
University of Maryland Department of Computer Science TR-5038
University of Maryland Institute for Advanced Computer Studies TR-2014-05

May 2014

PRECONDITIONING TECHNIQUES FOR REDUCED BASIS
METHODS FOR PARAMETERIZED PARTIAL DIFFERENTIAL

EQUATIONS ∗

HOWARD C. ELMAN† AND VIRGINIA FORSTALL‡

Abstract. The reduced basis methodology is an efficient approach to solve parameterized
discrete partial differential equations when the solution is needed at many parameter values. An
offline step approximates the solution space and an online step utilizes this approximation, the
reduced basis, to solve a smaller reduced problem, which provides an accurate estimate of the solution.
Traditionally, the reduced problem is solved using direct methods. However, the size of the reduced
system needed to produce solutions of a given accuracy depends on the characteristics of the problem,
and it may happen that the size is significantly smaller than that of the original discrete problem but
large enough to make direct solution costly. In this scenario, it may be more effective to use iterative
methods to solve the reduced problem. We construct preconditioners for reduced iterative methods
which are derived from preconditioners for the full problem. This approach permits reduced basis
methods to be practical for larger bases than direct methods allow. We illustrate the effectiveness
of iterative methods for solving reduced problems by considering two examples, the steady-state
diffusion and convection-diffusion-reaction equations.

Key words. reduced basis, iterative methods, preconditioning

AMS subject classifications. 65N22, 65F08

1. Introduction. This study is concerned with efficient iterative algorithms for
the numerical solution of parameterized partial differential equations (PDEs). Ex-
amples where such equations arise include models of diffusion or reactions where the
coefficients of diffusion or reaction are parameterized in some way, or are uncertain.
In settings of this type, we may require the computation of discrete solutions for
many values of the input parameter, for example, to perform sensitivity analysis,
design optimization, or statistical analysis of random processes. When an accurate
spatial discretization is required (using, for example, finite element or finite difference
discretization) this can be a prohibitively expensive task.

One approach for addressing this difficulty is to use reduced-order models. Costs
are reduced by approximating the parameterized problem using a reduced space of
significantly smaller dimension than that of the discrete PDE. We will do this using
the reduced basis method [8]. Let the PDE

(1.1) L(~x, ξ;u) = f(~x)

be defined on a spatial domain D and subject to boundary conditions on ∂D

(1.2) B(~x, ξ;u) = g(~x) ,

where ξ = [ξ1, ξ2, . . . , ξm]T is a vector of input parameters. Reduced basis methods
compute a (relatively) small number of solutions, u(·, ξ1), . . .u(·, ξk), known as snap-
shots, and then for other parameters, ξ 6= ξj , attempt to find u(·, ξ) in the space

∗This work was supported in part by the U.S. Department of Energy under grant DE-SC0009301
and by the U.S. National Science Foundation under grant DMS1115317.
†Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742 (elman@cs.umd.edu).
‡Applied Mathematics and Statistics, and Scientific Computation Program, Department of Math-

ematics, University of Maryland, College Park, MD 20742 (vhfors@math.umd.edu).

1

spanned by {u(·, ξj)}kj=1. In this paradigm, the computations are divided into so-
called offline and online steps. The offline step, which may be expensive, computes
the snapshots and builds a basis of the low-dimensional vector space spanned by them.
The online step, which is intended to be inexpensive (because k is small), computes a
projected version of the original problem (using, for example, a Galerkin projection)
in the k-dimensional space. The projected problem, known as the reduced model, has
a solution ũ(~x, ξ) which is an approximation of the solution u(~x, ξ).

An implicit assumption associated with this approach is that the costs of solving
any linear systems that arise from the reduced model are low. The conventional
wisdom is that these systems can be solved cheaply using direct methods, at costs
lower than what would be needed to solve the original discrete PDE. This is reasonable
when k, the size of the reduced basis, is significantly smaller than N , the size of the
discrete space. However, when efficient (O(N)) algorithms, such as multigrid, are
available for the discrete PDE, it may happen that k is smaller than N by a large
amount, but direct methods (of complexity O(k3)) do not lead to reduced costs.

In this study we address this issue by considering methods for the efficient solution
of reduced problems when the reduced space is of moderate size. We consider iterative
methods for this scenario and, in particular, we develop preconditioning strategies for
the reduced problem derived from a preconditioner for the underlying discrete PDE.
We show that the construction of the preconditioner can be included in the offline
portion of the computation, and that for problems depending on moderately large
numbers of parameters, the preconditioned iterative solvers are more efficient than
direct methods for solving the reduced algebraic systems.

An outline of the paper is as follows. In Section 2, we review the reduced basis
methodology for linear partial differential operators with affine dependence on pa-
rameters. In Section 3, we discuss iterative methods for the solution of larger reduced
problems and develop the preconditioning strategy we use with such methods. In Sec-
tion 4, we demonstrate the effectiveness of these techniques for solving two benchmark
problems, the steady-state diffusion and convection-diffusion-reaction equations, and
in Section 5, we draw some conclusions.

2. Reduced basis method. In a finite element setting, we seek a discrete so-
lution uh of the PDE in a finite-dimensional affine space Xh such that

(2.1) L(uh(·, ξ), vh) = l(vh) ∀vh ∈ Xh
0 .

For simplicity, we consider Dirichlet problems, and Xh
0 is the subset of Xh corre-

sponding to homogenous Dirichlet boundary conditions. Given a basis Q = {qj}kj=1

such that qj ∈ Xh
0 , we solve the reduced model

(2.2) L(ũ0(·, ξ), vh) = l(vh) ∀v ∈ span(Q) ,

for ũ0 ∈ span(Q), which is used to construct an approximation of the full solution,
ũ = ũ0 + ubc, where ubc is the solution on the boundary. The accuracy of this
approximation depends on how well the reduced basis represents the solution space.
Thus, constructing this basis requires balancing two conflicting requirements: its
rank, k, should be small enough so there is a benefit with respect to efficiency from
using the reduced model, but k should also be large enough to ensure accuracy of the
approximation.

In the offline-online paradigm, the offline step focuses on the construction of
the reduced basis. A variety of approaches have been considered. For example,

2

a proper orthogonal decomposition derived from solutions obtained for a subset of
the parameter space produces such a basis [2]. Alternatively, the solutions to the full
model at k samples of ξ produce {u(·, ξj)}kj=1, the snapshots, from which a stable basis
can be formed by finding an orthogonal basis for the span of the snapshots constructed
using, for example, the modified Gram-Schmidt algorithm. There are various methods
for snapshot selection including greedy sampling [4], error minimization methods [6],
or sparse grids [8]. This (offline) portion of the computation may be expensive.

We will also assume that the operators L and B in (1.1) and (1.2) are affinely
dependent on ξ, i.e.,

(2.3) L(~x, ξ;u) =

m∑
i=1

ψi(ξ) li(~x;u)

where {li(~x;u)}mi=1 are parameter-independent operators. This assumption leads to
efficiencies for linear operators as well as mildly nonlinear (say, quadratic) ones, be-
cause part of the reduced model can be precomputed as part of the offline step and
the cost of solving the reduced model does not depend on the size of the full model.
For example, for a linear PDE the solution of the full model in (2.1) is obtained by
solving a matrix equation of the form

(2.4) A(ξ)uξ = f ,

where the order of the system, N , depends on the number of points in the spatial
discretization of D and is assumed to be large. Let Q be an N × k orthogonal matrix
whose columns span the same space as that determined by the coefficient vectors of
the set of snapshots. The Galerkin projection of the reduced model of order k is

(2.5) QTA(ξ)Qur,ξ = QT f ,

where ũξ = Qur,ξ is the approximation of the solution of equation (2.4) on the interior
of D. Because of the assumption of affine dependence, the coefficient matrix has the
structure

(2.6) A(ξ) =

m∑
i=1

ψi(ξ)Ai ,

and the reduced model can be written

(2.7)

m∑
i=1

ψi(ξ)[Q
TAiQ]ur,ξ = QT f .

In this form, the matrices {QTAiQ} are parameter independent and thus can be pre-
computed as part of the offline step. The online step of the reduced model includes
the assembly of the sum in equation (2.7). The cost of this computation is of order
mk2, and the total online cost is this plus the cost of solving an order k linear sys-
tem. Hence, the cost of the reduced model is independent of N , the size of the full
model. For reduced basis methods applied to problems with nonaffine dependence on
parameters, see [1, 4, 7, 14].

3. Iterative methods for the reduced model. The conventional point of
view is that the reduced model will be significantly less expensive to solve than the

3

full model. The traditional choice for solving the reduced model in equation (2.5)
is direct methods, at a computational cost of O(k3). On the other hand, it is often
possible to use multigrid methods to solve the (full-sized) linear system arising from
discretized PDEs, at cost O(N) [5, 9]. Therefore, using the reduced model with a
direct method is effective only when k � N . The focus of this study is the case when
the rank of the reduced basis k is of magnitude where the cost of direct methods for
the reduced problem is not smaller than for solving the full problem, even though
k is still of moderate size. In such situations, there may be an advantage to using
alternative solution methods.

Consider the use of iterative methods for the reduced model (2.5). In this case,
the cost of such methods is O(pk2) where p is the number of iterations required for
convergence; the factor of k2 comes from the cost of a dense matrix-vector product by
QTA(ξ)Q. Thus, this will be an effective approach when p is small. It is well known
that preconditioners are needed for the fast convergence of iterative methods. Thus,
we need a preconditioner for the reduced matrix. Consider a reformulated version of
equation (2.5) given by

(3.1)

[
A−1 Q
QT 0

] [
v
ur

]
=

[
0

−QT f

]
.

Equation (3.1) has the form of a saddle point system, a well-studied problem, for
which a preconditioner may take the form [9][

F 0
0 S

]
.

With the formal choice F = A−1, it can be shown that the optimal choice for S is the
Schur complement [13], which for (3.1) is

(3.2) S = QTAQ .

That this is equivalent to the matrix of the reduced model suggests that the reduced
model in equation (2.5) can be preconditioned with an approximation to the Schur
complement.

To produce a preconditioner for (3.2), we will mimic an approach used successfully
in a different context (for models of computational fluid dynamics), the so-called least-
squares commutator method [9]. Here the Schur complement is approximated by the
matrix

(3.3) P̂S ≡ (QTQ)(QTA−1Q)−1(QTQ) .

Since Q is orthogonal, this operator simplifies to P̂S =
(
QTA−1Q

)−1
. This precondi-

tioner depends on A−1, which is the operator we are trying to approximate and thus
is impractical. Recall that A depends on a parameter ξ. We could choose a single
representative vector of parameters, ξ(0), to define the preconditioner, which allows
the construction of the preconditioner to be moved offline. In this case we would solve
k full systems to compute A−1(ξ(0))Q and premultiply by QT . A variation of this
idea is to use a collection of representative parameter vectors to define a collection of
preconditioners, all computed in the offline step.

In the preconditioner P̂S , we can also replace A with a spectrally equivalent
operator, i.e., one for which there exist σ0, σ1 independent of spatial dimension such
that

4

(3.4) σ0 ≤
yTAy

yTPAy
≤ σ1 .

Thus we can use a preconditioner designed for A to produce a preconditioner of S,
yielding

(3.5) PS = (QTP−1
A Q)−1 or P−1

S = QTP−1
A Q .

In this case we can construct P−1
S explicitly by

• Constructing what is needed for a representation of P−1
A . We will define P−1

A

using an algebraic multigrid (AMG) method. Therefore, this step consists of
computing the sequence of coarse grids, grid transfer operators, and smooth-
ing operators obtained for a multigrid solution of systems of discrete PDEs.
With these, we have what is needed to apply the action of P−1

A to a vector.
• Explicitly computing the (dense) order-k matrix QTP−1

A Q by applying the
algebraic multigrid operation to each of the columns of Q and then premul-
tiplying the matrix P−1

A Q by QT .

The construction (offline) of PS is cheaper than that of P̂S , and in experiments we
found P̂S to provide little (if any) advantage in terms of iteration counts over PS . In
our study of performance we focus on the preconditioner PS specified by (3.5).

4. Numerical results. To illustrate the effectiveness of these ideas, we apply
the reduced basis method to two examples of PDEs with random coefficients. We
compare the performance of the iterative solver for the reduced model with both
direct reduced solution and multigrid solution of the full system.

The first example is a steady-state diffusion equation with parameter-dependent
diffusion coefficient,

(4.1)

−∇ · a(~x, ξ)∇u(~x, ξ) = f(~x) in D × Γ

u(~x, ξ) = gD(~x) on ∂DD × Γ

∂u(~x,ξ)
∂n = 0 on ∂DN × Γ ,

where D ⊂ R2 and the diffusion coefficient, a(~x, ξ), is a random field depending on a
vector of m random variables, ξ = [ξ1, ξ2, ..., ξm]T . The second example is a steady-
state convection-diffusion-reaction equation with an uncertain reaction coefficient,
r(~x, ξ),

(4.2)

−ν∇2u(~x, ξ) + ~w · ∇u(~x, ξ) + r(~x, ξ)u(~x, ξ) = f(~x) in D × Γ

u(~x, ξ) = gD(~x) on ∂DD × Γ

∂u(~x,ξ)
∂n = 0 on ∂DN × Γ,

where the domain D ⊂ R2, ν is the diffusion coefficient, ~w is the convective velocity,
and ∇ · ~w = 0.

We turn now to the methodology used to compute a reduced basis Q. Assume
the full discretized model A(ξ)uξ = f is defined on a parameter space Γ =

∏m
i=1 Γi

such that ξi ∈ Γi := [ai, bi]. The reduced basis is constructed using an adaptive
algorithm summarized in Algorithm 1. The procedure begins with Q as a single
vector, the normalized discrete solution uξ(0) where ξ(0) = E[ξ]. The parameter space

5

is randomly sampled M times and for each sample, ξ, the reduced model is solved
with the current Q. This produces an approximation to the solution ũξ = Qur,ξ +ubc
whose accuracy is estimated by an error indicator, ηξ. If ηξ exceeds a predefined
tolerance, τ , the full solution for this ξ is computed and the new snapshot, uξ, is used
to update the reduced basis. The basis matrix Q is augmented using the modified
Gram-Schmidt algorithm, ensuring that the basis will have orthogonal columns. We
used as an error indicator the relative residual

(4.3) ηξ =
||A(ξ)ũξ − f ||2

||f ||2
.

This method is applied to the steady-state diffusion equation and the steady-state
convection-diffusion-reaction equation beginning with M = 2000 random samples of
ξ. This produces a candidate basis Q. To assess the quality of this basis, we computed
the reduced solution for an additional 100 samples; if each of these reduced solutions
satisfied the error tolerance, then Q was accepted as the reduced basis. For case 1
of the diffusion equation (see below) and the convection-diffusion-reaction equation,
this strategy produced an acceptable Q with a few exceptions. In general, M ≥ 3000
was required for some experiments with the diffusion equation (referred to as case 2
below, where the details are stated).

Algorithm 1 Construction of the reduced basis using random selection

for j =1:M do
Select random sample ξ(j) ∈ Γ
Compute ηξ(j)

if ηξ(j) > τ then

Compute u(·, ξ(j)) using the full model
Use the snapshot to augment Q

end if
end for

4.1. Diffusion equation. The steady-state diffusion problem with a random
coefficient in equation (4.1) can be used to model the effects of groundwater flow [19].
The weak formulation for a fixed value of ξ is

(4.4) (aξ∇u,∇v) = (f, v) ∀v ∈ H1
0 (D) .

Bilinear Q1 elements are used to generate a discretized system, A(ξ)uξ = f of order
N for the full model [9]. We use source term f(~x) = 1 and boundary conditions
gD(~x) = 0.

We consider two finite-dimensional representations of the random field for the
diffusion coefficient a(~x, ξ): a truncated Karhunen-Loève (KL) expansion (case 1)
and a piecewise constant coefficient (case 2). The truncated KL-expansion is defined
by

(4.5) a(~x, ξ(ω)) = µ(~x) +

m∑
i=1

√
λiai(~x)ξi(ω) ,

where µ(~x) is the mean of the random field, λi and ai(~x) are the eigenvalues and
eigenfunctions of the covariance function, and ξi(ω) are independent uniform random

6

variables. We take the covariance function to be

(4.6) C(~x, ~y) = σ2 exp

(
−|x1 − y1|

c
− |x2 − y2|

c

)
,

where σ is the standard deviation and c is the correlation length, which describes the
strength of the relationship between the value of the random field at ~x1 = (x1, y1)
and ~x2 = (x2, y2). A large value of c implies that a(~x1, ξ) and a(~x2, ξ) are highly
correlated. We will also use the truncated KL expansion to represent the reaction
coefficient in the convection-diffusion-reaction equation (4.2).

For the piecewise constant diffusion coefficient, the domain, D, is divided into
m = nd × nd subdomains as in Figure 4.1, where

(4.7) a(~x, ξ) = ξi ,

on the ith subdomain. Here {ξi}mi=1 are independent uniform random variables defined
on Γi = [0.01, 1].

D11 D1nd

Dndnd
Dnd1

Fig. 4.1. Domain for diffusion equation case 2: piecewise random coefficients.

Consider the influence of the parameters on the overall value of the coefficient
for these two representations. The impact of the parameters in the truncated KL-
expansion is unequal because the expansion weights the parameters by the eigenvalues
of the covariance operator. Thus, for example, ξ1 and ξ2 are more influential to the
value of a(~x, ξ) than ξm−1 and ξm, when the eigenvalues are labeled in decreasing
order. In contrast, the piecewise random coefficients are equally weighted.

Algorithm 1 is used to generate the reduced basis Q. Once the reduced basis is
generated we are able to solve the reduced problem defined in equation (2.5). Recall
that the preconditioner for this system, discussed in Section 3 and defined in equa-
tion (3.5), utilizes P−1

A , a preconditioner of A. We will specify P−1
A using multigrid,

which is well known to be effective for diffusion problems [5]. For the implementa-
tion, we use a smoothed aggregation algebraic multigrid routine from Python Alge-
braic Multigrid package (PyAMG) with the default settings [3]: the presmoother and
postsmoother are one iteration of Gauss-Seidel, the maximum size of the coarse grid is
500,and the pseudoinverse is used to solve the system on the coarse grid. To compute
the preconditioner for the reduced problem, the multigrid operator P−1

A is applied to
Q, by performing one V-cycle on each of the k columns of Q. We study three ways
to select the parameter used to specify PA.

1. Single-parameter offline: P0 is derived from multigrid applied to A(ξ(0)) where
ξ(0) is the mean parameter, E[ξ].

2. Multiple-parameter offline: A set of s parameters is used to define s pre-
computed offline preconditioners, P1, . . . , Ps. This is done using multigrid
applied to A(ξ(1)), . . . , A(ξ(s)). For the online component given ξ, ξ(j) ∈

7

{ξ(1), . . . , ξ(s)} is selected such that ||ξ(j)−ξ||2 is minimized and Pj is used as
the preconditioner. There are several possibilities for choosing {ξ(1), . . . , ξ(s)}
including random sampling, quasi-random sampling, and sparse grids. Sparse
grids are used to limit costs of quadrature and interpolation of functions
depending on high-dimensional parameter sets. Since we are working with
high-dimensional parameter spaces and would like to represent the parameter
space with as few parameters as possible, we choose the so-called No Bound-
ary sparse grid [10]. The first level of the grid, of size s = 2m+ 1, is obtained
using the spinterp toolbox [11].

3. Online: PA(ξ) comes from multigrid applied to A(ξ) where ξ is the same
parameter whose solution we are seeking. The time to construct the pre-
conditioner online is quite large. It requires building the coarse grid and
smoothing operators and the significantly more expensive step of applying
them to each column of Q in order to compute QTP−1

A(ξ)Q. It is included here

to give a lower bound for how well offline preconditioning could perform.
The examples are implemented using Python and run with an Intel 2.9 GHz

i7 processor and 8 GB of RAM. (The full model finite element discretizations are
imported from the Incompressible Flow and Iterative Solver Software (IFISS) package
which is implemented in Matlab [16]). The full solution is obtained using algebraic
multigrid with stopping criterion

||f −A(ξ)uj ||2 ≤ 10−5||f ||2 ,

where uj is the solution after j iterations of multigrid, implemented with the same
settings outlined above. For iterative solution of the reduced problem, we use the
preconditioned conjugate gradient (PCG) method with stopping criterion

(4.8)
||QT f −QTAQur,j ||

||QT f ||
<

τ

10
,

where ur,j is the reduced iterate at step j. The given times for online preconditioning
do not include the significant time required to construct the multigrid preconditioner,
and the time for multiple-parameter preconditioning does not include the trivial time
to find the minimizer ξ∗.

Case 1. Truncated Karhunen-Loève expansion. The random field, a(~x, ξ),
is represented by a truncated Karhunen-Loève expansion defined on D = [0, 1]× [0, 1]
described in equation (4.5).

We choose ξi to be independent and uniformly distributed random variables on
Γi = [−1, 1] and fix µ(~x) = 1 and σ = 0.5. The correlation length c is varied; the
number of parameters m is chosen to ensure that 95% of the variance in the random
field is captured, i.e.

(4.9)

∑m
i=1 λi∑N
i=1 λi

≥ 0.95 .

Algorithm 1 with M = 2000 was used to construct a basis using both τ = 10−5

and τ = 10−8 for the error tolerance.1 Decreasing the tolerance has the effect of
increasing the size of the reduced basis, and for smaller τ the reduced model solutions

1The example with m = 325 parameters (see Table 4.1) required M = 3000 for τ = 10−5, N =
2572, and τ = 10−8, N ≥ 652.

8

from both direct and iterative methods require additional time; this tolerance has no
effect on the full system solution.

To assess performance, we solve the reduced problem for 100 randomly chosen pa-
rameters using a direct method, the conjugate gradient method without precondition-
ing, and the conjugate gradient method with three preconditioners: single-parameter
offline, multiple-parameter offline, and online. The average iteration counts for the
conjugate gradient method are presented in Tables 4.1 and 4.3. The time (in seconds)
for the full algebraic multigrid solution, the reduced direct method, and the single-
parameter offline conjugate gradient method are presented in Tables 4.2 and 4.4 with
the fastest method for each case in bold.

N
c 3 1.5 0.75 0.375
m 7 17 65 325

332

k 36 91 237 501
None 25.4 44.4 65.6 76.5
Single 6.0 6.3 6.4 6.4
Multiple 6.0 6.2 6.4 6.4
Online 6.0 6.0 6.0 6.0

652

k 35 93 250 603
None 25.1 46.9 82.3 121.7
Single 6.0 6.1 6.1 6.1
Multiple 6.0 6.1 6.1 6.1
Online 6.0 6.0 6.0 6.0

1292

k 35 95 259 642
None 24.8 49.4 90.3 150.2
Single 6.1 7.2 8.0 8.1
Multiple 6.1 7.1 8.0 8.1
Online 6.0 7.0 8.0 8.0

2572

k 35 96 263 657
None 24.0 49.4 92.1 161.7
Single 6.1 7.6 8.0 8.1
Multiple 6.1 7.6 8.0 8.1
Online 6.0 8.02 8.0 8.0

Table 4.1
Average iteration counts for preconditioned conjugate gradient algorithm applied to the reduced

diffusion problem in case 1 (KL expansion), with τ = 10−5

Tables 4.1 and 4.3 show that the number of iterations needed for PCG grows only
slightly as the size of the reduced basis grows, whereas the iterations for unprecon-
ditioned conjugate gradient grow significantly. Also note that the single-parameter
preconditioner performs nearly as well as the online preconditioner, so using the mean
parameter to construct the preconditioner is an effective choice for the entire param-
eter space.

Tables 4.2 and 4.4 illustrate that the single-parameter offline preconditioned con-
jugate gradient method is faster than direct methods when the reduced basis is of
size k ≥ 237. For τ = 10−5, this holds for m = 65 and for τ = 10−8 this holds for
both m = 17 and m = 65. The improvement is more dramatic for the case of m = 65

2This case is anomalous because the offline preconditioners converge in one fewer iteration than
the online preconditioner for several samples.

9

N
c 3 1.5 0.75 0.375
m 7 17 65 325

332

k 36 91 237 501
Full AMG 0.0206 0.0232 0.0211 0.0219

Reduced Direct 0.0001 0.0003 0.0014 0.0100
Reduced Iterative 0.0003 0.0004 0.0006 0.0018

652

k 35 93 250 603
Full AMG 0.1770 0.1786 0.1850 0.1866

Reduced Direct 0.0001 0.0003 0.0016 0.0183
Reduced Iterative 0.0003 0.0003 0.0005 0.0025

1292

k 35 95 259 642
Full AMG 0.1161 0.1251 0.1248 0.1304

Reduced Direct 0.0002 0.0003 0.0018 0.0205
Reduced Iterative 0.0003 0.0004 0.0007 0.0037

2572

k 35 96 263 657
Full AMG 0.3065 0.3300 0.3193 0.3063

Reduced Direct 0.0002 0.0003 0.0024 0.0222
Reduced Iterative 0.0003 0.0004 0.0008 0.0039

Table 4.2
Average CPU time solving the reduced diffusion problem in case 1 (KL expansion), with τ = 10−5.

and τ = 10−8, when the reduced basis size is k ≈ 700. For all values of m and N the
reduced iterative method is more efficient than solving the full system.

For this example, the size of the reduced basis is consistent as the spatial size,
N , is increased. This is especially clear for the smaller values of m. This is expected;
see discussion in [8] suggesting that this size is in correspondence with the rank of
the underlying solution space associated with the continuous model. There is some
growth in k the basis size, for the larger values of m, but we expect these values to
eventually tend toward a constant as the spatial resolution increases. Since the cost of
solving the full system grows with N , as expected, the advantage of using the reduced
model also increases as the mesh is refined.

Case 2. Piecewise constant coefficient. The diffusion coefficient, a(~x, ξ), for
this case is defined in equation (4.7) on a domain D = [−1, 1]× [−1, 1]. Algorithm 1
with M = 3000 and τ = 10−8 was used to construct the bases.3 The average iteration
counts for solving 100 reduced problems are given in Table 4.5 for the conjugate
gradient method.

In contrast to the results for case 1, the iteration counts for the offline precon-
ditioners are somewhat larger than those for the online ones (see Table 4.5). We at-
tribute this to the fact that for this example, all the parameters are weighted equally
in their contribution to the model, unlike the situation for the KL-expansion. Thus,
the single (or small number) of parameter sets used for the offline preconditioners are
not as effective at capturing the character of the parameter space. Despite this, the
important trends for the preconditioned solvers are the same as for case 1: iteration
counts depend only mildly on the number of terms m in equation (2.3) or the size
k of the reduced basis. There is little advantage of the “multiple-parameter” over

3The example with m = 100 parameters and N = 2572 required M = 4000 to construct a basis
that meets the criteria discussed earlier in this section.

10

N
c 3 1.5 0.75 0.375
m 7 17 65 325

332

k 97 254 607 982
None 60.1 90.7 101.7 103.9
Single 10.0 9.3 9.5 8.9
Multiple 10.0 9.3 9.5 8.9
Online 10.0 9.0 9.0 8.0

652

k 100 265 699 1679
None 68.8 129.3 175.5 200.3
Single 10.0 10.0 8.5 8.7
Multiple 10.0 10.0 8.5 8.7
Online 10.0 9.8 8.0 8.0

1292

k 102 269 729 1808
None 70.1 149.5 252.5 339.1
Single 11.2 14.6 12.9 11.0
Multiple 11.2 14.6 12.9 11.0
Online 11.0 14.8 13.0 11.0

2572

k 102 275 740 1846
None 70.4 154.0 293.6 473.7
Single 11.0 13.7 15.4 13.5
Multiple 11.0 13.7 15.4 13.5
Online 11.0 13.0 15.0 13.0

Table 4.3
Average iteration counts for preconditioned conjugate gradient algorithm applied to the reduced

diffusion problem in case 1 (KL expansion), with τ = 10−8

N
c 3 1.5 0.75 0.375
m 7 17 65 325

332

k 97 254 607 982
Full AMG 0.0202 0.0205 0.0214 0.0228

Reduced Direct 0.0003 0.0016 0.0181 0.0699
Reduced Iterative 0.0004 0.0008 0.0036 0.0103

652

k 100 265 699 1679
Full AMG 0.1768 0.1961 0.1947 0.1974

Reduced Direct 0.0003 0.0021 0.0262 0.3207
Reduced Iterative 0.0004 0.0010 0.0044 0.0252

1292

k 102 269 729 1808
Full AMG 0.1195 0.1286 0.1347 0.1443

Reduced Direct 0.0003 0.0020 0.0287 0.4452
Reduced Iterative 0.0005 0.0013 0.0070 0.0449

2572

k 102 275 740 1846
Full AMG 0.3163 0.2988 0.3030 0.3778

Reduced Direct 0.0004 0.0024 0.0302 0.4498
Reduced Iterative 0.0005 0.0012 0.0088 0.0619

Table 4.4
Average CPU time solving the reduced diffusion problem in case 1 (KL expansion), with τ = 10−8.

11

m 4 16 36 64 100

332

k 27 193 321 449 577
None 31.9 113.9 126.4 127.9 128.0
Single 17.2 32.3 44.0 52.0 59.5
Multiple 15.7 30.1 42.4 50.3 57.0
Online 11.4 13.0 13.6 12.7 12.0

652

k 29 309 625 897 1153
None 42.3 234.1 254.9 258.3 256.4
Single 20.1 38.2 47.0 54.8 64.2
Multiple 18.7 35.5 44.9 53.1 65.4
Online 14.3 17.0 18.2 18.9 18.9

1292

k 33 359 862 1519 2219
None 60.3 432.9 493.6 519.2 518.9
Single 24.2 37.5 47.6 58.1 64.9
Multiple 22.7 35.2 45.2 56.0 72.4
Online 19.1 19.0 22.0 24.1 25.2

2572

k 36 394 979 1789 2801
None 82.0 808.9 976.8 1035.6 1037.3
Single 30.4 44.0 50.9 62.2 71.1
Multiple 28.6 41.7 48.5 60.3 84.1
Online 25.1 25.8 25.7 27.8 29.7

Table 4.5
Average iteration counts for preconditioned conjugate gradient algorithm applied to the reduced

diffusion problem in case 2, with τ = 10−8

the “single-parameter” approach. Thus we use this single-parameter preconditioned
conjugate gradient method as the iterative method to compare to the reduced direct
and full multigrid methods in Table 4.6.

We highlight the trends displayed in Table 4.6 as follows.

• For the reduced problem, the iterative solver is more efficient than the direct
solver for large reduced bases, in particular whenever the size k of the reduced
basis is greater than or equal to 625.

• As the dimension of the spatial discretization increases, the solution of the
reduced model is less expensive than solution of the full model. Moreover,
as in case 1, the size of the reduced basis tends to a constant as the mesh is
refined, so solution costs also tend to a constant.

• For fixed spatial dimension, the costs of solving the full system are constant
whereas the size of the reduced model increases with the number of param-
eters, m, and N . For the largest choices of these values, m = 100 and
N = 2572, the full AMG costs are lowest. However, for fine enough spatial
meshes such that k has stabilized (as in case 1), we expect that the cost of
the reduced model will be smaller.

4.2. Behavior of eigenvalues. The performance of the conjugate gradient
method for solving the reduced problem depends on the extremal values of the Rayleigh
quotient

(4.10)
xTQTAQx

xT (QTP−1
A Q)−1x

=
xTQTAQx

xT (QTA−1Q)−1x

xT (QTA−1Q)−1x

xT (QTP−1
A Q)−1x

.

12

N m 4 16 36 64 100

332

k 27 193 321 449 577
Full AMG 0.0218 0.0203 0.0215 0.0210 0.0208

Reduced Direct 0.0001 0.0010 0.0032 0.0073 0.0152
Reduced Iterative 0.0006 0.0019 0.0045 0.0090 0.0181

652

k 29 309 625 897 1153
Full AMG 0.1679 0.1601 0.1669 0.1811 0.1760

Reduced Direct 0.0002 0.0026 0.0187 0.0543 0.1088
Reduced Iterative 0.0007 0.0034 0.0176 0.0458 0.0832

1292

k 33 359 862 1519 2219
Full AMG 0.1134 0.1202 0.1357 0.1184 0.1194

Reduced Direct 0.0002 0.0038 0.0461 0.2319 0.6659
Reduced Iterative 0.0009 0.0041 0.0364 0.1340 0.3060

2572

k 36 394 979 1789 2801
Full AMG 0.3376 0.3519 0.3291 0.3365 0.3568

Reduced Direct 0.0002 0.0051 0.0670 0.3555 1.2972
Reduced Iterative 0.0010 0.0060 0.0485 0.1928 0.5365

Table 4.6
Average CPU time solving the reduced diffusion problem in case 2 (piecewise constant), with

τ = 10−8.

Specifically, let us consider the second quotient on the right side of (4.10) for the on-
line preconditioner (i.e. where A and PA come from the same parameter ξ). Note that
an offline preconditioner requires an additional problem-dependent quotient which de-
pends on the relationship between the parameter used to construct the preconditioner
and the problem we are trying to solve. We have assumed in (3.4) that PA is spec-
trally equivalent to A. When A and P are symmetric positive definite, an analogous
bound also holds for the inverses [18],

σ0 ≤
yTP−1

A y

yTA−1y
≤ σ1 ∀y ∈ RN .

We have assumed that this bound holds for all y, so specifically it holds for y on the
range of Q (i.e. y = Qx). Using this fact and applying inverses yields

(4.11) σ0 ≤
xT (QTA−1Q)−1x

xT (QTP−1
A Q)−1x

≤ σ1 .

Therefore the second quotient in (4.10) is bounded by σ0 and σ1.
We can obtain insight into the first quotient of (4.10) by experimentally examining

the eigenvalues of

QTA(ξ(0))−1QQTA(ξ(0))Q

using the benchmark problem from the previous section, case 2 of the diffusion equa-
tion. Figure 4.2 illustrates the eigenvalues for four values of m considered for this
problem. All eigenvalues are bounded below by 1 and the largest eigenvalues grow
only slightly with spatial dimension for the three cases where m > 4. This suggests
that the condition number of the preconditioned reduced matrix is independent of the
spatial mesh.

13

Fig. 4.2. Eigenvalues of QTA−1QQTAQ

4.3. Convection-diffusion-reaction equation. The convection-diffusion-re-
action equation (4.2) has applications in modeling fluid flow and chemical reactions.
It can be used to model the transportation of contaminants in a flow subject to diffu-
sive effects and/or chemical reactions [12]. Such models depend on parameters for the
diffusion coefficient, the velocity, and the reaction coefficient. Any of these parameters
could be uncertain [17]; here we consider the case where the reaction rate is taken to
be a random field depending linearly on a random vector. The weak formulation is

(4.12) ν(∇u,∇v) + (~w · ∇u, v) + (rξu, v) = (f, v) ∀v ∈ H1
0 (D) .

We present results for the steady-state model posed on domain D = [−1, 1]× [−1, 1]
with Dirichlet boundary conditions

(4.13) gD(~x) =

{
0 for [−1, y]

⋃
[x, 1]

⋃
[−1 ≤ x ≤ 0,−1]

1 for [1, y]
⋃

[0 ≤ x ≤ 1,−1]

and an inflow boundary condition on the boundaries, [x,−1] and [1, y]. We use source
term f(~x) = 0 and a constant velocity ~w = (− sin π

6 , cos π6). The diffusion coefficient
is ν = 0.005. The reaction rate, r(x, ξ), is represented by a truncated Karhunen-
Loève expansion as in equation (4.5), with ξi independent and uniformly distributed
on Γi = [−1, 1], with mean, µ = 1, and standard deviation, σ = 0.5. As in case 1

14

of the diffusion equation, the value of the correlation coefficient c is varied, and the
number of parameters m is chosen to capture 95% of the variance of the random field.

We again discretize using bilinear finite elements, which yields operators A, B,
and R(ξ) in which A represents the diffusion term, B, the convective term, and R(ξ)
the reaction term. We include stabilization by the streamline-diffusion method in the
convection-dominated case when the mesh Peclet number,

(4.14) Pe =
he||~w||

2ν
> 1 ,

where he is a measure of the element length in the direction of the wind. This method
produces matrices Scd and Sr, defined in terms of the finite element basis functions
{φi}ne

i=1 as

[Scd]ij =

ne∑
e=1

∫
Ωe

δe(~w · ∇φi)(−∇ · (ν∇φj) + ~w · ∇φj)

and

[Sr(ξ)]ij =

ne∑
e=1

∫
Ωe

δe(~w · ∇φi)r(~x, ξ)φj ,

where [9]

δe =
he

2||~w||

(
1− 1

Pe

)
.

The resulting linear system has the form

(4.15) F (ξ)uξ = f ,

where F (ξ) = A+B +R(ξ) + Scd + Sr(ξ). As is well known [1, 9], this stabilization
enhances the quality of solutions with steep gradients obtained using inadequately
fine grids, limiting the presence of nonphysical oscillations in discrete solutions; see
Figure 4.3. As the discretization is refined, the stabilization becomes unnecessary.

We now consider solving the reduced problem

(4.16) QTF (ξ)Qur = QT f

using iterative methods where Q is constructed using Algorithm 1 with M = 2000
and τ = 10−8. Since the system is not symmetric, we use the stabilized biconjugate
gradient method (BICGSTAB) in conjunction with preconditioner QTP−1

F Q, where
P−1
F is constructed using one of two methods:

1. Offline: P−1
F is a multigrid preconditioner of F (ξ(0)) where ξ(0) is the mean

of the parameter space, E[ξ].
2. Online: P−1

F is a multigrid preconditioner of F (ξ).
As with the diffusion equation, the multigrid preconditioners are constructed using
a smoothed aggregation algebraic multigrid routine from PyAMG [3]. The examples
with N ≤ 1292 required streamline-diffusion stabilization; for N = 2572, this was
not needed. However, in this case AMG required a different smoothing operator, the
normed residual Gauss-Seidel smoother where Gauss-Seidel is applied to the normal

15

(a) Without streamline-diffusion method (b) With streamline-diffusion method

Fig. 4.3. Solution of the convection-diffusion-reaction problem for N = 332, ξ = ξ0, c = 2,
m = 36, Pe = 7.2 with and without streamline-diffusion stabilization.

equations instead of the standard Gauss-Seidel smoother [3, 15]. We attribute this to
instability of the coarse grid operators.

Table 4.7 contains the average iterations for BICGSTAB to solve the reduced
model for 100 randomly selected parameters. We observe that the offline precon-
ditioner is also effective for this problem. In terms of iterations counts, the offline
preconditioner performs nearly as well as the online preconditioner as in case 1 of the
diffusion equation. The times for offline preconditioned BICGSTAB, reduced direct,
and full multigrid methods are shown in Table 4.8. The reduced iterative method
is faster than the direct method for m = 785. Since decreasing N has the effect
of decreasing k for this problem, the iterative methods perform best for m = 145,
N = 332, 652, corresponding to k = 372 and greater.

5. Conclusion. Reduced basis methods are an efficient way to obtain the solu-
tion to parameterized partial differential equations for many parameter values. The
effectiveness of reduced basis methods depends on the relatively cheap cost of solving
the reduced problem. This cost depends on the rank of the reduced basis, which
depends on quantities such as the number of parameters, m, and the accuracy desired
for the reduced solution τ . We have shown, using two examples, the steady-state dif-
fusion equation and the convection-diffusion-reaction equation, that this cost can be
reduced for larger k when iterative methods are used and we have identified the regime
of k where, for these problems, iterative methods for the reduced problem become the
most effective choice. This is primarily accomplished by designing a preconditioner
which is (1) is computed offline, and thus does not increase the cost of solving the
reduced model and (2) is derived from a multigrid preconditioner for the full model.

Acknowledgment. We thank Harbir Antil for several helpful discussions.

REFERENCES

[1] H. Antil, M. Heinkenschloss, and D. C. Sorensen. Application of the discrete empirical interpo-
lation method to reduced order modeling of nonlinear and parametric systems. In G. Rozza,
editor, Springer MS&A series: Reduced Order Methods for modeling and computational,
volume 8. Springer-Verlag, Italia, Milano, 2013.

[2] C. Audouze, F. De Vuyst, and P. B. Nair. Reduced-order modeling of parameterized pdes using

16

N
c 2 1 0.5
m 36 145 785

332

k 210 421 798
None 49.5 45.9 41.7
Single 8.2 7.0 6.1
Online 8.3 7.0 6.0

652

k 178 372 952
None 84.5 87.4 86.5
Single 12.0 10.0 9.0
Online 12.0 10.0 9.0

1292

k 138 265 749
None 122.8 153.0 176.2
Single 12.9 13.1 13.0
Online 12.7 13.5 13.0

2572

k 99 197 686
None 126.8 234.0 293.8
Single 14.2 14.4 15.1
Online 13.9 14.5 15.0

Table 4.7
Average iteration counts for the reduced problem solved using BICGSTAB for the convection-

diffusion-reaction problem, τ = 10−8.

time–space-parameter principal component analysis. International Journal for Numerical
Methods in Engineering, 80(8):1025–1057, 2009.

[3] W. N. Bell, L. N. Olson, and J. B. Schroder. PyAMG: Algebraic multigrid solvers in Python
v2.0, 2011. Release 2.0.

[4] S. Boyaval, C. Le Bris, T. Lelièvre, Y. Maday, N. C. Nguyen, and A. T. Patera. Reduced basis
techniques for stochastic problems. Archives of Computational Methods in Engineering,
17(4):435–454, 2010.

[5] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. 2000.
[6] T. Bui-Thanh, K. Willcox, and O. Ghattas. Model reduction for large-scale systems with high-

dimensional parametric input space. SIAM Journal on Scientific Computing, 30(6):3270–
3288, 2008.

[7] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete empirical inter-
polation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010.

[8] H. C. Elman and Q. Liao. Reduced basis collocation methods for partial differential equations
with random coefficients. SIAM/ASA Journal of Uncertainty Quantification, 1:192–217,
2013.

[9] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative Solvers:
with Applications in Incompressible Fluid Dynamics: with Applications in Incompressible
Fluid Dynamics. OUP Oxford, 2005.

[10] A. Klimke. Sparse Grid Interpolation Toolbox – user’s guide. Technical Report IANS report
2007/017, University of Stuttgart, 2007.

[11] A. Klimke and B. Wohlmuth. Algorithm 847: spinterp: Piecewise multilinear hierarchical
sparse grid interpolation in MATLAB. ACM Transactions on Mathematical Software,
31(4), 2005.

[12] J. D. Logan. Transport modeling in hydrogeochemical systems, Chapter 2, volume 15. Springer,
2001.

[13] M. F. Murphy, G. H. Golub, and A. J. Wathen. A note on preconditioning for indefinite linear
systems. SIAM Journal on Scientific Computing, 21(6):1969–1972, 2000.

[14] A. Quarteroni and G. Rozza. Numerical solution of parametrized Navier-Stokes equations by
reduced basis methods. Numerical Methods for Partial Differential Equations, 23(4):923–
948, 2007.

[15] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.
[16] D. Silvester, H. Elman, and A. Ramage. Incompressible Flow and Iterative Solver Software

17

N
c 2 1 0.5
m 36 145 785

332

k 210 421 798
Full AMG 0.0419 0.0428 0.0440

Reduced Direct 0.0011 0.0067 0.0400
Reduced Iterative 0.0009 0.0019 0.0066

652

k 178 372 952
Full AMG 0.2188 0.2258 0.2311

Reduced Direct 0.0009 0.0046 0.0679
Reduced Iterative 0.0013 0.0022 0.0148

1292

k 138 265 749
Full AMG 0.3228 0.3284 0.3271

Reduced Direct 0.0007 0.0020 0.0323
Reduced Iterative 0.0012 0.0020 0.0132

2572

k 99 197 686
Full AMG 1.5330 1.5468 1.5396

Reduced Direct 0.0003 0.0010 0.0234
Reduced Iterative 0.0010 0.0016 0.0140

Table 4.8
Comparison of time of the BICGSTAB algorithm with full model solved using multigrid and

reduced model solved using direct method for the convection-diffusion-reaction problem, τ = 10−8.

(IFISS) version 3.2, May 2012. http://www.manchester.ac.uk/ifiss/.
[17] D. Venturi, D. M. Tartakovsky, A. M. Tartakovsky, and G. E. Karniadakis. Exact pdf equations

and closure approximations for advective-reactive transport. Journal of Computational
Physics, 2013.

[18] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,
34(4):581–613, 1992.

[19] D. Zhang. Stochastic Methods for Flow in Porous Media: Coping with Uncertainties. Academic
press, 2001.

18

