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Multi-scale problems appear in many contexts. In this thesis, we study two dif-

ferent subjects involving multi-scale problems: (i) collective dynamics, and (ii) image

processing.

For collective dynamics, we concentrate on flocking models, in particular, Cucker-

Smale and Motsch-Tadmor systems. These models characterize the emergent behaviors

of self-organized dynamics. We study flocking systems in three different scales, from mi-

croscopic agent-based models, through mesoscopic kineitc discriptions, to macroscopic

fluid systems. Global existence theories are developed for all three scales, with the

proof of asymptotic flocking behaviors. In the macroscopic level, a critical threhold phe-

nomenon is addressed to obtain global regularity. Similar idea is implemented to other

fluid systems as well, like Euler-Poisson equations. In the kinetic level, a discontinuous

Galerkin method is introduced to overcome the numerical difficulty due to the precence

of δ -singularity.



For image processing, we apply the idea of multi-scale image representation to

construct uniformly bounded solutions for div U = F . Despite the fact that the equation

is simple and linear, it is suprisingly true that its bounded solution can not be constructed

through a linear procedure. In particular, the Holmholtz solution U = ∇∆−1F is not

always bounded. A hierarchical construction of the bounded solution of the equation

is proposed, borrowing the idea from image processing. We also present a numerical

implementation to deal with the highly nonlinear construction procedure. Solid numerical

result verifies that the constructed solution is indeed uniformly bounded.
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Part I

Collective Dynamics
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Collective behaviors are common in nature and human societies. It refers to social

processes and events which emerge to global structures in a spontaneous way. Many bio-

logical examples reflect collective behaviors, including the dynamics of a flock of birds,

a school of fish, a colony of ants, a swarm of bacteria, even opinions for a group of peo-

ple. In these systems, Each individual only accesses limited environmental information to

determine their motions. Yet the whole systems self-organize into global patterns: flock,

mill, concentration, consensus, clusters, etc.

Modeling collective behaviors brings challenges to scientists and mathematicians.

The goal is to impose simple interaction rules between individuals, which lead to desired

global structures. A celebrated 3-zone interaction framework is widely accepted in the

models of collective dynamics, consisting long range attraction, short range repulsion

and mid range alignment. We shall start this part with a survey on models of collective

dynamics, under this framework (section 1.1).

In particular, we are interested in flocking models, where only mid range zone is

highlighted. The flocking phenomenon characterizes the fact that self-propelled individu-

als organize into an ordered motion. The pioneering Cucker-Smale model and a normal-

ized Motsch-Tadmor model are introduced in section 1.2, alongside with other inspiring

models. With simple interaction rules, these two models enjoy unconditional flocking

property: the flocking phenomenon is detected with all initial configurations.

We study flocking models in different scales. As the number of individuals becomes

larger and larger, it is costly to trace the dynamics of each individual. Instead, we study

the mean-field phase diagram of the systems, governed by Vlasov-type kinetic equations.

The elegant kinetic theory, originally developed for gas dynamics and other physics sys-
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tems, is well adapted to flocking dynamics. Under this mesoscopic scale, global existence

theory and unconditional flocking property are addressed in section 1.3.1-1.3.2. From

the numerical prospective, flocking property implies a concentration in velocity as time

approaches infinity. Such δ -singularity need to be treated carefully to maintain high accu-

racy and stability, as the solution becomes more and more singular. Chapter 3 is devoted

to design numerical schemes to attack the δ -singularity, and achieve asymptotic flocking

behavior for the numerical solution.

A hydrodynamic representation of flocking models can be derived at least formally

(see section 1.3.3) by taking moments of the kinetic systems. In this macroscopic scale,

flocking systems can be viewed as compressible Eulerian dynamics, with nonlocal align-

ment forcing. With the presence of nonlinear convection, global existence theory is way

more complicated, comparing with kinetic systems. Nevertheless, we prove in section

1.3.4 that “strong solution must flock”: thus, a global existence theory directly implies

flocking behavior.

We study global existence of strong solutions for macroscopic flocking models in

chapter 2. For general compressible Eulerian dynamics, there is finite time shock for-

mations, due to nonlinear convection. To achieve global regularity, one should hope the

external forcing regularizes the system and competes with the convection. In the case

of macroscopic flocking systems, the alignment forcing is rather weak. Moreover, the

nonlocal nature of the forcing adds more difficulty to the analysis. We prove a critical

threshold result for the macroscopic system: subcritical initial configurations guarantee

global existence of strong solutions, while supercritical initial configurations lead to fi-

nite time blowup. It is remarkable that the theory can be extended to two space dimension

3



(section 2.4), as well as vacuum stage (section 2.5), while most of the celebrating re-

sults on Eulerian dynamics are presented in 1D or scaler equation, and vacuum is often

avoided.

A prototype problem for critical thresholds phenomenon is studied as well: Euler-

Poisson equations, sharing the similar strategy applied on macroscopic flocking models.

While the global regularity for 2D Euler-Poisson system is still open, it can be achieved

with a slight restriction.

Main results presented in this part follow from the work in [95] for the macroscopic

scale, and [97] for the mesoscopic scale. We shall also list key references [33,45,64,72].
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Chapter 1: Modeling Collective Dynamics

In this chapter, we discuss various models on collective dynamics. The philosophy

of modeling collective dynamics is to use simple “local” interaction rules to characterize

“global” structures.

Many systems can be represented under different scales. The starting point is the

microscopic representation, or agent-based models, where the dynamics of each individ-

ual is traced. Though agent-based models are often intuitive, it is not efficient to keep

track of each agent if the group size is large. Macroscopic representation is introduced

to capture the mean-field dynamics of the system. A much smaller in size PDE system

is used to replace the huge ODE system, which preserves various of conservations. For

second order systems, there is an intermediate mesoscopic representation to link the mi-

croscopic world to the macroscopic one. Powerful kinetic theory enters in this level. All

three scales have their own mathematical interests and challenges.

Among different models on collective dynamics, we are interested in systems re-

flecting an intriguing flocking phenomenon. Two models, Cucker-Smale and Motsch-

Tadmor, are studied in all three scales, where flocking phenomenon is detected and proved,

under suitable assumptions.

We organize this chapter as follows. We start with an introduction of modeling
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collective dynamics in section 1.1. Then several flocking models are presented in 1.2.

We continue with multi-scale representations for flocking models in 1.3, featuring on the

flocking phenomenon. More discussions on macroscopic and kinetic models are given in

chapter 2 and 3, respectively.

1.1 Background and motivation

Everyone must observe some beautiful swinging movements of animals like birds,

fishes, insects and many more. They often emerge into surprised and astonished struc-

tures, without a clear indication of any role of a leader. There is a constant rising of

interests in understanding these remarkable phenomena to biologists, physicists, ecolo-

gists, as well as mathematicians. Scientists are motivated to study various of collective

behaviors, by proposing models consisting simple rules, yet capturing the global struc-

tures. Successful models are not limited to biological systems. Many other intriguing

sociological behaviors have been studied as well.

1.1.1 Collective dynamics in biology and beyond

There are many successful mathematical models on collective dynamics, in the

biological contexts. Examples include a flock of birds flying towards the same direc-

tion [5, 19, 26, 72], a school of fishes forming a specific pattern [2, 8, 30, 47, 77], a group

of locusts rolling across the farmland [14, 99], a colony of bacteria and social insects

swarming into some structures [10, 13, 52, 56, 100], etc.

Besides biological systems, models for collective dynamics have appeared in a large
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variety of other contexts, including ecological models [42], multi-agent robot networks

[49, 50], opinion dynamics [17, 57, 73], traffic and pedestrian networks [3, 46, 80], and

more.

All these systems share relatively simple mathematical structures, while gracefully

capture phenomena observed in the nature. Powerful mathematics kicks in to provide a

clearer picture of the dynamics.

1.1.2 The three-zone framework on modeling collective dynamics

One simple elegant way to model collective dynamics is to propose rules on in-

teractions between each pair of individuals in the group. It is natural to assume that the

interaction depends on the physical distance between the individuals. A widely accepted

three-zone framework proposed by Reynolds in [82] is used on modeling the interactions.

attraction

alignment

repulsion

Figure 1.1: The three-zone framework: short range repulsion, mid range alignment and

long range attraction.

As illustrated in figure 1.1, the interactions are divided into three zones, under dif-
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ferent rules. In the short range, individuals have the tendency to move apart from others to

avoid collision, thus the interaction is repulsive. In the mid range, repulsion is substituted

by alignment, where individuals try to align with the direction of its neighbors. If the

individual is far part from the group, it will be attracted by others relatively far away and

try to stay closer to the group.

The attractive and repulsive interactions can be modeled through an interaction po-

tential Ψ = Ψ(r), which decays when r is small (representing repulsion), and increases

when r is large (representing attraction). The agent-based dynamics reads

ẋi =
1
N

N

∑
i=1

∇x jΨ(|xi−x j|). (1.1)

The attraction-repulsion system above has been well-studied, through its mean field

hydrodynamic representation [4, 18, 31, 100, 101]. For more discussions on this type of

models, we refer to a review [87] and references therein.

1.2 Models on flocking and alignment

We turn our main focus onto modeling mid range alignment interactions, starting

from this section. The key phenomenon to capture in the modeling prospectus is velocity

matching, i.e., flocking.

1.2.1 Cucker-Smale model

We start with the pioneering work of Cucker and Smale [26, 27]. The model reads

ẋi = vi, v̇i =
1
N

N

∑
j=1

φi j(v j−vi). (1.2)
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Here, φi j indicates the influence from individual j to individual i. It is natural to measure

the strength of influence by the physical distance between the two individuals,

φi j = φ(|xi−x j|). (1.3)

φ = φ(r) is called the influence function, which is bounded, non-negative and decreasing

in r. Without loss of generosity, we can assume ‖φ‖L∞(R+) = φ(0) = 1.

System (1.2) celebrates the conservation of total momentum, due to symmetry of

interaction φi j,

d
dt

(
N

∑
i=1

vi

)
=

1
N

N

∑
i=1

N

∑
j=1

φi j(v j−vi) = 0.

It implies the average velocity v̄ =
1
N

N

∑
i=1

vi is conserved in time.

Moreover, symmetry also implies dissipation in l2 variation of velocity

d
dt

(
N

∑
i=1
|vi− v̄|2

)
=− 1

N

N

∑
i=1

N

∑
j=1

φi j|v j−vi|2 ≤ 0. (1.4)

Therefore, the equilibrium state for Cucker-Smale system (x∗i ,v∗i ) satisfies either or

the following

φi j = 0, or vi = v j, ∀ i, j = 1, · · · ,N.

The large time behavior of the system would be cluster formation. Individuals in the

same cluster will align with each other, vi−v j→ 0 as t→+∞. Individuals from different

clusters will have no influence with each other asymptotically, φi j→ 0.

In particular, if the influence function is strong enough in the far field, namely it has

a diverging tail (c.f. [44, 73]), ˆ
∞

φ(r)dr =+∞,
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then, the number of clusters is guaranteed to be 1, where all individuals align with others,

vi(t)
t→∞−−−→ v̄, ∀ i = 1, · · · ,N,

and stay within a finite distance with respect to the center x̄(t) = v̄t,

|xi(t)− x̄(t)| ≤C, ∀ t ≥ 0.

It yields the so-called flocking phenomenon, where (i) the distance between individuals are

bounded for all time, and (ii) all individuals have the same asymptotic velocity. Figure

1.2 is a simulation of 1D Cucker-Smale system (1.2). The flocking properties can be

observed: (i) in left graph, and (ii) in right graph. We postpond more discussions to

section 1.2.3.

0 2 4 6 8 10
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0
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t

0 2 4 6 8 10
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−0.6

−0.4
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−
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Figure 1.2: A 1D simulation to illustration the flocking phenomenon. Left graph shows

{xi(t)− x̄(t)}i are bounded in all time. Right graph shows {vi(t)− v̄}i converge to 0 as

time approaches infinity.
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1.2.2 Motsch-Tadmor model

Cucker-Smale model beautifully captures the flocking phenomenon. However, there

is a drawback of this model which is worth mentioning, consulting [72].

Figure 1.3 states an example, discussed in [72, Section 2.1], where Cucker-Smale

model provides “unreasonable” dynamics. Suppose there is a small group G1 with N1 in-

dividuals and a large group G2 with N2 individuals which is far from G1. The interactions

between individuals in G1 and G2 are weak. In particular, if the distance is larger than the

length of the support of φ , there is no interaction between G1 and G2. As the total number

of individuals is N = N1 +N2, the Cucker-Smale model (1.2) has the following dynamics

of vi for i ∈ G1.

v̇i =
1

N1 +N2

N1

∑
j=1

φi j(v j−vi), ∀ i ∈ G1.

As N2� N1, v̇i ≈ 0. Hence, the invisible large group far away almost halts the internal

interactions within G1.

Figure 1.3: A drawback of Cucker-Smale model when the configuration is far from equi-

librium [72]: the interactions between individuals within the small group G1 becomes

almost zero due to a large group G2 far away.

Motsch and Tadmor in [72] proposed the following new model to overcome such

11



drawback of Cucker-Smale model.

ẋi = vi, v̇i =
1

Φi

N

∑
j=1

φi j(v j−vi), Φi =
N

∑
j=1

φi j. (1.5)

The total interaction Φi for an individual i is used to normalize the system instead of the

total number of individuals N.

Consider the same example illustrated in figure 1.3. The dynamics of vi under (1.5)

for i ∈ G1 reads

v̇i =
1

Φi

N1

∑
j=1

φi j(v j−vi)≈
1

N1

N1

∑
j=1

φi j(v j−vi), ∀ i ∈ G1,

where Φi ≈ N1 as φi j ≈ 1 for j ∈ G1 and φi j = 0 for j ∈ G2. This yields a much more

reasonable dynamics as the invisible group G2 should have no effect on the dynamics of

individuals in G1.

The dynamics of vi in (1.5) can be also written as v̇i = ṽi−vi, where ṽi =
N

∑
j=1

φi j

Φi
v j

is the environmental average velocity corresponding to individual i. It is a convex combi-

nation of {v j}. Every individual tends to align with its environment average velocity.

The normalization Φi breaks the symmetry of the system. Hence, conservation of

momentum is not valid for (1.5). It is more realistic but less mathematical friendly. For

instance, the l2 variation of velocity is no longer dissipative. Nevertheless, flocking phe-

nomenon is still observed from simulations, with the result similar to what is illustrated

in figure 1.2. And it could be proved (e.g. [72, 73]) under l∞ framework.

1.2.3 Unconditional flocking

In this section, we discuss flocking properties for Cucker-Smale system (1.2) and

Motsch-Tadmor system (1.5).
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We start with a concrete mathematical definition of flocking, for an agent-based

system.

Definition 1.2.1 (Flocking). We say an multi-agent dynamical system {(xi,vi)} converges

to a flock if

(i) Variation in position S(t) stays bounded for all time.

S(t) := ‖{|xi(t)− x̄(t)|}i‖ ≤ D ∀ t ≥ 0.

(ii) Variation in velocity V (t) decays to 0 as time approaches infinity.

V (t) := ‖{|vi(t)− v̄(t)|}i‖
t→∞−−−→ 0.

The norm ‖ · ‖ on RN has not been specified in the definition. Indeed, flocking

properties can be derived under l1, l2 or l∞ frameworks, consulting [26, 44, 45, 72, 73].

Here, we define lp norm in the usual fashion.

‖z‖lp =



(
1
N

N

∑
i=1
|zi|p

) 1
p

p < ∞,

max
1≤i≤N

|zi| p = ∞.

The starting point is the Cucker-Smale system (1.2), which enjoys the dissipation

property (1.4). It implies the following estimate

d
dt

N

∑
i=1
|vi(t)− v̄|2 ≤−min

i j
φi j(t)

1
N

N

∑
i=1

N

∑
j=1
|v j(t)−vi(t)|2 =−2min

i j
φi j(t)

N

∑
i=1
|vi(t)− v̄|2.

Hence, under l2 framework, V̇ (t) ≤ −mini j φi j(t)V (t). In particular, if φ has a global

lower bound γ > 0, then V̇ ≤ −γV , which implies exponential decay of V . Moreover,

|Ṡ| ≤V regardless of the norm picked. It clearly implies boundedness of S in all time.
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Remark 1.2.1. The flocking property stated above is satisfied regardless of the choice of

initial configurations. We call this unconditional flocking, as suggested in [72]. In con-

trast, conditional flocking occurs when definition 1.2.1 is satisfied only for some choices

of initial configurations. If φ has a global lower bound, Cucker-Smale system (1.2) has

unconditional flocking property under any lp frameworks.

The global lower bound assumption for the influence function φ is too strong and

unrealistic, as the influence is usually “local”. We would like to find a weaker condition

to guarantee unconditional flocking, where φ is allowed to vanish at infinity. To proceed,

we follow the discussion in [44]. Estimate

min
i j

φi j(t)= φ(max
i j
|xi(t)−x j(t)|)≥ φ(2max

i
|xi(t)− x̄(t)|)≥ φ

2

(
N

∑
i=1
|xi(t)− x̄(t)|2

)1/2
 .

It implies the following estimates on (S,V ), under l2 framework:

|Ṡ| ≤V, V̇ ≤−φ(2
√

NS)V.

The following proposition provides a sufficient condition of the influence function

φ to ensure flocking, making use of the above decay estimates.

Proposition 1.2.1 ( [44, Theorem 3.2]). Suppose (S(t),V (t)) satisfying decay estimates

|Ṡ| ≤V, V̇ ≤−kφ(αS)V,

where k,α are positive constants. If φ decays sufficiently slow, namely

k
ˆ

∞

S0

φ(αr)dr >V0, (1.6)

there exists a finite number D, defined in (1.7), such that

sup
t≥0

S(t)≤ D, V (t)≤V0e−kφ(αD)t .
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Proof. Consider free energy E (t) := V (t)+ k
´ S(t)

0 φ(αs)ds. From condition (1.11), it is

easy to check d
dt E ≤ 0. We then have

V (t)−V0 ≤−k
ˆ S(t)

S0

φ(αs)ds.

Assume (1.6) holds, then there exists a finite number D, depending only on φ ,ρ0,u0,

defined as

D = ψ
−1(V0 +ψ(S0)

)
, where ψ(t) = k

ˆ t

0
φ(αs)ds. (1.7)

such that V0 = k
´ D

S0
φ(αs)ds. Hence, we have

0≤V (t)≤ k
ˆ D

S(t)
φ(αs)ds.

It yields that S(t)≤D<∞. Moreover, from (1.11b) and the monotone decreasing property

of φ , we obtain

d
dt

V (t)≤−kφ(αD)V (t) ⇒ V (t)≤V0e−kφ(αD)t → 0, as t→+∞.

Remark 1.2.2. The proposition states that condition (1.6) implies flocking. Moreover,

the decay on V is exponential. We name this flocking with fast alignment. We will take

advantage of the fast alignment property later in section section 2.3.2 for the macroscopic

system.

We introduce a new assumption on φ :

φ(r) is bounded, positive, Lipschitz, non-increasing in r, and
ˆ

∞

φ(r)dr = ∞. (1.8)

An prototype choice of φ is φ(r) = (1+ r)−α , with α < 1. The new assumption allows φ

to vanish at infinity, thus it is weaker than the uniform lower boundedness assumption.
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We observe that with the assumption
´

∞
φ(r)dr = ∞, condition (1.6) is satisfied

regardless of choices of initial configuration. Therefore, we conclude that Cucker-Smale

system (1.2) has unconditional flocking property.

Similar type of estimates on (S,V ) under l∞ framework can be derived for both

Cucker-Smale (1.2) and Motsch-Tadmor (1.5) systems, consulting [72,73]. The estimates

read

|Ṡ| ≤V, V̇ ≤−φ(S)V.

A direct consequence of proposition 1.2.1 yields unconditional flocking for (1.2) and

(1.5), under assumption (1.6).

The major difference between the l2 approach and l∞ approach is, estimates of

(S,V ) under l∞ framework is independent of the total number of individuals N. Therefore,

when N→ ∞, the estimate is valid, only under l∞ framework.

1.2.4 Other models

We briefly discuss other alignment models in this section.

One celebrating model on self-organized dynamics is proposed by Vicsek in [102].

A continuous in time description reads

ẋi = cωi, ω̇i = (Id−ωi⊗ωi)ω̃k.

Here, constant speed c is assumed. ωi denotes the orientation of the i-th individual, where

vi = cωi. ω̃i is the environmental average, given by

ω̃i =
Ji

|Ji|
, Ji = ∑

{ j : |xi−x j|≤R|}
ω j.
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This model discribes the dynamics of a group of animals like a school of fish, where each

individual change their orientation based on the orientations of its neighbors of distance

less than R. Interesting alignment and phase transition behaviors are observed. We refer

to [29, 30, 35] for details.

Another popular model on synchronization is proposed by Kuramoto in [58]. It

was motivated by chemical and biological oscillators, and has wide applications in neu-

roscience. The governing equation reads:

dθi

dt
= ωi +

K
N

N

∑
j=1

sin(θ j−θi), i = 1, · · · ,N,

where θi = θi(t) discribes the frequency of ith oscillator, and ωi is its intrinsic natural

frequency, which is independence in time. The synchronization behavior is reflected by

alignment of the asymptotic frequency θi, as t → ∞. Consult the review paper [1] and

references therein for various discussions on Kuramoto model.

Finally, we would like to mention Krause’s consensus model [57] on opinion dy-

namics. A continuous version reads

ẋi =
1
N

N

∑
j=1

φ(|xi−x j|)(x j−xi).

The model has a similar flavor as Cucker-Smale model (1.2). It is a first-order model

where the influence is realized by “velocity” rather than “acceleration”. Consensus is

mathematically defined as the alignment on {xi}, namely, lim
t→∞

S(t) = 0. A sufficient

condition to ensure consensus is S0 < R, where supp(φ) = [0,R). The proof is left to

readers.

It is worth noting that Krause’s model is a special case of the attraction-repulsion
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model (1.1), with potential Ψ(r) =
ˆ r

0
sφ(s)ds. In fact,

ẋi =
1
N

N

∑
j=1

Ψ
′(|xi−x j|)∂x j |xi−x j|=

1
N

N

∑
j=1

Ψ′(|xi−x j|)
|xi−x j|

(x j−xi)=
1
N

N

∑
j=1

φ(|xi−x j|)(x j−xi).

As the potential Ψ above is increasing for all r > 0, the system reflects an aggregation

model, which leads to concentration [7, 16], or in our words, consensus.

Krause’s model also has a normalized version of Motsch-Tadmor type,

ẋi =
1

Φi

N

∑
j=1

φ(|xi−x j|)(x j−xi), Φi =
N

∑
j=1

φ(|xi−x j|).

We refer to [73] for a comprehensive review on both models. In particular, it is observed

that heterophilous dynamics might enhance consensus, namely, if φ is increasing inside its

support, it is more likely to achieve consensus, rather than a usual homophilous decreasing

influence φ . The full explanation of such phenomenon is still open.

1.3 Multi-scale representation of Flocking

In this section, we derive the kinetic and hydrodynamic representations of flocking

systems (1.2) and (1.5), and discuss flocking behaviors under different scales.

1.3.1 Kinetic representation

For Cucker-Smale system (1.2) and Motsch-Tadmor system (1.5) with large number

of agents, we can formally derive the asymptotic behaviors of the system when number

of agents goes to infinity. The mean field limit yields the following Vlasov-type kinetic

equation

∂t f +v ·∇x f +∇v · ( f L( f )) = 0. (1.9)
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Here, f = f (t,x,v) denotes the number density of agents at postion x, velocity v and time

t. The operator L is different for the two systems, see [45,72] for derivation. In detail, for

Cucker-Smale system (1.2), the corresponding operator is

L( f )(t,x,v) =
¨

φ(|x−y|)(v∗−v) f (t,y,v∗)dydv∗. (C-S)

For Motsch-Tadmor system (1.5), the corresponding operator is

L( f )(t,x,v) =
¨

φ(|x−y|)
Φ(t,x)

(v∗−v) f (t,y,v∗)dydv∗, (M-T)

where

Φ(t,x) =
¨

φ(|x−y|) f (t,y,v∗)dydv∗.

We provide a brief formal derivation of (1.9) in appendix section 1.A for completeness.

The global existence theory for Vlasov-type equation has been studied in many

contexts. We refer readers to [36, 61, 79, 86] for Vlasov-Poisson equations and [37, 38]

for Vlasov-Maxwell equations, as well as a nice technical review paper [75]. For kinetic

flocking system (1.9), it is significantly easier to obtain existence of global C1 solution,

as the alignment forcing has no singularity. We state the following theorem.

Theorem 1.3.1 (Global strong solution). Consider (1.9) with (C-S) or (M-T) setup. Sup-

pose the initial profile f0 ∈C1∩W 1,∞(R2n) is compactly supported and C1-regular. Then,

for any T ∈ (0,∞), there exists a unique strong solution f ∈C1([0,T )×R2n).

The proof for (C-S) setup is given in [45, Theorem 3.3]. We will give a similar (but

stronger) proof in the appendix section 1.B, for both setups.
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1.3.2 Unconditional flocking for kinetic models

In this section, we discuss the flocking property for the solution of kinetic system

(1.9), under (C-S) and (M-T) setups.

To illustrate flocking in kinetic level, we first define the total variation in position x

and velocity v:

S(t) := sup
(x,v),(y,v∗)∈supp f (t)

|x−y|, V (t) := sup
(x,v),(y,v∗)∈supp f (t)

|v−v∗|. (1.10)

As mentioned in section 1.2.3, the definition of (S,V ) are under L∞ framework.

Definition 1.3.1 (Kinetic flocking). We say a solution f (t,x,v) converges to a flock in the

kinetic level, if S(t) remains bounded in all time, and V (t) decays to 0 asymptotically:

S(t)≤ D, ∀t ≥ 0; V (t)→ 0 as t→ ∞.

We claim that (1.9) has unconditional flocking property if φ satisfies (1.8).

Theorem 1.3.2 (Unconditional flocking for kinetic systems). Suppose f is the solution

of the system (1.9) with (C-S) or (M-T) setup, with regular initial profile f0 ∈C1∩W 1,∞.

Then f converges to a flock in the sense of definition 1.3.1.

The theorem has been proved for Cucker-Smale system in [19]. Here, we give a

new proof for both setups. The idea is addressed in [72], and [97] with more details.

The heart of the matter is to prove the following decay estimates for (S,V ). It

immediately implies unconditional flocking, thanks to proposition 1.2.1.
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Proposition 1.3.3 (L∞-type Decay estimates). (S,V ) are defined in (1.10), where f is a

solution of (1.9). Then,

d
dt

S(t)≤V (t), (1.11a)

d
dt

V (t)≤−kφ(S(t))V (t)., (1.11b)

where k = m for (C-S) and k = 1 for (M-T).

Here, m is the total mass m =

¨
f dxdv, which is conserved in time.

Proof. The characteristic curve of the system reads (x(t),v(t)) where

d
dt

x(t) = v(t),
d
dt

v(t) = L( f )(t,x(t),v(t)).

We consider two characteristics (x1(t),v1(t)) and (x2(t),v2(t)), both starting inside the

support of f0. It is clear that f is constant along the characteristic curve. Therefore,

(xi(t),vi(t)) lies inside the support of f (t).

To simplify the notations, we omit the time variable throughout the proof.

Compute

d
dt
|x1−x2|2 = 2〈x1−x2,v1−v2〉 ≤ 2SV.

By taking the supreme of the left hand side for all x1,x2, the inequality yields

(1.11a).

Similarly, we have

d
dt
|v1−v2|2 = 2

〈
v1−v2,L( f )(x1,v1)−L( f )(x2,v2)

〉
.

The following key estimates can be proved later in lemma 1.3.5 for (C-S) and

lemma 1.3.4 for (M-T)

L( f )(x1,v1)−L( f )(x2,v2)≤ k(1−φ(S))V − k(v1−v2), (1.12)

21



for all (x1,v1),(x2,v2) in the support of f . It yields

d
dt
|v1−v2|2 ≤ 2k(1−φ(S))|v1−v2|V −2k|v1−v2|2.

Take v1,v2 where |v1−v2| →V , we end up with (1.11b).

To prove the remaining key estimate, we start with (M-T) configuration.

Lemma 1.3.4. Inequality (1.12) holds for (M-T) with k = 1.

Proof. Given any pairs (x,v) and (y,v∗) inside the support of f , define

b(t,x,v,y,v∗) :=
φ(|x−y|) f (t,y,v∗)

Φ(t,x)
.

Such function b enjoys the following properties

(P1)
¨

b(t,x,v,y,v∗)dydv∗ = 1, for all t,

(P2) k
¨

b(t,x,v,y,v∗)(v∗−v)dydv∗ = L( f )(t,x,v),

(P3) There exists η(t,v∗) such that
ˆ

b(t,x,v,y,v∗)dy≥ η(v∗) for all t,x and v. Also,ˆ
η(t,v∗)dv∗ = φ(S)> 0 for all t.

The first two properties are easy to check. The last one provides some positivity property

of the uniform lower bound of b with respect to (x,v), which is essential to the estimate.

Here, we have

ˆ
b(t,x,v,y,v∗)dy =

´
φ(|x−y|) f (t,y,v∗)dy

Φ(t,x)
≥

φ(S)
´

f (t,y,v∗)dy
m

,

thanks to the decreasing property of φ and the universal assumption of φ(0) = 1. The

right hand side is independent with respect to x, and could be defined as the η . Clearly,

(P3) is satisfied.
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We continue to compute, omitting the t variable.

L( f )(x1,v1)−L( f )(x2,v2)

(P2)
= k

¨
[b(x1,v1,y,v∗)(v∗−v1)−b(x2,v2,y,v∗)(v∗−v2)]dydv∗

(P1)
= k

¨
(b(x1,v1,y,v∗)−b(x2,v2,y,v∗))v∗dydv∗− k(v1−v2)

= k
[ˆ (ˆ

b(x1,v1,y,v∗)dy−η(v∗)
)

dv∗−
ˆ (ˆ

b(x2,v2,y,v∗)dy−η(v∗)
)

dv∗
]

− k(v1−v2)

= k(1−φ(S))
[ˆ

b̂(x1,v1,v∗)v∗dv∗−
ˆ

b̂(x2,v2,v∗)dv∗
]
− k(v1−v2).

Here, b̂ is defined as b̂(x,v,v∗) =
´

b(x,v,y,v∗)dy−η(v∗)
1−φ(S)

. From (P1) and (P3), we

know b̂ is positive, supported inside the support of f in v, and
ˆ

b̂(x,v,v∗)dv∗ = 1 for all

(x,v). Therefore,
ˆ

b̂(x,v,v∗)v∗dv∗ lies inside the convex envelope of the support of f

in v. Hence, ∣∣∣∣ˆ b̂(x1,v1,v∗)v∗dv∗−
ˆ

b̂(x2,v2,v∗)dv∗
∣∣∣∣≤V,

and (1.12) holds.

We now apply the same idea to (C-S) configuration.

Lemma 1.3.5. Inequality (1.12) holds for (C-S) with k = m.

Proof. Our goal is to find function b satisfying (P1)-(P3). After then, we can proceed

using lemma 1.3.4. We pick

b(t,x,v,y,v∗) =
1
m

φ(|x−y|) f (t,y,v∗)+
(

1− Φ(t,x)
m

)
δ0(x−y)δ0(v−v∗),

where δ0 is the Dirac delta at the origin. With this setup, (P1) and (P2) are easily satisfied.

For (P3), the same choice of η in lemma 1.3.4 can be used.
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1.3.3 Macroscopic representation

In this section, we discuss the macroscopic representation for flocking models,

which is formally obtained by taking moments of the kinetic system (1.9).

Multiply (1.9) against {1,v} and integrate over velocity space Rn. We get the hy-

drodynamic description of the system

ρt +div(ρu) = 0, (1.13a)

(ρu)t +div(ρu⊗u+P) = ρF. (1.13b)

Here, (ρ,u) are hydrodynamic variables

ρ(x) =
ˆ
Rn

f (x,v)dv, ρ(x)u(x) =
ˆ
Rn

v f (x,v)dv.

F is the non-local alignment forcing. For Cucker-Smale system,

F(x) =
ˆ
Rn

φ(|x−y|)(u(y)−u(x))ρ(y)dy. (C-S)

For Motsch-Tadmor system,

F(x) =
ˆ
Rn

φ(|x−y|)
Φ(x)

(u(y)−u(x))ρ(y)dy, (M-T)

where

Φ(x) =
ˆ
Rn

φ(|x−y|)ρ(y)dy. (1.14)

P is the stress tensor (or pressure) which is defined by

P(x) =
ˆ
Rn
(v−u)⊗ (v−u) f (x,v)dv. (1.15)

To close the system with (ρ,u), we apply different ansatz, which lead to different

types of pressure.
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Pressure-less closure: P = 0.

Consider kinetic flocking system (1.9) with strong local alignment

ft +v ·∇x f +∇v · ( f L( f )) =
1
ε

∇v · ((v−u) f ).

Take ε → 0, formally the right hand side should converges to zero. The limit must have

the form of mono kinetic type:

f (x,v) = ρ(x)δ (v−u(x)).

Plug in this ansatz to (1.15). We get

P(x) = ρ(x)
ˆ
Rn
(v−u)⊗ (v−u)δ (v−u)dv = 0.

Isothermal pressure closure: P = ρIn×n.

Consider kinetic flocking system (1.9) with strong local alignment and strong noise

ft +v ·∇x f +∇v · ( f L( f )) =
1
ε

∇v · ((v−u) f )+
1
ε

∆v f .

Again, take ε → 0, formally the right hand side should converges to zero. The limit must

have the form

f (x,v) = ρ(x)
1

(2π)n/2 e−
|v−u(x)|2

2 ,

where f is a Maxwellian with constant temperature M (ρ,u,1). Plug in this ansatz to

(1.15). We get

Pi j(x) = ρ(x)
ˆ
Rn
(vi−ui(x))(v j−u j(x))

1
(2π)n/2 e−

|v−u(x)|2
2 dv =

ρ(x)
(2π)n/2

ˆ
Rn

viv je−
|v|2

2 dv.

If i 6= j, then the integral at the right hand side equals 0, due to anti-symmetry. If i = j,

Pii(x) =
ρ(x)

(2π)n/2

ˆ
Rn

v2
i e−

|v|2
2 dv =

ρ(x)
(2π)1/2

ˆ
∞

−∞

v2
i e−

v2
i
2 dvi = ρ.
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The rigorous derivation of hydrodynamic limiting system with pressure has been

studied in [51]. The authors show that

f ε(t,x,v)→ ρ(x, t)
1

(2π)n/2 e−
|v−u(x,t)|2

2 ,

as ε→ 0, for any time t when strong solution (ρ,u) exists and solves (1.13) with isother-

mal pressure.

There are other closures on pressure P. For instance, the isentropic pressure is given

by P = P(ρ) = ργIn×n for γ > 1.

We shall concentrate on the pressure-less setup as it is relatively easier to adapt our

techniques without taking into account pressure. It reads

ρt +div(ρu) = 0,

(ρu)t +div(ρu⊗u) = ρF.

It has be also expressed by the following non-conservative form.

ρt +div(ρu) = 0, (1.16a)

ut +u ·∇u = F. (1.16b)

It is a pressure-less compressible Eulerian dynamics, with alignment forcing.

The main question we address to system (1.16) is: does this system reflect flocking

behaviors, as observed and proved in microscopic and kinetic systems.

The question will be answered in two steps. In the next section, we prove the

statement: strong solution must flock. And the whole chapter 2 is devoted to study global

existence of strong solution for macroscopic flocking systems.
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1.3.4 Strong solution must flock

In this section, we discuss the flocking behavior of the macroscopic system (1.16).

Similar than the kinetic system, we start with the definition of flocking in hydrodynamic

level. Define

S(t) := sup
x,y∈suppρ(t)

|x−y|, V (t) := sup
x,y∈suppρ(t)

|u(x)−u(y)|. (1.17)

Definition 1.3.2 (Hydrodynamic flocking). We say a solution (ρ,u) of (1.16) converges

to a flock in the hydrodynamic level, if S(t) remains bounded in all time, and V (t) decays

to 0 asymptotically:

∃ D <+∞, such that S(t)≤ D, ∀t ≥ 0; V (t)→ 0 as t→ ∞.

The following theorem has the same flavor as theorem 1.3.2, which claims any

strong solution of the kinetic flocking system must flock. Macroscopic system (1.16)

enjoys the same property, assuming the existence of strong solution globally in time.

Theorem 1.3.6 (Strong solution must flock). Let (ρ,u) be a global strong solution of

system (1.16), where in particular u ∈ C(R+,W 1,∞(Rn)). Then, (ρ,u) converges to a

flock, in the sense of definition 1.3.2.

Remark 1.3.1. The assumption of existence of strong solution is necessary for the theo-

rem. It ensures that there is no intersection among characteristics and no shock formation.

For kinetic system (1.9), existence of strong solution is easily proved for all regular ini-

tial profiles, as the free transport is linear, and the forcing is not harmful. However, it is

not trivial to establish an existence theory for the macroscopic system (1.16). The main
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difference is that nonlinear convection replaces the linear transport in the kinetic system,

which may lead to finite time loss of regularity. We will study the existence theory of

strong solutions for macroscopic flocking models (1.16) in chapter 2. As long as strong

solution exists globally in time, flocking property is granted, thanks to theorem 1.3.6.

We first show the following decay estimates. Then, the theorem is a consequence

of proposition 1.2.1. The idea of the proof is similar to the kinetic system (proposition

1.3.3), see [95].

Proposition 1.3.7 (Decay estimates). If (ρ,u) are strong solutions of (1.16), then the

decay estimates (1.11) are satisfies, with (S,V ) defined in (1.17).

Proof. Consider two characteristics Ẋ(t) = u(X , t), Ẏ (t) = u(Y, t) subject to initial condi-

tions X(0) = x, Y (0) = y, where x,y ∈ supp(ρ0). Along the characteristics, the evolution

of ρ(t) reads

d
dt

ρ(X(t), t) = ρt +u ·∇ρ =−ρdivu.

As divu is assumed to be bounded, it is clear that ρ(t,X(t))> 0 if and only if ρ0(x)> 0.

Therefore, X(t) ∈ supp(ρ(t)) as long as x ∈ supp(ρ0).

To simplify the notations, we omit the time variable throughout the proof.

Compute

d
dt
|X−Y |2 = 2〈X−Y,u(X)−u(Y )〉 ≤ 2SV.

By taking the supreme of the left hand side for all x,y ∈ supp(ρ0), the inequality

yields (1.11a).

Similarly, we have

d
dt
|u(X)−u(Y )|2 = 2〈u(X)−u(Y ),F(X)−F(Y )〉 .
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Moreover, we claim the following key inequality. The proof is postponed to lemma

1.3.8 for (C-S) and lemma 1.3.9 for (M-T).

F(X)−F(Y )≤ k(1−φ(S))V − k(u(X)−u(Y )), (1.18)

for all X ,Y starting at x,y ∈ supp(ρ0). Hence,

1
2

d
dt
|u(X)−u(Y )|2 ≤ k(1−φ(S))V |u(X)−u(Y )|− k|u(X)−u(Y )|2.

Take X ,Y where |u(X)−u(Y )| →V , we end up with (1.11b).

Lemma 1.3.8. Inequality (1.18) holds for (C-S) setup with k = m.

Proof. Define

b(x,y) :=
1
m

φ(|x−y|)ρ(y)+
(

1− Φ(x)
m

)
δ0(x−y),

where Φ is defined in (1.14) and δ0 is the Dirac delta.

b has the following properties:

(P1) b(x,y)≥ 0, for all x,y ∈ supp(ρ).

(P2)
ˆ
Rn

b(x,y)dy = 1, for all x ∈ supp(ρ).

(P3)
ˆ
Rn

b(x,y)(u(y)−u(x))dy =
1
k

ˆ
Rn

φ(|x−y|)(u(y)−u(x))ρ(y)dy.

Here, we add the second part to the definition of b to make sure (P2) holds. As we only

add a delta mass, the equality of (P3) remains true as well.

To prove (1.18), we need to improve (P1). A minimum assumption on b introduced

in [73] is
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(P1’) Ψ(x,y)> 0, for all x,y ∈ supp(ρ), where

Ψ(x,y) :=
ˆ
Rn

ηx,y(z)dz and ηx,y(z)≤min{b(x,z),b(y,z)}.

In our case, We pick ηx,y(z) = η(z) = 1
mφ(S)ρ(z) and Ψ(x,y) = Ψ = φ(S)> 0.

Next, compute

F(X)−F(Y ) =

ˆ
Rn

[φ(|X− z|)(u(z)−u(X))−φ(|Y − z|)(u(z)−u(Y ))]ρ(z)dz

(P3)
= k

ˆ
Rn

[b(X ,z)(u(z)−u(X))−b(Y,z)(u(z)−u(Y ))]dz

(P2)
= k

ˆ
Rn

(b(X ,z)−b(Y,z))u(z)dz− k(u(X)−u(Y ))

= k
ˆ
Rn
(b(X ,z)−η(z))u(z)dz− k

ˆ
Rn
(b(Y,z)−η(z))u(z)dz− k(u(X)−u(Y ))

(P1′)
= k(1−Ψ)

ˆ
Rn

b̂(X ,z)u(z)dz− k(1−Ψ)

ˆ
Rn

b̂(Y,z)u(z)dz− k(u(X)−u(Y )),

where b̂ is defined as

b̂(x,y) :=
b(x,y)−η(y)

1−Ψ
.

Condition (P1’) guarantees b̂(x,y)≥ 0 for all x,y ∈ supp(ρ), and
ˆ

supp(ρ)
b̂(x,y)dy = 1,

for all x ∈ supp(ρ). Therefore, define

ū(X) :=
ˆ
Rn

b̂(X ,z)u(z)dz,

then ū(X) is included in the convex envelope of the set {u(x) | x ∈ supp(ρ)} as long as

X ∈ supp(ρ). It yields that |ū(X)− ū(Y )| ≤V . Therefore,

F(X)−F(Y ) = k(1−Ψ)(ū(X)− ū(Y ))− k(u(X)−u(Y ))

≤ k(1−Ψ)V − k(u(X)−u(Y )).
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Lemma 1.3.9. Inequality (1.18) holds for (M-T) setup with k = 1.

Proof. In this case, we define

b(x,y) =
φ(|x−y|)ρ(y)

Φ(x)
.

It is easy to check that b satisfies (P1’)(P2) and (P3) with k = 1.

A same argument as lemma 1.3.8 yields (1.18).
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Appendix

1.A Formal derivation of the kinetic system

We provide a formal derivation of kinetic flocking systems. More details and dis-

cussions are referred to [45, 72].

We represent the number density f as an empirical distribution with respect to the

N-particle system:

f (t,x,v) =
1
N

N

∑
i=1

δxi(t)δvi(t).

Take smooth test function ϕ(x,v) and compute

¨
∂t f (t,x,v)ϕ(x,v)dxdv=

1
N

N

∑
i=1

∂tϕ(xi(t),vi(t))=
1
N

N

∑
i=1

[ẋi ·∇xϕ(xi,vi)+ v̇i ·∇vϕ(xi,vi)] .

We now apply the microscopic model ẋi = vi, v̇i = Fi to the right hand side. Fi is the

forcing for particle i. For Cucker-Smale system, we have

Fi =
1
N

N

∑
j=1

φ(|xi−x j|)(v j−vi) =

¨
φ(|xi−y|(v∗−vi) f (y,v∗)dydv∗ = L( f )(xi,vi),

where L( f ) is defined in section 1.3.1. Similar argument can be applied to Motsch-

Tadmor setup as well.
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Let’s continue with our formal calculation.

¨
∂t f (x,v)ϕ(x,v)dxdv =

1
N

N

∑
i=1

[vi ·∇xϕ(xi,vi)+L( f )(xi,vi) ·∇vϕ(xi,vi)]

=

¨
[v ·∇xϕ(x,v)+L( f )(x,v) ·∇vϕ(x,v)] f (x,v)dxdv

=−
¨

[v ·∇x f (x,v)+∇v · (L( f )(x,v) f (x,v))]ϕ(x,v)dxdv.

We end up with the weak formulation of the kinetic flocking system (1.9).

1.B Global existence theory for kinetic flocking equations

In this section, we prove theorem 1.3.1: a global existence result for kinetic flocking

system (1.9), under both (C-S) and (M-T).

We proceed with standard estimates for Vlasov-type kinetic equations. See [6] for

similar argument for kinetic system for granular gas.

Take characteristic curve (X ,V ) starting at point (x,v).

Ẋ(t,x,v) =V (t,x,v), (1.19a)

V̇ (t,x,v) = L( f )(t,X(t,x,v),V (t,x,v)). (1.19b)

Note that there is a slight change of notation. We use (X ,V ) to denote the characteristic

curve. As for variation in velocity defined in definition 1.2.1, we use [V ] instead, only in

this section. Clearly [V ](t) is bounded in all time. We denote the uniform bound as [V ].

In the case where we have unconditional flocking, [V ] = [V ](0).

Define the Jacobian J as the transformation matrix from Eulerian coordinates (x,v)
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to Lagrangian coordinates (X ,V ).

J(t,x,v) =

∂xX ∂vX

∂xV ∂vV

 , A(t,x,v) =

 0 1

∂xL( f ) ∂vL( f )

 .
It is easy to check from (1.19) that

J̇(t,x,v) = A(t,X ,V )J(t,x,v), J(x,v,0)≡ I2n×2n, (1.20)

J̇−1(t,x,v) =−J−1(t,x,v)A(t,X ,V ), J−1(x,v,0)≡ I2n×2n, (1.21)

det J(t,x,v) = exp
(ˆ t

0
trA(s,X(s,x,v),V (s,x,v))ds

)
. (1.22)

Along the characteristics, we have

f (t,X(t,x,v),V (t,x,v)) = f0(x,v)(det J(t,x,v))−1.

Plug in (1.22) to the equation. It is sufficient to prove that f (t, ·, ·) ∈ L∞
x,v in any

finite time as long as ‖A‖L∞ is finite. And we claim that it is true for kinetic flocking

systems (1.9).

In fact, under (C-S) setup, we obtain

|∂xL( f )|=
∣∣∣∣¨ ∂xφ(|x−y|)(v∗−v) f (y,v∗)dydv∗

∣∣∣∣≤ ‖φ‖Ẇ 1,∞[V ]m,

|∂vL( f )|=
∣∣∣∣−¨ φ(|x−y|) f (y,v∗)dydv∗

∣∣∣∣= Φ(x)≤ m.

Here, m is the total mass. As φ satisfies (1.8), in particular φ is Lipschitz, hence A is
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bounded in all time. Similarly, under (M-T) setup,

|∂xL( f )|=
∣∣∣∣¨ ∂x

(
φ(|x−y|)

Φ(x)

)
(v∗−v) f (y,v∗)dydv∗

∣∣∣∣
≤ [V ]

¨ |∂xφ(|x−y|) f (y,v∗)Φ(x)−φ(|x−y|)∂x f (y,v∗)Φ(x)|
Φ2(x)

dydv∗

≤ 2[V ]

¨ |∂xφ(|x−y|) f (y,v∗)|
Φ(x)

dydv∗ ≤ 2‖φ‖Ẇ 1,∞[V ]m
φ(D)

,

∂vL( f ) =−
¨

φ(|x−y|)
Φ(x)

f (y,v∗)dydv∗ =−1.

Note that a normalization factor Φ(x) makes the estimate on ∂xL( f ) more delicate. Thanks

to unconditional flocking property, we are able to obtain a positive lower bound on φ(x).

As long as the denominator is bounded away from zero, we conclude with the desired

estimate. Here, we recall D the uniform bound on the total variation in position S(t),

defined in (1.7).

For existence of classical solutions, we need to bound ∇(x,v) f .

(∇ f )(t,X(t),V (t)) = J−1(t)∇ f0(x,v)exp
(
−
ˆ t

0
trA(s,X(s),V (s))ds

)
+ f0(x,v)exp

(
−
ˆ t

0
trA(s,X(s),V (s))ds

)ˆ t

0
J(s) (∇trA)(s,X(s),V (s))ds.

As ‖A‖L∞ is bounded, it is clear that J and J−1 are bounded point-wise by eCt ,

thanks to (1.20) and (1.21). To obtain boundedness of ∇ f , we are left to estimate ∇trA =

∇∂vL( f ). Notice that L( f ) is linear in v for both setups. Hence, ∂ 2
v L( f ) = 0.

Compute ∂x∂vL( f ) for (C-S) setup:

|∂x∂vL( f )|=
∣∣∣∣−¨ ∂xφ(|x−y|) f (y,v∗)dydv∗

∣∣∣∣≤ ‖φ‖Ẇ 1,∞m.

For (M-T) setup, as ∂vL( f ) =−1, it directly implies ∂x∂vL( f ) = 0.
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We end up with global existence of classical solutions with

‖ f (t, ·, ·)‖W 1,∞ ≤ ‖ f0‖W 1,∞eCt .
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Chapter 2: Macroscopic Flocking Models

In this chapter, we develop a global existence theory for macroscopic flocking mod-

els.

Macroscopic flocking models can be viewed as compressible Eulerian dynamics

coupled with non-local alignment forcing, as stated in section 1.3.3. It is well known

that compressible Euler system will lose C1 regularity in finite time, due to formation of

shock discontinuities caused by nonlinear convection. On the other hand, the forcing term

regularizes the system and prevents finite time break down. This brings mathematical

challenges to quantify and balance the competition between convection and forcing.

One prototype problem is the Euler-Poisson system which models plasma with ions

and electrons interactions. The competition between convection and Poisson forcing is

difficult to compare, and whether the system has global existence of smooth solution is

still open, except for the 1D case, where a critical threshold phenomenon has been shown

in [33]: the initial configurations are divided into two parts through a critical threshold,

where subcritical initials lead to global smooth solution, while supercritical initials lead

to finite time break down of the system. The critical threshold beautifully expresses the

competition, where forcing dominates in the subcritical case, and convection dominates

in the supercritical case. The major difficulty to extend the result to higher dimension is
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due to the fact that Poisson forcing becomes non-local for dimension 2 or higher.

We study the critical threshold phenomenon for macroscopic flocking models. The

alignment forcing is always non-local. We use L∞ estimate to handle the non-locality and

derive a subcritical region for the initial configuration where alignment forcing dominates

and global strong solution exists. Meanwhile, there is a supercritical region where the

system has a finite time break down. There is a gap between the two regions due to

non-locality of the alignment forcing.

As discussed in section 1.3.4, strong solution must flock. It implies that the system

converges to a flock if starting with subcritical initial data. Moreover, we take advantage

of the flocking property and achieve a much larger subcritical region, where the existence

of global strong solution is guaranteed.

This chapter is organized as follows. We start in section 2.1 with a review of known

results for systems related to macroscopic Cucker-Smale system (2.1). Section 2.2 is

devoted to introduce the key tool to study macroscopic flocking models: critical thresh-

olds in Eulerian dynamics. The prototype Euler-Poisson system, interesting from its own

sake, is introduced in section 2.2.3-2.2.4, where we address the difficulty for analyzing

the 2D system due to non-locality. More discussions regarding 2D Euler-Poisson system

are presented in section 2.8. In section 2.3-2.7, we focus on global existence theory for

macroscopic flocking systems. A 1D critical threshold result for Cucker-Smale system

is presented in section 2.3, where we make full use of the flocking property and derive a

large subcritical region. If the initial configuration lies inside the region, there is global

existence of strong solution, and flocking behavior follows due to the fact that strong so-

lution must flock. The result can be extended to the more complicated 2D system (section
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2.4) and vacuum area (section 2.5). Higher regularity and integrability are also discussed

in section 2.6. Finally, we claim in section 2.7 that a similar theory could be established

for macroscopic Motsch-Tadmor system as well.

2.1 Macroscopic Cucker-Smale and related systems

In this section, we briefly discuss macroscopic Cucker-Smale system

ρt +div(ρu) = 0, x ∈ Rn, t ≥ 0, (2.1a)

(ρu)t +div(ρu⊗u)+∇P =

ˆ
Rn

φ(|x−y|)(u(y)−u(x))ρ(x)ρ(y)dy, (2.1b)

derived in section 1.3.3. With different choice of the influence function φ , (2.1) is related

to some systems which has been studied from different prospectus.

We proceed with a survey on known results from the literature for related systems.

Techniques and details are not going to be addressed in this section.

2.1.1 Local dissipation

Assume φ is bounded and decay sufficiently fast at infinity, such that
ˆ

∞

0
φ(r)rn+1dr

is finite. We process a hyperbolic scaling (x, t)→
(x

ε
,

t
ε

)
with (ρ,u,P)→

(
ρ

ε
,u,

P
ε

)
and get the following scaled system

ρt +div(ρu) = 0,

(ρu)t +div(ρu⊗u)+∇P =

ˆ
Rn

φε(|x−y|)(u(y)−u(x))ρ(x)ρ(y)dy.

where

φε :=
1

εn+2 φ

(
|x|
ε

)
.
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When ε→ 0, the interaction becomes local. Through a formal calculation, consult-

ing appendix section 2.A, we derive the limiting local system

ρt +div(ρu) = 0, (2.2a)

(ρu)t +div(ρu⊗u)+∇P =Cdiv (µ(ρ)∇u) . (2.2b)

where the viscosity coefficient µ(ρ) = ρ2, and the constant C =
ωn

2n

ˆ
∞

0
φ(r)rn+1dr, with

ωn denoting the surface area of a unit sphere in Rn. System (2.2) belongs to the class of

compressible Navier-Stokes equations with degenerate viscosity µ = ρθ , θ > 0, which

vanishes at the vacuum.

The study of such equations is mostly limited to one dimension. For existence

and uniqueness of the weak solution with “moderate degeneracy”, θ < 1/2, we refer

to [67, 104, 107]. Mellet and Vasseur in [74] proved global existence and uniqueness of

the strong solution. They assume ρ0 > 0 and show that ρ(t) > 0 for all t ≥ 0, namely,

vacuum never appears and the system is in fact not degenerate in all time.

However, with the presence of vacuum, global regularity of the system is not known.

In fact, for the 1D pressure-less case, (2.2b) acts like inviscid Burgers equation at vacuum.

It is well known that initial C1 regularity will lose in finite time for general non-increasing

initial data.

2.1.2 Fractional dissipation

One common way to introduce non-locality to the viscous term is to consider frac-

tional dissipation, with

φ(r) = r−n−2α .
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Here, φ has a singularity at the origin. This setup is widely discussed in the incompress-

ible case, where the density ρ is formally set to be 1 and system (2.1b) reads

ut +u ·∇u+∇p =−(−∆)αu,

divu = 0.

L2-energy bound implies that global smooth solutions exist for α > 1
2 +

n
4 , consulting

e.g., [55, 103].

If we enforce ρ ≡ 1 and p ≡ 0, (2.1b) in one-dimension becomes fractal Burgers

equation

ut +uux =−(−∆)αu.

With additional pointwise bounds, this system admits global solutions for α > 1/2. The

critical case, α = 1/2 was the subject of extensive recent studies [15, 25, 53], using dif-

ferent approaches.

For the compressible system, global regularity is still open, especially for the case

when vacuum arises.

2.1.3 Nonlocal alignment

We are interested in models with flocking property. The discussion of unconditional

flocking for the agent-based systems in section 1.2.3 suggests that the influence function

should satisfy condition (1.8). This condition is violated in both local dissipation and

fractional dissipation setups. We shall introduce a third prototype of influence function

φ(r) = (1+ r)−α
α < 1,
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where condition (1.8) is satisfied. In contrast with the other two setups, the influence

function is not singular at the origin, which causes different behaviors of the system.

If we enforce ρ ≡ 1, the 1D pressure-less system (2.1b) reads

ut +uux =

ˆ
∞

−∞

φ(|x− y|)(u(y)−u(x))dy.

It is realized as Burgers equation with a nonlocal source term. Liu and Tadmor in [62]

proved critical thresholds phenomenon for the system, where global smooth solution ex-

ists with subcritical initial configuration. We postpone the details in section 2.2.4.

2.1.4 Common difficulties

In all three prototypes of influence functions discussed above, the known results are

far from complete, and share some common difficulties.

• Restrictions in dimension. Most of the results are restricted in 1D or scaler equa-

tions. For instance, the beautiful De Giorgi-Nash-Moser theory, which is elegantly

applied in [15], is limited to scaler equations. Very few tools can be applied to

multi-dimensional systems.

• Presence of vacuum. The vacuum is usually difficult to treat with. Take the local

system (2.2) as an example. Due to degeneracy, the viscosity term vanishes at

vacuum. The system behaves as a compressible Euler equation, where shock occurs

in finite time for general initial data.

The heart of the chapter is the study of the full compressible system (2.1) with

nonlocal alignment setup. The simplest 1D pressure-less system is discussed in section
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2.3. Several extensions will be discussed as well. In particular, we study the 2D system

in section 2.4, and the vacuum situation in section 2.5. The common difficulties above

could be overcome thanks to the choice of global influence function.

2.2 Eulerian dynamics and critical threshold

In this section, we develop the main tools to study global existence theory for

macroscopic flocking models. We shall explain the main ideas in a general framework

of Eulerian dynamics.

We introduce the critical threshold phenomenon for general Eulerian dynamics in

section 2.2.2. It discribes that global regularity depends on initial configurations. A

prototype Euler-Poisson system is discussed in section 2.2.3, where the 1D system is

perfectly characterized by a critical threshold. On the other hand, the multi-D system can

not be resolved in the same fashion, as non-locality enters when n > 1. Note that flocking

models has non-local forcing as well. We will focus on techniques on Eulerian dynamics

with non-local forcing in section 2.2.4.

2.2.1 General setup

A general description of Eulerian dynamics with forcing is expressed in the form

ut +u ·∇u = F, (2.3)

where u is the velocity and F is the external force.

Theorem 2.2.1 (Local well-posedness). Suppose the initial condition u0 ∈ Hs(Rn) with
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s > n
2 + 1, and the external force F ∈ L1([0,T ];Hs(Rn)). Then there exists T0 > 0 and

u ∈C([0,T0];Hs(Rn)), such that u solves (2.3) with initial profile u0, up to time T0.

Proof. We start with a standard energy estimate. Denote pseudo-differential operator

Λ := (I−∆)1/2. Act Λs on equation (2.3) and integrate by parts against Λsu.

1
2

d
dt
‖u(·, t)‖2

Hs =−∑
j

([
Λ

s,u j
]

∂ ju,Λsu
)
+

1
2
(Λsu,(divu)Λsu)+(Λsu,ΛsF) ,

where (·, ·) is the L2 inner product. A commutator estimate (c.f. [54]) implies the follow-

ing inequality

‖
[
Λ

s,u j
]

∂ ju‖L2 . ‖∇u‖L∞‖u‖Hs.

Therefore, we get

d
dt
‖u(·, t)‖Hs .

(
‖∇u‖L∞ +‖F‖Hs

)
‖u‖Hs

Applying Gronwall’s inequality, we end up with

‖u(·, t)‖Hs . ‖u0‖Hs exp
{ˆ t

0

(
‖∇u(·,τ)‖L∞ +‖F(·,τ)‖Hs

)
dτ

}
. (2.4)

When s > n
2 + 1, Sobolev imbedding implies Hs(Rn) ⊂W 1,∞(Rn), so ‖∇u‖L∞ . ‖u‖Hs .

The inequality above implies local well-posedness for the system (2.3).

The proof of theorem 2.2.1 implies more than local well-posedness of the system.

In particular, due to (2.4), if ∇u is bounded in Rn× [0,T ], then ‖u(·, t)‖Hs is bounded up

to time T . On the other hand, the blowup in ∇u implies blowup in ‖u‖Hs by the the same

Sobolev imbedding. Hence, global existence of smooth solution of (2.3) is equivalent to

global in time boundedness of ∇u. We conclude with the following proposition.
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Proposition 2.2.2 (Global regularity). Consider (2.3) subject to initial condition u0 ∈

Hs(Rn) with s > n
2 +1, and external force F ∈ L1(R+;Hs(Rn)). Then, for any finite time

T , there exists a solution u ∈C([0,T ];Hs(Rn)), if and only if, ‖∇u(·, t)‖L∞ is bounded for

all t ∈ [0,T ].

2.2.2 Critical threshold phenomenon in Eulerian dynamics

Critical threshold phenomenon describes that the boundedness of ∇u for Eulerian

dynamics depends on the choice of initial profile u0. We use a simple example to address

this phenomenon.

Consider the following 1D Burgers equation with a damping force

ut +uux =−κu, κ > 0. (2.5)

We denote d = ux. Differentiating (2.5) with respect to x yields the following dynamics

of d

d′ =−d2−κd,

where ′ = ∂t +u∂x is the material derivative. This Riccati-type ODE has explicit solution

along the characteristic curve

d(t) =
κ

eκt [1+κ/d(0)]−1
.

The solution has different behaviors given different initial profile d(0):

• If d(0)≥−κ , then d(t) exists in all time;

• If d(0)<−κ , then d(t)→−∞ when t→ 1
κ

ln
[

d(0)
d(0)+κ

]
.
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In fact, we observe that the contribution from nonlinear convection is the−d2 term,

which always drives d to be more negative. The contribution from damping force the

−κd term. When d is negative, it prevents d from getting more negative. There is a

competition between the two terms. In the subcritical case where d(0)≥−κ , the forcing

term dominates, and d is bounded in all time. In the supercritical case where d(0)<−κ ,

the convection term dominates, and d goes to −∞ in finite time.

Combining across the fan of all characteristics, we conclude with the critical thresh-

old phenomenon for (2.5). The initial configurations are divided into two parts:

• Subcritical: if initially infx u0(x)≥−κ , then ux is bounded in all time;

• Supercritical: if initially infx u0(x)<−κ , then ‖ux(·, t)‖L∞ blows up in finite time.

This result can be used immediately to develop a global existence theory of sys-

tem (2.5), thanks to proposition 2.2.2. Hence, the understanding of the critical threshold

phenomenon is very important and powerful for Eulerian dynamics.

For general system (2.3), M := ∇u is an n×n matrix, with the following dynamics

M′+M2 = ∇F, (2.6)

where ′ = ∂t +u ·∇x is again the material derivative. It requires more efforts to study the

boundedness of M for higher dimensions systems.

It is natural to use d := divu to play the role of ux in one-dimension. As d = tr(M),

we apply trace operator on (2.6) and get the dynamics of d:

d′+ tr(M2) = divF.
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Due to the fact that tr(M2) 6= (tr(M))2 for dimension n > 1, we can not simply close

the system with the dynamics of d on its own.

Suppose (λ1, · · · ,λn) are eigenvalues of M, we compute

tr(M2) =
n

∑
i=1

λ
2
i =

1
n

(
n

∑
i=1

λi

)2

+
1
2n

n

∑
i=1

n

∑
j=1

(λi−λ j)
2.

The dynamics of d can be rewritten as

d′+
d2 +η2

n
= divF.

Here, η is called spectral gap, defined through

η
2 =

1
2

n

∑
i=1

n

∑
j=1

(λi−λ j)
2. (2.7)

It measures the difference among eigenvalues of M. η can be either real or purely imagi-

nary if M has real entries.

It is essential to bound the spectral gap in order to derive critical threshold for

systems with dimension bigger than 1. Different techniques are used to treat with specific

problems.

2.2.3 Pressure-less Euler-Poisson system

One prototype example of studying critical threshold phenomenon is the Pressure-

less Euler-Poisson system

ρt +div(ρu) = 0, (2.8a)

ut +u ·∇u =−k∇φ , (2.8b)

−∆φ = ρ. (2.8c)
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The compressible Euler system (2.8a)-(2.8b) is coupled with a Poisson forcing (2.8c). It

models plasma with ion-electron interactions (c.f. [43]).

Critical threshold phenomenon for Euler-Poisson system is first discussed in 1D

in [33]. A series of studies follows in order to extend the series into high dimensions

and more complicated setups [22, 63, 64, 96]. However, despite the success in 1D, it is

extremely difficult to find the precise critical threshold in 2D and higher dimensions.

We briefly go over the known results in this section, and address the main difficulties

on solving the full 2D system.

Consider (2.8) in 1D. We apply the procedure discussed in section 2.2.2 to (2.8b)

and get

d′+d2 =−kφxx.

The right hand side is equal to kρ , from the Poisson equation (2.8c). Rewrite the conti-

nuity equation (2.8a) along the characteristic curve, we get the following coupled system

of ODEs

ρ
′+ρd = 0,

d′+d2 = kρ.

A study on the dynamics of (ρ,d) along the characteristics will provide the critical

threshold. For detailed expressions, consult [33].

Now, consider multi-dimensional Euler-Poisson system (2.8). Again, the analysis
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in section 2.2.2 yields the following coupled system of ODEs

ρ
′+ρd = 0,

d′+
d2 +η2

n
= kρ.

The major difference compared to 1D system is the presence of spectral gap. In general,

it is very difficult to express the dynamics of η .

For the 2D case, M = ∇u is a 2×2 matrix. We can write the dynamics of M (2.6)

explicitlyM11 M12

M21 M22


′

+

 M2
11 +M12M21 M12(M11 +M12)

M21(M11 +M12) M2
22 +M12M21

=−k

φx1x1 φx1x2

φx1x2 φx2x2

 ,
Note that d = divu = M11 + M12. Moreover, we define q := M11 −M22,r := M12 +

M21,ω := ∇× u = M12−M21. The spectral gap can be express in terms of (p,r,ω)

as the following

η
2 = q2 + r2−ω

2.

Meanwhile, the dynamics of (q,r,ω) along the characteristic curves are relatively easier

to trace. We derive the following system

ρ
′+ρd = 0, (2.9a)

d′+
d2 +η2

2
= kρ, (2.9b)

q′+qd = k(φx2x2−φx1x1), (2.9c)

r′+ rd =−2kφx1x2, (2.9d)

ω
′+ωd = 0. (2.9e)
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In this way, we can express and propagate the spectral gap η along the characteristics in

dimension 2.

Let βq = q/ρ . From (2.9a) and (2.9c), we get

β
′
q =

q′ρ−ρ ′q
ρ2 = k

φx2x2−φx1x1

ρ
= k

(R1R1−R2R2)[ρ]

ρ
.

Here, R j is the Reisz transform, which is a Fourier multiplier with symbol iξ j/|ξ |. It

follows from the fact φx j1 x j2
= −(∆−1ρ)x j1 x j2

has symbol ξ j1ξ j2/|ξ |2. Thus φx j1x j2
=

−R j1R j2[ρ].

Similarly, we define βr = r/ρ and βω = ω/ρ . System (2.9) is equivalent to

ρ
′ =−ρd, (2.10a)

d′ =−
d2 +ρ2(β 2

q +β 2
r −β 2

ω)

2
+ kρ, (2.10b)

β
′
q = k

(R1R1−R2R2)[ρ]

ρ
, (2.10c)

β
′
r =−2k

R1R2[ρ]

ρ
, (2.10d)

β
′
ω = 0. (2.10e)

Now, we address the major difficulty of solving system (2.10): non-locality. Differ-

ent from 1D system, the Reisz transform is a non-local operator in 2D. Hence, informa-

tion along a characteristic curve is not enough to propagate the system. We will discuss

techniques on solving Eulerian dynamics with non-local forcing in section 2.2.4.

To avoid non-locality, Liu and Tadmor in [64] introduce a restricted Euler-Poisson

model, where D2φ is substitute by a matrix with local entries:ρ/2 0

0 ρ/2

 .
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The new matrix preserves the trace and the curl of D2φ .

For the restricted model, it is easy to observe

β
′
q = β

′
r = β

′
ω = 0.

Therefore,

β := β
2
q +β

2
r −β

2
ω

is a constant in time along every characteristic curve.

Critical threshold can be derived by analyzing the dynamics of the following system

of ODEs along the characteristics:

ρ
′ =−ρd, (2.11a)

d′ =−d2 +βρ2

2
+ kρ. (2.11b)

We refer the details to [64].

For the full 2D Euler-Poisson system, the problem is still open, due to the presence

of non-local Reisz operator. Recent progress to treat with non-locality will be discussed

at the end of the chapter (section 2.8).

2.2.4 Eulerian dynamics with non-local forcing

Many systems of Eulerian dynamics involve non-local forcing. One example is

Euler-Poisson equations in 2D or higher dimensions, as discussed in section 2.2.3. An-

other example is macroscopic flocking systems (e.g. (2.1)) where non-local alignment

forcing is coupled with compressible Eulerian dynamics.

As stated in section 2.2.3, non-local forcing requires information in the whole space,

thus the propagation of the system along different characteristic curves becomes tangled.
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In order to localize the system on each characteristic curve, the following two steps should

be accomplished.

• A uniform estimate for the non-local term.

• A valid comparison principle.

We use an elementary example [64] to illustrate how to handle the non-locality

through the two steps above. Consider 1D Burgers equation with source term of convolu-

tion type. This system has been introduced earlier in section 2.1.3. Recall the equation

ut +uux =

ˆ
∞

−∞

φ(x− y)(u(y)−u(x))dy. (2.12)

For simplicity, we assume
ˆ

∞

−∞

φ(x)dx = 1.

Differentiate the equation with respect to x. We get the following dynamics of

d = ux along the characteristics.

d′+d2 =−d +

ˆ
∞

−∞

φx(x− y)(u(y)−u(x))dy.

The last term is non-local. We perform with the following uniform estimate∣∣∣∣ˆ ∞

−∞

φx(x− y)(u(y)−u(x))dy
∣∣∣∣≤C := ‖φ‖Ẇ 1,∞

(
sup

x
u0(x)− inf

x
u0(x)

)
.

Note that the inequality follows from a maximum (and minimum) principle on u. See [64]

for details.

The bound C only depend on initial quantities and the choice of φ , which are given

apriori. It is easy to study the following local system by substituting the non-local term

with its uniform bound

e′+ e2 =−e+C.
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Indeed, we state the following critical threshold phenomenon:

• If e(0)≥ 1−
√

1+4C
2 , then e(t) exists in all time;

• If e(0)< 1−
√

1+4C
2 , then e(t)→−∞ in finite time.

To extend the critical threshold result to the non-local dynamics, we link the two

systems with a comparison principle.

Lemma 2.2.3 (Comparison principle). If d(0)≤ e(0), then d(t)≤ e(t).

Proof. Subtracting the dynamics of e from the dynamics of d, we get

(d−e)′=−(d2−e2)−(d−e)+
(ˆ

∞

−∞

φx(x− y)(u(y)−u(x))dy−C
)
≤−(d−e)(d+e+1).

Suppose by contradiction d(t)> e(t) for some t > 0. As d,e are continuous in t, there ex-

ists τ ∈ [0, t) such that d(τ)−e(τ) = 0 and (d(τ)−e(τ))′> 0. This violates the inequality

above. Therefore, d(t)≤ e(t) for all t.

A supercritical threshold on d follows directly from the comparison principle, by

comparing with a local dynamics starting at e(0) ∈
(

d(0), 1−
√

1+4C
2

)
:

• Supercritical: if d(0)< 1−
√

1+4C
2 , then d(t)→−∞ in finite time.

Similarly, a subcritical threshold can be generated by comparing with

e′+ e2 =−e−C.

Remark 2.2.1. A drawback of this approach is that there is a gap between the subcritical

region and supercritical region, due to the loss from the uniform estimate. However,

this is the only way to deal with non-locality if we want to study the system along the

characteristics.
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2.3 Critical threshold for 1D macroscopic pressure-less Cucker-Smale

system

This section is devoted to study critical threshold phenomenon and develop global

existence theory for macroscopic flocking systems. The first system to start with is the

1D macroscopic pressure-less Cucker-Smale systems

ρt +(ρu)x = 0, x ∈ R, t ≥ 0, (2.13a)

ut +uux =

ˆ
∞

−∞

φ(|x− y|)(u(y)−u(x))ρ(y)dy. (2.13b)

subject to initial condition

ρ(x,0) = ρ0(x), u(x,0) = u0(x). (2.13c)

Recall that φ is the influence function, which satisfies (1.8). The initial density ρ0 is

compactly supported, and the initial velocity u0 is bounded.

We state the main theorem before getting into details. The following two initial

quantities play an important role in the theorem:

d0 := inf
x∈supp(ρ0)

u0x(x), V0 := sup
x,y∈supp(ρ0)

|u0(x)−u0(y)|. (2.14)

Here, d0 represents the smallest slope of u0, and V0 represents the maximal variation of

the initial velocity.

Theorem 2.3.1 (Critical Thresholds for 1D Cucker-Smale system). Consider initial value

problem of (2.13). There exists threshold functions σ+ > σ−, such that

• Subcritical: If the initial condition satisfies

d0 > σ+(V0), (2.15)
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then ux(x, t) remains bounded for all (x, t) ∈ supp(ρ).

Moreover, strong solution ρ(·, t) ∈ L1(R), u(·, t) ∈W 1,∞(supp(ρ(t))) exists for all

t ≥ 0, and converges to a flock in the sense of definition 1.3.2.

• Supercritical: If the initial condition satisfies

d0 < σ−(V0),

then there exists a finite time T and a position x∗ ∈ supp(ρ(·,T )), ux(x∗,T )→−∞.

Remark 2.3.1. We use figure 2.1 to illustrate the two thresholds. Detailed expressions of

threshold functions σ+ and σ− are given in (2.23). To ensure boundedness of ux, there

are two requirements for the initial configurations:

− Initial slop of velocity u0x is not too negative,

− Initial variation of velocity V0 is not too large.

Note that one steady state of the system is flocking, when u = ū0, i.e., the velocity is

constant. The subcritical threshold condition says that if initial configuration is not far

away from equilibrium, then strong solution exists globally and converges to the steady

state.

Remark 2.3.2. For both subcritical and supercritical thresholds, there is a darker area and

a much larger lighter area shown in figure 2.1. The darker areas represent the thresholds

stated in theorem 2.3.4. It is an extension of critical threshold result for 1D Burgers

equation with nonlocal source (2.12), as discussed in section 2.2.4. Taking advantage of

the fast alignment property of the system, we improve the result to the much lighter area.

See section 2.3.2 for details.
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Figure 2.1: Illustration of the critical thresholds in one dimension.

2.3.1 A first result on the thresholds

To study the critical threshold phenomenon for (2.13), we follow the technique

introduced in section 2.2.4, as the alignment forcing is non-local.

Differentiate (2.13b) with respect to x. We get the dynamics of d = ux along the

characteristic curves:

d′+d2 =

ˆ
∞

−∞

φx(|x− y|)(u(y)−u(x))ρ(y)dy−d
ˆ

∞

−∞

φ(|x− y|)ρ(y)dy. (2.16)

Again, ′ = ∂t +u∂x is the material derivative. The time variable is omitted for simplicity,

unless necessary.
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There are two non-local terms in this dynamics. We denote

p(x) :=
ˆ

∞

−∞

φ(|x− y|)ρ(y)dy,

Q(x) :=
ˆ

∞

−∞

φx(|x− y|)(u(y)−u(x))ρ(y)dy.

Remark 2.3.3. We use lower-case p and upper-case Q in order to be compatible with the

2D case, where p is a scaler and Q is a 2×2 matrix.

As discussed in section 2.2.4, the idea of treating non-local terms is to establish

uniform bounds and proceed with a comparison principle. We prove that (2.16) is an

example of the following prototype problem:

d′ =−d2− pd +Q, where 0 < γ ≤ p≤ Γ and |Q| ≤ c, (2.17)

where γ,Γ,c are positive constant coefficients.

In particular, these coefficients are given below for (2.16), shown in proposition

2.3.2.

γ = φ(D)m, Γ = m, c =V0‖φ‖Ẇ 1,∞m. (2.18)

As a reminder, m :=
ˆ

∞

−∞

ρ(x)dx is the total mass, which is bounded and conserved in

time.

Proposition 2.3.2. Suppose (ρ,u) is a strong solution of system (2.13). Then, for any

x ∈ supp(ρ(t)),

φ(D)m≤
ˆ

∞

−∞

φ(|x− y|)ρ(y)dy≤ m.∣∣∣∣ˆ ∞

−∞

φx(|x− y|)(u(y)−u(x))ρ(y)dy
∣∣∣∣≤V0‖φ‖Ẇ 1,∞m,

57



Proof. For the first inequality,

ˆ
∞

−∞

φ(|x− y|)ρ(y)dy≤ ‖φ‖L∞m = m.

On the other hand, as (ρ,u) is a strong solution, theorem 1.3.6 implies that it converges

to a flock. In particular, S(t) is uniformly bounded by D, defined in (1.7). Therefore,

ˆ
∞

−∞

φ(|x− y|)ρ(y)dy =

ˆ
supp(ρ(t))

φ(|x− y|)ρ(y, t)dy≥ φ(D)

ˆ
∞

−∞

ρ(y, t)dy = φ(D)m,

for all x ∈ supp(ρ(t)).

For the second inequality,∣∣∣∣ˆ ∞

−∞

φx(|x− y|)(u(y)−u(x))ρ(y)dy
∣∣∣∣≤ ˆ ∞

−∞

|u(y)−u(x)| |φx(|x− y|)|ρ(y)dy

≤V (t)‖φ‖Ẇ 1,∞

ˆ
∞

−∞

ρ(y)dy≤V0‖φ‖Ẇ 1,∞m =V0‖φ‖Ẇ 1,∞m.

Remark 2.3.4. In the proof of the second inequality, recall

V (t) = max
x∈supp(ρ(t))

u(x, t)− min
x∈supp(ρ(t))

u(x, t)

the total variance of u at time t. It is easy to prove V (t) ≤ V (0) through a maximum

principle of u, see lemma 2.6.2. As a matter of fact, theorem 1.3.6 provides a better

estimate V (t)≤V0e−mφ(D)t , which will be used to improve the result in section 2.3.2.

We proceed to discuss the evolution of the initial value problem of (2.17). The same

comparison principle in section 2.2.4 can be applied and it yields the following threshold

result.

Proposition 2.3.3 (1D dynamics). Consider initial value problem of (2.17). We have the

following
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• Subcritical: If γ2− 4c ≥ 0 and d(0) ≥ −(γ +
√

γ2−4c)/2, then d(t) is bounded

for all time t ≥ 0.

• Supercritical: If d(0)<−(Γ+
√

Γ2 +4c)/2, then d(t)→−∞ in finite time.

For Cucker-Smale system (2.13), the constants γ,Γ and c are given in (2.18). Ap-

plying proposition 2.3.3 to all characteristic paths, we derive critical thresholds for bound-

edness of ux in the inside the support of ρ .

Theorem 2.3.4 (1D critical thresholds). Consider initial value problem of (2.13)

• Subcritical: If the initial configuration satisfies

V0 ≤
φ(D)2m
4‖φ‖Ẇ 1,∞

and d0 ≥−
1
2

(
φ(D)m+

√
φ(D)2m2−4V0‖φ‖Ẇ 1,∞m

)
,

then ux(x, t) is bounded for all (x, t) ∈ supp(ρ).

• Supercritical: If the initial configuration satisfies

d0 <−
1
2

(
m+

√
m2 +4V0‖φ‖Ẇ 1,∞m

)
then there exists a finite time T and a position x ∈ supp(ρ(·,T )), ux(x,T )→−∞.

Remark 2.3.5. The thresholds in theorem 2.3.4 correspond to darker areas in figure 2.1.

The result will be improved in section 2.3.2, taking into account of the additional fast

alignment property.

2.3.2 Enhanced dynamics with fast alignment

In this section, we improve theorem 2.3.4, by substituting the estimate V (t)≤V0 in

proposition 2.3.2 with a stronger one V (t)≤V0e−mφ(D)t . The improved estimate on V (t)

comes from the fast alignment property of flocking systems discussed in section 1.3.4.
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We write a new prototype problem

d′ =−d2− pd +Q, p ∈ [γ,Γ], Q ∈ [−cV,cV ]. (2.19a)

d
dtV ≤−GV. (2.19b)

It is clear that the dynamics (2.16) is an example of (2.19) with coefficients

γ = φ(D)m, Γ = m, c = ‖φ‖Ẇ 1,∞m, G =−mφ(D). (2.20)

Remark 2.3.6. The new dynamics of d is coupled with the dynamics of V , where V (t)

vanishes to 0 exponentially fast. As time goes by, the influence of Q (which is a “bad

term”) on the dynamics of d becomes weaker and weaker. Therefore, we expect a wider

set of initial configurations which ensures the boundedness of d. Better critical thresholds

could be derived just as illustrated in figure 2.1.

The following theorem characterizes the dynamics of (d,V ). The proof will be

provided in the next section.

Theorem 2.3.5. Consider initial value problem of (2.19). We have the following

• There exists a continuous function σ+ : R+→ [−γ,+∞), defining implicitly as

σ+(0) =−γ, σ
′
+(x) =



c
γ+G , x→ 0+

−σ+(x)2−γσ+(x)−cx
−Gx if σ+(x)< 0

−σ+(x)2−Γσ+(x)−cx
−Gx if σ+(x)≥ 0

(2.21)

such that, if d0 > σ+(V0), i.e. (V0,d(0)) lies above σ+, then (V,d) are bounded all

time, and d(t)→ 0,V (t)→ 0 as t→ ∞.
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• There exists a function σ− : R+→ (−∞,−Γ], defining implicitly as

σ−(0) =−Γ, σ
′
−(x) =


− c

Γ+G , x→ 0+

−σ−(x)2−Γσ−(x)+cx
−cx x > 0.

(2.22)

such that, if d0 < σ−(V0), i.e. (V0,d(0)) lies below σ−, then d(t)→−∞ in finite

time.

Apply theorem 2.3.5 to Cucker-Smale system (2.13) by plugging in the values of

the constants given in (2.20) and combine all characteristic paths. We conclude with

theorem 2.3.1 with the following threshold functions.

σ+(0) =−φ(D)m, σ
′
+(x) =



‖φ‖Ẇ1,∞
2φ(D) x→ 0+

−σ+(x)2−φ(D)mσ+(x)−‖φ‖Ẇ1,∞mx
−φ(D)mx if σ+(x)< 0

−σ+(x)2−mσ+(x)−‖φ‖Ẇ1,∞mx
−φ(D)mx if σ+(x)≥ 0

, (2.23a)

σ−(0) =−m, σ
′
−(x) =


−‖φ‖Ẇ1,∞

1+φ(D) x→ 0+

−σ−(x)2−mσ−(x)+‖φ‖Ẇ1,∞mx
−φ(D)mx x > 0

. (2.23b)

Remark 2.3.7. The additional fast alignment property enables us to establish a much

larger area of (V0,d0) such that ux is bounded in the non-vacuum area. In particular, the

crucial upper bound of V0 is not any more required, see figure 2.1.

Remark 2.3.8. To further reduce the gap between σ+ and σ−, one can trace the dynamics

of d+φ ?ρ along the characteristics, namely σ+ = σ−. It provides a perfect threshold for

1D Cucker-Smale system. This is an ongoing work joint with Carrillo, Choi and Tadmor.
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2.3.3 Proof of the key theorem

The proof of the key theorem 2.3.5 can be separate into two parts. First, we discuss

the evolution of the equality system

d
dt ω =−ω2−Eω +Fη , (2.24a)

d
dt η =−Gη , (2.24b)

where E > 0,F ∈ R,G > 0 are constant coefficients. Then, we state a comparison prin-

ciple to compare (d,V ) with (ω,η) and therefore derive the evolution of the inequality

system (2.19).

The evolution of system (2.24) is summarized in the following proposition.

Proposition 2.3.6 (Critical threshold for the equality system). Suppose (η(t),ω(t)) sat-

isfy (2.24) where η(t)≥ 0, with initial condition ω(0) = ω0, η(0) = η0 > 0. Then,

• If ω0 > f (η0), i.e. (η0,ω0) lies above f , we have ω(t)→ 0,η(t)→ 0 as t→ ∞,

• If ω0 = f (η0), i.e. (η0,ω0) lies on f , we have ω(t)→−E,η(t)→ 0 as t→ ∞,

• If ω0 < f (η0), i.e. (η0,ω0) lies below f , we have ω(t)→−∞ as t→ ∞,

where f is a function defined on R+, such that

f (0) =−E, f ′(0) =− F
E +G

, f ′(x) =
− f (x)2−E f (x)+Fx

−Gx
for x ∈ (0,+∞). (2.25)

Proof. The system has two stationary points, O(0,0) and A(0,−E). To study the stability

property of these points, we consider the linearization of the coefficient matrix

L(η ,ω) =

−G 0

F −2ω−E

 ,
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where the two eigenvalues are G and −2ω−E.

At O(0,0), both eigenvalues −G and −E are negative. So it is stable. At A(0,−E),

we have a positive eigenvalue E and a negative one −G. Hence, it is a saddle.

We use the above facts to construct the critical threshold via the phase place analy-

sis.

Figure 2.2 is the phase plane of (η ,ω). d
dt ω = 0 is a parabola and d

dt η = 0 is a line.

There exists a critical curve f , starting from A and travel along the vector field, which

divided the plane R+×R into two parts. Flows starting above f converge to the stable

point O, while flows starting below f will diverge.

Along the line, clearly we have

f ′(x) =
dω

dη
=

d
dt ω

d
dt η

=
−ω2−Eω +Fη

−Gη
=
− f (x)2−E f (x)+Fx

−Gx
.

When x→ 0, we have

f ′(0) = lim
x→0

− f (x)2−E f (x)+Fx
−Gx

=
1
G

[
f (0) lim

x→0

f (x)+E
x

−F
]
=
−E f ′(0)−F

G
.

It yields f ′(0) =− F
E +G

.

The following lemma states the relationship between the solution of the equality

system (2.24) and the inequality system (2.19). It allows us to extend the critical thresh-

olds result to the inequality system.

Lemma 2.3.7 (Comparison principles). Let (d,V ) satisfy (2.19), and (ω,η) satisfy (2.24)

with E,F defined as below. t0 ≥ 0 and T ∈ (t0,+∞].

1. Suppose ω(t)≥ 0, for t ∈ [t0,T ].
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Figure 2.2: Phase plane of the equality system (η ,ω). Critical threshold is represented

as the dashed curve. The graph above represents the case when F is positive, while the

graph below represents the case when F is negative.
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(1a) Let E = γ,F =C. If


d(t0)≤ ω(t0)

V (t0)≤ η(t0)

, then


d(t)≤ ω(t)

V (t)≤ η(t)

for t ∈ [t0,T ].

(1b) Let E =Γ,F =−C. If


d(t0)≥ ω(t0)

V (t0)≤ η(t0)

, then


d(t)≥ ω(t)

V (t)≤ η(t)

for t ∈ [t0,T ].

2. Suppose ω(t)≤ 0, for t ∈ [t0,T ].

(2a) Let E = Γ,F =C. If


d(t0)≤ ω(t0)

V (t0)≤ η(t0)

, then


d(t)≤ ω(t)

V (t)≤ η(t)

for t ∈ [t0,T ].

(2b) Let E = γ,F =−C. If


d(t0)≥ ω(t0)

V (t0)≤ η(t0)

, then


d(t)≥ ω(t)

V (t)≤ η(t)

for t ∈ [t0,T ].

Proof. We only prove (1a) as the proofs of the others are the same.

Subtracting (2.19) with (2.24), we get

d
dt (ω−d)≥−(ω +d)(ω−d)− p(ω−d)+C(η−V ),

d
dt (η−V )≥−G(η−V ).

Suppose by contradiction V (t)> η(t) for some t ∈ (t0,T ). As V,η are continuous,

there exists τ ∈ (t0, t) such that η(τ)−V (τ) = 0 and d
dt (η(τ)−V (τ))< 0. This violates

the second inequality. So, V (t)≤ η(t) for all t ∈ [t0,T ].

Similarly, suppose by contradiction d(t) > ω(t) for some t ∈ (t0,T ). As V,η are

continuous, there exists τ ∈ (t0, t) such that d(τ)−ω(τ) = 0 and d
dt (d(τ)−ω(τ)) < 0.

Meanwhile, V (τ) ≤ η(τ). This violates the first inequality. So, d(t) ≤ ω(t) for all t ∈

[t0,T ].
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We use the comparison principles to prove theorem 2.3.5.

Claim 1: d(t) could not diverge to +∞.

Suppose by contradiction d(t)→ +∞ as t → T . Then, there exists a t0 ∈ [0,T )

such that d(t0)> 0. Construct (ω,η) by (2.24) with E = γ , F =C and with initial values

ω(t0) = d(t0)> 0,η(t0) =V (t0). From proposition 2.3.6, ω(t) is either bounded all time

or diverges to−∞ in finite time. Therefore, ω(t) is upper bounded. Comparison principle

(1a) implies that d(t)≤ ω(t) is also upper bounded. Moreover, d(T )≤ ω(T )≤ 0, where

T is either infinity or the blowup time.

Claim 2: d(t)→−∞ in finite time if d(0)< σ−(V (0)), where σ− is defined in (2.22).

Clearly, d(0) < 0. Again, construct (ω,η) by (2.24) with E = Γ, F = C and with

initial values ω(0) = d(0) < 0,η(0) = V (0). Note that under this setup, σ− is the same

as f defined in (2.25). (Actually this is how σ− is determined.) From proposition 2.3.6,

ω(0) < σ−(η(0)) implies ω(t)→−∞ in finite time. Comparison principle (2a) implies

that d(t)≤ ω(t)→−∞ in finite time.

Claim 3: d(t),V (t) are bounded all time if d(0) > σ+(V (0)), where σ+ is defined in

(2.21). Moreover, d(t)→ 0,V (0)→ 0 as t→ ∞.

First, we assume d(0) ≤ 0. Similarly, construct (ω,η) by (2.24) with E = γ ,

F =−C and with initial values ω(0) = d(0)≤ 0,η(0) =V (0). Define fl to be the same

as f in (2.25) as long as fl ≤ 0, with the choice of E,F . Then, using proposition 2.3.6,

ω(0)> σ+(η(0)) implies ω(t) is lower bounded all time, and ω(t)→ 0 as t→ ∞. Com-

parison principle (2b) implies that d(t) ≥ ω(t) is also lower bounded in all time, and

limt→∞ d(t)≥ 0. Combine with the result in claim 1, we conclude that d(t) is bounded in

all time, and limt→∞ d(t) = 0.
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Next, we discuss the case when d(0) > 0. To apply comparison principle (1b), we

have to construct (ω,η) by (2.24) with E = Γ, F = −C and with initial values ω(0) ≤

d(0),η(0)≥V (0).

Extend σ+ continuously such that

σ
′
+(x) =

−σ+(x)2−Γσ+(x)−Cx
−Gx

,

where the range of the extended part is in R+. It represents a path of the evolution of

(ω,η). Take η(0) = V (0) and ω(0) = f ′r(η(0)). Clearly, ω(0) ≤ d(0). Following the

path, there exists a time t0 such that ω(t0) = 0 and η(t0) = fr(0). Comparison principle

(1b) implies d(t0)≥ ω(t0) and V (t0)≤ η(t0). Starting with time t0, we proceed with the

first step and it yields the same result.

2.4 Extension to 2D Cucker-Smale system

This section is devoted to extend the critical thresholds result in section 2.3 for

macroscopic Cucker-Smale system to 2D.

Consider 2D pressure-less compressible Euler equations with nonlocal alignment

of Cucker-Smale type

ρt +div(ρu) = 0, x ∈ R2, t ≥ 0, (2.26a)

ut +u ·∇u =

ˆ
R2

φ(|x−y|)(u(y)−u(x))ρ(y)dy, (2.26b)

subject to compactly supported initial density ρ0 and bounded initial velocity u0,

ρ(x,0) = ρ0(x) ∈ L1
+(Rn), u(x,0) = u0(x) ∈W 1,∞(Rn), (2.26c)

with influence function φ satisfying (1.8).
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The goal is to understand the behavior of ‖∇u(·, t)‖L∞ in time. If it is bounded in

all time, (ρ,u) is a strong solution of the system (2.26), and flocking property follows.

We first state the main theorem. Recall the two initial quantities which are essential

in 1D system

d0 := inf
x∈supp(ρ0)

divu0(x), V0 := sup
x,y∈supp(ρ0)

|u0(x)−u0(y)|.

Here, divu0 is playing the role as u0x in 1D. Introduce another initial quantity

B0 := sup
x∈supp(ρ0)

max{2|∂x1u02|,2|∂x2u01|, |∂x1u01−∂x2u02|} .

It characterizes information in ∇u0 other than its trace. The critical thresholds are ex-

pressed in terms of (d0,V0,B0).

Theorem 2.4.1 (2D Critical Thresholds for Cucker-Smale). Consider system (2.26) in

two-dimension. Then,

• Subcritical: There exists threshold functions σ+,ζ such that, if initially

d0 > σ+(V0) and B0 < ζ (V0),

then ∇u(x, t) is bounded for all (x, t) ∈ supp(ρ).

• Supercritical: There exists a threshold function σ− such that, if initially

d0 < σ−(V0), and |∂x1u02|, |∂x2u01| are big enough,

then there exists a finite time T and a position x∈ supp(ρ(·,T )), divu(x,T )→−∞.

Remark 2.4.1. B0 reflects the initial spectral gap. The additional information encoded

in theorem 2.4.1 says: if the spectral gap is initially small, it remains small for all time.
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Thanks to this bound, we are able to reduce the 2D system into the 1D case, where the

divergence direction dominates the spectral gap in the subcritical region. For subcriti-

cal region, the threshold functions σ+ and ζ are illustrated in figure 2.4 and figure 2.3,

respectively.

2.4.1 Boundedness of spectral gap implies critical thresholds

We start with applying ∇x on (2.26b). It yields the dynamics of the gradient velocity

matrix M = ∇xu along the characteristic curves

M′+M2 =

ˆ
R2

∇xφ(|x−y|)⊗ (u(y, t)−u(x, t))ρ(y, t)dy−M
ˆ
R2

φ(|x−y|)ρ(y, t)dy.

(2.27)

Proposition 2.3.2 stays true for 2D (and higher dimensional) system, where the

second inequality is satisfied for each entry of the matrix, namely∣∣∣∣ˆ
R2

∂x jφ(|x−y|)(ui(y)−ui(x))ρ(y)dy
∣∣∣∣≤V0‖φ‖Ẇ 1,∞m, ∀ i, j = 1,2.

Therefore, (2.27) is an example of the following prototype problem

M′ =−M2− pM+Q, where 0 < γ ≤ p≤ Γ and |Qi j| ≤ c, i, j = 1,2. (2.28)

Here, p is bounded above and below by positive constants γ and Γ uniformly in time and

paths. Q is an 2×2 matrix, with all entries bounded by ±c uniformly in time and paths.

For (2.27), the constants are the same as 1D system, given in (2.18).

To study (2.28), we first take the trace of the system. It provides the dynamics of

d = trM = divu along the characteristics.

d′ =−d2 +η2

2
− pd +(Q11 +Q22).
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Here, η is the spectral gap defined in (2.7). Recall η2 = (λ1−λ2)
2 where λ1 and λ2 are

eigenvalues of M.

If η is bounded by a constant uniformly in time, i.e. η(t)≤ c̃ for all t ≥ 0, then

d′ =−d2

2
− pd + Q̃,

where p ∈ [γ,Γ] and Q̃ = Q11 +Q22−η2/2 ∈ [−2c− c̃/2,2c+ c̃/2]. The system is re-

duced to one dimensional under prototype (2.28). Therefore, to bound the spectral gap η

is the main idea when extending a one-dimension model into two dimensions.

We proceed with the same procedure as for Euler-Poisson equations. Let q :=

M11−M22,r := M12 +M21,s := M12−M21 = ∇×M. Here, we change the notation ω to

s since ω has been used elsewhere in this section.

System (2.28) can be expressed in terms of (d,q,r,s).

d′+
d2 +η2

2
+ pd = Q11 +Q22, (2.29a)

q′+q(d + p) = Q11−Q22, (2.29b)

r′+ r(d + p) = Q12 +Q21, (2.29c)

s′+ s(d + p) = Q12−Q21, (2.29d)

where the spectral gap η2 = q2 + r2− s2. Hence, the boundedness of (q,r,s) implies the

boundedness of η . Note that equations (2.29b)-(2.29d) have the same type. The following

lemma states the uniform boundedness property of (q,r,s) (and hence η).

Lemma 2.4.2 (Uniform bound for the spectral gap). Suppose (q,r,s) are bounded initially

by

max{|q(0)|, |r(0)|, |s(0)|} ≤ B. (2.30)
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If d(t)≥−γ +2cB−1 for t ∈ [0,T ], then the boundedness of (q,r,s) is preserved, i.e.

max{|q(t)|, |r(t)|, |s(t)|} ≤ B, for t ∈ [0,T ].

Moreover, the spectral gap |η(t)| ≤
√

2B is also bounded for t ∈ [0,T ].

Proof. We prove the result for q by contradiction. Suppose there exists a (smallest) t0 ∈

[0,T ] such that |q(t)| > B for t ∈ (t0, t0 + δ ). By continuity, |q(t0)| = B. There are two

cases.

• q(t0) = B,q′(t0) > 0. Then q′(t0)+ q(t0)(d(t0)+ p) > 0+B(2cB−1) = 2c. This

contradicts with (2.29b) as Q11−Q22 ≤ 2c.

• q(t0) =−B,q′(t0)< 0. Then q′(t0)+q(t0)(d(t0)+ p)< 0−B(2cB−1) =−2c. This

also contradicts with (2.29b) as Q11−Q22 ≥−2c.

Therefore, |q(t)| ≤ B for t ∈ [0,T ]. Same argument yields the boundedness of r and s.

Finally, |η(t)|=
√
|q(t)2 + r(t)2− s(t)2| ≤

√
2B, for t ∈ [0,T ].

Lemma 2.4.2 says that the spectral gap is bounded as long as d is not too negative.

Under this assumption, (2.29a) can be written as

d′ =−d2

2
− pd + Q̃,

where p ∈ [γ,Γ] and Q̃ ∈ [−2c−B2,2c+B2]. The system is the same as (2.17) after a

simple scaling. Proposition 2.3.3 implies the following result.

Proposition 2.4.3. Assume (2.30) and d(0)≥−γ+
√

γ2−4c−2B2≥−γ+2cB−1. Then

M is bounded in all time.
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Proof. We claim that

d(t)≥−γ +
√

γ2−4c−2B2 ≥−γ +2cB−1 and max{|q(t)|, |r(t)|, |s(t)|} ≤ B.

Violation of the first condition contradicts proposition 2.3.3. Violation of the second

condition contradicts lemma 2.4.2.

Remark 2.4.2. We can rewrite the assumption in proposition 2.4.3 as follows:

d(0)≥−γ +
√

γ2−4c−2B2, B≤ 1
2

√
(γ2−4c)+

√
(γ2−4c)2−32c2.

Therefore, to ensure boundedness of M in all time, we need d(0) not too negative, and

q(0),r(0),s(0) small.

Adding up all characteristic paths, we conclude with the following theorem.

Theorem 2.4.4 (2D critical thresholds). Consider system (2.26) in two-dimension.

• If the initial configuration satisfies

V0≤
(
√

2−1)φ(D)2m
4‖φ‖Ẇ 1,∞

, d0≥−
1
2

(
φ(D)m+

√
φ(D)2m2−4V0‖φ‖Ẇ 1,∞m−2B2

0

)
,

B0≤
1
2

√
φ(D)2m2−4V0‖φ‖Ẇ 1,∞m+

√
(φ(D)2m2−4V0‖φ‖Ẇ 1,∞m)

2−32V 2
0 [φ ]

2
Lipm2,

then ∇xu is bounded for all (x, t) ∈ supp(ρ).

• If the initial configuration satisfies

d0 <−
1
2

(
m+

√
m2 +4V0‖φ‖Ẇ 1,∞m

)
,

|∂x2u01|, |∂x1u02| ≥
V0‖φ‖Ẇ 1,∞m√

m2 +4V0‖φ‖Ẇ 1,∞m
, and ∂x2u01 ·∂x1u02 > 0, for every x,

then there exists a finite time T and a position x∈ supp(ρ(·,T )), divu(x,T )→−∞.
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Remark 2.4.3. If B0 = 0, the result reduces to the one dimensional case. In general, to

bound B in all time, we need to assume more strict initial condition for d(0).

Remark 2.4.4. For the second part of the theorem, we provide a critical threshold of the

initial profile which leads to a finite time break down. The idea and the result are similar

to the one-dimensional case. The extra assumption on ∂x2u01 and ∂x1u02 is to make sure

the spectral gap is real for all time. So it does not help prevent d from blowup to −∞ in

finite time. As it is not our main concern, we omit the proof.

2.4.2 2D Enhanced dynamics with fast alignment

Theorem 2.4.4 can be improved by taking into account the fast alignment property:

V (t) decays exponentially. Similar to 1D system, we shall study the following prototype

of problems

M′ =−M2− pM+Q, p ∈ [γ,Γ], Qi j ∈ [−cV,cV ], i, j = 1,2, (2.31a)

d
dtV ≤−GV, (2.31b)

where γ,Γ,c,G are positive constants. For Cucker-Smale system (2.26), the coefficients

are given in (2.20).
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Rewrite system (2.29) coupled with fast decay property (2.31b).

d′+
d2 +q2

2
+2rs+ pd = (Q̂11 + Q̂22)V, (2.32a)

q′+q(d + p) = (Q̂11− Q̂22)V, (2.32b)

r′+ r(d + p) = (Q̂12 + Q̂21)V, (2.32c)

s′+ s(d + p) = (Q̂12− Q̂21)V, (2.32d)

d
dt

V =−GV, (2.32e)

where p ∈ [γ,Γ] and Q̂ = Q/V with |Q̂i j| ≤ c for i, j = 1,2.

Now, we state the uniform boundedness result for the spectral gap.

Lemma 2.4.5. Let b0 = max{|q(0)|, |r(0)|, |s(0)|}. Suppose there exists a positive con-

stant δ such that d(t)≥−γ +δ for all t ≥ 0.

If b0 ≤ ζ (V0;δ ,B), then (q,r,s) are uniformly bounded,

max{|q(0)|, |r(0)|, |s(0)|} ≤ B.

The function ζ is defined as below

ζ (x;δ ,B) =



B x ∈ [0, δB
2C ]

B
δ−G

[
−G

( 2C
δBx
)δ/G

+ 2C
δBx
]

x ∈ [δB
2C ,
(

δ

G

) G
δ−G δB

2C ], δ 6= G

2C
δ

(
1− log

( 2C
δBx
))

x x ∈ [δB
2C ,

δBe
2C ], δ = G

. (2.33)

Lemma 2.4.5 provides a region of the initial (b0,V0) such that the spectral gap is

uniformly bounded in all time. From the definition of ζ , we observe that, to guarantee a

uniform upper bound B, V0 can not be too large. Given δ and B, the upper bound of V0 is(
δ

G

) G
δ−G δB

2C ,independent of the choice of b0.
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Figure 2.3: Subcritical threshold conditions for 2D system: B0 ≤ ζ (V0). If (V0,B0) lies

in the shaded area, B0 will remain uniformly bounded. This is the phase diagram of the

equality system (η ,ω). It represents (V0,B0) through a comparison principle.

Proof. We prove the result for q. Consider the coupled system (2.32b) and (2.32e). The

corresponding equality system reads

ω
′ =−δω +2Cη ,

η
′ =−Gη .

This system can be easily solved. Figure 2.3 shows the dynamics of (η ,ω). The filled

area includes all initial conditions such that ω(t) ≤ B for all t ≥ 0. The area is governed

by a function g. A simple computation yields an explicit expression of g, which is stated

in (2.33).

A comparison argument enable us to connect the equality system with the inequality
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system, which says

If


|q(0)| ≤ ω(0)

V0 ≤ η(0)

, then


|q(t)| ≤ ω(t)

V (t)≤ η(t)

, for all t ≥ 0.

Therefore, |q| is bounded by B uniformly in time as long as (V0, |q(0)|) lies inside the

area, i.e. |q(0)| ≤ g(V0). Similarly, we prove for r and s which ends the proof.

Next, for given δ and B, we consider the coupled system (2.32a) and (2.32e) and

find the region of (V0,d(0)) such that d(t)≥−γ +δ .

Proposition 2.4.6. Suppose there exists a B such that |η(t)| ≤ B for t ≥ 0, and B≤ γ/
√

2.

Also, suppose δ ∈ (0,
√

γ2−2B2].

If d(0)≥ σ+(V0;δ ,B), then d is bounded all time, and d(t)≥−γ +δ for t ≥ 0.

The function σ+ is continuous and defined implicitly as below

σ+(x;δ ,B) =− γ +δ , x ∈ [0,
γ2−δ 2−2B2

4C
) (2.34a)

σ
′
+(x;δ ,B) =


σ+(x)2+2γσ+(x)+4Cx+2B2

2Gx if σ+(x)< 0

σ+(x)2+2Γσ+(x)+4Cx+2B2

2Gx if σ+(x)≥ 0

, x ∈ [
γ2−δ 2−2B2

4C
,+∞).

(2.34b)

Similar to the one-dimensional case, proposition 2.4.6 can be easily proved by an-

alyze on the equality system and a comparison principle. Figure 2.4 shows the area of

(V0,d(0)) such that d(t) is lower bounded by −γ + δ for all time. The area is governed

by h defined in (2.34). We omit the detail of the proof.

Theorem 2.4.7 (2D Critical Thresholds). Consider initial value problem of (2.26) in two-

dimension. Constants (γ,Γ,C,G) are defined in (2.20). Then,
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Figure 2.4: Subcritical threshold conditions for 2D system: d0≥σ+(V0). The shaded area

represents the upper threshold. δ characterizes the effect of spectral gap, which makes

the subcritical area smaller.

• Subcritical: If there exists (δ ,B) such that δ 2 + 2B2 ≤ γ2, and the initial profiles

(V0,d0,B0) satisfies

1. B0 ≤ ζ (V0;δ ,B), where ζ is defined in (2.33),

2. d0 ≥ σ+(V0;δ ,B), where σ+ is defined in (2.34).

Then, |∇u(x, t)| is bounded all time for all (x, t) ∈ supp(ρ).

Remark 2.4.5. The theorem says, two conditions need to be satisfied to guarantee the

boundedness of ∇u:

First, B0 should be small. If B0 is too big, we can not control the spectral gap, then

the two-dimensional system will collapse.
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Second, d0 can not be too negative. This condition is needed for both one and two

dimensions, in order to prevent divu from blowing up to −∞ in finite time.

2.5 Extension to vacuum area

In this section, we discuss the boundedness of ∇u when (x, t) 6∈ supp(ρ).

As discussed in section 2.1.4, treating with vacuum is difficult in general. For the

local system (2.2), there is no external forcing inside vacuum as the viscosity is degen-

erate. The system acts like compressible Euler equations, and the solution will form a

shock in finite time. There is no hope to bound ∇u global in time.

However, the alignment forcing is non-local, which helps smoothing the equation

even in vacuum area. It can compete with convection if non-locality is strong enough.

The study of critical thresholds in vacuum area enables us to study the system in

the whole space, without worrying about the free boundary. It also extend the global

existence result to initial density whose support is not connected.

For simplicity, we focus on 1D systems. Similar result can be established for 2D

systems, with no additional difficulty.

The next theorem shows the upper threshold to ensure boundedness of ux outside

the support of ρ .

Theorem 2.5.1 (1D Upper Threshold for vacuum area). Consider initial value problem

of (2.13). Let V λ
0 denote the variation of the initial velocity between a point in the non-

vacuum area and a point at most λ away from the non-vacuum area,

V λ
0 = sup

{
|u0(x)−u0(y)| : dist(x,supp(ρ0))≤ λ , y ∈ supp(ρ0),

}
.
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Subcritical: If the initial configuration satisfies

V λ
0 ≤

mφ 2(λ +D)

4|φx(λ )|+2|φx(λ +D)|
for all λ ≥ 0, (2.35a)

u0x(x)≥−
m
2

φ(dist(x,supp(ρ0))+D). (2.35b)

Then ux(x, t) is bounded for all (x, t) 6∈ supp(ρ).

Remark 2.5.1. Condition (2.35) has the same flavor as (2.15) for the non-vacuum area:

variation of initial velocity is not too big and slop of velocity is not too negative. For

(2.35a), when λ approaches zero, the condition is equivalent to the non-vacuum case.

On the other hand, when λ approaches infinity, if φ(r) ∼ r−α , the right hand side is

proportional to r1−α . Thanks to the slow decay assumption on φ , i.e. α < 1, (2.35a)

provides no restrictions on V ∞
0 . Note that if α > 1, the condition requires V ∞

0 = 0 which

can not be achieved unless u is a constant.

If we combine theorem 2.3.1 for non-vacuum area and theorem 2.5.1 for vacuum

area, we conclude that the 1D system (2.13) has global strong solutions provided suitable

subcritical initial conditions.

Theorem 2.5.2 (1D global strong solution). Consider initial value problem of (2.13).

• Subcritical: If initial configuration satisfies both (2.15) and (2.35), then there exists

a strong solution ρ ∈ L∞([0,+∞),L1(R)) and u ∈ L∞([0,+∞),W 1,∞(R)). More-

over, the solution converges to a flock in the sense of definition 1.3.2.

• Supercritical: If initial configuration satisfies d0 < σ−(V0), then solution (ρ,u) will

blow up in finite time.

We prove theorem 2.5.1 in the rest of the section.
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2.5.1 Dynamics inside the vacuum

Consider the dynamics of d = ux (2.28) for x 6∈ supp(ρ0). Define maximum varia-

tion of the velocity field between a point in the whole space and a point in the non-vacuum

area

V ∞(t) := sup{|u(x, t)−u(y, t)|, x ∈ R, y ∈ supp(ρ(·, t))}.

and the distance between x and the non-vacuum area at time t

L(x, t) := dist(x,supp(ρ(·, t)).

We have the following bounds in contrast with proposition 2.3.2.

Proposition 2.5.3 (Bounds inside the vacuum). Suppose (ρ,u) is a strong solution of

system (2.13). Then, for any x 6∈ supp(ρ(t)),

∣∣∣∣ˆ ∞

−∞

φx(|x− y|)(u(y, t)−u(x, t))ρ(y, t)dy
∣∣∣∣≤V ∞(0) |φx(L(x, t))|m,

φ(L(x, t)+D)m≤
ˆ

∞

−∞

φ(|x− y|)ρ(y, t)dy≤ m.

Proof. For the first inequality,

∣∣∣∣ˆ ∞

−∞

φx(|x− y|)(u(y, t)−u(x, t))ρ(y, t)dy
∣∣∣∣≤ ˆ

supp(ρ(t))
|u(y, t)−u(x, t)| |φx(|x− y|)|ρ(y, t)dy

≤V ∞(t)|φx(L(x, t))|
ˆ

supp(ρ(t))
ρ(y, t)dy≤V ∞(0)|φx(L(x, t))|m.

The last inequality is valid due to maximum principle.

For the second inequality,

ˆ
∞

−∞

φ(|x− y|)ρ(y, t)dy≤ ‖φ‖L∞m = m.
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On the other hand, as (ρ,u) converges to a flock, S(t) is uniformly bounded by D, defined

in (1.7). Hence, maxy∈supp(ρ(t)) dist(x,y)≤ L(x, t)+D. It yields

ˆ
∞

−∞

φ(|x− y|)ρ(y, t)dy =
ˆ

supp(ρ(t))
φ(|x− y|)ρ(y, t)dy≥ φ(L(x, t)+D)m.

Remark 2.5.2. The key estimate in proposition 2.5.3 is the positive lower bound of φ ?ρ .

This lower bound helps preventing shocks. For local system, we are not able to find such

lower bound for x 6∈ supp(ρ(·, t)), where regularity can not be preserved in general.

Now, we discuss the criterion to guarantee the boundedness of ‖ux(·, t)‖L∞ in whole

space, using similar technique as Section 2.3.

Lemma 2.5.4. Suppose V ∞ satisfies the condition

V ∞(0)≤ inf
r≥0

[
mφ(r+D)2

4|φx(r)|+2|φx(r+D)|

]
, (2.36)

and u0 satisfies the following criterion

u0x(x)≥−
m
2

φ(L(x,0)+D), for x 6∈ supp(ρ0). (2.37)

Then, ux(x, t) is bounded for all time for (x, t) 6∈ supp(ρ).

There are several remarks about lemma 2.5.4.

Remark 2.5.3. Condition (2.36) carries two aspects.

1. Slow decay when r→ ∞. Suppose φ(r) ≈ r−α as r→ ∞. The right hand side

is proportional to r1−α . If φ decays fast with α > 1, i.e. (1.8) is violated, the right hand

side goes to 0. The condition can not be achieved unless u0 is a constant. A slow decay

assumption on φ is needed to make sure the condition is meaningful.

81



2. Condition for V ∞ when r→ 0. Take r = 0, the condition reads

V ∞(0)≤ mφ(D)2

4‖φ‖Ẇ 1,∞ +2|φx(D)|
.

This is equivalent to the thresholds of V0 in proposition 2.3.3, assuming V ∞(0).V0.

Remark 2.5.4. Criterion (2.37) is satisfied automatically for large |x|. As the matter of

fact, when |x|→∞, (2.37) says that u0x(x)&−|x|−α . This is a consequence of u0 ∈ L∞(R)

and the fact α ≤ 1.

Proof of Lemma 2.5.4. Consider (x, t) 6∈ supp(ρ). It belongs to a characteristic starting

from (x0,0) where x0 6∈ supp(ρ0), as long as ux is bounded. At this point, we have

d′ =−d2− pd +Q,

where p ∈ [φ(L(x, t)+D)m,m] and |Q| ≤V ∞(0)|φx(L(x, t))|m.

It is sufficient to discuss the following equality system and use the comparison

principle to draw conclusion on d.

ω
′ =−ω

2−φ(L(x, t)+D)mω−V ∞(0)|φx(L(x, t))|m.

Condition (2.36) ensures that the right hand side has two distinguished solutions.

Especially, if we pick ω =−1
2φ(L(x, t)+D)m, then

ω
′ =

1
4

φ(L(x, t)+D)2m2−V ∞(0)|φx(L(x, t))|m
(2.36)
≥ 1

2
|φx(L(x, t)+D)|V ∞(0)m > 0.

Let A(x0) denote the area where ω ≥−1
2φ(L(x, t)+D)m, and (x, t) = (X(t), t) is a

point on the characteristic starting from (x0,0), namely

A(x0) :=
{
(z, t)

∣∣∣∣z≥−1
2
(φ(L(X(t), t)+D)m), t ≥ 0

}
.
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Its boundary ∂A(x0) reads

∂A(x0) = {(γ(t), t)|t ≥ 0} where γ(t) =−1
2

φ(L(X(t), t)+D)m.

Criterion (2.37) implies (ω(0),0) ∈ A(x0). We are left to show that (ω(t), t) stays

in A(x0) for all t ≥ 0. As A(x0) is uniformly bounded from below in z, it implies ω is

lower bounded in all time.

Finally, we prove that (ω(t), t) ∈ A(x0) for t ≥ 0 by contradiction.

Suppose there exist t > 0 such that (ω(t), t)∈ ∂A(x0), and (ω(t+δ ), t+δ ) 6∈A(x0).

It means that ω(t) = γ(t) and ω ′(t)< γ ′(t). On the other hand, we compute

γ
′(t) =

m
2

φx(L(X(t), t)+D)
d
dt

L(X(t), t)≤ 1
2
|φx(L(x, t)+D)|V ∞(0)m.

The last inequality is true as both ∂ (supp(ρ)) and X are travelling with the speed between

umin and umax. It yields d
dt L(X(t), t)≤V ∞(t)≤V ∞(0).

Combine with the estimate on ω ′, we conclude that ω ′(t) ≥ γ ′(t) which leads to a

contradiction.

2.5.2 Fast alignment property inside the vacuum

We showed in Section 2.3.2 a much wider critical threshold for (x, t) ∈ supp(ρ),

assuming fast alignment property. In this subsection, we extend the enhanced result to the

vacuum area.

We start with showing a fast alignment property where vacuum is involved. As the

strength of the alignment forcing at point (x, t) is determined by L(x, t), it is natural to

introduce the following definitions.

83



Definition 2.5.1 (Level Sets). For any level λ ≥ 0, define

Ω
λ (t) =

X(t)

∣∣∣∣∣∣∣∣∣


Ẋ(t) = u(X , t)

X(0) = x

, L(x,0)≤ λ

 ,

Sλ (t) = sup
{
|x− y|, x ∈Ω

λ (t), y ∈Ω
0(t)
}
.

V λ (t) = sup
{
|u(x, t)−u(y, t)|, x ∈Ω

λ (t), y ∈Ω
0(t)
}
.

If λ = 0, Ω0(t) = supp(ρ(t)), and S0(t),V 0(t) coincides with S(t),V (t) respec-

tively. Moreover, Sλ (0) = S0 +λ . If λ = ∞, V ∞(t) coincide with the definition before.

Theorem 2.5.5 (Fast alignment on Ωλ ). Let (ρ,u) be a global strong solution of system

(2.13). Suppose the influence function φ satisfies

m
ˆ

∞

S0

φ(r)dr >V λ (0).

Then, there exists a finite number Dλ , such that

sup
t≥0

Sλ (t)≤ Dλ , V λ (t)≤V λ (0)e−mφ(Dλ )t .

Moreover, Dλ has the following expression

Dλ = ψ
−1(V λ (0)+ψ(S0 +λ )), where ψ(t) = m

ˆ t

0
φ(s)ds.

Remark 2.5.5. The proof of theorem 2.5.5 follows the same idea in proposition 1.3.7 and

theorem 1.3.6 by considering X is a characteristic starting from x ∈ Ωλ (0). We observe

that V λ (t) still has an exponential decay in time, with rate mφ(Dλ ). When λ becomes

larger, the rate becomes smaller. However, as long as λ is finite, we always have fast

alignment.
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Now, we are ready to prove theorem 2.5.1. It is an improvement of lemma 2.5.4 by

using fast alignment property.

Proof of theorem 2.5.1. We repeat the proof of lemma 2.5.4 using a better bound on the

term Q which reads |Q| ≤ V L(x0,0)(t)|φx(L(x, t))|m. Also, we use a better bound on

d
dt L(X(t), t)≤V L(x0,0)(t). It yields the following modified condition

V L(x0,0)(t)≤ mφ(L(x, t)+D)2

4|φx(L(x, t))|+2φx(L(x, t)+D)|
,

for all x0 and t, with (x, t) = (X(t), t) being a point on the characteristics starting from

(x0,0).

When t = 0, let λ = L(x0,0), we get the condition (2.35a) stated in the theorem, i.e.

V λ (0)≤ mφ(λ +D)2

4|φx(λ )|+2φx(λ +D)|
.

Finally, we prove that if (2.35a) holds, the modified condition automatically holds for all

t > 0.

Take λ = L(x, t), It suffies to prove that V L(x0,0)(t)≤V λ (0). Apply theorem 2.5.5,

we are left to prove V L(x0,0)(0)e−mφ(DL(x0,0))t ≤ V L(x,t)(0). This is true if we assume that

V λ grows slower than exponential in λ . The assumption is valid as V ∞ is finite.

2.6 Higher integrability and regularity

In this section, we discuss the smoothness of the strong solution of macroscopic

Cucker-Smale system, assuming the initial configuration lies in the subcritical region.
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Recall the system:

ρt +div(ρu) = 0, (2.38a)

ut +u ·∇u =

ˆ
Rn

φ(|x−y|)(u(y)−u(x))ρ(y)dy. (2.38b)

The main question is: does the strong solution preserves initial integrability and

regularity?

We first show that ‖ρ(·, t)‖Lp is bounded in all finite time if ρ0 is Lp integrable.

Lemma 2.6.1 (Lp boundedness on ρ). Suppose (ρ,u) are strong solution of (2.38).

Suppose ρ0 ∈ Lp
+(Rn) compactly supported. Moreover, divu ∈ L1(0,T,L∞(Rn)). Then,

ρ(·, t) ∈ Lp
+(Rn) for all t ∈ [0,T ]. Here, 1≤ p≤ ∞.

Proof. Multiply (2.38a) by pρ p−1 and integrate in space. We get

d
dt
‖ρ(·, t)‖p

Lp = − p
ˆ
Rn

ρ
p−1div(ρu)dx = p(p−1)

ˆ
Rn

ρ
p−1

∇ρ ·udx

= (p−1)
ˆ
Rn

∇(ρ p) ·udx≤ (p−1)‖divu‖L∞‖ρ‖p
Lp .

⇒ d
dt
‖ρ(·, t)‖Lp ≤ p−1

p
‖divu‖L∞‖ρ‖Lp.

Using Gronwall’s inequality, we conclude

‖ρ(·,T )‖Lp ≤ ‖ρ0‖Lp exp
(

p−1
p

ˆ T

0
‖divu(·, t)‖L∞dt

)
.

The argument is also true for p = ∞ with

‖ρ(·,T )‖L∞ ≤ ‖ρ0‖L∞ exp
(ˆ T

0
‖divu(·, t)‖L∞dt

)
.
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As we know divu is bounded in all time with subcritical initial data, we conclude

that Lp integrability on ρ is preserved.

For velocity u, maximum principle clearly holds.

Lemma 2.6.2 (Maximum principle). Suppose (ρ,u) are smooth solution of (2.38). Sup-

pose ρ0 ≥ 0, then ρ ≥ 0. Also, if u0 ∈ L∞(Rn), then

min
x∈Rn

u0i(x)≤ ui(·, t)≤ max
x∈Rn

u0i(x,0), for i = 1, · · · ,n.

Next, we focus on initial data with higher regularity. The following theorem shows

that the initial regularity is preserved if the nonlocal term satisfies the following condition:

∥∥∥∥ˆ
Rn

φ(|x−y|)(u(y)−u(x))ρ(y)dy
∥∥∥∥

Hs+1
. ‖ρ‖Hs‖∇u‖L∞ +‖ρ‖L∞‖u‖Hs+1. (2.39)

Theorem 2.6.3 (Global regularity). Consider system (2.38) subject to smooth initial con-

ditions ρ0 ∈ Hs
+(Rn) and u0 ∈ Hs+1(Rn), where s > n/2. Suppose (2.39) stays true.

Then for any T > 0, there exists a unique solution (ρ,u) ∈ C([0,T ];Hs
+(Rn))×

C([0,T ];Hs+1(Rn)), if and only if, ‖∇u(·, t)‖L∞(Rn) is bounded for all t ∈ [0,T ].

Proof. We start with acting operator Λs on equation (2.38a) and integrate by parts against

Λsρ . Here Λ := (I−∆)1/2 is the pseudo-differential operator.

The evolution of the Hs norm reads [60]

d
dt
‖ρ(·, t)‖2

Hs =−([Λsdiv ,u]ρ,Λs
ρ)+

1
2
(Λs

ρ,(divu)Λs
ρ) .

By commutator estimates [54], we have

‖ [Λsdiv ,u]ρ‖L2 . ‖∇u‖L∞‖ρ‖Hs +‖u‖Hs+1‖ρ‖L∞ .
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Use lemma 2.6.1, we get the following estimate

d
dt
‖ρ(·, t)‖2

Hs .

[
‖∇u‖L∞ + exp

(ˆ t

0
‖divu(·,s)‖L∞ds

)](
‖ρ‖2

Hs +‖u‖2
Hs+1

)
. (2.40)

Similarly, for equation (2.38b), we have

d
dt
‖u(·, t)‖2

Hs+1 =−∑
j

([
Λ

s+1,u j
]

∂ ju,Λs+1u
)
+

1
2
(
Λ

s+1u,(divu)Λs+1u
)

+

(
Λ

s+1u,Λs+1
ˆ
Rn

φ(|x−y|)(u(y)−u(x))ρ(y)dy
)
.

For the commutator, we have the same estimates

‖
[
Λ

s+1,u j
]

∂ ju‖L2 . ‖∇u‖L∞‖u‖Hs+1.

For the nonlocal term, condition (2.39) implies

(
Λ

s+1u,Λs+1
ˆ
Rn

φ(|x−y|)(u(y)−u(x))ρ(y)dy
)
. ‖u‖Hs+1 (‖ρ‖Hs‖∇u‖L∞ +‖ρ‖L∞‖u‖Hs+1) .

Using lemma 2.6.1 and 2.6.2, it yields the following estimate

d
dt
‖u(·, t)‖2

Hs+1 .

[
1+‖∇u‖L∞ + exp

(ˆ t

0
‖divu(·,s)‖L∞ds

)](
‖ρ‖2

Hs +‖u‖2
Hs+1

)
.

(2.41)

Let Y (t) := ‖u(·, t)‖2
Hs+1 +‖ρ(·, t)‖2

Hs . Sum up (2.40) and (2.41) and use Gronwall’s

inequality. We get

Y (T ). Y (0)exp
{ˆ T

0

[
1+‖∇u(·, t)‖L∞ + exp

(ˆ t

0
‖divu(·,s)‖L∞ds

)]
dt
}
. (2.42)

Therefore, if ‖∇u(·, t)‖L∞ is bounded for all t ∈ [0,T ], then Y (t) is bounded as well

in t ∈ [0,T ].

The other direction is obviously true, as Hs(Rn)⊂ L∞(Rn) for s > n/2.
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To understand when (2.39) is satisfied, we can do the following formal Fourier

transform ∥∥∥∥ˆ
Rn

φ(|x−y|)(u(y)−u(x))ρ(y)dy
∥∥∥∥

Hs+1

=

∥∥∥∥(1+ |ξ |2)(s+1)/2
ˆ
Rn
(φ̂(ξ )− φ̂(η))ρ̂(η)û(ξ −η)dη

∥∥∥∥
L2

≤
∥∥∥∥(1+ |ξ |2)(s+1)/2|Dξ φ̂(ξ )|

ˆ
Rn

ρ̂(η)|ξ −η ||û(ξ −η)|dη

∥∥∥∥
L2
+ l.o.t

.
∥∥∥(1+ |ξ |2)1/2|Dξ φ̂(ξ )|

∥∥∥
L∞
‖ρ∇u‖Hs.

Here, ‖ρ∇u‖Hs . ‖ρ‖Hs‖∇u‖L∞ + ‖ρ‖L∞‖u‖Hs+1 . Therefore, we need φ to satisfy the

following property:

(1+ |ξ |2)1/2|Dξ φ̂(ξ )| ∈ L∞, i.e. Λ(xφ(|x|)) ∈ L1.

It requires that φ decays sufficiently fast at infinity. In fact, take for instance the prototype

φ(x) = (1+ x)−α , we need α > n to satisfy the property. This violates the slow decay

assumption α < 1, which ensures flocking.

Therefore, the preservation of higher initial regularity in Rn is not guaranteed for

the main system (2.38).

2.7 On macroscopic Motsch-Tadmor system

In this section, we briefly discuss the critical thresholds phenomenon for macro-

scopic Motsch-Tadmor system

ρt +div(ρu) = 0, (2.43a)

ut +u ·∇u =

ˆ
Rn

φ(|x−y|)
Φ(x)

(u(y)−u(x))ρ(y)dy. (2.43b)
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The procedure to bound M = ∇u is the same as Cucker-Smale system.

The evolution of M along the characteristic curve is derived by take derivative on

(2.43b) with respect to x:

M′+M2 =

ˆ
Rn

∇x

(
φ(|x−y|)

Φ(x, t)

)
⊗ (u(y, t)−u(x, t))ρ(y, t)dy−M. (2.44)

The non-local term has a uniform bounded, given by the following proposition.

Proposition 2.7.1. Suppose (ρ,u) is a strong solution of system (2.43). Then, for any

x ∈ supp(ρ(t)),∣∣∣∣ˆ
Rn

∂x j

(
φ(|x−y|)

Φ(x, t)

)
(ui(y, t)−ui(x, t))ρ(y, t)dy

∣∣∣∣≤ 2‖φ‖Ẇ 1,∞

φ(D)
V (t), i, j = 1, · · · ,n.

Proof. ∣∣∣∣ˆ
Rn

∂x j

(
φ(|x−y|)

Φ(x, t)

)
(ui(y, t)−ui(x, t))ρ(y, t)dy

∣∣∣∣
≤
ˆ
Rn
|ui(y, t)−ui(x, t)|

∣∣∣∣∂x j

(
φ(|x−y|)

Φ(x, t)

)
ρ(y, t)

∣∣∣∣dy

≤ V (t)
ˆ
Rn

|∂x jφ(|x−y|)ρ(y, t)Φ(x, t)−φ(|x−y|)ρ(y, t)∂x jΦ(x, t)|
Φ2(x, t)

dy

≤ V (t)

[´
Rn |∂x jφ(|x−y|)|ρ(y)dy+ |∂x jΦ(x, t)|

Φ(x, t)

]

≤
2V (t)

´
Rn |∂x jφ(|x−y|)|ρ(y)dy

Φ(x, t)
.

From theorem 1.3.6 we know that S(t)≤ D. Therefore,

Φ(x, t) =
ˆ
Rn

φ(|x−y|)ρ(y, t)dy =

ˆ
supp(ρ(t))

φ(|x−y|)ρ(y, t)dy

≥ φ(D)

ˆ
Rn

ρ(y, t)dy = φ(D)m,

for all x ∈ supp(ρ(t)). Hence, we conclude∣∣∣∣ˆ
Rn

∂x j

(
φ(|x−y|)

Φ(x, t)

)
(ui(y, t)−ui(x, t))ρ(y, t)dy

∣∣∣∣≤ 2‖φ‖Ẇ 1,∞m
φ(D)m

V (t).
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The proposition shows that (2.44) is a special case of the prototype (2.19) for 1D

and (2.31) for 2D, with coefficients

γ = 1, Γ = 1, c =
2‖φ‖Ẇ 1,∞

φ(D)
, G = φ(D).

It yields the same result as Cucker-Smale. For instance, in 1D , theorem 2.3.1 holds

for Motsch-Tadmor system with the following thresholds functions:

σ+(0) =−1, σ
′
+(x) =


2‖φ‖Ẇ1,∞

(1+φ(D))φ(D) , x→ 0+

−φ(D)σ+(x)2−φ(D)σ+(x)−2‖φ‖Ẇ1,∞ x
−φ(D)2x x > 0

, (2.45a)

σ−(0) =−1, σ
′
−(x) =


− 2‖φ‖Ẇ1,∞

(1+φ(D))φ(D) , x→ 0+

−φ(D)σ−(x)2−φ(D)σ−(x)+2‖φ‖Ẇ1,∞x
−φ(D)2x x > 0

. (2.45b)

2.8 2D Euler-Poisson equation revisit

In this section, we come back to 2D Euler-Poisson equation. As discussed in section

2.2.3, critical thresholds are difficult to achieve because of the presence of the non-local

Reisz transform. We introduce some new existence results which is stronger than what’s

been proved in the restricted models.

Recall the dynamics (2.11),

ρ
′ =−ρd,

d′ =−d2 +βρ2

2
+ kρ.
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where β = β 2
q +β 2

r −β 2
ω . The dynamics of βq,βr and βq are given in (2.10). Here, we

repeat the expression.

β
′
q = k

(R1R1−R2R2)[ρ]

ρ
,

β
′
r =−2k

R1R2[ρ]

ρ
,

β
′
ω = 0.

For restricted model, we assume that β is a constant in time. But for the full model, β is

allowed to grow in time.

2.8.1 Global existence for a modified system

We will prove a global existence result for a modified system with the following

hypotheses:

|β ′q| ≤C, |β ′r| ≤C. (2.46)

Remark 2.8.1. The Reisz transform RiR j “almost” maps L∞ to L∞, with possible viola-

tion of a logarithmic blowup. In fact, it maps L∞ to BMO. Therefore, the hypothesis is

“almost” true. But, “almost” true can still be wrong. See discussions in section 2.8.2.

Under this hypotheses, β is allow to grow at most t2 along the characteristics.

β =β
2
p +β

2
q −β

2
ω ≤ (|βp(0)|+Ct)2 +(|βq(0)|+Ct)2−βω(0)2

=2C2
(

t +
|βp(0)|+ |βq(0)|

2C

)2

−
[

βω(0)2−
(|βp(0)|− |βq(0)|)2

2

]
.
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Assume |βω(0)| ≥ (|βp(0)|−|βq(0)|)/
√

2. Define D := (|βp(0)|+ |βq(0)|)/(2C). We get

ρ
′ =−ρd,

d′ ≥−d2

2
−C2(t +D)2

ρ
2 + kρ.

Apply the following scaling to the system:

d̃(t) = (t +D)d(t), ρ̃(t) = (t +D)2
ρ(t). (2.47)

The dynamics on (d̃, ρ̃) reads

(t +D)d̃′ ≥ d̃− d̃2

2
− k2C2

ρ̃
2 + kρ̃,

(t +D)ρ̃ ′ = (2− d̃)ρ̃.

Finally, we take τ = log(t +D)− logD. The dynamics of (d̃, ρ̃) do not depend

explicitly on τ .

d̃′ ≥ d̃− d̃2

2
− k2C2

ρ̃
2 + kρ̃,

ρ̃
′ = (2− d̃)ρ̃.

We first analyze the equality system

e′ = e− e2

2
− k2C2

η
2 + kη ,

η
′ = (2− e)η .

We draw the phase plane of the equality system in figure 2.5. The system has a

source O(0,0), a sink B(0,2) and a saddle point A((kC2)−1,2). If (η0,e0) lies in the

shaded area, (η ,e) will converges to point B as time goes to infinity. The procedure to

derive the critical threshold (dashed line) is the same as section 2.3.3. Hence, details are

omitted.
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Figure 2.5: Phase plane and critical threshold of the scaled system (η ,e). It also repre-

sents the threshold for (ρ,d) as well, through a scaling and a comparison principle. The

graph above is the case where k is relatively small, where subcritical region only con-

tains increasing profiles. The graph below is the case where k is relatively large, where

subcritical region allows more general initial configurations.
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Remark 2.8.2. There are two constants in the dynamics. k prescribes the strength of

the force. Larger k helps to achieve global regularity. C is a measurement of spectral

gap. Smaller C gives better bounds of the spectral gap, which yields better estimates. In

particular, if C = 0, we recover the restricted model (2.11), where the critical threshold

is precisely given. Figure 2.5 provides thresholds for two sets of choices of (k,C), where

kC2 is fixed in order to have the same saddle point A. In the left graph, k is relatively

smaller and C is relatively larger. We observe that the shaded area has no intersection

with e < 0. In this case, convection dominates, and general initial profile lead to blowup,

just like Euler equation. In contrast, the right graph has larger k and smaller C. The

forcing is stronger. It is possible to have initial profile with e0 < 0 which leads to global

regularity.

Next, we use the following comparison principle to link (ρ̃, d̃) with (η ,e).

Lemma 2.8.1. If


0≤ ρ̃(0)≤ η(0)

d̃(0)≥ e(0)

and η(t)≤ (kC2)−1, then


0≤ ρ̃(t)≤ η(t)

d̃(t)≥ e(t)

.

Proof. If the first inequality is violated starting at time t0, then ρ̃(t0) = η(t0) and d
dt (ρ̃−

η)(t0)> 0. This leads to contradiction

d
dt
(ρ̃−η)(t0) = (2− d̃(t0))ρ̃(t0)− (2− e(t0))η(t0) =−(d̃(t0)− e(t0))ρ̃(t0)≤ 0.

Similarly, if the second inequality is violated starting at time t0, then d̃(t0) = e(t0) and

d
dt (d̃− e)(t0)> 0. We get the following contradiction

d
dt
(d̃− e)(t0) =− k2C2

ρ̃(t0)
(
(kC2)−1− ρ̃(t0)

)
+ k2C2

η(t0)
(
(kC2)−1−η(t0)

)
≤− k2C2(ρ̃(t0)−η(t0))((kC2)−1−η(t0))≤ 0.
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Using the comparison principle, we conclude that if (ρ̃(0), d̃(0)) lies in the shaded

area, then (ρ̃(t), d̃(t)) exists in all time.

Note that d̃(0) = d(0) and ρ̃(0) = ρ(0). Therefore, we achieve global existence

for the modified system with hypothesis (2.46), provided that the initial data lies in the

subcritical region, namely (ρ(x),divu0(x)) belongs to the shaded area in figure 2.5, for

all x.

2.8.2 Discussion on the full system

In this section, we briefly discuss how realistic the hypotheses (2.46), for the full

2D Euler-Poisson equation (2.8).

The rescaling argument (2.47) implies that long time behaviors of (ρ,d) for sub-

critical initial data are

ρ(t)∼ 1
t2 , d(t)∼ 1

t
.

Thus, if RiR j[ρ](t)∼
1
t2 , hypotheses (2.46) is valid.

However, the Riesz transform fails to map L∞ to L∞. One needs a bit more regu-

larity and integrability to control RiR j[ρ] point-wise. The following lemma provides an

estimate.

Lemma 2.8.2. ‖R1R2[ρ]‖L∞ and ‖(R1R1−R2R2)[ρ]‖L∞ are both bounded (up to a con-

stant) by ‖ρ‖L∞

[
1
γ

log+ ‖ρ‖Cγ +
p−1

2
log+ ‖ρ‖Lp

]
.

Proof. We postpond the proof to the appendix section 2.B.
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Heuristically speaking, ‖d‖L∞ ∼ t−1, ‖ρ‖L∞ ∼ t−2. From the continuity equation,

we get

‖ρ(·, t)‖Cγ . ‖ρ0‖Cγ exp
(ˆ t

0
‖d(·,s)‖L∞ds

)
∼ exp

(ˆ t 1
s

ds
)
∼ t,

‖ρ(·, t)‖Lp . ‖ρ0‖Lp exp
(ˆ t

0
‖d(·,s)‖L∞ds

)
∼ exp

(ˆ t 1
s

ds
)
∼ t.

It implies

RiR j[ρ]

ρ
.

t−2 log t
t−2 = log t.

We are not able to close the system as hypothesis (2.46) is not valid with an extra

logarithmic growth.
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Appendix

2.A Local dissipation system

In this section, we formally derive the local dissipation system (2.2). Recall the

rescaled system

ρt +div(ρu) = 0,

(ρu)t +div(ρu⊗u)+∇P =

ˆ
Rn

φε(|x−y|)(u(y)−u(x))ρ(x)ρ(y)dy.

where

φε :=
1

εn+2 φ

(
|x|
ε

)
.

The alignment becomes local when ε goes to zero. Formally, assuming that (ρ,u)

are sufficiently smooth, we apply Taylor expansion on (ρ,u) around point x.

ˆ
Rn

φε(|x−y|)(u(y)−u(x))ρ(y)dy

=

ˆ
Rn

φε(|y|)(u(x−y)−u(x))ρ(x−y)dy

=

ˆ
Rn

φε(|y|)
(
−Du(x)y+

1
2

y ·D2u(x)y+o(|y2|)
)
(ρ(x)−Dρ(x)y+o(|y|))dy

=
1
2

ρ(x)
ˆ
Rn

φε(|y|)y ·D2u(x)ydy +

ˆ
Rn

φε(|y|)Dρ(x)y Du(x)ydy +

ˆ
Rn

φε(|y|)o(|y|2)dy

= I + II + III.
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We simplify each term

I =
1
2

ρ(x)
ˆ
Rn

φε(|y|)∑
i, j

∂
2
i ju(x)yiy jdy =

1
2

ρ(x)
ˆ
Rn

φε(|y|)∑
i

∂
2
ii u(x)y

2
i dy

=
1
2

ρ(x)∆u(x)
[

1
n

ˆ
Rn

φε(|y|)|y|2dy
]
.

Here we use the fact that
ˆ
Rn

φε(y)yiy jdy= 0 for i 6= j by anti-symmetry, and
ˆ
Rn

φε(y)y2
i dy

is the same quantity for all i’s. The coefficient is independent with respect to ε ,

ˆ
Rn

φε(|y|)|y|2dy = ωn

ˆ
R

φε(s)s2sn−1ds
r=s/ε
= ωn

ˆ
R

φ(r)rn+1dr,

where ωn is the surface area of a unit sphere in Rn. Similarly,

II =

ˆ
Rn

φε(|y|)∑
i, j

∂iρ(x)∂ ju(x)yiy jdy = (∇ρ ·∇)u
[

1
n

ˆ
Rn

φε(|y|)|y|2dy
]
,

and III = o(1) vanishes as ε → 0.

Put the three parts together, we conclude with the limiting system (2.2), as

ˆ
Rn

φε(|x−y|)(u(y)−u(x))ρ(x)ρ(y)dy = ρ(x)(I+ II+ III)

=Cρ(x)
(
ρ(x)∆u(x)+2(∇ρ ·∇)u

)
+o(1)ρ(x) ε→0−→Cdiv(ρ2

∇u),

where C =
ωn

2n

ˆ
R

φ(r)rn+1dr.

2.B L∞ estimate for Reisz transform

The Reisz transform RiR j[ρ] = ∇⊗∇∆−1ρ does not map L∞ to L∞. Here is an

estimate which requires a little more than L∞. We proceed with R2 for simplicity.

∆−1ρ = N ?ρ , where N is the Newtonian potential

N (x) =
1

2π
log |x|.
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Take the first derivative

∂xi∆
−1

ρ(x) = p.v.
ˆ
R2

N (y)∂xiρ(x−y)dy

= − p.v.
ˆ
R2

N (y)∂yiρ(x−y)dy

= lim
δ→0

[ˆ
|y|≥δ

∂yiN (y)ρ(x−y)dy−
ˆ
|y|=δ

N (y)ρ(x−y)
−yi

δ
dy

]

= p.v.
ˆ
R2

∂xiN (y)ρ(x−y)dy+ lim
δ→0

ˆ
|z|=1

δN (δz)ρ(x−δz)zidz

The second term vanishes as

lim
δ→0

ˆ
|z|=1

N (δz)ρ(x−δz)zidz = ρ(x) lim
δ→0

ˆ
|z|=1

δN (δz)zidz = 0.

Take the second derivative. The same procedure yields

∂
2
xix j

∆
−1

ρ(x) = p.v.
ˆ
R2

∂
2
xix j

N (y)ρ(x−y)dy+ρ(x) lim
δ→0

ˆ
|z|=1

δ∂xiN (δz)z jdz.

This time, the second term does not vanish as ∂xiN is homogeneous of degree -1. Hence

δ∂xiN (δz) = ∂xiN (z) and the second term equals to
´
|z|=1 ∂xiN (z)z jdz.

Remark 2.B.1. Take (∂ 2
x1x1

+ ∂ 2
x2x2

)∆−1ρ . The first term equals to 0 as ∆N = 0. The

second term equals to ρ . It clearly implies that if we take the trace, we recover ρ .

Remark 2.B.2. Take (∂ 2
x1x1
− ∂ 2

x2x2
)∆−1ρ or ∂ 2

x1x2
∆−1ρ . It is easy to see that the second

term equals to 0 due to symmetry. It means that local information are completely stored

in the divergence part. All other parts don’t “see” the local information.

To bound the full matrix ∇⊗∇∆−1ρ , we just need to bound the three terms in the

above remarks. The divergence part is clearly bounded. We try to bound the rest.
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Take in general K a singular integral homogeneous of degree -2. Note for the two

terms in remark 2, K can be expressed as
x2

2− x2
1

π|x|4
and

x1x2

π|x|4
, respectively. The goal is to

bound p.v.
´
R2 K(y)ρ(x−y)dy.

Decompose
´
|y|≥δ

K(y)ρ(x− y)dy to three parts: near origin, mid-range and near

infinity. ˆ
|y|≥δ

=

ˆ
δ≤|y|<ε

+

ˆ
ε≤|y|<R

+

ˆ
|y|≥R

= I+ II+ III.

For I, we assume some Hölder continuity Cγ on ρ at point x:

sup
y

|ρ(x)−ρ(y)|
|x−y|γ

=C(x)< ∞.

Note that by anti-symmetry,
´

a<|x|<b K(x)dx = 0 on any ring. Therefore,

I =
ˆ

δ≤|y|<ε

K(y)(ρ(x−y)dy−ρ(x))≤C(x)
ˆ

δ≤|y|<ε

K(y)|y|γdy.

Thanks to the additional γ regularity, the integral at the right hand side converges as

δ → 0. Moreover, ˆ
δ≤|y|<ε

K(y)|y|γdy∼
ˆ

ε

δ

1
r2 rγrdr ∼ ε

γ .

Remark 2.B.3. It is clear that continuity is not enough to control the origin. When γ = 0,

´ 1
r dr blows up at zero.

We pick ε = min{C(x)−1/γ ,1} to guarantee boundedness of I.

For III, we observe that K blow up at infinity as well. Therefore, we can not use

‖ρ‖L∞ to control. Any Lp norm which carries decay information at infinity will be enough

to control the far field.

III≤ ‖ρ‖Lp

(ˆ
|y|≥R
|K(y)|p

′
dy

)1/p′

∼ ‖ρ‖Lp

ˆ
∞

R

1
r2p′ rdr ∼ ‖ρ‖LpR−

2
p−1 .
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Similarly, we pick R = max{‖ρ‖
p−1

2
Lp ,1}.

For II, there is no singularity, so we simply use ‖ρ‖L∞ to control.

II≤‖ρ‖L∞

ˆ
ε≤|y|<1

K(y)dy∼ ‖ρ‖L∞

ˆ R

ε

1
r2 rdr ∼ ‖ρ‖L∞

(
log

1
ε
+ logR

)
∼‖ρ‖L∞

[
1
γ

log+C(x)+
p−1

2
log+ ‖ρ‖Lp

]
.

We end up with the lemma 2.8.2.
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Chapter 3: Kinetic Flocking Models

In this chapter, we turn to study flocking models in the kinetic level.

The existence theory for kinetic flocking systems has been stated in theorem 1.3.1.

The Vlasov-type equation is easier to analyze, comparing to the macroscopic system, as

the nonlinear convection term is replaced by a linear free transport. Moreover, the large

time behavior of the system is also discussed in section 1.3.2. If the influence function

φ decays slow enough at infinity, namely (1.8) is satisfied, then there is unconditional

flocking. For more realistic influence function which is compactly supported, there is

cluster formation in large time. One big open problem is to identify or estimate number

of clusters when time goes to infinity.

Both flocking and clustering effects require concentration of velocity. In the kinetic

level, the solution f tends to be singular in v variable as time approaches infinity, despite

the fact of been smooth in any finite time. Such concentration appears in many kinetic

systems with energy dissipation [48]. The generation of δ−singularity brings challenges

for the numerical implementation. Many techniques use smooth approximations for the

singularity. They suffer large errors as the solution becomes more and more singular.

We propose a discontinuous Galerkin (DG) method to solve kinetic flocking sys-

tems numerically. Discontinuous Galerkin method is first introduced by Reed and Hill
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in [81] and has many successful applications in hyperbolic conservation laws. The idea

is to use piecewise polynomials to approximate the solution in the weak sense. The use

of weak formulation of the solution overcomes the inaccuracy of the scheme. The effi-

ciency of DG method on δ -singularity has been studied in [105] and more applications

are discussed in [106].

We organize this chapter as follows. We start with a splitting argument in section

3.1 to separate the free transport and the alignment. The main focus thereafter is the align-

ment part (3.3), which is the main reason for generation of δ -singularities. A preliminary

introduction on DG method for kinetic Cucker-Smale system is given in section 3.2, fol-

lowed by a first order scheme. Higher order DG schemes are established and discussed as

well, where the imperative positivity preserving property is proved to ensure stability of

the numerical scheme. The detailed algorithm is listed in appendix section 3.A. In section

3.3, we briefly discuss the kinetic Motsch-Tadmor system, with all arguments similar as

the Cucker-Smale case. Some examples are provided in section 3.4 to demonstrate the

good performance of the high order DG scheme.

3.1 General setup and splitting

Recall kinetic flocking system

∂t f +v ·∇x f +∇v · ( f L( f )) = 0. (3.1)

Here, f = f (t,x,v) denotes the number density at postion x, velocity v and time t. The

operator L is defined as

L( f )(t,x,v) =
¨

φ(|x−y|)(v∗−v) f (t,y,v∗)dydv∗, (C-S)
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for Cucker-Smale model, and as

L( f )(t,x,v) =
¨

φ(|x−y|)
Φ(t,x)

(v∗−v) f (t,y,v∗)dydv∗, (M-T)

for Motsch-Tadmor model, where

Φ(t,x) =
¨

φ(|x−y|) f (t,y,v∗)dydv∗.

Our goal is to design an accurate and stable numerical scheme which successfully

captures the asymptotic behavior of velocity concentration.

The main system (3.1) can be split into two components: the free transport part

∂t f (t,x,v) =−v ·∇x f (t,x,v), (3.2)

and the alignment part

∂t f (t,x,v) =−∇v · ( f L( f )) . (3.3)

The free transport part does not lead to concentrations or singularities. Many stan-

dard methods can be used to solve (3.2). For instance, to get first order accuracy, one can

follow the characteristics, which are parallel straight lines travelling along the direction

v. A simple linear interpolation can be used to obtain a solution with first order accuracy.

For higher accuracy, many stable and effective methods can be used. For instance, we

apply WENO scheme (c.f. [88]) to solve (3.2).

The alignment part is our main concern. Through a similar proof as in proposition

1.3.3, we argue that (3.3) converges to a flock provided that φ(S0) > 0. In fact, S won’t

change in time due to no presence of transport, and V decays exponentially with rate

φ(S0). If the support of φ is small, clusters may generate in large time.
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Both flocking and clustering imply generations of δ -singularities as time approaches

infinity. We derive a DG scheme in section 3.2 and 3.3, for (C-S) setup and (M-T) setup,

respectively.

Provided solvers (3.2) and (3.3), we solve the full system (3.1), using Strang split-

ting method [90] or other higher order splitting method. We refer the reader to [70] for a

review of splitting methods.

We summarize the full algorithm in appendix 3.A.

3.2 A discontinuous Galerkin method on kinetic flocking systems

In this section, we discuss the numerical implementation of the alignment part of

the main system (3.3). We shall first focus on the (C-S) setup. For (M-T) case, similar ar-

gument can be made. See section 3.3 for details. Also, we take 1D as an easy illustration.

See remark 3.2.5 for discussions on multi-dimensional system.

Rewrite (3.3) as follows

∂t f (t,x,v) =−∇v · ( f L( f )) =−∇v ·
(

f (t,x,v)
ˆ
(v∗− v)G(t,x,v∗)dv∗

)
, (3.4)

where G(t,x,v) =
ˆ

φ(|x− y|) f (t,y,v)dy, which can be efficiently solved by numerical

solvers for convolutions.

As (3.4) is homogeneous in x, we drop the x dependency for simplicity from now

on.
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3.2.1 The DG framework

The idea of the discontinuous Galerkin method is to use piecewise polynomial to

approximate the solution.

We partition the computational domain Ω = [a,b] on v into N cells {I j}N
j=1

I j =
(
v j−1/2,v j+1/2

)
, v j = a+( j−1/2)∆v, ∆v =

b−a
N

,

with uniform mesh size h := ∆v for simplicity. The space we are working with is

Vh :=
{

f : For all j = 1, · · · ,N, f |I j ∈Pk
}
,

where Pk denotes polynomial of degree at most k. The weak formulation of (3.4) reads

d
dt

ˆ
I j

f (v)p(v)dv =−p f L( f )
∣∣∣v j+1/2
v j−1/2 +

ˆ
I j

f L( f )φ ′dv, ∀p = p(v) ∈Vh. (3.5)

The DG scheme is to find f ∈Vh which satisfies (3.5).

If we apply test function p(v) = 1 on (3.5), we get

d
dt

f̄ j =−
1
h

f L( f )
∣∣∣v j+1/2
v j−1/2 ,

where f̄ j is the cell average of I j. With a forward Euler scheme in time, this becomes the

classical finite volume method, namely

f̄ j(t +∆t) = f̄ j(t)+
∆t
h

[
f (v+j−1/2) ·L( f )(v j−1/2)− f (v−j+1/2) ·L( f )(v j+1/2)

]
.

The key part is to approximate the flux at the cell interfaces. To ensure the conser-

vation law, we modify the scheme using a numerical flux

f̄ j(t +∆t) = f̄ j(t)+
∆t
h

[
f̂ (v j−1/2) ·L( f )(v j−1/2)− f̂ (v j+1/2) ·L( f )(v j+1/2)

]
(3.6a)
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so that the outflux and influx at the same interface add up to zero. Note that L is a global

operator on f , and L( f ) is a continuous at the interface, we need to compute L( f ) using

information from all cells. Then, with fixed L( f )(v j+1/2), the flux is linear in f . We use

upwind fluxes where

f̂ j+1/2 := f̂ (v j+1/2) =


f (v−j+1/2) if L( f )(v j+1/2)≥ 0

f (v+j+1/2) if L( f )(v j+1/2)< 0

. (3.6b)

Remark 3.2.1. We usually use monotone numerical flux for DG scheme. In our simple

case when the flux is linear, some widely used flux such as Godunov flux, Lax-Friedrich

flux are coincide with the upwind flux.

3.2.2 A first order scheme

Let us consider the simple case when k = 0. A piecewise constant approximation

yields first order accuracy. To obtain f̄ j(t +∆t), we apply scheme (3.6) with

f (v+j+1/2) = f̄ j+1, f (v−j−1/2) = f̄ j,

as v is a constant in each cell. We are left with computing L( f ). As f is piecewise constant

in v for all x, clearly G is also a piecewise constant in v. Hence,

L( f )(v j+1/2) =

ˆ
Ω

(v∗− v j+1/2)G(v∗)dv∗

=
N

∑
l=1

Ḡl

ˆ
Il

(v∗− v j+1/2)dv∗ = h2
N

∑
l=1

(l− j−1/2)Ḡl,

where Ḡl is the value of G in Il . We can use any first order numerical integration on x to

compute Ḡl from f̄l .
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We prove the positivity preserving property of the first order scheme, which ensures

L1 stability of the numerical solution.

Proposition 3.2.1. Suppose f̄ j(t)> 0 for all j. Applying the first order scheme, we have

f̄ j(t +∆t)> 0 under CFL condition

∆t
h

max
j

∣∣L( f )(v j+1/2)
∣∣< 1

2
. (3.7)

Proof. Rewrite (3.6a) as following

f̄ j(t+∆t)=
1
2

[
f̄ j(t)+

2∆t
h

f̂ (v j−1/2) ·L( f )(v j−1/2)

]
+

1
2

[
f̄ j(t)−

2∆t
h

f̂ (v j+1/2) ·L( f )(v j+1/2)

]
.

We will show that both terms are positive under CFL condition.

For the first term, if L( f )(v j−1/2)≥ 0, clearly

f̄ j(t)+
2∆t
h

f̂ (v j−1/2) ·L( f )(v j−1/2) = f̄ j(t)+
2∆t
h

f̄ j−1(t) ·L( f )(v j−1/2)> 0.

if L( f )(v j−1/2 < 0, then under CFL condition, we have

f̄ j(t)+
2∆t
h

f̂ (v j−1/2) ·L( f )(v j−1/2) =

[
1− 2∆t

h

∣∣L( f )(v j−1/2)
∣∣] f̄ j(t)> 0.

Similarly, the second term is positive under the same CFL condition. Therefore,

f̄ j(t +∆t)> 0, for all j.

Remark 3.2.2. The CFL condition (3.7) depends on time t. We can derive a sufficient

CFL condition where the choice of ∆t is independent of t.

∣∣L( f )(v j+1/2)
∣∣= h2

∣∣∣∣∣ N

∑
l=1

(l− j−1/2)Ḡl

∣∣∣∣∣≤ h2(N−1/2)
N

∑
l=1

Ḡl,

for any j = 0, · · · ,N− 1. Here, M0 =

¨
f (t,x,v)dvdx is the total mass, which is con-

served in time. Recall the assumption on φ : ‖φ‖L∞ = φ(0) = 1. Hence

N

∑
l=1

Ḡl =
N

∑
l=1

ˆ
φ(|x− y|) f̄l(y)dy≤

N

∑
l=1

ˆ
f̄l(y)dy = M0,
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for f which is assume to be piecewise constant in v.

This implies
∣∣L( f )(v j+1/2)

∣∣≤ h(b−a)M0 and thus a sufficient CFL condition

∆t
h

<
1

2M0(b−a)
.

3.2.3 High order DG schemes

In order to obtain high order accuracy, we apply (3.5) with test functions with high

orders. Choose Legendre polynomials on I j

p(0)j (v) = 1, p(1)j (v) = v− v j, p(2)j (v) = (v− v j)
2− 1

12
h2, · · · .

Denote f (l)j =
1

hl+1

ˆ
I j

f (v)p(l)j dv. Clearly, all f ∈Pk can be determined by f (l)j for

j = 1, · · · ,N, l = 0, · · · ,k. As a matter of fact, we can write f (v) = ∑
k
l=0 al f (l)j p(l)j (v) for

v ∈ I j, with a0 = 1,a1 = 12/h,a2 = 180/h2, etc. (Consulting [23].)

From (3.5), we obtain the evolution of f (l)j .

d
dt

f (0)j =
1
h
( f̂ j−1/2L j−1/2− f̂ j+1/2L j+1/2),

d
dt

f (1)j =− 1
2h

( f̂ j−1/2L j−1/2 + f̂ j+1/2L j+1/2)+
1
h2

ˆ
I j

f L( f )dv,

d
dt

f (2)j =
1

6h
( f̂ j−1/2L j−1/2− f̂ j+1/2L j+1/2)+

2
h3

ˆ
I j

f L( f )(v− v j)dv,

(3.8)

etc. Here, we denote L j±1/2 = L( f )(v j±1/2) for simplicity.

Next, we compute L j+1/2 and the two integrals in the dynamics above, given f ∈Vh.

For k = 0, L j+1/2 is given in section 3.2.2. f (0)j coincide with f̄ j.
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For k ≥ 1, we use L2-orthogonality property of Legendre polynomial to compute

L( f )(v) =

ˆ
(v∗− v)G(v∗)dv∗

=
N

∑
l=1

ˆ
Il

[
(vl− v)p(0)l (v∗)+ p(1)l (v∗)

]
·
[

G(0)
l p(0)l (v∗)+

12
h

G(1)
l p(1)l (v∗)+ · · ·

]
dv∗

= h
N

∑
l=1

(vl− v)G(0)
l +h2

N

∑
l=1

G(1)
l .

All other terms of G(v∗) is L2-orthogonal to v∗− v and have no contribution to L( f )(v).

This implies

L j+1/2 = h
N

∑
l=1

(vl− v j+1/2)G
(0)
l +h2

N

∑
l=1

G(1)
l = h2

N

∑
l=1

[
(l− j−1/2)G(0)

l +G(1)
l

]
.

Moreover, L( f )(v) is linear in terms of v. Again, by orthogonality, we get

1
h2

ˆ
I j

f L( f )dv

=
1
h2

ˆ
I j

f (v)

[(
h

N

∑
l=1

(vl− v j)G
(0)
l +h2

N

∑
l=1

G(1)
l

)
p(0)j (v)+

(
−h

N

∑
l=1

G(0)
l

)
p(1)j (v)

]
dv

= h

{
f (0)j

N

∑
l=1

[(l− j)G(0)
l +G(1)

l ]− f (1)j

N

∑
l=1

G(0)
l

}
.

Finally, for k ≥ 2,

2
h3

ˆ
I j

f L( f )(v− v j)dv = 2h

{
f (1)j

N

∑
l=1

[(l− j)G(0)
l +G(1)

l ]−
(

1
12

f (0)j + f (2)j

) N

∑
l=1

G(0)
l

}
.

Remark 3.2.3. As shown above, to compute the right hand side of (3.8), we need to

calculate the following sums:

N

∑
l=1

G(0)
l ,

N

∑
l=1

G(1)
l and

N

∑
l=1

(l− j)G(0)
l .

The first two sums are independent of j. The third sum has a convolution structure. Fast

convolution solvers could be used to compute the sum.
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3.2.4 Positivity preserving

One major difficulty of high order schemes is that the reconstructed solution is not

necessarily positive. A negative computational solution will quickly become unstable.

Suitable limiters are needed to preserve positivity of the numerical solution. We proceed

with the limiter introduced in [108].

First, we extend proposition 3.2.1 to high order schemes and prove positivity for

f̄ j. To proceed, we use Gauss-Lobatto quadrature points on I j, denoting {vi
j}n

i=1. In

particular, v1
j = v j−1/2 and vn

j = v j+1/2. For f j a polynomial of degree up to 2n−3,

f̄ j =
1
h

ˆ
I j

f j(v)dv =
1
h

n

∑
i=1

αi f j(vi
j),

where αi are Gauss-Lobatto weights. For example, when n = 2, α1 = α2 = 1/2; when

n = 3, α1 = α3 = 1/6 and α2 = 2/3. Note that αi’s are all positive, summing up to 1, and

symmetric αi = αn+1−i.

Proposition 3.2.2. Suppose f j(t,vi
j) > 0 for all Gauss-Lobatto quadrature points vi

j.

Then, for any scheme with forward Euler in time and DG in space with order k ≤ 2n−3,

we have f̄ j(t +∆t)> 0, under CFL condition

∆t
h

max
j

∣∣L j+1/2
∣∣< α1. (3.9)

Proof. The dynamic of f̄ j = f (0)j reads

f̄ j(t +∆t) = f̄ j(t)+
∆t
h

[
f̂ (v j−1/2) ·L j−1/2− f̂ (v j+1/2) ·L j+1/2

]
=

1
h

n−1

∑
i=2

αi f j(vi
j)+α1

(
f j(v j−1/2)+

∆t
α1h

f̂ (v j−1/2) ·L j−1/2

)
+αn

(
f j(v j+1/2)−

∆t
αnh

f̂ (v j+1/2) ·L j+1/2

)
.
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We check positivity for the last two terms. For the second term, if L j−1/2 ≥ 0,

clearly

f j(v j−1/2)+
∆t

α1h
f̂ (v j−1/2) ·L j−1/2 = f j(v j−1/2)+

∆t
α1h

f j−1(v j−1/2) ·L j−1/2 > 0.

If L j−1/2 < 0, then under CFL condition, we have

f j(v j−1/2)+
∆t

α1h
f̂ (v j−1/2) ·L j−1/2 =

[
1− ∆t

α1h
|L j−1/2|

]
f j(v j−1/2)> 0.

Similarly, the third term is positive under the same CFL condition, as αn = α1.

Therefore, f̄ j(t +∆t)> 0, for all j.

Remark 3.2.4. Similar to remark 3.2.2, there is a sufficient CFL condition independent

of t for the high order DG scheme. We estimate the additional part of L j+1/2 as below.∣∣∣∣∣h2
N

∑
l=1

G(1)
l

∣∣∣∣∣= N

∑
l=1

ˆ ˆ
Il

f (y,v)|v− vl|φ(|x− y|)dvdy≤ h
2

M0.

Together with the estimate for the first part (shown in remark 3.7), we get

∣∣L j+1/2
∣∣≤ h

(
N− 1

2

)
M0 +

h
2

M0 = hNM0 = M0(b−a).

With the correction term, we have the same bound on L j+1/2. It yields the following

sufficient CFL condition

∆t
h

<
α1

M0(b−a)
. (3.10)

It is consistent with the condition derived for first order scheme, provided that f is positive

at all Gauss-Lobatto quadrature points.

To make sure f j is positive at Gauss-Lobatto quadrature points, we modify f (t)

using an interpolation between the current f and the positive constant f̄ = f (0), namely,
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in I j at time t +∆t,

f̃ j(v) = θ j f j(v)+(1−θ j) f̄ j,

where θ j ∈ [0,1] to be chosen. When θ j = 1, there is no modification and high accuracy

is preserved. When, θ j = 0, the modified solution coincides with the first order scheme.

Hence, for higher accuracy, θ j should be as large as possible. On the other hand, we need

positivity of f̃ j(vi
j), i.e.

( f̄ j− f j(vi
j))θ j < f̄ j,

for all i. Therefore, we shall choose θ j as the following

θ j =


f̄ j−ε

f̄ j−m j
, if m j < ε

1 if m j ≥ ε

,

where m j := mini f j(vi
j),ε = min{10−13, f̄ j}.

The modified solution f̃ j preserves the total mass as well. It implies L1 stability of

the scheme.

We can write the modification in terms of f (l)j where

f̃ (0)j = f (0)j , f̃ (l)j = θ j f (l)j , l ≥ 1. (3.11)

Indeed, the modification weakens the high order correction at several cells to enforce

positivity.

Theorem 3.2.3 (Positivity preserving). Consider (3.3) with operator L defined as (C-S).

Suppose the initial density f0 is positive. Consider the above scheme: forward Euler in

time, DG in space, with limiter (3.11). The solution is positive in all time, under CFL
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condition

λ <
α1

M0(b−a)
,

where λ = ∆t/∆v, α1 is a constant depending on order of accuracy, M0 is the total mass

and b−a is the length of the computational domain in v.

Remark 3.2.5. The positivity preserving property remains true for multi-dimensional

system as well. To construct the limiter, it is necessary to find Gauss-Lobatto quadrature

points in multi-D. We refer to [108] for related discussions.

3.2.5 High order time discretization

In this subsection, we discuss time discretization for the ODE systems with respect

to f (l)j . We already show positivity preserving and L1 stability for forward Euler time

discretization, under CFL condition (3.9). To get high order accuracy in time, we use

strong stability preserving (SSP) Runge-Kutta method [40, 89]. For instance, a second

order SSP scheme reads

f[1] = FE( f (t),∆t)

f (t +∆t) =
1
2

f (t)+
1
2
FE( f[1],∆t),

and a third order SSP scheme reads

f[1] = FE( f (t),∆t)

f[2] =
3
4

f (t)+
1
4
FE( f[1],∆t)

f (t +∆t) =
1
3

f (t)+
2
3
FE( f[2],∆t).

Here, FE( f ,∆t) represents a forward Euler step with size ∆t.
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As an SSP time discretization is a convex combination of forward Euler, positivity

preserving property is granted automatically.

3.3 On Motsch-Tadmor system

In this section, we apply the DG method to solve the kinetic flocking system (3.3)

with (M-T) setup. The scheme works the same as the (C-S) setup. As an extra, we

compute the normalization factor Φ(x) as

Φ(x) =
¨

φ(|x− y|) f (t,y,v)dydv =
N

∑
j=1

ˆ
I j

G(x,v)dv =
1
h

N

∑
j=1

G(0)
j .

Similar CFL condition can be derived for positivity preserving and L1 stability.

Theorem 3.3.1 (Positivity preserving). Consider (3.3) with operator L defined as (M-T).

Suppose the initial density f0 is positive. Then, the solution generated by the DG scheme

is positive in all time, under CFL condition

λ <
α1

φ(D)(b−a)
,

where λ = ∆t/∆v, α1 is a constant depending on order of accuracy, b−a is the length of

the computational domain in v, and D is a constant defined in (1.7).

Proof. A similar argument as in proposition 3.2.2 implies the following CFL condition:

∆t
h

max
j

∣∣∣∣L j+1/2

Φ(x)

∣∣∣∣< α1.

To get a time space independent sufficient CFL condition, we obtain a lower bound on

Φ(x).

Φ(x) =
¨

φ(|x− y|) f (t,y,v)dydv≥ φ(D)

¨
f (t,y,v)dydv = φ(D)M0,
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for all x in the support of f . Together with the estimate |L j+1/2| ≤ M0(b− a) shown in

remark 3.2.2, we conclude with the desired sufficient condition.

3.4 Numerical examples

In this section, we present some numerical examples to demonstrate the good per-

formance of the DG scheme applied to kinetic flocking models.

3.4.1 Global influence and unconditional flocking

We consider 1D kinetic Cucker-Smale model with influence function φ(r) = (1+

r)−1/2, and the initial density f0(x,v) = χ|x|<1χ|v|<1, where χ is the indicator function.

As φ satisfies (1.8), the solution should converge to a flock.

We set the computational domain as follows. In x direction, we compute D from

(1.7) and get D ≈ 2.93. By symmetry, the support of the solution in x direction lies in

(−1.5,1.5). We set the computational domain on x to be [−2,2] for safety. In v direction,

the variation becomes smaller as time increases. Therefore, [−1,1] is an appropriate

domain for v. We start the test with mesh size 40×40.

For the time step, the CFL condition (3.10) suggests ∆t < α1/160. So, for first and

second order schemes, we take ∆t = 0.003. For third order scheme, we take ∆t = 0.001.

Figure 3.1 shows the dynamics of density f under DG schemes using piecewise

polynomials of degree k = 0,1,2. We observe that all three schemes converge to flock.

On the other hand, high order schemes converge faster than the low order scheme, which

is an indicator of better performance. In figure 3.2, we plot
ˆ

f (t,x,v)dx against v at
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Figure 3.1: Density f at time t = 0, .3, .6, .9,1.2 for DG schemes with k = 0,1,2. The

numerical solution has a concentration in v direction in large time.

118



−0.5 0 0.5
0

5

10

15

t=
.6

h=.05

−0.5 0 0.5
0

5

10

15

h=.025

−0.2 −0.1 0 0.1 0.2
0

10

20

30

40

t=
1
.2

−0.2 −0.1 0 0.1 0.2
0

20

40

60

80

 

 

k=0

k=1

k=2

Figure 3.2:
ˆ

f (t,x,v)dx at time t = .6,1.2 and mesh size(in v) h = .05, .025 for DG

schemes. Higher order scheme has better perference in terms of less diffusion and faster

concentration.

different time. Indeed, high order schemes concentrate faster. If we refine the mesh size

in v, we observe from the lower right graph that third order scheme performs better than

the second order scheme.

3.4.2 “Local influence” and cluster formation

It is known that flocking is not guaranteed if the influence function is compactly

supported, especially when (1.6) does not hold. Multiple clusters might form as time

goes. This example is designed to compare the two asymptotic behaviors. In fact, our DG

scheme captures both flocking and clusters very well. Let

f0(x,v) = 5∗ [χ−5<x<−4.5 ·χ.4<v<.5 +χ4.5<x<5 ·χ−.5<v<−.4].
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It represents two groups, where the left group is travelling to the right and the right group

is travelling to the left. We consider two different influence functions:

φ1(r) =
(

1− r
5

)2
χr<5, φ2(r) =

(
1− r

.5

)2
χr<.5.

Both functions are compactly supported. Yet φ1 is much stronger than φ2. In particular,

φ1(r)≥ φ2(r).

Figure 3.3 shows the evolution of the (C-S) model under two influence functions.

We observe that with strong influence φ1, the system converges to a flock. In contrast, with

relatively weak influence φ2, the interaction is not strong enough and multiple clusters are

forming in large time.

3.4.3 Numerical rate of convergence

In this example, we test the rate of convergence of our DG method. We concentrate

on the flocking part, i.e. equation (3.3). We set the same influence function φ(r) =

(1+ r)−1/2, and the following smooth initial density

f0(x,v) =


exp
(
− 1

.9−x2−v2

)
if x2 + v2 < .9

0 otherwise.

As there is no free transport, we set the computational domain [−1,1]× [−1,1]. Fix the

number of partitions on x to be 10. For v, we test on 10×2s partitions, with s= 0,1, · · · ,6.

To satisfy the CFL condition (3.10), we pick ∆t = .1×2−s for second order scheme, and

∆t = .05× 2−s for third order scheme. Denote the corresponding numerical solution be

f [s].
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Figure 3.3: Flocking vesus cluster formation. With the same initial profile, strong inflence

(left graphs) leads to flocking, and weak inflence (right graphs) leads to more clusters.
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As this type of equations have no explicit solutions, we use f [6] as the reference

solution. To concentrate on v variable, we integrate x and set F [s](t,v) =
´ 1
−1 f [s](t,x,v)dx.

The L1 error is computed as

es(t) =
∥∥∥F [s](t, ·)−F [6](t, ·)

∥∥∥
L1

v [−1,1]
, s = 0, · · · ,5.

The following table shows the computational convergence rates

rs =− log2(es/es−1), s = 1, · · · ,5

for t = 0,1, · · · ,8. The numerical results validate the desired order of convergence of the

corresponding schemes. Note that at time t = 8, the solution is already very concentrated

in v. The DG schemes still have good performances.

3.4.4 Motsch-Tadmor vesus Cucker-Smale

The last example is designed to compare the two models (C-S) and (M-T).

A drawback of Cucker-Smale model has been pointed out in section 1.2.2, mention-

ing its poor performance in modeling the dynamics under far-from-equilibrium condition,

as illustrated in figure 1.3. On the other hand, Motsch-Tadmor model overcomes the draw-

back and provides more realistic dynamics even when the data is far from equilibrium.

We setup up a numerical example to verify the argument. Our DG schemes have

good performances on both setups. It captures the difference of the two models in kinetic

level, which agrees with the discussion in section 1.2.2.

Consider the initial configuration as a combination of a small group (with mass .02)

and a large flock (with mass .98) far away

f0(x,v) = χ|x|<.1χ|v|<.05 + .98δ (x−5)δ (v−1),
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Second order scheme

t 0 1 2 3 4 5 6 7 8

r1 1.8465 2.0820 2.0554 2.2063 1.9445 1.8082 1.4335 0.9248 0.6094

r2 2.0595 2.3851 2.1841 1.9734 1.9677 1.9551 1.8305 1.8867 1.5480

r3 2.0172 2.3027 2.4948 2.3888 2.3025 2.0338 2.0378 1.7847 1.7644

r4 1.9983 2.0971 2.2556 2.4189 2.5530 2.3960 2.2283 2.2273 2.1043

r5 2.0448 2.0639 2.0979 2.2186 2.2794 2.5724 2.5779 2.3025 2.2066

Third order scheme

t 0 1 2 3 4 5 6 7 8

r1 2.6925 4.1556 2.7288 3.4275 2.3059 1.7800 2.6563 2.2884 1.1553

r2 3.0736 3.0650 3.4810 3.5644 3.1477 3.3098 2.1924 1.7520 2.4830

r3 3.0794 2.9025 2.8867 2.9380 3.3538 3.7456 3.4532 3.0015 2.0851

r4 2.9998 3.1586 3.1191 2.9967 2.9232 2.8592 3.1041 3.5266 3.6594

r5 2.9809 3.0599 3.0873 3.1422 3.1529 2.9013 2.9281 3.0585 3.4617

Table 3.1: Computational convergence rates for second and third order DG schemes at

different times.
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with compact supported influence function φ(r) = (1− r)2χr<1. It is easy to check that

the large flock never interact with the small group.

Figure 3.4 shows numerical results of the evolutions of the small group in both (C-S)

and (M-T) setups. We observe that under (C-S) setup, the faraway large flock eliminates

the interactions inside the small group. The evolution is almost like a pure transport. In

contrast, (M-T) setup yields the reasonable flocking behavior for the small group.
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Figure 3.4: Evolution of the small group under 2 models, when there is a large group

very far away. Under Cucker-Smale setup, the dynamics looks like pure transport. Under

Motsch-Tadmor setup, flocking behavior is correctly captured.
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Appendix

3.A Complete algorithm

In this section, we summarize the full procedure of our proposed SSP Runge-Kutta

discontinuous Galerkin (RKDG) method on kinetic flocking models.

Initialization

Given an initial profile f0, we need to use piecewise polynomials in v to approximate

f0. In particular, we compute

f0
(l)
j (x) =

1
hl+1

ˆ
I j

f0(x,v)p(l)j (v)dv

for all x on the mesh grid, using numerical integration with desired accuracy.

Splitting and free transport

We split the full system into the free transport part (3.2) and the alignment part

(3.3), using standard splitting method.

As for the free transport part, we apply WENO scheme on f (l)j separately for all l =

0, · · · ,k. It is worth noting that we approximate f by piecewise polynomials in v direction.

After a free transport in x direction, the resulting f is still a piecewise polynomial in v.
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Flocking

The flocking part (3.3) is solved by RKDG method. We evolve f (l)j using SSP

scheme (discussed in section 3.2.5) to achieve time accuracy. In each step, we solve a

forward Euler step FE. In detail, we first apply limiter (3.11) to f (l)j . Then, evolve f (l)j by

(3.8), with forward Euler time discretization, where ∆t should satisfy the CFL condition

(3.9), or simply (3.10).
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Part II

Image Processing
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Image processing is one of the fast growing technology worldwide, where mathe-

matics enters beautifully in many subjects: denoising, deblurring, segmentation, inpaint-

ing, etc.

The starting point of this part is the famous Rudin-Osher-Fatemi (ROF) model for

image denoising (section 4.1). The main idea is to decompose the image to two scales,

where noise is extracted and distinguished from other textures of the image, e.g. edges.

The two-scale decomposition of image can be extended to a multi-scale representation,

through a hierarchical procedure (section 4.2).

The main problem we are dealing with has no direct relation to image processing.

The goal is to find uniformly bounded solution to divU = F for F ∈ Ln(Tn). A surprising

fact is that such solution can not be constructed linearly, even if the equation is linear

(section 5.1).

In chapter 5, we introduce a hierarchical construction of a bounded solution for

the equation, which is motivated from multi-scale image representation. The solution,

constructed through a highly nonlinear procedure, is proved to be uniformly bounded

(section 5.2). In section 5.3, we propose a numerical implementation for the minimization

problem in each hierarchical step. A duality argument is used to avoid difficulties in the

minimization which involves both L2 norm and L∞ norm. The dual problem has an ROF

substructure where a modified ROF solver could be used to solve the problem.

Main references for this part are: ROF model [84], multi-scale image representation

[92] and hierarchical construction [91]. Chapter 5 is presented along the storyline of the

work [94].
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Chapter 4: Multi-scale image representation

Image processing has an explosive impact on modern sciences. With the help of

advanced computer technologies, man can acquire images far beyond their eye visions,

e.g., satellite imaging and medical imaging like CT, MRI. As the acquisition procedures

have some limitations and are not always perfect, images might be noisy, blurry or even

incomplete. It promotes the study of reconstructing images for a degraded version in an

accurate and stable way, which is the main goal of image processing.

Mathematically speaking, image processing can be considered as an inverse prob-

lem. The main challenge is the ill-posedness of the problem, where direct inversion leads

to non-uniqueness or instability. Many elegant image processors are designed, depend-

ing on the type of errors in the acquisition procedure, and different prospectus of the

reconstruction: denoising, deblurring, inpainting, segmentation, etc. We refer to classical

image processing books [21, 39, 59] for various of examples and discussions.

In this chapter, we go over variational approaches for images processing and cor-

responding PDE interpretations. In section 4.1, we discuss the celebrated Rudin-Osher-

Fatemi (ROF) model [84], which plays an important role in image denoising. In section

4.2, we introduce a multi-scale representation of images using hierarchical decomposi-

tion, followed from [92,93]. The decomposition successfully captures the structure of the
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image under different levels, and it is constructive.

4.1 Variational decomposition of images

A grey-scaled digital image is represented by a distribution f , defined on a bounded

regular image domain Ω. In general, f lies in the distribution space D ′(Ω), where D(Ω) is

the space of C∞ test functions, and D ′(Ω) is the space which consists all linear functional

on D(Ω).

The space D ′(Ω) is very board. It contains many diversified images with various

types of textures. Hence, most realistic images are contained in this space. However,

it is hard to derive any exciting image features from this board space. To realize more

structures, we shall go to smaller spaces.

4.1.1 Lp images vesus BV images

Most images lie in the space Lp(Ω), which is a subspace of D ′(Ω). Equipped with

the norms

‖ f‖Lp =

(ˆ
Ω

| f |pdx
)1/p

,

Lp images permit many image structures, including

1. Edges: It corresponds to discontinuity (or jump) of f ,

2. Noises: It usually corresponds to oscillations in f .

If we add some regularity, the resulting W 1,p images are more specific: both edges

and noises are forbidden, as they both drive W 1,p norm to infinity.
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The mission of image denoising is to remove the oscillations from the image, while

maintain other key structures, including edges and other textures. Thus, we need to find a

space between Lp and W 1,p which permits edges but not noises.

The novel space of BV images, introduced in [83, 84], achieve the good balance

between penalizing noises and respecting edges. The norm is defined as

‖ f‖BV := ‖ f‖L1 +TV[ f ],

where TV[ f ] is the total variation of f

TV[ f ] := sup
{ˆ

Ω

f (x)divϕ(x)dx : ϕ ∈C1
c (Ω), ‖ϕ‖L∞(Ω) ≤ 1

}
. (4.1)

It is easy to check the piecewise smooth image belongs to BV (Ω). Hence edge is permit-

ted. On the other hand, highly oscillatory f drives the total variation to be infinity.

4.1.2 Rudin-Osher-Fatemi model

The essence of image denoising is to find a way to extract the noise from the image.

As we argued in the previous section, noise is captured in the space Lp\BV . Hence, the

total variation is a good measurement of the noise.

The Rudin-Osher-Fatemi (ROF) denoising model [84] carries the idea above. Given

a noisy image f , one can decompose f into two parts: the recovered (de-noised) image u

and the noise v, where v captures most of the total variation and u is close enough to f in

terms of edges, textures, etc. The model can be expressed as the following minimization

problem.

J( f ,λ ) = min
u+v= f

(
TV[u]+λ‖v‖2

L2

)
. (4.2)
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Here, small TV[u] indicates few noises for the recovered image, and small ‖v‖L2 indicates

the similarity between f and u. λ is a parameter which characterizes the balance between

the two terms. In the two extreme cases:

1. If λ = 0, then u = 0,v = f . With no restriction on the similarity between f and u,

the recovered image is simply flat.

2. If λ = +∞, then u = f ,v = 0. No noise is sensed without the measure of total

variation. Thus, the recovered image is the same as the original.

Different choices of λ give decompositions under different scales. The recovered image

depends on λ . So we denote uλ and vλ as the solution of the (4.2) in level λ .

uλ = argmin
u∈BV

ˆ
Ω

(
|∇u|+λ | f −u|2

)
, vλ = f −uλ .

Theorem 4.1.1 (Existence and uniqueness). Assume that f ∈ L2(Ω). Then for any λ ≥ 0,

there exists a unique pair (uλ ,vλ ) which minimizes (4.2).

Proof. See for instance [26, Theorem 4.14].

Proposition 4.1.2. Suppose f ∈ L2(Ω). (uλ ,vλ ) are minimizers of ROF model (4.2).

(a). uλ is bounded in L2(Ω)∩BV (Ω): ‖uλ‖L2 ≤ 2‖ f‖L2 and TV[uλ ]≤ λ‖ f‖2
L2 ,

(b). vλ has zero average:
´

Ω
vλ = 0,

(c). (Meyer [71, Theorem 4]) Define ‖ f‖∗ := inf{‖g‖L∞ : f = divg}. If λ ≤ 1
2‖ f‖∗

, then

uλ = 0 and vλ = f . If λ ≥ 1
2‖ f‖∗

, then ‖vλ‖∗ =
1

2λ
and
ˆ

Ω

uλ vλ =
1

2λ
TV[uλ ].

Remark 4.1.1. Meyer’s result addresses that if λ is small, then the recovered image

is flat. To get a non-trivial uλ , we have to pick λ large enough. Moreover, (uλ ,vλ )
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forms an extremal pair, in the sense of achieving an equality in the duality inequality∣∣∣∣ˆ
Ω

uλ vλ

∣∣∣∣≤ TV[uλ ]‖vλ‖∗.

4.1.3 Euler-Lagrange equations

To solve ROF model (4.2), we derive the formal Euler-Lagrange equations, using

the standard variational approach.

Suppose (u,v) is the minimizer of (4.2). We compute the energy J̃ for the perturbed

pair (u+ εh,v− εh).

J̃ =

ˆ
Ω

(
|∇(u+ εh)|+λ (v− εh)2)= J+ ε

ˆ
Ω

(
∇u
|∇u|

·∇h−2λvh
)
+o(ε)

=J+ ε

[ˆ
Ω

−h
(

div
(

∇u
|∇u|

)
+2λv

)
+

ˆ
∂Ω

h
|∇u|

∂u
∂n

]
+o(ε).

Note that the lower order term o(ε) ≥ 0. To ensure J̃ ≥ J for all ε ∈ R, the minimizer u

must satisfy the Euler-Lagrange equation

div
(

∇u
|∇u|

)
+2λ ( f −u) = 0,

∂u
∂n
|∂Ω = 0.

The main difficulty in the computational prospectus is the degeneracy caused by

the gradient term in the denominator of the elliptic operator. One way to overcome such

degeneracy is to regularize the diffusivity coefficient |∇u|−1 to |ε +∇u|−1 with some

small number ε > 0. We refer to [20] for more discussions about the regularization.

Figure 4.1 provides an example of ROF decomposition for a finger print. A Gauss-

Seidel iteration is used to get the numerical result. With larger λ , more textures are

resolved. Meanwhile, noises are inserted into uλ as well for large λ . Therefore, an

appropriate scale should be picked to balance the two effects.
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Original λ = 0 .125 λ = 0 .25

λ = 0 .5 λ = 1 λ = 2

λ = 4 λ = 8 λ = 16

λ = 32 λ = 64 λ = 128

Figure 4.1: The recovered image uλ using ROF denoising model under different λ
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4.2 Multi-scale image representation using hierarchical decompositions

Tadmor, Nezzar and Vese in [92] proposed a hierarchical decomposition projecture

for image denoising. They extend the ROF model from two-scale to multi-scale, where

the noise is represented in different levels.

Recall ROF model (4.2), f is decomposed to uλ and vλ . The idea is to decompose

vλ using ROF model with a larger scale, e.g. 2λ ,

vλ = u2λ + v2λ , {u2λ ,v2λ}= argmin
u+v=vλ

(
TV[u]+2λ‖v‖2

L2

)
.

u2λ resolves more textures up to scale 2λ . Repeating the procedure, f can be decomposed

into pieces consisting multi-scale representations. A hierarchical decomposition of f

under dyadic refinement reads

f =uλ + vλ = uλ +u2λ + v2λ = · · ·=
k

∑
j=1

uλ j + vλk
λ j = 2 j−1

λ , (4.3)

vλ j =uλ j+1 + vλ j+1, {uλ j+1 ,vλ j+1}= argmin
u+v=vλ j

(
TV[u]+λ j+1‖v‖2

L2

)
.

Due to proposition 4.1.2(c), we take λ >
1

2‖ f‖∗
to avoid trivial solutions.

The following theorem provides the convergence of the hierarchical decomposition

f = ∑
∞
j=1 uλ j . See [92, Theorem 2.1, 2.2] for proofs.

Theorem 4.2.1 ( [92]). For f ∈ L2, ‖vλk
‖∗ =

1
2λk
↓ 0, as k→ ∞. Moreover, if f ∈ BV ,

then ‖vλk
‖L2 ↓ 0 as k→ ∞.

Remark 4.2.1. The infinite sum converges strongly in ‖ · ‖∗ for general L2 image. Note

that the norm captures the strength of oscillations. Therefore, uλk
represents oscillations
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scaled in
[

1
2λk

,
1
λk

]
. To get strong L2 convergence, we need to assume f to be more

regular. The main reason is that the construction of the hierarchical decomposition is

highly nonlinear. Hence, additional energy estimate is required to pass to the limit, where

higher regularity (e.g. BV) is necessary. The nonlinear nature of the decomposition

motivates the construction of a bounded solution for divu = F , as no linear construction

is available for such solution. See chapter 5 for related discussions.

Figure 4.2 shows an example of hierarchical decomposition of a fingerprint. In

each hierarchical step, more textures are resolved. We pick λ1 = 0.125. uλ1 is blurry

as oscillations has scale smaller than λ
−1
1 = 8 are all considered as noises, leaving only

the rough structures and main edges. In each successive step, we resolve more textures

by including more scales of the original image f to the recovered image ∑
k
j=1 uλ j . For k

large, we know from theorem 4.2.1 that the recovered image is close to the original image,

as some “noise” are interpreted as textures due to the smallness of λ
−1
k . Hence, for the

purpose of denoising, one has to stop at some stage. The stopping criterion is subject to

the type of noise as well as textures.
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Original uλ 1

∑
2

i= 1
uλ i

∑
3

i= 1
uλ i

∑
4

i= 1
uλ i

∑
5

i= 1
uλ i

∑
6

i= 1
uλ i

∑
7

i= 1
uλ i

∑
8

i= 1
uλ i

∑
9

i= 1
uλ i

∑
1 0

i= 1
uλ i

∑
1 1

i= 1
uλ i

Figure 4.2: Multi-scale images under hierarchical decomposition. Here, λ j = 2 j−4. More

textures (as well as noises) are resolved with more hierarchical steps
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Chapter 5: Hierarchical construction of bounded solu-

tions of div U = F

In this chapter, we discuss the construction of bounded solution of the linear equa-

tion divU = F , where F lies in the critical space Ln(Tn).

The existence of uniformly bounded solutions follows from the closed range theo-

rem together with Gagliardo-Nirenberg inequality, [11]. Moreover, Bourgain and Brezis

[11] proved that any mapping, F ∈ Ln 7→U ∈ L∞(Tn), must be nonlinear: thus, the in-

triguing aspect here is that although the equation is linear, the construction of its uniformly

bounded solutions for Ln-data is not.

In particular, the favorite linear Helmholtz solution UHel = ∇∆−1F ∈W 1,n is not

guaranteed to be uniformly bounded, as the Sobolev imbedding W 1,n(Tn) 6⊂ L∞(Tn) fails

in the critical borderline case, see e.g. [34, pp.280].

Inspired by the hierarchical decompositions in image processing, Tadmor [91] uti-

lized such decompositions to construct a bounded solution for the equation.

The constructive procedure is highly nonlinear. It brings challenges for the numer-

ical implementation. We propose a highly non-trivial numerical approach in [94] for the

2D case, through a duality argument. It successfully captures the key structure of the
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constructed solution: uniform boundedness.

We organize the chapter as follows. First, we discuss the existence theory of

bounded solution in section 5.1. In particular, the solution can not be constructed lin-

early. In section 5.2, we propose a hierarchical construction based on the idea from image

processing. A duality argument is presented in section 5.3, which simply the minimiza-

tion problem in order to implement numerically. The numerical algorithm is discussed

in section 5.4, followed by an example, showing that the hierarchical solution is bounded

while Helmholtz solution is not (section 5.5). We end up this chapter with a brief discus-

sion on potential applications, which leads to future research.

5.1 Bounded solution for divU = F

We are concerned with the uniformly bounded solutions, U ∈ L∞(Tn,Rn) of the

linear equation

divU = F, F ∈ Ln
#(Tn), (5.1)

where Ln
#(T

n) is the space of Ln integrable functions over the n-dimensional torus Tn with

zero mean.

This system has been studied in [11, 12, 28, 69, 91, 94] and many more literatures.

We refer a recent review [85] for a full discusion.

5.1.1 Existence of bounded solution

The existence of bounded solutions for (5.1) has been proved by Bourgain and

Brezis in [11]. Here, we give some details for completeness.
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Consider operator A : D(A) ⊂ L∞ → Ln
# be a densely defined and closed linear

operator, such that

AU = divU, where D(A) = {U ∈ L∞ : divU ∈ Ln
#}.

Then, the adjoint operator A∗ : D(A∗)⊂ L
n

n−1
# →M , where M is the space of mea-

sures, which is the dual space of L∞. By duality,

A∗u =−∇u, and then D(A∗) = {u ∈ L
n

n−1
# : A∗u ∈M }= L

n
n−1
# ∩BV.

An Gagliardo-Nirenberg-Sobolev imbedding states BV ⊂ L
n

n−1
# , namely

‖u−
ffl

u‖. ‖∇u‖M , ∀ u ∈ BV.

It implies that the null space of A∗ Null(A) = 0.

Applying closed range theorem, we get Range(A) = Null(A∗)⊥ = Ln
#. Therefore,

for all F ∈ Ln
#, there exists a U ∈ D(A)⊂ L∞ which solves (5.1).

Remark 5.1.1. The proof of existence of bounded solutions is not constructive. In fact,

the construction of such solution is non-trivial, despite the easy linear expression of the

equation. We will address this difficulty in section 5.1.3.

5.1.2 Helmholtz solution is not bounded

One classical solution of (5.1) is the Helmholtz solution

UHel = ∇∆
−1F. (5.2)

For F ∈ Ln
#(Tn), it is clear that UHel ∈W 1,n(Tn). But since W 1,n(Tn) is not a subset

of L∞(Tn), Helmholtz solution need not to be uniformly bounded.
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The following concrete counterexample due to L. Nirenberg, [11, Remark 7], demon-

strates this type of unboundedness: let

F = ∆v, v(x) := x1| logr|θ ζ (r), r = |x|, (5.3)

where θ ∈ (0, n−1
n ), and ζ (r) is a smooth cut-off function supported near the origin with

ζ (r) = 1 for r ∈ [0,ε] and ζ (r) = 0 for r ≥ 2ε , where ε is a fixed constant.

In this case, F ∈ Ln
#(Tn), but the Helmholtz solution, UHel = ∇∆−1F = ∇v, has a

fractional logarithmic growth at the origin. Hence, Helmholtz solution (5.2) is not good

candidate of bounded solution.

We first check F ∈ Ln
#. Take g(r) = | logr|θ ζ (r). Compute

∂x jv = x1g′(r)
x j

r
+g(r)δ1 j,

∂
2
x jx j

v = x1

(
g′(r)

r

)′ x2
j

r
+ x1

g′(r)
r

+2g′(r)
x1

r
δ1 j,

F = ∆v = x1

[
g′′(r)+(n+1)

g′(r)
r

]
.

Note that x1 is bounded by 2ε as ζ is supported near origin. And

∣∣∣∣g′′(r)+(n+1)
g′(r)

r

∣∣∣∣ .
| logr|θ−1

r
, r ≤ ε.

It is clearly bounded for r > ε . The only singularity is at 0, and it is Ln-integrable. In fact,

ˆ
Rn
|F(x)|ndx .

ˆ
ε

0

(
| logr|θ−1

r

)n

rn−1dr+C . lim
r→0
| logr|(θ−1)n+1 +C′.

As we pick θ < n−1
n , the power (θ−1)n+1< 0, and the limit goes to zero, which implies

boundedness of ‖F‖Ln . The mean zero property is true due to anti-symmetry with respect

to the first component.

143



On the other hand, UHel = ∇v in not in L∞. To see this, we compute the first com-

ponent at origin

u1(0) = lim
x→0

[
g′(r)

x2
1
r
+g(r)

]
.

It is clear that the limit of the first part is zero. However, the second part has fractional

logarithmic growth as g(r) = | logr|θ near origin as long as θ > 0. Therefore, u1 diverges

at the origin and UHel 6∈ L∞.

5.1.3 No linear construction of bounded solution

In this section, we state a surprising argument: the construction of bounded solution

for (5.1) can not be linear. It implies the fact that all solutions via a linear operator,

including the Helmholtz solution, are not bounded in L∞→ Ln
#. We have to construct the

uniformly bounded solution through a nonlinear procedure. This statement is also proved

in [11].

Suppose by contradiction, there exists a bounded linear operator L : Ln
#→ L∞ such

that divL = I. We define L̄ be the average among all translations

L̄ =

ˆ
Rn

τ−xL τxdx,

where τx is the usual translation. Then, L̄ belongs to M n,∞(Tn), where the space

M p,q(Tn) denotes the set of all bounded linear operators from Lp(Tn) to Lq(Tn) that

commute with translations.

Note that M n,∞(Tn) = M 1, n
n−1 (Tn), see e.g. [41, Theorem 2.5.7]. Therefore, if we

write Γ̃ as a Fourier multiplier (̂L̄ f )k =m(k) f̂k for k∈Zn, the symbol m= (m1, · · · ,mn)
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satisfies

∑
k∈Zn\{0}

|m j(k)|2

|k|n−2 < ∞, ∀ j = 1, · · · ,n. ⇒ ∑
k∈Zn\{0}

|m(k)|2

|k|n−2 < ∞. (5.4)

On the other hand, we have divL̄ = I. So m also satisfies

n

∑
j=1

k jm j(k) = 1, ∀ k ∈ Zn.

A Cauchy-Schwarz inequality implies |m(k)|2 ≥ |k|−2. Plug this into (5.4), we get

∑
k∈Zn\{0}

1
|k|n

< ∞,

which leads to a contradiction.

5.2 Hierarchical of construction bounded solution

In this section, we construct a bounded solution for (5.1). We shall set the dimension

n = 2 for now on for simplicity. Similar results can be derived in higher dimension with

no additional difficulty, consulting [91].

As we know from the previous section, the construction can not be linear. In par-

ticular, Helmholtz solution (5.2) fails to be uniformly bounded.

However, if F lies in a smaller space BV#(T2), then Helmholtz solution is uniformly

bounded.

Proposition 5.2.1. If F ∈ BV#(T2), then UHel ∈ L∞(T2).

Proof. F is BV-bounded and hence, [24, 98], F ∈ BV ⊂ L2,1. On the other hand, UHel =

∇∆−1F = K ∗F where K ∈ L2,∞. By Young’s inequality for Lorentz spaces, [76,98], UHel

is uniformly bounded.
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It implies that UHel fails only for F ∈ L2\BV , which is the space containing noises

in the context of image processing, as discussed in section 4.1.1.

Inspired by the hierarchical decompositions (4.3) in the context of image process-

ing, Tadmor [91] utilized such decompositions as a constructive procedure to solve (5.1):

the solution is given in terms of hierarchical decomposition, UBdd = ∑u j, where the

{u j}’s can be computed recursively as the following minimizers,

u j+1 = argmin
u

{
‖u‖L∞ +λ12 j‖F−div(

j

∑
k=1

uk)−divu‖2
L2

}
, j = 0,1, · · · . (5.5)

Here, λ1 is any sufficiently large parameter, λ1 >
1

2TV[F ]
, which guarantees that the

hierarchical decomposition starts with a non-trivial solution of (5.5), consult (5.21) below.

Our starting point for the construction of a uniformly bounded solution of (5.1),

x ∈ L∞(T2,R2), is a decomposition of F ,

F = divu1 + r1, F ∈ L2
#(T2) :=

{
g ∈ L2(T2)

∣∣ ˆ
T2

g(x)dx = 0
}
, (5.6a)

where [u1,r1] is a minimizing pair of the functional,

[u1,r1] = argmin
divu+r=F

{
‖u‖L∞ +λ1‖r‖2

L2

}
. (5.6b)

Here, λ1 is a fixed parameter at our disposal where we distinguish between two cases,

consult (5.21) below. If λ1 ≤
1

2TV[F ]
, then the minimizer of (5.6b) is the trivial one,

u1 ≡ 0,r1 = F ; otherwise, by choosing λ1 large enough, λ1 >
1

2TV[F ]
, then (5.6b) admits

a non-trivial minimizer, [u1,r1], which is characterized by a residual satisfying TV[r1] =

1
2λ1

. By Gagliardo-Nirenberg iso-perimetric inequality, e.g., [109, §2.7], there exists

β > 0 such that

‖g‖L2 ≤ βTV[g],
ˆ
T2

g(x)dx = 0. (5.7)
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It follows that r1 is L2-bounded:

‖r1‖L2 ≤ βTV[r1] =
β

2λ1
. (5.8)

Moreover, since F has a zero mean so does the residual r1. We conclude that the residual

r1 ∈ L2
#(T2), and we can therefore implement the same variational decomposition of F

in (5.6), and use it to decompose r1. To this end, we use the same variational statement,{
‖u‖L∞ +λ2‖r‖2

L2

}
, with a new parameter, λ = λ2 > λ1,

r1 = divu2 + r2, [u2,r2] = argmin
divu+r=r1

{
‖u‖L∞ +λ2‖r‖2

L2

}
. (5.9)

Borrowing the terminology from our earlier work on image processing [92, 93]

(discussed in section 4.2), the decomposition (5.9) has the effect of “zooming” on the

residual r1, and it is here that we use the refined scale λ2 > λ1. Combining (5.9) with

(5.6a) we obtain F = divx2 + r2 with x2 := u1 + u2, which is viewed as an improved

approximate solution of (5.1). Indeed, the “zooming” effect λ2 > λ1 implies that x2

has a smaller residual TV[r2] = 1/(2λ2) compared with TV[r1] = 1/(2λ1) in (5.8). In

particular,

‖r2‖L2 ≤ βTV[r2] =
β

2λ2
.

This process can be repeated: if r j ∈ L2
#(T2) is the residual at step j, then we decompose

it

r j = divu j+1 + r j+1, (5.10a)

where [u j+1,r j+1] is a minimizing pair of

[u j+1,r j+1] = argmin
divu+r=r j

{
‖u‖L∞ +λ j+1‖r‖2

L2

}
, j = 0,1, . . . . (5.10b)
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For j = 0, the decomposition (5.10) is interpreted as (5.6a) by setting r0 := F . Note

that the recursive decomposition (5.10a) depends on the invariance that the residuals r j ∈

L2
#(T2): indeed, if r j has a zero mean then so does r j+1, and since by (5.21) the minimizer

r j+1 has a bounded variation, r j+1 ∈ L2
#(T2). The iterative process depends on a sequence

of increasing scales, λ1 < λ2 < .. .λ j+1, which are yet to be determined.

The telescoping sum of the first k steps in (5.10a) yields an improved approximate

solution, xk := ∑
k
j=1 u j:

F = divxk + rk, ‖rk‖L2 ≤ βTV[rk] =
β

2λk
↓ 0, k = 1,2, . . . . (5.11)

The key question is whether the xk’s remain uniformly bounded, and it is here that we

use the freedom in choosing the scaling parameters λk: comparing the minimizing pair

[u j+1,r j+1] of (5.10b) with the trivial pair [u≡ 0,r j], we find

‖u j+1‖L∞ +λ j+1‖r j+1‖2
L2 ≤ ‖0‖L∞ +λ j+1‖r j‖2

L2 ,

r j = divu j+1 + r j+1 = div(0)+ r j.

It remains to upper-bound the energy norm of the r j’s: for j = 0 we have r0 = F ; for

j > 0, (5.11) implies that ‖r j‖L2 ≤ β/(2λ j). We end up with

‖u j+1‖L∞ +λ j+1‖r j+1‖2
L2 ≤ λ j+1‖r j‖2

L2 ≤



λ1‖F‖2
L2, j = 0,

β 2λ j+1

4λ 2
j

, j = 1,2, . . . .

(5.12)

We conclude that by choosing a sufficiently fast increasing λ j’s such that

∑ j λ j+1λ
−2
j < ∞, then the approximate solutions xk = ∑

k
j=1 u j form a Cauchy sequence

in L∞ whose limit, x = ∑
∞
j=1 u j, satisfies the following.
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Theorem 5.2.2 ( [91]). Fix β such that (5.7) holds. Then, for any given F ∈ L2
#(T2), there

exists a uniformly bounded solution of (5.1),

divx = F, ‖x‖L∞ ≤ 2β‖F‖L2.

The solution x is given by x = ∑
∞
j=1 u j, where the {u j}’s are constructed recursively as

minimizers of

[u j+1,r j+1] = argmin
divu+r=r j

{
‖u‖L∞ +λ12 j‖r‖2

L2

}
, r0 := F, λ1 =

β

‖F‖L2
. (5.13)

Proof. Set λ j = λ12 j−1, j = 1,2, . . ., then, ‖xk− x`‖L∞ <∼ 2−k, k > `� 1. Let x be the

limit of the Cauchy sequence {xk} then ‖x j−x‖L∞ +‖divx j−F‖L2 <∼ 2− j→ 0, and since

div has a closed graph on its domain D := {u ∈ L∞ : divu ∈ L2(T2)}, it follows that

divx = F . By (5.12) we have

‖x‖L∞ ≤
∞

∑
j=1
‖u j‖L∞ ≤ λ1‖F‖2

L2 +
β 2

4λ1

∞

∑
j=2

1
2 j−3 = λ1‖F‖2

L2 +
β 2

λ1
.

Here λ1 >
1

2TV[F ]
is a free parameter at our disposal: we choose λ1 := β/‖F‖L2 which

by (5.7) is admissible, λ1 =
β

‖F‖L2
>

1
2TV[F ]

, and the result follows.

Remark 5.2.1. [Energy decomposition] By squaring the refinement step (5.6a), r j =

r j+1+divu j+1, and using the characterization of [u j+1,r j+1] as an extremal pair (consult

remark 5.3.2 below), we find

‖r j‖2
L2−‖r j+1‖2

L2 = 2(r j+1,divu j+1)+‖divu j+1‖2
L2 =

1
λ j+1
‖u j+1‖L∞ +‖divu j+1‖2

L2.

A telescoping sum of the last equality yields the “energy decomposition”

∞

∑
j=1

1
λ j
‖u j‖L∞ +

∞

∑
j=1
‖divu j‖2

L2(T2) = ‖F‖
2
L2(T2) (5.14)
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Remark 5.2.2. We note that the constructive proof of theorem 5.2.2 does not assume

the existence of bounded solution for (5.15): it is deduced from the Gagliardo-Nirenberg

inequality (5.7). The hierarchical construction of solutions for L x = F , in the general

setup of linear closed operators, L : B 7→ Lp
# , 1 < p < ∞, with bounded invertible duals

L ∗, was proved in [91].

In [12], Bourgain and Brezis proved that (5.1) admits a bounded solution in the smaller

space, B= L∞∩H1. This requires a considerably more delicate argument, which could be

justified by the refined dual estimate (compared with (5.7)), ‖g‖L2(T2)
<∼ ‖∇g‖L1+H−1(T2).

The proof of [12] is not constructive: it is based on an intricate Littlewood-Paley decom-

position, which cannot be readily implemented in actual computations.

5.3 Construction of hierarchical minimizers

In this section, we study the minimization step of the hierarchical decompositions

(5.5). It is challenge to implement the minimization problem as it involves both L2 and

L∞ norms. We proceed with a duality argument.

5.3.1 The minimization problem and its dual

We rewrite each minimization step of the hierarchical decompositions (5.5) in the

following form,

ū = argmin
u:T2→R2

{
‖u‖L∞ +λ‖ f −divu‖2

L2

}
, ‖u‖L∞ := esssup

x,y

√
u2

1 +u2
2. (5.15)

Here, f is an L2 function with zero mean which stands for F−div(
j

∑
k=1

uk) in (5.5), and λ

stands for the dyadic scales, λ12 j, j = 0,1, · · · .
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To circumvent the difficulty of handling the L∞ norm in (5.15), we concentrate

on the dual problem associated with (5.15). We let N (u) = ‖u‖L∞ : V 7→ R̄, E (p) =

‖ f − p‖2
L2 : Y 7→ R̄, and Λ = div : V 7→ Y with V = L∞(T2) and Y = L2(T2). By duality

theorem, [32, §3,Remark 4.2], the variational problem (5.15),

(P) : inf
u∈V

[N (u)+E (Λu)]

is equivalent to its dual problem

(P∗) : sup
p∗∈Y ∗

[−N ∗(Λ∗p∗)−E ∗(−p∗)];

moreover, if ū and p̄∗ are solutions of (P) and (P∗) respectively, then Λ∗ p̄∗ ∈ ∂N (ū),

and −p̄∗ ∈ ∂E (Λū). Here, N ∗,E ∗ are conjugate functions of N ,E , expressed in terms

of the usual L2 pairing 〈w1,w2〉 :=
ˆ
T2

w1 ·w2 dx,

N ∗(u∗) = sup
u
{〈u,u∗〉−‖u‖L∞}

= sup
u
{‖u‖L∞‖u∗‖M −‖u‖L∞}= χ{‖u∗‖M≤1} =


0, if ‖u∗‖M ≤ 1

+∞, otherwise

;

E ∗(p∗) = sup
p
{〈p, p∗〉−λ‖ f − p‖2

L2}

= sup
p
{−λ 〈p, p〉+ 〈p∗+2λ f , p〉−λ 〈 f , f 〉}=

〈
f +

1
4λ

p∗, p∗
〉
,

and Λ∗ =−∇ is the dual operator of Λ.

We end up with the dual (P∗) problem

inf
{p∗:‖∇p∗‖M≤1}

〈
1

4λ
p∗− f , p∗

〉
or

inf
p∗

sup
µ≥0

[〈
1

4λ
p∗− f , p∗

〉
+µ(‖∇p∗‖M −1)

]
. (5.16)
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Moreover, −p̄∗ ∈ ∂E (Λū), meaning that p∗ = 2λ r, where r is the residual, r = f −divu.

So, we can express the dual problem (5.16) in terms of r,

r̄ = argmin
r

sup
µ≥0

L(r,µ), L(r,µ) := λ 〈r−2 f ,r〉+µ

(
TV[r]− 1

2λ

)
, (5.17)

where r̄ := f −div ū, is the residual corresponding to the optimal minimizer ū. The TV[·]

semi-norm is defined in (4.1), and ‖∇r‖M = TV[r].

Since L(·,µ) is convex and L(r, ·) is concave and, for r ∈ BV continuous, we can

apply the minimax theorem, e.g., [32, §6], which allows us to interchange the infimum

and supremum in (5.17), yielding

sup
µ≥0

min
r

[
λ 〈r−2 f ,r〉+µ

(
TV[r]− 1

2λ

)]
. (5.18)

The dual problem, (5.18), can be solved in two steps. An inner minimization prob-

lem

rµ = argmin
r

[
λ 〈r−2 f ,r〉+µ

(
TV[r]− 1

2λ

)]
. (5.19a)

Here, for any given µ ≥ 0, there exists a unique r = rµ such that (µ,rµ) is a saddle point

of L. The optimal µ = µ∗ is determined by an outer maximization problem,

µ
∗ = argmax

µ≥0
[P(µ)+µQ(µ)] ,

P(µ) := λ
〈
rµ −2 f ,rµ

〉
, Q(µ) := TV[rµ ]−

1
2λ

. (5.19b)

Once µ∗ is found, then r̄ = rµ∗ is the optimal residual which is sought as the solution of

(5.17) .

152



5.3.2 The outer maximization problem

We begin by characterizing the maximizer, µ = µ∗, of the outer problem (5.19b).

Fix µ: since rµ minimizes L(r,µ) we have

P(µ)+µQ(µ)≤ P(ν)+µQ(ν).

Similarly, P(ν)+ νQ(ν) ≤ P(µ)+ νQ(µ). Sum the last two inequalities to get, (µ −

ν)[Q(µ)−Q(ν)]≤ 0, which yields that Q(·) is non-increasing.

Let µ∗ be a maximizer of (5.19b). Then ∀µ ≥ 0,

P(µ)+µQ(µ)≤ P(µ∗)+µ
∗Q(µ∗)≤ P(µ)+µ

∗Q(µ),

which implies (µ∗−µ)Q(µ)≥ 0. We distinguish between two cases.

Case #1: µ∗ > 0. We have Q(µ) ≤ 0 if µ > µ∗ and Q(µ) ≥ 0 if 0 ≤ µ < µ∗. We

conclude that µ∗ is determined as a root of Q(·),

Q(µ∗) = 0, i.e. TV[rµ∗] =
1

2λ
. (5.20)

Case #2: µ∗ = 0. In this case, r0 minimizes 〈r−2 f ,r〉, namely, r0 = f . This

corresponds to the trivial minimizer of (5.15), ū≡ 0, which is the case we want to avoid.

Case #2 happens when Q(0)≤ 0, i.e.

µ
∗ ↔ TV[r0]−

1
2λ
≤ 0 ↔ TV[ f ]≤ 1

2λ
.

So, to make sure that we pick a non-trivial minimizer, ū 6≡ 0, we must pick a sufficiently

large λ such that

λ >
1

2TV[ f ]
↔ ū≡/ 0, TV[r̄] =

1
2λ

. (5.21)
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It has the same flavor as the Meyer’s result for ROF model in image processing, consulting

proposition 4.1.2(c). It also coincides with the same lower bound on λ ’s which yield non-

trivial minimizers, asserted in [91, Lemma 5.3].

5.3.3 The inner minimization problem

We return to the inner minimization problem (5.19a). For fixed µ = µ∗, (5.19a) has

the system expression as the ROF model (4.2). Following the procedure in section 4.1.3,

we derive the following Euler-Lagrange equations

2λ (rµ∗− f )−µ
∗div

(
∇rµ∗

|∇rµ∗ |

)
= 0. (5.22)

Take the L2-inner product of (5.22) with rµ∗ to get

2λ
〈
rµ∗− f ,rµ∗

〉
−µ

∗
〈

div
(

∇rµ∗

|∇rµ∗|

)
,rµ∗

〉
= 0.

Using (5.20) (and in the non-periodic case, the Neumann boundary condition ∇rµ∗ ·n =

0), we find〈
div
(

∇rµ∗

|∇rµ∗|

)
,rµ∗

〉
=−

〈
∇rµ∗

|∇rµ∗|
,∇rµ∗

〉
=−
ˆ
T2
|∇rµ∗|dx =− 1

2λ
.

This yields, µ∗ = 4λ 2 〈 f − rµ∗,rµ∗
〉
, and the governing equation (5.22) for the optimal

residual, r̄ = rµ∗ , amounts to

(r̄− f )−2λ 〈 f − r̄, r̄〉div
(

∇r̄
|∇r̄|

)
= 0. (5.23)

Remark 5.3.1. This system has two solutions: one solution, r̄ = f , corresponds to the

trivial case, ū ≡ 0. The other is the target solution, i.e., the optimal residual r̄ for (5.17).

We will discuss numerical algorithms to solve system (5.23) in section 5.4.

154



5.3.4 From r to u: recovering the uniformly bounded solution

So far, we identified the residual, r̄ = f − div ū, corresponding to the uniformly

bounded solution ū of (5.15). To recover ū itself, we substitute r̄− f =−div ū as the first

term of (5.23), and get

div
(

ū−2λ 〈r̄− f , r̄〉 ∇r̄
|∇r̄|

)
= 0. (5.24)

Therefore, we can recover a solution ū of (5.15),

ū = 2λ 〈r̄− f , r̄〉 ∇r̄
|∇r̄|

. (5.25)

Observe that this ū is indeed uniformly bounded:

‖ū‖L∞ = 2λ | 〈r̄− f , r̄〉 |< ∞. (5.26)

Remark 5.3.2. The explicit expression of ū in (5.25) shows that [ū, r̄] forms an extremal

pair, in the sense of achieving an equality in the duality inequality of pairing div ū and r̄:

|〈div ū, r̄〉|= ‖ū‖L∞

1
2λ

= ‖ū‖L∞‖∇r̄‖M .

Similar argument is addressed in [93, Theorem 2.3], [91, Theorem 5.1], and proposition

4.1.2(c) in the previous chapter.

5.4 Numerical algorithms for the hierarchical solution

We solve problem (5.1) using its hierarchical decomposition. In each iteration, we

solve the minimization problem (5.15). Each iteration consists of three stages:

Stage 1. Find the non-trivial solution, r j, of Euler-Lagrange equations (5.23) with

λ = λ j and f = f j;
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Stage 2. Recover u j from r j using equation (5.25);

Stage 3. Update λ j+1← 2λ j, f j+1← r j.

Initially, we set λ1 sufficiently large so that λ1 > (2‖F‖L2)−1, and f1 := f . The

iterations terminate when ‖ f j‖L2 is sufficiently small. The final solution U for (5.1) is

given by the sum of all u j’s.

5.4.1 Numerical discretization for the PDE system

We begin with regularization: to avoid the singularity in (5.19a) when |∇r| = 0, a

standard approach is to regularize the problem using a small parameter ε > 0,

rµ,ε = argmin
r

{
λ 〈r−2 f ,r〉+µ

(ˆ
T2

√
ε2 + |∇r|2dxdy− 1

2λ

)}
. (5.27)

At stage 1 of each regularized iteration, we find the minimizer r = rµ∗,ε . The cor-

responding Euler-Lagrange equations of the regularized problem read,

(r− f )−2λ 〈 f − r,r〉 ·div

(
∇r√

ε2 + |∇r|2

)
= 0. (5.28)

In the non-periodic case, these equations are augmented with Neumann boundary condi-

tion, ∇r ·n = 0.

To solve (5.28), we cover T2 with a computational grid with cell size h. Let

D+x,D−x and D0x be the usual forward, backward and centered divided difference op-

erator on x, namely, D±xri, j =±(ri±1, j− ri, j)/h, D0xri, j = (ri+1, j− ri−1, j)/2h. Similarly,
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we can define D±y and D0y. A straightforward discretization of (5.28) yields,

ri, j = fi, j−K(r) ·D−x

[
1√

ε2 +(D+xri, j)2 +(D0yri, j)2
D+xri, j

]

−K(r) ·D−y

[
1√

ε2 +(D0xri, j)2 +(D+yri, j)2
D+yri, j

]
(5.29)

= fi, j−
K(r)
h2

[
ri+1, j− ri, j√

ε2 +(D+xri, j)2 +(D0yri, j)2
−

ri, j− ri−1, j√
ε2 +(D+xri−1, j)2 +(D0yri−1, j)2

]

− K(r)
h2

[
ri, j+1− ri, j√

ε2 +(D0xri, j)2 +(D+yri, j)2
−

ri, j− ri, j−1√
ε2 +(D0xri, j−1)2 +(D+yri, j−1)2

]
.

Here, K(r) := 2λ 〈r− f ,r〉, which is approximated using any appropriate numerical quadra-

ture.

5.4.2 Computing the residuals r by implicit iterations

We use implicit iteration method to solve the nonlinear system (5.29),

r(n+1)
i, j = fi, j (5.30)

−K(r(n))
h2

 r(n+1)
i+1, j − r(n+1)

i, j√
ε2 +(D+xr(n)i, j )

2 +(D0yr(n)i, j )
2
−

r(n+1)
i, j − r(n+1)

i−1, j√
ε2 +(D+xr(n)i−1, j)

2 +(D0yr(n)i−1, j)
2


−K(r(n))

h2

 r(n+1)
i, j+1 − r(n+1)

i, j√
ε2 +(D0xr(n)i, j )

2 +(D+yr(n)i, j )
2
−

r(n+1)
i, j − r(n+1)

i, j−1√
ε2 +(D0xr(n)i, j−1)

2 +(D+yr(n)i, j−1)
2

 ,
subject to initial condition which we set to be r(0) = f/2.

Remark 5.4.1. Recall that K(r) is continuous, and K(r̄) < 0 while K( f ) = 0. To avoid

the convergence of r(n) to the trivial solution, r̄ = f (mentioned in remark (5.3.1)), we set

r(0) small enough, K(r(0))< K(r̄)< K( f ), so that r(n) is expected to reach the non-trivial

solution r̄, rather than f . As argmin
r

K(r) = f/2, a good choice of the initial condition of

the iteration is r(0) = f/2.
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In the non-periodic case, we also need to apply Neumann boundary condition ∇r ·

n = 0. To this end, we mirror r at the boundary, meaning r0, j = r2, j,rN+1, j = rN−1, j, etc,

where the size of the grid is N×N. So we only need to add the weight of the outer points

to their corresponding inner points.

In summary, at the nth iteration amounts to an N×N linear system, A(r(n))r̃(n+1) =

f̃ , for the discretized nodes, {r(n+1)}. Here, A is a sparse matrix with at most 5 non-zero

entries every row or column, whose values depend on r(n).

5.4.3 Recovering u from r and control of errors

After we get a non-trivial solution r at stage 1, we move to stage 2 to recover u

by (5.25). Normally, we apply centered divided difference operator on r to compute the

discrete gradient, ∇r. However, this will cause a significant error of the solution u.

For example, consider u1
i, j = K ·

ri+1, j− ri−1, j

2h
√

ε2 + |∇ri, j|2
. Suppose the error for r in stage

1 is e(r). Then, at points (x,y) such that |∇r(x,y)| ≈ 0, the error for u1 is of order

Ke(r)/(hε). Therefore, dividing by hε with ε ≈ 0, the error bound of u1 can be sig-

nificantly amplified at stage 2 of recovering u, even if we obtain a sufficiently small e(r)

at stage 1. This amplification will get worse as we refine the mesh and h becomes smaller.

In order to get a reliable solution for u, we cannot carry out stage 2 independent of

the discretization stencil of stage 1. To this end, let

u1,(n+1)
i+1/2, j =

K(n)

h
·

r(n+1)
i+1, j − r(n+1)

i, j√
ε2 +(D+xr(n)i, j )

2 +(D0yr(n)i, j )
2
, (5.31a)

u2,(n+1)
i, j+1/2 =

K(n)

h
·

r(n+1)
i, j+1 − r(n+1)

i, j√
ε2 +(D0xr(n)i, j )

2 +(D+yr(n)i, j )
2
. (5.31b)
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We then have

ri, j = fi, j−
u1

i+1/2, j−u1
i−1/2, j

h
−

u2
i, j+1/2−u2

i, j−1/2

h
.

The last two terms represent a numerical discretization of divu. Therefore, we use (5.31)

to recover u from the residual r = f −divu calculated at (5.30).

5.5 Numerical implementation

We apply our algorithm for the hierarchically constructed uniformly bounded solu-

tion for the example of F ∈ L2
# defined at (5.3) with

T2 = [−1,1]× [−1,1], θ = 1/3, ζ (r)


= e−

1
1−r2 , |r|< 1,

≡ 0, |r| ≥ 1.
(5.32)

5.5.1 Hierarchical solution vesus Helmholtz solution

We concentrate on the first component of the solution U , denoted by U1. Figure 5.1

shows Helmholtz solution, U1
Hel, which slowly diverges at the origin. Figure 5.2 provides

the hierarchical solution U1
Bdd which remains uniformly bounded.

The computed hierarchical solution ‖U1,N
Bdd‖L∞/‖FN‖L2 remains uniformly bounded

when N increases (U1,N
Bdd stands for the first component of hierarchical solution with grid

size N×N.) In contrast, table 5.1 illustrates the (slow) growth of the ratio ‖U1,N
Hel ‖L∞/‖FN‖L2 .

5.5.2 Hierarchical solution meets Helmholtz solution

The hierarchical solution is uniformly bounded. However, as observed in figure

5.2, the hierarchical solution U1
Bdd is oscillatory outside the support of F . As each step of
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Figure 5.1: Helmholtz solution U1
Hel of example (5.3),(5.32). A blowup is observed at the

origin.

Figure 5.2: Hierarchical solution U1
Bdd of (5.3),(5.32). It is clearly uniformly bounded.

the hierarchical decomposition relies on the previous steps, these oscillations will grow

throughout the iterations. To limit their effect, we introduce a new, two-step method to

construct bounded solutions of (5.1). It consists of one hierarchical decomposition step,

whose residual is treated using Helmholtz decomposition:

Step 1. Solve minimization problem

u1 := argminu{‖u‖L∞ +λ1‖F−divu‖2
L2}. (5.33a)
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The N×N grid 50×50 100×100 200×200 400×400 800×800

‖U1,N
Hel ‖L∞

‖FN‖L2
0.2295 0.2422 0.2540 0.2650 0.2752

‖U1,N
Bdd‖L∞

‖FN‖L2
0.1454 0.1451 0.1455 0.1458 0.1451

Table 5.1: L∞ norm of numerical solutions for different grids: Helmholtz vs. hierarchical

construction. For Helmholtz solution, the value growth as with finer mesh, indicating

a blowup, while for hierarchical constructed solution, the value is independent of mesh

size.

Step 2. Find the Helmholtz solution for divur = r1, i.e.

ur := ∇∆
−1r1, r1 = F−divu1. (5.33b)

The two-step solution, U2step = u1 + ur, satisfies divU = F . Furthermore, it is

uniformly bounded.

Proposition 5.5.1. The two-step solution, U2step = u1 +ur given in (5.33), is a uniformly

bounded solution of (5.1).

Proof. Clearly, u1, as the first iteration of the hierarchical solution, is uniformly bounded.

Next, equation (5.8) implies r1 ∈BV#. Applying proposition 5.2.1, ur is uniformly bounded

as well.

From Proposition 5.5.1, we know that U2step is also a solution of (5.1). As the

minimization problem is solved only once, we expect fewer oscillations in U2step than
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UBdd.

Figure 5.3 shows the two-step solution of the example in Section 5.5.1. From the

contour plot, we observe fewer oscillations than the hierarchical solution UBdd. Yet,

the solution is not as smooth as UBdd at the origin. Table 5.2 reports that the ratio

‖U1,N
2step‖L∞/‖FN‖L2 is also stable when N is large. This verifies the uniformly bound-

edness of the two-step solution.

Figure 5.3: Two-step solution U1
2step of (5.3),(5.32). One hierarchical step is enough to

generate a bounded solution.

The N×N grid 50×50 100×100 200×200 400×400 800×800

‖U1,N
2step‖L∞

‖FN‖L2
0.2096 0.2128 0.2144 0.2151 0.2154

Table 5.2: L∞ norm of two-step solution for different grids. It is uniformly bounded.
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5.6 Potential applications

The hierarchically constructed solution UBdd is a new candidate for solving divu =

F , other than the preferred Helmholtz solution UHel. Being uniformly bounded, it has the

potential to replace Helmholtz solution in the critical spaces. In this section, we briefly

discuss possible applications, which might lead to valuable future study.

We start with Euler-Poisson equations (2.8). The Poisson forcing reads

F=−k∇φ = k∇∆
−1

ρ,

namely, F is the Helmholtz solution of the equation divF= kρ .

As discussed in section 2.8, the global existence theory for 2D Euler-Poisson equa-

tions is incomplete. An additional logarithmic growth for the L∞ estimate on Reisz trans-

form is the main reason for the failure of closing the loop. Such logarithmic growth is

also suffered by UHel: in section 5.1.2, we know UHel is not bounded, only subject to a

fractional logarithmic growth.

We modify Euler-Poisson equation by setting the forcing F as the uniformly bounded

solution of divF = kρ . The open problem is whether the new choice of F will enable us

to close the loop for the global existence theory for Euler-Poisson equation.

There are other systems with a substructure of divU = F type. A usual assumption

on U is curlU = 0 and the Helmholtz solution is used therein. One question is whether

the presence of vorticity will regularize the system and prevent blowups. See [65] for

some related arguments.
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Consider 2D Keller-Segel system for chemotaxis [52,78] of parabolic-elliptic type:

ρt = ∆ρ−div(ρ∇c),

−∆c = ρ.

This reaction-diffusion system has been well-studied: if the mass is less than 8π , there

exists global weak solutions. If the mass is greater than 8π , then there is a finite time

concentration. Consult the review [9] and references therein.

The velocity field u = ∇c has divergence −ρ and vorticity zero. If we add vorticity

to the velocity field, numerical evidence suggests possibility of no finite time concentra-

tion for some data with mass larger than 8π , e.g., [68]. It is an indication that vorticity

prevents concentration.

The modified system reads

ρt = ∆ρ−div(ρu),

divu =−ρ, curl u = ω.

where ω could be modeled in various ways. For instance, if ω satisfies

ωt +u ·∇ω = ν∆ω,

the coupled system is called Keller-Segel-Navier-Stokes system. We refer [66] for studies

on related problems. It is not clear if the coupled system has a larger critical mass.

Another way to introduce vorticity to the system is to define the velocity field u

as the uniformly bounded solution of divu = −ρ . Whether the corresponding system

consists a larger critical mass is open for future studies.
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