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Rapid sensing of body motions is critical to stabilizing a flight vehicle in the

presence of exogenous disturbances as well as providing high performance tracking

of desired control commands. This bandwidth requirement becomes more stringent

as vehicle scale decreases. In many flying insects three simple eyes, known as the

ocelli, operate as low latency visual egomotion sensors. Furthermore many flying

insects employ distributed networks of acceleration-sensitive sensors to provide in-

formation about body egomotion to rapidly detect external forces and torques. In

this work, simulation modeling of the ocelli visual system common to flying insects

was performed based on physiological and behavioral data. Linear state estimation

matrices were derived from the measurement models to form estimates of egomotion

states. A fully analog ocellar sensor was designed and constructed based on these

models, producing state estimation outputs. These analog state estimate outputs

were characterized in the presence of egomotion stimuli. Feedback from the ocellar



sensor, with and without complementary input from optic flow sensors, was im-

plemented on a quadrotor to perform stabilization and disturbance rejection. The

performance of the closed loop sensor feedback was compared to baseline inertial

feedback. A distributed array of digital accelerometers was constructed to sense

rapid force and torque measurements. The response of the array to induced motion

stimuli was characterized and an automated calibration algorithm was formulated

to estimate sensor position and orientation. A linear state estimation matrix was

derived from the calibration to directly estimate forces and torques. The force and

torque estimates provided by the sensor network were used to augment the quadro-

tor inner loop controller to improve tracking of desired commands in the presence

of exogenous force and torque disturbances with a force-adaptive feedback control.
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Chapter 1: Introduction

1.1 Motivation

Small unmanned aircraft systems (sUAS), typically characterized by extreme-

ly limited payloads, low mass and inertia, as well as rapid body dynamics, are

especially challenging platforms to stabilize. Traditionally, sUAS stabilization is

accomplished with a standard suite of sensors including accelerometers, gyroscopes,

and magnetometers, [1] [2] [3] [4] [5]. These small-scale inertial measurement units

are generally capable of providing sufficient measurements for estimating the vehicle

orientation necessary for stabilizing feedback. However, these systems often have

limited or no redundancy, and therefore provide minimal robustness to component

failure and measurement noise. The digital feedback architecture of these sensing

and control systems imposes inherent bandwidth limits. These systems also often

have a significantly diminished measurement quality as they are scaled to micro-

scale flight vehicles. The complex routines that may mitigate these detrimental

characteristics are also not scalable due to processing limitations and bandwidth

requirements of micro-scale flight. Furthermore, the low mass, inertia, and actuator

authority of these small platforms often make them much more susceptible to gust

disturbances.
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Conversely, flying insects provide examples of robust stability and navigational

abilities despite similar constraints on sensor payload, processing power, and loop

closure speeds. They achieve this robustness through several means. The insect

body is effectively a flying, multimodal sensor network. Information from visual, in-

ertial, and tactile receptors are collected across networks distributed spatially across

the entirety of the insect body. These measurements are fused to provide informa-

tion about the state of the insect and its environment. This encoded information

includes egomotion, aerodynamic disturbances, obstacle proximity, damage detec-

tion, proprioception, and numerous other sources of rich information. Insects are

also characterized by highly redundant sensor networks. A highly redundant sensor

architecture provides several advantages, foremost is the output of less noisy and

more informative measurements. This redundancy also mitigates the effect of sensor

damage or failure in the aggregate output information. Flying insects also do not

close digital sensing, processing, and control loops. Rather, they have direct ana-

log connection between their sensory systems and their flight motor neurons. This

makes them capable of closing feedback control loops at extremely high speeds. This

capability is paramount for both effective stabilization and gust rejection for flight

at these small scales. These characteristics are the driving motivation for developing

biologically inspired sensing and estimation strategies to achieve high performance

stabilization and gust rejection in micro-air vehicles.
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1.2 Ocellar Sensing

Most flying insects depend heavily on visual mechanisms to complement mechanosen-

sory systems. The visual sensing modality provides some of the most useful measure-

ments for performing both outer loop navigational tasks, such as obstacle avoidance,

and inner loop stabilization tasks, such as disturbance rejection.

Many species of flying insects possess two visual systems, the compound eyes

and the ocelli, or simple eyes, [6] [7]. The compound eye provides signals encod-

ing measures of proximity to obstacles, relative velocity, and rotation rate, [8] [9].

Directionally selective cells analyze optic flow to estimate comparatively slow state

changes [10], while ocelli measure changes in light intensity within the dorsal visual

hemisphere correlated with fast attitude changes, [6].

In many species, the ocelli are arranged in a triangular pattern in the dor-

sal region of the head between the compound eyes. Typically a median ocellus is

positioned in the midsagittal plane and the lateral ocelli are positioned to the left

and right posterior of it. The retina of each ocellus is positioned several microme-

ters from the focal plane of the ocellar lens. Therefore, the ocelli act as wide-field

luminance sensors, incapable of forming a focused image in most cases, [11] [12].

The medial ocelli in dragonflies have been shown to produce directionally selective

responses to motion patterns, [13]. Despite this variability, the “single sensor hy-

pothesis” as described by [14] and [15] is used as the guiding model for the ocellar

function described in this work. The ocelli have large overlapping fields of view each

of which encompasses nearly one third of the visible environment. Across species,

3



the wavelength of peak sensitivity varies to a large degree from ultraviolet to in-

frared, sometimes with bimodal spectral sensitivity distribution, [11] [16] [17]. The

ocelli have a higher bandwidth light response, with bandpass characteristics, and

a faster connection to the steering muscles of the flight motor than the compound

eyes, [11] [16] [18] [19]. The ocelli have a latency significantly shorter than that of

the compound eyes. The functional characteristics of the ocelli of several species

suggest they are well suited to sensing rapid changes in the overall luminance of large

portions of the visual environment. Luminance changes of this type are typically

caused by rapid changes in attitude of the body, and thus the head, in an environ-

ment with asymmetric light intensity distributions, e.g. bright sky versus darker

ground. The connectivity between the ocellar system and neural pathways provid-

ing the neck and flight motor suggest them to be involved in both gaze stabilization

to keep the head aligned with the horizon and in maintaining a level flight attitude.

This has been concluded based on electrophysiological and behavioral studies on

blowfly [20] [21], dragonfly [22], wasps [23], and other flying insects [6].

Previous engineering implementations of ocelli-inspired flight stabilization have

focused on attitude control of a sUAS. A simulation model of a Drosophila-inspired

omnidirectional imager was implemented by [14]. Wide-field luminance and optic

flow measurements were taken from this imager and compared to optimally derived

weighting patterns to extract information about attitude and nearness to objects, re-

spectively. Closed-loop control of the inner stabilization loop and outer navigation

loop was demonstrated in simulation with respective measurements of luminance

level and optic flow. Here the authors applied the matched filter method, typical

4



to optic flow state estimation, to the outputs of a simulated ocelli. Differential

combinations of the luminance outputs of four photodiodes arranged in a pyrami-

dal configuration were used by [24] to determine the direction of the brightest light

source, approximating an attitude estimate. Using the same sensor, a method of

attitude estimation was investigated by [25] using sinusoidal functions of intensity

on the visual sphere. In [26], roll attitude was stabilized by balancing light inten-

sities on right and left hemispheres of a simulated flight vehicle with nine receptor

fields in an omnidirectional configuration. [27] demonstrated gaze stabilization of

a camera tracking a fiducial point. In [28], near-omnidirectional imagery, from t-

wo digital cameras, was classified into regions of sky and ground and matched to

pre-computed databases of attitude dependent image kernels to estimate the vehi-

cle attitude. An attitude sensor based on the function of the dragonfly ocelli was

developed for Mars surface exploration by [29]. An initial stage of UV and green

sensitive photodiodes were combined antagonistically to form luminance values from

the right, left, and forward positions of the vehicle. Differencing of these luminance

measurements formed the estimate of roll and pitch angle. [30] developed an ocellar

sensor with four pairs of UV and green filtered diodes, oriented along the lateral

and frontal directions. The UV signal from each pair of photodiodes was normal-

ized by the corresponding green signal to produce a spectral opponent signal. The

opponent signals from the right and left pairs of diodes were combined differentially,

to produce a feedback signal proportional to the roll attitude of the sensor body.

Using this sensor, roll attitude tracking was demonstrated on a fixed-wing aircraft.

The work presented herein differs from these previous works in that it replicates
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the function of the insect visual system to determine attitude rate information from

ocelli and utilizes this information for vehicle stabilization with an analog ocellar

sensor. To determine how a system with the functional properties of the ocelli might

be utilized for stabilizing feedback, empirical simulation modeling of such a system

was performed. This simulation allowed for determination of which vehicle motion

states may be encoded in ocellar outputs.

1.3 Acceleration Sensing

Effective rejection of disturbance forces and torques requires high bandwidth

sensing of these exogenous inputs before they propagate to lower order states of a

flight vehicle. Traditionally, disturbance rejection has focused on sensing and feed-

back from pose and velocity estimates. Disturbances between the controller-issued

commands and the plant state can be induced by gust disturbances, actuator fail-

ures, physical impacts with obstructions, and various other sources. Traditionally,

stability control systems regulate the effect of these disturbances through feedback

from estimation of lower order states, such as attitude or angular velocity. Fur-

thermore, the estimation of these states is implemented with measurements from

a minimal set of inertial sensors approximately collocated at the vehicle center of

mass. By distributing sensors across the airframe, additional state information is

encoded in the sensor measurements, and thus a more rich state estimate may be

extracted from the measurements. Sensing with distributed arrays of redundant

sensors yields improvements in signal-to-noise ratio even with relatively low quality
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individual sensors components. Noise reduction is achieved by weighting across the

all available measurements to produce an aggregate state estimate.

These sensor architecture characteristics are supported biologically in many

insects, especially flying insects, where rapid sensation of a wide range of multimodal

states is critical to effective flight. Insects are typified by distributed mechanosensory

systems. As detailed by [31], mechanoreceptors in insects may be delineated into four

functional categories: trichoid sensilla, campaniform sensilla, stretch receptors, and

chordotonal organs. The fundamental function of each of these organs is respectively

tactile and air movement sensing, proprioception and appendage orientation sensing,

muscular position sensing, and vibration sensing. Chordotonal organs have various

sensory functions across species of insects, but often are sensitive to acceleration [32].

These four types of mechanoreceptors form fundamental components, which when

fused, can provide sensory information about complex physical states.

The halteres are an example of this type of sensory organ, and have been thor-

oughly studied from physiological, behavioral, and functional contexts [33] [34] [35]

[36] [37]. These structures are small appendages, specifically vestigial hind wings,

that beat out of phase with the wings. The halteres are typically thought of as

biological analogues of a mechanical gyroscope, as they encode information about

angular velocity, in the way that the ocelli encode this information in the visual

modality. However, the mechanism by which flying insects sense angular rates vi-

a halteres is fundamentally through sensation of forces. As an angular velocity is

experienced by the insect body, a Coriolis force is induced on the flapping haltere.

This force is sensed by strain sensitive mechanoreceptors, primarily campaniform
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sensilla and chordotonal organs [31], thus encoding angular rate information. An-

gular accelerations are also encoded within the strains sensed at the haltere base.

These angular acceleration dependent forces have the same direction and frequency

as the Coriolis forces, but are 90o phase shifted and have a smaller magnitude [36].

This implies that the Coriolis and angular acceleration states may be separately ex-

tracted from measurements produced by the haltere mechanoreceptors. The halteres

represent an example of spatially distributed mechanosensors that directly detect

linear and rotational accelerations, from which corrective flight maneuvers are trig-

gered [38] Similarly, hair-like mechanoreceptors exist in many species, invertebrate

and vertebrate, that are sensitive to accelerations of the body [39]

Biologically inspired microelectromechanical system (MEMS) halteres have

been developed by [40] and [41] capable of sensing linear and rotational forces. A

method of sensing strains, that may encode force information, based on the campan-

iform sensilla was developed by [42] and [43] to be embedded in space structures.

Acceleration sensors can detect such disturbance forces and torques before they

propagate to lower order states, and therefore can act to reject those disturbances

more rapidly when incorporated in feedback control. Incremental dynamic inversion

has been shown in simulation by [44] and [45] to reject disturbance dynamics, given

measurements of the acceleration states. Application of arrays of accelerometers

in past works has focused on gyro-free angular velocity sensing and estimation, in

so-called gyro-free inertial navigation systems (GFINS). Several examples of this

have been demonstrated in simulation and hardware, [46] [47] [48] [49]. Apart from

sensing angular velocities rather than accelerations, these past efforts differ from
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the work presented here in that they implement a set of accelerometers precisely

placed at key geometric locations and orientations, so as to provide angular veloc-

ity estimates with the minimum number of sensor measurements. Conversely, in

this work, cues are taken from biology, implementing a highly redundant sensor

set distributed at arbitrary locations and orientations. Here it is useful to harness

the fact that the mapping from acceleration states to forces and torques is a lin-

ear function of static sensor parameters, including position and orientation. The

development of an automatic calibration technique presented herein, allows for the

biologically-inspired arbitrary placement of sensors while still producing accurate

force and torque estimates by means of static estimation. Combined with an analog

source of acceleration measurement, as might be provided by the cantilever struc-

tures in [42] and [43], the static estimation of body acceleration detailed in this work

provides a framework for a fully analog implementation of force and torque sensing.

1.4 Multimodal Sensor Fusion

As stated previously, along with analog sensing and feedback mechanisms,

multimodal sensor fusion is a key to the robust and complex behaviors seen in flying

insects. The fusion of fully analog implementations of the two sensing modalities

detailed in this work could provide the extremely robust and highly scalable sta-

bilization and disturbance rejection characteristics needed for micro-scale flight in

highly variable environments. This is made possible by the analog-implementable

nature of these two sensing modalities, due to their static linear estimation mech-
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anisms. Furthermore, these two sensing modalities could be fused with an analog

implementation of wide-field integration of optic flow based on the insect visual sys-

tem as detailed in [50] [51] [52]. Such as system would form a truly scalable, sensing

and estimation architecture, capable of navigational control, flight stabilization, and

disturbance rejection.

1.5 Thesis Contributions and Organization

The technical contributions from this work are listed below:

1. A model of the ocelli in flying insects and a method of static linear estimation

of the pitch and roll rates from its outputs was developed.

2. A method for the static linear estimation of force and torque from a spatially

distributed array of acceleration measurements was developed

3. A fully analog sensor was designed and fabricated to replicate the response of

the ocellar visual system, producing static estimates of pitch and roll rate.

4. An array of arbitrarily placed linear accelerometers was constructed, static

linear estimation of the acceleration states was implemented in hardware, and

an automatic calibration algorithm was developed.

5. Stabilizing rate feedback from an analog ocellar sensor on a sUAS was demon-

strated in the presence of disturbances.

6. Disturbance rejection was demonstrated on a sUAS with feedback from the

spatially distributed accelerometer array.
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Chapter 2 formulates the analytical framework and discusses the simulation

modeling of both the ocelli and distributed acceleration sensing modalities. This

section includes methods for performing static linear estimation on the raw sensor

outputs to produces estimates of rotational velocity and 6-DOF accelerations, re-

spectively. Chapter 3 details the design, fabrication, and characterization of both

sensing modalities. Chapter 4 presents the methods for vehicle integration, con-

trol design, and closed loop control response results for a quadrotor sUAS in flight,

subject to disturbance impulses. Chapter 5 draws conclusions from the work in

total and outlines the technical contributions made. Chapter 6 outlines potential

directions for future work that may expand on the topics discussed herein.
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Chapter 2: Modeling

Section 2.1.1 briefly details an analytical geometric model for rotational ego-

motion sensing. Section 2.1.2 details the empirical simulation modeling of the ocelli

in a cluttered 3-D environment and a method for static estimation of pitch and

roll rates. Section 2.2.1 details the analytical framework for estimating forces and

torques from spatially distributed acceleration measurements. The response of the

distributed accelerometer array is characterized for various values of measurement

noise a position error in Section 2.2.2.

2.1 Ocelli

2.1.1 Analytical Modeling

The functionality of ocelli in flying insects have been studied and speculated

on from behavioral and physiological perspectives [6] [20] [21] [22]. As a part of

the visual sensory system it is clear that they encode information about either

the visual environment or state of the insect in flight. Due to their physiological

properties, specifically their wide and disparate fields of view, defocused retinal

image, and rapid response rate, it is often suggested that they provide information
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about the rotational state of the insect. Such information is presumed to play a role

in stabilization of the insect body or head as part of a flight motor or proprioceptive

feedback mechanism.

Assuming this function within the insect visuomotor system we simplified an-

alytical model of the response of the ocelli based on their geometric properties is

used. This analytical model will provide a reference for a full 6-degree of freedom

Monte Carlo simulation detailed in Section 2.1.2.

Given the primarily phasic response measured in ocellar electrophysiological

studies when exposed to luminance stimuli, [16] [19] [21], we are interested in analyt-

ically expressing the luminance rate, that is the time rate of change of the luminance,

İ as a function of the body rates ω. For our simplified model of the ocelli, shown

in Figure 2.1, we assume the environment luminance field f is projected onto a

unit viewing sphere, centered at the origin of the ocellar body frame, with spatial

gradient ∇f . It is defined that the ith ocellus has an arbitrary but fixed pointing

direction in the body frame, indicated by the unit vector êi. By inspection, the

luminance rate for this ith ocellus İi is given by the following

İi = (êi ×∇f) · ω (2.1)

The typical outdoor environment has a source of maximum luminance at the zenith,

with a monotonically decreasing luminance field toward the zenith. It is assumed

that the spatial gradient ∇f is constant and aligned with the longitudinal lines

from the environment nadir to the zenith, and that the cross product between the
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Figure 2.1: Analytical ocellar model geometry for (a) general case and (b) simplified
case subject to assumptions (2.2), (2.3), and (2.4)

pointing direction êi and the spatial gradient has constant magnitude across the

entire field of view of a single ocellus.

||∇f || ≡ k (2.2)

(êi ×∇f) ·
[

0 0 1

]T

≡ 0 (2.3)

This second result produces invariance in the luminance rates to yaw rate r, which

is intuitive as sensing rotations about the axis toward the luminance source would

not be possible with this sensing mechanism. For three ocelli, aligned respectively

with the body x-axis and ±y-axis, i.e.

êmedian ≡
[

1 0 0

]T

(2.4)

êright = −êleft ≡
[

0 1 0

]T
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the measurement matrix relating the luminance rates to the body rates simplifies to

y = k


0 1

−1 0

1 0


 p

q

 ≡ Cx (2.5)

where

y ≡
[
İmedian İright İleft

]T

(2.6)

Applying the optimal linear least-squares static estimation to these outputs y yields

estimates of the pitch rate and roll rate states

x̂ = My (2.7)

where the estimation matrix M is the inverse of C (2.5), or the pseudo-inverse for

non-square C

M = (CTC)−1CT (2.8)

M = m

 2 0 0

0 −1 1

 (2.9)

with m = (2k)−1 [53] [54]. This result illustrates that rotational velocities p and q

are linearly encoded in the outputs of the ocelli subject to the assumptions in (2.2),

(2.3), and (2.4).
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This provides a useful reference for the simulation modeling to follow. This

simulation will demonstrate the stringency of the stated assumptions. It will also

illustrate if any vehicle states, other than angular velocities, are encoded in the

ocellar outputs and cannot be modeled with the above methods.

2.1.2 Simulation Modeling

Simulation modeling of the ocelli was performed to characterize their response

to vehicle motions in a clutter 3D environment(Figure 2.4a-b). To this end, Monte

Carlo simulation and system identification methods were used to empirically de-

termine the contributions of the vehicle state to the outputs of the ocellar system.

Although it is generally thought that ocelli encode only information about rota-

tional motion states, [6] [20] [21] [22], this empirical modeling method allows for

identification of contributions from translational states in the ocellar response as

well.

2.1.2.1 Ocellus Bio-Inspired Simulation Model

To estimate a relationship between the kinematic states of the insect and the

ocellar outputs, a simulation model of the ocelli was developed based on the func-

tional operation of ocelli in flying insects. The simulation model for a single ocellus

is shown schematically in Figure 2.4d, based on simulated cameras on a mobile

airframe coordinate system as in Figure 2.4c. The stages of the model convert raw

camera imagery to a normalized scalar filtered luminance, I ′, that is characteristical-
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ly consistent with the response of ocelli descending neurons, as described in [11], [12],

and [16]. The RGB imagery from a wide field of view camera (115◦ × 115◦) is con-

verted to a grayscale image. A circular mask was applied to the rectangular camera

image to crop out the image corners to match the biological field of view. The

grayscale values at each pixel location within the entire image are summed to a sin-

gle scalar intensity value, and normalized by the image size and maximum possible

intensity, yielding ocellar luminance I. The normalization accounts for image size

and range of possible intensities, producing a luminance I = 1 for an ocellus with

its entire field of view maximally illuminated and luminance I = 0 for an entirely

dark field of view. This luminance value is then high pass filtered by GHPF (s),

approximating the time differentiation of the luminance signal, to produce filtered

luminance I ′. This high-pass filtering is supported in biological findings of the pri-

marily phasic response of some ocellar pathways to luminance changes [16] [19] [21].

These filtered luminances are the final output of each of the three ocellar simulation

models.

Using a 3-D simulation environment developed in the Autonomous Vehicle

Laboratory at the University of Maryland, simulated sensor outputs were collected

as the simulated flight vehicle underwent open-loop maneuvers. Figure 2.4a-c de-

picts the cluttered simulation environment and example camera frames indicating

their orientation in the visual field. Figure 2.2 displays the right ocellar luminance

Iright for several different flight paths through the simulated urban environment for

the same predefined attitude egomotions at each time instant. In the presence of

obstacles that distort the assumed luminance field f specified by (2.2) and (2.3),
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such as buildings, vegetation, clouds, and textured surfaces, absolute detection of

the zenith/horizon is corrupted. The large disparities in luminance output for a

consistent attitude are predominantly at low frequencies and are due to transla-

tion through the anisotropic environment. By filtering out these low frequencies,

the luminance rate approximation I ′ is much more consistent across these different

flight paths, Figure 2.3. Therefore, the focus of further modeling and sensor design

assumes a defined ocellar sensor output vector given by

y ≡
[
I ′median I ′right I ′left

]T

(2.10)
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Figure 2.2: Right ocellar luminance Iright for various flight paths
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Figure 2.3: Filtered right ocellar luminance I ′right for various flight paths

Figure 2.4: (a) Image of simulation environment, (b) layout of buildings
(black) and hemispherical environment boundary (red), (c) ocelli sensor
orientations with central axes (blue) and body-fixed coordinate system
(red), and (d) ocellar simulation model

We seek to estimate a linear measurement matrix, C, that relates the kinematic
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states x to the ocellar outputs y by

y = Cx. (2.11)

where

x ≡
[
u v w p q r φ θ

]T

(2.12)

with body-fixed forward, lateral, and heave velocities, u, v, and w; body-fixed roll,

pitch, and yaw rates, p, q, and r; and roll and pitch Euler angles, φ and θ, respec-

tively. While a more complex or analytical model relating states to outputs may be

more accurate, this type of linear measurement model is useful in that it allows for

application of static estimation and linear control techniques. Such a linear model is

also easily implementable in analog circuitry, and thus highly scalable for micro-air

vehicle applications.

2.1.2.2 Monte Carlo Modeling

The linear parameters that constitute C, which relate a state of x to an output

of y, were estimated using system identification techniques. Specifically, each state

in x was independently excited with a unit amplitude sine function, meaning the

sinusoidal maneuver occurred in only one of the states for each parameter identifi-

cation. This was done to prevent coupling in the outputs of the ocelli that might

occur when several states are excited simultaneously. An output prediction error
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minimization method relating the jth state, xj, to the ith ocellar output, yi, was

used to identify the parameter ci,j that produces the minimum output error eyi as

defined in 2.13-2.14

ŷi = ci,jxj (2.13)

where

eyi = |yi − ŷi| (2.14)

This approach allowed for identification of one-to-one linear relationships between

each state and the three ocellar outputs. Using this methodology, of exciting a

single state and estimating an optimal linear parameter relating the state to a sin-

gle output, all 24 elements of the matrix, C can be determined. However, due to

the non-isotropic characteristic of the cluttered simulation environment, it is nec-

essary to perform this estimation across multiple locations and orientations within

the environment. Therefore, to produce estimates of C that robustly encode state

information in the outputs of the ocelli, a Monte-Carlo simulation technique was

employed. A random set of 100 positions and heading orientations were generated

throughout the hemispherical simulation environment, indicated in Figure 2.5. The

single-state excitation and parameter estimation technique described previously was

performed at each of these positions.

For each of the simulations, an optimal filter was calculated to best satisfy

the relationship I ′ ≈ İ by performing an output error minimization between the

true time derivative of the ocellar input luminance, İ, and the high-pass filtered
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Figure 2.5: Diagram of Monte-Carlo simulation position/orientation

luminance, I ′.

C̄ =


0.030 0.0029 −0.24 0.045 8.4 0.024 −0.14 −26

−0.0002 0.017 −0.23 −8.2 0.099 0.020 28 −0.56

−0.0036 −0.017 −0.25 8.4 −0.016 −0.066 −26 −0.23

(2.15)

The mean value of each entry in C was taken across the 100 positions to form

an averaged measurement matrix, C̄ (2.15). This matrix suggests that there is

throughput from every state to every output. However, by examining certain metrics

of these parameter estimates, it it possible to discriminate those parameters that do

not robustly relate states to outputs across the non-isotropic environment. Figure

2.6 displays the values of ci,j for each state-output relationship against all random

simulation positions. The variation in scale of each plot is due to the variation in
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output response magnitude for unit amplitude sinusoidal motions across all eight

states. The values of the parameters associated with the states u, v, and r have a

mean near zero and vary in sign from position to position. This implies, for example,

that there is a deterministic positive relationship between u and the median ocellar

output I ′median at one position within the environment and a deterministic negative

relationship between them at another position. Therefore from Figure 2.6, it is clear

that the states u, v, and r are not encoded robustly in the outputs of the ocelli in

a cluttered environment, and their respective entries in the C matrix should be

excluded based on variability across position. This may be quantified with a metric

of relative variance, σ2
rel

σ2
rel(cn) ≡ 1

N

N∑
n=1

(
cn
c̄
− 1)2, (2.16)

where N=100. The values of σ2
rel > 1 are thresholded, eliminating these three states,

u, v and r.

R =


3.3 250 0.25 0.0090 0.0044 690 0.038 0.0045

26000 7.4 0.22 0.0068 19 1500 0.0088 5.8

180 7.0 0.24 0.0082 650 130 0.0089 33

 (2.17)

The matrix R, (2.17), presents the values for σ2
rel for all elements of C̄, with accept-

able entries shown in bold.

The goodness of fit of the parameters associated with the remaining states,

w, p, q, φ, and θ, can be tested using the partial F-ratio (2.18). This quantifies
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Figure 2.6: Measurement model parameter values for each state-output
pair across all random positions (mean value indicated with horizontal
line)

the degree to which the estimated output ŷn agrees with the true output yn, where
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ŷn = cnxn.

Fn =
c2n
s2n
, (2.18)

with the estimated fit error, s2n, given by

s2n =
1

T

∫ T

0

[yn(t)− ŷn(t)]2dt, (2.19)

for a simulation of duration T . Despite having low relative variance, the partial F-

ratios for the parameter estimates associated with attitude states φ and θ were very

low. This means the estimated outputs, Î ′, resulting from the identified parameters

cφ and cθ, do not correlate with the corresponding true outputs, I ′, for a given

simulation. Parameters with a corresponding Fn < 1 were eliminated from the

measurement model. The matrix P , (2.20), presents the values for Fn for all elements

of C̄, with acceptable entries shown in bold.

P =


430 610 1300 360 1500 140 0.46 0.49

760 690 1200 420 6.3 180 0.51 0.074

750 630 1100 700 3.5 220 0.48 0.056

 (2.20)

Applying the metrics in (2.16) and (2.18) suggests that only the roll rate, p,

pitch rate, q, and to a lesser degree, heave rate, w, are robustly encoded in the ocellar

outputs. The bolded elements in (2.15) indicate parameters that satisfy these met-

rics. This supports the assertion that pitch and roll rotation rates are encoded by

the varying luminance input to the ocelli. However, the empirical estimation tech-
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nique used has shown that it is possible for ocellar outputs to encode translational

state information, in the form of heave velocity, w. The methodology described

above allows us to state that a sensor that functions similarly to the ocelli of several

species of flying insects, as in Figure 2.4d, can only encode a linear relationship to

the states w, p, and q in a cluttered environment.

The parameters relating p with I ′right, and I ′left are then constrained to be equal

and opposite. The assumption implicit in this constraint is that maneuvers resulting

in symmetrical changes in the orientation of respective ocellar visual fields should

yield symmetrical ocellar outputs. The components relating to heave velocity, w, are

omitted as they require large magnitude heave velocity excitations to elicit ocellar

responses comparable to pitch and roll motions. This yields the final measurement

matrix C for three ocellar outputs (2.21),

C =


0 8.34

−8.33 0

8.33 0

 . (2.21)

The static estimation needed to reconstruct the desired state estimates p̂ and q̂ from

the ocellar filtered luminances, I ′, can be calculated by inverting (2.21). Since the

C matrix is non-square, a pseudo inverse is used to determine the estimation matrix

M (2.22),

x̂ = My = (CTC)−1CTy, (2.22)

where x̂ = [p̂ q̂]T and y = [I ′median I
′
right I

′
left]

T . This pseudo inverse calculation
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yields the final estimation matrix M (2.23). This is the linear least squares esti-

mator [53] [54]. Applying this linear combination to the three ocellar outputs of a

sensor similar to the simulation model will produce estimates of the body-fixed pitch

and roll rate states. Therefore, this simple estimator can provide useful feedback

information and is implementable in analog circuitry.

M =

 0.12 0 0

0 −0.060 0.060

 . (2.23)

The parameter values identified in (2.21) and (2.23) are influenced by specific

factors of the simulation. For example contrast between the sky and ground of the

simulated environment directly affects the magnitude of the filtered luminance I ′ in

response to a given state motion. Therefore, the most useful characteristics taken

from simulation modeling are the relative magnitudes the parameters in C and M .

Thus these quantities may be more simply represented as

C = k


1 0

0 −1

0 1

 . (2.24)

and

M = m

 2 0 0

0 −1 1

 . (2.25)
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where m = (2k)−1. This corresponds to the analytical findings in (2.5). The relation

in (2.25) is used to guide the design of a hardware ocellar sensor, described in Section

3.1.

Using a bio-inspired ocellar model, in conjunction with system identification

and Monte Carlo simulation techniques, it was shown that ocelli can robustly encode

body rate and heave velocity states throughout a cluttered 3-D environment. Fur-

thermore, a simple linear combination of the ocellar outputs can be used to extract

estimates of the body-fixed rotation rate states.

2.2 Distributed Acceleration

2.2.1 Analytical Modeling

2.2.1.1 Force and Torque Model

For a moving body as shown in Figure 2.7 with body-fixed coordinate system

O′, the position of body O′ with respect to the inertially-fixed frame O is defined as

rO′/O, where the notation of [55] is used. The center of mass of body O′ has transla-

tional acceleration a. The body has angular velocity ω and angular acceleration α.

The total force, F , and torque, τ , applied to the rigid body are functions of mass,

m, and inertia, I, as well as the previously defined motion states as

F = ma

τ = Iα+ ω × Iω = I
d

dt
(ω) + ω × Iω

(2.26)
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Figure 2.7: Diagram of body O′ in motion with respect to inertial frame
O. P is a point rigidly fixed to the body and offset from the body-fixed
coordinate frame O′ by constant position vector rP/O′

where the following quantities are expressed in the body-fixed frame

F =


Fx

Fy

Fz

 , τ =


τx

τy

τz

 ,a =


ax

ay

az

 ,α =


ṗ

q̇

ṙ

 , and ω =


p

q

r

 (2.27)

and the inertia tensor is

I =


Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

 (2.28)
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The force-torque vector is related linearly by matrix E to the state vector xaccel via

 F
τ

 = Exaccel (2.29)

where the defined state vector xaccel, as a function of a, α, and ω, is

xaccel ≡
[
ax ay az ṗ q̇ ṙ p2 q2 r2 pq pr qr

]T
(2.30)

The matrix E = f(m, I) is a linear function of mass, m, and inertia, I.

E =



m 0 0 0 0 0 0 0 0 0 0 0

0 m 0 0 0 0 0 0 0 0 0 0

0 0 m 0 0 0 0 0 0 0 0 0

0 0 0 Ix −Ixy −Ixz 0 −Izy Iyz −Izx Iyx (Iz − Iy)

0 0 0 −Iyx Iy −Iyz Izx 0 −Ixz Izy (Ix − Iz) −Ixy

0 0 0 −Izx −Izy Iz −Iyx Ixy 0 (Iy − Ix) −Iyz Ixz


(2.31)

An approximate CAD model was created (Figure 2.8), with each included compo-

nent having a mass assigned as measured from the actual component. From this
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Figure 2.8: CAD model of quadrotor vehicle with distributed accelerom-
eter array

model an estimated inertia tensor was calculated as

I =


2984.3 −1.915 −0.180

−1.915 3794.8 −11.751

−0.180 −11.751 2987.0

× 10−6 kg m2 (2.32)
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which may be approximated as

I ≈


Io 0 0

0 1.27Io 0

0 0 Io

with Io ≈ 2985 kg m2 (2.33)

This simplifies the matrix E (2.31) to yield

E ≈



m 0 0 0 0 0 0 0 0 0 0 0

0 m 0 0 0 0 0 0 0 0 0 0

0 0 m 0 0 0 0 0 0 0 0 0

0 0 0 Io 0 0 0 0 0 0 0 −0.27Io

0 0 0 0 1.27Io 0 0 0 0 0 0 0

0 0 0 0 0 Io 0 0 0 0.27Io 0 0



(2.34)

2.2.1.2 Acceleration Estimation

For the point P (Figure 2.7) , displaced relative to the center of mass of O′ by

vector rP/O′ , the acceleration with respect to the inertial frame O is given by

aP/O = aO′/O + aP/O′ +α× rP/O′ + 2ω × vP/O′ + ω × (ω × rP/O′) (2.35)

where aO′/O is the translational acceleration of the moving frame origin O′ with

respect to O, aP/O′ is the translational acceleration of P with respect to O′, α×rP/O′

is the Euler acceleration of body O′, 2ω × vP/O′ is the Coriolis acceleration of O′,
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and ω × (ω × rP/O′) is the centripetal acceleration of O′ (Figure 2.7). For the case

that point P is rigidly positioned with respect to O′, the vector rP/O′ is constant

when expressed in the body-fixed frame, implying that

vP/O′ =
d

dt

(
rP/O′

)
= 0 (2.36)

and

aP/O′ =
d

dt

(
vP/O′

)
= 0 (2.37)

This yields the simplification of (2.39),

aP/O = aO′/O +α× rP/O′ + ω × (ω × rP/O′) (2.38)

which reduces (2.39) from a differential equation in rP/O′ to a linear function of the

constant rP/O′ .

Now considering n such points, positioned rigidly with respect to the body

center of mass by vector ri, where i = 1, ..., n, the acceleration, ai, experienced at

the ith point is

ai = a+α× ri + ω × (ω × ri), (2.39)

with body-fixed position vector

ri =


xi

yi

zi

 (2.40)
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where α×ri is the Euler acceleration, and ω×(ω×ri) is the centripetal acceleration

of the rigid body. For notational simplicity the subscript references to the frames

O, O′, and P have been omitted. Furthermore, the acceleration, ai (2.39), is related

to the defined state vector, xaccel (2.30), by the matrix Hi = f(ri), which is a linear

function of ri, expressed in the body frame as

ai = Hixaccel (2.41)

where

Hi =


1 0 0 0 zi −yi 0 −xi −xi yi zi 0

0 1 0 −zi 0 xi −yi 0 −yi xi 0 zi

0 0 1 yi −xi 0 −zi −zi 0 0 xi yi

 (2.42)

The ith triaxial accelerometer affixed rigidly to the moving body, aligned with the

body fixed coordinate system, would produce outputs proportional to ai. Corre-

spondingly, the ith uniaxial accelerometer affixed rigidly to the vehicle airframe,

located at position ri, will produce measurement zi related to ai as

zi = κiζ
T
i ai + bi (2.43)

with constant gain, κi, bias, bi, and orientation vector, ζTi . The orientation vec-

tor represents the scalar projection of ai onto the sensitivity axis of the uniaxial

accelerometer, which may be arbitrarily oriented with respect to the body-fixed co-
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ordinate frame and can be expressed by azimuth and elevation angles, γi and βi,

with respect to the body x-axis by

ζTi ≡
[

cos γi cos βi sin γi cos βi − sin βi

]
(2.44)

Therefore, seven constant characteristic parameters, ρi ≡ [ κi bi γi βi xi yi zi ],

completely characterize the relationship between xaccel and zi

zi = κiζ
T
i Hixaccel + bi = cTi xaccel + bi (2.45)

where

cTi ≡ κiζ
T
i Hi = f(ρi) (2.46)

For n such uniaxial accelerometers distributed at distinct positions and orientations

on the rigid airframe, the measurement vector z is

z =



z1

z2

...

zn


=



cT1

cT2

...

cTn


xaccel +



b1

b2

...

bn


= Cxaccel + b (2.47)

Defining the unbiased measurement vector, y, as

y ≡ z − b (2.48)
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yields the relationship

y = Cxaccel (2.49)

where the matrix C = f(ρ) is of dimension n× 12. Using the pseudo-inverse of C,

denoted as M , the static state estimate is

x̂accel = My = (CTC)−1CTy (2.50)

from the n-dimensional unbiased measurement vector and knowledge of the charac-

teristic parameters of all n accelerometers. This is the linear least squares estima-

tor [53] [54]. To calculate this pseudo-inverse it is required that the quantity (CTC)

be invertible, and thus it is required that n ≥ 12. Applying the static linear map-

ping E from (2.29) to this state estimate then yields an estimate of the force-torque

vector as

 F̂
τ̂

 = Ex̂accel = EMy (2.51)

Thus with known physical properties of a vehicle and measurements from n dis-

tributed accelerometers, the total forces and torques applied to the vehicle can be

directly, statically estimated.
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2.2.2 Simulation Modeling

Based on the analytical modeling of the array of accelerometers in Section 2.2.1

a simulation model is formed. Open loop motions in all 6 degrees of freedom are

generated for a simulated flight vehicle. Sensor position and orientations, ri and ζTi ,

are defined by the user, and may be deterministically or randomly generated. Based

on these parameters and prescribed vehicle motions, simulated sensor outputs, y,

are generated based on (2.49). Static offset errors, ∆ri are added to the position

vectors ri in the calculation of Hi, from which C is derived (2.45), as

H̃i = f(r̃i) = f(ri + ∆ri) (2.52)

Gaussian noise, ν, is also added to the analytically calculated sensor outputs as

ỹ = y + ν (2.53)

Using this simulation model the translational and angular acceleration esti-

mates are compared for various cases of sensor noise, ν, position error, ∆r, and

sensor array size, n. Figure 2.9 depicts such a comparative plot for the actual and

estimated roll angular acceleration, ṗ, for the simulated sensor array. Comparing

Figures 2.9a-b it is clear that for a nearly minimum array size (n = 14) increasing

noise ν so as to decrease the signal-to-noise ratio (SNR) magnitude from 50 to 5

results in a significant increase in estimate noise. Figure 2.9c illustrates that for
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the same level of noise ν (SNR=5), increasing the number of sensor measurements

from 14 to 36 reduces the estimate noise to approximately the same levels seen in

Figure 2.9a. Figure 2.9d depicts the effect of adding an error, ∆r, with a maximum

magnitude that is 10% of the maximum magnitude of the sensor position vectors r,

that is ||∆r||∞ = 0.1||r||∞.
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Figure 2.9: Comparison plot of actual and estimated roll angular ac-
celeration, ṗ: (a) Estimate for sensor array with n=14 measurements,
SNR=50 (magnitude), and (b) SNR=5, a significant increase in mea-
surement noise ν, and (c) the same noise level (SNR=5), with nearly
triple the number of measurements (n=36); (d) Estimate with the same
conditions as (a), but with sensor position error ||∆r||∞ = 0.1||r||∞

Similar simulations were generated for various values of array size n and sensor

noise ν. To quantify the accuracy of the simulated state estimates, x̂accel, the
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standard estimate error, σe, is used and is defined as the standard deviation of the

estimate error, represented as the discretely sampled signal of length K, e[k] ≡

xaccel[k]− x̂accel[k].

σe =

(
1

K − 1

K∑
k=1

(e[k])2
)1/2

(2.54)

This metric of estimate accuracy is plotted in Figure 2.10 for values of n from 14

to 36 and sensor output SNR magnitude from 10 to 2. Figure 2.10a illustrates

the observation, quantitatively, that increases in SNR or sensor number n result

in decreases in estimate error, and thus a more accurate estimate of the states

xaccel. This trend was seen qualitatively in Figures 2.9a-c. Figure 2.10b depicts a

2-D contour plot of the surface in Figure 2.10a to illustrate a useful design tool.

Moving along any of these contour lines produces the same estimate accuracy for

varying values of n and SNR. This guides a potential design trade-off where the

estimate degradation caused by presumably cheaper and smaller sensors with greater

noise can be mitigated by increasing the number of sensors used. Conversely, if

the integration of additional sensors becomes infeasible, Figure 2.10b can be used

to determine the quality of sensor, via SNR, needed to produce a given estimate

accuracy with a reduced set of sensors. A noteworthy trend shown by Figure 2.10b

is that as SNR decreases, the contour lines have steeper slope with respect to the

x-axis. This implies that as sensor quality decreases, additional sensors must be

added at an even greater rate to achieve a consistent estimate accuracy.

To similarly quantify the effect of error in the sensor position r, simulated

state estimates were generated, and corresponding standard estimate errors were
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calculated, for various values of sensor array size n and position error ∆r. Figure

2.11 displays the results of this characterization. For this simulation, the sensor

SNR value was 50, a considerably lower noise case than is shown in Figure 2.10. The

position error values are represented here as fractions of the maximum magnitude

of the sensor position vectors, given by

εr =
||∆r||∞
||r||∞

(2.55)

A linear relationship is shown between position error fraction εr and standard es-

timate error σe. Similar to the results in Figure 2.10 for sensor noise, increasing

the number of sensors in the array reduces the effect of position error on the state

estimate accuracy.
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Figure 2.10: (a) Surface and (b) contour plots of the standard estimate
error σe for varying number of sensors in the distributed array and raw
sensor SNR.
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Figure 2.11: (a) Surface and (b) contour plots of the standard estimate
error σe for varying number of sensors in the distributed array and sensor
position error fraction εr.
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Chapter 3: Sensor Design and Testing

Section 3.1 presents the design and fabrication of an ocelli-inspired analog

circuit based on the modeling described in Section 2.1, including static estimation

outputs corresponding to pitch and roll rates. Characterization of the open-loop

behavior of the sensor is detailed in 3.2, with comparison to alternative attitude

rate sensors. Section 3.3 presents the design and automatic calibration methodology

for the distributed accelerometer array. The estimate accuracy of the sensor is

characterized in Section 3.4.

3.1 Ocellar Sensor Design

The simple structure and function of the ocellar system of flying insects is well

suited to fully analog bio-mimetic hardware implementation. An analog implemen-

tation could provide near instantaneous feedback if paired with analog actuation,

e.g. piezo-electric actuators. This fully analog closed-loop system would be capa-

ble of rejecting disturbances of much greater bandwidth than an equivalent digital

sensing and actuation architecture. While the work presented here does not investi-

gate a fully analog closed-loop, it demonstrates successful state estimation with an

analog ocellar sensor. Furthermore, a performance comparison between this sensor
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and other sensing modalities is carried out in open-loop and closed-loop tests.

An analog ocellar sensor design was formulated based on our model simulation

of ocellar function (Figure 2.4d) and the resulting estimated measurement matrix

C, (2.21), and estimation matrix M , (2.23), to extract pitch rate and roll rate, [56].

The design of this ocellar sensor is shown in Figure 3.1. The stages of the cir-

cuit can be segmented as light-to-voltage conversion, high-pass filtering, and static

estimation. The initial stage is three TAOS TSL14S light-to-voltage converter-

Figure 3.1: Ocellar circuit diagram with (a) light-to-voltage conversion,
(b) high-pass filtering, and (c) static estimation stages

s shown in Figure 3.2a. Each of these sensors is comprised of a photodiode with

internal transimpedance amplification (Figures 3.1a, 3.2c). It has a peak output

for light intensities of wavelength λp ≈640 nm with a response range of 350 nm

to 1050 nm (Figure 3.2b), indicating the sensors peak sensitivity in the red and

near-infrared wavelengths. Approximate spectral regions of visible light, ultraviolet
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Figure 3.2: (a) TAOS TSL14S light-to-voltage converter, (b) normalized
spectral sensitivity for TSL14S and ocelli of various species of flying
insects, (c) sensor circuit diagram with transimpedance amplification,
and (d) normalized angular sensitivity.

(UV), and infrared (IR) are shown for reference. Comparative aggregate curves of

spectral sensitivity are shown for fruit fly, blowfly, and locust species as character-

ized by [16], [17], and [11], respectively. For each of these species the characteristic

bimodal ocellar sensitivity in the UV and blue-green regions of the spectrum is seen.

Though the sensor spectral sensitivity is not strictly bio-mimetic, it allowed for de-

velopment and testing in an indoor laboratory environment, where UV light sources
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were not present. Each of these sensors converts the incident input luminance to a

proportional output voltage at a rate of 16 mV/(µW/cm2). This output voltage is

the electrical equivalent of the ocellar luminance, I, as shown in Figure 2.4d.

The second stage (Figure 3.1b) performs an inverting high-pass filtering of

the photodiode output voltage to produce a voltage approximating the luminance

time rate of change, I ′ ≈ İ. The Intersil ISL28208 operational amplifier (op-amp)

was used for filtering the analog voltage signals. The output voltage of an ideal

differentiator is governed by

Vo(t) = −RFCS
d

dt
(Vi(t)) (3.1)

However this circuit will amplify high frequency noise within the circuit itself, which

must be attenuated. The low-pass filter op-amp circuit has the transfer function

Vo
Vi

= − RF

RS + sCFRFRS

(3.2)

Combining the ideal differentiator and low-pass filter yields the band-pass filter

circuit shown in Figure 3.1b.

Vo
Vi

= − sCSRF

s2CFRFCSRS + s(CFRF + CSRS) + 1
(3.3)

The characteristic quantities of this system are the low-pass cutoff frequency ωL,

high-pass cutoff frequency ωH , unity gain frequency ωo, and maximum input-output
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gain AV .

ωL =
1

RFCF
, ωH =

1

RSCS
, ωo =

1

RFCS
, Amax = −RF

RS

(3.4)

For the component values shown in Table 3.1 these characteristic quantities are

estimated as ωL = 106 rad/s, ωH = 909 rad/s, ωo = 50 rad/s, Amax = −18.2. The

first two stages perform the operation depicted in the simulation model shown in

Figure 2.4d.

The final stage (Figure 3.1c) performs a static estimation of the states p̂ and q̂

from the analog filtered luminances voltages, analogous to I ′. These estimations are

equivalent to the linear combinations represented by the rows of (2.23), emphasiz-

ing the proportional relationships between the measurements and state estimates.

Again, the ISL28208 op-amps were used for the linear combination. The circuit in

Figure 3.3a is a differential amplifier with input from the left and right filtered lumi-

nances, equivalent to the second row of (2.23). The output voltage of a differential

+

_
R1

R2

R3 R4

+

_
R4

R5

Vin1

Vin2

Vin

Vout

Vout

a b

Figure 3.3: Ocellar subcircuits (a) Roll rate estimation differential amplifier, (b)
Pitch rate estimation inverting amplifier

amplifier relates to the input voltages and discrete components as

Vout =
(R2 +R1)R4

(R3 +R4)R1

Vin2 −
R2

R1

Vin1 (3.5)
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Since the right and left ocellar outputs have equal contributions to the estimate of

roll rate p̂, the values of resistors R1 through R4 were chosen to preserve this ratio

as given by

(R2 +R1)R4

(R3 +R4)R1

=
R2

R1

. (3.6)

The circuit in Figure 3.3b is an inversion of the median filtered luminance volt-

age signal. It is equivalent to the first row of (2.23). The output voltage of this

subcircuit, the pitch rate estimate q̂, is

Vout = −R5

R4

Vin, (3.7)

The inversion is needed to correct the sign change induced by the inverting high-pass

filter in Figure 3.2c, which has negative voltage gain, (3.1).

Table 3.1: Ocellar sensor circuit component list

Name/Type Manufacturer-SN Value Fig. 3.1 Label

Photodiode Light-to-Voltage Converter TAOS-TSL14S
Operational Amplifier Intersil-ISL28208
Resistor 1.1 kΩ Rb1

20 kΩ Rb2

1 kΩ Rc1

1 kΩ Rc2

1 kΩ Rc3

1 kΩ Rc4

1 kΩ Rc5

1 kΩ Rc6

Capacitor 1 µF Cb1

0.47 µF Cb2

This sensor design was initially fabricated and tested on a prototyping bread-

board. The circuit was comprised of three TSL14S photodiodes, five op-amps, and
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24 discrete electronic components. The photodiodes were mounted on a stepper

motor for open loop characterization of the roll estimate response. Having tested

the sensor prototype in a breadboard circuit, a printed circuit board (PCB) design

was developed (Figure 3.4).

Figure 3.4: Printed circuit board ocellar sensor (US quarter shown for
scale)

The final version of the sensor is an analog printed circuit board. The design

was modified to have four photodiodes, rather than three, oriented toward the right,

left, median, and aft directions (Figure 3.6a). This modification was chosen to cor-

respond with the axisymmetric geometry of the quadrotor sUAS. Correspondingly,

the circuitry for the pitch rate sensing was modified to replicate the circuitry for

roll rate sensing, using antagonistic filtered luminance measurements between the

median and aft photodiodes. The revised circuit diagram for this configuration is

shown in Figure 3.5

This symmetric design, though less bio-inspired, allowed for a more simplified

sensing and feedback implementation on a quadrotor vehicle, while maintaining
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Figure 3.5: Axisymmetric ocellar circuit diagram with (a) light-to-
voltage conversion, (b) high-pass filtering, and (c) static estimation
stages

the same bio-inspired processing and filtering structure described and modeled in

Section 2.1.2.

3.2 Ocellar Sensor Testing and Characterization

The open-loop performance of the ocellar sensor was characterized by com-

parison to a MEMS gyro, digital optic flow sensors, and an external visual motion

capture system, while being subjected to controlled roll rate, p, stimulus motions

provided by stepper motor (Figure 3.7). The MEMS gyro used was the Invensense

MPU-6000. The digital optic flow sensors used were commercially available Ardu-

Eye Aphid Vision Sensors from Centeye, Inc. (Figure 3.6b). Values from each of the

three sensor modalities, the ocellar sensor, gyro, and optic flow sensors were queried

simultaneously by the avionics board and transmitted to the data acquisition sys-

tem. Corresponding ground truth measurements of roll rate were recorded with a
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Vicon
TM

Motion Capture System.

The optic flow sensor array consisted of four small cameras, oriented in the

same directions as the ocelli photodiodes: right, left, forward, and aft. Each camera

processor calculated optic flow along the vertical image direction using a version of

the image interpolation algorithm described by [57]. A single vertical component

of average optic flow across the camera images was calculated for each camera. As

with the ocelli sensor, the quantities from the right and left optic flow sensors were

combined differentially to produce an estimate of rotational velocity about the roll

axis. This performs a simplified rotational velocity estimation analogous to that

performed by the interneurons of the insect visual system as described by [10].

Figure 3.6: (a) Analog ocellar sensor, (b) Centeye, Inc. ArduEye Aphid
optic flow sensor

A roll angle chirp stimulus was provided to the sensor suite by a stepper motor

to characterize the comparative responses of the sensors across a range of input

frequencies, Figure 3.8. The outputs of the sensors were scaled to match the units
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Figure 3.7: Open-loop characterization test apparatus for ocellar (blue),
optic flow (green), and inertial (red) sensors

of Vicon
TM

(rad/s). Segments of the chirp response are displayed for comparison

within three frequency ranges for 10, 2, and 1 second durations, respectively. From

Figure 3.8, several key features are apparent. The gyro provides a measurement

of consistent amplitude across the entire tested frequency range. The optic flow

measurement provides an accurate rotation rate estimate at low input frequencies

with a high signal-to-noise ratio but attenuates significantly at medium and high

range frequencies. The ocellar sensor provides an output consistent in magnitude

with Vicon
TM

measurements across medium and high frequency input ranges but

has a very low SNR at low frequencies. The roll off in response of the ocelli at low

frequencies is expected from the high-pass filtering stage, which is in agreement with
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experimental results obtained in flying insects [6]. The noise in the ocellar sensor

is due to the fluorescent lights and Vicon
TM

cameras that strobe at a frequency of

50 Hz and 100 Hz, respectively, which the sensor is able to detect. Testing in an

outdoor environment, free from rapid luminance fluctuations, would eliminate this

source of noise. However the intensity of natural outdoor lighting, specifically in

the infrared wavelength, causes the photodiodes to saturate. Although this makes

outdoor testing with the current photodiodes impossible, the results presented in

this work would be consistent with components specifically selected for outdoor

operation.

Using the Vicon
TM

roll rate measurement as the system input and the three

scaled sensor measurements as system outputs, three transfer function estimates

were calculated and are shown in Figure 3.9, with corresponding values of magni-

tude squared coherence. The magnitude squared coherence indicates that a linear

input-output relationship exists at a given frequency. The coherence plot indicates

that the transfer function estimates from this chirp stimulus can be trusted over

a frequency range of approximately 4 rad/s to 50 rad/s. From the transfer func-

tion plots it is clear that the gyro and ocelli have relatively consistent magnitudes

across all frequencies when compared to Vicon
TM

. Conversely, the optic flow mea-

surements show a roll off in magnitude as frequency increases. The phase diagram

indicates a dilating phase delay between the Vicon
TM

measurement and all other

sensor measurements due to a small time delay between the collection of these two

data sets. For this reason, and the consistent scaling between the Vicon
TM

and gyro

measurements across all frequencies, a scaled measurement from the gyro is consid-
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Figure 3.8: Chirp response time history comparison for ocellar, optic
flow, and inertial sensors with motion capture ground truth

ered the ground truth measurement for remaining sensor comparisons. A new set of

transfer function estimates were calculated for the sensor measurements, scaled to

rad/s, with the gyro as the system input and the optic flow and ocellar sensors as

the system outputs. Figure 3.10 displays these estimated transfer functions and the

corresponding magnitude-squared coherence. This figure more clearly demonstrates
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the complementary responses of the ocelli, which approach a gain of 0 dB, with

respect to the gyro, at high frequencies with attenuation at low frequencies, while

the optic flow has an approximate gain of 0 dB at low frequencies with attenuation

at high frequencies. Furthermore, at low frequencies there is almost no phase lag

between the gyro and the other sensor measurements, while at high frequencies the

optic flow measurement is phase-delayed relative to the gyro by approximately 70◦

and the ocelli is phase-advanced relative to the gyro by approximately 50◦.

A more thorough characterization of the response of the ocelli for varying am-

plitudes of angular rotation, using the MEMS gyro as the ground truth measurement

was desired. The stepper motor was used to excite the sensors with a sinusoidal in-

put to roll angle, φ, across a range of frequencies, 0.6 rad/s to 125 rad/s, and a

range of angular amplitudes, 1◦ to 45◦. For each pair of excitation frequency and

amplitude the gyro-to-ocelli gain and phase were calculated. These values are shown

in Figure 3.11 as a Bode surface plot to display variation of excitation amplitude.

The black curve on each of these surfaces indicates the operational envelope of the

stepper motor. Beyond this envelope, the output amplitude of the stepper motor

does not match the desire amplitude and is attenuated to some degree. This data is

also depicted in Figure 3.12 where the mean transfer function across input amplitude

is shown in black. The noise in the transfer function estimate is effectively only in

cases of both low frequency and low amplitude angular displacements, which is an

expected failure mode of the sensor given its high-pass filter characteristics and the

low visual resolution of the photodiodes. From Figures 3.11 and 3.12 it is notewor-

thy that for the majority of the operations envelope of the motor the magnitude and
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Figure 3.9: Transfer function estimate Bode and coherence plots from
motor motion input, as measured by Vicon

TM
, to output from visual and

inertial sensors

phase relationship between the gyro and ocellar sensor are approximately constant

across frequency. This is a favorable characteristic of the ocellar sensor which is de-
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Figure 3.10: Transfer function estimate Bode and coherence plots from
motor motion input, as measured by gyro, to output from visual sensors

signed to act as a visual rate gyro. This result suggests the ocellar sensor presented

here is well-suited to provide rotation rate information over a large bandwidth of
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excitation frequencies.
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Figure 3.11: Bode plot of gyro-ocelli transfer function across varying in-
put amplitudes, with stepper motor operational envelope shown (black)

It was shown in [18] through intracellular recordings that each descending neu-

ron of fly ocelli is sensitive to rotations about a preferred axis. The fly ocelli were
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subjected to sawtooth luminance stimuli that simulated rotation of the insect head

about axes of varying azimuth angle. Plotting the normalized amplitude of the re-

sulting intracellular response against this stimulus azimuth angle, they fit a cosine

function and determined the direction of the axis that yielded maximal response.

This was the direction of the preferred axis (PA), with these axes consistently dis-

tributed at azimuth angles of 0◦ and±45◦ when measured for all descending neurons.

The azimuth angle of the stimulus rotation axis, i.e. the stepper motor axis, was

similarly varied while the response of the ocellar sensor roll rate p̂ was recorded,

Figure 3.13. Figure 3.14 shows the normalized amplitude of the response against

the relative azimuth angle of the excitation axis. A cosine function was fit and the

analogous preferred axis of sensitivity for the sensor roll rate output was determined

to be 0.26◦. This is expected as the p̂ estimate is designed to measure roll rotation

rates about an axis with azimuth of 0◦. The broader implication of this finding,

is that a sensor based on functional and behavioral models of the ocelli yields a

response nearly identical to the electrophysiological response found in the biological

analog [18]. This suggests that the sensor developed in this work concurs to a great

degree with the insect ocelli in its function.
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Figure 3.13: Preferred axis test apparatus, with ocellar sensor forward
direction (black), stimulus axis angle, α (blue), and preferred axis (PA)
of sensitivity (red) indicated

3.3 Distributed Acceleration Sensor Design

A distributed accelerometer sensor array was fabricated and tested for use on

a quadrotor sUAS. To mitigate interfacing demands and sensor footprint, triaxial

MEMS accelerometers were selected, specifically Analog Devices ADXL345. Each

of these digital sensors provide three 10-bit measurements corresponding to three

approximately mutually orthogonal sensitivity axes, with±4g range. A total of eight

of the sensors were integrated into the sensor array, providing 24 total measurements

as described in (2.43). The sensor measurements were collected and processed on

an ArduPilot Mega avionics package, which was integrated on a quadrotor sUAS.

The sensors were affixed to the vehicle at arbitrary locations, distributed away from
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the vehicle center of mass, as shown in Figure 3.15.

To perform the static estimation described in (2.50) it is necessary to estimate

the characteristic parameters, ρi, for all n sensors, thereby calibrating the sensor

array for any given arrangement. Directly measuring these quantities with precision

is prohibitively difficult, particularly sensor orientation, ζTi . Thus a method of

automatic calibration was developed to estimate the values in ρi. Using a Vicon
TM

visual motion capture system, the pose of the quadrotor airframe, and attached

sensor array, are tracked while undergoing 6-DOF motions. Simultaneously, all 24

sensor measurement outputs, zi, are recorded for the duration of the calibration

sequence. Linear least-squares regression is used to fit the 12-dimensional linear
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Figure 3.15: Distributed accelerometer array (red) integrated on a
quadrotor vehicle.

parameter vector µTi and scalar bias bi as

zi(t) = µTi ξ(t) + bi (3.8)

where zi(t) is the time history of the output of the ith sensor for the entire calibration
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sequence, and

ξ(t) = f(x(t)) ≡ [ax(t) ay(t) az(t) · · ·

· · · − (q(t)2 + r(t)2) (p(t)q(t) + ṙ(t)) (p(t)r(t)− q̇(t)) · · ·

· · · (p(t)q(t)− ṙ(t)) − (p(t)2 + r(t)2) (q(t)r(t) + ṗ(t)) · · ·

· · · (p(t)r(t) + q̇(t)) (q(t)r(t)− ṗ(t)) − (q(t)2 + p(t)2)]T

(3.9)

is the defined time history vector, which is a function of the time history of the

acceleration state vector, that is xaccel(t). Given (2.45), (3.8), and the definitions of

xaccel, ξ, and C, several useful relationships between µTi and ρi are noted.

[µi,1 µi,2 µi,3] = κi [cos γi cos βi sin γi cos βi − sin βi] (3.10)

=
1

xi
[µi,4 µi,5 µi,6] (3.11)

=
1

yi
[µi,7 µi,8 µi,9] (3.12)

=
1

zi
[µi,10 µi,11 µi,12] (3.13)

From (3.10) the sensor elevation may be expressed βi as a function of µi,1, µi,2, µi,3,

and βi itself.

βi = cot−1
(
−µi,1
µi,3

sec

(
sin−1

(
−µi,2
µi,3

tan βi

)))
(3.14)

Numerical solvers may be used to solve for βi, from which values of κi and γi
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clearly result via (3.10). Alternatively if κi is known from the sensor datasheet

specifications, then βi can be solved for uniquely in (3.10). The specifications for

the ADXL345 indicate the gain κi has a nominal value of 13.05 LSB/m/s2 (256

LSB/g) with relatively low variance (Figure 3.16). The assumption that the gain

Figure 3.16: Frequency distribution of sensor gain, κi, for (a) x-axis, (b)
y-axis, and (c) z-axis.

κi = 13.05 allows for direct estimation of the orientation parameters as

βi = − sin−1
(
µi,3
κi

)
(3.15)

and

γi = tan−1
(
µi,2
µi,1

)
(3.16)

Having identified values for κi, bi, γi, and βi, three additional least-squares re-

gressions were performed between the elements of µTi as described by (3.11)-(3.13)

to estimate the parameters xi, yi, and zi. The parameter values ρ found via linear

regression are then used as initial values for an output-error estimation algorith-

m, as described in [58], to refine the values comprising C and b to best fit (2.47).
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The linear regression must be performed first because output-error estimation is an

iterative identification process, which is thus computationally slower than linear re-

gression, and it requires initial parameter estimates near the true value for successful

convergence. Performing this two-phase calibration yields the estimated sensor po-

sitions and orientations for all 24 sensors, shown in Figure 3.17. The ground truth

sensor positions are shown by a red circle as these are approximate values, measured

manually with calipers.
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Figure 3.17: Estimated sensor positions and orientations from calibra-
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3.4 Distributed Acceleration Sensor Testing and Characterization

Here it is desirable to illustrate the efficacy of the measurement and estimation

scheme described in Section 3.3. Having established a linear method for estimating

the states in (2.30), these are compared to a ground truth measurement of the

acceleration states.

A comparative plot is provided in Figure 3.18 between the output zi of a sin-

gle sensor axis and the output expected for a simulated sensor with the estimated

parameter values of ρi for a calibration sequence. The accurate estimation of this

relationship is the goal of the automatic calibration described in Section 3.3. Sim-

ilarly, Figure 3.19 displays a comparison between the roll angular acceleration, ṗ,

as measured by Vicon
TM

and the estimate, ˆ̇p, provided by the distributed sensor

network as in (2.50). These two figures were produced for open loop acceleration

stimuli induced with manual motion inputs. This illustrates the goodness of fit

achieved by the automatic calibration, which can be performed in minutes.

While this provides a qualitative level of accuracy, it is desirable to analyze

the estimate accuracy of the calibrated sensor array as a function of number of

sensors n. A random subset of n sensors was selected from the 24 total sensors from

which we formed the estimate x̂accel (2.50), where n varied from 13 to 24. Using a

process similar to the characterization in Section 2.2.2 the state estimate accuracy

is quantified via the standard estimate error σe (2.54). This process was repeated

for 500 such randomly selected sensor subsets. Only 500 subsets were generated as

the number of possible unique combinations of sensors pn for each value of n is given
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Figure 3.18: Comparison of actual and estimated sensor output for a
single axis zi.

by

pn =
24!

n!(24− n)!
, (3.17)

yielding approximately 2.5×106 combinations for n=13. The mean values of the

standard estimate error, and their corresponding standard deviations, across the

500 subsets are presented in Figure 3.20. A curve was fit through the mean values

of σe given by

σe =
1

(n− 11)2
+ 0.014 (3.18)
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Figure 3.19: Comparison of actual and estimated roll angular accelera-
tion ṗ.

This result confirms the improvement in estimate accuracy as the number of sensors

increases, but with diminishing effect, as seen in Figures 2.10-2.11.

From the above results presented it may be asserted that the distributed ac-

celeration sensing scheme described herein produces reliable and accurate measure-

ments of the acceleration state vector (2.30). This sensor will provide estimates of

applied forces and torques for use in disturbance rejection feedback, discussed in

Section 4.2.
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Chapter 4: Closed Loop Implementation

Section 4.1.1 details the integration of the ocellar sensor and optic flow sensor

onto the quadrotor sUAS. Section 4.1.2 presents the closed loop response for rate

feedback from a gyro, ocellar sensor, or a complementary fusion of ocellar and

optic flow measurements. Section 4.2.1 details several possible control strategies

for disturbance rejection with distributed acceleration measurements. Section 4.2.2

describes the system identification modeling of the quadrotor sUAS for model-based

control The closed loop response of the system is given in Section 4.2.3.

4.1 Ocelli-Based Disturbance Rejection

4.1.1 Control Design and Implementation

The avionics package and sensor suite described in Section 3.2 were integrated

onto a DJI FlameWheel 330 quadrotor sUAS (Figure 4.1) to characterize the closed-

loop performance of the ocellar sensor in comparison to the other sensing modalities

for rejecting exogenous disturbances.

The avionics performs attitude tracking in pitch and roll through PID control

with measurements from the onboard MPU-6000 IMU, including accelerometer and
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gyro. To test the performance of the ocellar and optic flow sensors, the vehicle

was subjected to impulse input roll commands. The impulse inputs were generated

by including an additive disturbance to the speed controller command for a small

number of inner loop cycles, subsequent to the attitude control computation. To

induce a roll disturbance, this additive disturbance was added antagonistically to

the right and left pairs of speed controllers. The magnitude of the impulse was the

maximum extent of the allowable actuator command. This method of introducing

perturbations allows for more precise and repeatable roll disturbances.

The vehicle control was modified so that proportional-integral (PI) control was

provided by the IMU while allowing the derivative (D) component of the control to

be provided by either the gyro, ocelli, ocelli with optic flow, or be omitted entirely.

It is asserted by [59], that for a flapping wing micro-flier three assumptions would

support stabilization of the vehicle using only rate feedback, i.e. no proportional

attitude feedback. These assumptions are:

• The vehicle motion depends only on the forces and torques averaged over the

time period of each wing stroke.

• The aerodynamic drag is equally proportional to the airspeed in the forward

and lateral directions.

• The vehicle is symmetric about the x− z plane.

While these assumptions do not necessarily hold for this flight vehicle, they present a

solution to overcoming the difficulty of obtaining an absolute attitude estimate from
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ocellar outputs, and a possible explanation for the evolution of this visual attitude

control system in micro-fliers.

Using the open loop characterization and comparison between the visual and

inertial sensors, described in Section 3.2, the derivative gain for each of the visual

sensors was selected to normalize their response magnitude with that of the gyro

and its corresponding derivative gain (Figure 3.10). More specifically, the ocellar

sensor roll rate estimate was normalized by the high frequency gain ratio between

its output and that of the gyro. Conversely, the optic flow roll rate estimate output

was normalized by the low frequency gain ratio between its output and that of the

gyro. This normalization process yielded measurements from both visual sensors

that matched the inertial sensor for the frequency regime in which their estimates

were of the highest magnitude and quality.

Having normalized the visual sensor to produce rotation rate estimates of the

same scale as the inertial sensor nominally used for rate control, these measurements

were then fed back in the roll attitude control loop, interchangeably with the gyro

measurement. The ocelli-optic flow control was achieved with a complementary

combination of the roll rate estimate from the ocelli, p̂ocelli, scaled by a factor fc and

the output of the optic flow sensor, p̂OF , scaled by the complement of fc.

p̂ = fcp̂ocelli + (1− fc)p̂OF , (4.1)

where fc = 0.89. The weighting of the optic flow component in this complementary

control had to be kept relatively low for stable closed-loop flight due to the phase lag
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introduced by the optic flow measurement in regions of high frequency excitation,

Figure 3.10. This simple combination is possible, because (1) both visual sensors

were normalized by the ratio of their maximum output gain and the gyro output

gain and (2) they demonstrate complementary frequency response magnitudes. As

you move across frequencies one visual sensor response attenuates as the other am-

plifies. Thus, by choosing the complementary scale fc, we effectively move along the

frequency spectrum, simply by selecting the ratio between the two outputs. That

is, for a high value of fc, near 1, the roll rate is predominantly estimated with the

ocellar sensor, effectively selecting a mixing in the high frequency regime shown

in Figure 3.10. Correspondingly, low values of fc, primarily weight the optic flow

measurement in the roll rate estimate, effectively selecting a sensor mixing from the

lower frequency region of Figure 3.10.

4.1.2 Performance Analysis

The response of the vehicle roll angle was recorded with the Vicon
TM

motion

capture system while in free flight. The vehicle was subjected to 10 roll input

impulses for each of the four derivative control cases. These cases were denoted

as undamped, gyro damped, ocelli damped, and ocelli-optic flow damped. Figure

4.2 displays the aggregate results from these flight tests for the four control cases.

The outer bounds of the 10 trajectories are shown as a shaded band and the mean

trajectory is shown with a bold line.
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Figure 4.1: Ocellar (blue) and optic flow (green) sensors integrated with
IMU/avionics (red) sensor suite on a quadrotor vehicle

From the undamped response in black it is clear that the undamped PI control yields

a marginally stable closed-loop system as indicated by the oscillations that do not

attenuate with time, Figure 4.2. Thus, derivative feedback must be included to

fully stabilize the system. The response with gyro damping demonstrates consistent

performance with a diminished peak response and little noise or oscillation in the

steady-state trajectory as shown by the narrowness of the shaded band. The ocelli

Table 4.1: Ocellar sensor impulse response performance metrics

D-Control MSE MSEtr MSEss σ2 M̄p t̄s
Case [deg2] [deg] [s]

Gyro 0.398 1.51 0.031 0.249 18.8 28.1
Ocelli 0.393 1.30 0.093 0.678 17.6 48.1
Ocelli-OF 0.565 2.01 0.088 0.902 21.0 18.9
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Figure 4.2: Impulse response time history aggregates for gyro, ocellar
and ocellar-optic flow based damping feedback for actuator impulse dis-
turbances

damping trajectories exhibit similar response to the gyro but with a higher level

of variability in the response, due to the significantly higher levels of noise in the

ocellar sensor. This noise is due to the fluctuation of the environment luminance

from strobing light sources, such as fluorescent lighting and the Vicon
TM

system.

The complementary ocelli-optic flow damping trajectories also exhibit an increased

amount of noise over the set of trajectories than in the gyro damped case. Again,

this is due to luminance noise in the ocellar sensor. This case also yields a larger
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Figure 4.3: Overlaid impulse response time history aggregates for gy-
ro, ocellar and ocellar-optic flow based damping feedback for actuator
impulse disturbances

peak response to the impulse than the ocelli damped case. This is attributable to the

diminished influence of the ocelli, as described in (4.1), which has a greater response

at the high input frequencies imparted by the impulse. The ocelli-optic flow control

exhibits a diminished secondary response peak than is seen in the gyro and ocelli

damped cases. This is due to the improved low frequency damping provided by the

optic flow feedback. Figure 4.3 displays the gyro damped, ocelli damped, and ocelli-

optic flow damped response aggregates overlaid for comparison. The trajectory

76



extrema are displayed with thin lines and the mean trajectories with bold lines.

To quantify the energy of the response, the mean-squared error (MSE) for each

of the four mean trajectories was calculated and is shown in Table 4.1. Also shown

are the MSE values for the transient portion of the response, designated the tran-

sient error MSEtr, and for the steady-state portion of the response, designated the

steady-state error MSEss. This division illustrates that the ocelli damped response

had a slightly better transient response and the gyro damped response had the best

steady-state response. The ocelli-optic flow damped system also outperformed the

ocelli damped system in steady-state response. The variance, σ2, of the trajectories

relative to the mean was calculated and shown in Table 4.1. This metric quantifies

the greater consistency of the response of the gyro due to lower noise. The peak

response of the mean trajectory, M̄p, was calculated for each case, illustrating that

the ocellar feedback was actually better than the gyro at rejecting the initial tran-

sients caused by the impulse. The settling time of each mean trajectory, t̄s, was

calculated for a threshold of ±2◦ (±10%). The values, shown in Table 4.1, reveal

that the settling time of the mean trajectory for the ocelli-optic flow control case

was superior to both the gyro and ocelli cases.

This ocellar sensor design, which is implemented completely in analog circuity,

thereby providing high speed loop closure, could be combined with a wide-field

analog optic flow sensor, capable of estimating navigational states, to perform both

inner and outer loop control using only visual sensing. [60] demonstrated successful

autonomous navigation of unknown environments on a ground vehicle utilizing the

same sensing, processing, and perception techniques as in the insect compound eye
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system. The same bio-inspired visual obstacle avoidance mechanism was successfully

extended to a micro air vehicle by [61]. The advantage of fusing analog ocellar

sensing with analog optic flow navigational sensing is that a single visual sensor

may produce all necessary inner and outer loop state estimates with high speed

analog loop closure. This sensor could be miniaturized to an actual insect-scale

flight vehicle, illustrating the potential power of the sensing mechanisms described

in this work.

4.2 Distributed Acceleration-Based Disturbance Rejection

The evolution of the 6-DOF state of a flight vehicle is governed by the to-

tal forces and torques applied to the vehicle. These are typically categorized as

gravitational, aerodynamic, actuation, and disturbance forces and torques. The dis-

turbances manifest as error between the desired state of the vehicle and the actual

state. Rapid, direct sensing of forces and torques can be used to track desired vehicle

accelerations in the presence of these undesired exogenous disturbances.

4.2.1 Control Design

4.2.1.1 Small-Perturbation Theory

The state vector for an aircraft is typically given as

x =

[
u v w p q r φ θ

]T

(4.2)
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Using this defined state, the dynamics in (2.26) may be represented as

Fx = m(u̇+ qw − rv) (4.3)

Fy = m(v̇ + ru− pw)

Fz = m(ẇ + pv − qu)

τx = Ixṗ− Ixz ṙ + qr(Iz − Iy)− Ixzpq

τy = Iy q̇ + rp(Ix − Iz) + Ixz(p
2 − r2)

τz = Iz ṙ − Ixzṗ+ pq(Iy − Ix)− Ixzqr

Small-perturbation theory as outlined in [62] is applied, where any state x, force

F , or torque τ may be represented as a steady state trim value plus a deviation,

respectively as x = x̄+∆x, F = F̄+∆F , and τ = τ̄+∆τ . Then assuming a reference

flight condition, hover in this case, all trim states, forces, and torques may be set to

zero, leaving only perturbation states. Furthermore, by assuming the perturbation

states ∆x are small it is asserted that the products of these, e.g. ∆p∆q or ∆p2 are
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negligible, yielding

∆Fx = m∆u̇ (4.4)

∆Fy = m∆v̇

∆Fz = m∆ẇ

∆τx = Ix∆ṗ− Ixz∆ṙ

∆τy = Iy∆q̇

∆τz = Iz∆ṙ − Ixz∆ṗ

Expanding each perturbation force or torque as a Taylor series approximation of the

perturbation states, controls, and disturbances yields

∆Fx ≡ ∆X =
∂X

∂u
∆u+ · · ·+ ∂X

∂uR
∆uR + · · ·+ ∂X

∂du
∆du + · · · (4.5)

where, for example, uR is the roll actuator input and du is the u-velocity disturbance

state. Substituting this expansion into (4.5)

∂X

∂u
∆u+ · · ·+ ∂X

∂uR
∆uR + · · ·+ ∂X

∂du
∆du + · · · = m∆u̇ (4.6)

the stability, control, and disturbance derivatives are defined as

Xu =
∂X

m∂u
, XuR =

∂X

m∂uR
, Xdu =

∂X

m∂du
, · · · (4.7)
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Substituting these quantities into (4.5), and solving for the state derivative yields

∆u̇ = Xu∆u+ · · ·+XuR∆uR + · · ·+Xdu∆du + · · · (4.8)

Similarly, for illustration, the roll dynamics yield

∆ṗ = Lu∆u+ · · ·+ LuR∆uR + · · ·+ Ldu∆du + · · · (4.9)

4.2.1.2 6-DOF State-Space Formulation

Applying the small-perturbation theory of (4.5)-(4.8) to the dynamic equations

in (4.4), the open loop vehicle plant may be represented in linear state space form

as

ẋ = Ax+Bu+Gd (4.10)

y = Cx

and may be represented under closed loop control by the block diagram in Figure

4.4

Figure 4.4: State space block diagram with feedback
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where the input vector is comprised of the roll, pitch, throttle, and yaw con-

troller commands

u =

[
uR uP uT uY

]T

(4.11)

and the disturbance vector is comprised of disturbance states, representing gust

disturbances in the six velocity states

d =

[
du dv dw dp dq dr

]T

(4.12)

as is consistent with [63] and [64]. Here typical quantities are assumed for the

stability, control, and disturbance derivatives of a quadrotor vehicle, which is often

represented as having dynamics decoupled about each axis, i.e. Xv ≈ Yu ≈ Lu ≈

Mp ≈ · · · ≈ 0. The typical closed loop controller Ko stabilizes this system

In the case without disturbance, d = 0, it is expected that the attitude con-

troller has been designed to generate reference controller commands ur to drive the

vehicle state to a reference xr. For the linear model in (4.10) the inputs u directly

affect the state derivative ẋ through the linear mapping B, which represents the

actuator authority. The state derivatives then propagate to the state x through

the system dynamics, represented by A, which includes aerodynamics, gravitational

acceleration, and kinematics. The disturbances d are similarly mapped to the state

derivative via G. Traditionally, inertial sensing only extracts information from the

lower order states, not directly affected by the input commands or disturbances.
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This is represented in (4.10) by the mapping C which typically only encodes the low

order states, such as p, q, r, φ, and θ. The actuation and disturbance forces do not

typically appear directly in the inertial sensing scheme, instead these accelerations

must propagate through the dynamics in A before they are sensed and used in feed-

back control. The unique sensing scheme of the distributed accelerometers provides

direct sensing of the accelerations in ẋ imparted by the actuators and disturbances.

This allows for a more effective disturbance rejection by sensing these forces and

torques before they propagate to lower order states.

A typical state space model is represented for the 6-DOF system of a quadrotor

in the form of (4.10) with the state vector in (4.2) and defined mappings (4.14). Here,

the measurement vector is

y = Cx =

[
p q r φ θ

]T

(4.13)

83



A =



Xu 0 0 0 0 0 0 −g

0 Yv 0 0 0 0 g 0

0 0 Zw 0 0 0 0 0

0 0 0 Lp 0 0 0 0

0 0 0 0 Mq 0 0 0

0 0 0 0 0 Nr 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0



, B =



0 0 0 0

0 0 0 0

0 0 ZT 0

LR 0 0 0

0 MP 0 0

0 0 0 NY

0 0 0 0

0 0 0 0



G =



−Xu 0 0 0 0 0

0 −Yv 0 0 0 0

0 0 −Zw 0 0 0

0 0 0 −Lp 0 0

0 0 0 0 −Mq 0

0 0 0 0 0 −Nr

0 0 0 0 0 0

0 0 0 0 0 0



(4.14)
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C =



0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, Ko =



Kp 0 0 Kφ 0

0 Kq 0 0 Kθ

0 0 0 0 0

0 0 Kr 0 0


(4.15)

The values for the parameters of the generic 6-DOF system are given in Table

4.2.

Table 4.2: Generalized quadrotor 6-DOF vehicle model parameters
(4.10)

Parameter Parameter Parameter Parameter Parameter Parameter
Name Value Name Value Name Value

Xu -0.02 Yv -0.02 Zw -0.5
Lv -0.005 Mu -0.005 Nr -0.01
LR 0.02 MP 0.02 ZT 0.04
NY 0.002 Kp 400 Kq 400
Kφ 2000 Kθ 2000 Kr 300

4.2.1.3 Static Force Feedback

The attitude controller Ko is applied to the lower order states (4.13) of the

plant, Figure 4.5, to produce stable attitude tracking. Through block diagram

manipulation, as detailed in Appendix A, this loop may be represented as in Figure

4.6 where the manipulated control KM and manipulated plant GM are given by

KM = H−1PKo = G−1BKo (4.16)
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Figure 4.5: State space block diagram with feedback from IMU

Figure 4.6: Manipulated state space block diagram with feedback from
IMU

GM = s−1CH = C(sI − A)−1G (4.17)

and the defined dynamic systems P and H are

P ≡ s(sI − A)−1B, H ≡ s(sI − A)−1G (4.18)

The choice of P and H are more fully illustrated in Appendix A.

The loop transfer function Lo, when viewing the system from the output y as

is typical, is defined

Lo ≡ GMKM (4.19)

= s−1CPKo

= C(sI − A)−1BKo
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Correspondingly, the sensitivity transfer function So and complementary sensitivity

transfer function To, are defined as

So ≡ (I + Lo)
−1 (4.20)

To ≡ Lo(I + Lo)
−1 (4.21)

where the mapping from reference r to output y is given by To, and the mapping

from disturbance d to output y is given by SoGM , that is

y = Tor + SoGMd = s−1
(
I + s−1CPKo

)−1
CPKor + s−1

(
I + s−1CPKo

)−1
CHd

(4.22)

Introducing feedback from the acceleration state estimates x̂accel (4.23) through

the controller Ki to adjust the input to the system plant yields Figure 4.7. The ac-

Figure 4.7: State space block diagram with feedback from IMU and
distributed accelerometers

celeration state vector generated by the distributed accelerometer array xaccel, as

detailed in Section 2.2.1 (2.30), condenses under the small-perturbation assumptions
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of a vehicle in hover, i.e. ∆q∆w ≈ ∆p∆q ≈ ∆p2 ≈ · · · ≈ 0 to

xaccel ≈M ẋ =

[
u̇ v̇ ẇ ṗ q̇ ṙ

]T

(4.23)

where

M =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0



(4.24)

Since the disturbances d produces forces and torques that directly affect the acceler-

ation states in ẋ through G, (4.10), they can be detected directly via the distributed

acceleration scheme. Direct measurements of the translational and rotational accel-

erations are available from the distributed accelerometers. For this feedback system

the input u to the plant is

u = ur − δ (4.25)

where we show just the inner loop acceleration regulation loop in Figure 4.8. Given

this feedback, the relations between the reference and disturbance signals and the
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Figure 4.8: State space block diagram of acceleration regulation loop
with feedback from distributed accelerometers

system output as previously given in (4.22) are now modified as

y = s−1C(I + PKiM)−1PKo

(
I + s−1C(I + PKiM)−1PKo

)−1
r

= Tor (4.26)

y = s−1
(
I + s−1C(I + PKiM)−1PKo

)−1
C(I + PKiM)−1Hd

= SoGM,dd (4.27)

where the manipulated control in the presence of disturbancesKM,d and manipulated

plant in the presence of disturbances GM,d are shown in Figure 4.9 and result from

block diagram manipulation of Figure 4.7 as detailed in Appendix A Here SoGM,d

Figure 4.9: Manipulated state space block diagram with acceleration
feedback
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represents the disturbance sensitivity transfer function, more traditionally written

simply as SoG, as defined in [65], which indicates the effect of exogenous disturbances

on the system output.

It is desirable to quantify the performance of our control using the tools of

robust analysis. To this end the performance is quantified in terms of the system

signals of interest such as the system states, control commands, input disturbances,

and noise. As finite energy signals, they therefore belong to the Hilbert space

Ln2 (−∞,∞) = {f : (−∞,∞)→ Rn,

∫ ∞
∞
||f(t)||2dt <∞} (4.28)

as defined by [66], where the integral in this expression is the L2 norm. For a

stable real rational transfer function G, with input w and output z = Gw, we may

represent the induced norm in Ln2 of G as

||G||L2→L2 = sup
w 6=0

||z||L2

||w||L2

= sup
w 6=0

||Gw||L2

||w||L2

(4.29)

where this expression effectively represents the input energy to output energy gain.

The space of stable real rational transfer functions is known as the H∞ space whose

norm is defined as

||G||∞ = sup
ω
σ̄[G(jω)] (4.30)

where σ̄ is the maximum singular value [67]. The induced norm in Ln2 relates to the
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H∞ norm || · ||∞ as

||G||L2→L2 = ||G||∞ = sup
ω
σ̄[G(jω)] (4.31)

where σ̄[G(jω)] is the maximum singular value of G as a function of frequency ω.

Thus the input signal energy to output signal energy gain may be represented via

the maximum singular value σ̄, and may further note that the worst case scenario

input energy to output energy gain is given by the H∞ norm, or equivalently sup
ω
σ̄.

Therefore when quantifying the performance of a MIMO system in terms of input to

output signal energy, e.g. input disturbance signal energy to output signal energy,

a small value for σ̄ is desirable for the transfer function SoG.

Similarly, it is desired that the system output y track the reference r as close-

ly as possible over all frequency at which pilot commands are expected to occur.

Therefore, using the same motivation described in the preceding paragraphs, it is

desirable that the singular values σ̄ of transfer function relating r to y, i.e. To, to

be as close to 0 over the expected frequency range of all pilot input commands.

Figure 4.10 displays the simulated response of the 6-DOF system from Section

4.2.1.2 subjected to doublets in roll attitude reference and an impulse gust distur-

bance, as well as singular value plots of To and SoGM,d, for the nominal control

(Figure 4.5) and the force feedback control (Figure 4.7). From the singular value

plot of SoGM,d we see improvements in disturbance rejection for high frequency in-

puts when acceleration feedback is used. This can be seen qualitatively in the time

history response where the peak magnitude of the system response to the input
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Figure 4.10: Roll response time history for nominal attitude feedback
(blue) and force feedback (red), and singular value plots of SoGM,d and
To
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disturbance is slightly diminished. However, from the tracking response of the step

command and the singular value plot of To, we see that the closed loop system re-

sponse to reference commands is slowed for the case of acceleration feedback. This

is undesirable in that it yields a less responsive, though only slightly more resilient

closed loop system. This characteristic trade-off between disturbance attenuation

and system responsiveness was demonstrated with the implementation of this type

of control in [68]. This slowed response is expected, as the feedback from the acceler-

ations acts against both unwanted disturbance forces and desired actuation forces.

The desired acceleration of the system ẋr is defined here as the response of the

plant to the reference input ur generated by the attitude controller in the absence

of disturbance d

ẋr = Ax+Bur (4.32)

If it is assumed that the distributed accelerometer array provides the state derivative

vector, such that

xaccel = M ẋ ≈ ẋ (4.33)

neglecting the kinematic terms, then substituting this approximation into the closed

loop control yields

u = ur − δ = ur −KiM ẋ ≈ ur −Kẋ (4.34)
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ẋ = Ax+Bu+Gd (4.35)

≈ Ax+B(ur −Kiẋ) +Gd

≈ (I +BKi)
−1(Ax+Bur +Gd)

≈ (I +BKi)
−1(ẋr +Gd)

Thus, while increasing the acceleration feedback Ki attenuates the exogenous distur-

bances, it simultaneously diminishes the desired acceleration response of the system.

The system correspondingly reaches desired states xr more slowly, thereby produc-

ing a less responsive system. This point is further illustrated by selectively choosing

that Ki = B−1, resulting in the closed loop dynamics

ẋ = Ax+Bu+Gd (4.36)

≈ Ax+B(ur −B−1ẋ) +Gd

≈ Ax+Bur − Ax−Bu−Gd+Gd

≈ B(ur − u)

≈ Bδ

Here it is clear that as the tracking feedback loop tries to drive δ to zero, and thereby

any disturbances, it also drives the system state derivatives ẋ to zero, suppressing

the attitude commands and any desired vehicle motion.
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4.2.1.4 Force Adaptive Feedback Design

To compensate for this undesirable behavior of a less responsive system, the

acceleration feedback control δ is redesigned so as not to diminish accelerations

induced by the attitude controller command ur. To this end, δ is reformulated with

a feedforward term from the reference command ur to include a prediction of the

actuation force-induced accelerations, mapping it to ẋ via B.

u = ur − δ = ur −Ki(M ẋ−Bur) ≈ ur −Ki(ẋ−Bur) (4.37)

This control, denoted as force adaptive feedback (FAFB), yields the closed loop

dynamics

ẋ ≈ Ax+B(ur −Ki(ẋ−Bur)) +Gd (4.38)

≈ (I +BKi)
−1(Ax+Bur +BKiBur +Gd)

≈ (I +BKi)
−1(ẋr +BKiBur +Gd)
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Similar to (4.37) the effect of choosing Ki = B−1 is illustrated for this case of

acceleration feedforward-feedback control.

ẋ ≈ Ax+B(ur −B−1(ẋ−Bur)) +Gd (4.39)

≈ Ax+Bur − Ax−Bu−Gd+Bur +Gd

≈ B(2ur − u)

≈ B(ur + δ)

From this it is clear that as the feedback loop drives δ to zero, the state dynamics

are driven to ẋ = Bur. This loop effectively acts to suppress the forces associated

with both the system dynamics and disturbances, while passing the actuation forces

through to the plant. The control matrix B is not typically square, and thus its

inverse must be approximated by the pseudo-inverse B−1 = (BTB)−1BT when being

used for the static control gain matrix Ki. This control strategy is similar to the

incremental dynamic inversion control suggested by [44] and [45]. Similarly to these

techniques, our proposed control needs only measurement of the accelerations of the

vehicle x̂accel, a sufficiently high fidelity estimate of the control authority B, and

the actuator command generated by the attitude controller ur. The linear dynamic

inversion controller presented in [69] is also similar to this, but additionally requires

simulation of the system dynamics and therefore a higher fidelity estimate of the

dynamic matrix A than is required by the control proposed here.

The block diagram for this inner loop force adaptive control system is depicted

in Figure 4.11. This method of adapting the control command with feedback from
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Figure 4.11: State space block diagram of command tracking loop with
feedback from distributed accelerometers and feedforward from actuator
command

acceleration sensing and feedforward from the command is applied to the 6-DOF

system described by (4.14)-(4.14). The assumption (4.33) guided the selection of

this control design, however, for the full 6-DOF system this assumption must be

relaxed, as the output vector includes attitude states that must be removed from

the feedforward control component. The acceleration state estimate provided by

the distributed accelerometers is not precisely ẋ, but is instead given as a function

of the output vector, x̂accel = M ẋ. We must modify the expression for the control

command to be dimensionally consistent by replacing B with MB in the feedforward

control component, as this is the actual mapping between the input control u and

the acceleration state vector x̂accel.

u = ur − δ = ur −Ki(M ẋ−MBur) (4.40)

Correspondingly the control gain matrix is chosen as

Ki = ((MB)TMB)−1(MB)T (4.41)
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This control loop structure is shown in Figure 4.12.

Figure 4.12: State space block diagram of attitude tracking loop with
feedback-feedforward from accelerometers

4.2.1.5 Force Adaptive Feedback Robust Analysis

Given this force adaptive feedback with feedforward (FAFB) control structure,

block diagram manipulations detailed in Appendix A were performed to transform

the system into the form of Figure 4.13. This generic structure was used to develop

Figure 4.13: Manipulated state space block diagram with force adaptive
feedback

typical robust analysis system structures. For the case of a noiseless system sub-

jected to exogenous disturbances, the representation may be simplified as in Figure

4.14 where the transfer functions that comprise the loop are instead defined as

KM,d = H−1P (I +KiMB)Ko (4.42)
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Figure 4.14: Manipulated noiseless state space block diagram with force
adaptive feedback

GM,d = s−1C(I + PKiM)−1H (4.43)

Using the definitions of Lo, So, and To from (4.19), (4.20), and (4.21), useful transfer

function matrix relationships are calculated. The transfer function To that maps

references r to outputs y in (4.26) becomes

y = s−1C(I + PKiM)−1P (I +KiMB)Ko

(
I + s−1C(I + PKiM)−1P (I +KiMB)Ko

)−1
r

= Tor (4.44)

Additionally, the transfer function SoGM,d, mapping disturbance d to output y in

(4.27) becomes

y = s−1
(
I + s−1C(I + PKiM)−1P (I +KiMB)Ko

)−1
C(I + PKiM)−1Hd

= SoGM,dd (4.45)

The same conditions of roll reference doublets and a roll gust impulse disturbance

were simulated for the 6-DOF system, as in Figure 4.10, now with the FAFB control.

The response time history and singular value plots for SoGM,d and To are shown in
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Figure 4.15. The downward shift of the singular value plot of SoGM,d represents

attenuation of disturbances across all frequencies, which indicates a very effective

disturbance rejection mechanism that is capable of resilience to a very wide class of

disturbances. Additionally, the closeness of the singular value plot of To of the FAFB

control case to the nominal attitude control case indicates that there is no degrada-

tion of reference tracking at high frequencies. Furthermore, at low frequencies the

singular value plot of To is closer to 0 dB for the FAFB case than for the nominal

case, indicating an improvement in low frequency reference tracking. From both

the response time history and the singular value plots it is clear that the selection

of the control adaptation law in (4.40) produces more accurate, responsive track-

ing of the nominal control commands while simultaneously attenuating exogenous

disturbances to a more significant degree.
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Figure 4.15: Roll response time history for nominal attitude feedback
(blue), force-adaptive feedback with feedforward (red) and singular value
plots of SoGM,d and To
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Loop shaping filters may be also applied to the controller Ki to amplify or

attenuate its response for desired regions of the frequency spectrum. Figure 4.16

displays comparative singular value plots for SoGM,d and To the nominal attitude

controller and the FAFB control with low-pass and high-pass shaping filters applied

to Ki. From this plot it is clear that including dynamic filtering in the controller

Ki serves to diminish or improve disturbance rejection over the frequency that is

respectively attenuated or amplified by the shaping filter. Specifically, this is shown

as the singular value curves for disturbance sensitivity SoGM,d of the filtered con-

troller transfer functions moves up or down in magnitude relative to the unfiltered

FAFB control. It may be also noted that the reference tracking transfer function

To singular value curves, and thus the tracking performance, is unaffected by the

filtering.

This result illustrates that if disturbances to the system are expected to occur

over a range of frequencies, then a shaping filter in Ki with amplification at that

frequency range and attenuation elsewhere may be a desirable design choice. Bode

plots for the respective shaping filters are shown in Figure 4.17. It is noted that

both filters in this case have 0dB gains at 5 rad/s, and maximum gains of 10 (20dB).

102



0 1 2 3 4 5
−30

−20

−10

0

10

20

30

Time [s]

R
ol

l A
ng

le
 [d

eg
]

 

 
Nom’l
FAFB
LPF
HPF
Dist

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−100

−80

−60

−40

Frequency [rad/s]

S
in

gu
la

r 
V

al
ue

s,
 S

oG
M

,d

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−60

−40

−20

0

20

Frequency [rad/s]

S
in

gu
la

r 
V

al
ue

s,
 T

Figure 4.16: Roll response time history for nominal attitude feedback
(blue) and (a) force-adaptive feedback with feedforward (red) with (b)
low-pass shaping filter (green) and (c) high-pass shaping filter (black),
and singular value plots of SoGM,d and To
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pass shaping filter (black) applied to force-adaptive feedback control in
simulation for Figure 4.16

Using the manipulated system shown in Figure 4.13, the impact of noise in

the acceleration estimate x̂accel may also be analyzed. Assuming a system with such

noise, but without an exogenous disturbance d, the system may be equivalently

represented in the typical robust analysis structure as shown in Figure 4.18
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Figure 4.18: Manipulated noiseless state space block diagram with force
adaptive feedback

where the transfer functions that comprise the loop are alternatively defined

as

KM,n = −(PKi)
−1P (I +KiMB)Ko = −K−1i (I +KiMB)Ko (4.46)

GM,n = −s−1C(I + PKiM)−1PKi (4.47)

Using the formulation of Lo, So, and To from (4.19), (4.20), and (4.21), the transfer

function relating accelerometer estimate noise n to system output y is defined as

SoGM,n and given by

y = −s−1
(
I + s−1C(I + PKiM)−1P (I +KiMB)Ko

)−1
C(I + PKiM)−1PKin

= SoGM,nn (4.48)

The transfer function relating reference r to output y, that is To is unchanged by

this formulation and remains equivalent to (4.44). Figure 4.19 illustrates the effect of

this additive noise in the acceleration estimate from the distributed accelerometers

on the roll response is shown, with comparison between the nominal attitude control

case and the force-adaptive feedback cases with and without noise. The severity of
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the noise is also depicted in Figure 4.19. It is clear from the time histories that

even without loop shaping filters, the throughput of noise to the roll state is largely

attenuated. This qualitative result is confirmed by the singular value plot in Figure

4.19, which shows a roll off in noise at approximately 1 rad/s. These results illustrate

the robustness of the force adaptive feedback structure in the presence of exogenous

disturbances, as well as measurement noise.
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Figure 4.19: (a) Response time history for nominal controller (blue)
force adaptive feedback without noise (red) and with noise (green), time
history of the estimated roll acceleration state for noiseless (red) and
noisy (green) cases, and singular value plot of SoGM,n
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Having characterized the robustness of the force adaptive feedback architecture

for a prototypical quadrotor 6-DOF model it is desired to test its performance on the

DJI FlameWheel 330 described in Section 4.1.1. To perform this characterization

and testing, the quadrotor must first be modeled about hover.

4.2.2 Quadrotor System Identification

An extensive literature on system identification techniques exists, including

two thorough works on the aircraft system identification [58], [70]. The generalized

structure of the system we desire to implement on the quadrotor sUAS is shown in

Figure 4.20. Nominally, the existing attitude sensing and control system takes in a

pilot reference attitude state xr and inputs to the IMU sensors from the true attitude

state of the vehicle x, and outputs an actuator command u designed to drive x to xr.

The actuator-aero dynamic system encompasses all actuator dynamics and vehicle

aerodynamics. The input to this system is the actuator command u and outputs are

actuator force and torque. The output of this system is then corrupted by additive

disturbance force and torque d, such as a gust or actuator error, yielding a total

force and torque, F, τ , that is applied to the vehicle to perform control maneuvers.

This total force is the input to the vehicle plant system, which outputs the vehicle

state that we desire to control x. The force-adaptive sensing and control system,

shown in orange, is introduced to account for the disturbances d by modifying the

input to the actuator-aero dynamic system u. This inner feedback loop acts to drive

the actual total force and torque to the desired force and torque as commanded by
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u, thereby forming a reference tracking loop.

Figure 4.20: Generalized block diagram of quadrotor system, force-
adaptive feedback control from distributed acceleration sensor array
shown in orange.

4.2.2.1 1-DOF Roll Modeling

As with the disturbance rejection with ocellar sensing described in Section 4.1,

the scope of this control design and implementation is limited to a single degree of

freedom to demonstrate the disturbance rejection performance without implement-

ing a full 6-DOF MIMO control. Here only the SISO roll degree-of-freedom system is

modeled on the quadrotor sUAS (Figure 3.15), leaving other out-of-plane rotational

states to be regulated to zero by existing control systems, assuming

θ = ψ ≈ 0 (4.49)

and therefore q = r = 0. Though the out-of-plane states are not physically con-

strained to be zero, the axisymmetric airframe and actuation architecture of a

quadrotor provides largely decoupled dynamics, that is, motions about the pitch

and yaw axes do not induce motion about the roll axis. This assumption yields

several simplifying results. First, we only need to model the system as a function
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of the roll Euler angle φ and its derivatives. Correspondingly, from inspection of

(2.29), (2.31), and (4.49) the following torque equation is yielded

τx = Ixṗ (4.50)

Thus, only the roll torque τx in (2.26), which is assumed to be a function only of ṗ, is

considered as the input to the vehicle. Given the assumption (4.49), the kinematic

relation between φ and p, typically expressed as

φ̇ = p+ q sin(φ) tan(θ) + r cos(φ) tan(θ) (4.51)

condenses to

φ̇ = p (4.52)

which yields, with (4.50), the plant transfer function

φ =
1

Ixs2
τ =

1

Ixs2
Ixṗ (4.53)

The distributed accelerometer array produces estimates of the defined acceleration

state vector x (2.30), with the only rotational state not equal to zero being ṗ.

Given (4.50), (4.53), and the fact that the distributed acceleration sensor provides

direct estimates of ṗ, we may simply remove the roll inertia Ix in (4.53), which is

effectively a constant scaling factor. Thus, we represent the vehicle plant system
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GP , with input ṗ and output φ, as a simple kinematic relationship

GP (s) =
1

s2
(4.54)

It is also practical to model the system in terms of ṗ rather than τ , because the

Vicon
TM

motion capture system is capable of directly measuring kinematic states

and not torque.

In identifying the quadrotor SISO roll dynamic system, we took advantage of

the open source avionics integrated on the vehicle, which allows for direct inspec-

tion of the controllers being implemented. This reduces the number of unknown

systems and parameters that must be estimated with system identification and thus

improves the fidelity of our modeling and the performance of resulting model-based

controllers. Through this direct inspection of the flight software, the existing roll at-

titude control system was reverse-engineered. To identify GC1 and GC2 we compared

the measurements of the onboard IMU sensors, provided in integer counts (LSB),

to external measurements of φ and p, expressed respectively in rad and rad/s, from

the Vicon
TM

system for input open loop vehicle egomotions. The three attitude

controller transfer functions GC1 , GC2 , and GC3 , shown in block diagram form in

Figure 4.21, were identified to be

GC1(s) = 20439 ≡ K1, GC2(s) = 5638s ≡ K2s, and GC3(s) = 0.15 ≡ K3 (4.55)

The output of GC3 is the actuator command u, so we may represent the attitude
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Figure 4.21: Block diagram of identified quadrotor roll SISO system
with output angular acceleration disturbance do. Unknown actuator-
aero dynamic model GA (blue).

control as a transfer function relating roll angle φ and roll angle reference φr to

actuator command as

u = 0.15 (20439(φr − φ)− 5638sφ) (4.56)

The only remaining unidentified component of quadrotor roll dynamic model is

the actuator-aero dynamic system GA, shown in blue in Figure 4.21. As defined,

this system maps actuator commands u, in integer counts (LSB), to roll angular

acceleration ṗ, in rad/s2. Flight tests were performed to identify this system where

vehicle motions were excited via commanded inputs, while the actuator command

ũ was recorded simultaneously with measurements of ṗ via the Vicon
TM

system,

where ũ = u+ di for input actuator disturbance di (Figure 4.22). In order to better

identify GA, the system was excited using inputs at two different points within the

system. Input doublet commands were sent alternatively as the roll angle reference

φr and input actuator disturbance di. Traditionally only reference inputs, such as

φr, are used to excite the vehicle for system identification. By introducing excitation
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inputs in the form of additive actuator disturbance di after the control command is

computed, the dynamics of GA are more fully excited. This reduces the effect of the

attitude controller to suppress the natural dynamics of GA, while still allowing for

stabilizing flight control. Simply setting the computed control command u to zero

with the input disturbance di being the only input to GA produces unstable flight.

Therefore, including stabilizing feedback is necessary for system identification flight

tests.

Figure 4.22: Block diagram of identified quadrotor roll SISO system with
input actuator disturbance di (green) and roll angle reference φr (red).
Unknown actuator-aero dynamic model GA shown (blue).

With the identified plant and controller dynamic systems in (4.54) and (4.55),

and the loop structure in Figure 4.22, we express the input sensitivity transfer

function Si(s) as

Si(s) =
GPGA

1 +GPGAGC3(GC1 +GC2)
=

1

s2G−1A +K3(K1 +K2s)
(4.57)

with input di and output φ. Similarly, we express the complementary sensitivity
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transfer function T (s) as

T (s) =
GPGAGC3GC1

1 +GPGAGC3(GC1 +GC2)
=

K1K3

s2G−1A +K3(K1 +K2s)
(4.58)

with input φr and output φ. The response of the output roll angle φ may be fully,

explicitly expressed as

φ = Tφr + Sidi (4.59)

Time domain output-error estimation techniques, as described in [58], were

implemented to refine the estimated value of coefficients in GA. Generally, this

iterative technique optimizes the free parameters of a modeled system Ĝ so as to

minimize the residual ν between the true output y and the modeled output ŷ, where

y = Gu, ŷ = Ĝu, and ν ≡ y − ŷ, for input u. This was simultaneously performed

for the transfer functions T and Si. For each iteration, a postulated model ĜA

yields a Si and T from (4.57)-(4.58), each of which yields a corresponding simulated

roll angle, φ̂. These simulated φ̂ are compared to true roll angle measurements φ,

collected via Vicon
TM

for each of the test cases depicted in Figure 4.22. The residual

signal ν for each of these cases is minimized with subsequent iterations, by varying

the parameters in ĜA, until a tolerance is reached. The resulting ĜA is the model

that best fits the true GA. The output-error parameter identification resulted in the

estimated actuator-aero dynamic model

ĜA(s) =
0.486s3 + 0.403s2 + 0.201s+ 0.0233

s4 + 11.0s3 − 45.8s2 − 60.3s+ 710
(4.60)
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This system has a pair of unstable complex poles in the right half of the complex

plane (RHP), which is consistent with our observation of unstable flight when the

feedback control command u is set to zero. Figure 4.23 shows the time history of

the true and modeled roll angles, φ and φ̂, for the sensitivity transfer function Si,

with doublet inputs to di and φr = 0. Similarly, Figure 4.24 shows φ and φ̂ for the

complementary sensitivity transfer function T , with doublet inputs to φr and di = 0.

These plots illustrate a good time-domain fit between the modeled system and the
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Figure 4.23: Time history comparison for true (blue) and modeled
(green) roll angle output φ from sensitivity function Si. Input actua-
tor disturbance di shown (black, dotted), with φr = 0.

measured output data. The Bode plots for estimated transfer functions S, T , and

GA are shown in Figure 4.25 with corresponding spectral Bode plots. Corresponding

magnitude-squared coherence plots are also shown, indicating the frequency regions

over which the input-output relationship for the respective transfer function is well

represented by a linear system. These indicate the goodness of fit of the estimated

model ĜA (4.60) in the frequency domain. Given the results shown in Figures 4.23-
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Figure 4.24: Time history comparison for true (blue) and modeled (red)
roll angle output φ from complementary sensitivity function T . Input
roll angle reference φr shown (black, dotted), with di = 0.

4.25, it is concluded that the actuator-aero dynamic model identified in (4.60) is a

relatively accurate SISO model for the true dynamic system.

4.2.2.2 2-DOF Reduced-Order Modeling

The model identified in Section 4.2.2.1 yields a high fidelity response when

compared to the actual flight data. It is desirable to simultaneously reduce the

complexity of this single degree-of-freedom model, expand to an additional transla-

tional degree of freedom, and put the system into a form conducive with the state

space implementation of the force adaptive feedback control detailed in Section

4.2.1.4. To accomplish these goals, a reduced order system identification modeling

for the 2-DOF translational and rotational system with state vector x, control u,
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Figure 4.25: Bode and magnitude squared coherence plots of transfer
function process and spectral models. (a) process model (green) and
spectral model (black) for S(s), (b) process model (red) and spectral
model (black, dashed) for T (s), and (c) process model (green) and spec-
tral models for GA(s) for inputs from di (black, solid) and φr (black,
dashed).

and disturbance vector d was performed

x =

[
v p φ

]
, u = uR, d

[
dv dp

]
(4.61)
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The postulated model for this system is of the form

ẋ =


Yv Yp g

Lv Lp 0

0 1 0

x+


YR

LR

0

u+


−Yv −Yp

−Lv Lp

0 0

d (4.62)

As in Section 4.2.2.1, output-error system identification techniques were utilize to

estimate the free parameters in (4.62). It is imposed that the gravitational constant

g and the kinematic relationship in the last row of the A matrix are fixed values,

with all remaining terms free to be modified by the estimation algorithm. Here we

assume the negative relationship between the aerodynamic parameters in A and G.

Since the open loop dynamics of the quadrotor are unstable we must simulate the

closed loop system while performing output-error parameter estimation, utilizing

the identified control law (4.56). In Figure 4.26, the comparative plots of the time

histories for the true and modeled states v, p, and φ. From this plot we see high

fidelity alignment between the flight data and the model, especially for a reduced-

order model.

For this state space representation, the matrices C and M as presented in

Figure 4.12, are given by

C =

 0 1 0

0 0 1

 , M =

 1 0 0

0 1 0

 (4.63)
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Figure 4.26: Comparison between true and modeled 2-DOF lateral
reduced-order model quadrotor system for states v, p, and φ

The values for the identified parameters of the 2-DOF system are given in

Table 4.3.
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Table 4.3: Identified quadrotor 2-DOF lateral reduced-order model pa-
rameters (4.62)

Parameter Parameter Cramer Rao Units
Name Value Bound (× 10−3)

Yv -0.821 0.34 s−1

Yp -0.437 2.5 s−1

YR 0.000205 0.018 m/s2/LSB
Lv -2.52 1.1 s−1

Lp 2.20 0.36 s−1

LR 0.0184 0.0001 m/s2/LSB

Converting the parameter LR from magnitude to dB yields a value of (-34.7dB). This

aligns well with the maximum magnitude in the Bode plot of the transfer function

GA(s) in Figure 4.25. Highly accurate estimates of all the parameters in Table 4.3

is not necessary. Rather, it is most important that the parameters that comprise

the control authority matrix, B, be most accurate. This is promising, as both YR

and LR have the lowest Cramer Rao bounds, and thus can be considered more

accurate. To further characterizing the system, the avionics attitude control loop

period was identified to be approximately between 12 and 20 ms. The reading of the

accelerometer array, estimation of acceleration state vector xaccel, and computation

of the force-adaptive control was estimated to take less than 2 ms within the avionics

hardware.
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4.2.3 Implementation and Performance Analysis

4.2.3.1 Simulated Performance Analysis

The force adaptive feedback control was then formulated based on this iden-

tified system model, (4.41), and Figure 4.12. Given this estimated 2-DOF system

and this corresponding control law, the system response may be simulated for refer-

ence tracking and disturbance rejection. Figures 4.27 and 4.28 depict this simulated

response for the cases of force feedback and force adaptive feedback-feedforward con-

trol (FAFB), respectively, as defined in Figures 4.7 and 4.12. The nominal control

is shown in these figures in blue, and singular value plots are included to illustrate

the improvements in disturbance rejection in the time domain and as a function of

signal frequency for each control case. Clearly from these plots, the force-adaptive

feedback control with the feedforward component (Figure 4.28) provides superior

disturbance attenuation and reference tracking when compare to both the nominal

and force feedback only cases (Figure 4.27).
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Figure 4.27: Simulated roll response time history for nominal attitude
feedback (blue), force feedback (red) and singular value plots of SoGM,d

and To
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Figure 4.28: Simulated roll response time history for nominal attitude
feedback (blue), force-adaptive feedback with feedforward (red) and sin-
gular value plots of SoGM,d and To
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Figure 4.30 illustrates the effects of measurement noise in the accelerometers

on the system output. Figure 4.30b shows the angular acceleration estimated by

the simulated accelerometer array with and without noise, shown in green and red

respectively. Figure 4.30a shows the resulting roll angle tracking and impulse roll

disturbance rejection for these cases. Clearly, even for highly noisy acceleration esti-

mates, the accuracy of the roll angle tracking is not significantly diminished. Figure

4.30c confirms this result via the singular values of the transfer function mapping

measurement noise n to output y (Figure 4.29). Attenuation of this transfer func-

tion is shown as the noise frequency increases. This is a positive result, as sensor

noise is typically characterized by relatively higher frequencies.

Figure 4.29: State space block diagram of attitude tracking loop with
feedback-feedforward from accelerometers with noise
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Figure 4.30: Simulated roll response time history for nominal attitude
feedback (blue), force-adaptive feedback (red) with noise (green), ac-
celeration estimate without noise (red) and without noise (green), and
singular value plot of SoGM,n
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4.2.3.2 Implementation Performance Analysis

The control laws described in (4.40), (4.41), and Figure 4.12 based on the

reduced-order model detailed in Section 4.2.2.2 were implemented on the DJI quadro-

tor. Force feedback on the vehicle was provided via estimates of translational and

angular acceleration, ay and ṗ respectively, from the distributed accelerometer array

characterized in Section 3.4. As with the disturbance rejection performed for the

ocellar sensor, detailed in Section 4.1.1, additive impulse disturbances were inject-

ed into the motor speed controller commands. This allowed for repeatable precise,

disturbances to best compare the control strategies. Figure 4.31 displays the results

of this closed-loop implementation. The mean trajectory over 10 total trajectories

for each control case, nominal and force-adaptive feedback (FAFB) respectively, are

shown with a solid bold line, with the variance across trajectories shown as shaded

bands. Attenuation of the disturbance can be clearly seen from these results and

correlates to the simulated disturbance response shown in Figure 4.30, validating

our simulation results. To quantify the performance of the controllers, the 2-norm

of the mean error signal, e(t), is calculated as

||e(t)||2 ≡
(∫ ∞
−∞

e(t)2dt

)1/2

(4.64)

where the mean error signal is defined as the deviation of the mean trajectory from

zero. The performance of the disturbance rejection is quantified and summarized in

Table 4.4.
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Figure 4.31: Roll response for with force-adaptive feedback as shown in
Figure 4.12

From the results summarized in Table 4.4, the mean peak response M̄p and mean

error norm ||e(t)||2 yield improvements of 54% and 48% respectively when the FAFB

control is implemented in comparison to the nominal attitude control.
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Table 4.4: Distributed acceleration actuator disturbance rejection per-
formance metrics

Control M̄p ||e(t)||2
Case [deg] [deg]

Nominal 29.4 92.4
FAFB 13.4 48.0

Using this same control, rejection of disturbances from an external gust source

was performed. As before, the mean taken over 10 trajectories for each control case

is shown in Figure 4.32 with a solid bold line, with the variance shown as a shaded

band. The location and direction of the gust source is shown with a black arrow.

This gust source produced a nominal freestream velocity of 15 m/s at a distance of

0.5 m from the source, i.e. the mean distance between the vehicle center and the

source when it was imparted. The level of disturbance rejection attained for each of

these cases was characterized by quantifying the deviation of the mean trajectories

away from the desired path. As these implementations do not include an outer loop

position tracking control and are effectively open loop in the position states, the

initial undisturbed path may be used to indicate the desired path subsequent to

the disturbance. To do this, the trajectories were detrended for each control case

based on the mean trajectory prior to reaching the gust source. Extrapolations

of these trend lines, considered to be the desired paths, are shown as dashed lines

in Figure 4.32. Having detrended the mean trajectories, the 2-norm of the mean

error signal e(t) as given by (4.64) was calculated, where the mean error signal was

defined as the difference between the mean trajectory after encountering the gust

and the extrapolated linear trend lines. The respective values of the performance
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Figure 4.32: Trajectories in response to lateral gust source (black) with
force-adaptive feedback control as shown in Figure 4.12, desired paths
shown (dashed)

metric ||e(t)||2 for the nominal and FAFB control cases are shown in Table 4.5.

This defined performance metric for gust rejection yields a 82% improvement in gust

rejection with force-feedback control. From Table 4.5 it is also evident that there is

a 81% improvement in disturbance rejection when considering peak deviation M̄p,
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Table 4.5: Distributed acceleration gust disturbance rejection perfor-
mance metrics

Control M̄p ||e(t)||2
Case [m] [m]

Nominal 0.36 1.89
FAFB 0.069 0.34

from the desired path.

Thus we have successfully demonstrated and quantified closed-loop implemen-

tation of the rejection of undesired forces and torques on a quadrotor in the form of

both actuator disturbances and exogenous wind gusts, with feedback via force and

torque estimates from a distributed array of accelerometers affixed to the vehicle

airframe.
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Chapter 5: Conclusions

This thesis provides the framework for and demonstrates the feasibility of

analog implementable, and therefore highly scalable, mechanisms for improving the

stability and gust tolerance of small unmanned aircraft systems. Biologically in-

spired models of the sensing systems common to several species of flying insects

were the basis for the design, fabrication, implementation, and testing of two atti-

tude stabilization and disturbance rejection sensing mechanisms. Through analysis

of biological sensing mechanisms and their underlying physical functions and in-

herent advantages, in terms of noise reduction, information extraction, and rapid

responsiveness, two novel sensors were developed. This is the first effort to imple-

ment a fully analog ocellar sensor for rate feedback stabilization of a flight vehicle.

This is also the first work to implement a distributed array of redundant acceler-

ation sensors to estimate the full 6-DOF acceleration state of a flight vehicle for

disturbance rejection.

The outcome of this thesis is the design of two sensing modalities, supported by

analytical, simulation, characterization, and implementation results, that augment

the stability and gust tolerance of a flight vehicle, in a highly scalable framework.

The approach for the design and implementation of each of these systems was not
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to replicate the response of their biological analogues in a fully bio-mimetic sense.

Instead, the goal was to determine and formalize the characteristics of the respective

sensing modalities that provide useful, robust, and scalable state estimate architec-

tures that may be transitioned to engineering solutions. For each of these systems

a key result is shown, that static linear estimation from sensor measurements may

be used to produce robust and rapid estimates of the respective vehicle motion s-

tates. This characteristic is critical in that it makes implementations of the sensors

in analog-VLSI possible, and thereby provides the path to extreme miniaturization.

Additionally, each of the sensing systems designed and detailed in this work are

capable of providing their respective states estimates with comparable or improved

speed when compared to alternative sensing systems.

The technical contributions from this work are listed below:

1. A model of the ocelli in flying insects and a method of static linear estimation

of the pitch and roll rates from its outputs was developed.

2. A method for the static linear estimation of force and torque from a spatially

distributed array of acceleration measurements was developed

3. A fully analog sensor was designed and fabricated to replicate the response of

the ocellar visual system, producing static estimates of pitch and roll rate.

4. An array of arbitrarily placed linear accelerometers was constructed, static

linear estimation of the acceleration states was implemented in hardware, and

an automatic calibration algorithm was developed.
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5. Stabilizing rate feedback from an analog ocellar sensor on a sUAS was demon-

strated in the presence of actuator disturbances.

6. Disturbance rejection feedback from a spatially distributed accelerometer array

was demonstrated in the presence of actuator and gust disturbances.

Elaborating on these unique technical contributions a summary of the result-

s produced in this work is presented here. The ocellar model was based on the

anatomical, functional, and electrophysiological characteristics in insects and its

outputs were found to linearly and robustly encode angular velocity, in a cluttered

urban 3-D simulation environment. This simulation result was used to validate a

geometrically derived, but simplified, analytical ocellar model for egomotion sens-

ing. The mathematical framework for the linear static estimation of the 6-DOF

force and torque vector from spatially distributed array of arbitrarily located and

oriented linear acceleration measurements was developed. From simulation of the

distributed acceleration estimation methodology, empirical relationships between

the force-torque estimate accuracy and the sensor noise, position error, and sensor

number were developed. Using the ocellar simulation model a fully analog sensor

was designed and fabricated to replicate the response of the model. In addition to

mimicking the response of insect ocelli to luminance stimuli, static analog estimation

of pitch and roll angular velocities was built into the sensor circuitry. The response

of the sensor output estimates were compared to inertial and visual methods of an-

gular velocity estimation. This comparison demonstrated improvements in sensor

response speed when compared to the various other methods of egomotion estima-
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tion. This characterization illustrated, in hardware, the complementary spectral

responses between the ocelli and compound eye analog across a range of input ex-

citation frequencies. A redundant array of arbitrarily placed, but rigidly connected

linear MEMS digital accelerometers was designed and constructed. An automatic

calibration algorithm was developed to estimate the position, orientation, gain, and

bias of the sensors from ground truth measurements from and external motion cap-

ture system. Static linear estimation of the acceleration states that comprise the

force-torque vector was implemented in digital hardware, and the response of the

acceleration estimate was characterized. The first implementation of rate feedback

from an analog ocellar sensor on a sUAS was demonstrated. The closed loop stabi-

lization and disturbance rejection performance of the sensor was characterized and

found to provide comparable stability to a MEMS inertial implementation. The first

implementation of combined complementary ocellar and optic flow rate feedback on

a sUAS for stabilization was demonstrated. The first implementation of a redundant

array of linear accelerometers to estimate force and torques for disturbance rejection

feedback on a sUAS was demonstrated.
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Chapter 6: Future Work

Several potential directions may be taken to expand on the work presented

in this thesis. Initial efforts might likely be focused on expanding the stabilization

and disturbance rejection implementation, discussed in Section 4.2.1.4, to additional

degrees of freedom requiring further modeling of the system vehicle dynamics. A full

6-DOF controller implementation that is capable of tracking accelerations accurately

may also be useful in aggressive maneuvering where precise following of acceleration

trajectories is desired.

It would also be a logical next step to fuse these two sensing modalities with

an optic flow sensor, to perform navigation, stabilization, and disturbance rejection.

Development of fully analog solutions for all three of these sensing mechanisms

would also allow for transition to smaller platforms. Further miniaturization of the

sensing modalities would aid in fully demonstrating their advantages, as vehicle scale

diminishes and bandwidth requirements increase.

Implicit in the static estimation of the forces and torques acting on the vehicle

with distributed accelerometers is the assumption that the sensor and the airframe

are rigidly connected. In applying this sensing technique to more flexible aircraft,

such as traditional fixed-wing platforms, structural motions will need to be account-
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ed for in the estimation scheme. To that, a similar array of strain sensors, spatially

distributed across the airframe, could provide real-time measurements of the posi-

tion of the accelerometers in the body frame, providing a solution to (2.39) for the

non-rigid case.
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Chapter A: Distributed Accelerometer Block Diagram Manipulation

The nominal state space aircraft system may be represented with the block di-

agram in Figure A.1, as defined in Section 4.2.1.2 with reference r, error e, control

Figure A.1: State space block diagram with feedback from IMU

command u, disturbance d, and system output y. The outer loop attitude con-

troller Ko stabilizes the plant, represented by typical dynamic, control, disturbance,

and measurement matrices, A, B, G, and C respectively. Through block diagram

manipulations, the system may be represented in a typical robust framework as in

Figure A.2 where the manipulated control KM and manipulated plant GM are given

Figure A.2: Manipulated state space block diagram with feedback from
IMU
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by

KM = G−1BKo (A.1)

GM = C(sI − A)−1G (A.2)

The loop transfer function Lo, when viewing the system from the output y as is

typical, is defined

Lo ≡ GMKM (A.3)

The sensitivity and complementary sensitivity transfer functions, So and To, are

defined

So ≡ (I + Lo)
−1 (A.4)

To ≡ Lo(I + Lo)
−1 (A.5)

where the mapping from reference r to output y is given by To, and the mapping

from disturbance d to output y is given by SoGM , that is

y = Tor + SoGMd (A.6)

These transfer functions may be used to quantify the response of the system to

various inputs in a robust context, via the singular values as detailed throughout

Section 4.2.

Introducing the force-adaptive feedback (FAFB) with feedforward control as
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detailed in Section 4.2.1.4 with feedback from the accelerations states within ẋ, the

block diagram is modified as shown in Figure A.3. Here the output of the plant is

Figure A.3: State space block diagram with force feedback-feedforward

considered to be ẋ rather than y and additive noise in the acceleration estimates is

represented with n. The inner loop FAFB controller Ki is defined as in (4.41).

Starting with this complex block diagram, several manipulations must be per-

formed in order to reach a system similar to that in Figure A.2. Firstly, this new

system plant may be broken into two dynamic systems, defined as P and H, with

inputs from control command u and disturbance d respectively. The output of these

two systems are components of the state derivative that may be superposed to yield

the total state derivative ẋ. Defining the systems P and H as in (4.18) and repeated

here

P ≡ s(sI − A)−1B, H ≡ s(sI − A)−1G (A.7)

the block diagram is represented by Figure A.5 The feedforward component of the

control may be collected into a single term (Figure A.6). Moving the transfer func-

tion P before the summation yields Figure A.7. Then placing the noise input sum-

mation after the PKi block results in Figure A.8. Simplifying the feedback loop
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Figure A.4: State space block diagram with force feedback-feedforward
with separated plant

Figure A.5: State space block diagram with force feedback-feedforward
with simplified separated plant

Figure A.6: State space block diagram with force feedback-feedforward
with collapsed feedforward component

yields Figure A.9. Finally, pushing the terms H and PKi into the loop yields the

system in a typical robust analysis formulation. As the responses of the system out-
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Figure A.7: State space block diagram with force feedback-feedforward
with advanced plant

Figure A.8: State space block diagram with force feedback-feedforward
with postponed noise

Figure A.9: State space block diagram with force feedback-feedforward
with collapsed feedback

put to the various inputs may be superposed to yield the total response, the robust

analysis may be similarly performed component-wise. For the case without noise in

the acceleration state estimates, i.e. n = 0, this system simplifies to the case shown

in Figure A.11 (Figure A.2) where the transfer functions that comprise the loop are
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Figure A.10: Manipulated state space block diagram with force feedback-
feedforward

Figure A.11: Manipulated state space block diagram with force feedback-
feedforward with disturbance

instead defined as

KM,d = H−1P (I +KiMB)Ko (A.8)

GM,d = s−1C(I + PKiM)−1H (A.9)

and thus, through the relationships defined in (A.3), (A.4), and (A.5), the mappings

from reference and disturbance to output are

y = s−1C(I + PKiM)−1P (I +KiMB)Ko

(
I + s−1C(I + PKiM)−1P (I +KiMB)Ko

)−1
r

= Tor (A.10)
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y = s−1
(
I + s−1C(I + PKiM)−1P (I +KiMB)Ko

)−1
C(I + PKiM)−1Hd

= SoGM,dd (A.11)

Alternatively, for the case of a system with noisy acceleration estimates and no

exogenous disturbance, i.e. d = 0, as shown in Figure A.12, the functions that

comprise the loop are defined as

KM,n = −(PKi)
−1P (I +KiMB)Ko = −K−1i (I +KiMB)Ko (A.12)

GM,n = −s−1C(I + PKiM)−1PKi (A.13)

The loop and complementary sensitivity transfer functions, Lo and To, and thus

Figure A.12: Manipulated state space block diagram with force feedback-
feedforward with noise

the mapping from reference to output remain unchanged (A.10). Furthermore, the

mapping from estimate noise to output is given by

y = −s−1
(
I + s−1C(I + PKiM)−1P (I +KiMB)Ko

)−1
C(I + PKiM)−1PKin

= SoGM,nn (A.14)
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Using this more complex formulation, the case of force feedback without feed-

forward, as in Section 4.2.1.3, may be analyzed by simply setting the MB terms in

(A.10) and (A.11) to 0. This yields mappings from reference to output

y = s−1C(I + PKiM)−1PKo

(
I + s−1C(I + PKiM)−1PKo

)−1
r

= Tor (A.15)

and disturbance to output

y = s−1
(
I + s−1C(I + PKiM)−1PKo

)−1
C(I + PKiM)−1Hd

= SoGM,dd (A.16)
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