was estimated to be the 

same to the 6th digit. 

Statistics for the remaining datasets 

The remaining datasets are evaluated and described earlier in the burn-in and 

estimation cycle selection. Table 4-1 contains three comparisons of item difficulties. 

The first comparison is a Rasch generated dataset estimated twice. The second data 

comparison is of Rasch generated data compared to a mixture of Rasch and random 

data with 50% Rasch 50% contaminated data. The third data comparison is of Rasch 

generated data compared to a mixture of Rasch and random with 100% 

contamination.  

 80 
 



 

Table 4-1: Comparisons of difficulty differences   

 

Repeated 
Rasch 
N(0,1) 

Half Rasch 
Random  

Full 
Random 

b[1,1] 0.001 0.005 0.005
b[2,1] 0.0076 0 0.007
b[3,1] 0.0051 0.002 0.0106
b[4,1] 0.0047 0 0.0114
b[5,1] 0.0063 0.002 0.0084
b[6,1] 0.0062 0.0005 0.0023
b[7,1] 0.0023 0.0033 0.0068
b[8,1] 0.0056 0.0008 0.0085
b[9,1] 0.0022 0.005 0.0081
b[10,1] 0.0007 0.0026 0.0001
b[11,1] 0.0014 0.0017 0.0015
b[12,1] 0.0008 0.0022 0.0061
b[13,1] 0.0069 0.0001 0.0039
b[14,1] 0.00213 0.00079 0.0044
b[15,1] 0.0042 0.00005 0.0013
b[16,1] 0.00173 0.0053 0.0065
b[17,1] 0.0021 0.0026 0.0024
b[18,1] 0.0033 0.0032 0.0026
b[19,1] 0.0018 0.003 0.0047
b[20,1] 0.0048 0.00214 0.0023
Mean 
difference 0.003543 0.002114 0.005195

 

Less stable parameters such as person ability are examined in table 4-2 using 

average absolute value differences.  

Table 4-2: Comparisons of ability parameters   

 

Repeated, same 
condition  
2000 burn-in   
7500 estimation 
cycles 

2000 burn-in  
7500 estimation 
cycles compared to 
2000 burn-in 2500 
estimation cycles 

2000 burn-in  
7500 estimation cycles 
compared to 
2000 burn-in 5000 
estimation cycles  

Average Theta 
difference 0.010221 0.014425 0.011574

 

Final Conclusions of Burn-in and Estimation Cycle preliminary study 

In the most volatile of datasets the model is being judged on the behavior of 

the worst Gelman-Rubin statistics. The Gelman-Rubin statistics found in the 1000 
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conditions on average looked relatively stable for the five datasets examined.  The 

1000 burn-in cycle condition, a reasonable candidate for selection based solely on 

empirical evidence of the five dataset, could have been a reasonable selection.  The 

2000 burn-in condition was selected when considering unexamined datasets and 

possibly more extreme effect sizes that could require more cycles to become stable. 

As stated earlier, Winbugs also uses the 2000 cycles as the adaptive stage as default.  

The overall class proportion parameter ‘pi’ and the individual class parameter 

‘class’ converge rapidly over conditions examined. The Gelman-Rubin statistic for Pi 

can be calculated for each dataset and is very stable. In the example above the history 

clearly shows stability in small overall fluctuations in class proportion, SD of .014. 

The Gelman-Rubin statistic for the individual class parameter can not be calculated 

for each respondent in a dataset. There is, more often than not, nothing to calculate. If 

all chains converge to consistently place a condition in the Rasch class there is no 

variability to be had for the statistic. There is nothing to converge, as it is effectively a 

constant, and all chains and all replications are falling in the same class, nearly 

always Rasch. In some replications such as 214 and 313 there is enough mixing of the 

two classes in that instance that convergence can be calculated and graphed, allowing 

the Gelman-Rubin statistic to be calculated. The quick convergence and stability in 

the two types of class parameters makes them far less interesting for investigating the 

data for irregularity. However, they are of interest concerning the overall issue of 

convergence of the model and essential to the overall investigation.  

 When examining the summary statistics for item difficulty and person ability 

under the condition of replications for 4000 burn-in cycles and 7500 estimation 
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cycles, one dataset run twice, and there is a fluctuation in parameters with an average 

parameter difference of .00354 in this repeated Rasch condition.  The condition of 

2000 burn-in cycles and 5000 estimation cycles differs no more than is reasonable, 

with an average deviation of .00362, compared to the repeated Rasch condition of 

.00354. This difference provides some support for the selection of the 2000 burn-in 

5000 estimation cycles condition for use in the full scale analysis. In general, most 

conditions have some minor discrepancy between 2500 and 75000 estimation cycles, 

but appear to be no more than the difference seen in Rasch under two runs of the 

same data. Person ability differs no more than is visible in the repeated analysis. 

The value added in being able to use less burn-in estimations is important 

when considering estimation time is cut significantly when 500 burn-in cycles is used 

with 2500 estimation cycles. Unfortunately the statistics and visual inspection does 

not warrant this decision. The decision to go with more burn-in and estimation cycles, 

as would seem advisable from inspection, leads the way to more stable and accurate 

parameter estimates. Estimation precision is also balanced with unnecessary 

discarding useful estimations cycles leading to 2000 burn-in cycles being chosen over 

4000. 1000 burn-in cycles might be considered sufficient if the tested datasets were 

the only data in consideration and were certain to span the entire study. Rather, it is 

understood that using 2000 burn-in cycles should be robust to account for other 

dataset conversion issues without grossly throwing out useful estimation cycles and 

without having to test every cell which would be an entire research venture in and of 

itself. 5000 estimation cycles, even under the worst of conditions, reproduces results 
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that are no more biased then rerunning the best of conditions, the 7500 cycles, and 

comparing the two groups.  

The results of the preliminary investigation indicate reasonable reproduction 

of parameters such as person ability and item difficulty and it can be inferred that 

they should reproduce to the original generating parameters. A more thorough 

investigation of parameter estimation is carried out in the primary investigation. 

Test Range 

The preliminary investigation permitted a chance to examine the test to be 

used in the simulation as well as priors set on the distributions of the mixture model. 

As discussed earlier in the literature review, the test ranging from +2 to -2 item 

difficulties seems to be producing desired results and is in accordance with ranges 

found more commonly in practice. The explored parameters in the preliminary 

investigation reproduce generating parameters. 

Priors 

The choice to have a non-informative prior is intentional in that the research 

will be testing variety of contaminations to the Rasch model. One of the goals of the 

current investigation is to determine if one static model with one set of parameters for 

item difficulties and mixing parameters will find contamination of a variety of types. 

In future investigations this assumption may change as other researchers use 

alternative hypothesis underlying prior information or gain knowledge and insight 

into their populations that is not assumed in the current study.  
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In the current analysis a normal distribution (e.g. Mislevy, 1986) is used for 

the prior of item difficulties. In most uninformed situations the mean of the normal 

for item difficulties is set to 0 and 1 (Zimowski, et al., 2003) is typically used as a 

variance. The normal distributions variances as a weak prior were set to 3 for item 

difficulties by Rupp (2003). The choice of priors does not have a strong effect on the 

parameters as long as the sample size is sufficient. If too strong a prior is placed on a 

small sample size, the item difficulties may drift toward the mean (Rupp 2003). A 

weak prior shown to be empirically stable in reproducing item difficulties from this 

preliminary analysis is used with a normal distribution with mean of 0 and variance of 

4 as the item difficulties in some conditions are  very disperse. In the full 

investigation a scaling condition yields item difficulties as large as ±6 which 

wererecovered well under the prior N (0, 4).  

Priors are tested under conditions containing 500 and 2000 burn-in cycles by 

2500 and 5000 estimation cycles. When the item difficulty prior was changed from 

N(0, .25) to N(0, .05), no change in difficulty parameters were noticeable in the first 

two decimal places. (Note: WinBugs characterizes the normal distribution in terms of 

mean and precision rather than mean and variance, so N(0, .25) is a normal 

distribution with mean 0 and variance = 1/dispersion = 1/.25 = 4.) 

However when the Dirichlet prior on class proportion with the vector of 

parameters (labeled as alpha in the Winbugs code shown earlier) was altered, 

comparing values of (10,10), (5,5) and (2,2), it became apparent that the weight of the 

prior was more than expected in the (10,10) condition; that is, as the amount of 

information in the prior increased from (2,2) to (10,10), the size of the unscalable 
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class increased as shown in the following examples. In the condition of 2000 burn-in 

cycles 5000 estimation cycles that are used in the study, the proportion in the all 

Rasch only class dropped from P= .931 Rasch, P= .069 Random, in the alpha(10,10) 

to P=.975 Rasch P=.025 alpha(2,2). The data is entirely generated to be in the Rasch 

condition. The half unscalable mixing condition from above changed from P=.852 

Rasch, P=.148 Random, in the alpha (10, 10) to P=.892 Rasch P=.108 random with 

alpha (2,2).  Due to a test length of forty items it was expected that most simulees 

would be estimated as being in the Rasch latent class when the data is modeled with 

Rasch only data. It was this researcher’s judgment that nearly 7% of the cases were 

too large a proportion to be in the unscalable class given that the only thing being 

changes was the prior and the test is of a reasonable length, for the following reasons. 

Both of these datasets show change in proportion expected when the prior is relaxed. 

In the Rasch only generated condition, the unscalable class should be very small, 

since all data is simulated to be Rasch with only random variation in the forty items 

giving any class expectancy in the unscalable class. However, for the half mixed 

condition with θ centered at 0, the value for the unscalable class might be as large as 

12.5% or P=.125. This probable value is derived from 50% of the data being 

contaminated in 25% of the items. The general sentiment is that when the data is 

contaminated it is more likely to have a larger proportion in the unscalable class. 

Prior to running the full scale simulation, these results of loosening alpha seem to be 

cautious estimation. The researcher does not want class proportions overwhelmed by 

prior information with loss of reasonable class proportion. The outcome of this 

loosened alpha on class determination seems to improve class proportion expected 
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values but leaves a very small prior of effectively 2 cases (alpha (2, 2)), which seems 

to not greatly impact the model.  

Estimation time 

Finally, it should be noted that time is an important component of any 

simulation study.  The researcher has two fully dedicated machines for simulation. 

The first has a 2.4 Ghz processor with 512 MB of Ram, the second computer is 

specked at Intel Core duo 2.50 GHz with 4 GB of RAM, Initially the model was 

tested on a third computer with an Intel Core duo cpu T7500 @2.20 GHz and 4 GB of 

RAM. Using the current selection of 2000 burn-in cycles, 5000 estimation cycles with 

a sample size of 500 it will take approximate 15 minutes per replication using the 

Core duo computer. It takes almost twice as long on the single processor computers. 

The analysis portion of the data once simulated will take several days to complete, 

about 2 hours per cell, given that 50 replications are run in each cell and tetrachoric 

correlations and FA computations in the full macro takes up real time in simulation. 

With each replication, one cell is now expected to take just under 15 minutes each; 50 

replications per cell will likely take somewhere between 12 hours to complete not 

including Winbugs traps that may occur. It is this researcher’s overall goal to limit the 

replications to a reasonable timeframe. The current investigation proposes 65 cells. In 

preliminary tests on the two dedicated machines, the faster machine is estimated at 

completing a cycle in less than 12 hours with the second computer taking twice as 

long. This number of cells will put the simulation computation time around 32 

computer days on the faster machine; this estimated time does not include Winbugs 
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errors, tetrachoric correlation, factor analysis, graphing or any descriptive analysis 

that will take place. 

Sample size 

Three sample sizes are tested to insure that a reasonable sample size is used, 

which reproduces expected parameters but is not excessively large. In determining the 

sample size, the first criterion is the accurate reproduction of parameters. The item 

difficulty values in each dataset are evaluated compared to generating parameters 

when those values are expected to replicate. This will only be done for the first 30 

items in the dataset except in the entire dataset with Rasch only data where all 40 

items are reviewed. Items are summed in each of the sample size conditions and the 

values compared.  The second criteria to evaluate which sample size to use are time to 

complete estimation. This is a critical balancing point because even though  a larger 

sample size will lead to a more precise measure, in Bayesian estimation the larger 

sample size takes proportionately more time. When examined together, the sample 

size used will accurately produce a model while minimizing the length of time in the 

model.  

The first factor used for evaluating the data is precision. The average 

deviation from the generating parameters in the item difficulties was similar within 

each sample size condition. Across all five datasets, the first 30 item parameters were 

reproduced with reasonable accuracy.  The average for all five datasets difficulty 

values, as well as the standard error of the mean for the five datasets is reported in 

Table 4-3.  
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Table 4-3: Average and S.E for difficulty values 

Sample 
Size 100 500 2000
Mean  -0.225 -0.0776 -0.066
S.E. 0.084 0.0286 0.0244

 

Improvement in the accuracy toward reproducing the generating parameters is as 

expected. The parameters are reproduced more accurately as sample size increases. 

The trend is not linear. The average increased precision from 100 to 500 is 0.15. The 

average increase in precision from 500 to 2000 is .01. In addition, the mean 

difference between generating parameters and the estimated parameters shows that 

the mean of the 100 sample size does not fall within 2 SE of the 500 or 200 sample 

size conditions. The mean of the 500 sample size condition falls well within the first 

half SE of the mean of the 2000 condition. The 100 sample size condition falls well 

outside the %5 CI around the 500 and 2000 conditions and is significantly different 

than these two conditions. The 500 and 2000 sample size conditions are not 

significantly different than one another. 

The second factor used for evaluating the data is estimation time. Time is 

constant across datasets within each sample size condition and increases 

proportionately with and increase in sample size. All data used had the same time 

within several seconds of each other for a given sample size condition according to 

Winbugs updates. Times for each condition across all datasets are reported in table 4-

4 using seconds for precision as well as minutes for ease of discussion.  
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Table 4-4: Average estimation time in seconds and minutes 

Sample 

Size 100 500 2000

Seconds 140 730 2925

Minutes  2.5 12.2 49.3

 

Time is nearly identical across all datasets within a given sample size and is a 

proportional linear transformation using sample size to predict the outcome of time.   

When considering the two criteria used to evaluate sample size it is clear that 

the greater the sample size, the more precise the parameters become for reproduction 

of expected generating parameters.  Also, time increased along with the increased 

sample size. In addition, the time trend is linear while the sample size is a curved 

function with diminishing returns. The trade off in precision from the 100 sample size 

condition to 500 sample size condition of .15 seems relatively important with respect 

to the time increase of approximately 10 minutes. The mean is also outside of the %5 

CI of the other conditions. This increase in time is large but is still manageable with 

modest replications per cell. The increase in precision from the 500 sample size 

condition to 2000 sample size condition of .01 does not hold the same proportional 

value and adds 37 minutes to each replication within a cell. In addition, the two 

conditions are not significantly different from one another. Given the balancing of 

these factors, the middle condition of 500 sample size is used.  

Final Model 

 Amongst the competing models, the final model for the full study is selected 

to be among the useful models to examine. 2000 burn in and 5000 estimation cycles 

 90 
 



 

are used to gain stable parameters. Each replication in a cell will have a sample size 

of 500. In the next chapter, the model is tested to determine the number of 

replications per cell and evaluate a method for determining meaning in the factor 

patterns. 
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Chapter 5: Preliminary Investigations: Results of pilot study 
using current method 
 
 

The goal of the current preliminary investigation is to determine whether 

patterns are clear enough to be aggregated, or if an alternative descriptive technique 

will need to be used. 50 replications per cell are used and the aggregates of factor 

patterns are examined and discussed in the main investigation 

Exploratory Method: Stage 1 

The general method from the main study is used in the preliminary 

investigation. This method will determine the soundness of the method and allow for 

changes based on empirical evidence, if necessary. The central purpose here as well 

as in the main study is to review and interpret patterns specifically built in to the data 

generating process. The preliminary investigation will determine if patterns can be 

aggregated and interpreted as a whole within a cell, or if each individual case will 

need to be examined to determine which pattern it fits. 

Five cells, including the Rasch generated baseline that is appropriate for the 

other four cells, are investigated prior to reviewing all cells in the main study. 

Preliminary exploration will involve running 50 replications for each of these cells. 

50 replications are considered sufficiently large if overall contamination effect is 

more the two SE’s from the baseline model. 50 replications are compared to 5 

replications to discriminate between posterior classifications of class membership. 

The conditions are selected to represent a variety of manipulated factors 

thought to conform to aggregation conditions described in the method section. The 
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conditions are referred to by the mixing proportions and type of mixing. All 

conditions involved are centered at a theta value of zero and have two equally sized 

subtests of twenty items each. The first subtest for all conditions is generated to 

conform to the Rasch model, and the second subtest is mixed as described herein: 

Condition one is all Rasch with no mixing of data, the baseline condition. Condition 

two is 80% Rasch in the first subtest and 20% unscalable in the second subtest, 

Condition three is 95% Rasch in the first subtest and 5% unscalable in the second 

subtest. Condition four is 80% Rasch in the first subtest and 20% reversed effect in 

the second subtest. Condition five is 95% Rasch in the first subtest and 5% reversed 

effect in the second subtest.  

As described in the methods section, the number of meaningful factors for 

each model within each cell is examined. It is expected that data generated to 

conform to the Rasch model is one factor for the unweighted data, and contamination 

is a different model. Each FA model is compared to  an appropriate Horn’s parallel 

analysis to determine the number of eigenvalues that are greater than chance. The 

number of factors for each of the four models for weighted and unweighted data 

within each cell is evaluated.  

Results and evaluation of posterior classification for 5 or 50 replications. 

The Baseline Rasch condition posterior classification was compared to the 

other four conditions in two conditions, the 5 replications per cell and the 50 

replications per cell.  A confidence interval with 2 SE was constructed for each 

condition and the values compared. 
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Table 5-1: Rasch classification using 5 replications per cell 

5 
replications 

%Rasch Contamination 
Type 

%Average 
Rasch 
Classification

-2SE +2SE 

 80 Random 98.41 97.00 99.82 
 80 Reverse 96.11 92.87 99.36 
 95 Random 99.84 98.18 99.70 
 95 Reverse 96.88 95.42 98.33 
 100 None 99.80 99.24 100 
 

Table 5-2: Rasch classification using 50 replications per cell 

50 
replications 

%Rasch Contamination 
Type 

%Average 
Rasch 
Classification

-2SE +2SE 

 80 Random 98.30 97.18 99.40 
 80 Reverse 96.10 92.80 99.37 
 95 Random 99.17 98.81 99.53 
 95 Reverse 97.50 96.24 98.76 
 100 None 99.85 99.61 100 
 

In the 5 replication condition all 4 average classification falls outside of the 

2SE CI from the baseline, however all 4 of the CI cross with the baseline. In the 50 

replication condition, all 2SE CI ban are separated from the Baseline condition. This 

result/finding/outcome gives confidence that in all 4 contaminated conditions; 

significantly more contamination is being classified than in the baseline condition.  

In the 95% Rasch, 5% contaminated condition 2.21% and 2.88% are correctly 

classified out of the 5% possible. These pilot effects are not meant to be the strongest 

effects in the main analysis, and it is highly likely that in some of the stronger effects 

nearly all of the generated contamination is extracted. Given the comparison, the 50 

replication condition is more favorable than the 5 replication condition because it 
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holds stronger evidence that the classifications is significantly different than the 

baseline condition. 

Pilot Results:  

Eigenvalues for all three datasets across all cells are compared to the appropriate 

HPA value for weighted conditions. 

Table 5-3: Unweighted number eigenvalues comparison 

 
Unweighted %Rasch Contamination 

Type 
F1 F2 F3 

 80 Random *5.76 *2.42 1.37
 80 Reverse *5.92 *4.55 1.30
 95 Random *6.12 *1.67 1.35
 95 Reverse *6.17 *2.46 1.31
 100 None *6.36 1.43 1.32
* above the threshold for HPA 
 

Table 5-4: Residually weighted number eigenvalues comparison 

Residual %Rasch Contamination 
Type 

F1 F2 F3 

 80 Random *6.60 5.16 4.19
 80 Reverse *4.82 3.82 2.99
 95 Random 9.23 6.82 4.98
 95 Reverse *6.38 4.84 4.11
 99.85 None NA NA NA 
* above the threshold for HPA 
 

Table 5-5: Rasch weighted number eigenvalues comparison 

Rasch %Rasch Contamination 
Type 

F1 F2 F3 

 80 Random *5.71 *2.40 1.35
 80 Reverse *5.95 *4.14 1.30
 95 Random *6.11 *1.60 1.35
 95 Reverse *6.23 *1.94 1.32
 100 None *6.32 1.40 1.28
* above the threshold for HPA 
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In the baseline condition, one factor is established for the unweighted and 

Rasch weighted datasets. The residual data for the baseline condition is too small to 

explore with a weighted sample size of .15% of the entire data or the equivalent of 

3/4 of one person. Two factors are present in the four contaminated conditions for the 

unweighted data.. In the residual weighted data, the reversed contamination has one 

factor for both levels of contamination, while the random contamination has one 

factor for 20% contamination but none for the 5% condition. 

MANOVA results 

The multivariate analysis is conducted for all 5 conditions, comparing the factor 

patterns from the Rasch only weighted data to the residual weighted data. 

Table 5-6: F-values for factor 1 

MANOVA 
Factor 1 

%Rasch Contamination 
Type 

F Value DF Sig. 

 80 Random 68.88 59 <.0001 
 80 Reverse 66.99 59 <.0001 
 95 Random 35.60 59 <.0001 
 95 Reverse 19.56 59 <.0001 
 100 None 1.38 (.99) 59 .1265 
 

Table 5-7: F-values for factor 2 

MANOVA 
Factor 2 

%Rasch Contamination 
Type 

F Value DF Sig. 

 80 Random 81.41 59 <.0001 
 80 Reverse 6.76 59 <.0001 
 95 Random 40.56 59 <.0001 
 95 Reverse 29.41 59 <.0001 
 100 None 1.55 (1.45) 59 .0628 
 

Except for the baseline, all factor comparisons are significantly different in the 

multivariate analysis.. The baseline was tested at 3% and with a 50% split in 
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parentheses. Overall, when the data is reweighted by Rasch and residual classes the 

patterns are different. 

Comparing patterns with CI 

In checking each pattern, a table is developed to show where the CI using 2 

S.E. indicates separation of patterns.  As shown in table 4-12, if a residually weighted 

average factor pattern falls above 2S.E. from the average Rasch weighted pattern, a 

value of 1 is assigned to the cell. If it is below the 2 S.E. s value of -1 is assigned to 

the cell and if the value falls within the 2SE band a 0 is assigned to the cell.  This is 

used to help explain overall pattern differences.  
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Table 5-8: CI for factor 1 patterns 

Univariate 
Factor 1 
Patterns  
1-10 

%Rasch Type 1 2 3 4 5 6 7 8 9 10 

 80 Random -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 80 Reverse -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 95 Random -1 -1 -1 -1 -1 -1 -1 0 -1 -1 
 95 Reverse -1 -1 -1 -1 -1 -1 -1 -1 1 0 
 100 None 0 0 0 0 0 0 0 0 0 0 
11-20   11 12 13 14 15 16 17 18 19 20 
 80 Random -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 80 Reverse -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 95 Random -1 -1 -1 -1 -1 0 -1 -1 -1 0 
 95 Reverse -1 -1 -1 -1 -1 -1 -1 0 0 0 
 100 None 0 0 0 0 0 0 0 0 0 0 
21-30   21 22 23 24 25 26 27 28 29 30 
 80 Random -1 -1 -1 -1 -1 -1 -1 -1 0 0 
 80 Reverse -1 0 -1 -1 -1 -1 -1 -1 -1 -1 
 95 Random -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 95 Reverse 0 0 -1 -1 -1 -1 -1 -1 -1 -1 
 100 None 0 0 0 0 0 0 0 0 0 0 
31-40   31 32 33 34 35 36 37 38 39 40 
 80 Random -1 -1 -1 -1 -1 -1 -1 -1 0 0 
 80 Reverse -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 95 Random -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 95 Reverse 0 0 -1 0 -1 -1 -1 -1 -1 -1 
 100 None 0 0 0 0 0 0 0 0 0 0 
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Table 5-9: CI for factor 2 patterns 
 
Univariate 
Factor 2 
Patterns  
1-10 

%Rasch Type 1 2 3 4 5 6 7 8 9 10 

 80 Random 0 0 0 0 0 0 0 0 0 -1 
 80 Reverse 0 0 1 0 0 0 0 0 1 0 
 95 Random 0 0 0 -1 -1 0 -1 -1 0 -1 
 95 Reverse -1 0 -1 -1 -1 -1 -1 -1 -1 -1 
 100 None 0 0 0 0 0 0 0 0 0 0 
11-20   11 12 13 14 15 16 17 18 19 20 
 80 Random 0 0 -1 0 0 0 0 0 0 0 
 80 Reverse 0 0 0 0 0 0 0 0 0 0 
 95 Random 0 0 -1 0 -1 -1 -1 0 -1 -1 
 95 Reverse 0 0 -1 -1 -1 -1 -1 -1 -1 -1 
 100 None 0 0 0 0 0 0 0 0 0 0 
21-30   21 22 23 24 25 26 27 28 29 30 
 80 Random 0 0 -1 0 -1 -1 -1 -1 -1 -1 
 80 Reverse 1 1 1 1 0 0 -1 -1 -1 -1 
 95 Random 0 0 -1 -1 -1 -1 -1 -1 -1 -1 
 95 Reverse 1 0 -1 0 -1 -1 -1 -1 -1 -1 
 100 None 0 0 0 0 0 0 0 0 0 0 
31-40   31 32 33 34 35 36 37 38 39 40 
 80 Random 0 0 0 -1 -1 -1 -1 -1 -1 -1 
 80 Reverse 1 1 1 1 0 0 -1 -1 -1 -1 
 95 Random 0 0 -1 -1 -1 -1 -1 -1 -1 -1 
 95 Reverse 1 1 0 0 -1 -1 -1 -1 -1 -1 
 100 None 0 0 0 0 0 0 0 0 0 0 
 

In both factors, the CI comparisons in the baseline have no significant 

difference amongst all 40 patterns in both factors. The other four cells have many 

significant effects mostly in a negative direction. These effects start to show patterns 

of suppression in the random and reversed Rasch contaminated conditions for the first 

factor. The second factor pattern differences may simply be attributed to the factor 

being extracted out for the Rasch condition and not for the residually weighted data. 

These patterns and differences are further explored in the results and discussion of the 

overall research.  
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In order to better understand what is left over in the unscalable class, the next 

comparison focuses on the residual weighted data and compares the Rasch subtest to 

the contaminated subtest. 

  Rasch subtest patterns compared with Residual subtest patterns. These values 

are graphically compared and aggregated for like difficulties within each subtest.  

Table 5-10: Factor 1 Subtest patterns 

%Rasch Type Subtest 1 Subtest 2 
  2 1 0 -1 -2 2 1 0 -1 -2 
80 Random 0.17 0.17 0.20 0.18 0.12 0.02 0.00 -0.01 -0.05 -0.04 
80 Reverse 0.08 0.10 0.07 0.10 0.16 0.29 0.24 0.09 -0.06 -0.20 
95 Random 0.20 0.13 0.20 0.15 0.16 0.02 0.07 0.03 -0.02 -0.04 
95 Reverse 0.06 0.05 0.16 0.18 0.27 0.42 0.31 0.15 -0.06 -0.19 

 
Table 5-11: Factor 2 Subtest patterns 

%Rasch Type Subtest 1 Subtest 2 
  2 1 0 -1 -2 2 1 0 -1 -2 
80 Random 0.12 0.11 0.09 0.09 0.07 0.00 0.02 -0.01 0.00 -0.01 
80 Reverse 0.08 0.12 0.12 0.09 0.10 0.12 0.09 0.09 0.02 -0.04 
95 Random 0.13 0.08 0.10 0.14 0.13 0.07 -0.02 0.00 -0.06 0.02 
95 Reverse 0.12 0.08 0.10 0.07 0.08 0.14 0.12 0.09 0.04 -0.03 
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Figure 5-1: Factor 1 for 80% Random, 80% Reversed, 5% Random and 5% reversed 
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In the random contamination condition in the residual weighted data, the random 

contamination looks flat compared to the Rasch generated portion of the data in both 

the 20% and 5% conditions. 

In the reversed Rasch contamination condition in the residual weighted data, the 

reversed portion of the subtest has a backwards pattern when compared to the Rasch 

portion of the data in both the 20% and 5% conditions. 

These patterns are explored further in the results chapter of this document and 

have been shown here as preliminary work to make support further investigation. In 

general, the patterns in the random contaminated condition for the contaminated 

portion of the subtest have smaller absolute values compared to the Rasch generated 

subtest in those conditions. In the first factor, the patterns in the reverse effect 

contaminated subtest have flipped nearly perfectly, but the effect looks stronger in the 
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5% conditions than in the 20% conditions. The patterns are large when the patterns 

are small in the all Rasch subtest, and they are small or negative when the all Rasch 

subtest is large. The zero difficulty has not changed in either subtest and is reflected 

here as well. The second factor seems to be similar to the random effects condition. 
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Chapter 6: Results 
 

The first stage of evaluation is to examine the size of the unscalable class from 

the two-class model. The second stage is the determination of the number of factors 

in those conditions from which it is reasonable to proceed. The third stage is an 

evaluation of the multivariate effect within each cell amongst all items between the 

two level conditions of Rasch and residually weighted data. The fourth stage is an 

exploration of the univariate effects on each item. The final stage is a series of graphs, 

first between the Rasch and residually weighted factor patterns, then the exploration 

of the residually weighted data condition.  

In this investigation 72 conditions were used with 50 replications per 

condition for a total number of 3600 replications. There was very little if any 

convergence issues in this analysis that could not e contributed to computer 

operational errors. Once the appropriate settings for each computer used in this study 

were set only 11 nonconvergence replications occurred. These minimal problems 

where spread out over conditions with no clear pattern and may have been caused by 

interactions with the computer during simulation. Overall convergence was not an 

issue with these generating parameters. 

The class proportions for the class are shown in a series of tables as a 

percentage classified into the unscalable condition. The remainder is classified into 

the Rasch condition. First, Table 6-1 shows the average unscalable percent produced 

from the eight Rasch only baseline conditions.  Table 6-2 shows the average 

unscalable percent for all other conditions.   
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Table 6-1: Average percent unscalable for Rasch, Baseline, conditions 

Scaling 
factor 

Subtest 
size Mean %  

Standard 
Deviation 

10 0.1434 0.1174 1X1 
  20 0.1487 0.1203 

10 0.0007 0.0048 3X3 
  20 0.0000 0.0002 

10 0.0009 0.0050 3X1 
  20 0.0052 0.0178 

10 0.0199 0.0428 1X3 
  20 0.0020 0.0077 

 

The largest of these unscalable class percentages is µ=.1482% σ=.1203. The 

Rasch class has just over 99.85% classified as Rasch. The smallest of the Rasch only 

unscalable class is nearly perfectly scaled as Rasch, with µ=.0000% σ=.0002 being 

the residual or unscalable class. On average, the amount classified into the unscalable 

class across all eight Rasch conditions was µ=.0401% σ=.0657.  All of these 

conditions are baseline conditions for the other 64 cells. The size of the unscalable 

class for the Rasch baseline conditions are too small to have any meaningful 

investigation of the residually weighted data, and typically the weights in most cases 

are simply representing a random anomalous case or two where a simulee’s vector of 

scores is weighted  as partially unscalable.  

Table 6-2 shows the percentage classified into the unscalable class for the random 

and reverse contamination conditions across all levels of contamination, subtest size 

and subtest variability. 
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Table 6-2: Average proportion unscalable for the random and reverse contamination 

conditions 

   Random Reverse 

% Contaminated Range Subtest Mean 
Standard 
Deviation Mean 

Standard 
Deviation 

100 1X1 10 2.5083 0.8827 0.1227 0.0858
    20 6.3493 1.7142 0.1645 0.1543
  3X3 10 0.0111 0.0374 0.0001 0.0005
    20 0.0542 0.0768 0.0001 0.0002
  3X1 10 0.0117 0.0504 0.0006 0.0025
    20 0.0477 0.0737 0.0006 0.0021
  1X3 10 2.6328 0.9885 0.0275 0.0630
    20 6.5922 1.5231 0.0064 0.0263

50 1X1 10 0.6445 0.3489 0.2633 0.1193
    20 1.9236 0.7773 0.5315 0.2436
  3X3 10 0.0072 0.0274 0.0120 0.0374
    20 0.0635 0.0807 44.0916 16.4291
  3X1 10 0.0063 0.0225 0.0003 0.0011
    20 0.0274 0.0556 0.0038 0.0091
  1X3 10 1.1385 0.5103 0.5642 0.3255
    20 18.4359 18.0213 50.0769 0.1119

20 1X1 10 0.3034 0.1914 0.3791 0.2168
    20 1.7076 0.5548 3.9066 1.6428
  3X3 10 0.0093 0.0227 0.0099 0.0385
    20 1.4665 0.6717 20.0404 0.0016
  3X1 10 0.0043 0.0265 0.0004 0.0015
    20 0.0135 0.0352 0.0257 0.0435
  1X3 10 1.5743 0.7086 7.8835 4.2881
    20 19.1810 0.5119 20.0722 0.0437

5 1X1 10 0.1667 0.1144 0.4030 0.2984
    20 0.8253 0.1819 2.4993 0.6300
  3X3 10 0.0419 0.0744 0.2420 0.2288
    20 3.4653 0.5816 5.0104 0.0015
  3X1 10 0.0001 0.0003 0.0002 0.0005
    20 0.0130 0.0367 0.0954 0.1239
  1X3 10 1.2520 0.4837 4.6536 0.3724
    20 4.8105 0.1657 5.0303 0.0483

A threshold of .4% for the residual class was used to determine further 

investigation feasibility. The .4% threshold is over 2SE apart from the largest of the 

Rasch baseline conditions and holds value from an exploratory perspective, 
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particularly when investigating a small sample size that could be evaluated 

graphically, as seen in later graphs. Values smaller than .4% are now deemed too 

close to the Rasch only conditions and systematically had class sizes that were not 

significantly different than the baseline.  Equally of importance is that for conditions 

with residual class size less than .4% the meaning of factor patterns become unclear 

as the values could sometimes be weighted to one or two cases and analysis could not 

be conducted. To follow this section is an examination of eigenvalues, MANOVA, 

CI, and the examination of the residual condition using the .4% cut point for 

examining the residual class. 

In the condition in which the Rasch subtest had the smaller scaling factor of 1 

for the base range of items and the contaminated subtest had a scaling factor of 3, the 

residual was always large enough to explore except in the reverse Rasch condition. 

When the scaling ranges are switched, the mixed scaling factor contamination 

conditions with range of ±6 for the Rasch subtest, and ±2 for the contaminated subtest 

were always too small to be examined. When the Range of the subtest was equal, the 

size of the contaminated subtest affected the size of the residual. When the subtest 

with both ranges had 10 items for the 50%, 20% and 5%, only one of the 6 residuals 

crossed the .4 threshold, for the 5% condition and even then only with a value of .403. 

In contrast, all 6 of the 20 item subtest condition exceeded the .4 cut point. The same 

pattern was duplicated for the 12 values in the Random condition. When both ranges 

had 10 items for the 50%, 20% and 5%, only one of the 6 residuals crossed the .4 

threshold this time for the 50% condition. In contrast, all 6 of the 20 item subtest 

condition exceeded the .4 cut point. 
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Overall, the size of the contaminated subtest had a large impact on the 

magnitude of the residual. In rank order, it was always larger as a residual for true 

contaminated conditions, and often by an exponential magnitude. 

Relative to the size of the generated contamination and what was estimated 

into the unscalable class, the success of the model was inversely proportionate to the 

size of the residual. In the 100% condition, the largest residual was 6.5%; in the 50% 

contamination condition, there was one residual around 50%, one around 45% and 

one around 18.5%.In the 20% residual, there were three residuals at approximately 

20% and one around 8%. In the 5% contamination condition there were 4 residual 

around 5%, one at 3.5% and one at 2.5%. Proportionally, it was clear that as the size 

of the residual decreased, the proportion classified more accurately appreciated the 

maximum number of contaminated simulees. 

Eigenvalues 

Eigenvalues are examined for all conditions with a class value over .4%. 

Suggested Factors are Graphical inspection of these conditions, as shown in the 

residual section of the results chapter. Horn’s parallel analysis (HPA), as well as 

visual inspection for confirmation of the 72 conditions, was used to determine the 

number of factors. The eigenvalues selected as exceeding the threshold value are 

highlighted in bold.  

In the eight Rasch only baseline conditions, Table 6-3, one dominant factor is 

visually evident across all eight conditions for the unweighted data. It was expected 

from hypothesis 2 regarding the baseline Rasch condition that only one factor would 

be present when HPA was used to determine the number of factors. However, in two 
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of the baseline conditions for the 3x3 scaling factor condition with 10 and 20 items, a 

second factor is just above the threshold value.  

Table 6-3: The first five unweighted eigenvalues for the Rasch only condition 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 6.3444 1.4270 1.3298 1.2729 1.2361 1X1 
20 6.3646 1.4294 1.3192 1.2647 1.2287 
10 3.2942 1.6473 1.4581 1.3812 1.3251 3X3 
20 3.2971 1.5898 1.4478 1.3724 1.3210 
10 4.0615 1.5508 1.4091 1.3333 1.2882 3X1 
20 4.8274 1.4905 1.3757 1.3176 1.2763 
10 5.5334 1.4607 1.3531 1.3003 1.2572 1X3 
20 4.7254 1.4821 1.3750 1.3175 1.2741 

 
The Rasch weighted condition is nearly identical to the above unweighted 

condition, as the sample size is nearly identical to only a small fraction of a 

percentage point being extracted from each condition. 

Table 6-4: The first five Rasch weighted eigenvalues for the 100% Rasch only 

condition 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 6.3366 1.4209 1.3301 1.2728 1.2358 1X1 
20 6.3554 1.4227 1.3196 1.2646 1.2289 
10 3.2937 1.6453 1.4582 1.3812 1.3251 3X3 
20 3.2971 1.5898 1.4478 1.3724 1.3210 
10 4.0613 1.5489 1.4091 1.3333 1.2882 3X1 
20 4.8269 1.4871 1.3754 1.3176 1.2764 
10 5.5311 1.4572 1.3533 1.3004 1.2572 1X3 
20 4.7251 1.4812 1.3746 1.3175 1.2741 

 
A table was not created for the first five residual weighted eigenvalues for the 

100% Rasch only condition, as there were not sufficiently large residuals to examine. 

According to hypothesis 3 a second factor would be generated for all 64 

systematic and randomly contaminated conditions when HPA was used to determine 

the number of factors in the data. The results of the unweighted and Rasch weighted 
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data for the 100% random and reversed contamination conditions are shown in tables 

6-5 through 6-9. Only one dominant factor was represented with no substantial 

changing of the eigenvalues patterns in the Rasch weighted conditions with only two 

exceptions. In the reversed Rasch condition for the 3x3 scaling factor condition with 

10 and 20 items, there is again a second factor just above the threshold value. In most 

other contaminated conditions, a second factor was extracted with the exception of 

the 5% random contamination condition, in which some conditions had only one 

factor. 

In all other unweighted conditions explored with a residual value over .4%, 

there is evidence of a dominant first factor along with secondary factor, with the 

exception being the 5% random contamination condition with a scaling factor of 1 for 

the contaminated subtest. Table 6-10 through 6-15 display the unweighted 

eigenvalues. 

Table 6-5: The first five unweighted eigenvalues for the 100% random contamination 

condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 4.9966 1.4497 1.3813 1.3278 1.2884 1X1 
20 3.6212 1.4985 1.4232 1.3777 1.3368 
10 2.7061 1.5510 1.4472 1.3934 1.3414 3X3 
20 2.1673 1.5401 1.4592 1.4057 1.3634 
10 2.7098 1.5381 1.4323 1.3813 1.3427 3X1 
20 2.1519 1.5485 1.4650 1.4095 1.3657 
10 4.9756 1.4652 1.3911 1.3334 1.2923 1X3 
20 3.6461 1.4946 1.4308 1.3799 1.3384 
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Table 6-6: The first five Rasch weighted eigenvalues for the 100% random 

contamination condition 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 4.7300 1.4518 1.3853 1.3348 1.2919 1X1 
20 3.1934 1.5147 1.4439 1.3948 1.3518 
10 2.7021 1.5465 1.4470 1.3929 1.3416 3X3 
20 2.1534 1.5288 1.4549 1.4033 1.3610 
10 2.7064 1.5352 1.4325 1.3816 1.3417 3X1 
20 2.1407 1.5431 1.4611 1.4078 1.3643 
10 4.7011 1.4635 1.3905 1.3388 1.3023 1X3 
20 3.1802 1.5169 1.4501 1.3996 1.3550 

 
Table 6-7: The first five unweighted eigenvalues for the 100% reverse contamination 
condition. 
RANGE SUBTEST F1 F2 F3 F4 F5 

10 6.2834 1.4438 1.3320 1.2762 1.2317 1X1 
20 6.3489 1.4386 1.3270 1.2746 1.2290 
10 3.2529 1.6212 1.4538 1.3642 1.3118 3X3 
20 3.2633 1.6094 1.4601 1.3734 1.3234 
10 4.0404 1.5495 1.4158 1.3479 1.2985 3X1 
20 4.7820 1.5067 1.3769 1.3186 1.2785 
10 5.4926 1.4575 1.3583 1.3019 1.2580 1X3 
20 4.7987 1.5063 1.3846 1.3238 1.2722 

 
Table 6-8: The first five Rasch weighted eigenvalues for the 100% reverse 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 6.2743 1.4386 1.3318 1.2766 1.2321 1X1 
20 6.3297 1.4320 1.3282 1.2754 1.2306 
10 3.2529 1.6211 1.4538 1.3642 1.3118 3X3 
20 3.2633 1.6094 1.4601 1.3734 1.3234 
10 4.0403 1.5491 1.4157 1.3479 1.2985 3X1 
20 4.7892 1.5073 1.3765 1.3187 1.2789 
10 5.4944 1.4537 1.3533 1.3019 1.2576 1X3 
20 4.7973 1.5013 1.3846 1.3237 1.2722 

 
Table 6-9 shows the residual eigenvalues for the random condition. A table 

was not created for the first five residual weighted eigenvalues for the 100% 
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Reversed contamination condition as there were not sufficiently large residuals to 

examine. 

Table 6-9: The first five residual weighted eigenvalues for the 100% random 

contamination condition 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 4.9537 4.0693 3.4752 3.0436 2.7023 1X1 
20 3.3837 3.0013 2.7183 2.4879 2.2820 
10 NA NA NA NA NA 

3X3 
20 NA NA NA NA NA 
10 NA NA NA NA NA 

3X1 
20 NA NA NA NA NA 
10 4.9635 4.0566 3.4747 3.0904 2.6794 1X3 
20 3.2828 2.9278 2.6756 2.4476 2.2587 

 

Examining the size of the residually weighted data set and comparing it to 

HPA value, as well as visual inspection, results in nothing better than random factors 

manifest in this residual data for the 100% random contamination conditions. 

Table 6-10: The first five unweighted eigenvalues for the 50% random contamination 

condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 5.3097 2.1779 1.3911 1.3115 1.2617 1X1 
20 4.9584 3.0156 1.4324 1.3163 1.2548 
10 3.3961 2.7139 1.4995 1.3846 1.3219 3X3 
20 6.0490 2.3391 1.4257 1.3344 1.2817 
10 3.2277 2.0170 1.5063 1.3921 1.3329 3X1 
20 4.2464 2.2639 1.4871 1.3671 1.3057 
10 5.1930 3.2936 1.3599 1.2942 1.2406 1X3 
20 6.0540 3.7422 1.3537 1.2851 1.2388 
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Table 6-11: The first five unweighted eigenvalues for the 50% reverse contamination 

condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 6.0143 3.1909 1.3578 1.2664 1.2189 1X1 
20 5.9617 5.4927 1.2639 1.2112 1.1673 
10 7.0989 3.0363 1.4797 1.3511 1.2847 3X3 
20 13.9823 2.8496 1.3845 1.2424 1.1825 
10 3.7310 3.1335 1.5241 1.3685 1.2932 3X1 
20 5.7133 4.1207 1.3594 1.2739 1.2234 
10 7.1292 5.3537 1.3415 1.2434 1.1912 1X3 
20 14.0150 4.3651 1.2284 1.1606 1.1183 

 

Table 6-12: The first five unweighted eigenvalues for the 20% random contamination 

condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 5.8968 1.8162 1.3854 1.2986 1.2565 1X1 
20 5.7550 2.4171 1.3693 1.2954 1.2458 
10 3.5639 2.8822 1.4957 1.3770 1.3191 3X3 
20 6.3703 2.6892 1.4362 1.3361 1.2768 
10 3.6771 1.7518 1.4884 1.3848 1.3231 3X1 
20 4.6330 2.1005 1.4205 1.3351 1.2866 
10 5.3210 3.4116 1.3763 1.2895 1.2358 1X3 
20 6.3740 4.1357 1.3403 1.2707 1.2171 

 

Table 6-13: The first five unweighted eigenvalues for the 20% reverse contamination 

condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 6.0388 2.6310 1.3536 1.2777 1.2277 1X1 
20 5.9211 4.5453 1.2960 1.2248 1.1816 
10 6.7404 3.0632 1.4751 1.3544 1.2796 3X3 
20 13.2091 2.8474 1.3314 1.2397 1.1897 
10 3.7561 2.6341 1.5258 1.3801 1.3079 3X1 
20 4.6862 4.1970 1.4005 1.2875 1.2256 
10 6.7681 5.3414 1.3372 1.2535 1.2068 1X3 
20 13.2131 4.4206 1.2457 1.1694 1.1205 
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Table 6-14: The first five unweighted eigenvalues for the 5% random contamination 

condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 6.1851 1.4878 1.3394 1.2857 1.2463 1X1 
20 6.1155 1.6660 1.3502 1.2845 1.2454 
10 3.3104 2.7825 1.5198 1.3940 1.3176 3X3 
20 5.2100 2.9793 1.5255 1.3844 1.3123 
10 3.9355 1.5502 1.4350 1.3620 1.3110 3X1 
20 4.7449 1.6343 1.4282 1.3333 1.2823 
10 5.4496 2.8437 1.3786 1.3024 1.2485 1X3 
20 5.3952 4.3060 1.4098 1.3209 1.2555 

 

Table 6-15: The first five unweighted eigenvalues for the 5% reverse contamination 

condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 6.2424 1.7370 1.3610 1.2870 1.2392 1X1 
20 6.1724 2.4635 1.3094 1.2490 1.2027 
10 5.4173 3.1296 1.4647 1.3568 1.2859 3X3 
20 10.5617 3.0188 1.3718 1.2590 1.1997 
10 3.9337 1.7463 1.4485 1.3642 1.3049 3X1 
20 4.6246 2.5018 1.4305 1.3158 1.2721 
10 5.6837 5.1510 1.3403 1.2610 1.2093 1X3 
20 10.5669 4.5524 1.2617 1.1888 1.1416 

 

Table 6-16 through 6-21 display the Rasch weighted eigenvalues. In some 

conditions the secondary factor has been greatly reduced or eliminated. It was 

expected from hypothesis 4 that the Rasch weighted data would have fewer factors 

extracted when compared to the unweighted data when HPA was used to determine 

the number of factors. Overall 3 less second factors were extracted in the Rasch 

weighted condition. Eigenvalues selected as factors are highlighted in bold. 
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Table 6-16: The first five Rasch weighted eigenvalues for the 50% random 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 5.2563 2.1838 1.3808 1.3101 1.2594 1X1 
20 4.8807 3.0450 1.4028 1.3124 1.2543 
10 3.3949 2.7131 1.4906 1.3838 1.3213 3X3 
20 6.0471 2.3343 1.4098 1.3280 1.2785 
10 3.2261 2.0161 1.5002 1.3906 1.3323 3X1 
20 4.2455 2.2632 1.4758 1.3659 1.3041 
10 5.0900 3.3006 1.3558 1.2915 1.2418 1X3 
20 5.6532 3.4170 1.4315 1.3381 1.2901 

 
Table 6-17: The first five Rasch weighted eigenvalues for the 50% reverse 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 5.9933 3.1923 1.3518 1.2665 1.2190 1X1 
20 5.9486 5.4736 1.2624 1.2104 1.1669 
10 7.0993 3.0304 1.4751 1.3443 1.2829 3X3 
20 4.7205 2.0373 1.5639 1.4598 1.3899 
10 3.7309 3.1335 1.5240 1.3685 1.2932 3X1 
20 5.7135 4.1201 1.3590 1.2735 1.2233 
10 7.1261 5.2899 1.3311 1.2452 1.1939 1X3 
20 5.1578 2.6176 1.5468 1.4604 1.3953 

 
Table 6-18: The first five Rasch weighted eigenvalues for the 20% random 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 5.8782 1.8177 1.3778 1.2971 1.2565 1X1 
20 5.7096 2.4029 1.3471 1.2896 1.2444 
10 3.5611 2.8815 1.4915 1.3766 1.3188 3X3 
20 6.1252 2.7122 1.4259 1.3190 1.2670 
10 3.6751 1.7467 1.4867 1.3847 1.3220 3X1 
20 4.6326 2.0996 1.4178 1.3348 1.2856 
10 5.2670 3.3322 1.3739 1.2947 1.2402 1X3 
20 4.7857 2.0083 1.5045 1.4123 1.3398 
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Table 6-19: The first five Rasch weighted eigenvalues for the 20% reverse 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 6.0143 2.6230 1.3483 1.2767 1.2282 1X1 
20 5.9453 4.1393 1.3048 1.2371 1.1927 
10 6.7399 3.0611 1.4719 1.3541 1.2786 3X3 
20 3.2680 1.6681 1.4812 1.3986 1.3396 
10 3.7560 2.6341 1.5255 1.3798 1.3079 3X1 
20 4.6830 4.1951 1.3955 1.2854 1.2247 
10 6.9567 4.5907 1.3578 1.2747 1.2279 1X3 
20 4.7957 1.5518 1.4362 1.3630 1.3126 

 

Table 6-20: The first five Rasch weighted eigenvalues for the 5% random 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 6.1770 1.4819 1.3390 1.2860 1.2461 1X1 
20 6.1091 1.5971 1.3501 1.2879 1.2470 
10 3.2984 2.7684 1.5085 1.3918 1.3161 3X3 
20 3.4979 2.5589 1.6080 1.4293 1.3536 
10 3.9345 1.5531 1.4361 1.3634 1.3117 3X1 
20 4.7444 1.6292 1.4263 1.3339 1.2825 
10 5.4562 2.4894 1.3883 1.3124 1.2566 1X3 
20 4.8211 1.6651 1.4506 1.3552 1.2917 

 

Table 6-21: The first five Rasch weighted eigenvalues for the 5% reverse 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 6.2232 1.7041 1.3615 1.2880 1.2399 1X1 
20 6.2276 1.9389 1.3239 1.2628 1.2205 
10 5.3526 3.1253 1.4694 1.3581 1.2860 3X3 
20 3.3042 1.6349 1.4747 1.3749 1.3190 
10 3.9336 1.7462 1.4484 1.3642 1.3049 3X1 
20 4.6256 2.4730 1.4287 1.3154 1.2703 
10 5.6154 2.6609 1.3838 1.3028 1.2526 1X3 
20 4.7954 1.5165 1.3896 1.3363 1.2908 
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Tables 6-22 through 6-27 show eigenvalues from the residually weighted data. It was 

projected in hypothesis 5, concerning residually weighted data that if HPA was used 

to determine the number of factors, then systematic contamination would have more 

factors than random contamination. Overall, two first factors were found in the 

random contamination condition with no secondary factors. In the systematic 

contamination condition, eight first factors and 6 secondary factors were extracted 

from the data supporting the hypothesis. These findings also support the more 

specific hypotheses 5a and 5b, that states if factors are found in the systematically 

contaminated data then there would be two factors, and when they are found in the 

random contaminated condition there would be one factor. In later graphs, further 

inspection of these factors will occur to help determine if: the factors in the systemic 

condition are the Rasch and reversed Rasch factor, and if the factor in the random 

contamination condition is a suppressed Rasch factor. Eigenvalues selected as factors 

are highlighted in bold. 

Table 6-22: The first five residual weighted eigenvalues for the 50% random 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 7.7466 5.5577 4.1923 3.4137 2.8107 1X1 
20 5.3749 4.3438 3.6645 3.1735 2.7209 
10 NA NA NA NA NA 

3X3 
20 NA NA NA NA NA 
10 NA NA NA NA NA 

3X1 
20 NA NA NA NA NA 
10 6.9340 5.2255 4.2073 3.4230 2.8611 1X3 
20 3.6531 2.6700 2.4070 2.2147 2.0425 
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 Table 6-23: The first five residual weighted eigenvalues for the 50% reverse 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 NA NA NA NA NA 

1X1 
20 7.6171 4.9744 3.7229 3.0868 2.5250 
10 NA NA NA NA NA 

3X3 
20 4.9363 2.4714 1.6372 1.4326 1.3229 
10 NA NA NA NA NA 

3X1 
20 NA NA NA NA NA 
10 9.1968 5.1176 3.7410 3.0684 2.5425 1X3 
20 5.0409 3.5082 1.6213 1.5106 1.4391 

 
Table 6-24: The first five residual weighted eigenvalues for the 20% random 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 NA NA NA NA NA 

1X1 
20 6.5832 5.1559 4.2184 3.5107 2.9490 
10 NA NA NA NA NA 

3X3 
20 6.7149 4.8974 3.9177 3.2062 2.6443 
10 NA NA NA NA NA 

3X1 
20 NA NA NA NA NA 
10 7.0682 5.6018 4.5789 3.7169 3.1274 1X3 
20 3.8658 2.2997 2.1267 1.9981 1.8803 

  
 
Table 6-25: The first five residual weighted eigenvalues for the 20% reverse 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 NA NA NA NA NA 1X1 
20 4.8211 3.8164 3.3637 2.9936 2.6402 
10 NA NA NA NA NA 3X3 
20 4.2375 2.7367 1.9371 1.7467 1.6246 
10 NA NA NA NA NA 3X1 
20 NA NA NA NA NA 
10 5.1941 3.6205 2.9582 2.6414 2.4009 1X3 
20 5.9762 4.5741 2.0601 1.8481 1.7236 
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Table 6-26: The first five residual weighted eigenvalues for the 5% random 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 NA NA NA NA NA 1X1 
20 9.2327 6.8199 4.9846 3.7678 2.8354 
10 NA NA NA NA NA 3X3 
20 4.7926 3.9659 3.3870 2.9499 2.6110 
10 NA NA NA NA NA 3X1 
20 NA NA NA NA NA 
10 8.7898 6.7594 5.2235 4.2986 3.3996 1X3 
20 5.3898 4.1212 3.5888 3.2529 2.8652 

 
  
Table 6-27: The first five residual weighted eigenvalues for the 5% reverse 

contamination condition. 

RANGE SUBTEST F1 F2 F3 F4 F5 
10 10.0521 6.2315 4.5616 3.4005 2.6963 1X1 
20 6.3871 4.8404 4.1082 3.5727 3.1016 
10 NA NA NA NA NA 

3X3 
20 5.4787 3.1466 2.4618 2.1411 1.8626 
10 NA NA NA NA NA 

3X1 
20 NA NA NA NA NA 
10 6.5605 4.4109 3.5651 3.0622 2.7671 1X3 20 8.0057 5.4538 3.3460 2.8577 2.5078 

MANOVA 

Multivariate Analysis of Variance (MANOVA) was used to evaluate the 

differences amongst patterns sets between the Rasch weighted dataset and the 

residually weighted dataset. MANOVA was used to test if in the 40 item space would 

display a multivariate difference in patterns on the two levels of the independent 

variable, Rasch and residual. The number of significant values for MANOVA 

supports the expectations of multivariate targeted hypothesis 6. There were a 

substantial number of differences. Across all levels of contamination explored, 

significant differences were between the Rasch weighted patterns and residually 

 118 
 



 

weighted patterns are evident for most of the first factor as reported in Table 6-28. 

The second factor for random contamination in the residual weighted condition 

patterns was significantly different as reported in table 6-28. The second factor for 

reversed contamination in the residual weighted condition patterns had fewer 

significant differences as reported. 

Hypothesis 6a expects an increase in scaling factor in the contaminated 

subtest and that an increase in the number of items from 10 to 20 items will generate 

more differences. There was a significantly larger number for the 20 item subtests, 

15, than 10 item subtest, 8, but this finding interacts with the residual selection. This 

is also true of the scaling factor: 14 significant values for a scaling factor of 3 and 9 

for a scaling factor of 1. 

Hypothesis 6b expects that as the proportion of contamination increases, 

fewer residual effects are significant. In the reversed Rasch conditions, significant 

differences were more frequent as the proportion of contamination decreased. All 

values selected for the random contamination condition were significant except the 

second factor with 100% contamination. 

Although the number of patterns for all conditions was the same, the 

conditions of how they were created differed from condition to condition. In order to 

provide a relatively fair comparison, the Wilks’ lambda F value was not evaluated for 

significance, but instead compared to an aggregated F value from the base condition. 

The Baseline Wilks’ lambda F values were constructed from 100 MANOVAS. Each 

MANOVA baseline condition was generated from a random set of weights applied to 

the Rasch only data. A random weighted variable was created and used to parse out 
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the Rasch data into the two datasets. Table D-1 and D-2 show the average Wilks’ 

lambda F-Value for the baseline Rasch condition to compare to cells with similar 

unscalable class proportions. Each of the proportional splits was constructed by 

randomly assigning simulees to one of the two conditions, unscalable or Rasch. The 

MANOVA values for 50%, 20% 5% and 2% have maximized separation in that the 

percentages represent whole cases. In order to both correctly represent the smaller 

residual class weights in the data in the 1% and .4% condition, and to still be able to 

conduct the Factor analysis, the cases in the unscalable class are proportionately 

distributed in that class as follows: In the 1% condition, 10 randomly assigned 

simulees are randomly assigned to a an equal number of proportions of .8 and .2. In 

the .4% case 10 randomly assigned simulees with one simulee being assigned to a 

proportion of .92 and the remainder are .12. These cases represent the types of 

weights found in cells with proportions of those sizes. The following table, table 6-xx, 

shows which F-values are most meaningful. Those values that are larger than 2 SE 

than the average baseline F-value are highlighted in bold. Values which are 

significant are italicized even when they are not larger than the 2 SE from the 

baseline F-value.  
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Table 6-28: Wilks’ Lambda F-values for first and second factor 

   Factor 1  Factor 2  
% Contaminated Range Subtest Random Reverse Random Reverse 

100 1X1 10 46.21 NA 1.12 NA 
    20 74.59 NA 0.77 NA 
  3X3 10 NA NA NA NA 
    20 NA NA NA NA 
  3X1 10 NA NA NA NA 
    20 NA NA NA NA 
  1X3 10 51.96 NA 1.32 NA 
    20 51.37 NA 1.3 NA 

50 1X1 10 54.78 NA 27.75 NA 
    20 30.54 3.04 43.83 2.85 
  3X3 10 NA NA NA NA 
    20 NA 1.31 NA 1.35 
  3X1 10 NA NA NA NA 
    20 NA NA NA NA 
  1X3 10 28.2 2.55 54.43 41.78 
    20 65.01 1.61 44.1 1.36 

20 1X1 10 NA NA NA NA 
    20 68.88 66.99 81.41 6.76 
  3X3 10 NA NA NA NA 
    20 173.15 2.78 28.39 1.47 
  3X1 10 NA NA NA NA 
    20 NA NA NA NA 
  1X3 10 52.23 3.24 65.56 3.29 
    20 121.02 2.07 15.47 1.03 

5 1X1 10 NA 18.38 NA 8.35 
    20 35.6 19.56 40.56 29.41 
  3X3 10 NA NA NA NA 
    20 19.42 3.62 19.6 1.37 
  3X1 10 NA NA NA NA 
    20 NA NA NA NA 
  1X3 10 41.23 6.76 89.42 1.85 
    20 17.84 10.64 3.03 1.93 

 

In the 16 random contamination conditions inspected, all 16 had F-values for 

the first factor that exceeded the baseline F-value for comparison well beyond the 2 

SE set for comparative purposes. 11 of the 16 random contamination conditions had 

significant F-value for the second. The four 100% random contamination and the 5% 
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20 item subset with 1x3 scaling factor were no longer significant for the second 

factor.  

In the 13 reversed Rasch contamination conditions inspected, 7 of the 13 F-

values, the first factor exceeded the baseline F-value for comparison and was 

significant in comparison to the 2 SE set from the Rasch only condition. Only 4 of the 

13 were also significant for the second factor.  

It was expected that an increase in scaling factor and an increase from 10 to 20 

items for the contaminated subtest would cause more detectable contamination. This 

type of strength seemed to have been more of an indication of whether a residual 

could be detected at all, not necessarily if it would be significant. It was also expected 

that as the proportion of contamination increased, the significant values would 

decrease. This expectation seems to be supported with 14 exceeding the baseline in 

the 5% condition, 11 exceeding the baseline in the 20% condition, 9 exceeding the 

baseline in the 50% condition, 4 exceeding the baseline in the 100% condition. All 

first factor random contamination replications that were detected were significant and 

exceeded the baseline. In the systematic contamination, the pattern of significance 

was detectable in the first factor. All five detectable residual were above the baseline 

F-values for the 5% condition, while only two of the four were above the baseline but 

all were significant in the 20% condition. Also, none of the four in the 50% condition 

were above the baseline but 2 were significant, and there were no usable residuals in 

the 100% condition.  

Several Wilks’ lambda values were significant beyond the .05 level but did 

not exceeded the threshold value of 2 SE’s above the average Wilks’ lambda for the 
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baseline Rasch generated data. These conditions will still be explored further with CI 

and graphically. The whole comparison is explored further in the discussion.  

Confidence Intervals 

Each set of patterns for all items within a condition is tested to determine if 

the unscalable class patterns fall outside of a two SE CI developed for each set of 

Rasch patterns for the associated item. Effectively, a two SE CI around the Rasch 

values for every item within each condition is the threshold value to determine if the 

unscalable value is different. If the unscalable class average pattern for an item falls 

above the two SE mark, the item for that condition is given a positive value of +1. If 

the average pattern for the unscalable class falls below the two SE mark, then the 

value receives a -1 value. If the average pattern for the unscalable class on the item 

falls within the two SE’s, then the item is given a zero and is not considered different 

from the Rasch condition. 

The CI’s were conducted for all conditions in which the percentage of data 

used was greater than .4% as discussed in the prior sections. Many significance tests 

are generated, so it is expected to find some significant differences in patterns by 

chance alone. These tests are in conjunction with observational pattern differences in 

graphs at the end of this section. They additionally tell a distinguishing comparison 

amongst the item patterns that may be lost when explored from a multivariate 

perspective. These significance values are used to help provide a baseline, and are 

intended along with the multivariate analysis to help support the explanation of the 

visual inspection of the patterns graphs. 
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In the following CI and graphic examination of patterns, it is evident that the 

Rasch condition analyses show no visible difference between the two sets of patterns 

for the first or second factor.  

In the random contamination conditions, when the residual is of sufficient size, 

the residually weighted dataset are suppressed patterns for the first and second factor. 

The Rasch weighted data has a wave-like pattern and is greatly suppressed in the 

residually weighted data for the random conditions as shown in the graphs to follow. 

The CI supports the visual representation of the data. As shown earlier, the Wilks’ 

lambdas are significant and represent the set of patterns as a whole being different. 

In the reversed contamination condition, when the residual is of sufficient size, 

the residually weighted dataset patterns are similar to Rasch-like patterns but have 

various differences depending on the condition. CI help clarify visual differences and 

are displayed in tables to follow The Wilks’  lambda significance supports visual 

graphs with relatively small values for the 50% contamination condition, larger 

values which exceed the threshold limits for the 20% condition where visual 

differences are manifest, as well as the 5% condition. 

The results of CI’s and the MANOVAs from the previous section support the 

visual differences displayed in the graphs to follow the CI tables. In the CI Table 6-29 

through 6-35 the entries -1, 0 1 and NA are used. -1 represents the average residual 

weighted data value outside and bellow the CI of the Rasch weighted data. 0 

represents the average residual weighted data value is within the CI of the Rasch 

weighted data. 1 represents the average residual weighted data value outside and 

above the CI of the Rasch weighted data. NA indicates that a CI was not calculated 
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for these values. The -1, 0 and 1 values are to assist the visual representation of the 

graphs and show evidence of matching visual patterns. 
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Table 6-29: First factor average patterns for 100% contamination conditions 

 Random Reversed 

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I2 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I3 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I4 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I5 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I6 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I7 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I8 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I9 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I10 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I11 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I12 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I13 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I14 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I15 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I16 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I17 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I18 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I19 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I20 -1 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I21 -1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I22 -1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I23 -1 1 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I24 -1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I25 -1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I26 -1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I27 -1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I28 -1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I29 -1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I30 -1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I31 0 0 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I32 0 0 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I33 1 0 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I34 0 0 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I35 0 0 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I36 0 0 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I37 0 0 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I38 0 0 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I39 0 0 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I40 0 0 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 
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Table 6-30: First factor average patterns for 50% contamination conditions 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I2 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA -1 0 
I3 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I4 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I5 -1 0 NA NA NA NA -1 0 NA -1 NA 0 NA NA -1 1 
I6 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I7 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I8 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I9 -1 0 NA NA NA NA -1 0 NA -1 NA 0 NA NA 1 0 
I10 -1 0 NA NA NA NA -1 0 NA -1 NA 0 NA NA 1 0 
I11 -1 0 NA NA NA NA -1 0 NA -1 NA 0 NA NA 1 1 
I12 -1 0 NA NA NA NA -1 0 NA -1 NA 0 NA NA 1 0 
I13 -1 0 NA NA NA NA -1 0 NA -1 NA 0 NA NA 1 1 
I14 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I15 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I16 -1 0 NA NA NA NA -1 0 NA -1 NA 0 NA NA 1 0 
I17 -1 0 NA NA NA NA -1 0 NA -1 NA 0 NA NA 1 0 
I18 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I19 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I20 -1 0 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 0 
I21 -1 0 NA NA NA NA -1 1 NA 0 NA 0 NA NA 1 1 
I22 -1 0 NA NA NA NA -1 1 NA 0 NA 0 NA NA 1 1 
I23 -1 -1 NA NA NA NA -1 0 NA -1 NA -1 NA NA 0 1 
I24 -1 -1 NA NA NA NA -1 1 NA -1 NA 0 NA NA 1 1 
I25 -1 -1 NA NA NA NA -1 -1 NA -1 NA 0 NA NA 1 0 
I26 -1 -1 NA NA NA NA -1 -1 NA -1 NA 0 NA NA 0 0 
I27 -1 -1 NA NA NA NA -1 -1 NA -1 NA 0 NA NA -1 0 
I28 -1 -1 NA NA NA NA -1 -1 NA -1 NA 0 NA NA 1 0 
I29 -1 -1 NA NA NA NA -1 -1 NA -1 NA 0 NA NA -1 -1 
I30 -1 -1 NA NA NA NA -1 -1 NA -1 NA 0 NA NA 1 -1 
I31 -1 0 NA NA NA NA -1 1 NA 0 NA 0 NA NA -1 1 
I32 -1 0 NA NA NA NA 0 1 NA -1 NA 0 NA NA -1 1 
I33 -1 -1 NA NA NA NA -1 1 NA 1 NA -1 NA NA 0 1 
I34 -1 0 NA NA NA NA -1 1 NA -1 NA -1 NA NA 1 0 
I35 -1 -1 NA NA NA NA -1 -1 NA -1 NA 0 NA NA 1 0 
I36 -1 -1 NA NA NA NA -1 -1 NA -1 NA 0 NA NA 1 0 
I37 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA 1 0 
I38 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA 1 0 
I39 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA 1 -1 
I40 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA 1 -1 
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Table 6-31: First factor average patterns for 20% contamination conditions 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA 0 -1 
I2 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA 0 -1 
I3 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I4 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA 0 -1 
I5 NA -1 NA 1 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I6 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I7 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I8 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I9 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I10 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I11 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA 0 -1 
I12 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA 0 -1 
I13 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I14 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA 0 -1 
I15 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I16 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I17 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I18 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I19 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I20 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I21 NA -1 NA 1 NA NA -1 0 -1 -1 NA 0 NA NA 0 1 
I22 NA -1 NA 1 NA NA -1 0 -1 0 NA 1 NA NA -1 1 
I23 NA -1 NA 1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 0 
I24 NA -1 NA 0 NA NA -1 -1 -1 -1 NA -1 NA NA -1 0 
I25 NA -1 NA 0 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I26 NA -1 NA 0 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I27 NA -1 NA -1 NA NA -1 -1 -1 -1 NA 0 NA NA 0 -1 
I28 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I29 NA 0 NA -1 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I30 NA 0 NA -1 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I31 NA -1 NA 1 NA NA 0 -1 -1 -1 NA 0 NA NA -1 1 
I32 NA -1 NA 1 NA NA 0 0 -1 -1 NA 0 NA NA -1 1 
I33 NA -1 NA 1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 0 
I34 NA -1 NA 1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 0 
I35 NA -1 NA 0 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I36 NA -1 NA 0 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I37 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA 1 -1 
I38 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA 1 -1 
I39 NA 0 NA -1 NA NA -1 0 -1 -1 NA 0 NA NA 1 -1 
I40 NA 0 NA -1 NA NA 0 0 -1 -1 NA 0 NA NA 1 -1 
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Table 6-32: First factor average patterns for 5% contamination conditions 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 NA -1 NA 0 NA NA -1 -1 -1 -1 NA 0 NA NA -1 -1 
I2 NA -1 NA 0 NA NA -1 -1 -1 -1 NA 0 NA NA -1 -1 
I3 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I4 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I5 NA -1 NA -1 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I6 NA -1 NA -1 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I7 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I8 NA 0 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I9 NA -1 NA 0 NA NA -1 -1 -1 1 NA 0 NA NA -1 -1 
I10 NA -1 NA 0 NA NA -1 0 0 0 NA 0 NA NA -1 -1 
I11 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I12 NA -1 NA 0 NA NA -1 -1 -1 -1 NA 0 NA NA -1 -1 
I13 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I14 NA -1 NA 0 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I15 NA -1 NA -1 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I16 NA 0 NA -1 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 
I17 NA -1 NA 0 NA NA -1 0 -1 -1 NA 0 NA NA -1 -1 
I18 NA -1 NA -1 NA NA -1 -1 -1 0 NA 0 NA NA -1 -1 
I19 NA -1 NA 0 NA NA -1 0 -1 0 NA 0 NA NA 0 -1 
I20 NA 0 NA 0 NA NA -1 0 -1 0 NA 0 NA NA 0 -1 
I21 NA -1 NA 0 NA NA -1 0 -1 0 NA 1 NA NA -1 1 
I22 NA -1 NA 1 NA NA -1 0 -1 0 NA 0 NA NA -1 1 
I23 NA -1 NA -1 NA NA -1 -1 -1 -1 NA 0 NA NA -1 0 
I24 NA -1 NA -1 NA NA -1 -1 -1 -1 NA 0 NA NA -1 0 
I25 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I26 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I27 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I28 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I29 NA -1 NA -1 NA NA -1 0 -1 -1 NA -1 NA NA 0 -1 
I30 NA -1 NA -1 NA NA -1 0 -1 -1 NA -1 NA NA 0 -1 
I31 NA -1 NA 1 NA NA 0 0 0 0 NA 1 NA NA 1 1 
I32 NA -1 NA 1 NA NA 0 0 1 0 NA 1 NA NA 1 1 
I33 NA -1 NA 0 NA NA -1 -1 1 -1 NA 0 NA NA 0 0 
I34 NA -1 NA -1 NA NA -1 -1 -1 0 NA -1 NA NA 0 -1 
I35 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I36 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I37 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I38 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
I39 NA -1 NA -1 NA NA 0 0 -1 -1 NA 0 NA NA -1 -1 
I40 NA -1 NA -1 NA NA -1 0 -1 -1 NA -1 NA NA -1 -1 

 
 

 129 
 



 

 
Table 6-33: Second factor average patterns for 100% contamination conditions 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 -1 0 NA NA NA NA 0 1 NA NA NA NA NA NA NA NA 

I2 0 -1 NA NA NA NA 1 1 NA NA NA NA NA NA NA NA 

I3 1 0 NA NA NA NA -1 1 NA NA NA NA NA NA NA NA 

I4 -1 0 NA NA NA NA -1 1 NA NA NA NA NA NA NA NA 

I5 1 1 NA NA NA NA 0 1 NA NA NA NA NA NA NA NA 

I6 1 1 NA NA NA NA -1 1 NA NA NA NA NA NA NA NA 

I7 0 1 NA NA NA NA 1 1 NA NA NA NA NA NA NA NA 

I8 0 1 NA NA NA NA -1 1 NA NA NA NA NA NA NA NA 

I9 -1 -1 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I10 1 1 NA NA NA NA -1 1 NA NA NA NA NA NA NA NA 

I11 0 1 NA NA NA NA 1 1 NA NA NA NA NA NA NA NA 

I12 1 1 NA NA NA NA -1 1 NA NA NA NA NA NA NA NA 

I13 -1 1 NA NA NA NA 1 1 NA NA NA NA NA NA NA NA 

I14 0 1 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I15 1 1 NA NA NA NA 1 -1 NA NA NA NA NA NA NA NA 

I16 1 1 NA NA NA NA 1 1 NA NA NA NA NA NA NA NA 

I17 1 1 NA NA NA NA 1 1 NA NA NA NA NA NA NA NA 

I18 1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I19 0 1 NA NA NA NA -1 1 NA NA NA NA NA NA NA NA 

I20 -1 0 NA NA NA NA -1 1 NA NA NA NA NA NA NA NA 

I21 1 0 NA NA NA NA 0 -1 NA NA NA NA NA NA NA NA 

I22 1 -1 NA NA NA NA 0 -1 NA NA NA NA NA NA NA NA 

I23 1 1 NA NA NA NA 0 1 NA NA NA NA NA NA NA NA 

I24 1 1 NA NA NA NA 1 0 NA NA NA NA NA NA NA NA 

I25 -1 -1 NA NA NA NA 1 0 NA NA NA NA NA NA NA NA 

I26 1 -1 NA NA NA NA 0 0 NA NA NA NA NA NA NA NA 

I27 -1 1 NA NA NA NA 1 0 NA NA NA NA NA NA NA NA 

I28 -1 -1 NA NA NA NA 1 1 NA NA NA NA NA NA NA NA 

I29 1 0 NA NA NA NA 1 -1 NA NA NA NA NA NA NA NA 

I30 1 -1 NA NA NA NA 1 -1 NA NA NA NA NA NA NA NA 

I31 -1 0 NA NA NA NA 0 1 NA NA NA NA NA NA NA NA 

I32 -1 0 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I33 -1 1 NA NA NA NA -1 1 NA NA NA NA NA NA NA NA 

I34 1 -1 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I35 -1 1 NA NA NA NA 0 -1 NA NA NA NA NA NA NA NA 

I36 -1 0 NA NA NA NA -1 1 NA NA NA NA NA NA NA NA 

I37 0 -1 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I38 -1 0 NA NA NA NA -1 -1 NA NA NA NA NA NA NA NA 

I39 1 -1 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 

I40 -1 0 NA NA NA NA -1 0 NA NA NA NA NA NA NA NA 
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Table 6-34: Second factor average patterns for 50% contamination conditions 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I2 0 -1 NA NA NA NA 0 -1 NA -1 NA 1 NA NA -1 -1 
I3 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I4 0 -1 NA NA NA NA 0 -1 NA -1 NA -1 NA NA -1 -1 
I5 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I6 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I7 0 -1 NA NA NA NA 0 -1 NA -1 NA -1 NA NA -1 -1 
I8 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I9 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I10 0 -1 NA NA NA NA 0 -1 NA -1 NA 1 NA NA -1 -1 
I11 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I12 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I13 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I14 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I15 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I16 0 -1 NA NA NA NA 0 -1 NA -1 NA -1 NA NA -1 -1 
I17 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I18 0 -1 NA NA NA NA 0 -1 NA -1 NA -1 NA NA -1 -1 
I19 0 -1 NA NA NA NA 1 -1 NA -1 NA 0 NA NA -1 -1 
I20 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I21 0 -1 NA NA NA NA 0 0 NA -1 NA 0 NA NA -1 1 
I22 0 -1 NA NA NA NA 0 -1 NA -1 NA 1 NA NA -1 1 
I23 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I24 0 -1 NA NA NA NA 0 -1 NA -1 NA 1 NA NA -1 -1 
I25 0 -1 NA NA NA NA 0 -1 NA -1 NA -1 NA NA -1 -1 
I26 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I27 0 -1 NA NA NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I28 0 -1 NA NA NA NA 1 -1 NA -1 NA -1 NA NA -1 -1 
I29 0 -1 NA NA NA NA 0 -1 NA -1 NA -1 NA NA -1 -1 
I30 0 0 NA NA NA NA 0 -1 NA -1 NA -1 NA NA -1 0 
I31 1 -1 NA NA NA NA 1 0 NA -1 NA 0 NA NA 0 1 
I32 0 -1 NA NA NA NA 1 -1 NA -1 NA 0 NA NA 0 0 
I33 -1 -1 NA NA NA NA 1 -1 NA -1 NA 1 NA NA 0 -1 
I34 -1 -1 NA NA NA NA 1 0 NA -1 NA 0 NA NA -1 -1 
I35 -1 -1 NA NA NA NA -1 -1 NA -1 NA -1 NA NA -1 -1 
I36 -1 -1 NA NA NA NA -1 -1 NA -1 NA 0 NA NA -1 -1 
I37 -1 -1 NA NA NA NA -1 -1 NA -1 NA -1 NA NA 0 -1 
I38 -1 -1 NA NA NA NA -1 -1 NA -1 NA 0 NA NA 0 -1 
I39 -1 0 NA NA NA NA -1 -1 NA -1 NA -1 NA NA 0 0 
I40 -1 0 NA NA NA NA -1 -1 NA -1 NA 0 NA NA 0 0 
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Table 6-35: Second factor average patterns for 20% contamination conditions 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 NA 0 NA 0 NA NA 0 1 NA 0 NA 0 NA NA -1 1 
I2 NA 0 NA 0 NA NA 0 0 NA 0 NA 0 NA NA -1 0 
I3 NA 0 NA -1 NA NA 0 1 NA 1 NA 1 NA NA -1 0 
I4 NA 0 NA -1 NA NA 0 0 NA 0 NA 1 NA NA -1 1 
I5 NA 0 NA -1 NA NA 0 0 NA 0 NA 1 NA NA -1 1 
I6 NA 0 NA -1 NA NA 0 0 NA 0 NA 1 NA NA -1 0 
I7 NA 0 NA 0 NA NA 1 0 NA 0 NA 1 NA NA -1 1 
I8 NA 0 NA -1 NA NA 0 0 NA 0 NA 1 NA NA -1 1 
I9 NA 0 NA 0 NA NA 1 0 NA 1 NA 0 NA NA -1 1 
I10 NA -1 NA 0 NA NA 1 0 NA 0 NA -1 NA NA -1 0 
I11 NA 0 NA 0 NA NA 0 0 NA 0 NA -1 NA NA -1 1 
I12 NA 0 NA -1 NA 0 0 NA NA 0 NA -1 NA NA -1 0 
I13 NA -1 NA -1 NA 0 0 NA 0 NA 1 NA NA -1 0 NA 

I14 NA 0 NA -1 NA NA 0 0 NA 0 NA 1 NA NA -1 1 
I15 NA 0 NA -1 NA NA 1 0 NA 0 NA 1 NA NA -1 1 
I16 NA 0 NA -1 NA NA 0 0 NA 0 NA 1 NA NA -1 1 
I17 NA 0 NA -1 NA NA 0 0 NA 0 NA 1 NA NA -1 1 
I18 NA 0 NA -1 NA NA 1 0 NA 0 NA 1 NA NA -1 1 
I19 NA 0 NA 0 NA NA 0 0 NA 0 NA -1 NA NA -1 1 
I20 NA 0 NA 0 NA NA 0 0 NA 0 NA 0 NA NA -1 1 
I21 NA 0 NA 0 NA NA 1 1 NA 1 NA -1 NA NA -1 1 
I22 NA 0 NA 0 NA NA 0 1 NA 1 NA -1 NA NA -1 1 
I23 NA -1 NA -1 NA NA 0 1 NA 1 NA 1 NA NA -1 0 
I24 NA 0 NA -1 NA NA 0 0 NA 1 NA 1 NA NA -1 1 
I25 NA -1 NA -1 NA NA 1 -1 NA 0 NA 1 NA NA -1 1 
I26 NA -1 NA -1 NA NA 1 0 NA 0 NA 1 NA NA -1 1 
I27 NA -1 NA 0 NA NA 0 -1 NA -1 NA 1 NA NA -1 0 
I28 NA -1 NA 0 NA NA 0 -1 NA -1 NA 1 NA NA -1 0 
I29 NA -1 NA 0 NA NA 0 -1 NA -1 NA -1 NA NA -1 -1 
I30 NA -1 NA 0 NA NA 0 -1 NA -1 NA 0 NA NA -1 -1 
I31 NA 0 NA 0 NA NA 1 1 NA 1 NA 1 NA NA -1 1 
I32 NA 0 NA 0 NA NA 1 1 NA 1 NA -1 NA NA -1 0 
I33 NA 0 NA -1 NA NA 1 0 NA 1 NA 1 NA NA -1 0 
I34 NA -1 NA -1 NA NA 1 0 NA 1 NA 1 NA NA -1 0 
I35 NA -1 NA -1 NA NA -1 0 NA 0 NA 1 NA NA -1 1 
I36 NA -1 NA -1 NA NA -1 0 NA 0 NA 1 NA NA -1 1 
I37 NA -1 NA -1 NA NA -1 -1 NA -1 NA 1 NA NA 0 0 
I38 NA -1 NA 0 NA NA -1 -1 NA -1 NA 1 NA NA 0 0 
I39 NA -1 NA 0 NA NA -1 -1 NA -1 NA 0 NA NA 1 -1 
I40 NA -1 NA 0 NA NA -1 -1 NA -1 NA -1 NA NA 1 -1 
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Table 6-36: Second factor average patterns for 5% contamination conditions 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 NA 0 NA 0 NA NA 0 1 -1 -1 NA -1 NA NA 1 1 
I2 NA 0 NA 0 NA NA 0 1 -1 0 NA 0 NA NA 0 1 
I3 NA 0 NA 0 NA NA 0 0 -1 -1 NA 1 NA NA 1 1 
I4 NA -1 NA 0 NA NA 0 1 -1 -1 NA 0 NA NA 1 1 
I5 NA -1 NA 0 NA NA 0 1 -1 -1 NA 1 NA NA 1 1 
I6 NA 0 NA -1 NA NA 0 1 -1 -1 NA 1 NA NA 1 1 
I7 NA -1 NA 0 NA NA 1 1 -1 -1 NA 1 NA NA 1 1 
I8 NA -1 NA 0 NA NA 0 1 -1 -1 NA 0 NA NA 1 1 
I9 NA 0 NA 0 NA NA 0 0 -1 -1 NA -1 NA NA 1 1 
I10 NA -1 NA 0 NA NA 1 1 0 -1 NA -1 NA NA 1 1 
I11 NA 0 NA 0 NA NA 1 0 -1 0 NA 0 NA NA 1 1 
I12 NA 0 NA 0 NA NA 0 0 -1 0 NA -1 NA NA 1 0 
I13 NA -1 NA 0 NA NA 0 0 -1 -1 NA -1 NA NA 1 1 
I14 NA 0 NA 0 NA NA 0 1 -1 -1 NA 0 NA NA 1 1 
I15 NA -1 NA 0 NA NA 1 1 -1 -1 NA 1 NA NA 1 1 
I16 NA -1 NA 0 NA NA 1 0 -1 -1 NA 1 NA NA 1 1 
I17 NA -1 NA 0 NA NA 0 0 -1 -1 NA 0 NA NA 1 1 
I18 NA 0 NA 0 NA NA 1 1 -1 -1 NA -1 NA NA 1 1 
I19 NA -1 NA 0 NA NA 0 -1 -1 -1 NA -1 NA NA 1 1 
I20 NA -1 NA 0 NA NA 0 1 -1 -1 NA -1 NA NA 1 1 
I21 NA 0 NA 0 NA NA 1 0 -1 1 NA -1 NA NA 1 0 
I22 NA 0 NA 1 NA NA 0 0 -1 0 NA 0 NA NA 1 0 
I23 NA -1 NA 0 NA NA 0 -1 -1 -1 NA 0 NA NA 1 1 
I24 NA -1 NA 0 NA NA 0 1 -1 0 NA 0 NA NA 1 0 
I25 NA -1 NA -1 NA NA 0 -1 -1 -1 NA 1 NA NA 1 1 
I26 NA -1 NA -1 NA NA 1 -1 -1 -1 NA 1 NA NA 1 1 
I27 NA -1 NA -1 NA NA 1 -1 -1 -1 NA 1 NA NA 1 0 
I28 NA -1 NA -1 NA NA 0 -1 -1 -1 NA 0 NA NA 1 1 
I29 NA -1 NA -1 NA NA 0 -1 -1 -1 NA -1 NA NA 1 -1 
I30 NA -1 NA -1 NA NA 1 -1 -1 -1 NA -1 NA NA 1 -1 
I31 NA 0 NA 1 NA NA 1 0 -1 1 NA 0 NA NA 1 0 
I32 NA 0 NA 1 NA NA 1 0 -1 1 NA 0 NA NA 1 0 
I33 NA -1 NA -1 NA NA 1 0 -1 0 NA 0 NA NA 1 1 
I34 NA -1 NA 0 NA NA 1 -1 -1 0 NA 0 NA NA 1 0 
I35 NA -1 NA -1 NA NA 0 0 -1 -1 NA 1 NA NA 1 1 
I36 NA -1 NA -1 NA NA -1 -1 -1 -1 NA 1 NA NA 1 1 
I37 NA -1 NA -1 NA NA -1 -1 -1 -1 NA 1 NA NA 1 1 
I38 NA -1 NA -1 NA NA -1 -1 -1 -1 NA 1 NA NA -1 1 
I39 NA -1 NA -1 NA NA -1 -1 -1 -1 NA 0 NA NA -1 -1 
I40 NA -1 NA -1 NA NA -1 -1 -1 -1 NA -1 NA NA -1 -1 
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The Graphs to follow show what the above CI’s look like and the multivariate 

differences as a graphic. The Rasch weighted data patterns are shown in comparison 

to the residually weighted data. The Rasch graphs are displayed first in order to 

determine what the Rasch generated data should look like under the baseline 

conditions, and to show what no difference looks like from a visual perspective. The 

graphs for the first and second factor show no visible differences supporting 

hypothesis 7. 

 Figure 6-1: Rasch patterns as baseline factor 
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The preceding Rasch values graphically display no difference between the 

patterns. It was expected that the baseline data would look the same. They do, 

however, show what expected Rasch patterns look like for each of the conditions. The 

baselines above and in the second factor show that the scaling factor of 1 has a 

relatively flat pattern but hovers around .3, while the increase in range creates a wave 

live pattern with the extreme values having values close to zero, and the items close 

to zero have patterns near .3.  In the graphs to follow, Rasch-like patterns are 

prevalent, particularly in the Rasch weighted data and can be visually compared to the 

residually weighted data. 

It was generally expected in Hypotheses 8 and 9 that weighted Rasch 

generated data looks like the Rasch baseline data and that data generated with 
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contamination would look different. In most cases, the following sets of graphs 

support the hypotheses. The data generated in the random contamination conditions 

looks suppressed. In the reversed Rasch contamination condition, offset patterns to 

the Rasch data are apparent.  

Figure 6-2: Factor 1 residual patterns over .4% for 100% random contamination 
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The residually weighted data condition and the contaminated portion of the 

subtest for the Rasch weighted data are all hovering around zero. The Rasch 

generated subtest for the Rasch weighted data look like Rasch baseline patterns. 
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Figure 6-3: Factor 1 residual patterns over .4% for 50% random contamination 
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The first two graphs are similar to the 100% contamination condition. In the 20 item, 

scaling factor 1x1 the random residual pattern looks like previous graphs, but the 

Rasch condition now has wave like pattern with patterns increasing as the item 

increases. This is an increasing item-pattern wave pattern.  In the 20 item, scaling 

factor of 1x3 the random condition looks similar to a somewhat suppressed Rasch 

condition, while the Rasch condition seemed to have a more drastic increasing pattern 

similar to the previously discussed graph.
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Figure 6-4: Factor 1 residual patterns over .4% for 50% reversed contamination 
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In the 1x1 scaling factor condition the residual patterns look somewhat suppressed 

with a spike in patterns in the residual subtest. In the 20 item 1x3 graph there appears 

to be some separation, but in general these graphs do not show much separation 

between the two weighted datasets.
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Figure 6-5: Factor 1 residual patterns over .4% for 20% random contamination 
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In the first two graphs, the pattern is again suppressed for residually weighted dataset 

and Rasch like for the Rasch weighted dataset. In the 20 item 1x3 scaling factor, the 

residual has again a Rasch pattern for the Rasch generated subtest and a random 

pattern for the random generated pattern. This time, the Rasch weighted dataset has a 

very distinct pattern found in the baseline condition. In the final graph, the random 

residually weighted dataset looks random for most patterns, while the wavelike 

pattern from the previous 50% condition seems extended and more extreme. 
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Figure 6-6: Factor 1 residual patterns over .4% for 20% reversed contamination 
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The first graph seems to show a distinct Rasch pattern compared to a reversed 

version of the Rasch increasing item-pattern wave pattern seen in some of the random 

conditions. The item-pattern is actually the same direction because the reversed Rasch 

condition has positive values were negative items should be, and vice versa. In the 

second graph, a distinct Rasch graph is compared to a suppressed Rasch graph. In the 

third graph, the Rasch data is suppressed, and the reversed Rasch data has the item-

pattern. In the fourth graph, the Rasch data is again distinct and the reversed condition 

has a suppressed and off centered Rasch-like pattern.
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Figure 6-7: Factor 1 residual patterns over .4% for 5% random contamination 
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In all conditions, the Rasch pattern is distinct. There is less suppression 

overall in the residually weighted data, but the suppression is still operative. In the 

final graph for the residually weighted data, there is a Rasch pattern for Rasch subtest 

and a random pattern for the contaminated subtest.
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Figure 6-8: Factor 1 residual patterns over .4% for 5% reversed contamination 
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All of the Rasch weighted datasets pattern in the 5% reversed Rasch graph 

look like the appropriate Rasch baseline.  

In the 20 item, 1x3 scaling factor condition in the Rasch generated subtest is 

suppressed, but the item-pattern is manifest in the contaminated subtest.
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Figure 6-9: Rasch patterns as baseline factor 2 
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A suppressed version of Rasch patterns is apparent in the second factors.  

Graph 6-10: Factor 2 residual patterns over .4% for 100% random contamination 
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 Figure 6-11: Factor 2 residual patterns over .4% for 50% random contamination 
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 In all cases, the residually weighted data have a suppressed pattern. The 

secondary factors are now the Rasch like patterns not shown on the first factor. The 

item-pattern pattern is clear in the 10 item test, and the Rasch pattern is manifest in 

the 20 item graph.  
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Figure 6-12: Factor 2 residual patterns over .4% for 50% reversed contamination 
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The Rasch weighted data still have Rasch patterns. Though the residual 

weighted data are suppressed, the 20 item 3x3 condition show a clear Rasch pattern.
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Figure 6-13: Factor 2 residual patterns over .4% for 20% random contamination 
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The residually weighted data is completely suppressed. Again, the Rasch 

weighted data shows the others pattern not manifest in the first factor. 
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Figure 6-14: Factor 2 residual patterns over .4% for 20% reversed contamination 
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The Rasch weighted data in the 10 item conditions still has Rasch patterns. However, 

they are suppressed in the 20 item conditions. In the 20 item conditions, the reversed 

Rasch has Rasch-like patterns but is suppressed in the 10 item conditions. 
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Figure 6-15: Factor 2 residual patterns over .4% for 5% random contamination 
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The residual weighted data is suppressed for most patterns across all 5% 

conditions. There are some clear Rasch item-patterns in the Rasch weighted data. The 

stair-like and bulging structures are reminiscent of some previous Rasch baseline and 

some first factor patterns that were weighted to be Rasch.    
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Figure 6-16: Factor 2 residual patterns over .4% for 5% reversed 

contamination 
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As seen above, there are still some Rasch patterns in the first two graphs for 

the Rasch weighted data, but very little for the last three. Though mostly suppressed 
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in the graphs, the residually weighted data has some Rasch type patterns visible in the 

last graph. 

Residual patterns 

This section shows graphs of the residual patterns aggregated by difficulties 

within subtest. The values from both subtests are shown of the same scale access 

from -2 to +2. The comparisons are made within the residual conditions explored in 

the previous sections. The visual representation shows patterns on the Rasch subtest 

compared to the contaminated subtest. The baseline Rasch patterns are generated 

using a random 2% condition. Conditions with greater percentages conform to the 

same pattern. 

Figure 6-17: Rasch patterns as baseline factor 1 
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It was expected from hypothesis 10 that the subtest in the Rasch baseline 

would look like the second subtest. In the first four graphs this is true. In those 

remaining, four different patterns exist for the subtest. However, the differences are 

simply due to the change in scaling factor. The Rasch pattern is the same across all 

conditions from the same scaling factors. The scaling factor of one has a relatively 

flat set of pattern around .3, whereas the scaling factor of three has a mountain or 

wave like pattern with the extreme values going to zero and the items around zero 

have patterns around .3. These two stable patterns can be used as a baseline. 
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Figure 6-18: Factor 1 residual patterns over .4% for 100% random contamination 
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These patterns are small and have no distinct features. 
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Figure 6-19: Factor 1 residual patterns over .4% for 50% random contamination 
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These graphs start to separate the subtests with the Rasch subtest being 

distinctly larger than the random contamination subtest. 
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Figure 6-20: Factor 1 residual patterns over .4% for 50% reversed contamination 
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The two twenty-item subtest conditions show patterns with distinct features of 

some of the baseline Rasch condition. There may be some crossing patterns in the 

graphs but not anything with clear evidence. 

Figure 6-21: Factor 1 residual patterns over .4% for 20% random contamination 
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The 20% random contamination condition further displays the distinct pattern 

of greater values for the Rasch subtest portions of the test. 

 
Figure 6-22: Factor 1 residual patterns over .4% for 20% reversed contamination 
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A clear crossing pattern is visible in the 20 item equal scaling factor of 1 and 

10 item scaling factor of 1 for Rasch and 3 for contaminated. The 20 item, equal 

scaling factor of 3 condition displays a Rasch pattern. The 20 item scaling factor of 1 

for Rasch and 3 for contaminated seems to be a mixture of the crossing pattern and 

Rasch.
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Figure 6-23: Factor 1 residual patterns over .4% for 5% random contamination 
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The same pattern is still apparent in the 5% random condition with some more 

Rasch visible in some of the graphs for the Rasch generated subtests. 
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Figure 6-24: Factor 1 residual patterns over .4% for 5% reversed contamination 
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The crossing pattern is manifest in all of the graphs for the 5% reversed 

contamination condition and is indicative of the expected type of pattern 

hypothesized in the data.
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Figure 6-25: Rasch patterns as baseline factor 2 
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Although there are patterns recognizable from the first factors, the sizes of the 

patterns in the baseline condition are small. Many of the following secondary factors 

have no pattern or magnitude of pattern to discuss. 
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Figure 6-26: Factor 2 residual patterns over .4% for 100% random contamination 
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Figure 6-27: Factor 2 residual patterns over .4% for 50% random contamination 
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Figure 6-28: Factor 2 residual patterns over .4% for 50% reversed contamination 
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The 20 item scaling factor of 3 condition, the 10 item Rasch scaling factor 1, 

and contaminated scaling factor 3 show some residual pattern similar to the baseline 

conditions, but the magnitude of the patterns are very small. 
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Figure 6-29: Factor 2 residual patterns over .4% for 20% random contamination 

20 item subtest, variance 1x1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-2 -1 0 1 2

Rasch Mixed

20 item subtest, variance 3x3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-2 -1 0 1 2

Rasch Mixed

 
10 item subtest, variance 1x3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-2 -1 0 1 2

Rasch Mixed

20 item subtest, variance 1x3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-2 -1 0 1 2

Rasch Mixed

 
Some of the separation from the first factor is possibly present but the 

magnitudes are too small to interpret. 
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Figure 6-30: Factor 2 residual patterns over .4% for 20% reversed contamination 
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There are some clear patterns with some pattern values approaching and 

exceeding .3. The 20 item equal scaling factor of 3 patterns look very similar to the 

Rasch first factor as do the rest of the patterns in this section. 
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Figure 6-31: Factor 2 residual patterns over .4% for 5% random contamination 
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There is again some potential separation here but nothing with enough 

difference attribute any real findings.
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Figure 6-32: Factor 2 residual patterns over .4% for 5% reversed contamination 
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The Patterns with a scaling factor of 3 in the contaminated subtest are 

reminiscent of the Rasch patterns in the first factor. 
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Summary of residuals and eigenvalues 

This study explored the unscalable class as a residual to the Rasch class, in 

which an unscalable class proportion of reasonable size was discovered. A 

meaningful size of the unscalable class was established as .4% classification. In 

exploring the residuals, weighted factor analyses were conducted and the patterns of 

items on factors were explored visually and supported extensively through the use of 

MANOVA and CI. Hypotheses regarding effects support visual representation and 

MANOVA and CI are tools to help explain meaningful and unique patterns within a 

condition. The objective of the significance testing and graphing was to show a more 

thorough picture of what was left over in residuals for each of the 29 conditions in 

which the residuals were large enough to inspect.  

Patterns of effects were observed for the manipulated factors in the study of 

subtest size, scaling factor of the subtests, % contamination and type of 

contamination.  

The size of the residual increased on average from the random condition 

µ=2.35 σ=4.67 to the reversed µ=5.19 σ=12.12condition.  As percent contamination 

condition decreases, the residual increases 100% µ= .01 σ=.02, 50% µ= .15 σ=.32, 

20% µ= .24 σ=.39, 5% µ= .36 σ=.42. The size of the subtest increases from µ= .77% 

σ= 1.55 in the 10 item condition to µ= 6.77 σ= 11.14 in the 20 item subtest condition. 

An increase in the range of the subtest increased from µ= 0.72 σ=1.40 when the range 

was -2 to m+2 to µ= 6.83 σ=12.31 for the -6 to +6 condition. In general, the residual 

size is largest proportionately in the 20 subtest with a larger range. The one exception 

is the reverse Rasch 100% contamination condition, which is effectively a Rasch 
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baseline condition. The pattern of residuals is small and represents less than one 

simulee. 

In investigating the number of factors by evaluating the size of the 

eigenvalues for the unweighted data, there is predominantly one main factor in the 

baseline conditions and the 100% contamination conditions with some minor 

secondary factors being found in the Rasch and Reversed Rasch condition. The 

reversed Rash is nearly indistinguishable from the Rasch baseline condition. The 

random noise added to the Rasch data in the 100% random contamination condition 

was systematic for all simulees and did not add a large enough factor to the data. In 

the unweighted data for the reversed Rasch contamination conditions for 50%, 20% 

and 5% and for the random contamination of 50% and 20%, two factors were present.  

In the 5% random contamination condition, only a second factor existed for the 

conditions with the increased subtest range by a factor of 3. 

When the data is weighted to the Rasch class and compared to the unweighted 

data, a change in the number of factors is apparent in the data for the 20% 

contamination condition for both Random and Reversed Rasch, 20 items subtest, and 

a range of ±6. In the 5% random and reversed Rasch contamination condition, the 

change occurs in the same subtest conditions as well as in the 20 item subtest with 

equal smaller ranges. Across the conditions, the secondary factor decreases when the 

unscalable class is reduced by weighing the data to the Rasch class. In some 

conditions, such as a larger subtest, smaller percent contaminated and large range for 

a subtest these factors seem to be removed more efficiently. 
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In the residually unscalable class, weighted data for the 50%, 20% and 5% 

conditions across both random and reversed Rasch contamination, the 20 item subtest 

with a larger range than the Rasch subtest has eigenvalues larger than HPA. In the 

reversed Rasch 50%, 20% and 5% conditions, eigenvalues are larger than the HPA 

values for the 20 item subtest with equal but large ranges and for the 20% and 5% 10 

item subtests with a larger range than the Rasch only subtest. When a factor was 

detected for the systematic contamination six of the eight times there was a secondary 

factor. Visual graphs support the idea in these tests that one factor is Rasch and the 

other is a reversed Rasch factor. However aspects of both can be found in the other. A 

factor is only found clearly twice in the weighted data for random contamination and 

looks like a Rasch factor, with some suppression. 

The Wilks’ lambda F-test in conjunction with CI supports the overall 

evaluation of the 29 conditions large enough to be explored thoroughly.  The patterns 

of importance have been displayed in the result section along with graphical 

representation of comparison between Rasch and unscalable weighted data, and 

within the unscalable class by itself. In general, the visual graphics support the 

statistical evaluation and vice versa. While the factor is significant in the residual 

condition for the multivariate analysis, a visual separation or crossing of the Rasch 

and unscalable data is both apparent and strong. When the multivariate analysis is not 

significant, the patterns are small or overlapping and the graphic much less telling of 

any visual omnibus separation in patterns. The individual CI tend to support 

separation of the Rasch and unscalable data item by item. The univariate procedure 
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supports the presence of the patterns revealed in the visual display, which are 

discussed in the following section. 

Central findings residuals 

 The results examined residual size, the number of factors extracted, 

comparative MANOVAs between weighted data, CI’s and graphical evidence. The 

most interesting cells in which to explore the residual data are those that have a 

residual size of .4% or greater and have eigenvalues over the HPA threshold. This 

means there is a large enough residual extracted and factor or two, which is still 

apparent in the residual.  In many conditions from the results section, Significant F 

values and CI supports show visual differences between the Rasch and residually 

weighted data.  These differences between the two datasets do not fully explain what 

is going on within the residual data.  The focus of this section is to more thoroughly 

investigate residuals whose characteristics exhibit something left over when the 

Rasch partitioning of the data is removed. 

The random contamination residuals met the criteria for detailed exploration 

in three conditions where: the test range was ±2 for the uncontaminated subtest and 

±6 for the contaminated subtest, when the subtest of size was 20 for the 50%, 20% 

and 5% contamination for the first factor.  
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Figure 6-33: 50% 20% 5% residual 
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 When an observable factor is indicated in the random contamination condition 

the interaction occurs between a subtest of twenty items and an increase in the scaling 

factor of that subtest to 3, As expected from hypothesis 11 the contaminated subtest 

had smaller pattern values, close to zero, than the all Rasch subtests. Although many 

other conditions had significant differences between the Rasch and residually 

weighted data, these conditions had a clear first factor. The other conditions were 

frequently significant because the Rasch weighted data had Rasch patterns and the 

random contamination residual had random patterns around zero. The pattern that is 

occurring in this data is made clear when compared to the Rasch pattern for that 

condition.  
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Figure 6-34: 50% 20% 5% comparison 
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The differences in the 50% contamination between the Rasch and Residually 

weighted data are obvious in the 20% and 5% contamination conditions.  These 

conditions show that, as expected, Rasch weighted data from the Rasch baseline. The 

patterns in the residually weighted data show that same Rasch pattern for the Rasch 

generated subtest, items 1 through 20, and show patterns hovering around zero in the 

contamination portion of the subtest. In the Residual data this is clearly a non-Rasch 

pattern for the contaminated subtest and a Rasch pattern for the first twenty items. 

This pattern of Rasch for one subtest and patterns around zero for the contaminated 

subtest is the random pattern expected in the residual data when a pattern would exist. 
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The systematic contamination residuals are explored in the following 

conditions: The six conditions for 50%, 20% and 5% where the 20 item contaminated 

subtests had a range of ±6; The two conditions for the 20% and 5% where the 10 item 

contaminated subtests range was ±2 for the uncontaminated subtest and ±6 for the 

contaminated subtest; The one condition for the 5% condition the 20 item 

contaminated subtests the range was ±2 for the uncontaminated subtest and ±6 for the 

contaminated subtest. 

Figure 6-35: Factor 1 Residual patterns over .4% for 50% reversed contamination 
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Figure 6-36: Factor 2 Residual patterns over .4% for 50% reversed contamination 
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Although these conditions come up as having two factors, they do not look 

any different than Rasch data. The secondary factor in the 3x3 condition looks like 

the Rasch data and in the 1x3 condition does not take on any characteristics. The 

residuals are Rasch-like and the expected reversed Rasch Factor is not clear in the 

50% contamination condition. 

 173 
 



 

Figure 6-37: Factor 1 Residual patterns over .4% for 20% reversed contamination 
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Figure 6-38: Factor 2 Residual patterns over .4% for 20% reversed contamination 
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Figure 6-39: Factor 1 residual patterns over .4% for 5% reversed contamination 
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The two common themes in these patterns for the 5% and 20% conditions are 

crossing patterns and Rasch patterns. This crossing pattern supports hypothesis 12 

that a reversed effect would become more prominent as the strength of effect 

increased. This pattern shows a reversal effect and a distinct pattern in most cases 

from the Rasch model. This first factor is a Reversed Rasch factor. In the comparison 

model the crossing pattern looks a lot like steps. In the 10 1x3 20% condition the first 

factor is the crossing pattern of Reversed Rasch and indicative of the systematic 

contamination. Some crossing is apparent in all the 5% conditions, but only one of 

them has a strong enough second factor that is an expected Rasch pattern. When a 

pattern is detected as the second factor in the Reversed Rasch contaminated 

conditions, it is like the Rasch baseline patterns. 

Figure 6-40: Factor 2 residual patterns over .4% for 5% reversed contamination 

20 item subtest, variance 1x3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-2 -1 0 1 2

Rasch Mixed

20 Item subtest, Variance 1x3

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1 11 21 31

Rasch Residual
 

 177 
 



 

A summary of hypotheses and briefly stated outcomes 
 

1. It is expected that the residual size will: 

a. Proportionately increase as the percent of contamination generated into 

the data decreases 

i. Proportionate residual size equals 100% = 0.012, 50% = 0.147, 

20% =0.239, 5% =0.356. 

ii. Hypothesis Supported 

b. Increase as the contaminated subtest range increases from ±2 to ±6 

i. Residual size for the contaminated subtest range ±2 = 0.717, 

for ±6 = 6.827. 

ii. Hypothesis supported 

c. Increase as the contaminated subtest size increases from 10 to 20 items 

i. Residual size for the contaminated subtest with 10 items = 

0.777, for 20 items = 6.767 

ii. Hypothesis supported 

d. Be larger for the systematic contamination conditions when compared 

to the random contamination conditions. 

i. Residual size for the systematic contamination = 5.191, for the 

random contamination = 2.353 

ii. Hypothesis supported 

2. In the eight Rasch only generated baseline conditions one factor will be 

present in the unweighted data. 

i. Two of the eight had small second factors supported by HPA 
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ii. Hypothesis partially supported 

3. In all other 64 systematic or random contamination conditions will have 

present a second factor in the data for all unweighted datasets.  

i. Hypothesis supported fully in the 50% and 20% conditions 

with only 2 of 16 exceptions in the 5% condition 

ii. Hypothesis not supported in the 100% conditions with 4 of 

16 having two factors. 

4. On average, in the Rasch weighted there will be fewer factors extracted from 

the data when compared to the unweighted data.  

i. Three fewer factors were extracted in the Rasch weighted 

data in comparison to the unweighted data 

ii. Hypothesis Supported 

5. On average it is expected that the systematically contaminated conditions will 

have more factors than the random contamination conditions when the 

residual is detectable. 

i. The systematic condition had 8 first and 6 secondary factors, 

while the random condition had 3 first and no secondary 

factors. 

ii. Hypothesis Supported 

a. When factors are found for the systematically contaminated conditions 

there will be two factors: one Rasch and one Reversed Rasch 

i. Hypothesis Supported 6 out of 8 times 
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b. When factors are found for the random contaminated conditions there 

will be only one factor in the data which is a suppressed Rasch factor. 

ii. Hypothesis Supported 2 out of 2 times 

6. Through the use of MANOVA it is expected that when residual misfit is 

extracted there will be a significant difference between the Rasch weighted 

patterns and residually weighted patterns in the first and second factors.  

i. Hypothesis supported for the first factor 

ii. Hypothesis partially supported for the second factor 

a. It is expected that differences will be more detectable when the 

contamination is stronger. Specifically, stronger contamination is 

measured by: an increase in scaling factor in the contaminated subtest 

and an increase in the number of items from 10 to 20 items. 

i. Number of detected differences for scaling factor 1=9, 3=14. 

ii. Number of detected differences for subtest size of 20 item = 

15, 10 item = 8 

iii. Hypothesis supported, but interacts with selected number of 

residuals 

b. It is expected that as the proportion of contamination increases, fewer 

residual effects will be significant. The contamination will overwhelm 

the data in both the residual and Rasch conditions and cancel out 

differences between the two weighted datasets. 

iv. Only the 100% condition second factors for the random 

contamination selected were not significant.  
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v. The reversed Rasch contamination were more frequent as the 

proportion of contamination decreased 

vi. Hypothesis partially supported 

7. When the Rasch only, baseline data, are randomly split, there should be no 

visible difference between the two sets of patterns for the first or second 

factor. 

iii. Hypothesis supported by no visible differences in graphs 

8. In the random contamination conditions the residually weighted dataset 

should have suppressed patterns for the first and second factor. The Rasch 

weighted data should still have strong Rasch patterns. The differenced should 

be captured with CI differences attributed to residual weighted values close to 

0 and Rasch weighted data following Rasch type patterns. These differences 

should be apparent in graphs. The Wilks’ lambda should be significant and 

larger than the baseline F. 

i. Hypothesis supported visually and through analysis 

9. In the reversed contamination condition the residually weighted dataset should 

have strong patterns similar to Rasch weighted data but in a different graphic 

structure for both the first and second factor. The differences should be 

captured with CI differences attributed to the differences in patterns 

particularly in the contaminated subtest. The Wilks’ lambda should be 

significant and larger than the baseline F. 

i. Hypothesis supported visually and through analysis 
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10. It is expected that the subtest in the Rasch baseline conditions will look like 

the remainder of the exam. Both subtests will have Rasch patterns 

i. The type of Rasch pattern displayed was dependent on the 

scaling factor. 

ii. Hypothesis partially supported 

11. In the random condition it is expected that the contaminated subtest will have 

significantly smaller pattern values, close to zero, than the all Rasch subtest. 

i. Hypothesis supported visually and through analysis when a 

factor existed for the random contamination condition. 

12. It is expected that patterns in the reverse effect condition should show a 

reversed pattern in the subtests which becomes more prominent as the strength 

of the effect increases. 

i. Hypothesis supported visually and through analysis when a 

factor existed for the reversed effect contamination condition. 
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Chapter 7: Discussion 
 

 The success of this study depended on the ability of the two-class model to 

parse out a residual class based on an unscalable condition. Next the study focused on 

the systematic exploration of differences between two weighted datasets, one Rasch 

and the other residual. The residuals were explored in more detail in the spirit of 

Tukey to find if there were meaningful relationships left when a residual class was 

large enough to be explored. Tukey, of course, explores a traditional residual in the 

context of regression. In the current investigation the residual explored is the 

proportion assigned to the unscalable class on a case by case basis. In the spirit of 

Tukey, the graphs provide a tremendous amount of information in the 29 conditions 

with residuals large enough to explore. 

The first goal of the study, to separate out some information from the Rasch 

class into an unscalable class, was successful. Out of the 64 possible conditions with 

modeled contamination, the residual was large enough to explore in 29 of those 

conditions. “Large enough to explore” was operationally defined by a threshold of 

.4% or the equivalent of at least two simulees. In the 100% contamination condition, 

the random contamination produced a searchable residual four out of eight times. The 

reversed contamination condition did not produce anything to explore. These eight 

conditions should have produced no meaningful residual greater than the true Rasch 

conditions. The reversed Rasch scaled the difficulties backward for all simulees in the 

conditions, effectively mirroring the all Rasch condition. The subtest was full Rasch 

with items in the opposite order. The residuals that are left look nearly identical in 
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both magnitude and relative pattern as the Rasch baseline condition. Therefore, our 

success story is altered from 29 out of 64 to 45 out of 72 if one includes the Rasch 

baseline.  

In the current investigation, the model selected was unable to acquire a 

residual for any condition whose Rasch subtest that had the difficulty parameter 

scaling factor of 3 and the contaminated condition had a scaling factor of 1. The 

Rasch subtest with a wide range of ±6 seemed to saturate the model. It is likely that 

the larger scaling factor overwhelmed the model with the broad range in the Rasch 

subtest. The contaminated subtest with a range of ±2 was proportionately truncated 

and seemingly drowned out by the range of the Rasch only subtest. The subtest for 

random contamination the mixing had its discrepancy at maximum with a ±2 theta 

being replaced by an unscalable value of .25. When the subtest in the contaminated 

condition was mixed with Rasch and reverse Rasch, the discrepancy was greatest for 

±2, however for ±1 and 0 the Reversed contamination was relatively small compared 

to the Rasch subtest with a range of ±6. 

The opposite overall effect was true for the conditions where the Rasch 

subtest that had the difficulty parameter scaling factor of 1 and the contamination 

condition had a scaling factor of 3. In all cases, except for the Rasch only and the 

100% reversed Rasch condition, which was effectively like the Rasch only condition, 

a residual was considered large enough to explore the weighted data. The Rasch data 

in these conditions for the Rasch subtest was restricted to ±2. This left what could be 

described as a larger proportional discrepancy amongst the mixing of the Rasch and 

contamination in the contaminated subtest. Here the truncated Rasch was in the Rasch 
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only subtest and the contaminated subtest had potential for large discrepancy in its 

mixing subtest. The ±6 and ±2 difficulties had a relatively large difference in the 

contaminated condition from the unscalable value. In the Rasch and reverse Rasch 

conditions some very extreme discrepancies occurred when ±6 and ±2 difficulties 

were reversed for the same set of items. 

Although interesting, the size of residuals along with the number able to meet 

the threshold value of .4% was merely the first step in a series of investigations. Next, 

the eigenvalues were explored. Not much was interesting with the unweighted 

eigenvalues. When a secondary factor was placed into the data and mixed, the factor 

models mostly detected the second factor. In the 100% contamination condition, the 

reversed Rasch contamination was effectively the same mathematically as the Rasch 

condition and showed similar results. The 100% random contamination condition did 

not add a large factor to the data, which is not surprising considering the data was 

generated at random for all simulees on those subtests. 

When the residual was removed so that the data was weighted to the Rasch 

class, the first factor strengthened relative to the second factor.  The data was better 

fit to have one factor, although most of the time the secondary factor was still present. 

When the data was weighted by the residual class, the reversed condition 

showed clearer factors than the random condition. In the exploration of residuals with 

factors the reversed, Rasch contamination often showed up in the residual and a 

secondary factor was also present in several conditions as a Rasch pattern. In the 

random contamination most of the time the patterns were scattered around zero.  
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MANOVAs used in the study as a relative tool more than a tool for testing 

multivariate significance. The F value in the eight Rasch baseline conditions serves as 

an expected value. It can effectively be seen as a shift in the non-centrality parameter. 

When used as a comparison tool of effect size it becomes clear that contaminated 

models show a difference in factor patterns between the Rasch and residual weighted 

cases. The effects here are not the meaning of what is happening within the residual 

but between the residual and the Rasch weighted data. The CI’s help support the story 

of different patterns between the two groups, not within the unscalable class.  

The graphs and the tests of significance show some clear separation between 

the Rasch weighted data and the residually weighted conditions. The patterns in the 

randomly weighted conditions often show differences between the Rasch subtest on 

the two sets of patterns.  

It is observed that the differences in the patterns for random and systematic 

contamination subtest differ from the all Rasch subtest. The Rasch patterns are very 

clear, taking on a shape that is either a flat with as slight rounding pattern around .3 

on average for the subtest with a range from ±2 or an upside down v shape peaking 

around .3 or .4 for the ±6 subtests. The pattern for the ±2 condition is a less extreme 

version of the ±6 condition. On the first factor for the conditions with a range of item 

difficulties of ±6: the extremely ±6 item difficulties have pattern values around zero, 

the moderate ±3 difficulties had patterns around .3 and the 0 item difficulties had 

values around .5. As the items approached zero the patterns in the factor were 

stronger. This was seen in a less extreme condition in the ±2 condition. The ±2 item 

difficulties have values close to .2 patterns while the difficulties around zero reach a 
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maximum around .4. This means that items which are closer to the average ability are 

the strongest patterns. As items diverge from the average theta value of 0 to more 

extreme values the patterns converge to around zero. The patterns seem to reach a 

maximum value where maximum information occurs. When little can be discerned in 

the most extreme item difficulties the factor pattern goes to zero.  

The current underlying theory for Rasch only factor patterns is that maximum 

patterns are displayed at maximum information and the minimum patterns are 

displayed at minimum information. The secondary factor pattern is just a weak copy 

of the first pattern. Figure 7-1 shows two examples of the Rasch only maximum 

information pattern. The scale in figures 7-1 through 7-4 is based on the scaling factor 

and indicated in the title as either scaling factor 1 (±2) or scaling factor 3 (±6). 
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Figure 7-1: Maximum information pattern 
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In the residual of the random contamination condition, when a factor is 

determined to exist the obvious pattern that occurs is a separation between the Rasch 

and random patterns. The random subtest has patterns around zero while the Rasch 

subtest has patterns that match the Rasch baseline patterns with the largest patterns 

closest to the mean generating value of zero being largest and those with more 

extreme difficulties being weaker. Figure 7-2 shows the unweighted and weighted 

random contamination example. This example shows that random contamination may 
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still be present and a residual could possibly be extracted in the data even when the 

model looks like a Rasch patterns. 

Figure 7-2: Random contamination pattern 

Unweighted random 20 items, scaling factor 1x3 
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In the reverse conditions the most interesting patterns have a crossing or 

reversal pattern. The reversal pattern when it is most present in the residual data 

yields a pattern different from the Rasch maximum information pattern. The reversed 

pattern has large positive pattern values for large positive item difficulties, small 

patterns for item difficulties near zero and large negative pattern values for large 
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negative item difficulties. This reversal contamination pattern is shown in Figures 7-3 

and 7-4 with the unweighted example as well. 

Figure 7-3: Reversed contamination pattern, example 1 
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Figure 7-4: Reversed contamination pattern, example 2 
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In both of the reversed contamination examples, the Rasch model is suspect in 

the unweighted data. In the first example the Rasch model looks to have suppressed 

patterns very close to zero, across all levels of difficulty. When the contaminated 

subtest is explored in the residual weighted data a clear reversed or crossing pattern 

exists. In the second example the Rasch data takes on some obvious distortion that 
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could be similar in nature to the reversed pattern. Again when the contaminated 

subtest is explored in the residual weighted data a reversed pattern exists. 

Research Implications 

One of the first research implications of the two class models with one class as 

the residual class is the fact that when the data was truly Rasch under the eight tested 

conditions, the Rasch model was overwhelmingly classified correctly. This means 

that as part of a battery of examinations for the testing mechanism, one could use the 

model with an unscalable class of .25 to determine if anything out of the ordinary can 

be detected with an unusual size residual. In the 50% reversed contamination 

condition of the data, twice a residual as small as .5% indicated departure from Rasch 

in the data. The amount detected did not always indicate the amount truly 

contaminated but for future research in theoretical and applied work could act as a 

flag for detection types of competing contamination to the Rasch model. 

In cases in which all respondents are equally misinformed or contaminated, 

the model may not pick up or detect anything unusual, as they may be similar to the 

reverse Rasch condition or random condition. However, where some students are 

functioning Rasch and others are functioning in some alternative method, this may be 

detected by a model as simple as adding an unscalable class to use a residual 

information. The residual can then be explored.  

Just because a residual is detected does not make it meaningful and the 

opposite was also true.  Sometimes the residual was extracted and it looked just like 

the Rasch weighted data. Other times it looked like random scatter around zero. There 

were also times when a residual did not indicate a factor but something was clearly 
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going on. HPA should be used more as a guide than an absolute threshold when it 

comes to factor extraction, especially when dealing with small residual sizes. 

In addition it is conceivable to this researcher that residuals could be 

misleading. In the 100% random it is possible by chance to place more than would be 

expected into this class. If a low performing person misses a few easy question and 

gets two questions right they wouldn’t be likely to get correct then they might be a 

high candidate to be placed in the residual class when they actual are very similar to 

other individuals. The residual class should be inspected but it may not be that they 

are truly from the same population. 

The factor patterns also show a Rasch pattern which could be explored in 

more detail to determine if departure from that pattern provides useful information in 

terms of some alternative to the Rasch model. In the current study it is important to 

remember that the Rasch baseline is known from examining the baseline models. This 

permits discussions of departure from this model to be considered adulterated, even in 

the unweighted factor patterns. If item difficulties and factor patterns generated from 

those difficulties are know, one would be unlikely to use this technique as a first 

method as the unweighted factor analysis could simply be compared to the expected 

unweighted factor model and adulteration of the model could be determined from the 

raw data. However it is often the case in applied research that the item difficulties and 

resulting factor patterns are not know before the model is used. This means the 

baseline model would be unknown and it would be very difficult to know if 

contamination of the Rasch model was manifest in the data. This technique could 

serve as a tool to determine, first if there is a residual class of sufficient size to  be 
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considered a flag for departure from the expected model, in this case the Rasch 

model. Next the residual weighted data can be compared to the Rasch weighted data 

to determine if differences exist. If differences exist between the two patterns the 

residually weighted data can be explored in more detail to determine if the factor 

patterns match some form of know contamination, such as the reversed Rasch or 

random contamination, or if the contamination is something else yet unidentified.  

The most useful immediate outcomes of this model would be in remediation 

of individuals, evaluation of the exam, and as a guide to inspection of teaching 

methods. Alternative strategies may help guide an experienced educator to retrain or 

educate an individual not only to missed content but to a new strategy of thinking. 

Items on an exam when seen as alternative strategies could be indicators that items 

may need to be rewritten. Subject matter experts should be used to determine if an 

alternative pattern discovered on a test could be due to bias. The patterns could also 

indicate teaching methods need to be employed to incorporate all relevant strategies 

that may underlie a content area. As in the martial arts comparative strategy 

mentioned earlier, it is possible that a set of patterns indicates that remediation is not 

just substantive area but also a strategic one where new methods of teaching may be 

required.  

Direction for future research 

 The first direction for future research would be to vary some of the existing 

fixed and manipulated factors. In keeping with the success of this research, it would 

be interesting to vary the sample size of the test as computing capacity increases. 

Computing capacity has increased substantially in just the time from the conception 
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of this dissertation to the current date. It would be extremely useful if one wanted to 

examine very small residual of sizes in the magnitude of .1% to have much larger 

datasets. In just a few more years it would be likely that advancement in software and 

hardware would allow this type of analysis to be done in a fraction of the time.  It 

would also be useful to vary the size of the subtest of contamination and look at some 

very small contaminated subtests, maybe 10% of items. The range of the subtests 

could also vary to have a targeted subtest with a standard deviation around zero, say 

.1. 

The model should also be extended to new classes and IRT conditions as well 

as adding more classes. It would be interesting to use various IRT models as classes. 

Models could incorporating several different logistic parameter models, such as a 2 

and/or 3 parameter logistic model, each as its own class and with its own weighted 

value to examine . Of particular interest to the research is a model that looks at 

cumulative and unfolded perspectives of item response theory. A Bayesian model 

with three classes, one Rasch, one unscalable and the last one a variant of the 

Hyperbolic Cosine model (HCM) (Andrich & Lou, 1993). This would be particularly 

useful in extending this research to areas of surveys of agreement. Data can be 

contaminated using the unfolding approach, as well as the reversed Rasch 

contamination, should act as a starting point for what a distinct systematic form of 

contamination would look like. 

In future research both the generating model and analytical model can be 

altered. The examples of alternative models also relate to the generation of data and 

contamination. Generating data for contamination could also include other models 
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such as mixing hyperbolic models and alternative IRT models. The analytic models 

and the generating models could be the manipulated factors of future investigations.It 

would be useful to explore the baseline Rasch model under more conditions. In 

particular the interaction between θ and item difficulty should be explored to 

determine if pattern remain the strongest when item difficulties and θ are close 

together. This could support the maximum pattern at maximum information theory. If 

the concept is confirmed it may be useable to detect departure from the Rasch model, 

both systemic and random.   

The current model does not address how to correct the model when alternative 

strategies are found. Future research can look into more robust models that indicate 

that a given form of contamination detected better fits a alternative analytical model. 

The current model uses a Rasch mixture model to generate the data and then 

uses a Rasch and unscalable mixture to fit to the resulting data. This is a best case 

scenario. It would be useful to not only explore models that are generated with 

contamination but to use models where the data generation process and the estimation 

process do not match. In these models a review of the estimation model as conducted 

here in the preliminary analysis would be advisable. A researcher may even have to 

use strong theory for modeling priors in order to provide useful results. 

Conclusion 

 The concept of a residual to the Rasch condition, although different from that 

context of regression, still needs exploration of what is left over for there to be 

meaningful understanding of the residual. In the current investigation, it was found 

that systematic contamination in smaller percents of the sample size showed some 
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clear departures from Rasch patterns. In many of the random conditions, the 

unscalable class was extracting contamination that had no real pattern. A few times 

for the random contamination an exceptional pattern was discovered; again, this was 

in the smaller contamination sample size conditions. A clear Rasch pattern has been 

detected using factor analysis and is identified as a maximum pattern at maximum 

information. 

When residuals are explored and detected with systematic or idiosyncratic 

patterns, it might benefit the researcher to investigate why this is happening. If a 

residual exists in a dataset but has no pattern, it just might be guessing, rushing, or 

other rationale for why a residual looks like no Rasch pattern is present. If the 

residual has a Rasch pattern, it may indicate something wrong with the dataset that 

something would be classified as unscalable and then look somewhat like the Rasch 

class. In the extreme cases when a systemic pattern like the crossing pattern in the 

reversed Rasch contamination condition are manifest, one might look closely at the 

underlying curriculum to determine if multiple methods of knowledge or skills are 

being taught.  

Given the test properties, the simple detection of a residual went above and 

beyond what was expected and was an indicator of a mixture. Lack of a residual over 

size .4% did not mean contamination was absent, so the current model would only be 

amongst a battery of exploratory tools to use in application. Further development of a 

more sophisticated model rather than just an unscalable residual would greatly aid in 

detection of contamination.  
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When using real data researchers do not know much about the parameters of 

items or people and subtests should they exist may be completely lost on a 

methodologist. In the current investigation the subtest are known to the researcher. In 

real data the researcher may not know subtest. Substantive experts need relied on 

either during test construction or after the exam has been developed to determine if 

areas of an exam can be grouped into subtest. The researcher, although an expert on 

modeling, may know nothing about the material under investigation. This type of 

work may even require a team of experts working together as a focus group to 

evaluate and determine subtests should they exist for an exam. 

Overall some patterns exist for the Rasch baseline conditions explored which 

seem to be driven by the item difficulties proximity to the average θ. In the residual 

weighted data, patterns different from Rasch patterns are present. The random 

contamination tends to yield a weak flat pattern. The systematic contamination 

showed an interesting and opposite effect. In its most apparent form the extreme item 

difficulties had the largest values in an absolute sense while those closer to zero had 

relatively small patterns. This contamination is easier to detect in the unweighted data 

when systematic contamination exists as some adulteration of the data can be found.  
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Appendix A 
 
Table A-1: Relevant Horn’s parallel analysis values  
 
%Contaminated  F1 F2 F3 F4 

0 1.678 1.581 1.538 1.476 
5 1.685 1.591 1.530 1.478 

              50 1.987 1.846 1.747 1.687 
80 2.658 2.427 2.273 2.119 
90 3.495 3.185 2.909 2.642 
95 5.275 4.486 3.860 3.274 
98 8.648 7.427 6.282 5.478 
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Appendix B 
 
Table B-1: Factor 1 Wilks’ lambda F-values from 100 MANOVAs on Rasch 

generated data.  

% F-Value SE 2 positive SE 

50% 1.00 0.29 1.59 
20% 1.40 0.42 2.24 
5% 2.15 0.93 4.02 
2% 3.19 1.78 6.75 
1% 3.29 1.81 6.91 
.4% 3.70 1.84 7.38 

 

Table B-2: Factor 2 Wilks’ lambda F-values from 100 MANOVAs on Rasch 

generated data.  

% F-Value SE 2 positive SE 

50% 1.02 0.29 1.61
20% 1.28 0.38 2.04
5% 2.08 0.56 3.21
2% 3.08 1.19 5.45
1% 3.07 0.89 4.84
.4% 2.88 0.98 4.85
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Appendix C 

Table C-1: Unweighted first factor patterns for 100% contamination 
 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.36 0.37 0.06 0.08 0.04 0.05 0.34 0.36 0.24 0.24 0.05 0.06 0.04 0.03 0.30 0.33 

I2 0.36 0.37 0.09 0.06 0.05 0.09 0.35 0.37 0.23 0.24 0.06 0.03 0.05 0.02 0.27 0.30 

I3 0.42 0.44 0.26 0.31 0.29 0.34 0.42 0.43 0.32 0.31 0.25 0.26 0.21 0.18 0.34 0.37 

I4 0.42 0.43 0.26 0.30 0.29 0.29 0.42 0.45 0.32 0.31 0.25 0.28 0.23 0.19 0.34 0.38 

I5 0.44 0.48 0.47 0.49 0.48 0.49 0.44 0.47 0.34 0.33 0.45 0.43 0.40 0.39 0.33 0.39 

I6 0.44 0.47 0.47 0.50 0.48 0.50 0.45 0.47 0.31 0.34 0.43 0.43 0.41 0.39 0.36 0.41 

I7 0.40 0.44 0.30 0.30 0.29 0.30 0.42 0.45 0.31 0.30 0.23 0.23 0.21 0.22 0.32 0.37 

I8 0.41 0.44 0.29 0.31 0.29 0.32 0.41 0.44 0.30 0.30 0.24 0.23 0.20 0.22 0.30 0.38 

I9 0.32 0.35 0.06 0.11 0.05 0.10 0.35 0.37 0.26 0.23 0.05 0.04 0.05 0.07 0.26 0.31 

I10 0.31 0.37 0.08 0.04 0.07 0.06 0.35 0.37 0.28 0.23 0.04 0.07 0.04 0.02 0.25 0.30 

I11 0.35 0.37 0.05 0.07 0.06 0.07 0.35 0.36 0.23 0.23 0.08 0.06 0.06 0.03 0.26 0.32 

I12 0.34 0.36 0.05 0.08 0.07 0.05 0.34 0.38 0.22 0.25 0.07 0.06 0.06 0.03 0.26 0.33 

I13 0.41 0.44 0.26 0.30 0.29 0.30 0.41 0.44 0.30 0.33 0.24 0.26 0.25 0.17 0.35 0.37 

I14 0.43 0.43 0.27 0.31 0.29 0.28 0.41 0.45 0.30 0.33 0.24 0.27 0.24 0.21 0.32 0.36 

I15 0.44 0.46 0.46 0.49 0.50 0.50 0.45 0.46 0.35 0.33 0.43 0.44 0.41 0.40 0.36 0.41 

I16 0.42 0.47 0.46 0.49 0.47 0.50 0.45 0.47 0.32 0.33 0.43 0.43 0.43 0.39 0.37 0.42 

I17 0.39 0.44 0.31 0.29 0.27 0.29 0.41 0.43 0.32 0.31 0.24 0.23 0.24 0.25 0.33 0.36 

I18 0.40 0.44 0.32 0.30 0.27 0.30 0.42 0.43 0.31 0.31 0.25 0.23 0.22 0.24 0.34 0.39 

I19 0.33 0.36 0.04 0.06 0.07 0.09 0.34 0.37 0.23 0.25 0.05 0.06 0.04 0.02 0.27 0.29 

I20 0.34 0.37 0.07 0.08 0.08 0.08 0.33 0.36 0.25 0.24 0.07 0.07 0.05 0.05 0.26 0.29 

I21 0.35 -0.01 0.05 0.02 0.07 0.00 0.34 -0.01 0.23 0.24 0.04 0.05 0.04 0.32 0.29 0.01 

I22 0.34 0.00 0.05 -0.01 0.05 0.01 0.34 0.00 0.24 0.23 0.06 0.04 0.06 0.29 0.29 0.04 

I23 0.43 0.00 0.25 0.00 0.27 0.00 0.41 0.00 0.32 0.32 0.26 0.23 0.23 0.36 0.35 0.24 

I24 0.43 -0.01 0.26 0.01 0.27 0.02 0.42 0.00 0.31 0.31 0.26 0.24 0.21 0.38 0.34 0.20 

I25 0.43 0.00 0.45 0.01 0.48 0.01 0.45 0.00 0.31 0.35 0.42 0.43 0.43 0.40 0.37 0.40 

I26 0.43 -0.02 0.45 0.01 0.48 -0.03 0.45 0.00 0.34 0.32 0.44 0.42 0.42 0.38 0.35 0.41 

I27 0.41 0.00 0.28 0.01 0.29 -0.01 0.42 -0.01 0.31 0.34 0.25 0.27 0.26 0.35 0.32 0.23 

I28 0.41 0.00 0.29 -0.02 0.29 0.02 0.41 -0.01 0.32 0.34 0.24 0.29 0.23 0.34 0.31 0.22 

I29 0.34 0.00 0.06 -0.01 0.07 0.02 0.34 -0.01 0.27 0.25 0.02 0.06 0.06 0.27 0.25 0.06 

I30 0.32 0.01 0.07 0.01 0.07 0.01 0.34 -0.01 0.27 0.25 0.05 0.05 0.03 0.27 0.26 0.06 

I31 0.00 0.00 0.00 -0.02 0.00 -0.01 0.00 0.00 0.26 0.23 0.03 0.05 0.34 0.32 0.06 0.02 

I32 -0.01 -0.02 0.00 0.00 0.01 0.00 0.01 0.01 0.24 0.24 0.07 0.05 0.33 0.33 0.02 0.06 

I33 0.00 0.01 0.00 0.01 0.00 0.00 0.01 -0.01 0.32 0.31 0.23 0.21 0.40 0.36 0.19 0.21 

I34 0.01 0.01 0.01 0.00 -0.01 0.00 0.00 -0.01 0.29 0.33 0.25 0.21 0.37 0.37 0.16 0.22 

I35 0.01 0.00 0.00 0.01 0.00 -0.02 -0.01 0.00 0.33 0.33 0.42 0.43 0.43 0.40 0.35 0.39 

I36 0.01 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.35 0.33 0.44 0.44 0.44 0.39 0.34 0.40 

I37 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.28 0.32 0.27 0.24 0.39 0.35 0.19 0.23 

I38 -0.01 0.01 0.00 0.02 0.01 0.01 0.00 -0.01 0.30 0.32 0.25 0.26 0.38 0.34 0.20 0.21 

I39 0.01 -0.02 0.00 0.03 -0.02 -0.03 0.01 0.01 0.25 0.25 0.06 0.06 0.32 0.29 0.05 0.02 

I40 0.00 0.00 0.00 -0.02 -0.01 0.00 0.00 0.00 0.23 0.24 0.05 0.06 0.33 0.27 0.04 0.05 
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Table C-2: Unweighted first factor patterns for 50% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.34 0.10 0.00 0.00 0.06 -0.01 0.34 -0.01 0.34 0.21 0.01 0.01 0.05 0.00 0.00 0.00 

I2 0.35 0.11 -0.01 0.00 0.08 0.02 0.36 0.00 0.34 0.21 0.00 0.01 0.07 0.01 0.00 0.00 

I3 0.43 0.13 -0.01 -0.01 0.27 0.04 0.42 -0.01 0.42 0.23 0.01 0.01 0.26 0.00 0.01 0.01 

I4 0.42 0.13 0.00 -0.02 0.28 0.04 0.43 0.00 0.43 0.24 0.00 -0.01 0.26 0.01 0.00 0.00 

I5 0.43 0.14 0.00 -0.02 0.44 0.09 0.46 0.00 0.45 0.27 0.00 0.01 0.45 0.02 0.00 0.00 

I6 0.43 0.16 0.01 -0.01 0.43 0.09 0.46 0.00 0.46 0.27 0.00 -0.01 0.45 0.03 -0.01 0.00 

I7 0.42 0.16 0.00 0.00 0.26 0.05 0.43 0.01 0.42 0.24 0.00 0.00 0.25 0.02 0.00 -0.01 

I8 0.41 0.15 0.00 0.00 0.27 0.06 0.43 0.00 0.43 0.25 0.00 0.00 0.28 0.00 0.01 0.01 

I9 0.33 0.13 -0.02 -0.01 0.06 0.02 0.35 0.00 0.35 0.20 0.00 0.00 0.07 0.00 0.00 -0.01 

I10 0.34 0.13 0.00 0.00 0.07 0.03 0.36 0.01 0.35 0.21 0.01 0.00 0.05 0.01 0.00 0.01 

I11 0.36 0.08 0.00 0.00 0.04 0.01 0.36 -0.01 0.35 0.19 0.01 0.01 0.06 0.01 0.00 0.00 

I12 0.36 0.12 -0.01 0.00 0.05 0.03 0.35 0.00 0.34 0.20 0.01 0.00 0.07 0.00 -0.01 0.00 

I13 0.41 0.13 0.00 -0.02 0.27 0.03 0.43 -0.01 0.42 0.24 0.01 0.01 0.27 0.01 -0.01 0.00 

I14 0.42 0.12 -0.01 -0.01 0.24 0.03 0.44 -0.01 0.42 0.24 0.00 0.00 0.26 0.03 0.01 0.00 

I15 0.43 0.15 0.01 -0.01 0.43 0.09 0.46 0.00 0.45 0.25 0.00 0.00 0.45 0.02 0.00 0.00 

I16 0.44 0.14 0.01 -0.02 0.46 0.09 0.46 0.00 0.45 0.27 0.02 0.00 0.46 0.02 0.00 0.00 

I17 0.40 0.15 0.00 0.00 0.26 0.07 0.43 0.01 0.41 0.24 0.00 0.00 0.26 0.01 0.00 0.00 

I18 0.42 0.14 0.00 -0.02 0.26 0.05 0.42 0.01 0.41 0.24 0.00 0.00 0.25 0.01 -0.01 -0.02 

I19 0.34 0.11 0.00 0.00 0.06 0.01 0.33 0.01 0.35 0.21 -0.01 -0.01 0.06 0.01 0.01 0.00 

I20 0.34 0.12 0.00 0.00 0.06 0.01 0.34 0.00 0.34 0.20 0.00 0.00 0.06 0.00 0.00 0.00 

I21 0.34 -0.02 -0.01 -0.41 0.05 -0.05 0.35 -0.41 0.34 0.19 -0.01 0.12 0.08 -0.01 0.00 0.16 

I22 0.35 -0.01 0.01 -0.42 0.08 -0.07 0.36 -0.41 0.35 0.20 0.01 0.12 0.07 -0.01 0.00 0.16 

I23 0.42 0.19 0.00 -0.28 0.26 0.17 0.43 -0.27 0.42 0.26 0.00 0.11 0.26 0.01 0.00 0.14 

I24 0.41 0.18 -0.01 -0.29 0.26 0.17 0.43 -0.29 0.42 0.25 -0.01 0.11 0.26 0.00 0.00 0.15 

I25 0.44 0.37 0.01 0.29 0.44 0.41 0.44 0.31 0.45 0.26 0.01 0.01 0.45 0.03 0.00 0.00 

I26 0.44 0.36 0.01 0.29 0.45 0.39 0.46 0.30 0.44 0.25 0.02 -0.01 0.45 0.03 0.00 0.00 

I27 0.41 0.50 0.01 0.72 0.26 0.57 0.42 0.72 0.43 0.18 0.00 -0.10 0.25 0.04 0.00 -0.14 

I28 0.42 0.49 0.01 0.72 0.25 0.57 0.43 0.72 0.41 0.19 0.01 -0.10 0.25 0.05 0.01 -0.13 

I29 0.34 0.54 0.00 0.79 0.07 0.67 0.36 0.79 0.35 0.08 -0.02 -0.12 0.08 0.05 0.00 -0.16 

I30 0.34 0.56 0.01 0.78 0.08 0.66 0.35 0.79 0.36 0.08 0.01 -0.12 0.06 0.05 0.01 -0.16 

I31 0.20 -0.01 -0.46 -0.41 0.20 -0.07 0.01 -0.41 0.22 0.20 0.16 0.12 0.20 -0.01 0.04 0.16 

I32 0.20 -0.02 -0.45 -0.41 0.20 -0.07 0.01 -0.41 0.22 0.20 0.16 0.12 0.20 -0.01 0.04 0.16 

I33 0.17 0.18 -0.32 -0.28 0.24 0.17 0.11 -0.27 0.36 0.26 0.15 0.11 0.35 0.00 0.05 0.15 

I34 0.19 0.18 -0.29 -0.29 0.23 0.17 0.11 -0.28 0.37 0.26 0.15 0.11 0.35 0.01 0.04 0.15 

I35 0.14 0.37 0.34 0.29 0.21 0.40 0.23 0.29 0.45 0.27 0.01 0.00 0.44 0.02 0.00 0.00 

I36 0.13 0.35 0.33 0.29 0.20 0.40 0.24 0.30 0.45 0.26 0.01 -0.01 0.45 0.02 0.00 0.00 

I37 0.05 0.49 0.75 0.72 0.13 0.57 0.04 0.72 0.37 0.18 -0.14 -0.10 0.38 0.04 -0.03 -0.13 

I38 0.04 0.49 0.74 0.72 0.13 0.58 0.04 0.73 0.39 0.18 -0.13 -0.10 0.38 0.05 -0.03 -0.13 

I39 -0.03 0.55 0.79 0.79 0.05 0.67 -0.02 0.79 0.23 0.07 -0.16 -0.12 0.24 0.04 -0.04 -0.16 

I40 -0.04 0.55 0.79 0.79 0.05 0.66 -0.01 0.79 0.24 0.08 -0.16 -0.12 0.26 0.05 -0.04 -0.16 
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Table C-3: Unweighted first factor patterns for 20% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.35 0.33 -0.01 -0.02 0.06 0.01 0.34 -0.03 0.35 0.36 0.00 0.00 0.07 0.01 0.00 0.00 

I2 0.34 0.34 0.01 -0.02 0.05 0.00 0.35 -0.02 0.33 0.35 0.00 0.00 0.06 0.02 0.01 0.00 

I3 0.39 0.40 0.00 -0.02 0.23 0.07 0.43 -0.01 0.42 0.42 0.00 0.01 0.27 0.08 0.00 0.01 

I4 0.41 0.40 0.00 -0.02 0.21 0.04 0.42 -0.02 0.41 0.42 -0.01 0.00 0.27 0.08 0.00 0.00 

I5 0.42 0.41 -0.01 -0.03 0.39 0.15 0.45 -0.01 0.44 0.45 0.01 0.00 0.46 0.13 0.00 0.00 

I6 0.41 0.41 0.01 -0.02 0.38 0.15 0.45 0.00 0.45 0.45 0.00 0.00 0.45 0.14 0.00 0.00 

I7 0.36 0.37 0.01 0.00 0.20 0.12 0.43 -0.02 0.42 0.42 0.00 0.00 0.26 0.08 -0.01 0.01 

I8 0.38 0.36 0.02 -0.01 0.22 0.11 0.43 -0.02 0.42 0.43 -0.01 0.01 0.25 0.09 0.00 0.00 

I9 0.28 0.30 0.00 -0.01 0.04 0.03 0.35 -0.01 0.34 0.35 0.00 0.00 0.06 0.03 0.01 0.00 

I10 0.30 0.29 -0.01 0.00 0.05 0.01 0.36 -0.01 0.34 0.35 0.00 0.00 0.09 0.01 0.00 0.00 

I11 0.33 0.33 -0.01 0.00 0.05 0.01 0.34 -0.02 0.34 0.36 0.00 -0.01 0.07 0.03 -0.01 0.00 

I12 0.36 0.34 0.00 -0.01 0.07 0.01 0.36 -0.03 0.34 0.36 0.00 -0.01 0.06 0.02 -0.01 0.00 

I13 0.42 0.39 -0.01 -0.02 0.24 0.06 0.42 0.00 0.41 0.42 0.00 0.00 0.27 0.07 0.00 0.01 

I14 0.39 0.41 -0.01 -0.02 0.25 0.05 0.41 -0.02 0.42 0.42 0.00 -0.01 0.26 0.07 0.00 0.01 

I15 0.41 0.41 0.02 -0.02 0.38 0.16 0.46 -0.01 0.45 0.45 0.00 0.00 0.45 0.14 0.00 0.00 

I16 0.41 0.41 0.00 -0.02 0.39 0.15 0.45 -0.01 0.45 0.46 0.00 0.01 0.44 0.14 0.00 0.00 

I17 0.37 0.36 0.01 0.00 0.22 0.10 0.43 0.00 0.41 0.42 0.00 -0.01 0.27 0.08 -0.01 -0.01 

I18 0.37 0.37 0.01 0.00 0.22 0.10 0.42 -0.01 0.42 0.42 0.00 0.00 0.27 0.09 0.00 0.00 

I19 0.29 0.30 0.02 0.00 0.04 0.02 0.34 0.01 0.34 0.34 0.00 0.00 0.06 0.01 0.01 0.00 

I20 0.30 0.30 0.00 0.02 0.05 0.03 0.35 0.00 0.34 0.35 0.00 0.00 0.06 0.02 -0.01 0.00 

I21 0.36 0.30 -0.01 -0.50 0.06 -0.02 0.36 -0.49 0.34 0.29 0.01 -0.04 0.08 0.02 0.01 0.04 

I22 0.33 0.30 -0.01 -0.49 0.06 -0.03 0.35 -0.49 0.35 0.27 0.01 -0.04 0.06 0.02 0.00 0.04 

I23 0.41 0.31 -0.03 -0.27 0.22 0.18 0.42 -0.27 0.41 0.39 0.00 -0.02 0.26 0.08 0.00 0.04 

I24 0.40 0.34 -0.03 -0.27 0.23 0.19 0.43 -0.28 0.41 0.40 0.00 -0.02 0.26 0.09 0.00 0.04 

I25 0.42 0.27 0.01 0.21 0.39 0.38 0.45 0.20 0.45 0.44 0.00 0.00 0.44 0.13 0.00 0.00 

I26 0.41 0.27 0.01 0.21 0.38 0.38 0.45 0.21 0.44 0.45 -0.01 0.01 0.45 0.13 0.00 0.01 

I27 0.37 0.17 0.01 0.70 0.22 0.56 0.43 0.71 0.43 0.39 0.01 0.04 0.27 0.16 0.00 -0.02 

I28 0.35 0.15 0.00 0.70 0.21 0.54 0.42 0.70 0.41 0.39 0.02 0.04 0.27 0.15 0.01 -0.03 

I29 0.30 0.04 0.01 0.83 0.06 0.65 0.36 0.83 0.34 0.24 0.00 0.04 0.06 0.15 -0.01 -0.04 

I30 0.30 0.03 0.01 0.84 0.05 0.64 0.36 0.84 0.34 0.24 0.00 0.04 0.06 0.14 0.00 -0.04 

I31 0.31 0.30 -0.50 -0.49 0.25 -0.03 0.03 -0.48 0.27 0.28 0.08 -0.04 0.23 0.02 0.00 0.04 

I32 0.32 0.30 -0.51 -0.49 0.25 -0.02 0.02 -0.47 0.26 0.27 0.08 -0.04 0.23 0.02 0.00 0.04 

I33 0.28 0.33 -0.29 -0.28 0.34 0.18 0.17 -0.26 0.39 0.40 0.08 -0.03 0.37 0.10 0.01 0.04 

I34 0.29 0.32 -0.29 -0.29 0.33 0.18 0.17 -0.27 0.39 0.40 0.08 -0.03 0.37 0.08 0.01 0.04 

I35 0.20 0.27 0.25 0.20 0.33 0.38 0.37 0.21 0.45 0.44 0.00 0.00 0.45 0.14 0.00 0.00 

I36 0.20 0.27 0.25 0.20 0.34 0.38 0.36 0.22 0.45 0.44 0.00 0.00 0.44 0.13 0.01 0.00 

I37 0.08 0.16 0.73 0.70 0.30 0.54 0.12 0.69 0.39 0.40 -0.06 0.04 0.40 0.16 0.01 -0.03 

I38 0.08 0.17 0.72 0.70 0.30 0.53 0.12 0.71 0.39 0.39 -0.06 0.04 0.39 0.16 0.01 -0.03 

I39 -0.07 0.04 0.82 0.83 0.23 0.65 0.01 0.83 0.25 0.25 -0.08 0.04 0.27 0.14 0.00 -0.04 

I40 -0.07 0.05 0.83 0.83 0.24 0.64 0.01 0.83 0.26 0.25 -0.08 0.04 0.28 0.14 0.00 -0.04 
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Table C-4: Unweighted first factor patterns for 5% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.28 0.34 0.07 -0.01 0.04 0.04 0.34 0.02 0.27 0.25 0.00 0.00 0.04 0.04 0.15 -0.01 

I2 0.29 0.34 0.07 0.00 0.02 0.04 0.35 0.03 0.26 0.26 -0.01 0.01 0.06 0.05 0.15 0.00 

I3 0.30 0.40 0.26 -0.02 0.20 0.15 0.42 0.04 0.32 0.32 0.00 0.01 0.23 0.21 0.17 0.00 

I4 0.34 0.37 0.26 -0.01 0.19 0.14 0.42 0.05 0.32 0.31 -0.01 0.00 0.22 0.20 0.16 0.00 

I5 0.33 0.37 0.42 0.02 0.41 0.34 0.46 0.05 0.35 0.33 0.00 0.01 0.39 0.36 0.18 0.00 

I6 0.35 0.38 0.42 0.01 0.40 0.31 0.46 0.07 0.33 0.33 0.00 0.01 0.41 0.36 0.19 0.01 

I7 0.30 0.32 0.23 0.02 0.23 0.21 0.42 0.07 0.32 0.32 0.00 -0.01 0.24 0.23 0.17 0.01 

I8 0.31 0.33 0.26 0.03 0.23 0.21 0.42 0.04 0.31 0.33 -0.02 0.00 0.22 0.22 0.18 -0.01 

I9 0.22 0.24 0.07 0.01 0.05 0.02 0.36 0.05 0.26 0.27 0.01 0.01 0.05 0.05 0.14 0.01 

I10 0.23 0.24 0.05 0.00 0.08 0.04 0.34 0.05 0.26 0.27 0.00 0.00 0.06 0.04 0.14 0.01 

I11 0.28 0.35 0.08 0.00 0.05 0.04 0.34 0.03 0.28 0.26 0.00 0.01 0.07 0.04 0.16 0.00 

I12 0.26 0.33 0.06 -0.01 0.03 0.04 0.34 0.03 0.27 0.26 0.00 0.01 0.04 0.05 0.14 0.01 

I13 0.31 0.37 0.25 -0.01 0.20 0.15 0.41 0.03 0.32 0.32 0.01 0.00 0.22 0.20 0.16 -0.01 

I14 0.33 0.37 0.25 -0.02 0.21 0.16 0.42 0.04 0.31 0.33 0.00 0.00 0.23 0.19 0.17 0.00 

I15 0.35 0.36 0.42 0.00 0.40 0.32 0.46 0.05 0.35 0.33 0.00 0.00 0.39 0.37 0.18 0.00 

I16 0.34 0.36 0.41 0.02 0.39 0.32 0.45 0.05 0.35 0.35 0.00 0.00 0.40 0.37 0.17 0.00 

I17 0.30 0.31 0.25 0.02 0.24 0.18 0.42 0.06 0.33 0.32 0.00 -0.01 0.24 0.21 0.17 0.00 

I18 0.31 0.32 0.24 0.02 0.25 0.21 0.41 0.05 0.31 0.32 0.00 0.00 0.23 0.22 0.18 -0.01 

I19 0.24 0.24 0.07 -0.01 0.03 0.01 0.36 0.05 0.27 0.27 0.02 0.01 0.02 0.05 0.14 0.00 

I20 0.23 0.24 0.06 0.00 0.06 0.04 0.36 0.05 0.25 0.26 0.00 0.02 0.04 0.04 0.15 0.00 

I21 0.25 0.35 0.06 -0.47 0.04 0.18 0.35 -0.41 0.26 0.18 0.01 -0.15 0.07 0.18 0.15 -0.04 

I22 0.28 0.32 0.06 -0.47 0.04 0.17 0.35 -0.43 0.26 0.19 -0.01 -0.15 0.04 0.19 0.15 -0.03 

I23 0.31 0.36 0.26 -0.16 0.21 0.31 0.42 -0.12 0.33 0.28 -0.01 -0.09 0.23 0.29 0.18 -0.01 

I24 0.35 0.35 0.26 -0.18 0.17 0.29 0.41 -0.13 0.32 0.27 0.01 -0.10 0.23 0.29 0.16 -0.02 

I25 0.34 0.30 0.43 0.14 0.40 0.38 0.44 0.16 0.35 0.34 0.00 0.00 0.40 0.36 0.18 0.01 

I26 0.35 0.30 0.42 0.13 0.40 0.37 0.45 0.17 0.33 0.33 0.00 0.01 0.39 0.36 0.19 0.00 

I27 0.31 0.22 0.25 0.54 0.26 0.40 0.42 0.52 0.32 0.33 0.01 0.11 0.23 0.36 0.18 0.04 

I28 0.30 0.19 0.24 0.54 0.24 0.40 0.41 0.51 0.31 0.33 0.00 0.11 0.25 0.35 0.17 0.03 

I29 0.24 0.06 0.07 0.82 0.07 0.40 0.36 0.75 0.25 0.28 -0.01 0.16 0.06 0.30 0.14 0.04 

I30 0.23 0.06 0.07 0.82 0.07 0.42 0.36 0.74 0.26 0.27 0.01 0.16 0.04 0.30 0.13 0.04 

I31 0.26 0.35 -0.03 -0.48 0.27 0.18 0.04 -0.41 0.22 0.19 -0.03 -0.15 0.28 0.20 -0.11 -0.03 

I32 0.25 0.35 -0.04 -0.48 0.26 0.19 0.04 -0.42 0.20 0.18 -0.03 -0.15 0.28 0.20 -0.11 -0.03 

I33 0.31 0.37 0.21 -0.18 0.37 0.29 0.23 -0.12 0.29 0.29 -0.01 -0.10 0.36 0.30 0.01 -0.02 

I34 0.31 0.36 0.20 -0.17 0.37 0.28 0.23 -0.15 0.30 0.29 -0.01 -0.09 0.37 0.28 0.01 -0.01 

I35 0.31 0.33 0.41 0.13 0.38 0.38 0.43 0.16 0.34 0.35 0.00 0.01 0.38 0.36 0.18 0.00 

I36 0.28 0.30 0.42 0.14 0.42 0.37 0.43 0.17 0.34 0.34 0.00 0.01 0.39 0.36 0.17 0.01 

I37 0.26 0.19 0.26 0.56 0.41 0.39 0.19 0.51 0.31 0.33 0.04 0.11 0.34 0.36 0.17 0.03 

I38 0.28 0.20 0.25 0.54 0.40 0.41 0.18 0.51 0.29 0.33 0.03 0.11 0.36 0.35 0.17 0.03 

I39 0.17 0.06 0.12 0.81 0.35 0.39 0.00 0.75 0.25 0.27 0.05 0.15 0.26 0.30 0.12 0.04 

I40 0.15 0.05 0.12 0.83 0.35 0.40 0.00 0.73 0.24 0.29 0.04 0.16 0.25 0.29 0.12 0.04 
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Table C-5: Unweighted first second patterns for 100% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.05 0.03 0.08 0.06 0.07 0.04 0.07 -0.01 0.25 0.24 0.08 0.03 0.05 0.12 0.20 0.12 

I2 0.07 0.01 0.01 0.08 0.07 0.03 0.00 0.00 0.26 0.27 0.05 0.08 0.05 0.09 0.21 0.17 

I3 0.06 0.00 0.08 0.05 0.06 0.03 0.06 0.04 0.26 0.27 0.09 0.09 0.14 0.18 0.23 0.17 

I4 0.07 0.02 0.10 0.03 0.08 0.05 0.08 0.05 0.27 0.28 0.10 0.05 0.13 0.18 0.22 0.17 

I5 0.08 -0.04 0.07 0.06 0.08 0.08 0.06 0.00 0.28 0.29 0.14 0.15 0.18 0.23 0.28 0.19 

I6 0.08 0.00 0.12 0.02 0.06 0.04 0.07 0.01 0.30 0.27 0.16 0.13 0.17 0.20 0.26 0.18 

I7 0.11 0.01 0.01 0.05 0.07 0.02 0.02 -0.01 0.29 0.29 0.12 0.15 0.17 0.10 0.28 0.18 

I8 0.02 -0.02 0.05 0.07 0.02 0.02 0.07 0.05 0.28 0.29 0.10 0.13 0.15 0.12 0.27 0.17 

I9 0.08 0.02 0.01 0.08 0.05 0.03 0.03 0.03 0.22 0.26 0.21 0.08 0.08 -0.02 0.22 0.16 

I10 0.09 0.03 0.05 0.00 0.04 0.05 0.04 -0.01 0.20 0.26 0.08 0.05 0.11 0.08 0.22 0.18 

I11 0.05 0.01 0.07 0.01 0.08 0.07 0.05 0.03 0.24 0.25 0.01 0.01 0.00 0.11 0.22 0.14 

I12 0.05 0.00 0.01 0.08 0.03 0.08 0.06 -0.05 0.27 0.23 0.03 0.04 0.09 0.06 0.21 0.11 

I13 0.07 0.02 0.09 0.06 0.05 0.09 0.08 -0.02 0.28 0.26 0.12 0.08 0.08 0.20 0.24 0.20 

I14 0.03 0.03 0.12 0.02 0.09 0.07 0.05 0.02 0.28 0.26 0.13 0.10 0.10 0.17 0.25 0.20 

I15 0.06 0.00 0.11 0.06 0.04 0.04 0.04 0.03 0.28 0.29 0.15 0.17 0.17 0.20 0.25 0.19 

I16 0.07 -0.01 0.10 0.08 0.07 0.03 0.06 0.00 0.31 0.30 0.16 0.14 0.16 0.22 0.24 0.15 

I17 0.08 0.00 0.04 0.06 0.03 0.05 0.04 0.02 0.28 0.27 0.09 0.14 0.14 0.10 0.24 0.20 

I18 0.08 0.00 0.04 0.04 0.02 0.00 0.04 0.01 0.28 0.29 0.11 0.13 0.15 0.10 0.24 0.15 

I19 0.02 0.03 0.04 0.03 0.04 0.03 0.04 -0.01 0.26 0.25 0.10 0.08 0.11 0.06 0.24 0.17 

I20 0.08 0.00 0.04 0.06 0.00 0.07 0.10 0.04 0.24 0.24 0.05 0.05 0.09 0.09 0.24 0.17 

I21 0.02 0.09 0.07 0.06 0.06 0.02 0.08 0.03 0.26 0.27 0.05 0.07 0.01 0.14 0.18 0.09 

I22 0.03 0.00 0.11 0.00 0.07 -0.03 0.08 0.04 0.24 0.26 0.02 0.06 0.06 0.17 0.18 0.08 

I23 0.03 -0.02 0.12 0.06 0.08 -0.04 0.06 -0.03 0.27 0.27 0.08 0.17 0.10 0.20 0.23 0.10 

I24 0.01 0.01 0.11 0.02 0.08 -0.01 0.06 0.01 0.28 0.27 0.07 0.12 0.10 0.19 0.23 0.15 

I25 0.09 0.01 0.13 0.02 0.07 0.05 0.05 0.07 0.32 0.28 0.16 0.17 0.15 0.20 0.24 0.19 

I26 0.07 0.02 0.10 0.02 0.04 0.04 0.06 0.03 0.30 0.31 0.14 0.16 0.16 0.21 0.28 0.18 

I27 0.09 0.03 0.07 0.02 0.05 0.00 0.04 0.03 0.27 0.25 0.10 0.08 0.09 0.21 0.28 0.12 

I28 0.07 0.03 0.03 0.04 0.05 0.01 0.01 0.02 0.25 0.25 0.10 0.06 0.14 0.25 0.27 0.12 

I29 0.08 0.05 0.04 0.02 0.05 0.04 0.04 0.02 0.21 0.24 0.12 0.13 0.01 0.21 0.24 0.00 

I30 0.11 0.04 0.10 0.01 0.06 0.00 0.03 0.05 0.22 0.25 0.06 0.05 0.09 0.21 0.22 0.07 

I31 0.03 0.03 0.01 0.01 0.04 0.05 0.04 -0.01 0.21 0.26 0.08 0.06 0.14 0.14 0.06 0.13 

I32 0.02 0.09 -0.01 -0.01 -0.01 0.08 0.05 0.02 0.25 0.24 0.07 0.07 0.15 0.14 0.08 0.10 

I33 0.02 0.01 0.02 -0.05 0.00 0.04 0.02 0.02 0.26 0.29 0.10 0.17 0.15 0.20 0.17 0.12 

I34 0.01 0.04 0.01 0.00 0.00 0.06 0.03 0.04 0.30 0.27 0.14 0.16 0.18 0.19 0.22 0.17 

I35 0.05 0.03 -0.01 0.08 0.02 0.02 0.04 0.02 0.27 0.29 0.17 0.17 0.18 0.21 0.27 0.18 

I36 0.06 0.05 0.07 -0.01 0.00 0.03 0.04 0.05 0.28 0.30 0.14 0.16 0.14 0.21 0.27 0.18 

I37 0.02 -0.04 0.02 0.04 0.05 0.01 0.03 0.03 0.31 0.28 0.07 0.10 0.14 0.24 0.15 0.11 

I38 0.01 0.07 0.00 -0.05 0.04 0.03 0.03 0.02 0.29 0.26 0.11 0.09 0.16 0.24 0.14 0.10 

I39 -0.01 0.05 0.07 0.02 0.02 0.02 0.01 0.06 0.24 0.25 0.05 0.02 0.14 0.20 0.02 0.10 

I40 0.00 0.03 -0.04 0.04 -0.02 -0.03 0.05 0.00 0.27 0.24 0.05 0.07 0.11 0.21 0.06 0.08 
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Table C-6: Unweighted first second patterns for 50% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.06 0.33 0.08 0.09 0.00 0.07 0.00 0.37 0.01 0.15 0.07 0.07 0.02 0.08 0.35 0.36 

I2 0.04 0.30 0.08 0.09 0.01 0.09 -0.01 0.36 0.00 0.14 0.06 0.08 0.03 0.05 0.34 0.36 

I3 0.08 0.37 0.29 0.32 0.04 0.30 0.02 0.44 -0.01 0.19 0.29 0.28 0.04 0.27 0.44 0.42 

I4 0.08 0.38 0.28 0.31 0.04 0.30 0.00 0.44 0.02 0.18 0.28 0.29 0.04 0.27 0.42 0.44 

I5 0.08 0.39 0.48 0.51 0.10 0.45 0.01 0.46 0.00 0.21 0.49 0.49 0.06 0.46 0.45 0.45 

I6 0.10 0.38 0.48 0.50 0.11 0.46 0.02 0.46 -0.01 0.20 0.48 0.49 0.07 0.46 0.46 0.47 

I7 0.08 0.37 0.28 0.31 0.08 0.27 0.02 0.44 0.00 0.18 0.30 0.30 0.03 0.28 0.42 0.43 

I8 0.08 0.36 0.29 0.31 0.07 0.26 0.00 0.43 0.01 0.18 0.27 0.29 0.04 0.29 0.42 0.44 

I9 0.09 0.31 0.06 0.08 0.02 0.06 0.01 0.36 0.00 0.16 0.06 0.08 0.01 0.07 0.35 0.36 

I10 0.08 0.29 0.08 0.08 0.00 0.06 0.00 0.35 0.01 0.16 0.07 0.08 0.02 0.07 0.35 0.36 

I11 0.06 0.31 0.07 0.10 0.03 0.08 0.00 0.37 -0.01 0.16 0.07 0.07 0.02 0.06 0.35 0.35 

I12 0.05 0.30 0.08 0.07 0.00 0.11 0.00 0.36 0.01 0.14 0.08 0.07 0.02 0.06 0.34 0.35 

I13 0.08 0.37 0.29 0.31 0.05 0.30 -0.02 0.44 -0.01 0.20 0.29 0.29 0.02 0.27 0.42 0.42 

I14 0.08 0.38 0.30 0.29 0.07 0.31 0.01 0.44 0.02 0.18 0.27 0.28 0.03 0.26 0.42 0.44 

I15 0.08 0.40 0.48 0.50 0.11 0.46 -0.01 0.46 0.01 0.19 0.47 0.49 0.06 0.47 0.45 0.47 

I16 0.08 0.39 0.49 0.49 0.10 0.46 0.01 0.46 0.01 0.21 0.48 0.50 0.05 0.47 0.46 0.46 

I17 0.09 0.36 0.29 0.30 0.07 0.27 0.00 0.43 0.01 0.19 0.29 0.30 0.02 0.25 0.43 0.43 

I18 0.10 0.36 0.29 0.30 0.06 0.27 0.01 0.43 0.01 0.18 0.26 0.29 0.02 0.27 0.43 0.43 

I19 0.07 0.31 0.06 0.08 0.01 0.06 0.01 0.37 0.01 0.15 0.09 0.07 0.00 0.05 0.35 0.37 

I20 0.08 0.30 0.08 0.06 0.01 0.06 0.00 0.36 0.01 0.15 0.07 0.07 0.01 0.06 0.36 0.36 

I21 0.06 0.18 0.07 0.02 0.01 0.27 0.00 0.02 0.00 0.02 0.07 0.01 0.01 0.24 0.35 0.01 

I22 0.05 0.19 0.09 0.02 -0.02 0.27 0.00 0.00 0.01 0.02 0.07 0.01 0.01 0.24 0.35 0.01 

I23 0.08 0.22 0.30 0.12 0.06 0.27 0.01 0.10 0.01 0.12 0.29 0.11 0.03 0.38 0.42 0.10 

I24 0.06 0.21 0.30 0.10 0.08 0.25 -0.02 0.11 -0.02 0.12 0.29 0.11 0.03 0.40 0.43 0.11 

I25 0.09 0.19 0.49 0.29 0.11 0.17 0.00 0.25 0.01 0.20 0.48 0.49 0.07 0.47 0.45 0.46 

I26 0.08 0.20 0.48 0.29 0.10 0.19 0.00 0.26 0.00 0.20 0.48 0.49 0.08 0.47 0.46 0.46 

I27 0.09 0.14 0.30 0.08 0.07 0.05 0.01 0.07 -0.01 0.22 0.28 0.11 0.04 0.38 0.43 0.11 

I28 0.09 0.13 0.28 0.08 0.06 0.05 0.01 0.06 0.00 0.22 0.28 0.11 0.04 0.39 0.42 0.11 

I29 0.08 0.07 0.07 0.02 0.02 -0.06 0.00 0.01 0.00 0.19 0.06 0.00 0.02 0.23 0.36 0.00 

I30 0.08 0.07 0.06 0.02 0.03 -0.06 0.01 0.00 0.00 0.19 0.07 0.00 0.01 0.23 0.35 0.00 

I31 -0.08 0.16 0.02 0.01 -0.04 0.27 -0.45 0.00 -0.11 0.02 0.00 0.01 0.05 0.24 0.01 0.01 

I32 -0.07 0.17 0.02 0.02 -0.06 0.29 -0.46 0.01 -0.11 0.02 0.00 0.01 0.04 0.25 0.01 0.01 

I33 0.19 0.19 0.11 0.12 0.20 0.27 -0.31 0.11 -0.07 0.12 0.10 0.12 0.06 0.39 0.12 0.11 

I34 0.21 0.21 0.14 0.13 0.18 0.27 -0.32 0.11 -0.05 0.12 0.11 0.11 0.08 0.40 0.12 0.11 

I35 0.44 0.20 0.26 0.29 0.40 0.20 0.32 0.24 0.00 0.20 0.48 0.49 0.06 0.47 0.44 0.46 

I36 0.46 0.21 0.25 0.29 0.39 0.19 0.33 0.25 0.00 0.18 0.49 0.49 0.07 0.47 0.45 0.47 

I37 0.61 0.14 0.06 0.08 0.55 0.06 0.75 0.06 0.09 0.23 0.12 0.10 0.06 0.38 0.12 0.11 

I38 0.62 0.14 0.07 0.09 0.55 0.05 0.75 0.07 0.10 0.24 0.11 0.11 0.05 0.38 0.11 0.11 

I39 0.69 0.08 0.00 0.01 0.62 -0.07 0.80 0.00 0.12 0.19 0.01 0.00 0.02 0.23 0.01 0.00 

I40 0.69 0.06 0.01 0.01 0.60 -0.06 0.79 0.01 0.13 0.19 0.01 0.00 0.02 0.23 0.00 0.01 
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Table C-7: Unweighted first second patterns for 20% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.08 0.10 0.06 0.08 0.04 0.08 -0.01 0.37 0.01 0.01 0.07 0.08 0.03 0.06 0.35 0.36 

I2 0.10 0.09 0.07 0.08 0.03 0.08 -0.01 0.36 0.01 0.02 0.07 0.06 0.03 0.03 0.34 0.37 

I3 0.14 0.13 0.29 0.28 0.12 0.27 -0.02 0.43 0.01 0.01 0.27 0.29 0.06 0.23 0.43 0.43 

I4 0.13 0.14 0.27 0.29 0.12 0.30 -0.01 0.43 -0.01 0.02 0.29 0.29 0.07 0.22 0.41 0.43 

I5 0.17 0.15 0.48 0.48 0.21 0.42 -0.01 0.46 0.01 0.01 0.48 0.49 0.11 0.39 0.45 0.47 

I6 0.15 0.15 0.47 0.48 0.21 0.43 0.00 0.46 0.01 0.02 0.48 0.48 0.12 0.39 0.45 0.46 

I7 0.20 0.16 0.29 0.27 0.14 0.22 0.01 0.43 0.01 0.01 0.27 0.31 0.06 0.23 0.42 0.43 

I8 0.18 0.16 0.28 0.29 0.14 0.22 0.00 0.43 0.02 0.01 0.29 0.29 0.05 0.22 0.43 0.43 

I9 0.17 0.15 0.09 0.07 0.06 0.05 0.01 0.34 0.01 0.00 0.07 0.07 0.01 0.05 0.36 0.36 

I10 0.17 0.15 0.06 0.06 0.05 0.05 0.00 0.35 0.03 0.02 0.08 0.06 0.02 0.05 0.35 0.37 

I11 0.11 0.10 0.08 0.10 0.04 0.07 -0.03 0.36 0.00 0.01 0.06 0.07 0.03 0.05 0.34 0.37 

I12 0.09 0.08 0.05 0.09 0.02 0.07 -0.02 0.36 0.01 0.01 0.08 0.07 0.01 0.05 0.35 0.37 

I13 0.14 0.14 0.28 0.29 0.10 0.29 -0.02 0.42 0.00 0.02 0.30 0.29 0.07 0.23 0.43 0.44 

I14 0.15 0.12 0.28 0.30 0.09 0.30 -0.01 0.44 0.00 0.00 0.28 0.29 0.05 0.22 0.42 0.43 

I15 0.17 0.16 0.47 0.49 0.23 0.43 -0.01 0.46 0.04 0.01 0.49 0.48 0.10 0.39 0.47 0.47 

I16 0.18 0.16 0.46 0.50 0.20 0.43 -0.01 0.46 0.00 0.02 0.47 0.48 0.10 0.39 0.46 0.46 

I17 0.19 0.16 0.27 0.29 0.12 0.22 0.00 0.42 0.00 0.01 0.29 0.30 0.05 0.22 0.42 0.42 

I18 0.19 0.16 0.27 0.27 0.13 0.23 0.00 0.43 0.00 0.03 0.27 0.29 0.05 0.23 0.42 0.43 

I19 0.17 0.14 0.06 0.07 0.06 0.05 0.00 0.36 0.01 0.00 0.07 0.06 0.02 0.05 0.35 0.36 

I20 0.16 0.12 0.07 0.05 0.03 0.05 0.01 0.36 0.02 0.00 0.07 0.05 0.01 0.06 0.35 0.35 

I21 0.08 0.01 0.08 0.01 0.02 0.37 -0.03 0.01 0.03 -0.06 0.08 0.01 0.04 0.23 0.35 0.01 

I22 0.09 0.00 0.08 0.01 0.04 0.37 -0.02 0.02 0.01 -0.06 0.07 0.01 0.00 0.23 0.34 0.01 

I23 0.13 0.19 0.28 0.22 0.12 0.35 -0.01 0.21 0.01 -0.03 0.28 0.13 0.06 0.35 0.43 0.13 

I24 0.14 0.16 0.28 0.19 0.12 0.36 -0.01 0.18 0.01 0.00 0.29 0.13 0.07 0.35 0.42 0.13 

I25 0.17 0.36 0.47 0.42 0.22 0.26 -0.02 0.38 0.03 0.01 0.48 0.49 0.10 0.41 0.45 0.45 

I26 0.17 0.36 0.46 0.43 0.21 0.25 -0.02 0.40 0.03 0.01 0.49 0.49 0.08 0.40 0.45 0.46 

I27 0.18 0.51 0.28 0.15 0.13 0.12 -0.01 0.14 0.03 0.07 0.30 0.13 0.08 0.32 0.42 0.14 

I28 0.20 0.52 0.27 0.15 0.15 0.12 0.01 0.15 0.01 0.06 0.28 0.13 0.05 0.33 0.42 0.13 

I29 0.16 0.59 0.08 0.05 0.04 -0.04 0.01 0.03 0.01 0.09 0.07 0.00 0.01 0.20 0.35 0.01 

I30 0.17 0.60 0.06 0.05 0.03 -0.03 0.00 0.02 0.01 0.09 0.06 0.01 0.04 0.22 0.36 0.01 

I31 0.00 0.00 0.01 0.00 0.08 0.38 -0.51 0.01 -0.14 -0.06 0.01 0.01 0.13 0.23 0.01 0.01 

I32 -0.01 0.00 0.00 0.02 0.08 0.38 -0.53 0.02 -0.14 -0.07 0.01 0.01 0.14 0.23 0.01 0.01 

I33 0.23 0.17 0.19 0.20 0.18 0.36 -0.30 0.19 -0.07 -0.03 0.13 0.13 0.15 0.35 0.13 0.14 

I34 0.22 0.19 0.19 0.19 0.18 0.36 -0.29 0.17 -0.06 -0.01 0.13 0.13 0.14 0.34 0.13 0.13 

I35 0.44 0.36 0.39 0.43 0.30 0.26 0.24 0.38 0.00 0.03 0.47 0.49 0.11 0.39 0.45 0.46 

I36 0.44 0.36 0.39 0.43 0.28 0.29 0.25 0.39 0.01 0.01 0.49 0.49 0.10 0.39 0.45 0.46 

I37 0.59 0.51 0.13 0.15 0.34 0.11 0.73 0.14 0.12 0.06 0.13 0.12 0.04 0.33 0.13 0.13 

I38 0.59 0.50 0.13 0.15 0.35 0.13 0.74 0.14 0.13 0.08 0.12 0.12 0.06 0.33 0.14 0.13 

I39 0.67 0.59 0.03 0.04 0.37 -0.04 0.84 0.02 0.17 0.09 0.01 0.00 -0.02 0.20 0.01 0.01 

I40 0.67 0.59 0.02 0.04 0.36 -0.04 0.83 0.03 0.18 0.09 0.01 0.01 -0.03 0.21 0.01 0.01 
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Table C-8: Unweighted first second patterns for 5% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.21 0.12 0.01 0.05 0.08 0.08 -0.01 0.33 0.22 0.23 0.07 0.07 0.04 0.05 0.19 0.37 

I2 0.21 0.12 -0.03 0.06 0.15 0.06 0.01 0.32 0.23 0.22 0.06 0.06 0.02 0.03 0.20 0.38 

I3 0.27 0.17 0.00 0.30 0.16 0.22 0.00 0.39 0.27 0.28 0.30 0.28 0.15 0.16 0.25 0.43 

I4 0.25 0.19 0.00 0.29 0.17 0.21 0.00 0.39 0.26 0.28 0.29 0.29 0.14 0.17 0.25 0.43 

I5 0.29 0.23 0.06 0.48 0.18 0.28 0.00 0.41 0.29 0.29 0.48 0.49 0.22 0.29 0.26 0.45 

I6 0.28 0.23 0.06 0.48 0.18 0.29 0.00 0.41 0.29 0.30 0.47 0.48 0.22 0.29 0.26 0.46 

I7 0.30 0.25 0.05 0.27 0.12 0.12 0.01 0.39 0.28 0.27 0.29 0.29 0.13 0.15 0.25 0.44 

I8 0.26 0.24 0.05 0.28 0.10 0.12 0.01 0.37 0.26 0.26 0.29 0.29 0.16 0.15 0.26 0.42 

I9 0.25 0.23 0.02 0.07 0.07 0.08 0.00 0.31 0.22 0.21 0.06 0.07 0.05 0.03 0.20 0.36 

I10 0.25 0.24 0.03 0.10 0.07 0.04 0.00 0.32 0.21 0.21 0.07 0.07 0.02 0.02 0.20 0.36 

I11 0.20 0.12 0.00 0.08 0.05 0.05 -0.01 0.33 0.22 0.23 0.06 0.07 0.03 0.05 0.21 0.36 

I12 0.22 0.13 0.02 0.09 0.08 0.11 -0.02 0.33 0.23 0.22 0.08 0.07 0.06 0.06 0.20 0.37 

I13 0.26 0.18 0.00 0.29 0.15 0.21 -0.02 0.39 0.26 0.28 0.28 0.29 0.14 0.17 0.24 0.43 

I14 0.25 0.18 0.01 0.29 0.14 0.21 0.00 0.39 0.27 0.26 0.29 0.30 0.11 0.17 0.27 0.42 

I15 0.28 0.24 0.05 0.48 0.18 0.30 0.01 0.42 0.27 0.29 0.47 0.48 0.24 0.28 0.26 0.46 

I16 0.28 0.24 0.06 0.48 0.20 0.30 0.00 0.41 0.28 0.30 0.48 0.50 0.22 0.27 0.27 0.45 

I17 0.28 0.27 0.04 0.27 0.08 0.15 0.02 0.39 0.26 0.25 0.29 0.29 0.11 0.16 0.25 0.43 

I18 0.27 0.25 0.05 0.28 0.11 0.14 0.00 0.38 0.28 0.26 0.27 0.28 0.16 0.16 0.24 0.42 

I19 0.24 0.24 0.02 0.07 0.09 0.09 0.02 0.31 0.22 0.20 0.08 0.05 0.06 0.05 0.20 0.37 

I20 0.23 0.23 0.00 0.09 0.06 0.04 0.00 0.32 0.24 0.22 0.07 0.07 0.03 0.04 0.20 0.37 

I21 0.23 0.06 0.00 0.07 0.13 0.28 -0.02 0.01 0.22 0.27 0.08 0.01 0.04 0.27 0.21 0.02 

I22 0.21 0.09 -0.03 0.06 0.08 0.29 -0.01 0.00 0.23 0.27 0.07 0.02 0.05 0.29 0.21 0.02 

I23 0.27 0.20 0.02 0.27 0.16 0.27 -0.01 0.21 0.26 0.32 0.29 0.20 0.17 0.31 0.24 0.19 

I24 0.25 0.21 0.01 0.28 0.16 0.29 -0.01 0.20 0.28 0.31 0.28 0.20 0.14 0.31 0.25 0.19 

I25 0.29 0.32 0.04 0.46 0.17 0.26 0.00 0.41 0.28 0.30 0.48 0.49 0.22 0.29 0.25 0.47 

I26 0.27 0.34 0.05 0.45 0.18 0.26 0.00 0.40 0.28 0.29 0.48 0.48 0.23 0.27 0.26 0.45 

I27 0.26 0.42 0.04 0.19 0.05 0.19 0.02 0.21 0.27 0.23 0.27 0.20 0.16 0.23 0.25 0.18 

I28 0.28 0.41 0.04 0.18 0.06 0.20 -0.01 0.22 0.27 0.25 0.29 0.20 0.12 0.21 0.24 0.20 

I29 0.23 0.49 0.00 -0.02 -0.01 0.12 0.02 0.09 0.23 0.14 0.06 0.02 0.05 0.12 0.20 0.01 

I30 0.25 0.50 0.02 -0.01 0.02 0.10 0.01 0.08 0.22 0.15 0.06 0.02 0.08 0.11 0.22 0.01 

I31 0.20 0.06 -0.46 0.07 0.17 0.26 -0.51 0.01 0.23 0.27 0.02 0.01 0.18 0.28 -0.06 0.02 

I32 0.21 0.07 -0.42 0.07 0.17 0.27 -0.51 -0.01 0.21 0.27 0.01 0.01 0.17 0.28 -0.06 0.02 

I33 0.25 0.21 -0.15 0.29 0.16 0.27 -0.21 0.21 0.30 0.30 0.21 0.20 0.23 0.31 0.07 0.19 

I34 0.26 0.20 -0.16 0.27 0.15 0.28 -0.20 0.21 0.29 0.31 0.20 0.20 0.21 0.30 0.07 0.19 

I35 0.32 0.31 0.17 0.45 0.20 0.25 0.13 0.41 0.27 0.29 0.47 0.49 0.22 0.27 0.26 0.47 

I36 0.34 0.32 0.18 0.46 0.16 0.26 0.14 0.41 0.29 0.30 0.48 0.49 0.23 0.30 0.27 0.45 

I37 0.34 0.43 0.54 0.17 0.13 0.20 0.59 0.22 0.27 0.24 0.20 0.20 0.21 0.22 0.17 0.18 

I38 0.32 0.42 0.54 0.18 0.15 0.20 0.60 0.21 0.28 0.25 0.20 0.20 0.22 0.22 0.17 0.19 

I39 0.31 0.48 0.72 0.00 0.10 0.12 0.82 0.08 0.19 0.14 0.01 0.02 0.17 0.12 0.08 0.01 

I40 0.32 0.49 0.72 0.00 0.11 0.13 0.82 0.08 0.18 0.15 0.01 0.02 0.19 0.11 0.09 0.01 
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Table C-9: Rasch weighted first factor patterns for 100% contamination 
 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.37 0.38 0.06 0.08 0.04 0.06 0.35 0.38 0.25 0.24 0.05 0.06 0.04 0.03 0.30 0.33 

I2 0.36 0.38 0.09 0.07 0.05 0.09 0.36 0.38 0.25 0.23 0.06 0.03 0.05 0.02 0.27 0.30 

I3 0.42 0.44 0.26 0.31 0.29 0.34 0.42 0.44 0.33 0.32 0.25 0.26 0.21 0.18 0.33 0.37 

I4 0.42 0.43 0.26 0.31 0.29 0.30 0.43 0.45 0.32 0.30 0.25 0.28 0.23 0.19 0.34 0.37 

I5 0.43 0.46 0.47 0.50 0.48 0.50 0.43 0.46 0.34 0.34 0.45 0.43 0.40 0.39 0.34 0.39 

I6 0.44 0.45 0.48 0.51 0.48 0.50 0.44 0.45 0.32 0.35 0.43 0.43 0.41 0.39 0.35 0.41 

I7 0.40 0.39 0.30 0.31 0.29 0.30 0.39 0.38 0.30 0.31 0.23 0.23 0.21 0.22 0.32 0.37 

I8 0.40 0.39 0.29 0.31 0.29 0.32 0.39 0.38 0.29 0.30 0.24 0.23 0.20 0.22 0.30 0.38 

I9 0.29 0.24 0.06 0.10 0.05 0.10 0.31 0.26 0.26 0.23 0.05 0.04 0.05 0.07 0.26 0.32 

I10 0.29 0.26 0.07 0.05 0.07 0.04 0.30 0.25 0.26 0.24 0.04 0.07 0.04 0.03 0.25 0.30 

I11 0.35 0.38 0.05 0.08 0.06 0.06 0.36 0.38 0.24 0.22 0.08 0.06 0.06 0.03 0.27 0.31 

I12 0.34 0.37 0.05 0.08 0.07 0.05 0.35 0.40 0.24 0.26 0.07 0.06 0.06 0.04 0.26 0.33 

I13 0.41 0.44 0.26 0.30 0.29 0.30 0.41 0.45 0.31 0.32 0.24 0.26 0.25 0.17 0.35 0.37 

I14 0.42 0.43 0.26 0.32 0.29 0.29 0.41 0.45 0.31 0.33 0.24 0.27 0.24 0.21 0.31 0.36 

I15 0.44 0.45 0.47 0.50 0.50 0.50 0.44 0.44 0.35 0.33 0.43 0.44 0.41 0.40 0.36 0.41 

I16 0.42 0.45 0.46 0.50 0.47 0.50 0.45 0.45 0.32 0.32 0.43 0.43 0.43 0.39 0.36 0.42 

I17 0.38 0.39 0.31 0.30 0.27 0.29 0.39 0.37 0.31 0.31 0.24 0.23 0.24 0.25 0.34 0.37 

I18 0.40 0.39 0.31 0.29 0.27 0.30 0.39 0.37 0.30 0.30 0.25 0.23 0.22 0.24 0.34 0.39 

I19 0.30 0.27 0.05 0.05 0.07 0.08 0.29 0.26 0.22 0.26 0.05 0.06 0.04 0.02 0.26 0.29 

I20 0.31 0.27 0.06 0.07 0.08 0.08 0.30 0.26 0.24 0.25 0.07 0.07 0.05 0.05 0.25 0.30 

I21 0.36 0.01 0.05 0.02 0.07 0.00 0.35 0.00 0.24 0.24 0.04 0.05 0.04 0.32 0.29 0.03 

I22 0.35 0.01 0.05 -0.01 0.05 0.01 0.35 0.01 0.25 0.23 0.06 0.04 0.06 0.29 0.28 0.04 

I23 0.43 0.00 0.25 0.01 0.27 -0.01 0.42 0.01 0.32 0.32 0.26 0.23 0.23 0.36 0.36 0.24 

I24 0.43 0.00 0.26 0.01 0.27 0.02 0.42 0.01 0.33 0.31 0.26 0.24 0.21 0.38 0.34 0.20 

I25 0.43 0.00 0.45 0.01 0.48 0.01 0.45 0.01 0.32 0.36 0.42 0.43 0.43 0.40 0.36 0.40 

I26 0.43 0.00 0.46 0.01 0.48 -0.03 0.43 0.02 0.33 0.32 0.44 0.42 0.42 0.38 0.35 0.41 

I27 0.40 0.02 0.28 0.01 0.29 -0.01 0.40 -0.01 0.31 0.34 0.25 0.27 0.26 0.35 0.31 0.22 

I28 0.40 0.01 0.29 -0.01 0.28 0.02 0.40 0.01 0.30 0.33 0.24 0.29 0.23 0.33 0.31 0.21 

I29 0.32 0.01 0.07 -0.02 0.07 0.01 0.30 0.01 0.26 0.24 0.02 0.06 0.06 0.27 0.25 0.06 

I30 0.29 0.02 0.08 0.00 0.08 0.01 0.29 -0.01 0.26 0.24 0.05 0.05 0.03 0.27 0.25 0.05 

I31 0.00 0.01 -0.01 -0.02 0.00 -0.01 0.01 0.01 0.25 0.22 0.03 0.05 0.34 0.33 0.06 0.03 

I32 0.00 -0.01 0.00 0.00 0.01 0.02 0.02 0.02 0.22 0.24 0.07 0.05 0.33 0.33 0.02 0.05 

I33 0.01 0.01 0.00 0.01 0.00 0.00 0.02 -0.01 0.32 0.31 0.23 0.21 0.40 0.36 0.18 0.21 

I34 0.02 0.02 0.01 0.00 -0.01 0.00 0.00 0.00 0.27 0.33 0.25 0.21 0.37 0.37 0.16 0.22 

I35 0.02 0.02 0.00 0.01 0.00 -0.02 0.02 0.01 0.34 0.33 0.42 0.43 0.43 0.40 0.34 0.39 

I36 0.02 0.01 0.00 0.00 -0.01 -0.01 0.00 0.01 0.34 0.33 0.44 0.44 0.44 0.39 0.34 0.41 

I37 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.28 0.31 0.27 0.24 0.39 0.35 0.19 0.23 

I38 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.30 0.32 0.25 0.26 0.38 0.34 0.20 0.21 

I39 0.02 0.00 0.00 0.03 -0.02 -0.02 0.02 0.01 0.26 0.24 0.06 0.06 0.32 0.28 0.07 0.02 

I40 0.01 0.01 0.00 -0.02 -0.01 0.01 0.01 0.02 0.24 0.24 0.05 0.06 0.33 0.26 0.06 0.05 
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Table C-10: Rasch weighted first factor patterns for 50% contamination 
 
 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20

I1 0.34 0.10 0.00 0.00 0.06 -0.01 0.35 0.08 0.34 0.17 0.01 0.04 0.05 0.00 0.00 0.23

I2 0.35 0.10 -0.01 0.00 0.08 0.02 0.36 0.09 0.35 0.17 0.00 0.07 0.07 0.01 0.00 0.23

I3 0.43 0.11 -0.01 -0.01 0.27 0.04 0.42 0.10 0.42 0.19 0.00 0.21 0.26 0.00 0.01 0.26

I4 0.42 0.11 0.00 -0.02 0.28 0.04 0.43 0.11 0.43 0.20 0.00 0.19 0.26 0.01 0.00 0.28

I5 0.43 0.12 0.00 -0.02 0.44 0.09 0.46 0.10 0.45 0.22 0.00 0.35 0.45 0.02 0.01 0.27

I6 0.43 0.14 0.01 -0.01 0.43 0.09 0.46 0.10 0.46 0.22 0.00 0.33 0.45 0.03 -0.01 0.30

I7 0.42 0.13 0.00 0.00 0.26 0.05 0.42 0.08 0.42 0.19 0.00 0.16 0.25 0.02 0.00 0.29

I8 0.40 0.12 0.00 0.00 0.27 0.06 0.42 0.07 0.42 0.21 0.00 0.18 0.28 0.00 0.02 0.27

I9 0.32 0.10 -0.02 -0.01 0.06 0.02 0.33 0.04 0.34 0.16 0.00 0.05 0.07 0.00 -0.01 0.26

I10 0.33 0.10 0.00 0.00 0.06 0.02 0.34 0.05 0.34 0.17 0.01 0.05 0.05 0.01 0.00 0.24

I11 0.36 0.07 0.00 0.00 0.05 0.01 0.36 0.09 0.36 0.16 0.00 0.06 0.06 0.01 0.00 0.20

I12 0.36 0.11 -0.01 0.00 0.05 0.03 0.36 0.08 0.34 0.16 0.01 0.05 0.07 0.00 -0.01 0.21

I13 0.41 0.11 0.00 -0.01 0.27 0.03 0.43 0.10 0.42 0.20 0.01 0.22 0.27 0.01 -0.01 0.26

I14 0.42 0.11 -0.01 -0.01 0.24 0.03 0.44 0.11 0.42 0.20 0.00 0.23 0.26 0.03 0.01 0.27

I15 0.43 0.13 0.01 -0.01 0.43 0.09 0.46 0.10 0.45 0.22 0.00 0.36 0.45 0.02 0.00 0.30

I16 0.44 0.12 0.01 -0.02 0.46 0.09 0.46 0.09 0.45 0.22 0.02 0.33 0.46 0.02 0.00 0.29

I17 0.40 0.13 0.00 0.00 0.26 0.07 0.42 0.08 0.41 0.20 0.00 0.19 0.26 0.01 0.00 0.28

I18 0.41 0.12 0.00 -0.02 0.26 0.05 0.42 0.08 0.41 0.19 0.00 0.17 0.25 0.01 -0.01 0.27

I19 0.33 0.08 0.00 0.00 0.05 0.01 0.32 0.05 0.35 0.16 -0.01 0.02 0.06 0.01 0.01 0.23

I20 0.33 0.10 0.00 0.00 0.05 0.01 0.33 0.04 0.34 0.16 0.00 0.02 0.06 0.00 0.00 0.25

I21 0.34 -0.01 -0.01 -0.41 0.05 -0.05 0.35 -0.29 0.34 0.18 -0.01 0.12 0.08 -0.01 0.00 -0.06

I22 0.35 -0.02 0.01 -0.42 0.08 -0.07 0.36 -0.30 0.35 0.19 0.01 0.11 0.07 -0.01 0.00 -0.04

I23 0.42 0.20 0.00 -0.28 0.26 0.17 0.43 -0.13 0.43 0.23 0.00 0.26 0.26 0.01 0.00 0.10

I24 0.41 0.19 -0.01 -0.29 0.26 0.17 0.43 -0.12 0.42 0.22 -0.01 0.23 0.26 0.00 0.00 0.08

I25 0.44 0.38 0.01 0.29 0.44 0.41 0.44 0.35 0.45 0.21 0.01 0.34 0.45 0.03 0.00 0.29

I26 0.44 0.38 0.01 0.30 0.45 0.39 0.45 0.34 0.44 0.21 0.02 0.34 0.45 0.03 0.01 0.30

I27 0.40 0.51 0.01 0.72 0.26 0.57 0.41 0.59 0.43 0.14 0.00 0.19 0.25 0.04 0.00 0.20

I28 0.41 0.51 0.01 0.72 0.25 0.57 0.42 0.59 0.41 0.15 0.01 0.14 0.25 0.05 0.01 0.16

I29 0.33 0.57 0.00 0.79 0.07 0.67 0.35 0.60 0.34 0.04 -0.02 -0.04 0.08 0.05 0.00 0.13

I30 0.33 0.58 0.01 0.78 0.08 0.66 0.34 0.59 0.35 0.04 0.01 -0.03 0.06 0.05 0.01 0.11

I31 0.20 0.00 -0.46 -0.41 0.20 -0.07 0.02 -0.29 0.22 0.20 0.20 0.15 0.20 -0.01 0.02 -0.05

I32 0.21 -0.02 -0.45 -0.41 0.20 -0.07 0.03 -0.29 0.22 0.19 0.20 0.10 0.20 -0.01 0.02 -0.03

I33 0.18 0.18 -0.32 -0.28 0.24 0.17 0.12 -0.12 0.36 0.23 0.19 0.27 0.35 0.00 0.03 0.11

I34 0.19 0.19 -0.29 -0.29 0.23 0.17 0.12 -0.13 0.37 0.24 0.19 0.25 0.35 0.01 0.02 0.14

I35 0.14 0.39 0.34 0.29 0.21 0.40 0.24 0.32 0.44 0.22 0.01 0.33 0.44 0.02 -0.01 0.29

I36 0.13 0.36 0.33 0.29 0.20 0.40 0.25 0.34 0.45 0.21 0.01 0.36 0.45 0.02 0.00 0.30

I37 0.05 0.51 0.75 0.72 0.13 0.57 0.04 0.59 0.37 0.13 -0.17 0.12 0.38 0.04 -0.01 0.18

I38 0.04 0.51 0.74 0.73 0.13 0.58 0.04 0.60 0.39 0.14 -0.16 0.15 0.38 0.05 -0.02 0.19

I39 -0.03 0.58 0.79 0.79 0.05 0.67 -0.02 0.59 0.23 0.03 -0.20 -0.01 0.24 0.04 -0.02 0.12

I40 -0.05 0.58 0.79 0.79 0.05 0.66 -0.01 0.59 0.24 0.04 -0.20 -0.03 0.26 0.05 -0.02 0.10
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 Table C-11: Rasch weighted first factor patterns for 20% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.35 0.35 -0.01 -0.01 0.06 0.01 0.34 0.36 0.35 0.36 0.00 0.04 0.07 0.01 0.05 0.30 

I2 0.34 0.35 0.01 -0.01 0.05 0.00 0.35 0.35 0.33 0.35 0.00 0.05 0.06 0.02 0.05 0.30 

I3 0.39 0.41 0.00 0.00 0.22 0.07 0.43 0.43 0.42 0.43 0.00 0.27 0.27 0.07 0.06 0.33 

I4 0.41 0.41 0.00 -0.01 0.21 0.04 0.42 0.43 0.41 0.42 -0.01 0.26 0.27 0.08 0.05 0.34 

I5 0.42 0.42 -0.01 -0.02 0.38 0.15 0.45 0.46 0.44 0.44 0.01 0.43 0.46 0.12 0.06 0.40 

I6 0.41 0.42 0.01 -0.02 0.38 0.15 0.45 0.46 0.45 0.45 0.00 0.44 0.45 0.13 0.07 0.37 

I7 0.36 0.38 0.00 -0.02 0.20 0.12 0.42 0.43 0.42 0.41 0.00 0.27 0.26 0.08 0.06 0.35 

I8 0.38 0.37 0.02 -0.02 0.22 0.11 0.42 0.43 0.42 0.42 -0.01 0.23 0.25 0.08 0.06 0.37 

I9 0.28 0.31 0.00 -0.02 0.04 0.03 0.34 0.34 0.34 0.33 0.00 0.05 0.06 0.02 0.05 0.27 

I10 0.30 0.29 -0.02 0.00 0.05 0.01 0.35 0.35 0.34 0.33 0.00 0.01 0.09 0.01 0.05 0.28 

I11 0.33 0.35 -0.01 0.01 0.05 0.01 0.35 0.36 0.34 0.36 0.00 0.05 0.07 0.03 0.04 0.31 

I12 0.36 0.35 0.00 0.00 0.07 0.01 0.36 0.36 0.35 0.36 0.00 0.04 0.06 0.02 0.04 0.30 

I13 0.42 0.40 -0.01 -0.01 0.23 0.06 0.42 0.42 0.41 0.42 0.00 0.24 0.27 0.07 0.06 0.35 

I14 0.39 0.42 -0.01 0.00 0.25 0.05 0.41 0.43 0.42 0.43 0.00 0.26 0.26 0.07 0.05 0.36 

I15 0.41 0.42 0.02 -0.01 0.38 0.16 0.46 0.46 0.44 0.44 0.00 0.43 0.45 0.13 0.06 0.40 

I16 0.42 0.43 0.00 -0.01 0.38 0.15 0.44 0.45 0.45 0.45 0.00 0.43 0.44 0.13 0.06 0.37 

I17 0.37 0.37 0.01 -0.02 0.22 0.10 0.42 0.42 0.41 0.41 0.00 0.26 0.27 0.08 0.06 0.37 

I18 0.37 0.38 0.01 -0.03 0.22 0.10 0.42 0.43 0.42 0.41 0.00 0.26 0.27 0.08 0.06 0.36 

I19 0.29 0.30 0.02 0.00 0.04 0.02 0.33 0.35 0.33 0.32 0.00 0.05 0.06 0.01 0.05 0.31 

I20 0.30 0.30 0.00 0.00 0.05 0.03 0.34 0.35 0.34 0.33 0.00 0.05 0.06 0.02 0.04 0.28 

I21 0.36 0.32 -0.01 -0.47 0.06 -0.02 0.36 0.07 0.34 0.38 0.01 0.07 0.08 0.03 0.05 0.03 

I22 0.33 0.33 -0.01 -0.46 0.06 -0.03 0.35 0.08 0.35 0.36 0.01 0.04 0.06 0.03 0.05 0.00 

I23 0.41 0.32 -0.03 -0.25 0.22 0.18 0.42 0.29 0.41 0.43 0.00 0.25 0.26 0.08 0.06 0.21 

I24 0.40 0.35 -0.03 -0.25 0.23 0.19 0.43 0.25 0.41 0.44 0.00 0.24 0.26 0.09 0.05 0.21 

I25 0.42 0.26 0.01 0.21 0.38 0.38 0.45 0.44 0.45 0.44 0.00 0.43 0.44 0.12 0.05 0.39 

I26 0.41 0.26 0.01 0.21 0.37 0.38 0.45 0.45 0.44 0.44 -0.01 0.44 0.45 0.13 0.06 0.40 

I27 0.37 0.15 0.01 0.69 0.22 0.56 0.42 0.22 0.42 0.34 0.01 0.22 0.27 0.14 0.04 0.22 

I28 0.35 0.14 0.00 0.69 0.21 0.54 0.42 0.23 0.41 0.34 0.02 0.23 0.27 0.14 0.06 0.20 

I29 0.30 0.01 0.01 0.83 0.06 0.65 0.35 -0.02 0.34 0.16 0.00 0.07 0.06 0.13 0.05 0.03 

I30 0.30 0.01 0.01 0.83 0.05 0.64 0.35 -0.02 0.34 0.16 0.00 0.04 0.06 0.12 0.06 0.05 

I31 0.31 0.32 -0.50 -0.46 0.25 -0.03 0.05 0.08 0.27 0.36 0.08 0.07 0.23 0.03 -0.04 0.05 

I32 0.33 0.32 -0.51 -0.46 0.25 -0.02 0.05 0.08 0.27 0.36 0.08 0.05 0.23 0.03 -0.04 0.06 

I33 0.28 0.33 -0.29 -0.26 0.34 0.18 0.19 0.27 0.39 0.44 0.08 0.26 0.37 0.10 0.01 0.21 

I34 0.29 0.32 -0.29 -0.26 0.33 0.18 0.19 0.26 0.39 0.44 0.08 0.25 0.37 0.08 0.00 0.17 

I35 0.20 0.26 0.25 0.20 0.33 0.38 0.38 0.43 0.45 0.44 0.00 0.44 0.45 0.13 0.06 0.38 

I36 0.20 0.27 0.25 0.21 0.34 0.38 0.36 0.45 0.45 0.44 0.00 0.43 0.44 0.12 0.06 0.38 

I37 0.08 0.14 0.73 0.69 0.30 0.54 0.11 0.23 0.38 0.35 -0.06 0.24 0.40 0.15 0.08 0.21 

I38 0.08 0.15 0.72 0.70 0.30 0.53 0.11 0.22 0.39 0.34 -0.06 0.24 0.39 0.14 0.07 0.19 

I39 -0.07 0.00 0.82 0.83 0.23 0.65 -0.01 0.00 0.24 0.17 -0.08 0.04 0.27 0.12 0.05 0.04 

I40 -0.07 0.02 0.83 0.82 0.24 0.64 -0.01 0.01 0.25 0.17 -0.08 0.06 0.28 0.12 0.05 0.04 
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Table C-12: Rasch weighted first factor patterns for 5% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.28 0.33 0.07 0.04 0.04 0.05 0.34 0.34 0.27 0.28 0.01 0.05 0.04 0.05 0.32 0.30 

I2 0.28 0.33 0.07 0.04 0.03 0.04 0.35 0.33 0.26 0.30 -0.01 0.08 0.06 0.05 0.34 0.30 

I3 0.31 0.40 0.27 0.20 0.20 0.14 0.42 0.41 0.32 0.34 0.00 0.24 0.23 0.21 0.40 0.36 

I4 0.35 0.36 0.26 0.20 0.18 0.14 0.42 0.42 0.32 0.32 -0.01 0.23 0.22 0.20 0.41 0.36 

I5 0.33 0.37 0.43 0.32 0.41 0.33 0.46 0.42 0.35 0.33 -0.01 0.42 0.39 0.35 0.42 0.39 

I6 0.35 0.38 0.43 0.32 0.40 0.31 0.46 0.43 0.33 0.33 0.00 0.43 0.41 0.36 0.44 0.40 

I7 0.29 0.33 0.24 0.18 0.24 0.21 0.42 0.41 0.32 0.29 0.00 0.26 0.24 0.22 0.42 0.39 

I8 0.30 0.33 0.27 0.19 0.24 0.21 0.42 0.38 0.31 0.29 -0.01 0.22 0.22 0.22 0.42 0.36 

I9 0.22 0.25 0.08 0.04 0.05 0.02 0.36 0.31 0.26 0.21 0.00 0.04 0.05 0.05 0.34 0.33 

I10 0.23 0.25 0.05 0.07 0.08 0.05 0.34 0.33 0.27 0.21 0.00 0.06 0.06 0.03 0.34 0.32 

I11 0.29 0.34 0.08 0.05 0.05 0.04 0.34 0.35 0.28 0.31 0.00 0.04 0.07 0.04 0.34 0.28 

I12 0.26 0.33 0.06 0.06 0.03 0.04 0.34 0.34 0.27 0.30 0.00 0.03 0.04 0.04 0.33 0.28 

I13 0.31 0.37 0.26 0.20 0.19 0.14 0.41 0.41 0.32 0.36 0.01 0.24 0.22 0.19 0.41 0.36 

I14 0.33 0.37 0.26 0.20 0.21 0.16 0.42 0.41 0.31 0.33 0.00 0.25 0.23 0.19 0.42 0.36 

I15 0.35 0.37 0.43 0.31 0.40 0.32 0.46 0.44 0.35 0.33 0.00 0.43 0.39 0.36 0.45 0.41 

I16 0.34 0.36 0.42 0.31 0.38 0.31 0.45 0.43 0.36 0.34 0.00 0.44 0.40 0.37 0.45 0.39 

I17 0.30 0.31 0.26 0.18 0.24 0.18 0.42 0.40 0.32 0.28 0.00 0.25 0.24 0.21 0.40 0.40 

I18 0.31 0.33 0.24 0.19 0.25 0.21 0.41 0.40 0.31 0.29 0.00 0.23 0.23 0.22 0.40 0.35 

I19 0.23 0.25 0.08 0.06 0.04 0.02 0.36 0.32 0.27 0.22 0.01 0.03 0.02 0.05 0.35 0.33 

I20 0.23 0.25 0.07 0.06 0.06 0.04 0.36 0.33 0.25 0.21 0.01 0.04 0.04 0.05 0.34 0.33 

I21 0.26 0.34 0.06 -0.02 0.04 0.17 0.35 0.06 0.26 0.46 0.01 0.03 0.07 0.17 0.34 0.03 

I22 0.29 0.31 0.06 -0.02 0.04 0.16 0.35 0.04 0.27 0.46 -0.01 0.05 0.04 0.18 0.35 0.03 

I23 0.31 0.36 0.27 0.17 0.21 0.31 0.42 0.25 0.33 0.44 -0.02 0.25 0.23 0.29 0.39 0.20 

I24 0.35 0.35 0.27 0.17 0.17 0.29 0.41 0.26 0.32 0.42 0.01 0.24 0.23 0.28 0.41 0.19 

I25 0.33 0.30 0.43 0.34 0.40 0.38 0.44 0.42 0.35 0.34 0.00 0.44 0.40 0.36 0.43 0.43 

I26 0.35 0.29 0.43 0.33 0.40 0.37 0.45 0.42 0.33 0.33 0.00 0.42 0.39 0.36 0.44 0.41 

I27 0.32 0.22 0.26 0.30 0.26 0.40 0.42 0.21 0.32 0.19 0.00 0.27 0.23 0.36 0.41 0.22 

I28 0.30 0.19 0.25 0.29 0.24 0.40 0.41 0.24 0.32 0.20 0.00 0.25 0.25 0.35 0.41 0.25 

I29 0.23 0.06 0.07 0.24 0.07 0.40 0.36 0.04 0.25 0.00 -0.01 0.06 0.06 0.31 0.33 0.06 

I30 0.21 0.07 0.07 0.24 0.08 0.42 0.35 0.02 0.26 -0.02 0.01 0.03 0.04 0.31 0.34 0.05 

I31 0.27 0.35 -0.01 -0.03 0.26 0.18 0.07 0.07 0.21 0.47 -0.07 0.05 0.28 0.18 0.05 0.04 

I32 0.26 0.34 -0.02 -0.01 0.26 0.18 0.07 0.07 0.19 0.47 -0.07 0.05 0.28 0.19 0.05 0.02 

I33 0.30 0.37 0.22 0.18 0.37 0.29 0.24 0.26 0.28 0.43 -0.03 0.25 0.36 0.28 0.23 0.21 

I34 0.31 0.36 0.21 0.18 0.37 0.28 0.25 0.25 0.29 0.44 -0.03 0.24 0.37 0.28 0.23 0.21 

I35 0.31 0.34 0.41 0.33 0.38 0.38 0.43 0.43 0.34 0.34 0.00 0.43 0.38 0.36 0.42 0.40 

I36 0.28 0.30 0.43 0.34 0.42 0.37 0.43 0.43 0.34 0.34 0.00 0.44 0.39 0.36 0.43 0.40 

I37 0.27 0.20 0.25 0.29 0.41 0.39 0.18 0.22 0.32 0.19 0.07 0.26 0.34 0.36 0.24 0.22 

I38 0.27 0.21 0.25 0.28 0.40 0.41 0.18 0.22 0.29 0.20 0.06 0.25 0.36 0.35 0.23 0.21 

I39 0.16 0.07 0.10 0.26 0.35 0.39 -0.03 0.02 0.26 -0.01 0.09 0.07 0.26 0.31 0.03 0.05 

I40 0.14 0.05 0.10 0.28 0.35 0.40 -0.02 0.05 0.26 0.00 0.08 0.07 0.25 0.30 0.02 0.05 
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Table C-13: Rasch weighted second factor patterns for 100% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.03 0.02 0.08 0.04 0.07 0.06 0.04 -0.02 0.25 0.24 0.08 0.03 0.05 0.12 0.20 0.12 

I2 0.06 0.06 0.01 0.09 0.07 0.05 0.01 0.01 0.25 0.27 0.05 0.08 0.05 0.10 0.21 0.17 

I3 0.04 0.02 0.07 0.07 0.06 0.02 0.08 0.01 0.26 0.27 0.09 0.09 0.14 0.18 0.24 0.17 

I4 0.06 0.07 0.09 0.04 0.08 0.04 0.06 0.03 0.27 0.28 0.10 0.05 0.13 0.18 0.22 0.18 

I5 0.06 -0.01 0.07 0.03 0.08 0.05 0.06 -0.03 0.28 0.28 0.14 0.15 0.18 0.23 0.27 0.20 

I6 0.07 -0.01 0.11 0.01 0.07 0.04 0.04 0.00 0.29 0.27 0.16 0.13 0.17 0.20 0.26 0.18 

I7 0.06 0.00 0.02 0.03 0.06 0.01 0.02 0.00 0.30 0.28 0.12 0.15 0.17 0.10 0.28 0.18 

I8 0.01 -0.01 0.05 0.05 0.02 0.02 0.06 0.05 0.29 0.29 0.10 0.13 0.15 0.12 0.28 0.17 

I9 0.07 0.04 0.01 0.02 0.05 -0.01 0.04 0.02 0.22 0.26 0.21 0.08 0.08 
-

0.02 0.22 0.15 

I10 0.11 0.02 0.05 -0.05 0.04 0.05 0.07 -0.02 0.21 0.24 0.08 0.05 0.11 0.08 0.22 0.18 

I11 0.10 0.06 0.07 0.03 0.08 0.07 0.01 0.00 0.23 0.26 0.01 0.01 0.00 0.10 0.21 0.15 

I12 0.05 -0.01 0.01 0.07 0.03 0.08 0.08 -0.03 0.25 0.23 0.03 0.04 0.09 0.05 0.22 0.11 

I13 0.08 0.06 0.09 0.06 0.05 0.09 0.07 -0.01 0.27 0.26 0.12 0.08 0.08 0.20 0.24 0.20 

I14 0.05 0.04 0.11 0.03 0.09 0.05 0.05 0.01 0.27 0.27 0.13 0.10 0.10 0.17 0.26 0.20 

I15 0.06 0.02 0.10 0.03 0.04 0.04 0.03 0.07 0.28 0.30 0.15 0.17 0.17 0.20 0.25 0.19 

I16 0.06 0.01 0.10 0.06 0.07 0.05 0.06 0.01 0.32 0.30 0.16 0.14 0.16 0.22 0.24 0.15 

I17 0.05 -0.02 0.03 0.02 0.03 0.06 0.03 0.00 0.28 0.27 0.09 0.14 0.14 0.09 0.24 0.19 

I18 0.01 0.01 0.04 0.01 0.02 0.03 0.07 0.02 0.28 0.30 0.11 0.13 0.15 0.09 0.24 0.15 

I19 0.05 0.05 0.04 0.02 0.03 -0.01 0.06 -0.01 0.27 0.24 0.10 0.08 0.11 0.06 0.24 0.17 

I20 0.06 0.03 0.04 0.04 
-

0.01 0.05 0.07 0.02 0.25 0.23 0.05 0.05 0.09 0.09 0.24 0.17 

I21 0.03 0.03 0.07 0.09 0.05 0.01 0.05 0.02 0.25 0.26 0.05 0.07 0.01 0.14 0.19 0.07 

I22 0.03 0.00 0.11 0.01 0.08 -0.02 0.05 0.05 0.23 0.25 0.02 0.06 0.06 0.17 0.19 0.08 

I23 0.01 -0.02 0.11 0.04 0.07 -0.01 0.06 -0.05 0.27 0.27 0.08 0.17 0.10 0.21 0.22 0.09 

I24 0.05 0.03 0.11 0.01 0.08 -0.01 0.08 0.00 0.27 0.27 0.07 0.12 0.10 0.19 0.23 0.15 

I25 0.09 0.02 0.12 0.03 0.07 0.05 0.03 0.05 0.31 0.27 0.16 0.17 0.15 0.20 0.24 0.19 

I26 0.06 0.06 0.09 0.03 0.03 0.04 0.09 0.03 0.30 0.31 0.14 0.16 0.16 0.21 0.28 0.18 

I27 0.06 0.01 0.07 0.03 0.06 -0.01 0.08 0.01 0.27 0.25 0.10 0.08 0.09 0.21 0.28 0.13 

I28 0.05 0.01 0.02 0.05 0.05 0.00 0.01 0.01 0.27 0.26 0.10 0.06 0.14 0.25 0.27 0.13 

I29 0.01 0.06 0.04 0.02 0.05 0.08 0.04 0.03 0.21 0.25 0.12 0.13 0.01 0.21 0.24 
-

0.01 

I30 0.10 0.05 0.08 0.04 0.05 0.00 0.06 0.05 0.22 0.25 0.06 0.05 0.09 0.21 0.22 0.08 

I31 0.06 0.04 0.01 0.00 0.03 0.06 0.03 -0.02 0.22 0.26 0.08 0.06 0.14 0.14 0.05 0.12 

I32 0.04 0.03 -0.01 0.02 
-

0.01 0.06 0.05 0.08 0.26 0.24 0.07 0.07 0.15 0.14 0.07 0.11 

I33 0.06 0.06 0.03 -0.04 0.00 0.06 0.06 0.00 0.26 0.29 0.10 0.17 0.15 0.20 0.17 0.13 

I34 -0.01 0.04 0.01 0.02 0.00 0.08 0.08 0.01 0.31 0.27 0.14 0.16 0.18 0.19 0.21 0.16 

I35 0.04 0.02 -0.01 0.08 0.02 0.04 0.02 0.01 0.27 0.28 0.17 0.17 0.18 0.21 0.27 0.18 

I36 0.06 0.02 0.08 -0.02 0.00 0.00 0.09 0.01 0.28 0.30 0.14 0.16 0.14 0.21 0.26 0.17 

I37 0.02 0.01 0.02 0.02 0.05 0.03 0.05 0.05 0.31 0.28 0.07 0.10 0.14 0.24 0.16 0.11 

I38 0.06 0.04 0.00 -0.07 0.04 0.01 0.06 0.02 0.29 0.27 0.11 0.09 0.16 0.24 0.14 0.11 

I39 -0.02 0.02 0.07 0.02 0.02 0.05 0.03 0.06 0.24 0.26 0.05 0.02 0.14 0.20 0.02 0.09 

I40 0.05 0.02 -0.04 0.02 
-

0.02 -0.02 0.05 0.06 0.26 0.25 0.05 0.07 0.11 0.21 0.04 0.08 
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Table C-14: Rasch weighted second factor patterns for 50% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.06 0.34 0.08 0.09 0.00 0.07 0.00 0.28 0.01 0.19 0.07 0.06 0.02 0.08 0.35 0.19 

I2 0.04 0.32 0.08 0.09 0.01 0.09 -0.01 0.29 0.00 0.18 0.06 0.01 0.03 0.05 0.35 0.20 

I3 0.08 0.39 0.29 0.32 0.04 0.30 0.02 0.34 -0.01 0.23 0.29 0.11 0.04 0.27 0.44 0.24 

I4 0.08 0.39 0.28 0.31 0.04 0.30 0.00 0.34 0.02 0.22 0.28 0.18 0.04 0.27 0.42 0.25 

I5 0.08 0.39 0.48 0.51 0.10 0.45 0.00 0.34 0.00 0.25 0.49 0.22 0.06 0.46 0.45 0.29 

I6 0.10 0.39 0.48 0.50 0.11 0.46 0.01 0.33 -0.01 0.24 0.48 0.24 0.07 0.46 0.46 0.27 

I7 0.08 0.37 0.28 0.31 0.08 0.27 0.01 0.32 0.00 0.22 0.29 0.20 0.03 0.28 0.42 0.24 

I8 0.08 0.36 0.28 0.31 0.07 0.26 -0.01 0.30 0.01 0.22 0.27 0.17 0.04 0.29 0.42 0.27 

I9 0.08 0.30 0.05 0.07 0.02 0.06 -0.01 0.24 0.00 0.19 0.06 0.07 0.01 0.07 0.34 0.16 

I10 0.08 0.29 0.08 0.08 0.00 0.06 -0.02 0.24 0.01 0.19 0.06 0.04 0.02 0.07 0.35 0.20 

I11 0.06 0.33 0.07 0.10 0.03 0.08 0.00 0.28 -0.01 0.19 0.07 0.03 0.02 0.06 0.36 0.23 

I12 0.05 0.32 0.08 0.08 0.00 0.11 0.00 0.29 0.01 0.18 0.09 0.06 0.02 0.06 0.35 0.24 

I13 0.08 0.39 0.29 0.31 0.05 0.30 -0.02 0.33 -0.01 0.24 0.29 0.11 0.02 0.27 0.42 0.23 

I14 0.08 0.39 0.30 0.29 0.07 0.32 0.00 0.33 0.02 0.22 0.27 0.12 0.03 0.26 0.42 0.24 

I15 0.09 0.41 0.48 0.50 0.11 0.46 -0.01 0.34 0.01 0.23 0.47 0.22 0.06 0.47 0.45 0.26 

I16 0.08 0.40 0.49 0.49 0.10 0.46 0.01 0.34 0.01 0.24 0.48 0.26 0.05 0.47 0.46 0.25 

I17 0.09 0.37 0.29 0.29 0.07 0.27 -0.01 0.31 0.01 0.23 0.28 0.17 0.02 0.25 0.43 0.23 

I18 0.10 0.36 0.29 0.30 0.06 0.27 0.00 0.30 0.01 0.23 0.26 0.18 0.02 0.27 0.42 0.25 

I19 0.07 0.30 0.06 0.07 0.01 0.06 0.00 0.24 0.01 0.18 0.08 0.08 0.00 0.05 0.34 0.21 

I20 0.08 0.29 0.08 0.06 0.01 0.05 -0.02 0.24 0.01 0.18 0.07 0.06 0.01 0.06 0.34 0.18 

I21 0.06 0.20 0.07 0.02 0.01 0.27 0.00 0.00 0.00 0.03 0.07 0.06 0.01 0.24 0.35 0.03 

I22 0.05 0.21 0.09 0.02 -0.02 0.27 0.00 -0.01 0.01 0.03 0.07 0.08 0.01 0.24 0.36 0.04 

I23 0.08 0.23 0.30 0.12 0.06 0.27 0.01 0.11 0.01 0.14 0.29 0.11 0.03 0.38 0.42 0.17 

I24 0.07 0.23 0.30 0.11 0.08 0.25 -0.02 0.12 -0.02 0.14 0.29 0.12 0.03 0.40 0.43 0.19 

I25 0.09 0.19 0.49 0.29 0.11 0.17 -0.01 0.24 0.01 0.24 0.48 0.24 0.07 0.47 0.45 0.26 

I26 0.09 0.19 0.48 0.30 0.10 0.19 -0.01 0.25 0.00 0.24 0.48 0.23 0.08 0.47 0.45 0.26 

I27 0.09 0.12 0.30 0.08 0.07 0.05 0.00 0.12 -0.01 0.27 0.28 0.11 0.04 0.38 0.42 0.13 

I28 0.09 0.11 0.27 0.08 0.06 0.05 0.00 0.12 0.00 0.26 0.28 0.18 0.04 0.39 0.42 0.17 

I29 0.08 0.03 0.06 0.02 0.02 -0.06 -0.01 0.10 0.00 0.23 0.06 0.10 0.02 0.23 0.34 0.07 

I30 0.08 0.03 0.06 0.02 0.03 -0.06 0.00 0.11 0.00 0.23 0.07 0.06 0.01 0.23 0.33 0.03 

I31 -0.07 0.19 0.02 0.01 -0.04 0.27 -0.45 -0.01 -0.11 0.02 0.00 0.06 0.05 0.24 0.01 0.07 

I32 -0.06 0.19 0.02 0.02 -0.06 0.29 -0.45 0.00 -0.11 0.03 0.00 0.05 0.04 0.24 0.01 0.08 

I33 0.20 0.21 0.11 0.12 0.20 0.27 -0.31 0.11 -0.07 0.15 0.10 0.09 0.06 0.39 0.12 0.19 

I34 0.21 0.23 0.14 0.13 0.18 0.27 -0.31 0.11 -0.05 0.14 0.11 0.12 0.08 0.40 0.12 0.18 

I35 0.45 0.19 0.26 0.29 0.40 0.20 0.33 0.24 0.00 0.25 0.48 0.26 0.06 0.47 0.44 0.25 

I36 0.46 0.20 0.25 0.29 0.39 0.19 0.33 0.25 0.00 0.23 0.49 0.22 0.07 0.47 0.45 0.26 

I37 0.61 0.12 0.06 0.08 0.56 0.06 0.75 0.13 0.09 0.28 0.12 0.19 0.06 0.38 0.12 0.14 

I38 0.62 0.11 0.07 0.09 0.55 0.05 0.75 0.13 0.10 0.28 0.11 0.14 0.05 0.39 0.11 0.16 

I39 0.70 0.04 0.00 0.01 0.62 -0.07 0.80 0.11 0.12 0.22 0.01 0.06 0.02 0.23 0.01 0.03 

I40 0.69 0.03 0.01 0.01 0.60 -0.06 0.79 0.12 0.13 0.23 0.01 0.01 0.02 0.23 0.00 0.08 
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Table C-15: Rasch weighted second factor patterns for 20% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.08 0.09 0.06 0.08 0.04 0.08 -0.01 -0.02 0.01 0.01 0.07 0.05 0.03 0.06 0.30 0.18 

I2 0.10 0.08 0.07 0.08 0.03 0.08 0.00 0.01 0.00 0.03 0.07 0.04 0.03 0.03 0.29 0.19 

I3 0.14 0.11 0.29 0.28 0.12 0.27 -0.01 0.00 0.01 0.02 0.27 0.07 0.06 0.24 0.36 0.24 

I4 0.13 0.13 0.27 0.29 0.13 0.30 0.00 -0.01 -0.01 0.03 0.29 0.09 0.07 0.23 0.36 0.21 

I5 0.17 0.13 0.48 0.48 0.21 0.42 -0.01 0.02 0.01 0.02 0.48 0.15 0.11 0.40 0.38 0.20 

I6 0.15 0.13 0.47 0.48 0.21 0.43 -0.01 0.00 0.01 0.03 0.48 0.12 0.12 0.40 0.38 0.23 

I7 0.19 0.13 0.29 0.27 0.13 0.22 -0.01 0.02 0.01 0.03 0.27 0.13 0.06 0.23 0.35 0.21 

I8 0.18 0.14 0.28 0.29 0.13 0.22 -0.01 0.03 0.02 0.03 0.29 0.14 0.05 0.22 0.35 0.18 

I9 0.17 0.12 0.08 0.07 0.05 0.05 -0.02 0.02 0.01 0.00 0.07 0.06 0.01 0.05 0.29 0.18 

I10 0.16 0.12 0.06 0.06 0.05 0.06 -0.03 0.05 0.02 0.01 0.08 0.08 0.02 0.05 0.29 0.23 

I11 0.11 0.09 0.08 0.10 0.04 0.07 -0.02 0.00 -0.01 0.01 0.06 0.06 0.03 0.05 0.30 0.17 

I12 0.09 0.08 0.05 0.09 0.02 0.07 -0.02 0.00 0.01 0.01 0.08 0.10 0.01 0.04 0.31 0.18 

I13 0.14 0.13 0.28 0.29 0.10 0.29 -0.02 0.01 0.00 0.04 0.30 0.13 0.07 0.24 0.37 0.24 

I14 0.15 0.11 0.28 0.30 0.10 0.30 0.00 0.01 0.00 0.02 0.28 0.08 0.05 0.22 0.37 0.20 

I15 0.17 0.14 0.47 0.49 0.23 0.43 -0.01 0.02 0.04 0.04 0.49 0.15 0.10 0.40 0.39 0.20 

I16 0.17 0.13 0.46 0.50 0.20 0.43 -0.02 0.03 0.00 0.02 0.47 0.16 0.10 0.40 0.38 0.24 

I17 0.18 0.13 0.27 0.28 0.12 0.22 -0.01 0.03 0.00 0.01 0.29 0.12 0.05 0.23 0.34 0.17 

I18 0.18 0.14 0.27 0.27 0.12 0.23 -0.02 0.04 0.00 0.04 0.27 0.10 0.05 0.24 0.35 0.19 

I19 0.16 0.11 0.06 0.07 0.06 0.05 -0.02 0.04 0.01 0.01 0.07 0.04 0.02 0.05 0.28 0.18 

I20 0.15 0.09 0.07 0.04 0.03 0.05 -0.01 0.03 0.02 0.00 0.07 0.00 0.01 0.06 0.29 0.17 

I21 0.08 0.02 0.08 0.03 0.03 0.37 -0.02 -0.09 0.03 -0.41 0.08 0.04 0.04 0.23 0.31 0.08 

I22 0.09 0.00 0.08 0.03 0.04 0.37 -0.01 -0.20 0.00 -0.41 0.07 0.10 0.00 0.23 0.29 0.10 

I23 0.13 0.20 0.28 0.23 0.12 0.35 -0.01 -0.04 0.01 -0.22 0.28 0.11 0.06 0.35 0.37 0.15 

I24 0.14 0.17 0.28 0.20 0.12 0.36 -0.01 -0.04 0.01 -0.21 0.29 0.11 0.07 0.35 0.37 0.14 

I25 0.17 0.36 0.47 0.42 0.22 0.26 -0.02 0.12 0.03 0.02 0.48 0.17 0.10 0.42 0.38 0.20 

I26 0.17 0.37 0.46 0.43 0.21 0.25 -0.02 0.09 0.03 0.04 0.49 0.14 0.08 0.41 0.38 0.21 

I27 0.18 0.52 0.28 0.14 0.13 0.12 -0.03 0.29 0.03 0.29 0.30 0.13 0.08 0.34 0.35 0.16 

I28 0.19 0.53 0.27 0.15 0.15 0.12 -0.01 0.28 0.01 0.29 0.28 0.13 0.05 0.35 0.35 0.16 

I29 0.15 0.61 0.08 0.03 0.04 -0.03 -0.02 0.53 0.01 0.47 0.07 0.07 0.01 0.21 0.28 0.09 

I30 0.16 0.61 0.06 0.03 0.02 -0.03 -0.02 0.45 0.01 0.48 0.06 0.07 0.04 0.23 0.29 0.07 

I31 0.00 0.01 0.01 0.02 0.09 0.38 -0.49 -0.12 -0.16 -0.42 0.01 0.03 0.13 0.23 0.10 0.06 

I32 0.00 0.00 0.00 0.03 0.08 0.38 -0.50 -0.14 -0.16 -0.42 0.01 0.09 0.14 0.22 0.10 0.11 

I33 0.24 0.18 0.19 0.22 0.18 0.36 -0.27 -0.05 -0.07 -0.21 0.13 0.09 0.15 0.35 0.18 0.16 

I34 0.22 0.19 0.19 0.21 0.19 0.36 -0.26 -0.06 -0.08 -0.21 0.13 0.12 0.14 0.34 0.19 0.18 

I35 0.44 0.37 0.39 0.44 0.30 0.26 0.25 0.11 0.00 0.04 0.47 0.12 0.11 0.40 0.38 0.21 

I36 0.44 0.36 0.39 0.43 0.28 0.29 0.26 0.10 0.01 0.03 0.49 0.17 0.10 0.39 0.38 0.22 

I37 0.59 0.52 0.13 0.14 0.34 0.11 0.73 0.26 0.13 0.28 0.13 0.10 0.04 0.34 0.06 0.14 

I38 0.59 0.51 0.13 0.14 0.35 0.14 0.73 0.29 0.14 0.30 0.12 0.07 0.06 0.35 0.07 0.14 

I39 0.67 0.61 0.03 0.02 0.36 -0.04 0.83 0.46 0.19 0.47 0.01 0.07 -0.02 0.22 -0.08 0.05 

I40 0.67 0.60 0.02 0.03 0.36 -0.04 0.83 0.46 0.19 0.47 0.01 0.08 -0.03 0.23 -0.08 0.04 
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Table C-16: Rasch weighted second factor patterns for 5% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.20 0.13 0.01 0.01 0.07 0.08 0.00 0.08 0.22 0.20 0.07 0.06 0.04 0.04 0.04 0.19 

I2 0.21 0.12 -0.03 0.03 0.15 0.06 0.02 0.06 0.23 0.18 0.06 0.01 0.02 0.03 0.05 0.19 

I3 0.26 0.17 0.00 0.11 0.16 0.22 0.00 0.07 0.27 0.25 0.30 0.10 0.15 0.16 0.06 0.20 

I4 0.25 0.19 0.00 0.11 0.17 0.21 0.00 0.08 0.26 0.27 0.29 0.12 0.14 0.17 0.02 0.20 

I5 0.29 0.23 0.05 0.20 0.18 0.28 0.00 0.11 0.28 0.28 0.48 0.16 0.22 0.29 0.05 0.18 

I6 0.28 0.23 0.05 0.19 0.18 0.30 -0.01 0.11 0.29 0.30 0.47 0.13 0.22 0.29 0.04 0.18 

I7 0.31 0.24 0.04 0.11 0.11 0.12 0.00 0.11 0.28 0.30 0.28 0.09 0.13 0.16 0.03 0.16 

I8 0.27 0.23 0.04 0.11 0.10 0.13 0.00 0.08 0.26 0.32 0.29 0.14 0.16 0.15 0.03 0.19 

I9 0.25 0.22 0.01 0.03 0.07 0.08 -0.01 0.10 0.22 0.27 0.06 0.05 0.05 0.03 0.03 0.10 

I10 0.25 0.22 0.01 0.04 0.07 0.02 -0.02 0.08 0.20 0.27 0.07 0.05 0.02 0.03 0.02 0.13 

I11 0.19 0.12 0.00 0.04 0.05 0.05 0.00 0.07 0.22 0.18 0.06 0.04 0.03 0.05 0.04 0.19 

I12 0.22 0.14 0.02 0.03 0.08 0.10 -0.01 0.08 0.23 0.18 0.08 0.07 0.06 0.07 0.05 0.22 

I13 0.27 0.18 0.00 0.10 0.16 0.23 -0.01 0.08 0.26 0.23 0.28 0.11 0.14 0.17 0.03 0.20 

I14 0.25 0.18 0.01 0.10 0.15 0.21 0.00 0.08 0.27 0.27 0.29 0.15 0.11 0.17 0.04 0.18 

I15 0.27 0.23 0.04 0.19 0.18 0.30 0.00 0.10 0.27 0.29 0.47 0.14 0.24 0.29 0.02 0.19 

I16 0.28 0.24 0.05 0.19 0.21 0.30 0.00 0.10 0.27 0.30 0.48 0.16 0.22 0.28 0.03 0.18 

I17 0.28 0.26 0.03 0.11 0.08 0.14 0.01 0.11 0.27 0.30 0.29 0.10 0.11 0.17 0.03 0.15 

I18 0.27 0.24 0.04 0.11 0.11 0.13 -0.01 0.09 0.28 0.28 0.27 0.15 0.16 0.16 0.04 0.17 

I19 0.25 0.22 0.01 0.01 0.09 0.08 0.00 0.07 0.22 0.25 0.08 0.08 0.06 0.05 0.01 0.13 

I20 0.23 0.22 0.00 0.04 0.06 0.04 -0.03 0.06 0.24 0.27 0.08 0.09 0.03 0.04 0.03 0.13 

I21 0.22 0.07 0.00 -0.09 0.13 0.29 -0.01 0.01 0.22 0.00 0.08 0.08 0.04 0.29 0.02 0.11 

I22 0.20 0.11 -0.03 -0.09 0.08 0.30 0.00 0.05 0.23 0.01 0.07 0.09 0.05 0.31 0.02 0.11 

I23 0.27 0.21 0.01 0.07 0.16 0.27 0.00 0.07 0.26 0.17 0.29 0.09 0.17 0.32 0.04 0.14 

I24 0.24 0.21 0.00 0.04 0.16 0.29 0.00 0.00 0.28 0.17 0.28 0.13 0.14 0.32 0.03 0.18 

I25 0.29 0.32 0.03 0.22 0.17 0.27 -0.01 0.11 0.28 0.30 0.48 0.15 0.22 0.29 0.03 0.15 

I26 0.27 0.34 0.04 0.22 0.18 0.26 0.00 0.10 0.28 0.30 0.48 0.17 0.23 0.28 0.04 0.16 

I27 0.26 0.41 0.03 0.28 0.05 0.20 0.00 0.13 0.26 0.38 0.27 0.06 0.16 0.22 0.03 0.10 

I28 0.28 0.41 0.03 0.29 0.06 0.19 -0.01 0.13 0.26 0.40 0.29 0.13 0.12 0.21 0.03 0.11 

I29 0.23 0.48 0.00 0.41 -0.01 0.12 0.00 0.20 0.23 0.44 0.06 0.08 0.05 0.11 0.03 0.04 

I30 0.26 0.48 0.02 0.40 0.01 0.10 0.00 0.23 0.22 0.46 0.05 0.10 0.08 0.10 0.02 0.06 

I31 0.19 0.08 -0.47 -0.09 0.18 0.27 -0.40 0.03 0.25 0.00 0.03 0.04 0.18 0.30 0.08 0.09 

I32 0.20 0.09 -0.43 -0.09 0.17 0.28 -0.41 -0.02 0.23 0.00 0.02 0.04 0.17 0.30 0.10 0.10 

I33 0.26 0.21 -0.16 0.06 0.16 0.28 -0.16 0.06 0.31 0.16 0.21 0.09 0.23 0.32 0.08 0.13 

I34 0.26 0.20 -0.17 0.05 0.15 0.29 -0.13 0.06 0.30 0.16 0.20 0.11 0.21 0.31 0.06 0.13 

I35 0.32 0.30 0.16 0.23 0.20 0.26 0.15 0.09 0.28 0.30 0.47 0.15 0.22 0.28 0.03 0.20 

I36 0.34 0.32 0.17 0.23 0.16 0.26 0.15 0.11 0.29 0.30 0.48 0.14 0.23 0.30 0.02 0.19 

I37 0.34 0.42 0.55 0.30 0.13 0.20 0.54 0.14 0.26 0.39 0.20 0.12 0.21 0.22 -0.02 0.12 

I38 0.33 0.41 0.55 0.30 0.15 0.20 0.57 0.11 0.27 0.40 0.20 0.10 0.22 0.22 -0.02 0.13 

I39 0.32 0.47 0.73 0.42 0.09 0.12 0.80 0.20 0.18 0.44 0.01 0.03 0.17 0.12 -0.04 0.08 

I40 0.33 0.48 0.74 0.39 0.10 0.12 0.80 0.22 0.17 0.45 0.00 0.07 0.19 0.10 -0.01 0.07 
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Table C-17: Residual weighted first factor patterns for 100% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.1 0.04 NA NA NA NA 0.17 0.08 NA NA NA NA NA NA NA NA 

I2 0.11 0.1 NA NA NA NA 0.1 0.1 NA NA NA NA NA NA NA NA 

I3 0.09 0.06 NA NA NA NA 0.1 0.05 NA NA NA NA NA NA NA NA 

I4 0.09 0.08 NA NA NA NA 0.13 0.13 NA NA NA NA NA NA NA NA 

I5 0.04 0.06 NA NA NA NA 0.12 0.08 NA NA NA NA NA NA NA NA 

I6 0.03 0.07 NA NA NA NA 0.08 0.12 NA NA NA NA NA NA NA NA 

I7 0.12 0.02 NA NA NA NA 0.03 0.09 NA NA NA NA NA NA NA NA 

I8 0.05 0.06 NA NA NA NA 0.12 0.12 NA NA NA NA NA NA NA NA 

I9 -0 -0 NA NA NA NA 0.1 0.06 NA NA NA NA NA NA NA NA 

I10 0.02 0.03 NA NA NA NA -0 0.02 NA NA NA NA NA NA NA NA 

I11 0.09 0.04 NA NA NA NA 0.11 0.15 NA NA NA NA NA NA NA NA 

I12 0.05 0.07 NA NA NA NA 0.1 0.11 NA NA NA NA NA NA NA NA 

I13 0.06 -0 NA NA NA NA -0 0.04 NA NA NA NA NA NA NA NA 

I14 0.09 0.06 NA NA NA NA 0.1 0.08 NA NA NA NA NA NA NA NA 

I15 0.07 0.06 NA NA NA NA 0.1 0.11 NA NA NA NA NA NA NA NA 

I16 0.07 0.02 NA NA NA NA 0 0.05 NA NA NA NA NA NA NA NA 

I17 0.09 0.01 NA NA NA NA 0.07 -0 NA NA NA NA NA NA NA NA 

I18 0.07 0.08 NA NA NA NA 0.04 0.03 NA NA NA NA NA NA NA NA 

I19 0.01 -0 NA NA NA NA 0.12 -0 NA NA NA NA NA NA NA NA 

I20 0.11 0 NA NA NA NA 0.11 0.04 NA NA NA NA NA NA NA NA 

I21 -0 0.04 NA NA NA NA 0.08 -0 NA NA NA NA NA NA NA NA 

I22 0.06 0.01 NA NA NA NA 0.05 0 NA NA NA NA NA NA NA NA 

I23 0.1 0.12 NA NA NA NA 0.15 0.02 NA NA NA NA NA NA NA NA 

I24 0.12 -0 NA NA NA NA 0.08 0.02 NA NA NA NA NA NA NA NA 

I25 0.02 0.04 NA NA NA NA 0.09 0.01 NA NA NA NA NA NA NA NA 

I26 0.09 0.09 NA NA NA NA 0.07 0.06 NA NA NA NA NA NA NA NA 

I27 0.11 0.01 NA NA NA NA 0.09 -0 NA NA NA NA NA NA NA NA 

I28 0.15 0.02 NA NA NA NA 0.05 0.08 NA NA NA NA NA NA NA NA 

I29 -0 -0 NA NA NA NA 0 -0.1 NA NA NA NA NA NA NA NA 

I30 0.02 -0 NA NA NA NA 0.13 0.08 NA NA NA NA NA NA NA NA 

I31 0.04 -0 NA NA NA NA 0.03 0.04 NA NA NA NA NA NA NA NA 

I32 -0 0.1 NA NA NA NA 0.01 0.09 NA NA NA NA NA NA NA NA 

I33 0.15 -0.1 NA NA NA NA 0.01 -0 NA NA NA NA NA NA NA NA 

I34 0.1 0.01 NA NA NA NA -0 0.02 NA NA NA NA NA NA NA NA 

I35 0.02 0.09 NA NA NA NA 0.06 -0 NA NA NA NA NA NA NA NA 

I36 0.01 -0 NA NA NA NA 0.01 0.01 NA NA NA NA NA NA NA NA 

I37 -0 0.01 NA NA NA NA 0.03 0.09 NA NA NA NA NA NA NA NA 

I38 -0 -0 NA NA NA NA -0 -0 NA NA NA NA NA NA NA NA 

I39 0.06 0.04 NA NA NA NA 0.06 -0 NA NA NA NA NA NA NA NA 

I40 -0.1 0.06 NA NA NA NA 0.01 0.07 NA NA NA NA NA NA NA NA 
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Table C-18: Residual weighted first factor patterns for 50% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.08 0.1 NA NA NA NA 0.14 0.27 NA -0 NA 0.03 NA NA 0.02 0.27 

I2 0.16 0.17 NA NA NA NA 0.13 0.28 NA 0.12 NA 0.01 NA NA -0 0.26 

I3 0.08 0.15 NA NA NA NA 0.17 0.33 NA 0.06 NA 0.16 NA NA 0.06 0.32 

I4 0.07 0.06 NA NA NA NA 0.17 0.3 NA 0.06 NA 0.21 NA NA 0.01 0.32 

I5 0.18 0.18 NA NA NA NA 0.17 0.23 NA 0.03 NA 0.29 NA NA -0 0.33 

I6 0.17 0.2 NA NA NA NA 0.1 0.33 NA -0 NA 0.31 NA NA 0.09 0.35 

I7 0.21 0.17 NA NA NA NA 0.05 0.29 NA 0.07 NA 0.19 NA NA 0.06 0.32 

I8 0.05 0.15 NA NA NA NA 0.23 0.28 NA -0 NA 0.13 NA NA 0.06 0.33 

I9 0.13 0.01 NA NA NA NA 0.16 0.21 NA 0.05 NA 0.04 NA NA 0.09 0.27 

I10 -0 0.06 NA NA NA NA 0.08 0.21 NA 0.03 NA 0.01 NA NA 0.02 0.27 

I11 0.15 0.12 NA NA NA NA 0.02 0.22 NA 0.04 NA 0.04 NA NA 0.05 0.26 

I12 0.05 0.11 NA NA NA NA 0.13 0.23 NA 0.12 NA 0.04 NA NA 0.05 0.27 

I13 0.07 0.14 NA NA NA NA 0.1 0.23 NA -0 NA 0.17 NA NA 0.03 0.33 

I14 0.08 0.07 NA NA NA NA 0.07 0.28 NA 0.09 NA 0.18 NA NA 0.03 0.33 

I15 0.2 0.12 NA NA NA NA 0.14 0.28 NA 0.05 NA 0.32 NA NA 0.11 0.36 

I16 0.05 0.09 NA NA NA NA 0.17 0.26 NA 0.01 NA 0.28 NA NA 0.05 0.33 

I17 0.17 0.18 NA NA NA NA 0.11 0.24 NA 0.03 NA 0.21 NA NA 0.09 0.32 

I18 0.15 0.18 NA NA NA NA 0.08 0.31 NA 0.02 NA 0.18 NA NA 0.02 0.32 

I19 0.15 0.08 NA NA NA NA 0.06 0.28 NA 0.09 NA 0.08 NA NA 0.07 0.28 

I20 0.04 0.04 NA NA NA NA -0 0.28 NA 0.07 NA 0.04 NA NA 0.1 0.26 

I21 0.11 -0 NA NA NA NA 0.11 0.08 NA 0.18 NA 0.1 NA NA 0.04 0.1 

I22 0.04 0.04 NA NA NA NA 0.14 0.04 NA 0.18 NA 0.16 NA NA 0.09 0.14 

I23 0.09 0.03 NA NA NA NA 0.12 -0 NA 0.08 NA 0.17 NA NA -0 0.2 

I24 0.1 -0 NA NA NA NA 0.18 0.05 NA 0.12 NA 0.21 NA NA 0.1 0.2 

I25 0.09 0.05 NA NA NA NA 0.17 0.07 NA 0.01 NA 0.32 NA NA 0.02 0.35 

I26 0.11 -0 NA NA NA NA 0.12 -0 NA 0.1 NA 0.32 NA NA 0 0.34 

I27 0.1 -0.1 NA NA NA NA 0.17 -0.1 NA 0.02 NA 0.17 NA NA -0 0.19 

I28 0.22 -0 NA NA NA NA 0.08 -0.1 NA 0.03 NA 0.14 NA NA 0.09 0.19 

I29 0 -0 NA NA NA NA 0.01 -0.1 NA -0.1 NA -0 NA NA -0 -0 

I30 0.12 -0.1 NA NA NA NA 0.07 -0.1 NA -0.1 NA 0.05 NA NA 0.04 0.01 

I31 -0.1 0.01 NA NA NA NA -0.1 0.09 NA 0.22 NA 0.13 NA NA -0 0.1 

I32 -0 0.1 NA NA NA NA 0.05 0.03 NA 0.11 NA 0.11 NA NA -0 0.14 

I33 -0 0.03 NA NA NA NA -0 0.05 NA 0.27 NA 0.16 NA NA 0.03 0.19 

I34 0 0.1 NA NA NA NA 0.02 0.05 NA 0.11 NA 0.17 NA NA 0.03 0.18 

I35 0.02 0.07 NA NA NA NA -0 -0.1 NA 0.07 NA 0.26 NA NA 0.05 0.35 

I36 -0 0.02 NA NA NA NA 0.04 -0 NA 0 NA 0.3 NA NA 0.02 0.35 

I37 0.09 -0 NA NA NA NA 0.03 -0 NA -0 NA 0.15 NA NA 0.05 0.21 

I38 0.11 -0 NA NA NA NA -0 -0 NA 0 NA 0.17 NA NA 0.06 0.2 

I39 -0 0.04 NA NA NA NA -0 -0.1 NA -0.1 NA -0 NA NA 0.04 -0 

I40 -0.1 -0.1 NA NA NA NA -0.1 -0.1 NA -0.1 NA -0 NA NA 0.01 0.03 
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Table C-19: Residual weighted first factor patterns for 20% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 NA 0.19 NA 0.07 NA NA 0.14 0.34 0.07 0.11 NA 0.05 NA NA 0.04 0.14 

I2 NA 0.13 NA 0.06 NA NA 0.1 0.33 0.17 0.11 NA 0.01 NA NA 0.05 0.15 

I3 NA 0.23 NA 0.18 NA NA 0.2 0.39 -0 0.05 NA 0.16 NA NA 0.02 0.18 

I4 NA 0.2 NA 0.19 NA NA 0.02 0.41 0.06 0.05 NA 0.1 NA NA 0.04 0.18 

I5 NA 0.13 NA 0.22 NA NA 0.19 0.43 0 0.01 NA 0.2 NA NA 0.03 0.2 

I6 NA 0.16 NA 0.16 NA NA 0.17 0.42 0.06 0.12 NA 0.22 NA NA -0 0.19 

I7 NA 0.2 NA 0.15 NA NA 0.09 0.37 0.06 0.12 NA 0.1 NA NA 0.01 0.18 

I8 NA 0.17 NA 0.03 NA NA 0.07 0.38 0.08 0.09 NA 0.15 NA NA 0.04 0.17 

I9 NA 0.16 NA 0.04 NA NA 0.15 0.31 0.07 0.15 NA 0.03 NA NA -0 0.16 

I10 NA 0.13 NA 0.03 NA NA 0.14 0.3 0.19 0.14 NA 0.03 NA NA -0 0.17 

I11 NA 0.14 NA 0.04 NA NA 0.09 0.32 0.06 0.02 NA 0.03 NA NA 0.04 0.16 

I12 NA 0.21 NA 0.03 NA NA 0.14 0.35 0.1 0.07 NA -0 NA NA 0.03 0.15 

I13 NA 0.2 NA 0.11 NA NA 0.19 0.4 0.1 0.06 NA 0.11 NA NA 0.02 0.17 

I14 NA 0.15 NA 0.08 NA NA 0.04 0.42 0.19 0.01 NA 0.08 NA NA 0.05 0.18 

I15 NA 0.3 NA 0.19 NA NA 0.11 0.45 0.06 0.09 NA 0.22 NA NA 0.04 0.2 

I16 NA 0.19 NA 0.13 NA NA 0.16 0.46 0 0.04 NA 0.21 NA NA 0.02 0.17 

I17 NA 0.16 NA 0.11 NA NA 0.15 0.41 -0 0.13 NA 0.12 NA NA -0 0.16 

I18 NA 0.19 NA 0.09 NA NA 0.13 0.41 0.16 0.06 NA 0.14 NA NA -0 0.19 

I19 NA 0.08 NA 0.03 NA NA 0.15 0.33 -0 0.14 NA 0.06 NA NA 0 0.15 

I20 NA 0.12 NA 0.01 NA NA 0.16 0.37 0.22 0.19 NA 0.07 NA NA -0.1 0.15 

I21 NA 0.02 NA -0.1 NA NA 0.12 -0 -0 0.23 NA 0.13 NA NA 0.06 0.25 

I22 NA 0.01 NA -0.1 NA NA 0.08 0.04 0.11 0.32 NA 0.14 NA NA 0.02 0.26 

I23 NA 0.01 NA 0.27 NA NA 0.14 0.03 0.12 0.25 NA 0.12 NA NA 0.03 0.15 

I24 NA 0.07 NA -0 NA NA 0.1 0.04 0.06 0.23 NA 0.14 NA NA 0.01 0.13 

I25 NA -0.1 NA -0 NA NA 0.14 0 0.12 0.06 NA 0.2 NA NA 0.03 0.19 

I26 NA -0 NA 0.06 NA NA 0.14 0.04 -0 0.06 NA 0.21 NA NA 0.03 0.19 

I27 NA -0.1 NA -0 NA NA 0.2 0.03 0.09 -0.1 NA 0.13 NA NA 0.03 0.08 

I28 NA -0.1 NA -0 NA NA 0.03 0.03 0.08 -0.1 NA 0.12 NA NA -0 0.1 

I29 NA -0 NA 0.08 NA NA 0.19 -0 -0 -0.2 NA 0.05 NA NA -0 -0.1 

I30 NA -0 NA 0.04 NA NA 0.11 -0 0.18 -0.2 NA -0 NA NA -0 -0.2 

I31 NA 0.06 NA -0.1 NA NA 0.05 -0 0.15 0.31 NA 0.07 NA NA -0.4 0.26 

I32 NA -0 NA 0.07 NA NA 0.03 0.05 0.11 0.29 NA 0.13 NA NA -0.4 0.24 

I33 NA -0.1 NA 0.01 NA NA 0.09 -0 0.14 0.29 NA 0.14 NA NA -0.1 0.13 

I34 NA 0.02 NA 0.04 NA NA 0 -0 0.22 0.18 NA 0.11 NA NA -0.2 0.15 

I35 NA -0.1 NA 0.09 NA NA -0.1 -0 0.16 0.12 NA 0.22 NA NA 0.04 0.17 

I36 NA 0.13 NA 0.12 NA NA 0.07 -0 -0.1 0.12 NA 0.23 NA NA 0 0.17 

I37 NA 0.03 NA 0.03 NA NA -0.1 -0 0.02 -0.1 NA 0.11 NA NA 0.37 0.07 

I38 NA -0.1 NA 0.05 NA NA -0 -0 -0.1 -0 NA 0.14 NA NA 0.39 0.07 

I39 NA -0 NA 0.02 NA NA -0.1 -0 -0 -0.2 NA 0.08 NA NA 0.49 -0.1 

I40 NA -0 NA 0.06 NA NA -0 -0 0.08 -0.2 NA 0.04 NA NA 0.5 -0.1 
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Table C-20: Residual weighted first factor patterns for 5% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 NA 0.26 NA 0 NA NA 0.16 0.21 0.06 0.1 NA 0.01 NA NA 0.13 0.06 

I2 NA 0.18 NA 0.01 NA NA 0.14 0.23 -0 0.02 NA 0.03 NA NA 0.21 0.07 

I3 NA 0.24 NA 0.14 NA NA 0.19 0.36 0.12 0.08 NA 0.13 NA NA 0.2 0.08 

I4 NA 0.12 NA 0.08 NA NA 0.09 0.28 0.03 0.04 NA 0.13 NA NA 0.25 0.09 

I5 NA 0.13 NA 0.19 NA NA 0.35 0.36 0.13 0.17 NA 0.26 NA NA 0.29 0.08 

I6 NA 0.18 NA 0.22 NA NA 0.26 0.36 0.17 0.15 NA 0.2 NA NA 0.27 0.09 

I7 NA 0.11 NA 0.03 NA NA 0.13 0.24 0.11 0.19 NA 0.16 NA NA 0.33 0.12 

I8 NA 0.28 NA 0.18 NA NA 0.24 0.35 0.08 0.11 NA 0.21 NA NA 0.27 0.11 

I9 NA 0.17 NA 0.03 NA NA 0.23 0.21 0.19 0.29 NA 0.09 NA NA 0.24 0.11 

I10 NA 0.11 NA 0 NA NA 0.2 0.27 0.27 0.25 NA 0.04 NA NA 0.23 0.11 

I11 NA 0.14 NA -0 NA NA 0.1 0.26 0.07 0.04 NA 0 NA NA 0.15 0.08 

I12 NA 0.21 NA 0.03 NA NA 0.15 0.24 0.04 0.08 NA 0 NA NA 0.18 0.06 

I13 NA 0.18 NA 0.13 NA NA 0.15 0.35 0.01 0.04 NA 0.18 NA NA 0.22 0.1 

I14 NA 0.08 NA 0.14 NA NA 0.14 0.34 0.08 0.08 NA 0.14 NA NA 0.27 0.06 

I15 NA 0.18 NA 0.09 NA NA 0.26 0.4 -0 0.11 NA 0.21 NA NA 0.25 0.08 

I16 NA 0.32 NA 0.14 NA NA 0.21 0.37 -0.1 0.2 NA 0.25 NA NA 0.22 0.1 

I17 NA 0.1 NA 0.13 NA NA 0.23 0.32 0.22 0.16 NA 0.23 NA NA 0.31 0.09 

I18 NA 0.1 NA 0.06 NA NA 0.12 0.26 0.01 0.24 NA 0.22 NA NA 0.26 0.1 

I19 NA 0.17 NA 0.01 NA NA 0.27 0.27 0.17 0.27 NA -0 NA NA 0.28 0.1 

I20 NA 0.2 NA 0.01 NA NA 0.21 0.28 0.01 0.28 NA 0.03 NA NA 0.31 0.11 

I21 NA 0.1 NA 0.02 NA NA 0.13 0.03 0.13 0.41 NA 0.18 NA NA 0.18 0.34 

I22 NA 0.1 NA 0.06 NA NA 0.17 0.06 0.02 0.4 NA 0.12 NA NA 0.19 0.38 

I23 NA 0.05 NA -0 NA NA 0.19 0.04 0.08 0.31 NA 0.21 NA NA 0.19 0.22 

I24 NA 0.06 NA 0.05 NA NA 0.22 0.02 0.07 0.31 NA 0.31 NA NA 0.27 0.22 

I25 NA -0 NA -0 NA NA 0.05 0.02 0.06 0.14 NA 0.27 NA NA 0.28 0.09 

I26 NA 0.14 NA 0.08 NA NA 0.13 0.05 0.12 0.15 NA 0.32 NA NA 0.27 0.07 

I27 NA -0 NA 0.03 NA NA 0.21 -0 0.22 -0.1 NA 0.1 NA NA 0.27 0.05 

I28 NA -0 NA 0 NA NA 0.04 -0 0.24 -0 NA 0.12 NA NA 0.25 0.05 

I29 NA -0 NA 0.02 NA NA 0.21 0.05 0.2 -0.2 NA -0.1 NA NA 0.3 -0.2 

I30 NA -0.1 NA 0.06 NA NA 0.19 -0 0.16 -0.2 NA -0.1 NA NA 0.35 -0.3 

I31 NA -0.1 NA 0.05 NA NA 0.1 0.05 0.23 0.42 NA 0.19 NA NA 0.29 0.35 

I32 NA -0 NA 0.06 NA NA 0.07 0.03 0.3 0.43 NA 0.14 NA NA 0.27 0.44 

I33 NA 0.1 NA 0.11 NA NA 0.1 0.02 0.33 0.24 NA 0.19 NA NA 0.3 0.23 

I34 NA 0.08 NA 0.06 NA NA -0 0 0.21 0.39 NA 0.15 NA NA 0.29 0.11 

I35 NA 0.01 NA 0.05 NA NA 0.02 0.01 -0 0.1 NA 0.23 NA NA 0.34 0.09 

I36 NA -0 NA -0 NA NA 0.03 -0 0.1 0.19 NA 0.24 NA NA 0.25 0.1 

I37 NA 0.02 NA -0 NA NA -0 0.04 -0 -0.1 NA 0.05 NA NA 0 0.01 

I38 NA -0 NA 0.09 NA NA -0.1 -0 -0.1 -0.1 NA 0.14 NA NA -0.1 0.06 

I39 NA -0 NA 0.08 NA NA -0.1 -0 -0.1 -0.2 NA -0 NA NA -0.2 -0.3 

I40 NA -0 NA 0.02 NA NA -0.2 -0 -0.1 -0.2 NA -0.1 NA NA -0.2 -0.2 
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Table C-21: Residual weighted second factor patterns for 100% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 -0 0.03 NA NA NA NA 0.05 0.07 NA NA NA NA NA NA NA NA 

I2 0.05 0 NA NA NA NA 0.1 0.04 NA NA NA NA NA NA NA NA 

I3 0.09 0.02 NA NA NA NA 0.03 0.14 NA NA NA NA NA NA NA NA 

I4 0.04 0.08 NA NA NA NA 0.04 0.09 NA NA NA NA NA NA NA NA 

I5 0.12 0.02 NA NA NA NA 0.07 0.08 NA NA NA NA NA NA NA NA 

I6 0.13 0.03 NA NA NA NA -0 0.11 NA NA NA NA NA NA NA NA 

I7 0.08 0.03 NA NA NA NA 0.07 0.05 NA NA NA NA NA NA NA NA 

I8 0.02 0.05 NA NA NA NA -0 0.09 NA NA NA NA NA NA NA NA 

I9 -0 -0 NA NA NA NA 0.04 0.03 NA NA NA NA NA NA NA NA 

I10 0.13 0.1 NA NA NA NA 0.04 0.03 NA NA NA NA NA NA NA NA 

I11 0.09 0.08 NA NA NA NA 0.09 0.07 NA NA NA NA NA NA NA NA 

I12 0.09 0.07 NA NA NA NA 0.02 0.09 NA NA NA NA NA NA NA NA 

I13 0.05 0.12 NA NA NA NA 0.1 0.04 NA NA NA NA NA NA NA NA 

I14 0.05 0.08 NA NA NA NA 0.01 0.01 NA NA NA NA NA NA NA NA 

I15 0.1 0.07 NA NA NA NA 0.08 0 NA NA NA NA NA NA NA NA 

I16 0.11 0.06 NA NA NA NA 0.11 0.08 NA NA NA NA NA NA NA NA 

I17 0.07 0.04 NA NA NA NA 0.07 0.1 NA NA NA NA NA NA NA NA 

I18 0.06 0.02 NA NA NA NA 0.04 0.03 NA NA NA NA NA NA NA NA 

I19 0.03 0.09 NA NA NA NA 0.01 0.06 NA NA NA NA NA NA NA NA 

I20 0.02 0.02 NA NA NA NA 0.02 0.04 NA NA NA NA NA NA NA NA 

I21 0.06 0.04 NA NA NA NA 0.05 -0 NA NA NA NA NA NA NA NA 

I22 0.13 -0 NA NA NA NA 0.05 -0 NA NA NA NA NA NA NA NA 

I23 0.11 0.04 NA NA NA NA 0.06 -0 NA NA NA NA NA NA NA NA 

I24 0.1 0.11 NA NA NA NA 0.16 0.01 NA NA NA NA NA NA NA NA 

I25 0.07 -0 NA NA NA NA 0.05 0.03 NA NA NA NA NA NA NA NA 

I26 0.1 0.03 NA NA NA NA 0.08 0.03 NA NA NA NA NA NA NA NA 

I27 0.02 0.03 NA NA NA NA 0.13 0.02 NA NA NA NA NA NA NA NA 

I28 -0 -0 NA NA NA NA 0.11 0.07 NA NA NA NA NA NA NA NA 

I29 0.08 0.07 NA NA NA NA 0.09 -0 NA NA NA NA NA NA NA NA 

I30 0.12 0.02 NA NA NA NA 0.09 -0 NA NA NA NA NA NA NA NA 

I31 0 0.04 NA NA NA NA 0.05 0.07 NA NA NA NA NA NA NA NA 

I32 -0 0.04 NA NA NA NA -0.1 0 NA NA NA NA NA NA NA NA 

I33 -0 0.11 NA NA NA NA -0 0.06 NA NA NA NA NA NA NA NA 

I34 0.05 -0 NA NA NA NA -0 0.02 NA NA NA NA NA NA NA NA 

I35 -0 0.05 NA NA NA NA 0.01 -0 NA NA NA NA NA NA NA NA 

I36 -0 0.01 NA NA NA NA 0.07 0.08 NA NA NA NA NA NA NA NA 

I37 0.02 -0 NA NA NA NA 0.02 0.01 NA NA NA NA NA NA NA NA 

I38 0.02 0.03 NA NA NA NA 0.01 -0 NA NA NA NA NA NA NA NA 

I39 0.09 -0 NA NA NA NA -0 0.07 NA NA NA NA NA NA NA NA 

I40 -0.1 0.01 NA NA NA NA 0.01 0.06 NA NA NA NA NA NA NA NA 
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Table C-22: Residual weighted second factor patterns for 50% contamination 
 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 0.14 0.12 NA NA NA NA 0.04 0.07 NA 0.08 NA 0.08 NA NA 0.08 0.06 

I2 0.06 0.13 NA NA NA NA 0.14 0.09 NA 0.05 NA 0.06 NA NA 0.1 -0 

I3 0.08 0.11 NA NA NA NA 0.08 0.09 NA 0 NA 0.13 NA NA 0.11 0.17 

I4 -0 0.1 NA NA NA NA 0.09 0.06 NA 0.02 NA 0.1 NA NA 0.1 0.14 

I5 0.13 0.1 NA NA NA NA 0.14 0.11 NA 0.04 NA 0.21 NA NA 0.11 0.15 

I6 0.06 0.09 NA NA NA NA 0 0.1 NA 0.11 NA 0.21 NA NA 0.12 0.09 

I7 0.08 0.04 NA NA NA NA 0.14 0.06 NA -0 NA 0.11 NA NA 0.11 0.11 

I8 0.15 0.09 NA NA NA NA 0.14 0.08 NA 0.08 NA 0.16 NA NA 0.11 0.12 

I9 0.02 0.11 NA NA NA NA 0.07 0.05 NA 0.03 NA 0.03 NA NA 0.1 0.06 

I10 0.1 0.11 NA NA NA NA 0.09 0.11 NA 0.11 NA 0.11 NA NA 0.1 0.06 

I11 0.04 0.17 NA NA NA NA 0.11 0.08 NA 0.05 NA 0.02 NA NA 0.09 0.01 

I12 0.12 0.14 NA NA NA NA 0.17 0.09 NA 0.09 NA 0.02 NA NA 0.07 0.05 

I13 0.06 0.06 NA NA NA NA 0.01 0.12 NA 0.13 NA 0.13 NA NA 0.1 0.12 

I14 0.06 0.08 NA NA NA NA 0.1 0.07 NA 0.05 NA 0.09 NA NA 0.11 0.03 

I15 0.08 0.1 NA NA NA NA 0.1 0.11 NA 0.05 NA 0.2 NA NA 0.12 0.1 

I16 0.05 0.1 NA NA NA NA 0.07 0.13 NA -0 NA 0.2 NA NA 0.11 0.17 

I17 0.06 0.11 NA NA NA NA 0.03 0.12 NA 0.08 NA 0.18 NA NA 0.12 0.06 

I18 0.04 0.08 NA NA NA NA 0.06 0.09 NA 0.05 NA 0.11 NA NA 0.1 0.12 

I19 0.07 0.06 NA NA NA NA 0.19 0.09 NA 0.09 NA 0.05 NA NA 0.1 0.07 

I20 0.14 0.19 NA NA NA NA 0.11 0.08 NA 0.03 NA 0.02 NA NA 0.1 0.11 

I21 -0 0.03 NA NA NA NA 0.11 -0 NA 0.04 NA 0.09 NA NA 0.13 0.08 

I22 0.08 0.03 NA NA NA NA 0.04 0.03 NA -0.1 NA 0.13 NA NA 0.1 0.01 

I23 0.16 0.04 NA NA NA NA 0.08 0.09 NA -0.1 NA 0.15 NA NA 0.08 0.03 

I24 0.09 0.07 NA NA NA NA -0 0.08 NA 0.01 NA 0.18 NA NA 0.09 0.17 

I25 0.08 -0 NA NA NA NA 0.12 -0 NA 0.11 NA 0.19 NA NA 0.11 0.07 

I26 0.06 -0 NA NA NA NA -0 0.06 NA 0.06 NA 0.21 NA NA 0.11 0.07 

I27 0.08 -0.1 NA NA NA NA 0.05 -0 NA 0.15 NA 0.11 NA NA 0.05 0.11 

I28 0.16 0 NA NA NA NA 0.26 -0 NA 0.07 NA 0.13 NA NA 0.06 0.01 

I29 0.16 -0 NA NA NA NA 0.14 0.01 NA 0.14 NA 0.04 NA NA -0 0.13 

I30 0.09 0.04 NA NA NA NA 0.17 -0 NA 0.11 NA -0 NA NA 0.04 0.05 

I31 0.07 -0 NA NA NA NA -0 0.02 NA -0 NA 0.09 NA NA 0.18 0.02 

I32 0.04 0.08 NA NA NA NA 0.05 0.07 NA -0 NA 0.06 NA NA 0.12 0.12 

I33 0 0.02 NA NA NA NA 0.07 0.05 NA 0.03 NA 0.19 NA NA 0.09 -0.1 

I34 0.05 0.03 NA NA NA NA 0.08 0.08 NA 0.1 NA 0.16 NA NA 0.1 0.05 

I35 0 0.1 NA NA NA NA 0.07 0.02 NA 0.06 NA 0.19 NA NA 0.11 0.06 

I36 0.07 -0 NA NA NA NA -0 -0.1 NA 0.08 NA 0.22 NA NA 0.12 -0 

I37 0.06 0 NA NA NA NA -0.1 0.02 NA 0.15 NA 0.12 NA NA 0.06 0.08 

I38 -0.1 0.01 NA NA NA NA 0.03 0.02 NA 0.05 NA 0.11 NA NA 0.05 0.04 

I39 -0.1 0.05 NA NA NA NA -0 -0.1 NA 0.16 NA 0 NA NA -0 0 

I40 0 -0 NA NA NA NA 0.07 -0 NA 0.08 NA 0.05 NA NA 0.05 0.03 
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Table C-23: Residual weighted second factor patterns for 20% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 NA 0.07 NA 0 NA NA 0.09 0.06 0.15 0.02 NA 0 NA NA 0.18 0.21 

I2 NA 0 NA 0 NA NA 0.08 0.1 0.05 0.01 NA 0 NA NA 0.16 0.22 

I3 NA 0.04 NA 0 NA NA 0.12 0.12 0.18 0.03 NA 0 NA NA 0.25 0.25 

I4 NA -0 NA 0.25 NA NA 0.03 0.08 0.1 0.03 NA 0.01 NA NA 0.18 0.28 

I5 NA 0.27 NA -0.1 NA NA 0.09 0.12 0.09 0.11 NA 0 NA NA 0.2 0.28 

I6 NA 0.2 NA 0 NA NA 0.1 0.09 0.13 -0 NA 0.41 NA NA 0.18 0.26 

I7 NA 0.07 NA 0.17 NA NA 0.1 0.12 0.08 0.24 NA 0.01 NA NA 0.16 0.27 

I8 NA 0.19 NA 0.74 NA NA 0.08 0.08 0.11 0.03 NA 0.99 NA NA 0.2 0.26 

I9 NA 0 NA 0 NA NA 0.07 0.13 0.15 0 NA 0.24 NA NA 0.1 0.23 

I10 NA 0.03 NA 0 NA NA 0.03 0.08 0.04 -0.1 NA 0 NA NA 0.09 0.23 

I11 NA 0 NA 0 NA NA 0.06 0.09 0.04 0 NA 0 NA NA 0.15 0.21 

I12 NA 0.07 NA 0 NA NA 0.07 0.08 0.08 0 NA 0 NA NA 0.19 0.2 

I13 NA -0 NA 0 NA NA 0.08 0.1 0.11 0.01 NA 0 NA NA 0.19 0.25 

I14 NA 0.01 NA 0.25 NA NA 0.07 0.1 0.11 0.04 NA 0 NA NA 0.15 0.24 

I15 NA 0.1 NA 0.21 NA NA 0.06 -0 0.08 0.18 NA 0.99 NA NA 0.24 0.28 

I16 NA 0.15 NA 0.25 NA NA 0.07 0.06 0.17 0.11 NA 0.01 NA NA 0.2 0.27 

I17 NA 0.16 NA -0.1 NA NA 0.06 0.01 0.11 0.22 NA 0.24 NA NA 0.12 0.25 

I18 NA 0.22 NA 0.21 NA NA 0.09 0.06 0.05 -0 NA -1 NA NA 0.16 0.25 

I19 NA -0 NA 0.5 NA NA 0.04 0.18 0.13 -0.1 NA 0 NA NA 0.17 0.21 

I20 NA -0 NA 0 NA NA 0.03 0.07 0.1 0.01 NA 0.41 NA NA 0.15 0.23 

I21 NA 0 NA 0.25 NA NA 0.07 0.01 0.13 -0 NA 0 NA NA 0.12 0.18 

I22 NA -0 NA 0 NA NA 0.03 0.03 0.13 0 NA 0 NA NA 0.21 0.18 

I23 NA 0.1 NA 0.25 NA NA 0.09 0.09 0.12 0.01 NA 0.01 NA NA 0.27 0.17 

I24 NA 0.1 NA 0 NA NA 0.03 0.01 0.03 0.01 NA 0 NA NA 0.18 0.18 

I25 NA 0.04 NA 0.23 NA NA -0 0.07 0.04 0.12 NA -0.4 NA NA 0.22 0.26 

I26 NA 0.14 NA 0.21 NA NA 0.03 0.07 0.15 0.23 NA 0.2 NA NA 0.22 0.27 

I27 NA 0.25 NA 0 NA NA 0.05 0.14 0.03 -0 NA 0.01 NA NA 0.14 0.13 

I28 NA 0.23 NA -0 NA NA 0.05 0.1 0.05 0.14 NA 0.75 NA NA 0.19 0.13 

I29 NA -0 NA 0 NA NA -0 0.08 -0 0.04 NA 0 NA NA 0.1 -0 

I30 NA -0 NA 0.18 NA NA 0.01 0.05 -0.1 0.01 NA 0 NA NA 0.1 -0.1 

I31 NA 0.08 NA 0.3 NA NA 0.07 0.06 0.11 0.07 NA 0.75 NA NA -0 0.18 

I32 NA 0.07 NA 0.21 NA NA -0 0.03 0.1 0.06 NA 0.2 NA NA 0.01 0.11 

I33 NA 0.11 NA 0.21 NA NA 0.03 0.02 0.1 0.2 NA 0.99 NA NA 0.1 0.17 

I34 NA 0.15 NA -0.3 NA NA 0.02 0.08 0.12 0.17 NA 0.99 NA NA 0.09 0.19 

I35 NA 0.07 NA 0.11 NA NA 0.08 0.04 0.06 0.13 NA 0 NA NA 0.23 0.29 

I36 NA -0.1 NA 0 NA NA 0.03 0.16 0.1 0.18 NA 0.99 NA NA 0.16 0.28 

I37 NA -0 NA 0.03 NA NA 0.06 0.1 -0.1 -0 NA 0 NA NA 0.01 0.15 

I38 NA 0.12 NA 0.11 NA NA -0 -0 0.04 -0 NA -0.4 NA NA 0.09 0.16 

I39 NA -0 NA -0.2 NA NA -0.1 0.06 -0 -0.1 NA -0.7 NA NA 0.03 -0.1 

I40 NA 0.16 NA -0.3 NA NA 0.07 0.02 -0 -0.1 NA -0.7 NA NA 0.04 -0.1 
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Table C-24: Residual weighted second factor patterns for 5% contamination 
 

 Random       Reversed       

RANGE 1x1 3x3 3x1 1x3 1x1 3x3 3x1 1x3 

SUBTEST 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 

I1 NA 0.16 NA 0.03 NA NA 0.09 0.13 0.06 0.1 NA 0.02 NA NA 0.09 0.33 

I2 NA 0.19 NA 0.02 NA NA 0.08 0.17 0.01 0.12 NA 0 NA NA 0.06 0.3 

I3 NA 0.19 NA 0.08 NA NA 0.14 0.1 0.01 0.06 NA 0.14 NA NA 0.14 0.38 

I4 NA 0.03 NA 0.12 NA NA 0.06 0.13 0.04 0.09 NA 0.12 NA NA 0.12 0.36 

I5 NA 0.07 NA 0.16 NA NA 0.1 0.14 0.07 0.16 NA 0.25 NA NA 0.17 0.33 

I6 NA 0.19 NA 0.09 NA NA 0.11 0.19 0.12 0.06 NA 0.22 NA NA 0.16 0.36 

I7 NA 0.08 NA 0.12 NA NA 0.15 0.15 0.07 0.1 NA 0.13 NA NA 0.14 0.33 

I8 NA 0.13 NA 0.18 NA NA 0.08 0.17 0.18 0.02 NA 0.16 NA NA 0.16 0.31 

I9 NA 0.21 NA 0.01 NA NA 0.01 0.1 0.06 0.07 NA 0.01 NA NA 0.1 0.24 

I10 NA 0.09 NA 0.01 NA NA 0.17 0.13 0.2 0.04 NA 0 NA NA 0.19 0.28 

I11 NA 0.06 NA 0.02 NA NA 0.15 0.05 0.08 0.14 NA 0.03 NA NA 0.1 0.3 

I12 NA 0.09 NA 0 NA NA 0.09 0.1 0.01 0.12 NA 0.03 NA NA 0.09 0.24 

I13 NA -0 NA 0.12 NA NA 0.05 0.05 -0 0.08 NA 0.08 NA NA 0.09 0.3 

I14 NA 0.15 NA 0.09 NA NA 0.02 0.15 0.16 0.05 NA 0.13 NA NA 0.14 0.32 

I15 NA 0.06 NA 0.26 NA NA 0.2 0.15 0.02 0.12 NA 0.26 NA NA 0.15 0.36 

I16 NA 0.1 NA 0.15 NA NA 0.2 0.13 0.13 0.08 NA 0.25 NA NA 0.13 0.39 

I17 NA 0.15 NA 0.11 NA NA 0.1 0.08 0.03 0.04 NA 0.08 NA NA 0.13 0.31 

I18 NA 0.21 NA 0.07 NA NA 0.25 0.12 0.02 0.13 NA 0.05 NA NA 0.17 0.32 

I19 NA 0.12 NA -0 NA NA 0.02 0.04 0.13 0.14 NA 0.02 NA NA 0.14 0.27 

I20 NA 0.1 NA 0.02 NA NA 0.06 0.11 0.09 0.08 NA 0.02 NA NA 0.16 0.28 

I21 NA 0.04 NA -0 NA NA 0.15 -0 0.11 0.17 NA 0.03 NA NA 0.11 0.11 

I22 NA 0.05 NA 0.03 NA NA 0.05 0.03 -0 -0 NA 0.06 NA NA 0.1 0.14 

I23 NA 0.01 NA 0.08 NA NA -0 -0 -0.1 0.09 NA 0.1 NA NA 0.18 0.23 

I24 NA -0.1 NA 0.04 NA NA 0.1 0.06 0.13 0.14 NA 0.13 NA NA 0.1 0.19 

I25 NA 0.05 NA 0.07 NA NA 0.09 -0.1 0.1 0.18 NA 0.2 NA NA 0.17 0.38 

I26 NA -0.1 NA 0.06 NA NA 0.17 -0 0.09 0.06 NA 0.26 NA NA 0.18 0.38 

I27 NA 0 NA 0.1 NA NA 0.17 -0.1 -0 0.09 NA 0.16 NA NA 0.15 0.12 

I28 NA -0.1 NA 0.07 NA NA 0.04 0.06 0.06 0.07 NA 0.11 NA NA 0.17 0.15 

I29 NA 0.02 NA 0.02 NA NA 0.12 0 0.12 -0 NA 0.01 NA NA 0.11 -0 

I30 NA 0.06 NA 0 NA NA 0.18 -0.1 0.11 -0 NA -0 NA NA 0.15 0 

I31 NA 0.05 NA 0.03 NA NA 0.03 0.04 0.17 0.19 NA 0.03 NA NA 0.2 0.11 

I32 NA 0.13 NA 0.12 NA NA 0.04 -0 0.14 0.2 NA 0.02 NA NA 0.21 0.08 

I33 NA 0.05 NA -0.1 NA NA 0.09 0.03 0.06 0.14 NA 0.11 NA NA 0.14 0.21 

I34 NA -0.1 NA 0.01 NA NA 0.03 -0 0.22 0.11 NA 0.1 NA NA 0.18 0.14 

I35 NA -0 NA 0.06 NA NA 0.06 0.07 0.05 0.07 NA 0.25 NA NA 0.14 0.38 

I36 NA 0.04 NA 0.02 NA NA -0 0.06 0.04 0.05 NA 0.25 NA NA 0.15 0.38 

I37 NA -0 NA 0 NA NA -0 -0 0.06 -0 NA 0.22 NA NA 0.03 0.19 

I38 NA -0.1 NA 0 NA NA -0.1 0.06 -0 -0 NA 0.12 NA NA -0 0.16 

I39 NA 0.02 NA 0 NA NA 0.02 0.1 -0 0.01 NA 0 NA NA -0.2 -0 

I40 NA -0 NA 0.02 NA NA 0.04 -0 0.01 -0.1 NA 0.02 NA NA -0.2 -0 
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Appendix D 

Table D-1: average residual values within subtests for factor 1 of the all Rasch 

baseline condition 

RANGE 1X1  3X3  3X1  1X3  

SUBTEST 10 20 10 20 10 20 10 20 

Rasch1         

-2 0.24 0.20 0.01 0.01 0.01 0.02 0.23 0.28 

-1 0.33 0.33 0.15 0.14 0.16 0.13 0.32 0.34 

0 0.36 0.33 0.36 0.30 0.39 0.37 0.37 0.34 

1 0.34 0.31 0.14 0.14 0.14 0.11 0.30 0.31 

2 0.21 0.33 0.00 0.01 0.00 0.01 0.25 0.25 

Rasch2         

-2 0.27 0.24 0.02 0.01 0.27 0.28 0.01 0.00 

-1 0.32 0.34 0.17 0.14 0.38 0.29 0.11 0.13 

0 0.30 0.29 0.34 0.35 0.48 0.31 0.31 0.33 

1 0.29 0.34 0.18 0.11 0.29 0.27 0.14 0.13 

2 0.27 0.21 0.01 0.01 0.27 0.19 0.01 0.02 
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Table D-2: average residual values within subtests for factor 1 of the 100% 

contamination condition. 

 TYPE RANDOM       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 0.0625 0.0631 NA NA NA NA 0.1025 0.1086 

 -1 0.1012 0.0732 NA NA NA NA 0.0860 0.0700 

 0 0.0532 0.0560 NA NA NA NA 0.0770 0.0911 

 1 0.0974 0.0426 NA NA NA NA 0.0665 0.0524 

 2 0.0210 -0.0013 NA NA NA NA 0.0726 0.0324 

Mixture -2 0.0014 0.0287 NA NA NA NA 0.0214 0.0308 

 -1 0.1272 0.0128 NA NA NA NA 0.0004 0.0110 

 0 0.0156 0.0469 NA NA NA NA 0.0347 0.0191 

 1 -0.0479 0.0051 NA NA NA NA -0.0009 0.0301 

 2 0.0041 0.0097 NA NA NA NA 0.0345 0.0120 

 TYPE REVERSE       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 NA NA NA NA NA NA NA NA 

 -1 NA NA NA NA NA NA NA NA 

 0 NA NA NA NA NA NA NA NA 

 1 NA NA NA NA NA NA NA NA 

 2 NA NA NA NA NA NA NA NA 

Mixture -2 NA NA NA NA NA NA NA NA 

 -1 NA NA NA NA NA NA NA NA 

 0 NA NA NA NA NA NA NA NA 

 1 NA NA NA NA NA NA NA NA 

 2 NA NA NA NA NA NA NA NA 
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Table D-3: average residual values within subtests for factor 1 of the 50% 

contamination condition. 

 TYPE RANDOM       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 0.0973 0.1237 NA NA NA NA 0.1124 0.2505 

 -1 0.0791 0.0918 NA NA NA NA 0.1544 0.2014 

 0 0.1321 0.1460 NA NA NA NA 0.1440 0.2734 

 1 0.1495 0.1692 NA NA NA NA 0.1187 0.2801 

 2 0.0667 0.0461 NA NA NA NA 0.0593 0.2426 

Mixture -2 -0.0356 0.0369 NA NA NA NA -0.0144 0.0596 

 -1 0.0017 0.0342 NA NA NA NA 0.0008 0.0346 

 0 -0.0006 0.0293 NA NA NA NA 0.0013 
-

0.0171 

 1 0.0962 -0.0436 NA NA NA NA -0.0106 
-

0.0505 

 2 -0.0490 -0.0242 NA NA NA NA -0.0480 
-

0.0845 

 TYPE REVERSE       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 NA 0.0628 NA 0.0307 NA NA 0.0348 0.2651 

 -1 NA 0.0479 NA 0.0944 NA NA 0.0299 0.1765 

 0 NA 0.0186 NA 0.3105 NA NA 0.0425 0.3434 

 1 NA 0.0220 NA 0.1790 NA NA 0.0506 0.3242 

 2 NA 0.0598 NA 0.0450 NA NA 0.0526 0.2709 

Mixture -2 NA 0.1742 NA 0.1463 NA NA -0.0135 0.1203 

 -1 NA 0.1462 NA 0.1906 NA NA 0.0298 0.1924 

 0 NA 0.0442 NA 0.3099 NA NA 0.0360 0.3457 

 1 NA 0.0050 NA 0.1479 NA NA 0.0527 0.1997 

 2 NA -0.0762 NA -0.0302 NA NA 0.0265 0.0062 
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Table D-4: average residual values within subtests for factor 1 of the 20% 
contamination condition. 

 TYPE RANDOM       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 NA 0.1673 NA 0.0490 NA NA 0.1110 0.3323 

 -1 NA 0.1698 NA 0.1645 NA NA 0.1368 0.2560 

 0 NA 0.1953 NA 0.1754 NA NA 0.1533 0.4405 

 1 NA 0.1788 NA 0.0962 NA NA 0.1110 0.3932 

 2 NA 0.1217 NA 0.0278 NA NA 0.1515 0.3267 

Mixture -2 NA 0.0224 NA -0.0358 NA NA 0.0422 0.0102 

 -1 NA 0.0031 NA 0.0723 NA NA 0.0481 0.0096 

 0 NA -0.0109 NA 0.0657 NA NA -0.0188 -0.0059 

 1 NA -0.0464 NA 0.0020 NA NA -0.0652 0.0026 

 2 NA -0.0356 NA 0.0506 NA NA -0.0932 -0.0264 

 TYPE REVERSE       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 NA 0.0765 NA 0.0213 NA NA 0.0420 0.1506 

 -1 NA 0.0971 NA 0.0970 NA NA 0.0389 0.1066 

 0 NA 0.0650 NA 0.2130 NA NA 0.0255 0.1886 

 1 NA 0.1017 NA 0.1280 NA NA 0.0090 0.1747 

 2 NA 0.1563 NA 0.0495 NA NA -0.0256 0.1562 

Mixture -2 NA 0.2876 NA 0.1170 NA NA -0.4300 0.2508 

 -1 NA 0.2369 NA 0.1282 NA NA -0.1630 0.1417 

 0 NA 0.0897 NA 0.2153 NA NA 0.0199 0.1796 

 1 NA -0.0634 NA 0.1249 NA NA 0.3780 0.0783 

 2 NA -0.2044 NA 0.0332 NA NA 0.4946 -0.1182 
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Table D-5: average residual values within subtests for factor 1 of the 5% 
contamination condition. 

 TYPE RANDOM       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 NA 0.1960 NA 0.0074 NA NA 0.1397 0.2339 

 -1 NA 0.1264 NA 0.0848 NA NA 0.1397 0.2340 

 0 NA 0.2031 NA 0.1596 NA NA 0.2109 0.3713 

 1 NA 0.1464 NA 0.1014 NA NA 0.1616 0.2928 

 2 NA 0.1633 NA 0.0100 NA NA 0.2204 0.2562 

Mixture -2 NA 0.0247 NA 0.0478 NA NA 0.0873 0.0434 

 -1 NA 0.0715 NA 0.0529 NA NA 0.0474 0.0179 

 0 NA 0.0256 NA 0.0251 NA NA 0.0247 0.0166 

 1 NA -0.0167 NA 0.0256 NA NA -0.0733 -0.0163 

 2 NA -0.0370 NA 0.0436 NA NA -0.1187 0.0101 

 TYPE REVERSE       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 0.0518 0.0603 NA 0.0132 NA NA 0.1741 0.0662 

 -1 0.1654 0.0504 NA 0.1189 NA NA 0.1539 0.1641 

 0 0.0659 0.1577 NA 0.2305 NA NA 0.2620 0.0869 

 1 0.1475 0.1758 NA 0.2052 NA NA 0.2805 0.1025 

 2 0.1665 0.2711 NA 0.0400 NA NA 0.2862 0.1065 

Mixture -2 0.2643 0.4166 NA 0.1591 NA NA 0.2759 0.3772 

 -1 0.2708 0.3122 NA 0.2154 NA NA 0.2968 0.1957 

 0 0.0335 0.1461 NA 0.2644 NA NA 0.2959 0.0847 

 1 -0.0410 -0.0618 NA 0.1023 NA NA -0.0252 0.0409 

 2 -0.1209 -0.1924 NA -0.0801 NA NA -0.2214 -0.2355 
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Table D-6: average residual values within subtests for factor 2 of the 100% 
contamination condition. 
 

RANGE 1X1  3X3  3X1  1X3  

SUBTEST 10 20 10 20 10 20 10 20 

Rasch1         

-2 0.15 0.17 0.00 0.00 0.01 0.01 0.14 0.13 

-1 0.15 0.18 0.06 0.09 0.12 0.07 0.22 0.12 

0 0.16 0.22 0.21 0.20 0.18 0.18 0.20 0.18 

1 0.21 0.20 0.09 0.10 0.07 0.07 0.20 0.17 

2 0.14 0.16 0.02 0.00 0.01 0.01 0.14 0.11 

Rasch2         

-2 0.12 0.13 0.02 0.01 0.07 0.14 0.02 0.01 

-1 0.11 0.17 0.12 0.09 0.09 0.20 0.08 0.04 

0 0.21 0.22 0.28 0.17 0.18 0.22 0.15 0.17 

1 0.13 0.20 0.12 0.07 0.16 0.15 0.05 0.11 

2 0.20 0.17 0.01 0.00 0.09 0.14 0.01 0.01 
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Table D-7: average residual values within subtests for factor 2 of the 100% 
contamination condition. 
 

 TYPE RANDOM       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 0.0673 0.0452 NA NA NA NA 0.0617 0.0668 

 -1 0.0851 0.0497 NA NA NA NA 0.0689 0.0876 

 0 0.1057 0.0421 NA NA NA NA 0.0627 0.0697 

 1 0.0410 0.0351 NA NA NA NA 0.0688 0.0703 

 2 0.0646 0.0489 NA NA NA NA 0.0482 0.0413 

Mixture -2 -0.0126 0.0175 NA NA NA NA -0.0129 0.0104 

 -1 0.0176 0.0594 NA NA NA NA -0.0091 0.0227 

 0 -0.0168 0.0195 NA NA NA NA 0.0437 0.0295 

 1 0.0218 0.0042 NA NA NA NA 0.0172 0.0185 

 2 0.0173 0.0237 NA NA NA NA -0.0109 0.0262 

 TYPE REVERSE       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 NA NA NA NA NA NA NA NA 

 -1 NA NA NA NA NA NA NA NA 

 0 NA NA NA NA NA NA NA NA 

 1 NA NA NA NA NA NA NA NA 

 2 NA NA NA NA NA NA NA NA 

Mixture -2 NA NA NA NA NA NA NA NA 

 -1 NA NA NA NA NA NA NA NA 

 0 NA NA NA NA NA NA NA NA 

 1 NA NA NA NA NA NA NA NA 

 2 NA NA NA NA NA NA NA NA 
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Table D-8: average residual values within subtests for factor 2 of the 50% 
contamination condition. 

 TYPE RANDOM       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 0.0679 0.1399 NA NA NA NA 0.0989 0.0836 

 -1 0.0781 0.0841 NA NA NA NA 0.0738 0.0630 

 0 0.0759 0.0985 NA NA NA NA 0.0664 0.1112 

 1 0.0953 0.0799 NA NA NA NA 0.1144 0.0881 

 2 0.0942 0.1154 NA NA NA NA 0.1286 0.0824 

Mixture -2 0.0583 0.0279 NA NA NA NA 0.0036 0.0239 

 -1 0.0251 0.0379 NA NA NA NA 0.0758 0.0769 

 0 0.0378 0.0126 NA NA NA NA 0.0271 -0.0036 

 1 -0.0014 -0.0153 NA NA NA NA -0.0266 -0.0033 

 2 -0.0368 0.0081 NA NA NA NA 0.0325 -0.0386 

 TYPE REVERSE       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 NA 0.0672 NA 0.0464 NA NA 0.1567 0.0829 

 -1 NA 0.0303 NA 0.0558 NA NA 0.0800 0.1051 

 0 NA 0.0489 NA 0.2024 NA NA 0.1522 0.1175 

 1 NA 0.0450 NA 0.1394 NA NA 0.1160 0.1118 

 2 NA 0.0637 NA 0.0531 NA NA 0.1597 0.1001 

Mixture -2 NA -0.0264 NA 0.0913 NA NA 0.0224 0.1306 

 -1 NA 0.0077 NA 0.1694 NA NA 0.0252 0.0912 

 0 NA 0.0753 NA 0.2013 NA NA 0.1541 0.1110 

 1 NA 0.1070 NA 0.1194 NA NA 0.0442 0.0547 

 2 NA 0.1200 NA 0.0204 NA NA -0.0096 0.0187 
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Table D-9: average residual values within subtests for factor 2 of the 20% 
contamination condition. 

 TYPE RANDOM       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 NA 0.1200 NA 0.0201 NA NA 0.1362 0.0756 

 -1 NA 0.1095 NA 0.0475 NA NA 0.0980 0.0876 

 0 NA 0.0949 NA 0.0852 NA NA 0.1823 0.0795 

 1 NA 0.0920 NA 0.1143 NA NA 0.1300 0.0832 

 2 NA 0.0729 NA 0.0083 NA NA 0.1430 0.0458 

Mixture -2 NA 0.0043 NA 0.0637 NA NA 0.0609 0.0368 

 -1 NA 0.0156 NA 0.0043 NA NA -0.0242 0.0420 

 0 NA -0.0070 NA 0.0225 NA NA -0.0068 0.0333 

 1 NA 0.0030 NA 0.0390 NA NA -0.0598 0.0388 

 2 NA -0.0085 NA 0.0397 NA NA -0.0776 0.0069 

 TYPE REVERSE       

 RANGE 1X1  3X3  3X1  1X3  

 SUBTEST 10 20 10 20 10 20 10 20 

Rasch -2 NA 0.0805 NA 0.0358 NA NA 0.1670 0.2095 

 -1 NA 0.1183 NA 0.0992 NA NA 0.1812 0.2179 

 0 NA 0.1177 NA 0.3031 NA NA 0.2093 0.2721 

 1 NA 0.0879 NA 0.2032 NA NA 0.1613 0.2553 

 2 NA 0.1032 NA 0.0236 NA NA 0.1172 0.2250 

Mixture -2 NA 0.1163 NA 0.0312 NA NA -0.0058 0.1640 

 -1 NA 0.0932 NA 0.1945 NA NA 0.0961 0.1777 

 0 NA 0.0871 NA 0.3225 NA NA 0.1937 0.2723 

 1 NA 0.0151 NA 0.2109 NA NA 0.0500 0.1416 

 2 NA -0.0421 NA 0.0401 NA NA 0.0380 -0.0607 
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Table D-10: average residual values within subtests for factor 2 of the 5% 
contamination condition. 

 TYPE RANDOM       
 RANGE 1X1  3X3  3X1  1X3  
 SUBTEST 10 20 10 20 10 20 10 20 
Rasch -2 NA 0.1262 NA 0.0182 NA NA 0.1004 0.1115 
 -1 NA 0.0820 NA 0.0562 NA NA 0.0582 0.0747 
 0 NA 0.1037 NA 0.1673 NA NA 0.1447 0.1494 

 1 NA 0.1428 NA 0.1188 NA NA 0.1302 0.1306 
 2 NA 0.1303 NA 0.0089 NA NA 0.0906 0.0951 
Mixture -2 NA 0.0663 NA 0.0340 NA NA 0.0380 0.0036 
 -1 NA -0.0205 NA 0.0175 NA NA 0.0589 0.0174 
 0 NA 0.0003 NA 0.0520 NA NA 0.0312 -0.0011 
 1 NA -0.0617 NA 0.0446 NA NA -0.0629 0.0066 

 2 NA 0.0199 NA 0.0101 NA NA 0.0299 0.0093 
 TYPE REVERSE       
 RANGE 1X1  3X3  3X1  1X3  
 SUBTEST 10 20 10 20 10 20 10 20 
Rasch -2 0.0422 0.1214 NA 0.0206 NA NA 0.0911 0.2936 
 -1 0.0537 0.0781 NA 0.1169 NA NA 0.1027 0.2420 
 0 0.0885 0.1046 NA 0.2445 NA NA 0.1594 0.3598 
 1 0.0615 0.0749 NA 0.1044 NA NA 0.1528 0.3163 
 2 0.1184 0.0833 NA 0.0151 NA NA 0.1416 0.2653 
Mixture -2 0.1550 0.1373 NA 0.0388 NA NA 0.2020 0.1080 
 -1 0.1414 0.1195 NA 0.1103 NA NA 0.1601 0.1920 
 0 0.0464 0.0903 NA 0.2398 NA NA 0.1461 0.3781 
 1 0.0146 0.0373 NA 0.1548 NA NA -0.0024 0.1542 

 2 -0.0139 -0.0280 NA 0.0038 NA NA -0.1862 -0.0118 
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Appendix E 

The following is an annotated version of the Macro BAY_MIRT used to generate 
data. 
 
/******************************************************************* 
The SAS Macro entitled BAY_MIRT generates data submits the data to 
WINBUGS calls back pertinent information into SAS and begins the 
analysis process for factor analysis. Definitions of pre Macro 
structuring of the file. 
location  = is a macro variable for the ROOT folded location for 
files in the Macro. 
WINB  = Location of WINbugs on the computer. 
DOS  =Easy fix to work with DOS commands, no spaces  
ITEMNUM  =    number of items 
REPS        =   number of replications within each replication 
FRSTREP =   first replication, typically 1. 
SAMPLESZ    =   number of cases per replication 
SAMPLEC  =   used to add commas to WINbugs code 
SAMPLET1    =   used for output of WINbugs commas 
SAMPLET2    =   for output of WINbugs data lines 
libname is location of MIXIRT on current computer 
********************************************************************
****/ 
 
*OPTIONS NONOTES; 
%LET LOCATION   =  C:\NEW2OUTPUT; 
%LET WINB   = C:\WinBUGS14; 
%LET DOS   = C:\SASWINBUGS; 
%LET    ITEMNUM  =   40;  
%LET    REPS  =   50; 
%LET FRSTREP  = 1;  
%LET    SAMPLESZ =   500;                 
%LET    SAMPLEC  =   %EVAL(&SAMPLESZ+1); 
%LET    SAMPLET1 =   %EVAL(&SAMPLEC+27);  
%LET    SAMPLET2 =   %EVAL(&SAMPLEt1+1);  
%Let EFFECT  = 0; 
Libname MIXIRT "&LOCATION"; 
 
/******************************************************************* 
/*GENERATES THE BASIC TEST TO BE MANIPULATED IN THE SIMULATION*/ 
/*these values are changed based on the range in the code*/ 
 
DATA MIXIRT.ITEM_DIFF; 
    INPUT   ITEM1-ITEM&ITEMNUM; 
DATALINES; 
2 2 1 1 0 0 -1 -1 -2 -2 2 2 1 1 0 0 -1 -1 -2 -2 2 2 1 1 0 0 -1 -1 -2 
-2 2 2 1 1 0 0 -1 -1 -2 -2 
; 
RUN; 
 
/* generates WINBbugs CODE. MATCH SAMPLE SIZE if it is changed!*/ 
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DATA MIXIRT.IRTDATA; 
    INPUT LD $80.; 
        ARRAY ITEM[&ITEMNUM]; /*FORMAT DATASET FOR BASE*/ 
            DO I = 1 TO &ITEMNUM; 
            END; 
CARDS; 
list(N=500, I=40, G=2, alpha=c(2,2), 
class=c( 
1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA), 
r=structure(.Data=c( 
RUN; 
 
DATA MIXIRT.DIM; 
LD = "), .Dim = c(&SAMPLESZ, &ITEMNUM)))"; 
RUN; 
 
DATA MIXIRT.SET1; 
 INPUT RANDOM RASCH; 
CARDS; 
0 1 
; 
RUN; 
 
/******************************************************************/ 
/*generates the Rasch code to run in WINbugs*/ 
DATA model; 
INPUT model $80.; 
CARDS; 
model 
{ 
 
   for( j in 1 : N ) { 
      for( k in 1 : I ) { 
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p1[j,k] <- exp(theta[j]-b[k,class[1]])/(1+exp(theta[j]-
b[k,class[1]])) 
p2[j,k] <- 0.25 
p[j,k] <- p2[j,k]*prop1[j]+p1[j,k]*(1-prop1[j]) 
r[j,k] ~ dbern(p[j , k]) 
      } 
   } 
   for( k in 1 : I ) { 
      for( c in 1 : 1 ) { 
         b[k , c] ~ dnorm( 0.0,0.25) 
      } 
   } 
   for( j in 1 : N ) { 
      theta[j] ~ dnorm( 0.0,tau) 
      class[j] ~ dcat(pi[1:G]) 
      prop1[j] <- class[j] - 1 
   } 
   pi[1:G] ~ ddirch(alpha[]) 
   tau ~ dgamma( 0.5,1) 
} 
 
; 
run; 
 
/*OUTPUTS IRT TO TXT FILE FOR WINBUGS*/ 
DATA _NULL_; 
SET model; 
FILE "&LOCATION..\sas to winbugs\IRTMODEL.txt"; 
PUT model; 
RUN; 
 
/*MERGE WITH TERTA FOR EASY */ 
DATA MIXIRT.TMERGE; 
    DO REPS = 1 TO &ITEMNUM; 
        DO P = 1 TO &ITEMNUM; 
            OUTPUT; 
        END; 
    END; 
RUN; 
 
/**********BEGIN BAY_MIRT MACRO*******************/ 
MACRO BAY_MIRT;              
/* BC changes the proportion of the contamination in the 
contaminated subtest, 1 = no contamination, 0 = all contamination */ 
  %DO BC= 2 %TO 2;      
  %If &BC=1 %THEN %Do;  
   %LET        BRASCH      = 0; 
   %LET  RAS = 1; 
  %END;    
  %If &BC=2 %THEN %Do;  
   %LET        BRASCH      = .5;  
   %LET  RAS = .5; 
  %END; 
  %If &BC=3 %THEN %Do;  
   %LET        BRASCH      = .8;  
   %LET  RAS = .2; 
  %END; 
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  %If &BC=4 %THEN %Do;  
   %LET        BRASCH      = .95;  
   %LET  RAS = .05; 
  %END; 
  %If &BC=5 %THEN %Do;  
   %LET        BRASCH      = 1;  
   %LET  RAS = 0; 
  %END; 
/* MIX = Type of contamination 1 random, 2 reversed difficulties */  
  %DO MIX=1 %TO 1;      
  %If &MIX=1 %THEN %Do; %Let    MIX     = 1;    %END; 
  %If &MIX=2 %THEN %Do; %Let    MIX     = 2;    %END;  
/* TIR  changes the scaling factor for the test range. */ 
 %DO TIR=3 %TO 3;           
  %If &TIR=1 %THEN %Do;  
     %Let    IRANGE   =  1; 
     %Let SUBRANGE =  1; 
  %END;    
  %If &TIR=2 %THEN %Do;  
     %Let    IRANGE   =  3;  
     %Let SUBRANGE =  3; 
  %END; 
  %If &TIR=3 %THEN %Do;  
     %Let    IRANGE   =  3;  
     %Let SUBRANGE =  1; 
  %END; 
  %If &TIR=4 %THEN %Do;  
     %Let    IRANGE   =  1;  
     %Let SUBRANGE =  3; 
  %END;    
/* WC changes the size of the contaminated subtest*/   
 %DO WC=1 %TO 1;           
  %If &WC=1 %THEN %Do;  
   %LET    WRS  = 30; 
   %LET WNRB = 31; 
  %END; 
                %If &WC=2 %THEN %Do;      
        
     %LET WRS  = 20; 
   %LET WNRB = 21; 
  %END 
/*NRP can be used to have fully contaminated replicantes(not used)*/ 
 %DO NRP=1 %TO 1;  
   %If &NRP=1 %THEN %Do;  %Let   PROP      = 1; %END;    
/* Can be used to change the mean of theta*/  
 %DO T=4 %TO 4; 
  %If &T=4 %THEN %Do; %Let    THETA = 0;  %END; 
/*NUMBER OF REPLICATIONS*/ 
 %DO R = &FRSTREP %TO &REPS; 
/******************************************************************* 
Macro statements used for do loops 
BPR  = THE PROPORTION OF BETWEEN DATA THAT IS ALL RASCH DATA. USED 
TO END FIRST DO LOOP 
BPNR  = THE PROPORTION OF BETWEEN DATA THAT HAS NON-RASCH DATA. USED 
TO BEGIN DO LOOP 
BNRPROP = THE PROPORTION OF DATA IN NON-RASCH SECTION THAT IS 
ALL NON RASCH, ENDS THIS LOOP 

 238 
 



 

BNRPROP = THE PROPORTION OF DATA IN NON-RASCH SECTION THAT IS 
SPLIT RASCH/NON RASCH, BEGINS FINAL LOOP 
*******************************************************************
            
%LET BPR    = INT(&BRASCH*&SAMPLESZ);         
%LET BPNR   = &BPR+1;            
%LET BNRPROP  = 
INT(&BRASCH*&SAMPLESZ)+INT(&RAS*&SAMPLESZ*&PROP);  
%LET BNRPROPB = &BNRPROP+1; 
 
/*BEGIN DATA GENERATION*/ 
/*Rescales the test by the scaling factor to generate ranges for 
subtests*/ 
DATA ITEM_DIFF_TEST; 
    SET MIXIRT.ITEM_DIFF; 
        ARRAY ITEM[&ITEMNUM];  
            DO I = 1 TO &WRS; 
                ITEM[I]=ITEM[I]*&IRANGE; 
   END; 
            DO I = &WNRB TO &ITEMNUM; 
                ITEM[I]=ITEM[I]*&SUBRANGE; 
            END; 
RUN; 
/*ENDS TRANDFORMATION OF TEST*/ 
 
DATA MIXIRT.THETA&BC&MIX&TIR&WC&NRP&T&R;  
    SET ITEM_DIFF_TEST; 
  DO RESPONSET1 = 1 TO &BPR;   
   DIST = RANNOR(0);  
             ARRAY ITEM[&ITEMNUM];  
             ARRAY PROB[&ITEMNUM]; 
                DO P = 1 TO &ITEMNUM; 
                  PROB[P] = (EXP((&THETA+DIST)-
ITEM[P]))/(1+(EXP(((&THETA+DIST)-ITEM[P])))); 
                END; 
                    OUTPUT; 
            END; 
    IF &MIX = 1 THEN DO; 
        DO RESPONSET1 =  &BPNR TO &BNRPROP;  
            DIST = RANNOR(0); 
                DO P = 1 TO &WRS; 
                    PROB[P] = (EXP((&THETA+DIST)-
ITEM[P]))/(1+(EXP(((&THETA+DIST)-ITEM[P]))));   
                END; 
                DO P = &WNRB TO &ITEMNUM; 
                    PROB[P] = 0.25;  
                END; 
                    OUTPUT; 
        END; 
  DO RESPONSET1 =  &BNRPROPB TO &SAMPLESZ;    
                DO P = 1 TO &ITEMNUM; 
                    PROB[P] = 0.25;  
                END; 
                    OUTPUT; 
        END; 
    END; 
    IF &MIX = 2 THEN DO; 
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           DO RESPONSET1 =  &BPNR TO &BNRPROP;  
   DIST = RANNOR(0); 
                DO P = 1 TO &WRS; 
                    PROB[P] = (EXP((&THETA+DIST)-
ITEM[P]))/(1+(EXP(((&THETA+DIST)-ITEM[P]))));  
                END; 
                DO P = &WNRB TO &ITEMNUM; 
                    PROB[P] = (EXP(((&THETA+DIST)-
&EFFECT)+ITEM[P]))/(1+(EXP((((&THETA+DIST)-&EFFECT)+ITEM[P]))));   
                END; 
            OUTPUT; 
        END; 
  DO RESPONSET1 =  &BNRPROPB TO &SAMPLESZ;    
   DIST = RANNOR(0); 
    DO P = 1 TO &ITEMNUM; 
                    PROB[P] = (EXP(((&THETA+DIST)-
&EFFECT)+ITEM[P]))/(1+(EXP((((&THETA+DIST)-&EFFECT)+ITEM[P]))));   
                END; 
                    OUTPUT; 
        END; 
    END; 
RUN; 
 
/*FROM THE PROBABLITIES, A RESPONSE SET FOR 500 PEOPLE OVER THE 
TWENTY ITEM TEST IS GENERATED*/ 
DATA MIXIRT.THETA&BC&MIX&TIR&WC&NRP&T&R; 
    SET MIXIRT.THETA&BC&MIX&TIR&WC&NRP&T&R; 
        ARRAY ITEM[&ITEMNUM];  
        ARRAY PROB[&ITEMNUM]; 
                DO T = 1 TO &ITEMNUM; 
                    ITEM[T]     = (RANBIN(0,1,PROB[T])); 
                END; 
            DROP  T I P RESPONSET1 DIST;  
RUN; 
 
/********CODE TO GENERATE TXT DATA FOR WINBUGS***/ 
DATA IRTDATA&BC&MIX&TIR&WC&NRP&T&R; 
    SET MIXIRT.IRTDATA; 
RUN; 
PROC APPEND 
    BASE=IRTDATA&BC&MIX&TIR&WC&NRP&T&R 
DATA=MIXIRT.THETA&BC&MIX&TIR&WC&NRP&T&R FORCE; 
RUN; 
DATA IRTDATA&BC&MIX&TIR&WC&NRP&T&R; 
    SET IRTDATA&BC&MIX&TIR&WC&NRP&T&R; 
COM=","; 
IF (_N_ > 1 AND _N_ < &SAMPLET1) THEN COM2=","; 
RUN; 
 
PROC APPEND 
    BASE=IRTDATA&BC&MIX&TIR&WC&NRP&T&R DATA=MIXIRT.DIM FORCE; 
RUN; 
 
/*******************CODE TO format data for WINbugs **************/ 
DATA _NULL_; 
    SET IRTDATA&BC&MIX&TIR&WC&NRP&T&R; 
FILE "&LOCATION.\sas to winbugs\IRTDATA&BC&MIX&TIR&WC&NRP&T&R..txt"; 
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PUT  LD; 
IF (_N_ > 28 AND _N_ <&SAMPLET2) THEN PUT @1  
(ITEM1 COM ITEM2 COM ITEM3 COM ITEM4 COM ITEM5 COM ITEM6 COM ITEM7 
COM ITEM8 COM ITEM9 COM ITEM10 COM  
ITEM11 COM ITEM12 COM ITEM13 COM ITEM14 COM ITEM15 COM ITEM16 COM 
ITEM17 COM ITEM18 COM ITEM19 COM ITEM20 COM 
ITEM21 COM ITEM22 COM ITEM23 COM ITEM24 COM ITEM25 COM ITEM26 COM 
ITEM27 COM ITEM28 COM ITEM29 COM ITEM30 COM  
ITEM31 COM ITEM32 COM ITEM33 COM ITEM34 COM ITEM35 COM ITEM36 COM 
ITEM37 COM ITEM38 COM ITEM39 COM ITEM40 COM2) (&ITEMNUM*1.); 
RUN; 
 
/*******************CODE TO run winbugs ****/  
DATA _NULL_; 
/*File location to house this .txt file called batchirt*/ 
/*INITS ARE USED IF INITS ARE SET*/ 
/*DIC NOT USED WITH MIXTURE*/ 
FILE "&WINB.\BatchIRT.txt";  
PUT // @@ 
#1 "display('log')" 
#2 "check('&LOCATION.\sas to winbugs/IRTMODEL.txt')"  
#3 "data ('&LOCATION.\sas to 
winbugs/IRTDATA&BC&MIX&TIR&WC&NRP&T&R..txt')" 
#4 "compile(1)" 
/* 
#5 "inits(1,'&LOCATION.\sas to winbugs/INIT1.txt')" 
#6 "inits(2,'&LOCATION.\sas to winbugs/INIT2.txt')" 
#7 "inits(3,'&LOCATION.\sas to winbugs/INIT3.txt')" 
*/ 
#8 "gen.inits()"  
#9 "update(2000)" 
#10 "set(theta)" 
#11 "set (b)" 
/*#12 "set(p)"*/ 
/*#13 "set (class)"*/ 
#14 "set (prop1)" 
#15 "set (pi)" 
/*#15 "dic.set()"*/ 
#16 "update(5000)" 
#18 "stats(*)" 
/*#19 "dic.stats()"*/ 
#20 "gr()" 
/*#21 "coda(*,'&LOCATION.\sas to winbugs/codairt.txt')"*/ 
#22 "save('&LOCATION.\sas to 
winbugs/bugslog&BC&MIX&TIR&WC&NRP&T&R..txt')" 
#23 "quit()" 
; 
RUN; 
 
DATA _NULL_; 
FILE "&DOS.\runIRT.bat"; 
PUT "CD &WINB"; 
PUT "WinBUGS14.exe /PAR BatchIRT.txt"; 
PUT "exit"; 
RUN; 
 
DATA _NULL_; 
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X "&DOS.\runIRT.bat"; 
RUN; 
QUIT; 
 
/*end not generate*/ 
 
DATA MIXIRT.BUGSLOG&BC&MIX&TIR&WC&NRP&T&R; 
INFILE "&LOCATION.\sas to 
winbugs\bugslog&BC&MIX&TIR&WC&NRP&T&R..txt" FIRSTOBS=20 
DELIMITER="09"x OBS =11570; 
INPUT  node $ mean   sd  MCerror    TWONHALF    median  
NINETYSEVENNHALF    start   sample; 
RUN; 
 
DATA PROP; 
    SET MIXIRT.BUGSLOG&BC&MIX&TIR&WC&NRP&T&R; 
    PR = index(NODE, "prop1"); 
    IF PR > 0; 
    RANDOM  =   MEAN; 
    RASCH   =   1-MEAN; 
    KEEP RANDOM RASCH; 
RUN; 
 
DATA PROP; 
 SET MIXIRT.SET1 PROP; 
RUN; 
 
DATA MIXIRT.FINAL&BC&MIX&TIR&WC&NRP&T&R; 
    MERGE MIXIRT.THETA&BC&MIX&TIR&WC&NRP&T&R PROP; 
 ITEMSUM = SUM(of ITEM1-ITEM&ITEMNUM)/&ITEMNUM;   
RUN; 
       %END;                    
       %END;  
     %END;  
                %END;  
            %END;  
        %END;  
    %END;  
 
 
%MEND BAY_MIRT;       
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