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It is common for many establishment surveys that a sample contains a fraction of 

observations that may seriously affect survey estimates. Influential observations may 

appear in the sample due to imperfections of the survey design that cannot fully 

account for the dynamic and heterogeneous nature of the population of businesses. 

An observation may become influential due to a relatively large survey weight, 

extreme value, or combination of the weight and value.  

We propose a Winsorized estimator with a choice of cutoff points that guarantees that 

the resulting mean squared error is lower than the variance of the original survey 

weighted estimator. This estimator is based on very un-restrictive modeling 

assumptions and can be safely used when the sample is sufficiently large.  

We consider a different approach when the sample is small. Estimation from small 

samples generally relies on strict model assumptions. Robustness here is understood 

as insensitivity of an estimator to model misspecification or to appearance of outliers. 



  

The proposed approach is a slight modification of the classical linear mixed model 

application to small area estimation. The underlying distribution of the random error 

term is a scale mixture of two normal distributions. This setup can describe outliers in 

individual observations. It is also suitable for a more general situation where units 

from two distinct populations are put together for estimation. 

The mixture group indicator is not observed. The probabilities of observations 

coming from a group with a smaller or larger variance are estimated from the data. 

These conditional probabilities can serve as the basis for a formal test on outlyingness 

at the area level. 

Simulations are carried out to compare several alternative estimators under different 

scenarios. Performance of the bootstrap method for prediction confidence intervals is 

investigated using simulations. We also compare the proposed method with 

alternative existing methods in a study using data from the Current Employment 

Statistics Survey conducted by the U.S. Bureau of Labor Statistics. 
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Chapter 1: Introduction and Literature Review 

1.1 Introduction 

It is common for many establishment surveys that a sample contains a fraction of 

observations that may seriously affect survey estimates. An observation may become 

influential due to a relatively large survey weight, extreme value, or combination of 

the weight and value.  

Establishments in the target population vary greatly by size. The population consists 

of a relatively small number of large companies, while most of the national 

employment is situated in small-size enterprises. Businesses are selected into sample 

with different probabilities, and the resulting survey weights are highly variable; even 

though an effort is taken at the design stage of a survey to minimize the variance of 

the survey weighted estimator, the estimates may still be very unstable. 

Another aspect of a survey of businesses is the potential of change in the 

establishment attributes that are used for sample selection, as well as possible changes 

in the units’ composition. For example, industrial allocation or the establishment 

employment level may change after a sample has been selected. As a result, it may 

happen that a larger (than expected at the time of sampling) employment size 

becomes associated with a large survey weight creating predisposition for the 

influential observation. (The problem of “stratum jumpers” is discussed in Rivest  

1999).  
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We call the units that have large impact on estimation the influential observations; the 

effect caused by these observations may be due to imperfections of the survey design 

that cannot fully account for the dynamic and heterogeneous nature of a population of 

establishments. In the current research, we devise a model-based estimation 

procedure that takes into account the survey design and features of the probability 

distribution of employment in a population of businesses, leading to an estimator that 

is robust to model misspecifications and is more efficient than a pure survey weighted 

estimator. 

For estimation from moderately large samples, we propose a Winsorization based 

estimator with a choice of the cutoff points that guarantees that the resulting mean 

squared error is lower than the variance of the original survey weighted estimator. 

This estimator is based on mild modeling assumptions; thus it can be safely used 

when the sample is sufficiently large. 

We consider a different approach when the sample is small. Estimation from small 

samples generally relies on strict model assumptions. Robustness here is understood 

as insensitivity of an estimator to model misspecification or to appearance of outliers. 

The proposed approach is a slight modification of a classical linear mixed model 

application to small area estimation. The underlying distribution of the random error 

term is a scale mixture of two normal distributions. This setup can describe outliers in 

individual observations. It is also suitable for a more general situation where units 

from two distinct populations are put together for estimation. 
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The techniques are evaluated using simulation studies. The bootstrap is used to 

measure uncertainty of the estimator. A study involving real data from the CES 

sample is also presented.  

1.2 A brief overview of the Current Employment Statistics 

survey 

To facilitate the discussion, we describe briefly relevant details of the CES sample 

selection and estimation methods. While referring to CES throughout the discussion, 

we strive to produce a general method for robust estimation that can be adapted to 

other surveys.  

1.2.1 The CES sample design 

The CES sample is selected once a year from a frame based on the Quarterly Census 

of Employment and Wages (QCEW) data file. This is an administrative dataset 

containing records of employment and wages for nearly every U.S. establishment 

covered by the States’ unemployment insurance (UI) laws. (The QCEW file becomes 

available to BLS on a lagged basis and is important for the CES survey in many 

respects, see BLS Handbook of Methods, 2004, for more information about QCEW).  

Strata on the frame are defined by State, the industrial supersector based on the North 

American Industrial Classification System (NAICS) and on the total employment size 

of establishments within a UI account. A stratified simple random sample of UI 

accounts is selected using optimal allocation to minimize, for a given cost per State, a 

State level variance of the monthly employment change estimate. 
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1.2.2 CES estimator of relative employment growth 

Relative growth of employment from a previous to current month is estimated using a 

set of the establishments reporting positive employment in both adjacent months, the 

so called matched sample of establishments, denoted by tS . The weighted link 

relative (WLR) estimator is  

;

; 1

ˆ t

t

j j tj S
t

j j tj S

w y
R

w y








,         (1.2.1) 

where j denotes an establishment, t is a current month. 

The numerator of the ratio is the survey weighted sum of the current month reported 

employment; the denominator is the survey weighted sum of the previous month 

employment. See the BLS Handbook of Methods (2004, Chapter 2) for further details 

on the CES estimation procedures. 

1.2.3 Influential observations in CES 

A definition for an influential observation must be tied to the form of an estimator. In 

a given month, CES estimates relative employment growth, the ratio of the two 

survey weighted sums, as shown in (1.2.1). For this type of an estimator, a report 

having a relatively large survey weight or a large change in the size of its 

employment may become influential. Combination of a moderately large weight with 

a moderately large employment change may also produce an influential report.  

In Figure 1, we display examples of the weighted employment at month t plotted 

against the weighted employment at the previous month, t-1. Generally, in any given 

month, there is a handful of observations that stand apart from the rest of the sample. 
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One reason is the form of the distribution of the employment change: there is a large 

number of establishments that do not change employment; many establishments have 

very little change in their employment. However, there are always units having a 

substantial change in employment and at times they also have a large survey weight. 

The histogram of the establishments employment change has a spike around zero and 

long tails (see a typical histogram and a normal Q-Q plot in Figure 2). A sample is 

prone to outliers in the sense that there is a high probability that a handful of 

observations from the tails of the distribution are present in the sample. 

 

  

Figure 1: Two examples of the weighted current month versus previous month 
employment plots. The red line shows the survey weighted estimate of the relative 
change 
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a. b. 

Figure 2. a. Histogram of weighted over-the-month changes in employment overlayed 
by the density of the normal distribution. b. A normal Q-Q plot of weighted over-the-
month employment changes. 

 

Another source of outliers, as mentioned in the introduction, is the dynamic nature of 

a population of establishments, which often causes “misclassification” of 

establishments; e.g., changes in the industrial classification or an employment size 

class after the sample has been selected. These changes may cause problems in 

estimation, especially in smaller samples. 

Estimation of the National and State level employment is of central importance in 

CES. However, there is also a lot of interest in publication of estimates for many 

smaller domains defined at a finer industrial and geographical detail. At these levels, 

the sample is often scarce and a single influential observation, if left untreated, may 

ruin the resulting estimates. 
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1.3 Approaches to robust estimation in survey sampling 

 “Robustness is usually understood to mean that inferences made from a sample are 

insensitive to violations of the assumptions that have been made.” (Hansen, Madow, 

and Tepping, 1983). Before reviewing the methods of robust estimation, we survey 

the literature to gain understanding about what kind of assumptions are made in 

survey sampling, in particular, when a descriptive population quantity is of interest. 

1.3.1 Descriptive population quantities 

In a large-scale government survey, we are usually interested in estimating certain 

descriptive statistics of the finite population, such as smooth functions of population 

means or totals; for example, the relative change in employment can be viewed as the 

ratio of two means; various forms of price indexes provide a somewhat more complex 

set of examples. A descriptive statistic can be defined as a “known function of the 

finite population values.” (Pfeffermann 1993). Motivation for the form of such a 

function does not necessarily come from a stochastic model. For example, although 

the stochastic approach to defining index numbers has a long history (Clements et al. 

2006), definitions of price indexes in common use are often motivated using 

deterministic approaches coming from economic or axiomatic theories (see Diewert 

1981; Balk 1995). 

When analytic inference is required, Pfeffermann (1993) invokes the notion of 

“corresponding descriptive population quantity (CDPQ)” defined as a solution to a set 

of population estimating equations for an unknown parameter. Thus, descriptive 
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population quantities also play an important role in analytic inference about model 

parameters. 

In the present research, we are concerned only with the former situation, where a 

target is given in a pre-specified form and without reference to a particular model. 

Remark. Models are usually formulated for the finite population: i.e., the finite 

population measurements are assumed to be realizations from some ideal distribution, 

a “superpopulation”. Such models are formulated a priori, in the sense that the finite 

population is not observed directly and, therefore, modeling assumptions cannot be 

checked using finite population observations; thus, the resulting CDPQ also can be 

viewed as a pre-specified target that needs to be estimated from the observed sample. 

1.3.2 Models at different stages of survey sampling 

There is a long-standing discussion on approaches to inference from survey sampling. 

Inferences can be made with respect to an assumed model (the model-based or 

prediction approach) or with respect to the randomization distribution induced by the 

hypothetical repeated sampling from a finite population (the randomization or design-

based approach).  

Adherents of either approach agree that models are important in designing an optimal 

sampling procedure and in deriving an efficient estimator (see Hansen, Madow, and 

Tepping, 1983, and the discussion; Särndal, Swensson, and Wretman, 1992; Valliant, 

Dorfman, and Royall, 2000). Thus, even when a stochastic model is not required for 

the definition of a target, a working stochastic model is often formulated or at least 

used implicitly.  
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The word “working”, in the reference to a model, suggests that the model is expected 

to be only approximately correct: it is not indeed possible to know what the “true” 

model is when dealing with real-life data. Model assumptions may not hold and 

criteria are needed to assure robustness of inferences to model misspecifications. The 

notion of design consistency provides such criteria. Design consistency is an 

asymptotic property, which becomes important when the sample is sufficiently large. 

It assures that the estimator of a finite population parameter indeed targets the 

parameter rather than something else. An estimator is design consistent if, as the 

sample and population sizes become infinitely large (according to a certain well-

defined rule, see Isaki and Fuller 1982), the estimator approaches the target 

population quantity in probability under the randomization distribution. A good 

model estimator would be one from the class of design consistent estimators (see 

Hansen, Madow, and Tepping 1983; Little 1983; Pfeffermann 1993).  

1.3.3 The role of sampling weights in robust estimation, methods for 

dealing with extreme weights 

Naturally, with the design-based approach, where inferences are made with respect to 

the sample selection probabilities, the sampling weights, defined as the inverse values 

of the selection probabilities, play an essential role in estimation.  

From the model-based perspective, due to the complex design involving sampling 

with unequal probabilities, the distribution of sample values, in general, is different 

from the population distribution. This difference should be taken into account when 

constructing estimators; in other words, it is important for an estimation procedure to 
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be ignorable to the sample design (see Pfeffermann, 1993, and references therein). 

Violations of this principle may lead to considerable bias and meaningless results. 

Conditioning on available design information is one way to account for the sample 

design: examining graphs of model residuals versus the sampling weights is helpful in 

determining if ignorability of the design is achieved. Any pattern found on this graph 

would indicate that the design is nonignorable. More rigorous methods of testing for 

ignorability also exist (e.g., Sverchkov and Pfeffermann 2004). In practice, not all 

design variables may be available to an analyst, or their inclusion in the model may 

become cumbersome. Sampling weights are often used as surrogates of design 

information to protect against estimation bias. 

A survey-weighted estimator may be very inefficient when the survey design is not 

optimal for a given data item (for example, in a multi-purpose survey where design is 

tailored for different or multiple characteristics of interest) or due to the cost 

constraints associated with the sample collection. In other words, when the working 

model used in the sample design does not hold for estimation of a particular 

characteristic of interest, the design-variance of the survey weighted estimator may be 

high. 

Thus, even when an explicit model is not specified for the purpose of estimation, it is 

desirable for an estimator to be insensitive to possible non-optimality of the 

assumptions made at the sampling design stage. 

For optimal designs, variation in survey weights increases precision of the survey 

estimates. However, in cases when design is not optimal for a given data item or 

analysis, using widely dispersed weights may significantly inflate the variance. One 



 

 11 
 

way of trading off between the design-based bias and variance is to control extreme 

survey weights. Potter (1988) reviews some of the methods. Weight trimming 

procedures entail modifying the extreme weights by setting them equal to some lower 

value while the untrimmed weights are adjusted upward to compensate for the 

trimmed portion of the weights (Potter, 1988; Potter, 1990). The choice of the 

trimming point is often arbitrary. Distribution of the survey weights is usually 

controlled in multi-purpose surveys even before examining the actual effect on an 

estimator, so that the procedure is not data driven. This is usually justified by 

operational simplicity: for example, in a multi-purpose survey, it is sometimes 

convenient to keep one set of weights for many survey variables. A more efficient 

method would explicitly take into account the effect of the trimmed weights on a 

survey estimator and proceed to minimize the mean squared error of the estimator by 

trading off the reduced variance and possible bias resulting from altering the survey 

weights. One disadvantage of this approach is that the resulting cut-off level for the 

weight trimming may be different for different data items. 

A model-based approach to weight trimming was proposed by Elliott and Little 

(2000) in the context of estimating finite population means. First, a sample is divided 

into strata by distinct values of the weights. Models are considered for the survey 

variables within each stratum: a common mean is imposed on the strata having 

extreme weights and separate means are considered for each of the lower weight 

strata. Thus, the weight trimming is accomplished by pooling together the highest 

weights’ strata. The assumption for these pooled strata is that their data are 

exchangeable; if this assumption fails (for example, when the mean of the highest 
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weight stratum is considerably different from the other strata), then trimming the 

highest weights may result in a substantial bias.  

An alternative way to modify survey weights, proposed in the same paper (Elliott and 

Little, 2000), is by using the weight smoothing models. These models treat the strata 

means as random effects, and the resulting estimate is a compromise, in the form of a 

composite estimator, of the survey weighted and the unweighted means. 

The weight trimming procedures are aimed at reducing the variation in weights; 

however, they do not protect against effects of extreme sample observations that 

sometimes occur in surveys.  

1.3.4 Survey weights as random variables 

The variables used to design a survey determine the probabilities of inclusion in the 

sample. In most surveys, at the design stage, the design variables are known for all 

population units, so they can be regarded as non-random variables for a given fixed 

finite population. For example, in stratified simple random sampling, strata 

information is available for all population units, and sample inclusion probabilities 

are determined by a known number of the population and sample units in each 

stratum. In such a case, after conditioning on the design variables, the survey weights 

can be viewed as nonrandom.  

At the estimation and analysis stage, it is often the case that the survey design 

variables are not available for all population units and the inclusion probabilities are 

often only available for the sampled part of the population. In this case, the design 
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variables can be viewed as random quantities and so are the inclusion probabilities 

and the survey weights. 

There are reasons to view weights as random quantities even in a simple case like the 

stratified simple random sampling where the design variables (i.e., strata indicators) 

are known for all population units and can be regarded as fixed quantities. New 

information often becomes available after the sample is collected and this information 

can be more efficiently taken into account if weights are viewed as random variables.  

In addition, in the presence of nonresponse, it is not possible to know with certainty 

the factors that determine the probability of response. 

We use the CES survey to further motivate the discussion. 

First, as noted earlier, the population of businesses is very dynamic. The snapshot of a 

population at the time of sample selection is only suggestive of the status of the 

population at the time of estimation. The variables involved in the CES survey design 

change: establishments constantly grow or contract and sometimes they also change 

their industrial classification or geographical location. In particular, the number of 

population units is not fixed, it continuously changes over time: thus, it is not possible 

to know the number of units in individual strata, and even the total number of the 

current population units is not available. 

Second, extreme survey weights may cause observations to become highly influential 

and have a detrimental effect on the estimate, thus prompting the search for a 

procedure that would reduce the weights of such units.  
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The above two points are related. The weight depends on a unit’s size class at the 

time of sample selection. However, the unit may belong to a different size class at the 

time of estimation or the content of the original size stratum may change. 

A procedure of weight reduction or “smoothing” can be properly justified by 

regarding the weights as random rather than fixed non-random quantities. Therefore, 

we assume a general model-based framework that views both the study variables and 

their survey weights as random quantities. Such approach to inferences from survey 

sampling was introduced by Pfeffermann and Sverchkov (PS or SP, hereafter) in a 

series of papers (PS 1999, 2003, 2007, 2009; SP 2004). This is a model-based 

approach in the sense that the finite population values are viewed as random variables 

from a superpopulation distribution. The weights are incorporated into the estimation 

to account for informativeness of the design. 

1.3.5 Treatment of extreme observations in surveys 

There is a difference in what is usually called an outlying observation in survey 

sampling from that in other fields of statistics where the inference is made with 

respect to an assumed model. In general regression analysis, outliers may occur in 

values of the analysis variable (i.e., y-values). An outlying value may be interpreted 

as a gross error in measurement or as a valid observation that comes from a somewhat 

different parametric distribution than the bulk of the sample. Outliers are also 

possible in the values of the explanatory variables (i.e., x-values). This sort of 

outlying observations is usually called influential points rather than outliers. The 

name originates from regression analysis where inference is made conditional on the 
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values of the explanatory variables; in experimental design, for example, the values of 

the design variables are not random and the outlying x-values are not necessarily 

“bad” points but are deliberately chosen by a scientist to reduce the variance of 

estimates of the model parameters. (Similarly, the sampling weights can be treated as 

a sort of “design variables”.) 

Strictly speaking, following this logic, from the design-based perspective, the notion 

of outlying values in survey estimation is meaningless (unless it is a reporting error) 

because the measurements under the design-based approach are viewed as non-

random quantities. The suitable alternative is to call the unusual observations 

influential points. Nevertheless, the word “outlier” is routinely used in surveys even 

when inferences are based on the randomization distribution. 

In their discussion on foundations of survey sampling, Hansen, Madow, and Tepping 

(1983) suggested that an outlier, from the design-based perspective, should be either 

removed from the sample (presumably, for a reporting error) or that its weight must 

be reduced. However, as noted in the paper, with such intervention “sampling error is 

not readily interpreted.” Indeed, basing solely on the design-based theory, there is no 

justification for either of these actions. A rationalization of such adjustments would 

involve certain modifications to prior assumptions, thus, making these assumptions 

explicit. This means that the purely design-based approach, that considers population 

values to be fixed quantities, is unsuitable for inferences from a procedure involving 

treatment of extreme observations. 

The model-based oriented authors, on the other hand, recognize the importance of 

outliers for finite population inferences. Chambers (1986) distinguishes between 
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representative and nonrepresentative outliers. Nonrepresentative outliers may be 

caused by an error in measurements or they may be genuine values that are not 

representative of other units in the population. Representative outliers are true reports 

that may be similar to other population units not present in the sample. There is an 

overtone in this definition hinting on imperfections of the sampling design that have 

lead to the observed sample. Indeed, one proposed scenario to deal with this problem 

is to assume that the outlying observations come from a separate stratum with a 

higher variance than the rest of the sample (see also Box and Tiao 1968, Huber 1981).  

We can read it as the call for weight adjustment. 

We now stop this philosophical-linguistic digression and briefly review some 

methods for dealing with extreme sample values in surveys.  

Lee (1995) describes two general reasons that an observation may be called outlier in 

survey sampling: it may have an extreme reported value, as compared to the bulk of 

the sample, or it may have a large sampling weight even though its reported value 

may not be extreme. In either event, an observation may not automatically be 

influential for a given survey estimator. First of all, the influence varies depending on 

the form of the estimator; second, it is the combined effect of an observation value 

and its survey weight that determines the influence of a given observation. 

It is well known that the survey weighted estimator is design-unbiased (e.g., the 

Horvitz-Thompson estimator of the population mean) or nearly design-unbiased (e.g., 

the ratio estimator). However, its design-variance may be inflated because of a few 

influential observations. Downweighting the extreme points may introduce some bias, 

but it is usually aimed to reduce the design-variance, such that this “variance-bias 
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trade-off” strategy aims to reduce the mean squared error (MSE) of the estimator (see 

also discussion in Lee 1995).  

Winsorization is a technique often used to reduce the effect of extreme units. In this 

approach, the values of observations on the tail of the distribution are reduced to a 

point between their original value and some predefined cutoff level. Kokic and Bell 

(1994) applied this approach in the stratified sampling design to reduce the influence 

of the outlying observations on the expansion estimator of the population total. They 

developed a method of choosing a set of cutoff values for each stratum which is 

optimal with respect to the design MSE of the resulting estimator.  

Chambers (1986) considered estimation of the finite population total using the best 

linear unbiased estimator (BLUE) under the linear regression model. The approach 

does not use survey weights; instead, the model uses the auxiliary information 

associated with the population elements, including the survey design information, 

such as, for example, their measure of size. Robust estimation methods (see Huber 

1981) developed for samples from an infinite population can be adapted to estimation 

of the finite population parameters. However, in contrast with the classic infinite 

population theory, when dealing with the finite population prediction, one has to 

account for the possibility that the finite population itself contains outliers with 

respect to the model under consideration. This is an important distinction of the finite 

population estimation: “effectively, in a finite population problem, we need to predict 

extreme as well as typical observations” (Welsh and Ronchetti 1998). 

Since the outlying units encountered in the sample may be similar to some of the 

extreme non-sampled units, it is more sensible to give an outlying sample observation 
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a smaller weight rather than simply discard it. To accomplish this, Chambers (1986) 

proposed a decomposition of non-sampled prediction into two parts. The first term 

corresponds to an estimate from the model assuming it holds; the model parameters 

are estimated using some robust method under the assumed model. The second term 

is an estimate of the difference between the true total of the non-sampled part and its 

expectation under the model. The degree of constraint put on the outlying 

observations depends on the choice of the estimator for this difference. Chambers 

(1986) considered possible strategies in choosing the estimator. 

1.4 Estimation under informative sampling (Pfeffermann and 

Sverchkov approach) 

 In this Section, we briefly review the details relevant to the application of the 

approach developed by Pfeffermann and Sverchkov to prediction of the finite 

population means. 

The finite population values  , , , 1,...,j j jy j Nx z  are realizations of vectors of 

random variables having the probability density function (pdf)  , ,U j j jf y x z , where 

jy  is a study variable, jx  is a vector of auxiliary variables, and jz  is a vector of 

design variables; the subscript U signifies the superpopulation distribution. The 

sample values of the study variable jy  have conditional pdf 

   | | ,S j j U j jf y f y j S x x , where S denotes the set of the sample units. This 

conditional (on the inclusion into sample) pdf may differ from the population pdf 
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 |U j jf y x . The relationship between the two pdf’s can be obtained using Bayes 

formula: 

     
 

Pr 1| , |
|

Pr 1 |

j j j U j j
S j j

j j

I y f y
f y

I






x x
x

x
,     (1.4.1) 

where 1jI   if j S  and 0jI   if j S . 

Let us examine the relationship (1.4.1). Under a model over the population units, the 

goal is to predict the parameters of interest of the distribution  |U j jf y x  given the 

available data. One could estimate the parameters using the sample data as if the same 

model were true for the units in the sample. However, unless the probabilities 

 Pr 1| ,j j jI y x  and  Pr 1|j jI  x  are the same for all jy ’s, the two distributions, 

 |S j jf y x  and  |U j jf y x , are different. The factor    
 

Pr 1| ,
,

Pr 1|

j j j
j j

j j

I y
g y

I






x
x

x
 

provides a mapping between the sample and population pdf’s. 

Remark. Note that the vector of design variables jz  is not used in the formula  

(1.4.1). The design variables, in general, are not intended to be used for inference. 

They are used at the design stage but, for various reasons, may not be available to the 

analyst at the estimation stage. For example, they may be masked due to 

confidentiality constraints. See also the relevant discussion in PS (2009). Note, 

however, that the auxiliary variables jx  may account for some or all of the design 

information. If the design variables were known for all units in the population, then 

conditioning on  , 1,...,U jZ j N z  would fully determine the values of probabilities 
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in (1.4.1),      Pr 1| , , Pr 1| , Pr 1|j j j U j j U j U jI y Z I Z I Z      x x , where j ’s 

are the sample inclusion probabilities. In such a case, the design process is ignorable 

for estimation: 

   | , | ,S j j U U j j Uf y Z f y Zx x . 

Whether the design information is known or not, it is convenient to use a general 

approach and regard the inclusion probabilities j ’s as random under a 

superpopulation model, with pdf  U jf  .  

PS (1999) showed that the marginal probabilities are equal to the respective 

conditional expectations,    Pr 1| , | ,j j j U j j jI y E y x x  and 

   Pr 1| |j j U j jI E  x x . The formula (1.4.1) becomes 

     
 

| , |
|

|

U j j j U j j
S j j

U j j

E y f y
f y

E






x x
x

x
      (1.4.2) 

The formula 

   
 

|
|

|

S j j j
U j j

S j j

E w y
E y

E w


x
x

x
,       (1.4.3) 

where 1j jw  , relates the expectations over the population and sample 

distributions (PS 1999). 

Remark. It is important to emphasize that this is a model-based approach; in 

particular, the sample distribution is not the distribution over all possible samples as 

in the randomization approach in surveys. The sample distribution is obtained from 
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the superpopulation distribution by conditioning on the event of inclusion into the 

sample. The sample measurements as well as the inclusion probabilities (and the 

survey weights) are considered random variables and can be described using a model. 

See discussion on this point in PS (2009). 

1.4.1 Prediction of the nonsampled values based on the sample-

complement distribution 

The prediction approach in survey sampling uses a model that holds for the sample 

units to predict the study variables for units outside the sample. If the sampling is 

informative, however, the distribution in the non-sampled part of the population 

(sample-complement) has pdf    | | ,C j j U j jf y f y j S x x  that is, in general, 

different from the distribution in the sample (the subscript C  signifies that 

distribution is over the sample-complement).  

This difference must be accounted for. The following formula relates expectations 

over the sample and sample-complement parts of the population: 

   
 

1 |
|

1|

S j j j
C j j

S j j

E w y
E y

E w

  


x
x

x
      (1.4.4) 

(SP 2004).  

Suppose the target quantity is a finite population mean 1

1

N

j
j

Y N y


  . SP (2004) 

showed that the expectation  |U SE Y D  of Y  over the population pdf given the data 
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    , ,  and , ,S i i j jD y w i S I j U  x ,  is the optimal predictor (minimizing the mean 

squared error with respect to the population pdf given the data) and 

     1 1
| 1 | ,  where U S j C j j

j S j S

n
E Y D f y f E y f

n N n N 
   

  x   (1.4.5) 

 where 
n

f
N

 , (follows from SP 2004, eq. 3.2) 

Using the identity (1.4.4),  

   
 
 

1 |1 1
| 1

1|

S j j j
U S j

j S j S S j j

E w y
E Y D f y f

n N n E w 

    
 

 
x

x
  (1.4.6) 

Equation (1.4.6) suggests that the finite population mean can be predicted using a 

model over the sample units.  

Example 1 In the absence of auxiliary information jx  for the non-sampled units, 

(1.4.6) can be estimated from the sample using the sample mean as an estimate of the 

expectation SE : 

 
 

 
1

1

1
1ˆ 1

1

n

j j
j

j n
j S

j
j

w y

Y f y f
n

w









  







      (1.4.7) 

(see SP 2004, eq. 5.2)   
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Example 2 Consider stratified simple random sampling and suppose vector jx  

consists of the design information for all population units, that is, j jhx , where 

1,..., , 1,...,jh H j N  .  The sample weights are , 1,...,h
hj

h

N
w h H

n
   

In this special case, the formula (1.4.6) becomes 

   
 

 1

1 |1
|

1|

H S hj hj j
U S h h h h

h S hj j

E w y h h
E Y D n y N n

N E w h h

       
  
 

  

   
1

1
|

H

h h h h S hj j
h

n y N n E y h h
N 

      ,   (1.4.8) 

where 1

1

hn

h h hj
j

y n y


  . We used the fact that 

     1 | 1 |S hj hj j hj S hj jE w y h h w E y h h        and  1| 1S hj j hjE w h h w    . 

We can estimate expectation  |S hj jE y h h  by the sample average in stratum h. 

Then, the estimate of (1.4.8) is 

 
1 1 1

1 1ˆ hnH H
h

h h h h h j
hh h j

N
Y n y N n y y

N N n  
        , 

which is the standard estimator of the population mean for a stratified simple random 

sampling design. 

Example 3 (Example 2 continued) We can approach the estimation of (1.4.8) by 

using a model assumption to obtain the estimate of  |S hj jE y h h . Since the 
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sampling is noninformative inside strata, the same model holds for the population and 

sample data. For example, we can assume a two-level model: 

 
 

2

2

| ~ ,

~ , ,

ind

hj h h

h

y N

N

  

  
        (1.4.9) 

1,..., .h H  

This model leads to the following estimate: 

  1

1

ˆ ˆ
H

h h h h h
h

Y N n y N n 



   ,               (1.4.10) 

where 

 ˆ 1h h h h hy y      ;
1

2

2 1 2 2 1 2 2 1 2

1 1
,h h h

h hh h h

y y
n n n


     



  

      
                

   

Note that (1.4.10) is the same estimate as the one used in Ghosh and Meeden (1986) 

or Elliott and Little (2000) (see the exchangeable random effects model, other models 

are also possible). Ghosh and Lahiri (1987) obtained the same formula without the 

normality assumption. 

Discussion: The survey design may not be efficient for a variable of interest for 

several reasons (e.g., cost constraints, multipurpose survey designed to meet several 

goals, or simply because at the design stage the actual values of the study variables,

hjy ’s , are not observed). At the estimation stage, after hjy ’s have been observed, it 

may be desirable to adjust the inclusion probabilities (and survey weights) for a more 

efficient estimation. 
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With this in mind, result (1.4.10) can be re-written as 

1

1

ˆ ˆ .
hn

h hj
h i

Y N w y



           (1.4.11) 

The weights in (1.4.11) have a composite form  ˆ 1h h h hw w w     , where 

1

2 1 2 2 1 2

1 1
h

h hh h

w w
n n   



 

      
              
  . They depend on the distribution of hjy

’s through the parameters 2  and 2 . Thus, the original weights are modified based 

on the observed values of the study variable hjy . One must be careful in making the 

modeling assumptions, however, as they may lead to biased estimates. For example, 

if variances are different across strata, the estimator based on model (1.4.9) that 

assumes equal variances may be badly biased. 

The following strategy is often used by survey practitioners: obtain two versions of 

estimates, with and without weights. If the results are close, it is usually suggested to 

use the unweighted version because it is less variable. This method is somewhat ad 

hoc and it does not lend itself to an intermediate solution. Treating the survey weights 

as random variables allows for a more systematic way to test if weights are required, 

to adjust weights by regressing them on the auxiliary information (PS 1999), and, in 

general, to use modeling of the weights for a more efficient estimation. 
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1.5 The influence function approach 

The approach to robust estimation proposed in this paper is based on the influence 

function and the first order von Mises expansion. This subsection contains some 

exposition of the related theory. We include several simple examples of the influence 

function and discuss the ways it can be used in surveys. 

Hampel (1968, 1974) introduced the notion of the influence function in infinite 

population settings. It measures the effect that small changes in the underlying 

distribution have on the estimator. Important properties related to robustness of an 

estimator can be derived from the influence function and a robust estimator can be 

constructed by imposing constraints on the behavior of the influence function. 

As noted earlier, the definition of what observation is to be considered influential 

depends on the form of the estimator. For example, an observation may be considered 

influential when the estimator is the ratio of two means and not influential when the 

estimator is a simple mean. The advantage of the influence function approach is also 

in that it provides a way to assess the effect of an observation taking into account the 

specific form of the estimator. 

1.5.1 The Gâteaux derivative and the first order von Mises expansion 

Let Y denote a random variable having the probability distribution function F. 

Consider a real-valued functional  T F  defined on the space F  of probability 

distribution functions. Let H be another probability distribution function defined on 

F . 
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The Gâteaux derivative of  T  at F in the direction of H  is defined as  

      
0

1
lim .F

T F H T F
L H F



 


  
      (1.5.1) 

Assume that FL  exists and can be represented as  

  ,F FL H F dF           
(1.5.2) 

for some real function F , and let 0FdF  . 

Denote by 
jy  a probability measure that gives mass 1 to a given point jy . If we 

choose 
jyH   in (1.5.1) then, using representation (1.5.2), we find that the derivative 

would be  F jy . The influence function is defined as a derivative of T at F in the 

direction of 
jy  as 

 
    

0

1
, , lim .

jy

j

T F T F
IF y F T



 



  
     (1.5.3) 

It measures the sensitivity of T to inclusion of an observation with the value jy  in a 

very large sample. Accordingly, it may be more suitably denoted by  ,F T jIF y . 

See Huber (1981), pp. 37-38.  

Let a vector of measurements  1,..., Ny yy  be a set of N independent realizations 

(possibly vector-valued) from the probability distribution F . Suppose a finite 

population quantity can be viewed as a real-valued functional  NT F , where NF  is 

the empirical distribution function (edf) corresponding to y ; the value of the 
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functional T at F , i.e.,  T F , is the ideal infinite population  (i.e., superpopulation) 

parameter. 

The first order Taylor expansion of  NT F  in the neighborhood of F, using Gâteaux 

derivatives (this particular form of the Taylor expansion is called the von Mises 

expansion), is 

     1

1

, , .
N

N j N
j

T F T F N IF y F T R



        (1.5.4) 

Under suitable regularity conditions, the remainder term NR  in the above expansion 

is expected to be negligible (see discussion in Hampel et al. 1986, page 85). An 

outline of the proof that the order of the remainder term is  1
pO N   can be found in 

Cox and Hinkley (1974). While it seems possible to make the statement rigorous for 

certain statistical functionals using results presented in Serfling (1976; Problem 3, 

page 241, Lemma 6.3.2B,  page 223),  we did not attempt to do so in this dissertation. 

1.5.2 Examples of influence functions 

We now present examples of derivation of the influence function in cases of the linear 

functional, smooth functions of linear functionals, and for the quantiles of the 

probability distributions. 

Example 1. The influence function of the linear functional. 

Let T be a linear functional. The derivative of the continuous linear functional is the 

functional itself. Indeed, 
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      
1

.
T F H T F

T H F
 


  

   

For example, the derivative of    T F ydF y     is 

       T H F ydH y y dH y        , and the influence function is 

 , ,IF y F T y   . 

If    NH y F y , then the derivative is    
1

1 N

N j
j

T F F y
N




    , and the 

influence function is  , ,j jIF y F T y    (see also Hampel 1974). 

Example 2 A smooth function of linear functionals. 

For a smooth function of linear estimators, the influence function can be obtained as 

the usual derivative of the composite function. Let us, for example, derive the 

influence function for the ratio of two means. 

Let the finite population values  11 1,..., Ny y  and  21 2,..., Ny y  be realizations of 

random variables with cdf’s 1F  and 2F , respectively; let 1  and 2  be their 

respective first moments. Consider estimation of 1

2

R



 . It can be viewed as the 

ratio of two linear functionals, i.e., as the composite functional 

      
 

1
1 2

2

,
T F

G T F T F
T F

 , where  1 1T F   and  2 2T F  . 

We write, 

    1
1 2 2

1 2 1 2 2 2

1
' ' ' ,  where ,

G G G G
R T F T F


     
   

    
   

. 
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For empirical distribution functions, as in Example 1, we have  

       1 1 1 2 2 2
1 1

1 1
'  and '

N N

j j
j j

T F y T F y
N N

 
 

      

Therefore, 

   1 1
1 1 2 2 1 22

1 1 12 2 2 2

1 1 1 1 1
'

N N N

j j j j
j j j

R y y y y
N N N

  
     

 
      

 
    

and the influence function is 1
1 2

2 2

1
j jy y


 

 
 

 
. 

Example 3 The influence function for quantiles.  

By definition, let       1 inf :q T F F y F y       be the quantile at level  , 

for some cdf F. Assume the positive density 'f F  exists in a neighborhood of q . 

Let  1F F H     be a perturbed cdf.  

           

   
inf : inf : 1

inf :
1

T F y F y y F y H y

H y
y F y

     

 


     

 
   

 

Therefore,   1

1

H
T F F

 


     
 

Let us find the derivative: 

    
  

 
 

1
1

1
00

1

H FT F H qH
F

f qf F

 



   
   







            
 

Let 
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 
1,

0,

y q
H q

y q






  

  .  

Thus, the influence function is 

 
 

 

1
,

, ,

,

y q
f q

IF y F T

y q
f q











 
 
 


 

For the median ( 0.5  ),  
 

 

0.5
0.5

0.5
0.5

1 1
,

2
, ,

1 1
,

2

y q
f q

IF y F T

y q
f q

 
 
 


 

 (see also Huber 2004, pp.56-57). 

The influence function for the median is bounded (as long as   0f q  ), thus the 

median is a robust estimator of the location parameter. Note the distinction between 

estimation of the finite population median (and the population quantiles, in general) 

and using the median as an estimator of the location parameter under a model. In 

surveys with unequal weighting, the estimator of the finite population median 

depends on the distribution of the weights. The survey weighted estimate of the 

influence function would involve weights of the observations with values 0.5y q , 

thus, the estimator is not robust to appearance of extreme weights. 
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1.5.3 Applications of the influence function approach in surveys  

Finite sample versions of the influence function exist. One way to obtain the sample 

version of the influence function is by replacing F  in (1.5.3) with 1nF   and   with 

1 n . This version is called the sensitivity curve (Tukey 1970).  

Hulliger (1995) defined the sensitivity curve for a sample drawn with unequal 

inclusion probabilities. He considers a class of M-estimators to robustify the Horvitz-

Thompson (HT) estimator of the finite population mean. To this end, he describes a 

superpopulation linear model that is implicit for the HT estimator. This model 

involves an auxiliary variable jx  that represents a size measure used to define the 

inclusion probabilities j . The HT estimator is viewed as a functional of the sample 

empirical distribution function (edf). The sample edf is itself an estimate that employs 

the sampling weights; hence, the sensitivity curve includes the sampling weights (that 

are non-random). The influence of an observation on the HT estimator depends on the 

residual j jy x . Properties of the HT estimator and its robustified version may be 

studied using the sensitivity curve. The sensitivity curve is also used to derive the 

approximate variance of the estimator. 

The approach considered by Hulliger (1995) is not a prediction approach but is 

intended to “establish the link to classical robust statistics” in order to robustify the 

HT estimator. In the current paper, instead of establishing the “link”, we strive to 

produce a model-based approach to robust estimation.  
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Zaslavsky, Schenker and Belin (2001) (ZSB, hereafter) used the influence function 

approach in a cluster sample for the 1990 Post Enumeration Survey (PES). They 

define the influence function for the finite population and use the empirical influence 

function for the sample units. The population is defined as a set of vectors 

  , , 1,...,j jy w j N  having distribution G  that assigns mass 1j jw   to each unit 

j  in the finite population. The influence function of a unit  ,j jy w  on a functional 

Q  on G  is defined by analogy to (1.5.3) as 

   
      

,

0

1
, , , lim .

j jy w

j j

Q G Q G
IF y w G Q



 



  
  

The corresponding sample version of the influence function is obtained by replacing 

  with 1 n  and G  with nG  , where nG  assigns mass 1 n  to each  ,j jy w  in the 

sample.  

Consider a finite population quantity  NT F , where the distribution NF
 
puts mass 

1 N  on the finite population values , 1,...,jy j N . Let nF  be the weighted empirical 

cumulative distribution function that assigns mass j j
j S

w w

  to a sampled value 

,jy j S . The goal is to define the influence of a unit j on the survey weighted 

estimator  nT F
 
of the target  NT F . ZSB note that NF  maps to

 nF  by the same 

mapping as G  maps to nG . Therefore, the influence of a sample unit j  on an 
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estimator  nT F  of  NT F
 
is the same as the influence of the unit on an estimator 

 nQ G  for  Q G . 

The form of the empirical influence function considered by ZSB is similar to the form 

of the estimated influence function proposed in the current paper. However, our 

justification of the method is different. Our approach differs from Hulliger (1995) or 

Zaslavsky et al. (2001) in that we do not use a finite version of the influence function 

(such as the sensitivity curve): we view the finite population quantity of interest as a 

functional of the finite population edf, derive the influence function with reference to 

the ideal superpopulation (infinite) distribution function and then estimate it using a 

sample. 

As suggested by Hampel (1968, 1974), there is a close tie between the influence 

function and M-estimators and “this opens many possibilities of defining new 

estimators with prescribed properties.” ZSB fit a long-tailed distribution to the 

influence statistics, thus determining the adjustment factors to reduce the effect of the 

influential clusters. They derive a robust estimator directly from the analysis of the 

influence function by employing the t-distribution and M-estimation (Huber 1981).  

The use of the multilevel or hierarchical Bayes modeling, e.g., utilizing mixture 

models, may be a good way to approach the estimation. Hampel et al. (1986) define 

the robust estimation approach as lying between two extremes, the fully parametric 

and the non-parametric approaches to estimation. Although a model should be 

explicitly stated in a mixture model approach, the flexibility of the mixture modeling 

places it “between the extremes.” 
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In their modeling, ZSB deal with the combined effect of the survey weights and 

unusual data values. This is important in samples with differential weights because it 

is often a combination of moderately high weight and outlying data that creates an 

influential point. We explore the same idea of combining the survey weights and the 

sample measurements and use the product as a one-dimensional random variable. It is 

also possible, within the same general framework, to approach the problem by 

analyzing the two-dimensional variable that includes data value and weight as the two 

components of the random vector. This approach is not pursued in this dissertation. 

1.6 Robust small area estimation 

Complex surveys are usually designed to collect enough sample units from a 

population of interest and make estimates of population quantities based on this 

sample with a satisfactory precision; however, at a progressively finer level of detail, 

where the sample is sparse, direct sample based estimates are not reliable anymore. 

The problem of estimation at such detailed levels is known as the small area 

estimation (SAE) problem. 

Small area estimation generally relies on some, implicit or explicit, modeling 

assumptions. Robustness here is often understood as insensitivity of the estimator to 

model misspecification. For example, Ghosh and Lahiri (1987) obtained the linear 

Bayes estimator of a small area mean using the so called posterior linearity 

assumption under which the posterior mean is a linear function of the observation.  

The resulting linear empirical Bayes estimator of the small area mean is, however, 

identical to the normality-based empirical Bayes estimator demonstrating its 
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robustness within the class of Bayesian models covered by the posterior linearity 

assumption.   

It may happen that a model explains well the bulk of the data, yet a few observations 

do not fit into the model. Such observations may adversely affect estimation of the 

model parameters. This calls for development of methods of estimation that are 

robust to the appearance of outliers, and several outlier resistant methods have been 

proposed in the SAE literature in recent years. Heavy tailed distributions, such as 

Cauchy or t-distributions, offer some protection against outliers. In area-level 

settings, Datta and Lahiri (1995) considered a general case of the scale mixture of 

normal distributions and studied the behavior of the Bayes estimator asymptotically, 

when a single outlier is extremely large. They showed that the Bayes estimator for an 

outlying area approaches the direct estimator for that area while retaining shrinkage 

for the non-outlying areas. Robust area-level models involving the t-distribution were 

also considered by Xie et al. (2005), Huang and Bell (2006).  Ghosh et al. (2008) 

introduced a robust approach using the influence function in the context of area-level 

models. 

We consider an outlier robust approach to estimation in unit-level models. In a 

simulation study in Chapter 3, we compare the proposed model with approaches of 

Fellner (1986), Chambers and Tzavidis (2006), and Sinha and Rao (2008). We now 

review in some detail these methods of robust small area estimation. 

Under the prediction approach to surveys, an estimator of mY , the small area m mean, 

is given by 
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    ˆ ˆ(1 ) ,m m m m mrY f y f Y      (1.6.1) 

where 1,...,m M ; 1

1

mn

m m mj
j

y n y


   is the sample mean, index mj  denotes observation 

j from area m, 1 ,m m mf N n mN  and mn  are the number of area m population and 

sample units, 
1

;
M

m
m

N N



1

;
M

m
m

n n


 ˆ
mrY  is a model-dependent predictor of the mean 

of the non-sampled part of area m.   

In particular, the predictor ˆ
mrY  can be obtained based on linear mixed model 

assumptions. The linear mixed model for the vector of observations y  is given by 

    ,  y Xβ Zu e     (1.6.2) 

where  1,..., ,
T

My y y   1,..., m

T

m m mny yy ; 1,...,m M ; 
1

M

m
m

n n


 ;  1,...,
T

p β  

is a vector of parameters;  1,...,
T

Mu uu  is a vector of random effects;  

 ~ 0, ;Nu D   ~ 0,Ne R ; u  and e  are assumed to be mutually independent; X  is 

an n p  matrix of known auxiliary variables; Z  is an n M  known design matrix 

for the random effects; T Σ R ZDZ  is the variance-covariance matrix of y . It is 

assumed that the variance-covariance matrix is parameterized by some vector of 

variance components  1,...,
T

L θ ,  Σ Σ θ . 

An important special case of the linear mixed model is the nested-error regression 

(NER) model considered by Battese, Harter, and Fuller (1988). In the case of NER,  

2
nR I  and 2

MD I . The model can be written as follows: 
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,T
mj mj m mjy u   x β         (1.6.3) 

2~ (0, )
iid

mu N   and 2~ (0, ),
iid

mj N 
 

      (1.6.4) 

1,..., , 1,..., ,mj n m M   

where mjx
 
is a vector of auxiliary variables for an observation  mj , β  is the 

corresponding vector of parameters. The distribution of the random effects mu  

describes deviations of the area means from values T
mjx β ; mj  are errors in individual 

observations.  

Assume that sampling is non-informative for the distribution of measurements y , 

given the auxiliary information X . The best linear unbiased predictor (BLUP) of mrY  

under the linear mixed model has the form  

    
ˆ ˆ ˆ ,T
mr mr mY u x β     (1.6.5) 

where 1

1

( )
m

m

N
T T
mr m m mj

j n

N n 

 

  x x ;   11 1ˆ T T β X Σ X X Σ y  is the best linear unbiased 

estimator (BLUE) of β ; the best linear unbiased predictor (BLUP) û  of u  is given 

by  1 ˆˆ T  u DZ Σ y Xβ . In the case of NER, BLUP of mu  is spelled out as 

    
2

2 2
ˆˆ ( ).T

m m m
m

u y
n


 

 


x β
  

 (1.6.6) 

When the variance Σ  is unknown, it is estimated from the data producing the 

empirical best linear unbiased predictor (EBLUP) for mrY . 
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There may be some areas that do not fit the assumption on the random effects mu . 

We will call such areas outlying areas. There may also be individual observations that 

are not well described by the model assumption on the error terms mj . Such 

observations will be called individual outliers. The influence of outliers on estimation 

of the model parameters can be reduced by using bounded influence functions for the 

corresponding residual terms when fitting the model estimating equations. This 

approach was taken by Fellner (1986); a modification of Fellner’s approach, also 

involving the bounded influence functions, was proposed by Sinha and Rao (2008).  

Fellner (1986) proposed to solve simultaneously the following set of estimating 

equations: 

  1 2 1 2T     X R Ψ R y Xβ Zu 0       (1.6.7) 

    1 2 1 2 1 2 1 2 ,T       Z R Ψ R y Xβ Zu D Ψ D u 0    (1.6.8) 

where       1 ,..., ,
T

b b Mu u Ψ u  b mu  is a bounded function; for example, it 

can be Huber’s function     min ,max ,b m mu b b u   , where b  is a tuning 

parameter, with a usual choice of 1.345b  . The equations are solved iteratively. 

Consider, for simplicity, the case of the nested-error regression model, where the 

variance components are  2 2,
T

 θ . The variance components are estimated at 

each iteration step k+1 as 

                2 1 2 1 1ˆ ˆ ˆ ˆ ˆ ˆk k k k k k kT h M v      Ψ u Ψ u    (1.6.9) 
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                 2 1 2 1 1ˆ ˆˆ ˆ ˆ ˆ ,k k k k k k kT h N p M v        Ψ e Ψ e   (1.6.10) 

where      ˆˆ ˆk k k  e y Xβ Zu ,  
  

 2
,

ˆ

k

k

k

tr
v




T
 kT  is formed by M last rows and 

columns of the matrix   1T 
C C , where 

1 2 1 2

1 2

 



 
  
 

R X R Z
C

0 D
; the constant h  is

 2
bh E u    , where  ~ 0,1u N . It depends on the tuning parameter b and is 

      2 2
3 1

2 2 21h b F b b F b
 

   .  

Sinha and Rao (2008) propose to start from obtaining the estimates of the variance 

components from a marginal model. For this, the following estimating equations are 

to be solved: 

 1 1 2T  X Σ U Ψ r 0         (1.6.11) 

   1 2 1 1 1 2 1 ,T

l l

tr
 

    
    

Σ Σ
Ψ r U Σ Σ U Ψ r Σ K 0    (1.6.12) 

where  1 2 , r U y Xβ  diagU Σ ,  Ψ r  is defined similar to the bounded 

function of Fellner’s approach, and nhK I  with h as in Fellner’s approach. The 

equations (1.6.11) and (1.6.12) are solved using the Newton-Raphson algorithm. 

After the robust estimates of parameters are obtained, they are plugged into the 

equation (1.6.8) to obtain the robust prediction of the random effects using the 

Newton-Raphson algorithm.  
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The predictor for mrY  based on such a robustified fitting of the linear mixed model 

(using either Fellner’s or Sinha and Rao’s algorithm) is called the Robust Empirical 

Best Linear Unbiased Predictor (REBLUP): 

   ˆ ˆ ˆ .REBLUP T REBLUP REBLUP
mr mr mY u x β    (1.6.13) 

An alternative to the mixed model approach to robust SAE is based on M-quantile 

regression, which is a generalization of the quantile regression technique. This 

approach was proposed by Chambers and Tzavidis (2006). 

In M-quantile regression, a separate set of linear regression parameters is considered 

for quantiles q  of the conditional distribution of y  given X . The M-estimator of 

the vector qβ  
of the q th quantile regression coefficients is a solution to estimating 

equations of the form 

    ,
1 1

( ) 0,
mM n

q mj q mj
m j

r
 

 x
   

 (1.6.14) 

where ,
T

mj q mj mj qr y  x β  are residuals, 

1
, , , ,( 2 () ){ ( 0) (1 ) ( 0)}q mj q q mj q mj q mj qsr r qI r q I r       ,   is a bounded influence 

function, qs  is a robust estimate of scale. For example, 

  0.6745.q jq jqr rs med med 
 
Denote the quantile of an observation  mj  by mjq . 

The second step consists of finding the average quantile of the observations in each 

area m as 1

1

mn

m m mj
j

q n q


  . The estimate of each area’s slope mβ is determined by the 
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value of the area’s average quantile mq , ˆ ˆ
m

MQ
m q qβ β . The M-quantile estimator of 

mrY  is given by 

    ˆ ˆ .MQ T MQ
mr mr mY  x β

   
 (1.6.15) 

Outliers may suggest a real finite population structure that is not described by the 

assumed base model. Such representative outliers (using Chambers’ 1986 

terminology) carry important information and it would be unwise to ignore it and rely 

only on the base model. In the non-SAE settings, Chambers (1986) proposed to apply 

a bias correction to the initial estimator, where the initial estimator is based firmly on 

the assumed working model while the bias correction is an estimated mean of 

residuals after relaxing the modeling assumptions. The bias correction idea in 

application to SAE is to add separate bias correction terms to the initial predictors for 

each area, a method explored by Chambers et al. (2009). The drawback of such 

adaptation of the non-SAE methodology is that inevitably the estimation of the bias 

correction terms for small areas would be based on small samples, potentially leading 

to inefficient estimates. 

We next describe the bias correction approach proposed by Chambers et al. (2009). 

The estimation consists of two steps. First, find robust estimates using any outlier 

robust estimation method, for example, one of the approaches described above. 

Second, estimate the bias of the initial robust estimate using, again, an outlier robust 

approach but with different tuning parameters in the bounded influence functions. 

The purpose of the second step is to “undo” the effect of a possible model 

misspecification imposed at step one. The second step boundaries for the influence 



 

 43 
 

function should be wide enough, promoting more reliance on the data rather than on 

the model assumptions. The final estimate is the sum of the robust estimate computed 

at the first step and the bias correction term computed at the second step. 

Let ( )   be some bounded function. It can be Huber’s function 

    min ,max ,c r c c r   , where the tuning parameter c is chosen to be relatively 

large; for example, 3c  . 

The bias-corrected version of REBLUP (either Fellner’s or Sinha and Rao’s 

approach) is 

1

1

ˆ ˆˆ ˆ m
T REBLUP REBLUPn

mj mj mREBLUP BC REBLUP REBLUP
mr mr m m REBLUP

j m

y u
Y Y n s

s
 



  
  
 
 


x β

. (1.6.16) 

The bias-corrected version of Chambers and Tzavidis’ approach is  

1

1

ˆ
ˆ ˆ .

m
T MQn

mj mj mMQ BC MQ MQ
mr mr m m MQ

j m

y
Y Y n s

s
 



 
  
 
 


x β

     (1.6.17) 

Here REBLUP
ms and MQ

ms  are some robust estimates of scale for the respective sets of 

residuals in area m. For example, for the REBLUP residuals 

ˆ ˆREBLUP T REBLUP REBLUP
mj mj mj me y u  x β , the estimator for the scale can be 

  0.6745REBLUP REBLUP REBLUP
m mj mje es med med  ; for the MQ residuals 

ˆMQ T MQ
mj mj mj me y  x β , one can use the estimator   0.6745MQ MQ MQ

m mj mje es med med  . 
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Chapter 2: Robust Estimation in Moderately Large Samples 

In this chapter, we consider estimation of the finite population parameters in 

moderately large samples. At the first step, the finite population quantity of interest is 

approximated using a first order Taylor expansion. We would like to emphasize that 

at the first step we deal only with the finite population rather than the sample: thus, 

the precision of this approximation depends only on the size of the population and 

does not depend on the sample size. The finite population is usually large enough to 

ensure that the linearization provides a good approximation of the target quantity. 

We also note that even though we view the population units as random realizations 

from superpopulation distribution, at the first step, we do not assume any specific 

model and only require that the finite population quantity of interest be sufficiently 

regular to admit a Taylor expansion and the population measurements should be 

independent. 

At the second step, we re-express the quantity of interest in terms of the expectation 

under the sample distribution, see (2.1.6) below. After that point, we start making 

modeling assumptions based on the observed sample.  

In Section 2.1 we discuss the idea of linearization in its general form and in Section 

2.2 we apply it to the CES estimator. In Section 2.3, we discuss Winsorization and the 

way to choose the cutoff points leading to an estimator with a reduced mean square 

error. We present several simulation examples that demonstrate the importance of 

taking into account the sampling design. Simulation results using several scenarios 
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for the finite population distribution are presented in Section 2.4 and mean squared 

error estimation is considered in Section 2.5.  

2.1 Linearization of a finite population quantity 

Assume that a vector of population measurements  1,..., Ny y y  is a realization 

from some probability distribution F  (a superpopulation distribution) (in general, 

each jy  is a vector of measurements on a unit j); P  is a set of population units and 

S  is a set of sampled units; N  and n  are the numbers of units in the population P  

and the sample S , respectively. 

Let NF  denote the edf of the finite population P . Suppose we are interested in 

estimating the finite population quantity  NT F  defined as a smooth function of the 

finite population means.  NT F  is assumed to be sufficiently regular to be linearized 

near F  using  the Taylor expansion 

     1
,

1

N

N F T j N
i

T F T F N IF R



   y ,     (2.1.1) 

where  T F  is a superpopulation parameter and  ,F T jIF y  is the influence function 

of the functional T (see (1.5.4)).  

As noted in Section 1.5.1, under suitable regularity conditions, the remainder term is 

small. Let us drop the remainder term in (2.1.1) and redefine the population quantity 

that we target in our estimation to be 
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     1
,

1

N

N F T j
j

T F T F N IF



   y .      (2.1.2) 

Given the population size N is large, this quantity differs from the ideal target, 

 NT F , by a small value. 

For the moment, we suppose that the parameter  T F is known. The terms  ,F T jIF y

can be viewed as generalized residuals, representing the difference between the 

population observation jy  and the parameter  T F . Thus, the second term on the 

right hand side of (2.1.2) represents the mean difference between the population units 

and the value of  T F . This difference is to be estimated using some robust method 

(for example, the Winsorization approach is considered in Section 2.3.) 

To estimate  NT F , let us equivalently re-write (2.1.2) as 

    ,N S C

n N n
T F T F U U

N N


         (2.1.3) 

where 

 ,

1
S F T j

j S

U IF
n 

  y         (2.1.4) 

and 

 ,

1
C F T j

j C

U IF
N n 


  y        (2.1.5) 

are means of the influence function for the observations that are included, (2.1.4),  

and not included, (2.1.5), in the sample.  
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Under the prediction approach to inference in sampling from finite populations, the 

goal is to predict values in the sample-complement part of the population, C , using 

the sample measurements. In our formulation, the problem is to predict the value of 

CU . 

The distribution of the sample measurements may differ from the distribution of the 

population measurements. If this is the case, it is important to account for the 

difference in order to avoid estimation bias. We employ the general result (1.4.4) to 

predict CU  by estimating the sample-complement expectation  ,C F T jE IF  y  from 

the sample. 

Using (1.4.4), the population quantity can be expressed as 

         ,

1
1

1

j

N S S F T j

S j

w
T F T F fU f E IF

E w

 
    

    
y    (2.1.6) 

The estimator of  NT F  takes the form 

     
 

1

ˆ ˆ11ˆ ˆ ˆ 1
ˆ 1

n
S j j

N N j
j S j

E w u
T F T F f u f

n E w

     
  

 ,   (2.1.7)  

where ˆ ju  is an estimator of  ,F T jIF y and depends on a choice of  ˆ
NT F ;  ˆ

SE   

denotes an estimator of the expectation  SE  . 

Remark. Chambers (1986) used decomposition somewhat similar to (2.1.3) in 

estimation of finite population totals under linear model assumptions (in this case, 

   N NT F T F  ). The first part of the decomposition involves an outlier-robust 
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estimator under the assumption that the model holds exactly. The estimator that 

reduces the effect of outlying observations may be biased if the finite population itself 

contains outliers, in other words, if the assumed model does not hold exactly. Since 

the sample outliers may be representative of similar units in the finite population, they 

should not be completely neglected. Thus, the last term of the decomposition 

estimated the difference between the “true” population value and the corresponding 

expectation under the model. It can be interpreted as a bias correction term, where the 

“bias” is understood as a difference between “truth” and the model assumptions. 

When the sample is (moderately) large, we may use a survey weighted estimator (or 

some design consistent estimator) for  T F . As noted earlier, often this estimator is 

sensitive to outliers. The outliers may be viewed as indicators that the implicit model 

underlying the use of the survey weighted estimator is “misspecified”. From this 

point of view, the other terms in (2.1.7) are meant to correct for bias. 

The expectation  SE   does not have to be estimated as a sample arithmetic average. 

Some modeling methods can be used to find an estimator for the last term in (2.1.7) 

Auxiliary information, if available, can also be used in modeling the last term in 

(2.1.7).  

2.2 Application: Estimation from large samples in CES 

We now consider in some detail the CES estimator of the relative monthly 

employment growth. The target finite population quantity is  
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,

, 1

t

t

j t
j P

t
j t

j P

y

R
y










         (2.2.1) 

where  

tP  is a set of a population establishments having non-zero employment in both 

previous 1t   and current t months; , 1 ,,j t j ty y  are the previous and current month’s 

levels of employment in establishment j , respectively.  

Consider a superpopulation parameterization. For a given month t, consider the set of 

finite population observations   , 1 ,, |j t j t ty y j P   to be independent realizations of 

a random vector  1,t tY Y  having some unspecified probability distribution 1,t tF . 

Denote by  1,t t   a vector of means of  1,t tY Y . The superpopulation parameter of 

interest is a function of the superpopulation means  1,t t  : 

   1
1

, ; .t
t t

t

T F T F
 




   

The influence function is 

 , , , 1 , , , 1
1 1

1
, t

j t F T j t j t j t j t
t t

u IF y y y y


  
 

 
   

 
    (2.2.2) 

(see Example 2 in Section 1.5.2). 
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Note that N  is unknown and is estimated as ˆ
t

j
j S

N w


  . The sampling fraction is 

estimated as ˆ
ˆ
n

f
N

 . Let 
,

, 1

ˆ t

t

j j t
j S

t
j j t

j S

w y

R
w y










 be the usual WLR estimator (as defined in 

Section 1.2.2) and let 

, 1

1
ˆ t

t

j j t
j S

t
j

j S

w y

w













 and 

,

ˆ t

t

j j t
j S

t
j

j S

w y

w
 







.  

Let  

 , , 1

1

1 ˆˆ
ˆj j t t j t

t

u y R y
 



   and 
1

1

1ˆ ,
t

jt
j

j S j wj S
w

w w n I
n

 
  


.  (2.2.3)  

Following (2.1.7), the estimator, in its general form, is 

   
1

ˆ ˆ11ˆ ˆ ˆˆ ˆ 1
ˆ 1

n
S j j

t t j
j

E w u
R R f u f

n w

     
 ,    (2.2.4) 

Remark. Until now we made no specific assumptions about the underlying 

distribution. In fact, this formula can be viewed as a pure identity: in the case where 

the expectation  ˆ ˆ1S j jE w u    
is estimated as a sample arithmetic average, the usual 

WLR estimator is recovered. 

The expectation does not have to be estimated as an arithmetic average. Similar to 

Zaslavsky et al. (2001), we combine ˆ ju  and jw  into one variable  ˆ ˆ1w
j j ju w u  . 

Modeling assumptions over ˆ w
ju  allow for a simple and simultaneous treatment of 

extreme survey weights, measurements, or their combined effect. Another possibility 



 

 51 
 

is to model the weights as proposed by Beaumont (2008) (see also Pfeffermann and 

Sverchkov 2007). 

In the next subsection we describe the Winsorization approach that is based on very 

weak modeling assumptions; thus it is suitable for estimation in larger samples. 

2.3 On the choice of cutoff values for the Winsorized mean 

Censoring of extreme sample measurements has been used in statistics for a long 

time. In this subsection, we discuss Winsorization, a method named after C.P. Winsor 

who was one of its first proponents back in the 1940’s. The Winsorized mean is 

obtained by, first, replacing the sample measurements exceeding a certain cutoff point 

by a value closer or equal to the cutoff, and then taking the arithmetic mean of these 

modified sample values.  

For symmetric distributions with long tails, the Winsorized mean is a good alternative 

to the estimator based on the original un-augmented data (Tukey and McLaughlin 

1963). However, when the distribution is asymmetric, editing of the extreme values 

may lead to a biased estimator. The goal of Winsorization is to reduce the mean 

squared error of an estimator, while accepting some bias. For skewed distributions, 

Searls (1966) proved the existence of a region on the longer tail of a distribution with 

the property that the cutoff values chosen from this region lead to an estimator with a 

reduced mean squared error; for specific skewed distributions, the optimal cutoff 

points can be found via a simple algorithm (see an example in Searls 1966).  

When the true underlying distribution is not assumed known, the algorithm proposed 

by Searls (1966) cannot be applied. A popular practical estimator is the “classical” 
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once-Winsorized mean. It is a particular form of Winsorization where the second 

extreme value is used as the cutoff point. However, when a distribution does not 

possess a “sufficiently long” tail, the once-Winsorized mean is less efficient than the 

original mean. Thus, it may be beneficial to test if the tails are “long enough” to 

warrant Winsorization. Fuller (1991) suggested that the right (or longer) tail of a 

sample distribution can be approximated by the right tail of a Weibull distribution. A 

test on the shape parameter of the Weibull provides an answer on the question about 

the advantages of Winsorization for a given sample. If the test suggests that the shape 

parameter is greater than one, then the once-Winsorized mean has a smaller mean 

squared error than the variance of the original sample mean. (It is also possible to 

consider other versions of Winsorizing cutoff points, depending on the result of the 

test.) 

The above two paragraphs suggest an apparent tension between the ease of 

implementation and the difficulty in justification for implementation of the 

Winsorized mean. We would like to avoid the inconvenience of the latter. Instead of 

relying on assumptions about the form of a distribution or on results from testing, we 

assume “no more” than that the true mean is known. It could be argued that such an 

assumption amounts to tautology since we assert the knowledge of the parameter of 

interest. In reality, using a “guess” value that is “reasonably close” to the truth is a 

well established practice in statistics, the technique rooted in standard differential 

calculus. 

To introduce the idea, consider a simple case of n independent observations 1,..., nu u . 
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Assume   0jE u  ,  jVar u  . 

Let  ,ju K L  denote the Winsorized value of ju , such that 

     , ,j j j j j ju K L u K u J L u I          (2.3.1) 

where  

1,

0,
j

j
j

u K
J

u K

   
 and 

1,

0,
j

j
j

u L
I

u L

   
, for 1,...,j n . 

Let 1

1

n

j
j

u n u



   be the original mean and    1

1

, ,
n

j
j

u K L n u K L



   the
 
Winsorized 

mean. 

Result 1: Let K  and L  satisfy, respectively, the equations 

 
1

0
n

j j
j

K K u J


           (2.3.2) 

and  

 
1

0
n

j j
j

L L u I


   .        (2.3.3) 

Then    , .MSE u K L Var u  
 

The proof of the above statement is given in Appendix A. 

Remark. This result was inspired by the works of Searls (1966) and Kokic and Bell 

(1994). One distinction is that these papers are restricted to one-sided Winsorization, 

in which the mean    1

1

n

j
j

u K n u K



   is based on the Winsorized values 
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   j j j ju K u K u J   . Second, these papers are tasked with finding optimal values 

minimizing, rather than merely reducing, the mean squared error of an estimator. 

However, it is not possible to claim optimality without additional assumptions about 

the underlying distributions. For example, a solution to the equation 

 
1

1
1 0

n

j j
j

K E K u J
n 

     
 

  

would provide the optimal value K  for  u K . However, it includes the expectation 

taken at the tail of a distribution. To estimate the expectation, one approach is to 

assume a specific form of the distribution, as in Searls (1966). The alternative is to 

assume similarity of the current sample to samples from previous years of the same 

survey and estimate the expectation from the previous years, the approach of Kokic 

and Bell (1994). It is worth mentioning that the assertion of optimality for two-sided 

Winsorization would require more stringent assumptions. Result 1 does not state 

optimality, but it guarantees, without additional assumptions, reduction in the mean 

squared error.  

2.3.1 Some simple illustrative examples 

In this subsection, we present simple simulation examples that show how the Result 1 

works. The R code is provided in Appendix B. It can be easily modified to explore 

how the theory works with other distributions and with alternative initial values for 

the mean.  

We considered four scenarios, for three sample sizes of 50, 100, or 500 observations: 
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(1) normal N(0,1) distribution; 

(2) symmetrical mixture of two normal distributions with common mean 0   and 

different variances: 97% N (0,1) and  3% N (0,10);  

 (3) asymmetrical mixture of two normal distributions with different means and 

variances: 97% N (0,1) and  3% N (3,10) (thus, the true mean is  0.03 3 0.09    ); 

(4) lognormal distribution:    log ~ 0,1
iid

jy N  (thus, the true mean is   exp 0.5  ). 

The density plots of the distributions are shown in Figure 3. 

For the estimation of  , we used either the sample mean 1

1

n

j
j

y n y



   or the 

Winsorized mean    1
0

1

, , ,
n

j
j

y K L n u K L



     where  ,ju K L  is a 

Winsorized value of 0.j ju y    For the “guess value” 0  for the mean  , we 

used (i)  the true parameter or (ii) the sample average. 

We used 5000R   simulation runs and computed bias, standard error, and root mean 

squared error as 

    
1

1
ˆ ˆ100

R
r

r

Bias
R

  


   ,  

    2

1

1
ˆ ˆ ˆ100 ,

1

R
r

r

SE
R

  


 
   

    2

1

1
ˆ ˆ100 ,

R
r

r

RMSE
R

  


   
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where  ˆ r  is the r-th simulation run of the corresponding estimator (either y or 

 ,y K L ) and  

1

1
ˆ ˆ

R
r

rR
 



  . Also reported are average values of the estimated 

cutoff points:  

1

1 R
r

r

K K
R 

   and  

1

1 R
r

r

L L
R 

  . 

 
(1) 

 
(2) 

 
(2) 

 
(4) 

Figure 3. Density plots of (1) normal N(0,1); (2) symmetrical mixture 97% N (0,1) 
and  3% N (0,10); (3) asymmetrical mixture 97% N (0,1) and  3% N (3,10); (4) 
lognormal distribution. 

Results are presented in Table 1- Table 4. 
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True mean as initial guess 

Sample size 
Bias SE  

 
,RMSE y K L

RMSE y

    
Cutoff values

y    ,y K L y    ,y K L L K 

50  0.18  0.17  14.19 13.76  96.97  ‐1.46  1.46 

100  0.15  0.15  9.97  9.81  98.43  ‐1.70  1.70 

500  0.00  0.00  4.43  4.42  99.67  ‐2.22  2.22 

Estimated mean as initial guess 

Sample size 
Bias SE  

 
,RMSE y K L

RMSE y

    
Cutoff values

y    ,y K L y    ,y K L L K 

50  0.18  0.18  14.19 14.20  100.10  ‐1.46  1.46 

100  0.15  0.15  9.97  9.97  100.06  ‐1.70  1.70 

500  0.00  0.00  4.43  4.43  100.02  ‐2.22  2.22 

Table 1. Normal N(0,1) distribution. Bias and Standard Error, in hundreds; RMSE 
ratio as percentage 

True mean as initial guess 

Sample size 
Bias SE  

 
,RMSE y K L

RMSE y

    
Cutoff values 

y    ,y K L y    ,y K L L K 

50  0.28  0.27  15.86 14.91  94.05  ‐1.73  1.73 

100  0.23  0.22  11.19 10.72  95.77  ‐2.12  2.13 

500  ‐0.09  ‐0.08  5.07  4.98  98.29  ‐3.35  3.35 

Estimated mean as initial guess 

Sample size 
Bias SE  

 
,RMSE y K L

RMSE y

    
Cutoff values 

y    ,y K L y    ,y K L L K 

50  0.28  0.28  15.86 15.38  96.98  ‐1.73  1.73 

100  0.23  0.22  11.19 10.89  97.27  ‐2.12  2.13 

500  ‐0.09  ‐0.08  5.07  5.00  98.59  ‐3.35  3.35 

Table 2. Symmetrical mixture: 0.97N (0,1)+ 0.03N (0,10). Bias and Standard Error, 
in hundreds; RMSE ratio as percentage 

Normal distribution without contamination does not favor Winsorization. Yet, even in 

this case, according to the theory, the Winsorized mean has smaller RMSE when the 

true value is used as the initial guess. When the distribution is asymmetric, 

Winsorization causes a bias, still RMSE is reduced. There is some loss in efficiency if 

the guess value 0  is estimated from the same data; as a result, RMSE in the 
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estimated mean case is somewhat larger. In the non-normal cases considered in 

scenarios 2-4, Winsorization works well even with the estimated initial value for 0 .  

True mean as initial guess 

Sample size 
Bias SE  

 
,RMSE y K L

RMSE y

    
Cutoff values 

y    ,y K L y    ,y K L L K 

50  0.37  ‐1.20  17.38  15.94  91.93  ‐1.56  2.35 

100  0.32  ‐0.95  12.26  11.55  94.44  ‐1.83  3.10 

500  ‐0.05  ‐0.63  5.56  5.46  98.94  ‐2.46  5.33 

Estimated mean as initial guess 

Sample size 
Bias SE  

 
,RMSE y K L

RMSE y

    
Cutoff values 

y    ,y K L y    ,y K L L K 

50  0.37  ‐1.20  17.38  16.44  94.83  ‐1.57  2.35 

100  0.32  ‐0.95  12.26  11.73  95.93  ‐1.83  3.10 

500  ‐0.05  ‐0.63  5.56  5.48  99.26  ‐2.46  5.33 

Table 3. Asymmetrical mixture: 0.97N (0,1)+ 0.03N (3,10). Bias and Standard Error, 
in hundreds; RMSE ratio as percentage 

True mean as initial guess 

Sample size 
Bias SE  

 
,RMSE y K L

RMSE y

    
Cutoff values 

y    ,y K L y    ,y K L L K 

50  0.34  ‐7.22  30.76  26.40  88.97  ‐1.25  4.99 

100  0.33  ‐5.12  21.64  19.42  92.76  ‐1.33  6.74 

500  0.08  ‐2.09  9.53  9.09  97.79  ‐1.45  12.28 

Estimated mean as initial guess 

Sample size 
Bias SE  

 
,RMSE y K L

RMSE y

    
Cutoff values 

y    ,y K L y    ,y K L L K 

50  0.34  ‐7.22  30.76  27.33  91.90  ‐1.25  4.99 

100  0.33  ‐5.12  21.64  19.76  94.29  ‐1.33  6.74 

500  0.08  ‐2.09  9.53  9.12  98.12  ‐1.46  12.28 

Table 4. Lognormal distribution,    log ~ 0,1
iid

jy N . Bias and Standard Error, in 

hundreds; RMSE ratio as percentage 
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2.3.2 Accounting for survey design when choosing the cutoff points  

We now consider the finite population setting and see how Result 1 can be applied in 

more complex situations.  

In many surveys, the finite population measurements can be viewed as independent 

realizations from a superpopulation distribution. Then, according to Theorem 1 of 

Pfeffermann et al. (1998), under general regularity conditions, for many common 

sampling plans, the sample observations are asymptotically independent with respect 

to the sample distribution. (The asymptotic setup requires that the population size 

increases to infinity, while the sample size is fixed.) Thus, for many common 

situations, the assumptions of Result 1 hold. 

Example 1. Probability proportional to size (pps) sampling. Suppose the finite 

population values ,jy  1,..., ,j N  are generated as 1 2100 5j j j jy z z    for some 

vector  1,..., Nz zz   (a “size” variable) and  ~ 0,9
iid

j N . The target quantity is the 

finite population mean 1

1

.
N

j
j

Y N y



 
 

A sample of size n is selected using 

probabilities proportional to size jz . Let  | j jP j S const z   z  and 

  1
U jE N n  .  

Consider the Hájek estimator 

 ˆ ,
j j

j S

j
j S

w y

y
w









 

where 1
j jw   . 
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The influence of an individual sample observation on the above estimator can be 

expressed as 

   1
,j j j y

S j

u w y
E w

   

where y  is the superpopulation mean of jy  and     1
1 .S j U jE w E n N

      

Thus,  1 .j j j yu nN w y    

The Winsorized estimator is    ˆ , , .yy K L u K L   

At each round of the simulation experiment presented here, values jz  were generated 

independently from the lognormal distribution with    log ~ 0,1jz N , 1,...,j N . In 

defining ju , we used the true superpopulation value 100 5y z   , where 

exp(0.5)z   is the mean of jz . We considered two choices of the population and 

sample sizes: (1) 3000N  , 30n   and (2) 10000N  , 100n . Table 5 displays 

results from R=5000 simulation runs. 

Bias was calculated as 

      
1

1ˆ ˆ100 ,
R

r r

r

Bias y y Y
R 

    


    
 (2.3.4) 

where ŷ  denotes one of the estimators considered and the index r signifies the result 

of the r-th simulation run . The square root of the mean squared error (RMSE) is 

   2ˆ ˆ100 ,RMSE Var y Bias y 
  

 (2.3.5) 
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where  ˆVar y is the variance over all simulation runs; the standard error is 

   ˆ ˆ100se y Var y . 

Table 5. PPS sampling, Bias and Standard Error, in hundreds; RMSE ratio as 
percentage; 5000 simulation runs 

In this example, the Winsorized estimator performs better than the estimator based on 

the original data. 

Next, we discuss the case of stratified sampling. If stratification is not properly 

accounted for and the conditions of Result 1 are not satisfied, the Winsorized 

estimator may perform poorly. When a population is deliberately divided into 

separate strata based on the information related to the variable of interest, the values 

1,..., nu u  are to be obtained by subtracting corresponding strata means from the 

original sample values. The following simulation example demonstrates this point. 

Example 2 Stratified simple random sampling (STSRS). Suppose the finite 

population measurements are independent realizations from a mixture of two normal 

distributions    ~ 0.7 0,1 0.3 12,9
ind

jy N N . The goal is to estimate the finite 

population mean 1

1

N

j
j

Y N y



  .  The population is divided into two strata 

corresponding to the parts of the mixture. A sample of size n is drawn using a 

stratified simple random sampling design with equal probabilities of selection. 

 N=3000,  n=30 N=10000,  n=100 

 Bias SE 
 ˆ ,

ˆ

RMSE y K L

RMSE y

  
  

Bias SE 
 ˆ ,

ˆ

RMSE y K L

RMSE y

  
  

ŷ  46.8 211.7 - 14.6 114.1 - 

 ˆ ,y K L  48.1 177.5 84.7 28.3 103.5 93.3 
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Consider two possibilities for forming the u-variables: subtract the common mean   

from each observation, ( )c
j ju y    or subtract separate strata means,

 
  ,s
j j hu y    

,j h  for strata 1,2h  . The variables ( )c
ju

 
do not have mean zero, unless the strata 

means are equal. 

The estimator based on the original data is 1
j

j S

y n y



  . The Winsorized mean is  

   1, ,j
j S

y K L n y K L



  , 

for a choice of cutoffs  , .K L  Denote the cutoffs     ,c cK L  or     ,s sK L , 

depending on the way of constructing ju . Correspondingly, 

           , ,c c c c c
j jy K L u K L    or            , ,s s s s s

j j hy K L u K L   , ,j h  

1, 2h  . 

We used 5000R   simulation runs for each of the two choices of the population and 

sample sizes: (1) 3000N  , 30n   and (2) 10000N  , 100n ; the strata sizes are 

1 0.7N N  and 2 0.3N N . (For this simulation example, we use the true 

superpopulation values of the parameters  , 1,  and 2  when forming the u-values. 

The strata means are 1 0,   2 12   and the overall mean is 1 20.7 0.3 3.6     . 

In reality, these values need to be “guessed” or estimated from the data.) 

The simulation results are shown in Table 6. The bias and RMSE were calculated 

using formulas (2.3.4) and (2.3.5). 
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 N=3000,  n=30 N=10000,  n=100 

 Bias SE 
y

RMSE

RMSE( )
 Bias SE 

y

RMSE

RMSE( )
 

y  -0.3 33.5 - 0.0 18.6 - 
    ,c cy K L  -16.6 30.8 104.5 -6.2 18.2 103.1 

    ,s sy K L  -0.3 30.1 90.0 -0.1 18.0 96.3 

Table 6. Population 0.7 (0,1) 0.3 (12,9)N N , 5000 simulation runs, (in hundreds) 

The results demonstrate that subtracting the overall mean is not the proper way to 

form the u-values, because the values defined in such a way are not uncorrelated 

under the stratified sampling design. Bias and RMSE of the resulting estimator 

    ,c cy K L
 
are high compared to the original estimator y . On the other hand, 

    ,s sy K L  is clearly an improvement over y . 

2.3.3 Using information not included in the sampling design  

Although in many common situations the Winsorized mean of Result 1 is better than 

the original mean in terms of the mean squared error, it is important to bear in mind 

the possibility of a bias that may incur due to Winsorization. Bias may accumulate if 

several biased estimates are aggregated to obtain a higher level estimate. In CES, bias 

also may build up over several months of estimation. It is desirable to avoid or reduce 

the bias of the Winsorized mean. 

Large samples usually consist of a mixture of more homogeneous parts. To reduce the 

bias, it may be useful to incorporate available information that can explain the 

complexity of the observed sample distribution. For example, the bias may be 
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reduced if subpopulation means are subtracted from the sample measurements. The 

following example is designed to illustrate this situation.  

Example 3. Simple random sampling. Similar to Example 2, the finite population 

measurements come from a mixture of two normal distributions. However, the 

mixture parts are not as clearly separated, in terms of the means of the mixture parts: 

   ~ 0.7 0,1 0.3 4,9
ind

jy N N . The sample is selected using simple random sampling 

with replacement and the mixture parts represent poststrata. The estimator of the 

population mean, based on the original data, is 1

1

n

j
j

y n y



  .  

Similar to Example 2, consider two versions of Winsorization. First, form the u-

values by subtracting the common mean   from each observation, ( )c
j ju y   ; in 

the second version, form the u-values by subtracting separate poststrata means,
 

 s
j j hu y   , ,j h for poststrata 1,2h  . In the case of simple random sampling, 

both sets of u-values contain independent observations. Thus, in each case the mean 

squared error of the Winsorized mean is expected to be lower than the variance of the 

original mean. 

The simulation results are presented in Table 7 for two choices of the population and 

sample sizes: (1) 3000N  , 30n   and (2) 10000N  , 100n ;  the subpopulation 

sizes are 1 0.7N N  and 2 0.3N N . There were 5000R   simulation runs.
 

The bias and root mean squared error were calculated using formulas (2.3.4) and 

(2.3.5). 
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 N=3000,  n=30 N=10000,  n=100 

 Bias SE 
RMSE

RMSE( )y
 Bias SE 

RMSE

RMSE( )y
 

y  -0.3 47.8 - -0.1 26.1 - 
    c cy K , L  -7.8 44.9 95.4 -3.4 25.6 98.9 

    s sy K ,L  -0.3 45.5 95.3 -0.1 25.6 98.0 

Table 7 . 0.7 (0,1) 0.3 (4,9)N N , 5000 simulation runs, (in hundreds) 

Taking into account the subpopulation means reduces the bias. However, it does not 

necessarily lead to decreased RMSE.  

Another way to reduce bias is to use Winsorization only when the benefits are 

evident. For example, suppose certain critical bounds for the estimate can be 

established based on the previous years of the same survey. Then Winsorization can 

be used only when the original estimate does not conform to the bounds. This 

approach has proved to be useful for the CES estimates. 

2.4 Simulation study 

The simulation study shows performances of several estimators under different 

scenarios. Winsorization may not be the most efficient estimator, yet it is safer to use 

than some model-based alternatives. 

A stratified simple random sample is selected from 4H   strata of a finite population 

P, with the differential selection probabilities across strata.  

The goal is to estimate the finite population mean 
1 1

1 hnH

jh
h j

Y y
N  

  , where jhy  is the 

value of unit j from stratum h; N is the total number of units in the population.  
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We generate the finite population using the following procedure. At the first step, the 

strata means hm  are generated from the normal distribution with expectation 0 and 

standard deviation 30. At the second step, we generate jhy  values for each stratum h. 

The population and sample sizes for each stratum, the superpopulation means, and the 

sampling weights are given in Table 8. 

Stratum, 
h 

Population 
size, hN  

Sample 
size, 

hn  

Superpopulation 
mean, hm  

Sample weight,

h h hw N n  

1 15000 150 -17.03 100.00 
2 5000 150 -24.44 33.33 
3 1500 500 -14.82 3.00 
4 500 400     0.05 1.25 

Table 8. Description of the simulation 

Consider several possibilities: 

1) “Best Case (BC) scenario”: the population values jhy  come from the normal 

distribution with mean hm  and standard deviation h , and the sample 

inclusion probabilities, h , are such that 150 150h h hw   :  

 2~ , , 1,...,jh h hy N m h H   

2)  “Stratum Jumpers (SJ) scenario”: suppose some units change their stratum 

after the sample has been selected. To simulate this situation, the population 

values are generated exactly as under the BC scenario, however, a small 

fraction (less than 0.1%) of the units’ values are generated as if the units 

belonged to a “foreign” stratum, as follows: 
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- for units in strata 1 and 2,  0.1 per cent of the units are generated from 

the distribution of the strata 3 and 4, respectively:  

0.1% with  2
2 2~ , , 1,2jh h hy N m h    

- for units in stratum 3,  0.05 per cent of the units are generated from the 

distribution of the stratum 1 and another 0.05 per cent of the units are 

generated from the distribution of the stratum 4: 

0.05% with   2
3 2 2~ ,jy N m   and 0.05% with   2

3 4 4~ ,jy N m   

- for units in stratum 4: 0.05 per cent of the units are generated from the 

distribution of the stratum 3. 

0.05% with  2
4 3 3~ ,jy N m   

3) “Spike at Center (SC) scenario”: in each stratum, 90 per cent of the data are 

generated from the normal distribution with the standard deviation that is 

significantly (100 times) smaller than the other 10 per cent: 

90% with   2
~ , 10jh h hy N m  , 10% with   2

~ , 10jh h hy N m  , 

1,...,h H  

4) “Spike and Shift (SH) scenario”: in each stratum, 90 per cent of the data are 

generated from the normal distribution with the standard deviation that is 

significantly (100 times) smaller than the other 10 per cent and the mean is 

shifted: 
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90% with   2
~ , 10jh h hy N m  , 10% with   2

~ 10, 10jh h hy N m  , 

1,...,h H  

From each of the four populations, we selected 300 random samples using a stratified 

simple random sampling design, with probabilities 1h hw  , h=1,…,4, hw  as in 

Table 8. From each sample, we calculated estimates based on the following four types 

of estimators: (1) Horvitz-Thompson (HT) estimator, ˆ
HTY ; (2) Exchangeable random 

effects (WN1) for weighted residuals model, 1
ˆ
WNY ; (3) Scale mixture of two normal 

distributions (WN2F) for weighted residuals, 2
ˆ
WN FY ; (4) Winsorization cutoffs 

estimator, ˆ
WzY  . 

Specification details of the estimators follow. 

(1) The formula for the HT estimator is 

1 1

1ˆ ,
hnH

h
HT jh

h jh

N
Y y

N n 

    

where 
1

.
H

h
h

N N


  

Next, denote   ˆ1 ,  where w
jh h jh jh jh HTe w e e y Y    . 

For WN1 and WN2F cases, the estimator has the form  

1

1ˆ ˆ ˆ ,
H

we
HT h h

h

n
Y Y e n

N N




         
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where ˆ we
h  is derived from a model.  

(2) The WN1 model is formulated as a two level model by the following 

statements: 

Level 1:  2~ , ,
ind

w we
jh he N          (2.4.1) 

Level 2:  2~ , ,
iid

we we
h N          (2.4.2)

 
1,...,h H  

(3) The WN2F model is described as follows: 

 2| 1 ~ , ,
ind

w we
jh kj h ke z N          (2.4.3) 

where  
1

1, 2; 1,..., ; 1,..., ; ;
H

h h
h

k j n h H n n


     

kjz  is a mixture class indicator for an observation j  and class 1,2;k   

2
k  is a variance parameter of the thk  component of the mixture. 

We applied the EM algorithm described in Appendix C to fit the WN2F model. 

(4) The Winsorization estimator description.  

Suppose  
1

n

j
j

w N


 .  Note that the HT estimator equivalently can be written 

as 

 ˆ ˆ 1 ,w
HTY Y fu f u          (2.4.4) 
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where    1

1

1
1 ,

1

n
j j

j

w
f n

w


 




 


 

1

1

ˆ |
hn

j j h j
j

E u h n u 



     , ˆ
j j HTu y Y  ;

 

1

1

,
n

w w
j

j

u n u



     1
,

1
j j jw

j

w u
u

w

 


  

1

1

,
n

j
j

u n u



  ;
 

1 1

1

.
n

j
j

w n w f 



   

Let the adjusted value for w
ju  be 

     ,w w w w
j j j j j ju K L u K u J L u I    

   

  (2.4.5) 

where 1jJ   if  w
ju K  and 0,jJ  otherwise; 1jI   if  w

ju L  and 0,jI 

otherwise. 

Then the Winsorized estimator is defined by 

   ˆ ˆ 1 , ,adj w
HTY Y fu f u K L          (2.4.6)

where    1

1

, ,
n

w w
j

j

u K L n u K L



  and the values for K  and L  are obtained by 

solving the equations (2.3.2) and (2.3.3), as outlined in Kokic and Bell (1994). 

To evaluate each estimator, we calculated the empirical bias and root mean squared 

errors: 

 300

1

1 ˆ
300 r

r

Bias Y Y


   and  300 2

1

1 ˆ
300 r

r

RMSE Y Y


  , 

where ˆ
rY  are estimates derived from sample ,  1,...,300r r  . 

The results for each of the three types of the finite population are reported in Table 9. 
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“Best Case” Population 

 Bias SE RMSE 
HT

RMSE

RMSE
 

HT -0.01 0.18 0.18 - 
WN1 -0.01 0.18 0.18 1.00 

WN2F -0.07 0.22 0.23 1.25 
Wz 0.01 0.18 0.18 0.99 

“Stratum Jumpers” Population 

 Bias SE RMSE 
HT

RMSE

RMSE
 

HT 0.00 0.42 0.42 - 
WN1 0.00 0.42 0.42 1.00 

WN2F -0.03 0.20 0.20 0.47 
Wz 0.01 0.32 0.32 0.76 

“Spike at Center” Population 

 Bias SE RMSE 
HT

RMSE

RMSE
 

HT 0.01 0.58 0.58 - 
WN1 0.02 0.59 0.59 1.01 

WN2F 0.04 0.20 0.20 0.35 
Wz 0.02 0.57 0.57 0.98 

“Spike and Shift” Population 

 Bias SE RMSE 
HT

RMSE

RMSE
 

HT 0.01 0.61 0.61 - 
WN1 0.02 0.62 0.62 1.01 

WN2F -0.90 0.20 0.93 1.52 
Wz -0.01 0.60 0.60 0.98 

Table 9. Bias and standard errors of estimators for the three finite populations. The 
last column is the RMSE ratio to the baseline RMSE of the HT estimator. 

The performances depend on the underlying distribution in the finite population. HT 

and WN1 are very similar for any of the scenarios. The Winsorization (Wz) estimator 

is conservative in that the model assumptions are very weak. It performs slightly 

better than HT or WN1 under any scenario. Under SJ or SC, Wz does not provide as 

much gain in efficiency compared to WN2F. Wz is more efficient than HT or WN1 



 

 72 
 

and it is safer to use than WN2F, in case the model does not hold. For example, under 

BC or SH, WN2F is not as good as the other estimators.  

2.5 Mean squared error estimation using the bootstrap 

(simulation study) 

In this simulation study, we used the finite population generated from the 

superpopulation model under the four scenarios BC, SJ, SC, and SH (see description 

in the previous subsection) to obtain mean squared error estimates for the Horvitz-

Thompson (HT) and Winzorization (Wz) estimators of the mean. 

The sample fractions in different strata vary from negligible to fairly large. It is 

desirable to account for non-negligible sample fraction in estimation. Gross (1980) 

proposed a variant of bootstrap known as the without-replacement bootstrap (BWO). 

A generalization of the procedure was proposed in Sverchkov and Pfeffermann 

(2004). Following Sverchkov and Pfeffermann (2004), we assume that the sample 

observations are uncorrelated and are independent from the sample-complement part 

of the universe. Detailed description of the bootstrap procedure follows. 

Independently from each stratum h, select a pseudo-population of size hN  out of hn  

sample units, using a simple random sampling with replacement (SRSWR) procedure. 

Select B=500 stratified simple random samples using the same sampling design as 

used for the original sample. Derive the bootstrap estimates by following the 

estimation steps as in the original sample. Use standard bootstrap formula to compute 

RMSE.  
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To assess biases and variances of these MSE estimates, we used Monte Carlo 

simulation. We simulated 300 different “original samples” from the finite populations 

with fixed superpopulation parameters and repeated each bootstrap procedure for 

these 300 different original samples. Thus, we obtained 300 estimates of MSE for 

each estimator. In Table 10, we show average of these 300 estimates, with the 

simulation standard error in parentheses. 

 True MSE BWO MSE 

“Best Case” Population 

HT 0.034 0.033 (0.002) 

Wz 0.033 0.032 (0.002) 

“Stratum Jumpers” Population 

HT 0.178 0.167 (0.143) 

Wz 0.104 0.122 (0.106) 

“Spike at Center” Population 

HT 0.338 0.334 (0.064) 

Wz 0.322 0.316 (0.061) 

“Spike and Shift” Population 

HT 0.373 0.362 (0.070) 

Wz 0.359 0.346 (0.068) 

Table 10. True MSE based on 300 samples from a finite population and estimated 
BWO MSE averages and standard errors (in parentheses) based on 300 estimates of 
MSE, each derived from 500 bootstrap iterations.  

Summary 

In this Chapter, we proposed a method of identifying influential observations when 

the target population quantity is a function of the finite population given in a 

predefined form. The first step is to linearize the target and to obtain the influence 

function. This reduces the problem to estimation of the mean of the influence 

function. 
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The second step is to find the prediction of the new linear target. This is done using 

the relationship between the sample and population distribution to account for the 

informativeness of the sampling design. 

The efficiency of the estimator of the mean of the influence function can be improved 

by using Winsorization. We proved a general result that under mild conditions certain 

cutoff points guarantee that the mean squared error of the Winsorized estimator is 

smaller than the variance of the estimator based on the un-augmented data. 

We demonstrated the effect of Winsorization using several simulation examples. The 

conclusion is that Winsorization provides modest improvement to an estimator. 

Stronger model assumptions may give much better results. However, they may also 

lead to disastrous results if the model assumptions do not hold. Winsorization is safe 

to use in most cases. However, the estimator will be biased if the underlying 

distribution is not symmetric. The bias may accumulate when estimates are 

aggregated to a higher level or over time (as in the CES series). In such a case, it is 

advisable to use Winsorization sparingly, only when the improvement is evident. The 

evaluation of the need for Winsorization can be based on the historical information.  
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Chapter 3: Robust Small Area Estimation 

Linear mixed models have proved to be very useful in small area estimation 

problems. In this chapter, we consider a slight modification of the classical model. In 

order to accommodate the possibility of outlying observations, we make the 

assumption that the underlying distribution of the sample measurements is a scale 

mixture of two normal distributions, where outliers come from a distribution with 

larger variance than “regular” observations.  

It was perhaps Newcomb (1886) who first proposed using mixtures of normal 

distributions to “obtain the best result” since “the cases are quite exceptional in which 

the errors are found to really follow the law” (by “the law” was meant the normal 

distribution). Tukey (1960) used the scale mixture of two normal distributions to 

demonstrate the effect that a small fraction of contamination may have on the 

resulting estimates, and a mixture model of this type is commonly cited as Tukey’s 

gross error model. Huber (1981) used the gross error model example in the beginning 

of his book to motivate the development of estimation methods resistant to deviations 

from distributional assumptions. 

It turns out that modeling the errors using a scale mixture distribution may be useful 

even when the fraction of units with larger variance is not small. In other words, the 

units with larger variance are not necessarily “outliers” but valid members of a 

distinct part of the population.  

Mixture distributions are usually considered for the case of independent observations. 

However, observations in small area estimation problems are assumed to be 
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correlated within areas. The model developed in this chapter accounts for this more 

complicated data structure. 

This Chapter is organized as follows. The model is formulated in Section 3.1. In 

Section 3.2 we discuss identifiability of the model parameters. The maximum 

likelihood estimates of the model parameters can be obtained using the EM iterative 

algorithm. The algorithm is described in Section 3.3. Parametric bootstrap can be 

used to construct prediction confidence intervals; the bootstrap algorithm is given in 

Section 3.4. Bias correction approaches are discussed in Section 3.5. Numerical 

comparison of several robust estimators considered in the literature is given in 

Section 3.6. In Section 3.7, we present a small simulation study that is aimed to 

explore how the mean squared error of the estimated model parameters, derived using 

the proposed EM algorithm, decreases with the increased sample size. Evaluation of 

the bootstrap performance in terms of the percent coverage and length of the 

confidence intervals is in Section 3.8. Finally, in Section 3.9 we consider application 

of the approach to the CES survey data. This section also includes application of the 

linearization technique, discussed in Section 2.1 of Chapter 2, to small area settings. 

3.1 The proposed model 

Consider a modification of the nested-error regression model, where the error terms 

come from mixture of two normal distributions (thus, the model is named N2) with 

common, zero, mean and different variances. The model is given by (3.1.1)-(3.1.3) 

below: 

,T
mj mj m mjy u   x β          (3.1.1) 
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2~ (0, )
iid

mu N   and 2 2
1 2|  ~  (1 ) (0, ) (0, ),

iid

mj mj mj mjz z N z N      (3.1.2) 

1,..., , 1,..., ,mj n m M   

and the mixture part indicator is a binomial variable 

| ~ (1; ),
iid

mjz p Bin p         (3.1.3) 

where  

p  is the probability of belonging to mixture part 2 (where 2 1  ). 

Note that, conditional on the values of the mixture part indicators mjz , the model is 

the usual mixed effects model. Alternatively, we can write the distribution function of 

the random vector y  in model (3.1.1)-(3.1.3) as a mixture of K multivariate normal 

distributions, as follows: 

    
1

| , | , ,
K

k k k
k

h f


y X θ y X θ      (3.1.4) 

where  

 
 

   11
y y

2
1 22

1
| , ,

2

T
k

k k n

k

f e


  


Xβ Σ Xβ
y X θ

Σ
 

1

1,
K

k
k




 ,T
k k Σ R ZDZ   2 ,diag D  Z  is the n M  design matrix for the 

random effects; each diagonal matrix kR  has entries 2
1  and 2

2  in a specific to a 

given component k order. Assume that the variance components 2 2 2
1 2, ,    are 
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strongly positive and that there is a positive number of observations in at least one 

area.  

The set of parameters  1,..., ,K  θ θ θ  where    denotes the parameter space; kθ  

denotes the set of parameters ,p  ,β  and the variance-covariance matrix kΣ that 

depends on the variance components,  2 2 2
1 2, ,k k   Σ Σ ;  p is the probability of 

appearance of 2
2  in the diagonal of kR , 0 1p   . 

In the case where 2 2
1 2  , 1K   and we obtain the usual case of a mixed effects 

model. If 2 2
1 2  , there are 2nK   distinct matrices kΣ . Suppose the diagonal 

terms of a matrix kR  contain kn l  values 2
1  and kl  values 2

2 , 0 kl n  ; 

1

n

k kj
j

l z


 , where kjz  is an indicator variable: 1kjz  , when an observation j comes 

from the distribution with 2
2  value for the random error variance, and 0kjz  , 

otherwise; 1,...,j n . The probability that a random vector y  belongs to the k-th 

mixture part is  1 kk
n ll

k p p   . 

To understand the setup, let us first consider a hypothetical situation when all the 

model parameters are known. 

Assuming the parameters are known, the model N2 predictor of the non-sampled part 

of the population mean in area m is given by 

 2 2 ,N T N
mr mr mY u x β        (3.1.5) 
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where  2N
mu  is a predictor of area m random effect and

 

1

1

( )
m

m

N
T T
mr m m mj

j n

N n 

 

  x x

 

is 

the mean of auxiliary variables over the non-sampled part of the population in area m. 

If indicators mjz
 
were observed, the predictor for the random effect would be 

 
2

2 2
| , ( )T

m m m m m
m

E u y


 
 


y z x β

 
     (3.1.6) 

where  

1

2 2

1

,
mn

m mj
j

 






 
  
 
         (3.1.7) 

 2 2 2
1 21 ,mj mj mjz z              (3.1.8)

 

 2 2

1

mn

m m mj mj
j

y y  



  ,         (3.1.9) 

 2 2

1

.
mn

m m mj mj
j

  



 x x ,        (3.1.10) 

Since indicators mjz  are not observed, the predictor is 

2
2

2 2
( ) |N T

m m m m
m

u E y


 
 

   
x β y ,      (3.1.11) 

where the expectation is taken over the conditional distribution of  mz  given my . 

Next, consider the variance of the predictor 2N
mu . For a given set of indicators, the 

variance is  
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 
2 2

2 2
| , m

m m m
m

Var u
 
 




y z .       (3.1.12) 

Therefore, the total variance of 2N
mu  is

 

     2 | | , | | , |m m m m m m m m m m mVar u E Var u Var E u         y y z y y z y
 

2 2 2

2 2 2 2
| ( ) |Tm

m m m m
m m

E Var y
  
   
   

        
y x β y .  (3.1.13) 

The variance and expectation in the right hand side of (3.1.13) are taken over the 

conditional distribution of  mz  given my . 

Let us now discuss the formula for the conditional probability of an observation (mj) 

belonging to part 2 of the mixture. The probability is 

 
 

2 2
2

2 2 2 2
1 2

1| ,

1

T
mj mj

mj mj mj T T
mj mj mj mj

y
p

p P z y
y y

p p


 

 
   

 
 
    

    
    
       

x β

x β x β
  (3.1.14) 

where     is the standard normal pdf. Suppose there is a fraction of extreme outliers 

in the data. The absolute value of 
2 2
1

T
mj mjy

 





x β
 of an outlier is large and the probability 

2 2
1

T
mj mjy


 

 
 
  

x β
 is small. If 

2 2
1

T
mj mjy


 

 
 
  

x β
 tends to zero, the value of mjp  for such unit 

tends to 1. In such a case, the expected value for the inverse variance 2
mj   will be 

close to 2
2
 . Each unit has its conditional probability mjp  and its individual expected 

variance, depending on relative distances from a common mean. 
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Next, consider a situation where the value of the parameter vector β  is unknown but 

all the other parameters are known. For a given set k of indicators, we have a usual 

linear mixed model, a component  | ,k kf y X θ  in representation (3.1.4). Then the 

maximum likelihood estimator for β  is a solution to the estimating equations  

1 1 0.T T
k k
  X Σ y X Σ Xβ        (3.1.15) 

Since the set of indicators is not known, the estimator for β  is a solution to the 

expectation of the expression (3.1.15) over the values of indicators. It is given by 

  1
1 1ˆ | | .T T

k kE E


        β X Σ y X X Σ y y      (3.1.16) 

See Appendix D. 

Note that β̂  is not a linear estimator on y. Correspondingly, the predictor for the 

random effects is not a linear predictor (it is still the best predictor (BP) with respect 

to the model.)  

For the exposition, it is convenient to take a look at the estimator for β  when it is a 

step in an iterative procedure (like the EM algorithm considered in Section 3.4). 

Suppose the value of 2N
mu  is known from the previous step. The estimator for β  at the 

current step is  

1

2 2 2

1 1 1 1

ˆ ( ),
m mn nM M

T T N
mj mj mj mj mj mj m

m j m j

y u 


 

   

 
  
 
 β x x x      (3.1.17) 

where  2 2 2
1 21mj mj mjp p        is the expected value of 2

mj  . Thus, each 

observation in the estimator for β  is “weighted” according to its probability of being 
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from part 2 of the mixture. Since for extreme outliers the expected value of 2
mj   is 

close to 2
2
 , their impact on the estimate of β  is reduced compared to the nested 

error regression model, where 2 2
1 2  . This makes the estimator of β  robust to 

outliers. 

The “direct” estimator of my  given by (3.1.9) also accounts for outliers. In fact, it 

cannot be called a “direct” estimator because it depends on units from other areas 

through the estimates of variances and the probabilities of belonging to part 2 of the 

mixture.  

3.2 Identifiability of the model parameters 

In this section we discuss identifiability of the parameters in model N2. We will use 

representation (3.1.4). 

Loosely speaking, a set of parameters is said to be identifiable when distinct sets of 

the parameter values determine distinct distributions. This sentence, of course, does 

not specify what is meant by a “distinct set”. For example, mixture distributions are 

invariant to permutations of their components (and thus, to permutations in the values 

of corresponding parameter vector). It makes sense to not disqualify mixture 

distributions as non-identifiable based on this simple fact. We now reproduce, with 

minor changes in notation, the definition of identifiability for mixture distributions, as 

stated in Yakowitz and Spragins (1968). 
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Let   F | , , , ,s n p nf    y X θ θ X y    be a family of n-dimensional 

distribution functions. The set of all finite mixtures of a class F  of distributions is the 

convex hull 

       
1 1

H | , : | , | , , 0, 1, | , F, 1,2,...
K K

k k k k k k k
k k

h h f f K  
 

       
 

 y X θ y X θ y X θ y X θ

Uniqueness of representation property means that if 

   ' '

1 1

| , | ,
K M

k k k l l l
k l

f f 
 

 y X θ y X θ      (3.2.1) 

then (1) K M and (2) for any 1 k K   there exist 1 l K  , such that '
k l   and 

   '| , | ,k k l lf fy X θ y X θ . 

If the uniqueness of representation holds for class H , it is said that the family F  

generates identifiable finite mixtures H . 

The finite mixtures generated by the family of n-dimensional multivariate normal 

distributions are identifiable, by Proposition 2 of Yakowitz and Spragins (1968). 

The proof of identifiability is particularly straightforward in the case of model N2. 

First, if 2 2
1 2  , then    '| , | ,k k l lf fy X θ y X θ  for all ,k l . Thus, all elements of 

H  coincide with the original distribution. Next, suppose 2 2
1 2  , and so 2nK  . 

We need to prove that the set of distributions   | , ; 1,...,2n
k kf k y X θ  involved in 

(3.1.4) is a linearly independent set. The uniqueness of representation of a mixture 

distribution as a linear combination of the component pdf’s follows immediately. 
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Below is the proof that the set of distributions   | , ; 1,..., 2n
k kf k y X θ  is indeed a 

linearly independent set. 

Suppose for a vector  1,...,
T

Ka a a ,  

 
2

1

| , 0
n

k k k
k

a f


 y X θ   for almost all y  (i.e., for all y  except possibly for a set of 

measure 0). 

Consider a linear combination of moment generating functions: 

     
2 2 2

1 1 1

| , | , 0
n n n

T T

k k k k k k k k
k k k

a g a e f d e a f d
  

     
  

   t y t yt y X θ y y X θ y . 

Therefore, 

 
12 2
2

1 1

0
n n

T T
k

k k k
k k

a g a e


 

  
t Xβ t Σ t

t  for all vectors t. 

Taking the zero vector  0,..., 0t , we obtain 

2

1

0.
n

k
k

a


          (3.2.2) 

Let  i k  denote a permutation of indexes k. It follows from (3.2.2) that for any 

permutation  i k , 

   

1

1

2 2

1 2 1

n n

n
i k i k

k k

a a


  

   .        (3.2.3) 



 

 85 
 

By using varying values of zero-one vectors  0,..., 0,1,0,...., 0t , where 1 appears in 

turn at different places, we find that  

   

1
2 2
1 2

1

1 12 2
2 2

1 2 1

0.
n n

n
i k i k

k k

e a e a
 



  

         (3.2.4) 

Hence, from (3.2.3) and (3.2.4) (and since 2 2
1 2  ), it follows that  

   

1

1

2 2

1 2 1

0
n n

n
i k i k

k k

a a


  

   .       (3.2.5) 

The above statement is true for all possible permutations of indexes. This can only be 

possible when 0ka  for all k. 

Thus, the set of functions in (3.1.4) is linearly independent. 

Suppose  
2

1

| ,
n

k k k
k

c f

 y X θ  and  

2

1

| ,
n

k k k
k

d f

 y X θ  are two representations of the 

same mixture distribution. Then    
2

1

| , 0
n

k k k k
k

c d f


  y X θ , for almost all y. This 

can only be true if 0k kc d   for every k. 

3.3 EM algorithm 

The EM (“expectation-maximization”) iterative algorithm of Dempster et al. (1977) 

is a suitable way of finding the maximum of the log-likelihood for the case of mixture 

distributions.  
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Equation (3.1.4), when it is viewed as a function of the parameter vector θ , defines 

the likelihood function for the random vector y . The log-likelihood is (we omit X, 

for simplicity) 

   
2

1

; log | .
n

k k k
k

L f


 y θ y θ       (3.3.1) 

This is not a convenient representation for the purpose of maximizing the likelihood 

function with respect to the vector of parameters. The efficacy of EM stems from a 

convenient form of the so-called “complete data” likelihood, which is the likelihood 

that handles the unobserved part of the augmented data vector as if it is being 

observed. 

Iteration of the EM algorithm consists of the so-called “E-step”, finding of the 

expected value of the logarithm of the likelihood function of the complete data 

likelihood, given the “current” values of parameters. This step is followed by the “M-

step”, which entails obtaining new values of the parameters as maximizers of this 

function. 

Consider a random vector of indicators  1,..., Ki i , where 1ki    when the realized 

vector y  comes from the k-th part of the mixture, and 0ki  , otherwise; 

 1 .k kP i     

From now on, let us denote the parameter vector by  1 2, , , , p  θ β . 

Note that the conditional probability of ki , given the data, is 
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   
 

|
1 | , .

|
k k

k

f
P i

h


 

y θ
y θ

y θ  

The expected value of the logarithm of the complete data likelihood function (if the 

vector of random effects u and indicator ki  would be observed, in addition to the data 

vector y),  given current values of the parameters, is 

   | log , , | | , ,c c
kQ E h i   θ θ y u θ y θ      (3.3.2)

 

with 

   
   

   1 11 1
y y

2 2
1 2 1 22 2

1 1
, , | 1 .

2 2

TT
kkk

n ll
k M n

k

h i p p e e
 

       
u D u Xβ Zu R Xβ Zu

y u θ
D R

 

The expectation in (3.3.2) is taken over the joint conditional distribution of u and ki  

given y .  | cQ θ θ  can be presented as a sum of two components: 

     | | | ,c c cQ U θθ θθ V θθ       (3.3.3)
 

where 

 | log | ,c c
kU E    θθ y θ

 

 
2

1

1| , log ,
n

c
k k

k

P i 


  y θ         (3.3.4) 

    | log , | 1, | , .c c
kE h i   V θ θ y u θ y θ       (3.3.5)
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Recall that k  is a function of p , so the first term of (3.3.3) depends on p ; 

however, the second term of (3.3.3) does not depend on p . Thus, the maximum 

likelihood of the parameter p  is based solely on the first part,  | cU θθ . 

Let us consider the term  | cU θθ first. To say that ki  is observed is the same as to say 

that a vector  1,... nz zz  is observed, where each component jz  is an indicator 

variable: 1jz  , when an observation j comes from the distribution with the 2
2  value 

for the random error variance, and 0jz  , otherwise; 1,...,j n .   

     
2

1

| 1| , log log ; | ,
n

c c c
k k

k

U P i E g p


     θθ y θ z y θ , 

where  ;g pz  is the likelihood function for p , when a z  is observed. (The 

expectation is over the conditional distribution of z  given y and the current values of 

the parameters.) 

   1
1

; 1 .jj

n
zz

j

g p p p




 z  

Thus,  

        
1

| | , log 1 | , log 1 .
n

c c c
j j

j

U E z p E z p


     θθ y θ y θ  

It follows that the M-step maximizer with respect to p  is 

 
1

1
| , ,

n
c

j
j

p E z
n





  y θ  
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where the conditional probability of an observation coming from part 2 of a mixture 

is  

 
 

2 2
2

2 2 2 2
1 2

| ,

1

T c
j jc

c c
c c
j j T c T c

j j j jc c

c c c c

y
p

p E z
y y

p p


 

 
   

 
 
   

    
    
       

x β

y θ
x β x β

,  (3.3.6) 

    is the standard normal pdf. 

Now consider the second term of (3.3.2). The complete data log-likelihood 

 log , | 1,kh i y u θ  has the form 

   1 1 1 11
log , | 1, log log ,

2
T T

k k kh i c         y u θ D u D u R e R e   (3.3.7)
 

where   e y Xβ Zu ,   2 2
1 21 ,k n kj kjdiag z z     R  for a combination 1ki   of 

the indicator vector,  1,... ;k k knz z z 2 ,MD I MI  is the identity matrix of size M , 

and c does not depend on the model parameters. (The inverse of kR  can be written 

as  1 2 2
1 21 .k n kj kjdiag z z       R ) 

For a given set of mixture indicators, the distribution is multivariate normal. The 

conditional expectation and variance of the random effects, given the data vector and 

the current values of the parameters are 

| , | , , | ,c c cE E E        u y θ u y z θ y θ  

          11 1 1 | ,c T c T c c c
k kE

      D Z R Z Z R y Xβ y θ    (3.3.8) 
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and 

| , | , , | , | , , | ,c c c c cVar E Var Var E                 u y θ u y z θ y θ u y z θ y θ  

           11 1 | ,c T c c
kE

    D Z R Z y θ  

           11 1 1 | , .c T c T c c c
k kVar

      D Z R Z Z R y Xβ y θ   (3.3.9)
 

(The expectations and variance on the right hand side of (3.3.8) and (3.3.9) are with 

respect to distribution of z  given y  and current values of the parameters.) 

Apart from the cases of unrealistically small samples, the direct computation of the 

above expectations is unfeasible because it involves evaluation of the products of all 

possible combinations of the individual unit probabilities  | ,c c
j jp E z y θ . We 

describe approximate methods for computation of (3.3.8) and (3.3.9) in Section 3.3.1 

below. For now, let us suppose this problem is solved and we obtained the values for 

these expressions.  

Denote 1 1 | , c
kE    R R y θ  . We have 

   1 2 2
1 21 c c

j jdiag p diag p     R      (3.3.10) 

and 

 1 2 2
1 2log | , 1 log logc c c

kE n p np        R y θ
 

        2 2
1 2

1

1 log log | ,
n

c
j j

j

E z z  



 
   

 
 y θ  
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       2 2
1 2

1

1 | , log | , log
n

c c
j j

j

E z E z  



         y θ y θ  

       2 2
1 21 log logc cn p np     ).               (3.3.11) 

Note also that  

1 1 1| , | , , | , | ,T c T c c T c
k kE E E E               e R e y θ e R e y u θ y θ e R e y θ   (3.3.12) 

We can write 

     2 2
1 2| , | ,c cc W    V θ θ θ θ                 (3.3.13) 

where 

  1 1 1 11
| log log | , ,

2
c T T cW E         θθ D u D u R e R e y θ             (3.3.14) 

and 

   2 2 1 1
1 2

1
, log | , log ,

2
c

kE       R y θ R               (3.3.15) 

with  

  1 2 2
1 2

1

log log 1
n

c c
j j

j

p p   



  R .               (3.3.16) 

Note that  | cW θθ  has the form of an expectation of the complete data log-likelihood 

function of a multivariate normal variable  ,nN Xβ Σ
 
with T Σ R ZDZ .  
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Proceed to maximize  | cV θθ . Since the term  2 2
1 2, 

 
of (3.3.13) does not 

involve parameters D  and β , the usual linear mixed model D  and β
 
maximizers of 

 | cW θθ  also maximize  | cV θθ : 

   11 1 | , ,T T cE
       β X R X X R y u y θ      (3.3.17) 

 2 1 1
| , | , | , | ,

TT c c c cE E E Var
M M

                  u u y θ u y θ u y θ u y θ  (3.3.18) 

The 2
1  and 2

2  maximizers of  | cV θθ  also have a simple explicit form. The 

derivatives are 

 
     2 22

1 11

| 1 1
1 | , 1 0,

c

T c c c
jE diag p n p

 

           

V θ θ
e e y θ  

 
   2 22

2 22

| 1 1
| , 0.

c

T c c c
jE diag p np

 

         

V θθ
e e y θ

 

(The expectations in the above formulas are with respect to the conditional 

distribution of u given y.) 

So the M-step maximizers with respect to

 

2
1  and 2

2  are 

   2
1

1
1 | , ,

1
T c c

jc
E diag p

n p
     

e e y θ              (3.3.19) 

 2
2

1
| , .T c c

jc
E diag p

np
     e e y θ               (3.3.20)

 

Thus at an iteration of the EM algorithm, we find maximizers of the expected value of 

the complete data log-likelihood. 
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3.3.1 Approximate computation of the first two conditional moments of 

the random effects 

We considered several possibilities for evaluation of expressions (3.3.8) and (3.3.9). 

Method 1. Consider the following Monte Carlo approximation. 

For an l-th Monte Carlo cycle, do the following: 

1. Given the current values of the conditional probabilities c
jp , draw a Poisson 

sample from the original data. Each observation is selected into the sample 

with probability c
jp . 

2. If an observation j is selected into the sample, assign it to part 2 of the 

mixture, i.e. let   1l
jz  ; otherwise assign it to part 1 of the mixture, i.e. let 

  0.l
jz   

3. Use the current values of the parameters and the values of indicators obtained 

in the above step to compute prediction for the random effects 

    11 1 1l c T c T c c
l l

      u D Z R Z Z R y Xβ     (3.3.21) 

and the variance 

  11 1 .l c T c
l

    υ D Z R Z                (3.3.22) 

Repeat this procedure L times and obtain the estimates of | , cE   u y θ
 
as an average 

of the Monte Carlo based predictions,  
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 1

1

ˆ .
L

l

l

L



 u u          (3.3.23) 

The variance of the prediction for the random effects is 

   | , | , , | , ,c c cVar E Var Var E           u y θ u y z θ u y z θ . The estimate of 

 | , , cE Var   u y z θ  is 

 1
1

1

ˆ
L

l

l

L



 υ υ .        (3.3.24) 

The variance  | , , cVar E   u y z θ of the predictions is estimated as  

    21

2
1

ˆ ˆ1 .
L

l

l

L




  υ u u        (3.3.25) 

The total variance | , cVar   u y θ  is 

1 2ˆ ˆ ˆ υ υ υ .         (3.3.26) 

We now provide justification for using the Poisson draws based on probabilities c
jp . 

We can write the quantity that we want to estimate by this procedure as 

| , | , , | ,c c cE E E        u y θ u y z θ y θ  

  | ,k cE    u y θ  

   
2

1

n

k k

k




 u        (3.3.27) 
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where  ku  is given by (3.3.21) and    

1

n
k k

j
j

p


 ;   1k c
j jp p   if 0kjz  , and 

 k c
j jp p  if 1;kjz   kjz  is indicator for position j at the k th mixture combination, 

1 2nk  ; note also that  
2

1

1.
n

k

k




  

In order to estimate the above target for a population of 2n ”units”, we select a sample 

of size L (the number of the Monte Carlo runs), with replacement, and with 

probability proportional to “size”, where the “size” variable is  k . This is 

accomplished by drawing the Poisson sample at each step l of the L Monte Carlo 

runs. The estimator from this sample is  

      
    

1

1

ˆ ,

L
l l l

l
L

l l

l

w

w














u
u  

where    1l lw  . Thus, 

 

1ˆ .

L
l

l

L

u

u  

Expressions (3.3.24) and (3.3.25) follow from similar considerations. 

The above method works well and the algorithm converges fast when the probability 

p of being in part 2 of the mixture is small. Otherwise, the method may be unstable 

and would require many repetitions of the Monte Carlo steps. 

Method 2. 

The idea is that we fit an area-level model corresponding to our unit-level model 

formulation and obtain prediction for the random effects from this area level model. 
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We also obtain the variance of the prediction from the same area level formulation. 

However, this variance does not account for the variability over the mixture 

indicators. The latter term is obtained using the Monte Carlo step.  

Consider the following vector of adjusted residuals: 

   11 1 ,c T c T c c    r Z R Z Z R y Xβ      (3.3.28) 

where 1cR  is a current value of the diagonal matrix defined by (3.3.10). 

Note that cr  is an area-level quantity that follows an area-level model with the same 

value of the random effects as the original unit level model (this is evident after 

noting that the multiplicative adjustments to the residuals cy Xβ  in (3.3.28) add up 

to one). Thus, the variance of the prediction of the random effect from this area-level 

model can be used as approximation to the expected variance of the prediction for 

random effect in the original unit-level model. This variance is  

  1

1
c c c c

 υ D H D H ,       (3.3.29) 

where  c c
M mdiag hH  is a diagonal matrix of the direct sample variances of cr . 

These variances are considered known in the area-level settings. We can approximate 

cH  by plugging in a value derived from the data, i.e., the variance c
mh  for area m is 

computed as 

 2

1

1
,

1

mn
c c c
m m mj m

jm

h n r r
n 

 
   

       (3.3.30) 
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where   ,c c T c
mj mj mj mjr q y  x β  

1

1

mn
c
mj mj mj

j

q w w





 
  
 
 ,    2 2

1 21mj mj mjw p p     . 

Prediction for the random effects is given by 

  1
.c c c c

 u D H D r         (3.3.31) 

The first term in the variance formula (3.3.9) is approximated by (3.3.29). Consider 

the second term now. We obtain it from the Monte Carlo simulations using formula 

(3.3.25). The total variance is 

1 2ˆ . υ υ υ           (3.3.32) 

In addition, from the same Monte Carlo setup, we can estimate the bias of the 

prediction as 

  1

1

L
k

l

L



 b u u  . 

In estimation of the variance components, we use the mean squared error 

| ,T cE   u u y θ  of the random effect. We estimate it by adding up the terms: 

.T T u u υ b b    

Thus, we use the outcome from the area-level model as an approximation for the 

random effects and we use the Monte Carlo simulations to approximate the mean 

squared error of this estimate. 

Method 3. 
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This method is very simple and it works well when the probability p of being in the 

outlier part is small. In such a case, the conditional probabilities mjp  for the outliers 

are close to 1, while the probabilities of the other units are close to zero. Then, just 

plugging in the probabilities in place of the mixture indicators produces good 

estimates. Thus, for the prediction of the random effects and the corresponding 

variance we can use 

 11 1 1c c T c T c c      u D Z R Z Z R y Xβ      (3.3.33) 

and the variance 

11 1 ,c T c     υ D Z R Z                 (3.3.34) 

where    1 2 2
1 21 .c c c c c

j jdiag p diag p     R  

When mjp  of the sample units are either close to 1 or close to 0, the second part of the 

variance,  | , , cVar E   u y z θ , is small. 

Note that this method works well in roughly the same situation as Method 1, yet it is 

simpler than Method 1. Effectively, this method replaces the ML estimation of the 

mixture model parameters by a two-step procedure. At the first step, the conditional 

probabilities mjp  and corresponding expected values for the inverse variances 2
mj 

 

are computed. At the second step, a multivariate normal model with variances 2
mj  is 

fitted. To repeat, this “plug-in” procedure works well when the mixture is “well” 

separated and mjp
 
are either close to 1 or to 0, effectively declaring with some 

confidence the mixture membership of the units. 
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3.4 Parametric bootstrap for prediction confidence intervals 

To obtain confidence intervals for the predictor of the random effects, we use the 

method analogous to the approach of Chatterjee, Lahiri, and Li (2008), henceforth, 

CLL.  

In this section, we present the bootstrap algorithm. The simulation results are 

presented in Section 3.8. 

To ease the notation we drop the superscript N2. 

The Bootstrap Algorithm 

The bootstrap is performed as follows. Define the “pivot” vector  1
ˆ ˆ ˆ,..., :M  

 

 1 ˆˆ ˆ ,r rY Y           (3.4.1)
 

where   1 ,... ,r r MrY Y Y  1
ˆ ˆ ˆ,... ,r r MrY Y Y  2 2ˆ ˆ

M mdiag  , and 2ˆ
m  is an estimate of 

variance (3.1.13) for area m. 

Although the components of the vector ̂  are not normally distributed, the 

distribution can be approximated using the parametric bootstrap analogous to the 

CLL approach. For the case of the mixed mixture model N2, the algorithm is given 

by the following steps: 

1. Generate * 2ˆ(0, )mu N 
 
and * ˆ~ (1; )mjz Bin p . 

2. Generate * 2
1ˆ(0, ),mje N  if * 0mjz   and * 2

2ˆ(0, ),mje N   if * 1.mjz   

3. A set of bootstrap data *
mjy  is obtained as 
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* * *ˆT
mj mj m mjy u e  x β , 

where  1,..., mj n , 1,...,m M . 

Let  

 * *ˆT
mr mr mY u x β        (3.4.2) 

be bootstrap versions of the “true” population means.  

4. From the bootstrap data *
mjy , obtain the bootstrap estimates of the parameters 

 * * * * *
1 2

ˆˆ ˆ ˆ ˆ, , , ,p   β  using the same method as is used for the estimates 

 1 2
ˆˆ ˆ ˆ ˆ, , , ,p   β .  

Let  

 * * *ˆ ˆ ˆT
mr mr mY u x β        (3.4.3) 

be a bootstrap estimate of * .mrY  

5. The vector 

  * * 1 * *ˆˆ ˆ
r rY Y   

 
      (3.4.4) 

is a bootstrap approximation of ̂ . 

In the above, *ˆmu  and the estimated parameters involved are bootstrap 

versions of the estimates of exactly the same form as the estimates based on 

the original sample.  
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The interval estimate for mrY  is given by  1 2
ˆ ˆˆ ˆ,mr m m mr m mY q Y q   , where 1mq  and 

2mq  are quantiles of the distribution of the bootstrap estimates *ˆ .m  

3.5 Bias correction 

In this section, we discuss two instances where the model assumptions may not hold. 

First, the outliers are assumed to appear randomly across areas. In fact, however, the 

outliers may be clustered in certain areas. This may lead to bias in the prediction of 

the area-level random effects. We propose an area-level bias correction method that is 

different from the one of Chambers et al. (2009): the proposed method attempts to 

preserve the efficiency of the initial model by introducing the corrections only to 

select areas, after these areas have been tested on possible outlyingness. Another 

potentially incorrect assumption is that the outliers are distributed symmetrically 

around a common mean. Failure of this assumption may lead to an overall bias across 

areas. The overall bias correction (OBC) can be based on the data combined from all 

areas, thus the initial modeling assumptions can be more safely relaxed to estimate 

the correction at this higher level. 

If an area contains several units that have a high probability of belonging to the 

“outlier” part of the mixture, it is possible that the whole area would tend to be an 

outlier. Note that if outliers tend to be clustered in some areas, this would mean that 

the distribution of the mixture indicators depends on the area label, which would 

contradict the model assumption (3.1.3). The failure of the random occurrence 

assumption may lead to significant biases in the areas with a larger portion of the 

outlying observations. We propose a test to determine that an area is not an outlying 
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area and a simple method for area-level bias correction in areas where the test fails, as 

described below.  

Consider the following “bias corrected” variations of 2ˆ N
mrY . 

Bias Correction 1 (BC1). Denote residuals ˆT
mj mj mje y  x β  .  

For each area, find the estimate of the mean residual using a mixture of two normal 

distributions model and by treating areas as fixed effects: 

,mj m mje             (3.5.1) 

2 2
1 2|  ~  (1 ) (0, ) (0, ),

iid

mj mj mj mjz z N z N         (3.5.2) 

1,..., , 1,..., ,mj n m M   and 

| ~ (1; ).
iid

mjz p Bin p         (3.5.3) 

The BC1 estimator is 

 2 1 1ˆ ˆ ˆ ,N BC T BC
mr mr mY   x β       (3.5.4) 

where 1ˆ BC
m  is the estimate of m  from the above model. 

Bias Correction 2 (BC2). As a general rule, BC1 may be inefficient in areas where 

the estimates of m  are based on a small number of observations. Therefore, we 

propose to use 2 1ˆ N BC
mrY   only when we can demonstrate that an area m is an outlying 

area. Consider the following statistic: 
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 1

1

ˆ ˆ .
mn

m m mj
j

p n p



         (3.5.5) 

The distribution of the statistic ˆmp  under the random occurrence assumption can be 

simulated using the estimated model parameters. These simulated values can be used 

to obtain a threshold. If the actual estimated ˆmp  is greater than the threshold, the 

whole area is considered an outlier. The detailed procedure for an area m can be 

described by the following steps: 

Generate ˆ~ (1; )Bin p  and 
2 2
1
2 2
2

ˆ ˆ(0, ) if =0

ˆ ˆ(0, ) if =1

N

N

  


  
 



 .  

Using the Bayes formula, find the probability of belonging to part 2 of the mixture, 

given the value of  :  

 ( ) ˆ{ 1| ; }ap P z   θ  

 
 

ˆˆ { | 1; }
ˆ ˆˆ ˆ1 { | 0; } { | 1; }

pP z

p P z pP z


 




   
θ

θ θ
 

2

2 22 2
22

2 2

2 2 2 22 2 2 2
1 21 2

ˆ 1
exp

ˆ ˆ2ˆ ˆ
.

ˆ ˆ1 1 1
exp exp

ˆ ˆ ˆ ˆ2 2ˆ ˆ ˆ ˆ

p

p p


  

 
      

 
   


   
            

Repeat steps 1 and 2 mn  times: 1,..., ma n . 

Let ( ) 1 ( )

1

mn
b a

m m
a

p n p



   be the average of mn  simulated values of p .  

Repeat steps 1-4 a large number of times: 1,...,b B (say, 500B  ).  
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Using the simulated values ( ) ,b
mp  1,...,b B , estimate a “theoretical value” mc  such 

that { }m mP p c  is smaller than some predetermined level  . This value depends on 

the number of units in area m.  

If the actual value, obtained as (3.5.5), is higher than mc , then the area m has more 

outliers than would be in a “regular” area under the random occurrence assumption; 

thus, it can be regarded as an outlying area, and the bias correction (3.5.4) is applied; 

otherwise, the bias correction is not applied. In our simulations, for application of the 

bias adjustment, we required that an area had at least four sample units and ˆm mp c , 

where 0.005  :  

 
1

2

2

ˆ ˆ, if  and 4
ˆ

ˆ ,

BC
BC m m m m
m N

m

p c n
u

u otherwise

  
 


     (3.5.6) 

The BC2 estimator is 

 2 2 2ˆ ˆ ˆ ,N BC T BC
mr mr mY u  x β       (3.5.7) 

Remark 1. The data consists of the individual measurements mjy , with the 

corresponding area labels, while the area-level effects mu  are not observable. It is not 

obvious what is meant by “outlyingness” of an unobserved quantity in the REBLUP 

approaches. The mixture model formulation, on the other hand, allows the description 

of the outlying areas in terms of the observable quantities, i.e., as individual outliers 

clustered in certain areas. 

Remark 2. Once an area is identified as an outlying area, one may ponder on the 

meaning of “good” prediction for such area. One can imagine a situation where 
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“borrowing strength” across areas for prediction in an outlying area is a wrong 

strategy. Since the area does not fit the model, it is possible that the best course of 

action is to recognize that using shrinkage estimator for such area would be rather 

misleading, remove it from the model and perhaps use the direct estimator as 

prediction for such area. 

Overall Bias Correction, (OBC). By using (3.5.6), we correct biases in specific 

outlying areas. Still, it is possible that the assumption that outliers are distributed 

symmetrically around a common mean may not hold. Failure of this assumption 

would result in an overall bias. In the simulation study reported in this paper, we 

correct the initial estimate by adding a robust estimate of the overall mean of 

residuals to each small area prediction 2 2ˆ N BC
mrY  . (Alternatively, the overall bias may 

be corrected by benchmarking the small area estimates to a more reliable aggregate 

level estimate. We did not pursue this approach here.) The data from all areas are 

involved in estimation of the overall bias. Thus, the OBC estimation is not a problem 

of small area estimation, and the assumptions may be considerably relaxed.  

Denote residuals 2 2 2ˆ ˆ .N BC T BC
mj mj mj me y u   x β  The overall bias corrected estimator is

 

 2 2 2 1 *

1 1

ˆ ˆ ,
mnM

N OBC N BC
mr mr mj

m j

Y Y n e  

 

        (3.5.8) 

where * 2 2min( , max( , ))N BC
mj mje s c r c 

   , 2 2 2 2 ,N BC N BC
mj mjr e s   s  is a robust 

estimate of scale for the set of residuals  2 2; 1,..., , 1,...,N BC
mj me j n m M    (e.g., 

2 2 2 2( ) 0.6745N BC N BC
mj mjs med e med e   ), c  is a tuning parameter (e.g., 5c  ).  
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Remark 3. We could have slightly modified the initial mixture model assumption and 

allow the outlying part to have a different mean. This, in our view, would contradict 

the definition of outlier, which is an unusual observation for a given model: In the 

absence of additional information in the initial model, we opt for the assumption of 

symmetry.  

The REBLUP and MQ estimators also can be corrected using the overall bias 

correction; however, the OBC alone would not correct the bias in particular outlying 

areas. For example, the following OBC for the REBLUP (SR or Fellner’s versions) 

estimator can be considered. 

Let ˆREBLUP REBLUP
mj mj mre y Y  , then the overall bias corrected REBLUP is 

 1

1 1

ˆ ˆ ,
m

REBLUPnM
mjREBLUP OBC REBLUP REBLUP

mr mr b REBLUP
m j

e
Y Y n s

s
 

 

 
    

 
   (3.5.9) 

where REBLUPs  is a robust measure of scale for the set of residuals 

 ; 1,..., , 1,...,REBLUP
mj me j n m M  , e.g., ( ) 0.6745REBLUP REBLUP REBLUP

mj mjs med e med e   

and b  is a bounded Huber’s function     min ,max ,b x b b x  
 
with the tuning 

parameter b = 5. 
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3.6 Simulation study 

The purpose of the simulation study is to compare the performances of different 

methods under different scenarios. For the first four scenarios, we use a similar setup 

as described in Chambers et al. (2009) with the only difference that we consider the 

unbalanced case. These scenarios explore cases where there is (1) no contamination 

in the random terms; (2) contamination in the random effect term only (describing 

outliers at the area level); (3) contamination in the random error term (describing 

individual outliers); (4) contamination in the random effect and random error terms 

(describing area-level and individual outliers). Outliers in scenarios 1-4 have different 

mean and a larger variance than the bulk of the data, thus we impose asymmetry on 

the distribution of the random terms. In the fifth scenario, we modify the setup to 

include a larger fraction of observations with large variance. Finally, in scenarios 6-8, 

the data is generated from models having the t-distribution with 2 degrees of freedom 

in random errors, random effects, or in both random terms. We now describe the 

details of the setup.  

There are 40 areas. The sample sizes of the areas are 1 3, 1n n  , 2 5, 2n n  , 3 6, 3n n  , 

7 11 7,mn     12 16 9,mn     17 10,n   18 50,n   19 38 5,mn     39 10,n  40 30n  . The 

population sizes are 20m mN n . From each area, a sample is selected using simple 

random sampling without replacement. The auxiliary variable mjx  is generated from 

the lognormal distribution with mean 1.004077 and standard deviation of 0.5 and the 
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population values mjy  are generated as 100 5mj mj m mjy x u     . The scenarios for 

distribution of mu  and mj  are described below.  

(1) No contamination scenario, [0,0]: ~ (0,3)mu N , ~ (0,6)mj N ; 

(2) Outlying areas, [0,u]: for the first 36 areas, ~ (0,3)mu N ; for the last four 

areas, ~ (9,20)mu N ; ~ (0,6)mj N  for all observations; 

(3) Individual outliers, [e,0]: ~ (0,3)mu N  for all areas; ~ (0,6)mj N  with 

probability 0.97 and ~ (20,150)mj N  with probability 0.03; 

(4) Individual outliers and outlying areas, [e,u]: for the first 36 areas, 

~ (0,3)mu N ; for the last four areas, ~ (9,20)mu N ; ~ (0,6)mj N  with 

probability 0.97 and ~ (20,150)mj N  with probability 0.03; 

(5) Individual outliers only, a high-peaked center of the distribution and very long 

tails, [70/30]: ~ (0,9)mj N  with probability 0.7 and ~ (0,900)mj N  with 

probability 0.3; random effects are ~ (0,9)mu N ; 

(6) [et,0]: the t distribution with 2 degrees of freedom for the random error term

2~ (0,9)mj t ; random effects are ~ (0,9)mu N ; 

(7) [0,ut]: the t distribution with 2 degrees of freedom for the random effect term

2~ (0,9)mu t ; random errors are ~ (0,9)mj N ; 

(8) [et,ut]: the t distribution with 2 degrees of freedom for the random error and 

random effect terms, 2~ (0,9)mj t , 2~ (0,9)mu t . 
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The tuning parameters in the bounded Huber’s function for REBLUP are set to 

b=1.345; for the bias-correction of REBLUP (Fellner and SR) and MQ, the tuning 

parameters are set to b=3. The tuning parameter for the overall bias correction is b=5. 

We used 250 simulation runs for each of the above scenarios and compared the 

estimates with the corresponding population area means. 

To assess the quality of the estimators, we used the median value of the relative bias, 

250 2501 1

1 1

ˆ100 {250 ( ) 250 }m ms ms mss s
RB med Y Y Y 

 
    ,  and the median of the 

relative root mean squared error, 

250 2501 2 1

1 1

ˆ100 250 ( ) 250m ms ms mss s
RRMSE med Y Y Y 

 

    
 

  , index 1,...,250s 

denotes the simulation run. 

The results of the simulation are presented in Table 11-Table 14 and plotted in Figure 

4 and Figure 5. The meaning of the labels used in the tables is listed below: 

- “Direct” is the direct sample estimate;  

- “EBLUP” is the estimate based on the nested-error regression model;  

- “REBLUP(F)” is REBLUP using Fellner’s method, “F+BC” is its bias-

corrected version;  

- “REBLUP(SR)” is REBLUP using the Sinha-Rao method, “SR+BC” is its 

bias-corrected version;  

- “MQ” is the M-quantile based estimate, “MQ+BC” is its bias-corrected 

version; 
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- “N2(1)”, “N2(2)”, and “N2(3)” are estimates based on the mixture model 

using, respectively, Methods 1, 2 or 3 of the EM algorithm (as described in 

Section 3.3.1);  

- ”N2(1)+BC1”, ”N2(2)+BC1”, ”N2(3)+BC1” are the BC1-corrected versions 

of N2(1), N2(2), and  N2(3), respectively;  

- “N2(1)+BC2”, “N2(2)+BC2”, “N2(3)+BC2” are the BC2-corrected versions 

of N2(1), N2(2), and  N2(3), respectively; 

- “N2(1)+OBC”, “N2(2)+OBC”, “N2(3)+OBC” are the overall bias corrections 

after the individual area corrections N2(1)+BC2, N2(2)+BC2, N2(3)+BC2, 

respectively; 

- “N2(1)+OBC*”, “N2(2)+OBC*”, “N2(3)+OBC*” are the overall bias 

corrections of N2(1), N2(2), N2(3) without making the area-level corrections 

first; 

- “F+OBC” is the overall bias corrections for Fellner’s REBLUP. 

First, consider scenarios (1)-(4) (see Table 11 and Table 12).  

In the no-outliers situations (the [0,0] and [0,u]/1-36 columns), the N2 estimators 

work similar to the regular EBLUP. The BC2 and OBC versions of N2 did not lose 

much efficiency compared to the uncorrected N2.  

If there are only individual outliers (the [e,0] and [e,u]/1-36 columns), all robust 

estimators work similarly and significantly better than EBLUP. Bias correction 

reduces the efficiency somewhat, although the BC2 versions of N2 work better than 

the versions that do not use the random occurrence test.  
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In the outlying areas only case (the [o,u]/37-40 column), N2 estimator performs 

similar to EBLUP or REBLUP, while the MQ estimator has a larger bias. The BC 

estimators reduce the biases of the respective estimators and the random occurrence 

test in the N2 case verifies that the areas are outliers and the corrections are 

necessary.  

The N2 estimator has a large bias when both the individual and area outliers are 

present (the [e,u]/37-40 column). This bias is corrected in the N2+BC versions. The 

efficiency of the N2+BC versions in the four outlying areas is better than that of 

EBLUP but it is worse than the efficiency of REBLUP.  

Overall, N2+OBC* estimators work well, except for the outlying areas; N2+OBC 

versions work similar to N2+OBC* when there is no area-level outliers and are better 

in the outlying areas. As noted earlier, we may consider testing on area outlyingness 

using the proposed test, then estimating the outlying areas outside the model. 

Plots in Figure 4 show relative errors for each area in scenarios (1)-(4). The areas on 

the plots are sorted in ascending order of their sample sizes. 

For scenario (5) (see Table 13), all N2 versions are better than the other estimators. 

The bias correction after the random occurrence test works much better than the other 

versions of the bias corrected estimators, although there is still certain loss in 

efficiency. If a similar situation happens in the CES data, then a version of the N2 

estimators may be preferred. Relative errors for areas in scenario (5) are shown in 

Figure 5 (panel 5).  
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Results for scenarios 6-8 are presented in Table 14. In the [et,0] scenario, where the 

random errors are generated from the t-distribution, all robust estimators have similar 

performance and are more efficient than EBLUP or the direct estimator; the BC 

versions that are applied without the test are significantly less efficient than the 

original estimators. In the [0,ut] scenario, where the random effects are generated 

from the t-distribution, the N2 estimator may be biased for some areas. The bias 

corrected versions repair this deficiency. After the correction, N2 performs similar to 

REBLUP or EBLUP, there is no gain in efficiency compared to the non-robust 

version of EBLUP. In scenario [et,ut], where both random terms are generated from 

the t-distribution, REBLUP versions perform better than the other estimators. The 

BC2 versions of N2 correct for the bias in the outlying areas and are more efficient 

than EBLUP or MQ but they are less efficient than the REBLUP versions. Plots for 

the t-distribution scenarios are shown in Figure 5 (panels 6-8). It is evident from the 

simulations that the random occurrence test and subsequent bias correction is 

necessary for the N2 versions in scenarios (7) and (8). 
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(1) 

 

(2) 

 

(3) 

 

(4) 

Figure 4. Relative errors for scenarios 1-4, areas are sorted in ascending order of the 
sample size: (1) [0,0] scenario; (2) [0,u] scenario; (3) [e,0] scenario; (4) [e,u] 
scenario. 
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No outliers Individual outliers only 

Area 
outliers 

Individual 
and area  
outliers 

Estimator / 
Scenario 

[0,0] [0,u]/1-36 [e,0] [e,u]/1-36 
[0,u]/37-

40 
[e,u]/37-

40 
Direct -0.05 -0.05 0.03 0.01 -0.04 0.11 

EBLUP 0.00 0.06 0.01 0.18 -0.39 -1.06 
REBLUP (F) 0.01 0.07 -0.38 -0.31 -0.43 -0.77 
REBLUP(SR) 0.01 0.08 -0.38 -0.29 -0.31 -0.65 

MQ 0.03 0.16 -0.36 -0.21 -0.83 -0.45 
N2(1) 0.00 0.06 -0.46 -0.30 -0.48 -2.51 
N2(2) 0.01 0.05 -0.45 -0.34 -0.35 -1.85 
N2(3) 0.00 0.06 -0.45 -0.27 -0.40 -2.11 

F+BC 0.00 0.01 -0.30 -0.28 -0.01 -0.23 
SR+BC 0.00 0.02 -0.30 -0.27 -0.01 -0.21 
MQ+BC 0.01 0.02 -0.28 -0.26 -0.10 -0.19 

N2(1)+BC1 0.00 0.01 0.00 -0.01 0.01 0.06 
N2(1)+BC2 0.01 0.06 -0.43 -0.29 -0.09 -0.54 
N2(2)+BC1 0.00 0.01 0.00 0.00 0.01 0.06 
N2(2)+BC2 0.01 0.05 -0.43 -0.33 -0.06 -0.35 
N2(3)+BC1 0.00 0.01 0.00 -0.01 0.01 0.06 
N2(3)+BC2 0.01 0.05 -0.43 -0.26 -0.01 -0.47 

N2(1)+OBC 0.01 0.02 -0.22 -0.17 0.01 -0.43 
N2(1)+OBC* 0.00 0.08 -0.23 0.11 -0.47 -2.12 
N2(2)+OBC 0.01 0.02 -0.22 -0.21 -0.09 -0.24 

N2(2)+OBC* 0.01 0.06 -0.22 0.01 -0.35 -1.53 
N2(3)+OBC 0.01 0.02 -0.22 -0.17 0.05 -0.38 

N2(3)+OBC* 0.00 0.06 -0.22 0.05 -0.40 -1.82 
F+OBC 0.00 0.07 -0.23 -0.16 -0.43 -0.63 

Table 11. Simulation results for scenarios 1-4 (250 runs) Median values of relative 
biases, expressed as a percentage. 
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No outliers Individual outliers only 

Area 
outliers 

Individual 
and area  
outliers 

Estimator / 
Scenario 

[0,0] [0,u]/1-36 [e,0] [e,u]/1-36 
[0,u]/37-

40 
[e,u]/37-

40 
Direct 3.13 3.14 3.41 3.45 2.49 2.77 

EBLUP 0.79 0.85 1.21 1.41 0.81 1.70 
REBLUP(F) 0.82 0.82 0.97 0.97 0.84 1.10 

REBLUP(SR) 0.83 0.84 0.98 0.97 0.82 1.02 
MQ 0.83 0.85 0.99 0.98 1.44 1.21 

N2(1) 0.80 0.85 0.98 0.95 0.92 3.56 
N2(2) 0.81 0.87 1.00 1.00 0.81 2.81 
N2(3) 0.79 0.85 0.98 0.96 0.81 3.09 

F+BC 0.89 0.91 1.19 1.19 0.72 0.93 
SR+BC 0.89 0.91 1.18 1.19 0.72 0.94 
MQ+BC 0.89 0.90 1.19 1.20 0.77 1.02 

N2(1)+BC1 0.89 0.91 1.64 1.62 0.72 1.33 
N2(1)+BC2 0.82 0.85 1.11 0.96 0.75 1.54 
N2(2)+BC1 0.89 0.91 1.64 1.64 0.72 1.33 
N2(2)+BC2 0.84 0.87 1.10 1.02 0.75 1.36 
N2(3)+BC1 0.89 0.91 1.63 1.65 0.72 1.33 
N2(3)+BC2 0.83 0.86 1.10 0.97 0.73 1.47 

N2(1)+OBC 0.82 0.85 1.05 0.93 0.76 1.49 
N2(1)+OBC* 0.80 0.86 0.91 0.93 0.91 3.26 
N2(2)+OBC 0.84 0.87 1.04 0.99 0.75 1.32 

N2(2)+OBC* 0.81 0.87 0.93 0.96 0.81 2.58 
N2(3)+OBC 0.83 0.86 1.04 0.95 0.74 1.44 

N2(3)+OBC* 0.79 0.85 0.91 0.94 0.81 2.84 
F+OBC 0.82 0.82 0.93 0.93 0.84 1.00 

Table 12. Simulation results for scenarios (1)-(4). Median values of relative root 
mean squared errors, expressed as a percentage. 
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Estimator Med Rel Bias, % Med Rel Root MSE,%

Direct 0.02 6.75 
EBLUP 0.05 2.92 

REBLUP (F) 0.00 2.36 
REBLUP (SR) 0.02 2.52 

MQ 0.08 2.43 
N2(1) 0.00 2.07 
N2(2) 0.00 2.05 
N2(3) -0.01 2.09 

F+BC 0.03 3.96 
SR+BC 0.03 3.88 
MQ+BC 0.03 4.14 

N2(1)+BC1 0.01 5.72 
N2(1)+BC2 0.00 2.20 
N2(2)+BC1 0.05 5.73 
N2(2)+BC2 0.00 2.18 
N2(3)+BC1 0.02 5.72 
N2(3)+BC2 -0.01 2.21 

N2(1)+OBC 0.02 2.26 
N2(1)+OBC* 0.03 2.15 
N2(2)+OBC 0.03 2.22 

N2(2)+OBC* 0.03 2.12 
N2(3)+OBC 0.02 2.27 

N2(3)+OBC* 0.02 2.18 
F+OBC 0.02 2.40 

Table 13. Simulation results for scenario 5, [70/30]. Median values of relative biases 
and relative root mean squared errors, expressed as a percentage. 
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(5) 

 

(6) 

 

(7) 

 

(8) 

Figure 5. Relative errors for scenarios 5-8, areas are sorted in ascending order of the 
sample size: (5) [70/30] scenario (see Table 13); (6) [et,0] scenario; (7) [0,ut] 
scenario; (8) [et,ut] scenario.  
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Estimator Med Rel Bias, % Med Rel Root MSE,% 

 [et,0]  [0, ut] [et, ut]  [et,0] [0, ut] [et, ut] 
Direct  -0.03 -0.04 0.04  4.17 3.22 4.14 

EBLUP  -0.07 -0.01 0.03  2.15 1.11 2.66 
REBLUP (F)  -0.02 0.00 0.02  1.61 1.11 1.75 

REBLUP (SR)  0.00 0.00 0.02  1.62 1.13 1.77 
MQ  0.07 0.08 0.15  1.64 2.43 2.39 

N2(1)  0.02 0.00 -0.03  1.65 4.32 3.87 
N2(2)  0.01 -0.01 0.03  1.64 1.12 2.44 
N2(3)  0.02 0.00 0.01  1.65 1.11 2.87 

F+BC  -0.04 0.00 0.01  2.07 1.14 2.13 
SR+BC  -0.03 0.00 0.01  2.08 1.14 2.13 
MQ+BC  -0.01 0.02 0.03  2.06 1.51 2.34 

N2(1)+BC1  -0.09 0.00 0.00  2.77 1.14 2.87 
N2(1)+BC2  0.01 0.00 0.02  1.70 1.11 1.96 
N2(2)+BC1  -0.09 -0.01 0.01  2.77 1.14 2.87 
N2(2)+BC2  0.00 -0.01 0.00  1.66 1.11 2.06 
N2(3)+BC1  -0.09 -0.01 0.01  2.77 1.14 2.87 
N2(3)+BC2  0.00 -0.01 0.02  1.68 1.11 2.09 

N2(1)+OBC  -0.01 0.00 0.02  1.71 1.11 1.96 
N2(1)+OBC*  0.01 0.02 -0.02  1.65 4.31 3.87 
N2(2)+OBC  -0.01 -0.01 -0.01  1.66 1.11 2.06 

N2(2)+OBC*  -0.01 -0.01 0.03  1.63 1.12 2.44 
N2(3)+OBC  -0.01 -0.01 0.02  1.69 1.11 2.09 

N2(3)+OBC*  0.00 0.00 0.01  1.65 1.11 2.86 
F+OBC  -0.02 0.00 0.02  1.62 1.11 1.76 

Table 14. Simulation results for scenarios 6-8. Median values of relative biases and 
relative root mean squared errors, expressed as a percentage. 
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3.7 Properties of the parameter estimates when the number of 

areas increases  

The simulation study of this subsection is designed to explore how the parameter 

estimates change with the increased number of areas. Consistent estimators would 

tend to true parameter values for a given model.  

Consider three cases where the number of areas is M=20, 40, or 60. The number of 

sample units in each area is 5mn  . Similar to the simulation setup in the previous 

section, the auxiliary variable mjx  is generated from the lognormal distribution with 

mean 1.004077 and standard deviation of 0.5 and the sample values mjy  are 

generated as 100 5mj mj m mjy x u     . Random effects are ~ (0,9)mu N .  Random 

errors are distributed as  ~ 1 (0,9) (0,900).mj p N pN    Consider two scenarios for 

the portion of observations with larger variance (1) 0.03p   or (2) 0.30p  . 

We considered the N2 estimators based on the three versions of the EM algorithm 

described in Section 3.3.1. Table 15 and Table 16 report mean estimates and the 

simulation standard errors (in parentheses) of the estimators of the parameters based 

on 1000 Monte Carlo iterations. 

When 0.03p  ,  the general conclusion is that, as the number of areas increases, the 

standard error decreases and the estimates tend to the values of the parameters. For 

the larger fraction, 0.30p  , there is a considerable bias in the estimate of 2  and we 

cannot claim that it reduces when the number of areas increases. The bias is smaller 

for the Method 2 of N2. 
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1  2  

2
1  2

2  2  p  

True 
values 100 5 9 900 9 0.03 

M=20 

N2 (1) 100.00 
(1.01) 

5.01 
(0.22) 

9.21 
(1.71) 

835.05 
(947.23) 

7.93 
(3.20) 

0.07 
(0.07) 

N2 (2) 100.00 
(1.10) 

5.00 
(0.22) 

8.36 
(1.65) 

836.82 
(956.08) 

9.08 
(3.35) 

0.07 
(0.07) 

N2(3) 99.99 
(1.01) 

5.01 
(0.22) 

9.39 
(1.75) 

797.43 
(937.97) 

7.88 
(3.24) 

0.08 
(0.08) 

M=40 

N2 (1) 99.99 
(0.70) 

5.00 
(0.15) 

9.41 
(1.23) 

865.26 
(674.41) 

8.01 
(2.40) 

0.05 
(0.04) 

N2 (2) 100.01 
(0.75) 

5.00 
(0.16) 

8.52 
(1.16) 

864.31 
(673.42) 

9.05 
(2.48) 

0.04 
(0.04) 

N2(3) 99.99 
(0.70) 

5.00 
(0.15) 

9.49 
(1.24) 

809.44 
(662.05) 

7.93 
(2.43) 

0.05 
(0.05) 

M=60 

N2 (1) 100.02 
(0.57) 

5.00 
(0.12) 

9.56 
(1.06) 

925.69 
(598.49) 

8.14 
(1.86) 

0.04 
(0.03) 

N2 (2) 100.01 
(0.61) 

5.00 
(0.12) 

8.70 
(1.00) 

924.37 
(598.76) 

9.07 
(1.91) 

0.04 
(0.03) 

N2 (3) 100.02 
(0.57) 

5.00 
(0.12) 

9.58 
(1.04) 

856.85 
(590.87) 

8.04 
(1.89) 

0.04 
(0.04) 

Table 15. Mean estimates and the simulation standard errors (in parentheses) for 
scenario with  p = 0.03 (a method used in the EM algorithm is indicated in 
parentheses next to N2) 
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1  2  

2
1  2

2  2  p  

True 
values 100 5 9 900 9 0.30 

M=20 

N2 (1) 100.00 
(1.35) 

5.00 
(0.34) 

12.64 
(3.92) 

917.03 
(268.32) 

5.36 
(2.83) 

0.30 
(0.06) 

N2 (2) 100.03 
(1.38) 

5.00 
(0.34) 

10.92 
(3.34) 

916.76 
(268.04) 

7.47 
(3.34) 

0.30 
(0.06) 

N2 (3) 100.00 
(1.36) 

5.00 
(0.35) 

13.58 
(4.21) 

904.33 
(266.21) 

4.25 
(2.86) 

0.30 
(0.06) 

M=40 

N2 (1) 100.00 
(0.87) 

4.99  
(0.23) 

12.52 
(2.51) 

902.09 
(190.51) 

5.50 
(2.10) 

0.30 
(0.04) 

N2 (2) 100.01 
(0.90) 

4.99 
(0.23) 

10.79 
(2.15) 

902.07 
(190.40) 

7.46 
(2.41) 

0.30 
(0.04) 

N2 (3) 100.00 
(0.88) 

4.99 
(0.23) 

13.52 
(2.73) 

892.00 
(189.15) 

4.36 
(2.12) 

0.30 
(0.04) 

M=60 

N2(1) 99.99  
(0.73) 

5.01 
(0.18) 

12.54 
(2.07) 

916.64 
(153.37) 

5.54 
(1.62) 

0.30 
(0.04) 

N2(2) 99.99 
(0.74) 

5.00 
(0.18) 

10.80 
(1.73) 

915.74 
(152.97) 

7.43 
(1.89) 

0.30 
(0.04) 

N2 (3) 99.99  
(0.74) 

5.01 
(0.18) 

13.55 
(2.23) 

905.57 
(152.08) 

4.42 
(1.63) 

0.30 
(0.04) 

Table 16. Mean estimates and the simulation standard errors (in parentheses) for 
scenario with  p = 0.30 (a method used in the EM algorithm is indicated in 
parentheses next to N2) 

3.8 Simulations for prediction confidence intervals using the 

parametric bootstrap 

The simulation setup is similar to the one described in previous subsections. There are 

M = 40 areas. The auxiliary variable mjx  is generated from the lognormal distribution 

with mean 1.004077 and standard deviation of 0.5 and the population values mjy  are 

generated as 100 5mj mj m mjy x u     . We used several patterns for the random 

terms: 
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- [0,0] pattern (no outliers): individual errors are ~ (0,6)mj N ; random effects 

are ~ (0,3)mu N ; 

- [e0,0] pattern (individual outliers, symmetrical distribution): individual errors 

are ~ (0,6)mj N  with probability 0.97 and ~ (0,150)mj N  with probability 

0.03;  random effects are ~ (0,3)mu N ; 

- [70/30] pattern (individual outliers, symmetrical distribution, large fraction of 

the part 2 mixture units): individual errors are ~ (0,9)mj N  with probability 

0.70 and ~ (0,900)mj N  with probability 0.30; random effects are 

~ (0,9)mu N . 

Each area contains 1000 population units from which 5 units are selected using 

simple random sampling without replacement. 

We used 100 simulated populations and corresponding samples. For each simulation 

run, we obtained 100 bootstrap estimates for each area. The 95% confidence intervals 

were constructed from the bootstrap pivots in all 40 areas.  

Two alternative models were used: a nested error regression model (denoted EBLUP) 

and the N2 mixture model without bias correction. The results are summarized in 

Table 17. 
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Scenario EBLUP N2 

[0,0] 95.0 
(3.9) 

94.8 
(3.7) 

[e0,0] 94.7 
(5.1) 

95.9 
(4.1) 

[70/30] 59.5 
(10.7) 

96.2 
(7.7) 

Table 17. Average coverage and median length of confidence intervals (nominal 
coverage 95%) using the NER model and the N2 mixture model, for different 
population patterns 

Both models work well for the [0,0] (no outliers) scenario. In the other two scenarios, 

the confidence intervals based on the N2 model give approximately the nominal 

coverage. We encountered problems with estimation of parameters for EBLUP: in 

large percentage of the simulation runs, the NER model produced zeros for the 

variance of the random effects term. To avoid the appearance of zeros, we replaced 

zeros in variance by 0.0001. The length of the bootstrap intervals for EBLUP version 

is very unstable, and the result depends on the value we chose to replace the zero 

variances. 

3.9 Linearization of a finite population target in small area 

estimation, with application to the CES survey 

In order to apply a unit level model, when a target has a predefined form, we need to 

linearize the target population quantity, similar to the way discussed in Section 2.1 of 

Chapter 2. In this section, we first obtain linearization in the case of small areas, in 

general terms. Then we apply the method to estimation of the relative change in 

employment for small areas in CES. 

There are two related purposes in linearizing a target quantity in small area context. 

First, it provides a way of formulating a small area model at the unit level. Second, 
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the form of a target finite population quantity, by the means of its influence function, 

dictates what observations are to be considered influential. Thus, the structure of the 

unit-level data is determined by the form of the target population parameter of 

interest. The role of the model is to provide a useful description of this structure. 

To estimate a pre-defined target using a sample of a limited size, it is possible to use 

an area-level SAE model. To do this, one would first derive an estimate using the 

sample and then stabilize this direct sample estimate by applying an area-level 

method. In many situations, however, it is preferable to formulate a model at the unit 

level. If the unit-level auxiliary information is available, modeling incorporating such 

information can be especially beneficial. However, there are reasons to consider a 

unit-level modeling even in the absence of such auxiliary data. The direct sample-

based estimates can be affected by influential observations. In such a case, using a 

model that is robust to the unit level outliers may be beneficial. 

In the area level Fay-Herriot model, variances of the direct sample based estimates 

are considered to be known. In practice, some sort of a generalized variance function 

is used to supply the variances of the direct estimates.  However, these smoothed 

variances do not always properly reflect the possibility that a particular realized 

sample contains extreme observations. If this happens, the harmful effect that such 

units have on the direct sample estimate carries over onto the resulting area-level 

model estimates.  

Assume a vector of population measurements  1,...,
mNy y y  in area m  is a 

realization from a superpopulation distribution (each jy  can be a vector of 
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measurements on a unit j ). Denote by 
mNF  the empirical distribution function (edf) 

of the finite population in area m. The finite population quantity of interest is some 

 
mNT F , it is assumed to be sufficiently regular to be linearized near mF , the ideal 

distribution in area m , using  a Taylor expansion. Similar to (2.1.1), we write 

     1
,

1

m

m m m

N

N m m F T j N
j

T F T F N IF R



   y      (3.9.1) 

where  mT F  is a superpopulation parameter and  ,mF T jIF y  is the influence 

function of the functional T. As in Section 2.1, let us drop the remainder term of 

(3.9.1) and redefine the finite population target as 

     1
,

1

m

m m

N

N m m F T j
j

T F T F N IF



   y


.      (3.9.2) 

Given the population size mN  in area m is large, the remainder term is negligible, and 

this quantity is different from the ideal target by a small value.  

Of course,  mT F  in (3.9.2) is not known. If the sample is large enough, one could 

simply use a sample based estimate in its place.  

In small domains, however, the direct sample estimator is not reliable. It is usual in 

small area estimation to make assumptions about proximity of the area levels to the 

aggregation of areas. Let F  denote the distribution function of population 

measurements in the aggregation of areas and let us assume that  
mNT F  can be 

expanded in the neighborhood of F as 
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     1 1
,

1

 ,
m

m

N

N m m F T j Nm
j

T F T F c N IF R 



   y       (3.9.3) 

for some mc  such that  
1 1

1, ,
M M

m m m m m
m m

p c p N N N N
 

    ; NmR  is a remainder 

term. 

In general, we can make a supposition about the closeness of mF  to F  by assuming 

that the remainder term is small. Then, similar to (3.9.2), we can redefine the target 

population parameter by dropping the remainder term: 

     1 1
,

1

 
m

m

N

N m m F T mj
j

T F T F c N IF 



   y      (3.9.4) 

In what follows, we consider a particular case by setting 1mc  .  

Since  T F  is defined on aggregation of areas, it can be estimated from the sample 

with satisfactory precision. Let  ˆ
NT F denote an estimate of  T F . The estimator of 

 
mNT F  takes the form 

     
 

1

ˆ1 |1ˆ ˆ ˆ 1
1|m

n
S j j m

N N m j m
jm S j m

E w u j S
T F T F f u f

n E w j S

      
   

 ,  (3.9.5)  

where ˆ ju  is an estimate of  ,F T iIF y , it depends on the estimate  ˆ
NT F . 

We next consider the application to CES. 

In CES, the goal is to estimate the relative over-the-month change in employment at a 

given month t in areas m=1,…,M, where the areas are formed by cross-classifying 
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industries and metropolitan statistical areas (MSA). For area m, the target finite 

population quantity at month t is 

 ,

,

,

,
, 1

,m t

m t

mj tj P

m t
mj tj P

y
R

y








       (3.9.6) 

where ,m tP  is a set of the area m population establishments having non-zero 

employment in both previous and current months, i.e., , 1 0mj ty   and , 0mj ty  . The 

direct sample estimate is 

 ,

,

,

,
, 1

ˆ ,m t

m t

mj mj tj S

m t
mj mj tj S

w y
R

w y








      (3.9.7) 

where ,m tS  is a set of the area m sample establishments having , 1 0mj ty   and , 0mj ty  ; 

mjw  is the sample weight for unit mj . 

Assume the set of finite population observations at month t 

 , 1 , ,
1

, |
M

j t j t t m t
m

y y j P P


 
  

 
  to be independent realizations of a random vector 

 1,t tY Y  having a probability distribution F ; let  1,t t   be a vector of 

superpopulation means of  1,t tY Y . The population measurements in area m, 

  , 1 , ,, |mj t mj t m ty y j P   are independent realizations of a random vector  , 1 ,,m t m tY Y  

with the probability distribution mF . The superpopulation parameter of interest is a 
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function of the superpopulation means  , 1 ,,m t m t  : 

    ,
, 1 ,

, 1

, ; m t
m m t m t m

m t

T F T F


 




    

For  ˆ
NT F  involved in formula (3.9.5), we use the survey weighted estimator 

;

; 11

ˆ
ˆ

ˆ
t

t

j j tj St
t

j j tt j S

w y
R

w y






 

 



       (3.9.8) 

based on the aggregation from all areas. The number of population units having 

nonzero employment in two consecutive months is not known and is estimated as 

,

ˆ
m t

m jj S
N w


  , the sampling fraction is estimated as 

ˆ
ˆ
m

m

m

n
f

N
          (3.9.9) 

Applying formula (3.9.5), we derive the following variable 

 ,*
, ,

ˆ( 1)ˆ ˆˆ ˆ(1 ) ,
ˆ 1

mj mj t
mj t m t m m t

m

w v
y f R f v

w


   


    (3.9.10) 

where ˆ
tR  is the estimated ratio of employment at a statewide level; 

1
, 1 , , 1

ˆ ˆˆ ( )mj t t mj t t mj tv Y y R y
    is the estimated influence function for the ratio; 1

ˆ
tY   is an 

estimate of the previous month mean statewide employment; 
,

1ˆ
m t

m m mjj S
w n w


  is an 

area m average weight; 
,

1
, ,

ˆ ˆ
m t

m t m mj tj S
v n v


  . 

In this study, historical administrative data from the Quarterly Census of Employment 

and Wages (QCEW) program of the U.S. Bureau of Labor Statistics played the role of 
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the “real” data. (In real time production, the estimates are based on the data collected 

by CES.) 

We compared performances of several estimators: one estimator is based on the area-

level Fay-Herriot model and the other estimators are based on different unit-level 

models. We used the single slope, without intercept linear models, with the past 

year’s population trend , 12m tR   playing the role of an auxiliary variable (i.e., area-level 

auxiliary information for all observations in area m). 

We made estimates of the relative employment change in September 2006 for four 

States (Alabama, California, Florida, and Pennsylvania); the sample was drawn from 

the 2005 sampling frame, which mimics the production timeline. We fit the models 

separately for each State’s industrial supersector: a set of MSAs within States’ 

industrial supersectors defined the set of small areas. The resulting estimates were 

compared to the corresponding true population values ,m tR  available from QCEW.  

Performances of the estimators were measured using the 75th percentile of the 

absolute error , , ,
ˆ100m t m t m tE R R   and the empirical root mean squared error 

1

2
1 2

,
1

.
M

t m t
m

ERMSE M E



    
   

Summaries of results for each State are reported in Table 18 - Table 25. 

The meanings of the column labels are as follows:  

- “Dir” is the direct sample estimate;  

- “FH” is the Fay-Herriot model based estimate;  
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- “NER” is the estimate based on the nested-error regression model;  

- “F” is REBLUP using Fellner’s method, “FBC” is its bias-corrected version;  

- “MQ” is the M-quantile based estimate, “MQBC” is its bias-corrected 

version; 

- ”N2BC1” is the BC1-corrected N2, “N2BC2” is the BC2-corrected N2;  

- “N2OBC*” is the overall bias correction of N2 without making the area-level 

corrections first;  

- “N2OBC” is the overall bias correction after the individual area corrections. 

We used Method 1 of the EM algorithm (see Section 3.3.1) for estimation in N2. 

The direct estimator does not perform well in comparison with the other estimators. 

So the use of a model is well warranted. In all states except Pennsylvania, the robust 

estimators outperform the FH or the NER-based EBLUP. Overall, the performance of 

N2 is close to the Fellner’s version of REBLUP. In Alabama and Florida, the N2 

estimator is more efficient than the other estimators both in terms of ERMSE and the 

75th percentile. In California, ERMSEs of REBLUP and MQ are smaller than of N2 

but, in terms of the 75th percentile, these estimators are very close. In Pennsylvania, 

in several industries, the N2 estimator had a large error due to the overall bias, but the 

OBC versions helped reduce the bias. 

  



 

 131 
 

Ind Dir FH NER F MQ N2 FBC MQBC N2BC1 N2BC2 N2OBC* N2OBC 

20 6.74 1.72 2.68 1.95 1.69 1.26 2.44 2.34 4.61 1.26 1.25 1.25 

31 1.09 1.06 0.91 0.73 0.68 0.78 1.16 1.14 1.25 1.21 0.78 1.14 

32 1.15 1.30 1.10 0.71 0.82 1.60 1.01 1.03 1.52 1.06 1.60 0.99 

41 3.57 1.57 1.04 1.35 2.05 1.18 1.18 1.87 1.93 1.18 1.18 1.18 

42 1.19 1.36 1.41 0.77 0.95 1.00 0.74 0.77 1.19 1.00 0.97 0.97 

43 1.88 1.65 1.76 1.72 1.64 1.71 1.75 1.68 1.91 1.71 1.67 1.67 

50 2.28 1.55 1.14 1.57 2.20 1.38 1.65 2.34 1.30 1.38 1.30 1.30 

55 2.20 1.97 2.23 1.29 1.21 1.24 1.25 1.22 2.03 1.24 1.19 1.19 

60 1.59 2.16 2.16 0.97 1.30 0.88 0.93 0.97 1.48 0.88 0.88 0.88 

65 1.41 1.17 1.04 0.60 0.69 0.71 0.60 0.59 1.37 0.71 0.68 0.68 

70 4.31 1.02 1.02 0.94 0.90 0.93 1.39 1.40 3.49 0.93 0.93 0.93 

80 9.53 3.97 5.72 5.17 5.29 4.84 5.34 5.44 6.86 4.84 4.84 4.84 

Overall 3.98 1.87 2.26 1.90 2.02 1.80 2.03 2.13 2.93 1.79 1.79 1.77 

Table 18. Alabama, by Industry, Empirical Root Mean Squared Error 

 

 

Ind Dir FH NER F MQ N2 FBC MQBC N2BC1 N2BC2 N2OBC* N2OBC 

20 3.72 1.69 1.96 2.03 2.04 1.22 1.89 2.03 2.98 1.22 1.25 1.25 

31 1.24 1.27 1.12 0.75 0.75 0.94 1.10 1.10 1.10 0.98 0.95 0.88 

32 1.30 1.01 0.70 0.73 0.84 0.82 0.61 0.52 0.98 0.82 0.95 0.92 

41 2.68 1.66 1.14 1.56 2.21 1.46 1.50 1.80 1.92 1.46 1.47 1.47 

42 1.09 1.36 1.54 0.67 0.94 1.26 0.53 0.61 1.07 1.26 1.27 1.27 

43 1.83 2.01 2.18 2.08 1.84 2.09 2.08 1.93 2.40 2.09 2.01 2.01 

50 2.42 1.68 1.29 1.89 2.01 1.67 1.93 2.33 1.47 1.67 1.68 1.68 

55 2.17 2.26 2.57 1.73 1.61 1.57 1.70 1.70 2.51 1.57 1.50 1.50 

60 1.29 2.46 2.32 0.85 1.29 1.17 0.82 1.10 1.51 1.17 1.16 1.16 

65 1.26 1.57 1.42 0.46 0.72 0.76 0.36 0.33 1.09 0.76 0.74 0.74 

70 2.19 1.09 1.09 1.06 0.93 0.94 1.56 1.57 2.30 0.94 0.97 0.97 

80 9.44 3.13 5.35 3.71 3.13 2.85 4.14 3.90 9.07 2.85 2.84 2.84 

Overall 2.14 1.84 1.70 1.38 1.46 1.35 1.67 1.69 1.99 1.39 1.30 1.31 

Table 19. Alabama, by Industry, 75th Percentile Absolute Error 
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Ind Dir FH NER F MQ N2 FBC MQBC N2BC1 N2BC2 N2OBC* N2OBC 

20 3.99 1.90 1.86 1.64 1.45 1.69 1.94 1.99 3.41 1.68 1.66 1.66 

31 3.09 1.70 1.76 1.51 1.82 1.72 1.99 2.23 2.22 1.72 1.72 1.72 

32 7.74 4.95 4.80 4.03 4.12 5.62 3.98 3.91 4.88 5.06 5.60 5.07 

41 3.64 2.01 2.66 1.42 1.03 1.36 1.46 1.01 4.86 1.36 1.35 1.35 

42 2.06 0.99 1.05 0.55 0.65 0.64 0.74 0.81 1.59 0.64 0.64 0.64 

43 8.26 4.85 4.05 3.21 3.66 2.62 4.16 4.46 5.03 2.57 2.61 2.57 

50 2.65 1.52 1.38 1.14 0.95 1.25 1.18 1.01 1.36 1.25 1.24 1.24 

55 3.11 2.11 1.20 0.88 0.84 0.89 0.90 0.78 4.38 0.89 0.88 0.88 

60 2.22 1.55 1.53 1.24 1.25 1.58 1.69 1.68 2.95 2.52 1.57 2.52 

65 2.41 1.69 1.24 0.92 0.80 0.90 0.89 0.86 2.23 0.90 0.90 0.90 

70 2.26 1.23 1.38 1.25 1.19 1.15 1.63 1.62 2.22 1.15 1.16 1.16 

80 5.53 1.65 1.68 3.69 2.84 1.62 4.12 3.87 5.24 4.07 1.62 4.07 

Overall 4.40 2.50 2.34 2.10 2.04 2.15 2.39 2.38 3.64 2.36 2.14 2.36 

Table 20. California, by Industry, Empirical Root Mean Squared Error, % 

 

 

Ind Dir FH NER F MQ N2 FBC MQBC N2BC1 N2BC2 N2OBC* N2OBC 

20 4.31 1.47 1.57 1.53 1.65 1.58 1.88 1.87 3.17 1.58 1.41 1.45 

31 2.90 1.23 1.42 1.19 0.70 1.49 1.39 1.37 1.41 1.49 1.49 1.49 

32 1.87 2.71 2.57 3.14 3.14 3.50 2.80 2.80 2.80 3.30 3.50 3.32 

41 3.23 1.95 1.94 1.21 1.42 1.08 1.16 1.12 3.78 1.08 1.08 1.08 

42 1.56 0.75 1.00 0.68 0.70 0.79 0.63 0.66 1.15 0.79 0.74 0.74 

43 3.26 2.54 2.12 1.17 1.96 1.17 1.23 1.23 2.17 1.17 1.17 1.18 

50 1.94 1.42 1.48 1.23 1.04 1.41 1.27 1.28 1.42 1.41 1.39 1.39 

55 1.55 1.26 1.29 0.82 0.93 0.85 0.75 0.79 1.71 0.85 0.85 0.85 

60 2.26 0.98 1.04 1.14 1.08 1.10 1.13 1.12 2.56 1.10 1.08 1.08 

65 1.58 1.52 0.71 0.74 0.64 0.67 0.85 0.88 1.45 0.67 0.71 0.71 

70 2.84 1.31 1.78 1.47 1.43 1.28 2.10 2.06 2.59 1.28 1.28 1.28 

80 6.22 1.48 1.84 1.44 1.29 1.35 1.48 1.38 5.00 1.31 1.35 1.31 

Overall 3.01 1.57 1.61 1.23 1.23 1.20 1.35 1.28 2.61 1.19 1.21 1.19 

Table 21. California, by Industry, 75th Percentile Absolute Error 
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Ind Dir FH NER F MQ N2 FBC MQBC N2BC1 N2BC2 N2OBC* N2OBC 

20 2.81 1.33 1.87 1.25 1.13 0.86 1.48 1.45 2.87 0.86 0.87 0.87 

31 2.85 1.44 1.30 1.14 2.09 1.14 1.15 2.10 1.45 1.14 1.14 1.14 

32 3.91 2.10 9.14 7.11 9.77 1.99 7.10 9.76 1.77 1.99 1.98 1.98 

41 4.98 3.70 1.65 1.16 1.05 1.09 1.23 1.10 6.58 1.09 1.09 1.09 

42 0.71 0.59 0.59 0.43 0.42 0.27 0.35 0.36 0.60 0.29 0.27 0.29 

43 4.27 1.96 1.51 1.27 1.76 1.36 1.91 2.18 1.75 1.36 1.36 1.36 

50 10.61 10.16 2.94 5.75 4.09 1.52 5.74 4.11 1.59 1.52 1.54 1.54 

55 2.45 1.04 0.97 0.75 1.13 0.77 0.80 1.07 2.09 0.77 0.77 0.77 

60 2.25 0.87 0.93 0.74 0.71 0.67 0.74 0.70 1.14 0.67 0.68 0.70 

65 1.84 0.77 0.67 0.49 0.46 0.56 0.83 0.82 1.78 0.56 0.52 0.52 

70 3.65 1.78 0.93 0.86 1.02 0.91 1.67 1.76 3.99 1.28 0.89 1.28 

80 8.21 3.61 1.16 3.70 8.09 1.04 4.01 8.23 7.04 1.04 1.05 1.05 

Overall 4.79 3.42 2.71 2.77 3.77 1.08 2.89 3.85 3.42 1.11 1.08 1.11 

Table 22. Florida, by Industry, Empirical Root Mean Squared Error 

 

 

Ind Dir FH NER F MQ N2 FBC MQBC N2BC1 N2BC2 N2OBC* N2OBC 

20 2.87 1.25 2.01 1.15 0.91 0.74 1.26 1.27 2.95 0.74 0.80 0.80 

31 2.79 1.70 1.42 1.53 1.56 1.40 1.53 1.55 1.57 1.40 1.41 1.41 

32 3.16 2.61 5.27 4.18 5.67 2.34 4.17 5.41 1.94 2.34 2.34 2.34 

41 2.51 2.53 1.51 0.86 1.13 0.85 0.84 1.01 3.48 0.85 0.86 0.86 

42 0.85 0.53 0.54 0.37 0.33 0.22 0.28 0.31 0.74 0.22 0.22 0.22 

43 3.47 1.33 1.75 1.14 1.44 1.11 1.51 1.57 1.72 1.11 1.11 1.11 

50 2.81 2.68 2.64 2.52 2.04 1.28 2.52 2.72 1.60 1.28 1.31 1.31 

55 2.15 1.26 1.11 0.66 0.74 0.68 0.68 0.66 1.65 0.68 0.67 0.67 

60 1.59 1.02 1.12 0.92 0.85 0.80 0.81 0.83 1.46 0.80 0.82 0.85 

65 1.42 0.75 0.60 0.55 0.51 0.47 0.66 0.59 1.43 0.47 0.59 0.59 

70 2.54 1.77 1.15 0.85 0.92 1.06 1.64 1.49 2.07 1.09 0.87 1.02 

80 4.89 2.45 1.43 1.47 1.64 1.14 1.54 1.79 2.80 1.14 1.17 1.17 

Overall 2.54 1.59 1.32 1.07 1.13 1.02 1.30 1.34 1.81 1.02 0.91 0.94 

Table 23. Florida, by Industry, 75th Percentile Absolute Error 
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Ind Dir FH NER F MQ N2 FBC MQBC N2BC1 N2BC2 N2OBC* N2OBC 

20 4.95 1.29 1.18 1.48 1.83 1.99 2.45 2.51 4.34 1.99 1.24 1.24 

31 2.20 0.77 0.78 0.74 0.91 0.74 1.76 1.88 2.41 0.74 0.71 0.71 

32 2.31 1.07 2.46 1.06 1.19 0.95 1.31 1.47 1.47 0.95 0.95 0.95 

41 2.42 0.66 0.63 0.84 0.71 0.77 1.03 0.98 1.73 0.77 0.73 0.73 

42 1.73 0.62 0.42 0.74 0.54 0.52 0.97 0.94 1.33 0.86 0.52 0.85 

43 5.25 1.52 1.59 4.34 3.80 4.12 4.53 4.53 4.90 4.12 3.38 3.38 

50 1.85 1.21 1.13 1.03 1.52 1.11 1.03 1.53 1.29 1.11 1.08 1.08 

55 4.15 2.90 0.94 0.83 0.91 1.02 0.87 1.02 2.46 1.02 0.89 0.89 

60 2.59 1.16 0.99 0.88 0.98 0.97 1.23 1.25 2.38 0.97 0.92 0.92 

65 1.28 0.49 0.54 0.64 0.67 0.63 0.79 0.80 1.27 0.62 0.58 0.60 

70 3.29 1.54 1.43 2.71 2.29 2.00 3.44 3.31 3.43 2.00 2.07 2.07 

80 5.66 1.91 2.19 1.56 1.56 1.52 1.76 1.77 5.97 1.52 1.52 1.52 

Overall 3.46 1.42 1.32 1.75 1.66 1.67 2.09 2.13 3.15 1.68 1.44 1.46 

Table 24. Pennsylvania, by Industry, Empirical Root Mean Squared Error 

 

 

Ind Dir FH NER F MQ N2 FBC MQBC N2BC1 N2BC2 N2OBC* N2OBC 

20 4.68 1.47 1.23 1.53 1.38 2.44 3.19 3.20 4.27 2.44 1.48 1.48 

31 1.35 0.69 0.72 0.57 0.91 0.51 1.06 1.49 1.02 0.51 0.60 0.60 

32 1.86 0.79 1.96 1.32 1.31 0.81 1.01 1.75 1.77 0.81 0.69 0.69 

41 3.19 0.56 0.53 0.74 0.74 0.90 0.89 0.91 1.24 0.90 0.85 0.85 

42 1.19 0.59 0.60 0.47 0.35 0.50 0.72 0.69 1.03 0.50 0.50 0.50 

43 5.72 1.66 1.73 4.62 4.26 5.26 5.11 4.88 5.69 5.26 4.41 4.41 

50 2.20 1.60 1.28 1.17 1.32 1.35 1.21 1.40 1.48 1.35 1.28 1.28 

55 2.97 2.46 0.90 0.96 1.03 1.03 0.72 1.18 2.13 1.03 0.85 0.85 

60 2.63 1.15 1.20 0.96 1.22 0.90 1.45 1.40 2.51 0.90 1.06 1.06 

65 1.47 0.53 0.60 0.73 0.83 0.83 0.90 0.91 1.28 0.83 0.77 0.81 

70 3.87 1.62 1.09 2.90 2.54 2.24 3.82 3.76 3.82 2.24 1.78 1.78 

80 6.01 1.23 1.83 1.27 1.43 0.99 2.38 2.26 5.81 0.99 0.95 0.95 

Overall 3.39 1.17 1.19 1.28 1.31 1.39 1.67 1.73 2.49 1.40 1.11 1.12 

Table 25. Pennsylvania, by Industry, 75th Percentile Absolute Error 

  



 

 135 
 

Examples of the distribution of errors across areas are given in the plots below (see 

Figure 6 and Figure 7).  

 

Figure 6. California, Wholesale Trade (industry 41) deviations from true population 
values (in hundreds) of the relative employment change estimates, by areas.   
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Figure 7. California, Retail Trade (industry 42) deviations from true population 
values (in hundreds) of the relative employment change estimates, by areas. 

Deviations from true population values for areas in California Wholesale Trade 

(industry 41) and Retail Trade (industry 42) are shown for the direct estimator and 

estimates based on the nested-error regression (NER), Fay-Herriot (FH), Fellner, and 

N2 model. Areas on the plots are sorted in the ascending order of the number of 

sampled units. There were 27 areas in each industry. The number of sampled units 

range from 1 to 510 in Wholesale Trade and from 6 to 543 in Retail Trade. It can be 

seen that the direct estimator (black dots) is very inefficient. Errors of the Fay-Herriot 

estimator often mimic the errors of the direct estimator. This happens because the 
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variances of the direct estimators do not take into account the outliers that occur in 

the sample. Hence, in the weighted average, more weight is given to the direct 

estimator than to the synthetic part. The NER estimator also often has a larger error 

than the robust estimators. Performances of the robust estimators, Fellner, MQ, and 

N2, are for the most part similar. 

 

 

Figure 8. Pennsylvania, Transportation and Utilities (industry 43) deviations from 
true population values (in hundreds) of the relative employment change estimates, by 
areas.  
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An interesting case is shown in Figure 8 (Pennsylvania, industry 43). There are 15 

areas included in the model, the smallest area has 2 units and the largest area has 60 

units in the sample. Here, robust estimators perform worse than the Fay-Herriot or 

NER based estimators. The distribution of the residuals in this industry is asymmetric. 

The right tail units have a higher probability of being in part 2 of the sample. (This is 

an indication that, perhaps, the alternative models are also misspecified.) The bias 

incurred because observations tended to be downweighted more on the right tail of 

the distribution. The bias was somewhat corrected in the N2+OBC estimator. 

Summary 

In this Chapter, we proposed a model that assumes that observations are generated 

from a mixture of two normal distributions with a common mean and different error 

variances. This model can be viewed as an extension of the nested error regression 

model, as it relaxes the assumption that the random error variance is constant.  

When the fraction of the larger variance observations is small, the estimates from  the 

model perform similar to the robust methods of Fellner (1986) and Sinha and Rao 

(2008) that are based on the Huber function. The model has potential to be especially 

useful when the fraction of the part 2 observations increases. 

Another feature of the proposed method is that it estimates the conditional 

probabilities for observations to fall in each part of the mixture. This can serve as the 

basis for a formal test, such as the “random occurrence test” described in Section 3.5. 

The random occurrence test essentially is a check of validity of the model. If the test 

indicates that certain areas are outliers, such areas can be removed from the model 
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and the model can be re-fitted without the outlying areas. For the outlying areas, a 

separate set of assumptions has to be used. Depending on the context of a survey, 

subsequent treatment may include adding a bias correction term to the area estimate 

or excluding the area from the model and using the direct estimator for such an area. 

We considered several scenarios for evaluation of the bootstrap procedure for the case 

of the mixture model. Bootstrap prediction confidence intervals provided 

approximately nominal coverage under each of these scenarios. 

When the finite population target is not in a linear form, it can be linearized in order 

to apply a model at the unit level. The unit level modeling may be especially useful 

when outliers in the data affect the direct survey estimates. A study using CES sample 

data confirms this point. 
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Chapter 4: Concluding Remarks and Future Research 

We include in this Chapter a list of topics that we feel need to be explored in the 

future. 

1. Asymptotic properties of the estimated parameters 

In Section 3.7 of Chapter 3 we used a simulation study to investigate the performance 

of the parameter estimates when the number of areas increases. Although somewhat 

inconclusive due to large variance in some of the estimates, the results of the study 

suggest that the estimators of the parameters tend to the true values. It would be 

desirable to prove consistency of the estimators analytically. In particular, the 

consistency property is a necessary condition for the proper approximation of the true 

distribution of the pivot by the parametric bootstrap of Section 3.4.  

2. Theoretical properties of the prediction confidence intervals obtained using the 

parametric bootstrap of Section 3.4 

The goal is to prove theoretically that the distribution of the bootstrap pivot 

approximates the distribution of the corresponding quantity based on the original data 

and to derive the order of the approximation.  

3. Improvements in the Monte Carlo part of the EM algorithm 

The Monte Carlo part of the EM algorithm described in Section 3.3.1 works 

reasonably well when the probability of being in part 2 of the mixture is small. There 

is room for improvement of the algorithm. One problem is that, when the Monte 

Carlo error is large, the log-likelihood function does not necessarily increase at every 
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step of the EM algorithm and, as a result, the algorithm may not converge properly 

and the maximum will not be reached.  

Booth and Hobert (1999) proposed several methods that help to control the 

performance of the EM algorithm. The methods include dynamic increase in the 

number of the Monte Carlo iterations depending on the error of the Monte Carlo 

estimates computed after each EM step. However, the error may be so large that it 

would call for an unrealistically large number of iterations. Therefore, the first goal 

would be to find an improvement in terms of efficiency of the Monte Carlo step. 
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Appendix A. The proof of Result 1 from Section 2.3 

First, note that it is always true that 0K   and 0L  . This follows immediately from 

conditions (2.3.2) and (2.3.3) and the fact that, for any j,   0j jK u J   and 

  0j jL u I  .  

Next, write the mean squared error as 

      2
, , , ,MSE u K L Var u K L Bias u K L               (A.1.1) 

where the bias is  

   , ,Bias u K L E u K L u         
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           (A.1.2) 

Consider the variance term: 
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(from the independence of u ’s and that   0jE u  ) 
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Note that whenever 0K   and 0L  , the variance of the Winsorized mean  ,u K L  

does not exceed the variance of the sample mean u ,  Var u , since for all j, 
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 2 2 0j jK u J   and  2 2 0j jL u I  . When conditions (2.3.2) and (2.3.3) hold, the 

analogous result holds not only for the variance but also for MSE, as shown below.    

The MSE is 
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Since K  and L  satisfy, respectively, the equations  
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The mean squared error is 
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     2 2Var u n Var K n Var L     
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(the last inequality follows from noting that, for any j , 0j ju J   and   0j jK u J  . 

Thus,   0j j ju K u J  . Similarly, for any j , 0j ju I   and   0j jL u I  ; thus, 

  0j j ju L u I  . Therefore,    2

1

0
n

j j j j j j
j

n E u K u J u L u I



      .  

The term involving  E KL  also never exceeds zero because 0K   and 0L  .)  
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Appendix B. R code for the Winsorization example of Section 

2.3.1. 

################################################################### 
# KL function for finding cutoffs      # 
#  -----------------------------------     # 
# Input:           # 
#  X  sort and center the sample, then    # 
#   to find K: take values on the right from zero,   # 
#   to find L: take absolute values on the left from zero # 
#           # 
# S   length, defines the number of nodes,    # 
#  e.g., 10*length(X)      # 
#           # 
# Output:          # 
#  KL cutoff point (K or L)      # 
################################################################### 
KL<-function(X,S){ 
 maxKL=max(X) 
 i=0 
 z=1 
 while (z>0 && i<S){ 
  i=i+1    # count nodes 
  KL=(S-i)*maxKL/S    # interpolation step 
  P_K=length(X[X>KL]) # (tail probability)*length(X) 
  M_K=sum(X[X>KL]) # (tail mean)*length(X) 
  z=(KL+(KL*P_K-M_K)) 
 } 
return(KL) 
} 
 
example_demo<-function(N, Sim, p, mu1, mu2, guess,seed){ 
 
  # N  sample size 
 # Sim  number of simulation runs 
 # p  contamination fraction (can be 0) 
 # mu1  true mean for “good” units 
 # mu2  true mean for contamination 
 # guess for initial guess: 1 - use truth; 2 – use mean 
  
set.seed(seed) 
est1<-matrix(0,Sim,1) 
est2<-matrix(0,Sim,1) 
K<-matrix(0,Sim,1) 
L<-matrix(0,Sim,1) 
n<-matrix(0,Sim,1) 
  
for (sim in 1:Sim){ 
           n[sim]=sum(rbinom(N,1,p)) 
      x0=c(rnorm((N-n[sim]),mu1,1),rnorm(n[sim],mu2,sqrt(10))) 
      truth=(1-p)*mu1+p*mu2 
 
  ## lognormal 
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  #x0=rlnorm(N,0,1) 
  #truth=exp(0.5) 
 
  if (guess==1) {mu0=truth} else 
  if (guess==2) {mu0=mean(x0)} 
 
  x=x0-mu0 
 
  rightx<--sort(-x[x>0]) 
  K[sim]<-KL(rightx,10*length(rightx)) 
  leftx<--sort(x[x<0]) 
  L[sim]<--KL(leftx,10*length(leftx)) 
 
  # Winsorized values 
x_w<-
mu0+x*(x>L[sim])*(x<K[sim])+L[sim]*(x<=L[sim])+K[sim]*(x>=K[sim])  
 
 est1[sim]=mean(x0) 
 est2[sim]=mean(x_w) 
} 
### Summary 
K<-mean(K) 
L<-mean(L) 
 
rmse1<-100*sqrt(mean((est1-truth)^2)) 
rmse2<-100*sqrt(mean((est2-truth)^2)) 
 
bias1=100*mean(est1-truth) 
bias2=100*mean(est2-truth) 
 
out<-
as.data.frame(cbind(Sim,N,p,mu1,mu2,guess,bias1,bias2,rmse1,rmse2,10
0*rmse2/rmse1,L,K)) 
names(out)<-
c("Sim","N","P","Mu1","Mu2","Guess","Bias1","Bias2","RMSE1","RMSE2",
"RMSE2/RMSE1","L","K") 
print(out) 
return(out) 
} 
 
### example call:  
 
out<-example_demo(50,5000,0.03,0,0,1,2717) 
write.table(out, "example_demo.csv",sep=",", append=1) 
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Appendix C: EM algorithm for the scale mixture-fixed effects 

model WN2F from Section 2.4 

(The algorithm is a slightly more general case of the scale mixture of K Normal 

distributions, strata means are modeled as fixed effects) 

The Model: 

  2 2| 1, , ~ ,
ind

mj mjk m k m ky z N    , 

where  
1

1,..., ; 1,..., ; 1,..., ; ;
M

m m
m

k K j n m M n n


     

mjkz  is a mixture class indicator for an observation mj  and class ;k  

2
k  is a variance parameter of the thk  component of the mixture. 

Denote the observation vector by  1 , ...,
TT T

My y y , where  1,..., m

T

m m mny yy . 

The goal is to estimate the set of parameters  2 2
1 1 1,..., , ,..., , ,...,M K K     θ . 

The indicator mjkz  takes the value 1 if the observation  mj  belongs to class k and is 0 

otherwise. 

The complete data log likelihood is  

   

 
1 1 1

22 2

1 1 1 1 1 1

, | log | ,

1
log 2 log

2

m

m m

nM K

mjk mj mjk
m k j

n nK M K M

k mjk k mjk mj m
k m j k m j

l z f y z

n z z y   

  



     



 
     

 



   

y z θ θ

 

The algorithm: 
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Assign sets of initial values: 

 0
m  for , 1,...,m m M  ,  

 0
k  for prior probabilities to belong to the mixture part k, 

   0 0 , 1, ...,mjk kz j n  , 

 0
k  for , 1,...,k k K   

p  -- iteration 

Run the loop as specified below. 

1. Compute the log likelihood function for the current values of the parameters: 

  
 

 

  
 

2

2
1 1 1

1
; log exp

22

m
ppnM K

mj mp k
p p

m j k k k

y
l


   

       
    

 y  

If mjkz  were observable, then the complete data log likelihood would look as follows: 

        
  

 

2

2

2
1 1 1 1 1

1
; log 2 log

2

m m
p

n nM K K
mj mp p p p

C m k mjk mjk p
m k j k j k

y
l n z z


  

    

      
 
 

   y  

2. (E-step)  Mixture indicators mjkz  are replaced by their current conditional 

expectations 

      1 | , 1 | ,p p p
mjk mjk mjkz E z P z     y θ y θ .  

At step 1p , we “impute” the posterior probabilities, using the Bayes formula, 

   
 

  
 

 
 

  
 

2 2

1

2 2
1

1 1 1 1
exp exp

2 2

p p
K

mj m mj mp p p
mjk k kp p p p

kk k k k

y y
z

 
 

   




               
        

  

for 1,...,k K  
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3. (M-step) Find MLE of the parameters: 

   1 1

1 1

1 mnM
p p

k mjk
m j

z
n

  

 

   

 

   

   

2 1

1 11

2 1

1 1

m

m

nK
p p

k mjk mj
k jp

m nK
p p

k mjk
k j

z y

z






 

 

 

 


 

 
 

 

    
 

2
1

1 12 1

1

1 1

m

m

nM
p p

mjk mj m
m jp

k nM
p

mjk
m j

z y

z






 



 




 
 




 

4. Recompute the log likelihood using the new values of the parameters.  

5. Check the convergence criteria: 

 1 ,p    where        1 1 ; ;p p pl l    y y
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Appendix D: On the maximum likelihood estimator of β .  

The derivative, with respect to
 
β , of the log-likelihood function of the mixture 

distribution given in the form (3.1.4) is
 

   
 

 2

1

log | |

|

n

k k k

k

h f L

h





 


 
y θ y θ θ

β y θ β  

   2

1

| ,
n

k
k

k

L
P i







θ

y θ
β

 

 
| , ,kL

E
 

   

θ
y θ

β  

where    log |k kL fθ y θ  is the log-likelihood function of the mixed model 

corresponding to some k-th combination of the mixture indicators. The derivative 

with respect to β  is 

  1 1 .k T T
k k

L  
 


θ

X Σ y X Σ Xβ
β  

Thus, 

  1 1log |
| ,T T

k k

h
E  
   

y θ
X Σ y X Σ Xβ y θ

β
 

1 1| , | ,T T
k kE E        X Σ y θ y X Σ y θ Xβ

 

Thus, if all the other parameters are known, MLE of β  is a solution of the estimating 

equations 
 log |

0
h




y θ

β
, i.e.,  

  1
1 1ˆ | , | , .T T

k kE E


        β X Σ y θ X X Σ y θ y  
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